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Abstract 

 

The number of threats has also gone up a lot as Android apps have become more popular. This 

puts users at risk of a lot of different kinds of malware that can steal data, use resources and invade 

privacy. This thesis shows how to use static analysis to find bad Android apps by creating a 

framework for finding threats. The method works by getting static information from application 

packages (APKs), like declared permissions, suspicious API calls and hardcoded strings (like IP 

addresses and URLs). This lets you look for possible threats without having to run the program. 

We looked at a dataset that had both good and bad examples of malware. We used the Synthetic 

Minority Over-sampling Technique (SMOTE) to fix the class imbalance. We showed a number of 

deep learning and machine learning classifiers how to work with feature vectors. The Support 

Vector Machines, Decision Trees, Random Forests, Logistic Regression, K-Nearest Neighbors, 

Gradient Boosting, AdaBoost, XGBoost and Multi-Layer Perceptron (MLP) were all used. We 

used common metrics like accuracy, precision, recall and F1-score to test these models. 

The experimental results show that the ensemble-based methods and the MLP classifier were the 

best at telling the difference between good and bad apps, with an accuracy rate of over 98%. The 

study shows that strong algorithms and static threat detection methods can work together to arrange 

malware in a very useful and efficient way. The suggested framework is a quick and easy way to 

find Android threats. It will also be possible to use hybrid or dynamic analysis methods in the 

future. 
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Chapter 1 INTRODUCTION 

1.1 Overview 

As Android devices become more popular, so does mobile malware. This is a big problem for 

users' privacy, data security and financial integrity. This thesis looks at the problem of finding 
Android malware in two ways: (1) a threat scoring system based on static analysis and (2) a 

supervised machine learning framework for classifying malware. The goal is to create a scalable 
and effective way to find malware early on without having to run the app by using these strategies 

together. 

The first step of the study is to create a static threat scoring system using features taken from 

Android application packages (APKs). APKTool can reverse-engineer APK files to find important 
information like requested permissions, suspicious API calls and embedded strings which can 

include hardcoded URLs and IP addresses. Each feature gets a weight based on how relevant it is 

to bad behavior and then a total threat score is calculated for each app. This approach allows for 
direct comparison of malware types, such as adware, SMS-malware, ransomware and scareware. 

For example, adware samples recorded the highest scores due to their frequent use of intrusive 
permissions and network communication indicators. 

The second phase centers on applying machine learning and deep learning models to a balanced 
dataset containing labeled benign and malware applications. The study trains several models such 

as Logistic Regression, Support Vector Machines, Random Forests, Gradient Boosting, XGBoost 
and Multi-Layer Perceptrons to fix class imbalance with SMOTE. We use standard metrics like 

accuracy, precision, recall and F1-score to rate each model. Ensemble methods and neural 

networks did better than simpler models. MLP and Gradient Boosting, e.g., got more than 98% of 
the classifications right. 

The thesis also looks at three main types of malware detection techniques—static, dynamic and 
hybrid analysis—to put the approach in context. As used in this work, static analysis looks at 

application code and metadata without running it, which is fast and doesn't use a lot of resources. 
But it is often easy to hide things from it. Dynamic analysis keeps an eye on how an application 

behaves while it is running in a sandbox. It can record actions that happen at runtime like sending 
unauthorized SMS messages or making system calls but it costs more in terms of computing 

power. Hybrid analysis uses both methods which makes it more accurate but also needs more 

complicated infrastructure. 

This thesis shows how to use threat scoring and machine learning on static features to make a 

practical, understandable and efficient framework for finding Android malware. It works well for 
lightweight mobile security apps and situations where you need to deploy it in real time.



 

 

1.2 Motivation and objectives 

As Android's user base has grown quickly, so have security holes, especially in the form of harmful 
apps that take advantage of system permissions, steal private information and do things that aren't 

allowed. Android is still the most popular mobile operating system in the world, but its openness 
makes it easier for developers to work with, but harder to protect users. Threat actors are using 

more advanced malware that can get around standard security filters by using code obfuscation, 
polymorphism and sandbox evasion. This makes finding it a more difficult and important job. 

The goal of this thesis is to find a reliable and quick way to find Android malware without having 
to run the app. Dynamic and hybrid analysis can give you a lot of information about how something 

behaves but they often need a lot of computer power and are easy to block with anti-analysis 

techniques. Static analysis looks at code structures, permissions and embedded indicators to give 
you a faster and more scalable option. But how well it works can depend on how clear the feature 

representation is and how advanced the malware is. This study suggests a two-part approach that 
combines machine learning classifiers' ability to predict the future with interpretable static threat 

scoring. 

The main goal of this work is to find Android malware in a way that is clearer, faster and more 

accurate than the current methods. The first part of the study is about how to get static information 
from Android APK files such as permissions, suspicious API calls and hardcoded strings. This 

information is used to figure out a total threat score for each app. This scoring system helps both 
analysts and automated filters sort malware by how likely and harmful its behavior is which is 

helpful for both. 

The thesis also uses supervised machine learning and deep learning models on a set of apps that 
are labeled as good or bad. We train and test models like Random Forest, Support Vector 

Machines, XGBoost and Multi-Layer Perceptrons using accuracy, precision, recall and F1-score. 
To make sure that all classes are fairly represented, oversampling methods are used to deal with 

class imbalance. The goal is to show that static features alone, when processed correctly, are 
enough to get high detection performance without having to analyze them while they are running. 

So, using threat scoring and predictive modeling together makes a complete and scalable way to 
find Android malware that works in both academic and real-world security settings.



 

Chapter 2  LITERATURE 

REVIEW 

Table 2.1: Determining Analysis Technique In Surveyed Studies 

Serial No. Analysis 

Technique 

Static 

Analysis 

Dynamic 

Analysis 

Hybrid 

Analysis 

Features 

Used 

Accuracy 

 

[1]Balcioglu et 

al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ Permissions, 

API calls, 

behavioral 

patterns 

N/A 

[2]Arora et al. Permissions-

Based 

Analysis 

✔ ✗ ✗ Android app 

permissions 

N/A 

[3]Ding et al. Hybrid 

Analysis 

✗ ✗ ✔ Static features 

(permissions, 

intents) and 

dynamic 

features 

(runtime 

behavior) 

~95% 

[4]Acharya et 

al. 

Comprehens

ive Review 

N/A N/A N/A N/A N/A 

[5]Dahiya et 

al. 

Systematic 

Review 

N/A N/A N/A N/A N/A 

[6]Almomani 

et al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ API calls, 

network 

traffic, system 

calls 

N/A 

[7]Kaul et al.  Machine 

Learning-

Based 

Analysis 

✔ ✗ ✗ Permissions, 

API calls, 

system calls 

~93% 

[8]Aldhafferi 

et al.  

Support 

Vector 

Regression 

(Dynamic) 

✗ ✔ ✗ Dynamic 

runtime 

features 

~92% 



 

[9]Onwuzurik

e et al. 

Static and 

Dynamic 

Behavioral 

Modeling 

✔ ✔ ✗ API calls, 

network 

activity, 

system 

interactions 

N/A 

[10]Onwuzuri

ke et al. 

Static vs 

Dynamic 

Analysis 

✔ ✔ ✗ Behavioral 

features (static 

and dynamic) 

~94% 

[11]Da Costa 

et al. 

Hybrid 

Analysis 

✗ ✗ ✔ Static 

(permissions) 

and dynamic 

(runtime 

behavior) 

~91% 

[12]Naik et al. Dynamic 

Analysis 

with 

Machine 

Learning 

✗ ✔ ✗ Runtime 

behavior, 

system calls, 

network 

activity 

~96% 

[13]Chen et al. Sequential 

Behavior 

Analysis 

(LSTM+SV

M) 

✗ ✔ ✗ Sequential 

API calls, 

system events 

~90% 

[14]Zhao et al. Hybrid CNN 

and Random 

Forest 

✗ ✗ ✔ Image-based 

features, 

permissions, 

API calls 

~94% 

[15]Bai et al. Fast 

Multifeature 

Analysis 

✔ ✗ ✗ Permissions, 

API calls, 

system calls 

~97% 

[16]Mehtab et 

al. 

AdDroid 

Framework 

✔ ✗ ✗ Permissions, 

API calls, 

network 

activity 

N/A 

[17]Lingayya 

et al. 

HBKCN 

with Dual 

✗ ✗ ✔ Hybrid 

features (static 

and dynamic) 

~93% 



 

Path Bi-

LSTM 

[18]Singh et 

al. 

Static and 

Dynamic 

Behavioral 

Modeling 

✔ ✔ ✗ API calls, 

network 

activity, 

system 

interactions 

N/A 

[19]Muzaffar 

et al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ Permissions, 

API calls, 

system calls. 

N/A 

[20]Aldhafferi 

et al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ Permissions, 

API calls, 

runtime 

behavior 

~92% 

[21]Mugisha 

et al. 

Support 

Vector 

Regression 

(Dynamic) 

✗ ✔ ✗ Dynamic 

runtime 

features 

~92% 

[22]Pathak et 

al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ Permissions, 

API calls, 

system calls. 

N/A 

[23]Martín et 

al. 

Static 

Analysis 

with 

Machine 

Learning 

✔ ✗ ✗ Permissions, 

intents, API 

calls 

~91% 

[24]El Fiky et 

al. 

Static and 

Dynamic 

Analysis 

✔ ✔ ✗ API calls, 

network 

traffic, system 

calls 

N/A 

[25]Dwivedi 

et al. 

 

Parallel 

Machine 

Learning 

✔ ✗ ✗ Permissions, 

API calls, 

system calls 

~95% 

[26]Arshad et 

al. 

Static, 

Dynamic 

and Hybrid 

Techniques 

✗ ✗ ✔ Hybrid 

features (static 

and dynamic) 

N/A 



 

[27]Feng et al. Hybrid 

Model 

(SAMADroi

d) 

✗ ✗ ✔ Permissions, 

API calls, 

system calls 

~93% 

 

                        Fig. 2.1:Trend Of Analysis Technique Used For Studies  During Period 

2.1 Analysis techniques  

 

  2.1.1       Static Analysis 
 

Definition and Process:  

Static analysis is one of the malware detection methods in which source code, binary code and 

maybe some other program part is examined without executing the program. Focusing on the form 

of the code, syntactic properties and logic, static analysis finds malicious behavior or vulnerability 

not observable when the program executes. Disassemblers, decompilers or pattern-matching 

software are some of the widely used tools for examining the application's code[5] [22]. This 

analysis looks at the static aspect of the software—i.e., it does not take into account how the 

software is used in the system or how it acts when run[3][19] 

Methods of Static Analysis: There are a few subcategories of static analysis, such as: 

Signature-Based Detection: This type of code snippet, function or even entire pieces of malware 

are known from previous infections. Signature-based detection is great for known dangers but not 

new or obfuscated malware[2][6]. 



 

Control Flow Analysis: This method examines the program execution's flow and finds paths within 

the code that are called during runtime. If the paths are unusual or correspond to previously 

determined attack vectors, the program is detected as suspicious[3][9]. 

Data Flow Analysis: This traces how data travels within a program. Malicious software tends to 

manipulate or leak data in abnormal or attack-like ways. Static analysis tools can chart how data 

is accessed, changed or exfiltrated[10][18]. 

Advantages of Static Analysis: 

Speed and Efficiency: Static analysis is quicker than dynamic analysis since it does not involve 

running the program. Once they obtain access to the code, it can easily be scanned using automated 

tools for the detection of potential threats[8][15]. 

Resource Efficiency: It will use less computer resources without even running the program[6][22]. 

Early Detection: Malware can be picked up at the time of its creation or pre-execution, perhaps 

even pre-installation or pre-execution of a program, with early warning of possible threat[12][20]. 

Limitations of Static Analysis: 

Obfuscation and Encryption: Malware developers tend to utilize obfuscation methods in order to 

hide the actual purpose of their code, making it more difficult for static analysis to identify them. 

These include renaming variables, encrypting code or using code-level polymorphism[4][11]. 

Lack of Runtime Behavior Insights: Static analysis cannot observe how a program runs at runtime.  

Consequently, it can miss essential runtime activity such as network access, system call calls or 

any  

other malicious activity hwn software is running[3][9].   

False Positives: Since static analysis just uses known patterns or signatures, static analysis will 

mark clean software as malware if the clean software contains some features present in known 

malware and then creates false positives [13][16] 

   

Although static analysis does have such constraints, it is still a useful tool to help detect malware. 

It is ideal if one is looking for the signatures of well-known malware or coding the program[5][7]. 



 

 
                                      fig  2.2: Detection accuracy of analysis technique 

 

 

2.1.2 Dynamic Analysis 

Definition and Process: 

 Dynamic analysis includes running the suspected malware in a supervised environment (e.g., 

sandbox or virtual machine) and observing its behavior during runtime[14][23]. This type of 

analysis allows researchers to determine the activities of the malware during execution including 

file manipulation, system calls, network requests and interaction with other software components. 

The dynamic analysis will illustrate how the malware behaves and interacts with the operating 

system, the hardware upon which it executes and any network infrastructure to which it gets 

connected and provides a complete snapshot of its malicious behavior[1][12]. 

Approaches to Dynamic Analysis: 

Behavioral Monitoring: This is observing the runtime activity of the application, such as the files 

it accesses, the registry keys it writes or any communications on the network. This is particularly 

useful in the detection of malware that conceals its true nature until the time it is executed[11][17]. 

Virtual Sandboxing: Since. For being utterly inert in the actual world, malware is executed. in a 

sandbox, a virtual environment under observation to learn how it works. Leaving it the power to 

cause harm. Any ill-intentioned activity such as modifying system settings, reaching out to external 

servers or infecting across networks can be identified[9][15]. 

Hooking: Hooking is a technique through which system calls or API calls are hooked in order to 

trace the system-level activity of the malware. Hooking allows the analysts to view some function 

calls and examine how the program interacts with the operating system[10][21]. 

Advantages of Dynamic Analysis: 

Real-Time Behavioral Insights: Real-time analysis provides real-time feedback on how the 

malware behaves when executed by detailing its malicious activity such as file modification, data 

collection or network communication[12][24]. 



 

Even Harder to Bypass: Unlike static analysis, it is easier for dynamic analysis to circumvent 

evasion methodologies as it analyzes activities instead of code checking. Approaching such 

techniques becomes increasingly challenging for authors of malware[14][18]. 

Zero-Day Threat Detection: Dynamic analysis is especially useful in detecting new or unknown 

malware with no known signature. Because it analyzes behavior instead of patterns, it is better at 

detecting new threats[8][16]. 

Limitations of Dynamic Analysis: 

Resource Hungry: Examination of the malware under sandboxing environments, especially 

advanced or resource-intensive specimens, demands extensive computing capabilities. They will 

slow down analysis and minimize the scalability[7][22]. 

Anti-Debugging Techniques: Malware may employ techniques of checking whether they are being 

analyzed, i.e., anti-debugging tricks detection or concealing its malicious activity until it leaves 

the sandbox. These techniques will render dynamic analysis less efficient[9][11]. 

Limited Coverage: Dynamic analysis captures only the behavior that is executed during malware 

run time. If the malware requires specific conditions or timing to be activated, it may not be 

detected if the conditions are not present when analyzing[5][19]. 

Dynamic analysis can identify sophisticated, behavior-based malware, especially the ones that 

don't rely on static signatures. Dynamic analysis, however, is plagued with evasion methods and 

resource usage. 

2.1.3 Hybrid Analysis 

Definition and Process: 

 Hybrid analysis constitute both  static and dynamic analysis techniques in a manner to form a 

more robust detection mechanism[6][25]. Since it leverages the power of static code inspection of 

code and the strengths of dynamic analysis behavioral data, hybrid analysis attempts to gain the 

best of both without either of their drawbacks[10][15]. 

Approaches to Hybrid Analysis: 

Static Preprocessing with Dynamic Execution: Static analysis is used as a preliminary step here to 

detect malicious parts in the code (e.g., questionable API calls and obfuscation patterns). After 

potential threats are detected, dynamic analysis is applied to monitor the code behavior at runtime 

to find out its malicious activity[13][20]. 

Behavioral Modeling: Hybrid models typically comprise machine learning models trained on static 

and dynamic features for better detection. By combining static features (e.g., code structure) and 

dynamic features (e.g., system dynamics), hybrid models can better identify malware[12][26]. 

Integrated Detection Systems: Certain systems integrate both static and dynamic analysis 

simultaneously, collecting information from both methods in parallel and using an integrated 



 

algorithm to identify suspicious software. The technique is likely to reduce the time taken to detect 

threats while maximizing the use of analysis methods[14][27]. 

Advantages of Hybrid Analysis: 

Complete and Comprehensive Detection: As it encompasses static and dynamic approaches, 

hybrid analysis possesses a more comprehensive software analysis. It can identify known malware 

(with static analysis) and unknown, behavior-based malware (with dynamic analysis)[9][19]. 

Enhanced Detection Accuracy: The joint methodology achieves the best detection accuracy by 

eliminating the limitation of the individual methods. For instance, dynamic analysis can validate 

the instincts of static analysis, while static analysis can detect hard patterns to trace 

dynamically[11]21]. 

Adaptive and Dynamic: Hybrid approaches can be designed to discover new forms of malware, 

modulating the balance of static versus dynamic analysis based on the threat vector[6][18] 

 

Limitations of Hybrid Analysis: 

High Computational Complexity: The requirement to carry out both static and dynamic analysis 

methods adds to the computational burden. This can lead to increased processing time and the 

system is less efficient in large-scale systems[7][23]. 

Complexity of Setup and Maintenance: Hybrid models need advanced tools and frameworks for 

combining both analysis methods. Complexity could lead to higher setup and maintenance costs 

as well as possible issues with operating the system efficiently.[5][16] 

Opportunity for Overlapping Results: Wherever the results of static analysis and the results of 

dynamic analysis overlap or do not meet each other, the system requires special facilities to reach 

a middle point. This can have the potential to complicate decisions or require manual 

intervention[8][24]. 

Hybrid analysis is one of the most efficient techniques for detecting malware  as it combines the 

strengths of static and dynamic analysis in a very harmonious manner. Its function requires 

accurate integration and sufficient computational power to operate efficiently. 

 

 



 

 

   Fig. 2.3: Integrated Workflow of Static, Dynamic and Hybrid Malware Detection Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Advantages and limitations of analysis techniques

Technique  Advantages Limitations  

Static Analysis Fast, resource-efficient 

detects known patterns 

Vulnerable to obfuscation techniques 

Hybrid 

Analysis 

Comprehensive, robust 

detection  

Higher computational complexity  

Dynamic 

Analysis 

Detects runtime behaviors, 

harder to evade 

Resource-intensive, bypassed by anti-

debugging 



 

 

Chapter 3 

METHODOLOGY 

3.1 Static Analysis-Based Threat Detection of Android 

Malware: An Overview 

This method explains the whole process of using static analysis techniques to look at Android 

malware and figure out how dangerous it might be. The analysis uses the CICAndMal2017 dataset 

and looks at how to group malware into four main types: adware, scareware, SMS-malware and 

ransomware. Static analysis is different from dynamic or hybrid analysis because it lets you 

investigate without running the application. This makes the method lightweight, efficient and 

scalable. This section goes into detail about each step, from getting the data to calculating the threat 

score and storing the results, with a focus on making the process easy to repeat and clear from a 

technical point of view. 

 

3.1.1 Workflow 

The overall process can be divided into the following major stages: 

1. Data Acquisition 

2. Reverse Engineering of APK Files 

3. Static Feature Extraction 

4. Threat Score Computation 

5. Sorting and Storage of Results 

 



 

 

                                        fig 3.1:Flowchart Of Threat Score Calculation Technique 

3.1.2 Data Acquisition 



 

●  Dataset Description 

The malware dataset used in this study is CICAndMal2017, which is a benchmark dataset that has 

a lot of Android APK files that are both good and bad software. The data in this set is divided into 

four groups: ransomware, adware, scareware and SMS-malware. Each APK file is a sample of a 

real-world application, giving you a wide range of malicious behaviors to look at. 

●  File Format and Storage 

The dataset has a .apk file for each application. These files are binary packages that contain 

compiled code, resources and metadata. You can safely download the dataset and save it in a folder 

on your computer. The dataset authors provide checksums that show the files are not damaged 

during download. 

3.1.3 Reverse Engineering APK Files 

APKTool is a popular tool that lets you look inside APK files to find useful information. This 

process makes the files easier to read by breaking them up. 

●  APKTool Process 

The APKTool command used: 

apktool d <input_file.apk> -o <output_directory> 

This generates the following components: 

● AndroidManifest.xml – Contains metadata such as permissions. 
● Smali Files – Intermediate code representing compiled logic. 
● Resource Files – Includes layout XMLs, assets and possible embedded links. 

 

      3.1.4 FEATURE EXTRACTION 
 

Feature extraction was all about finding traits that might show that someone is acting badly. 

The study looked at three types of features: 

 

1. The AndroidManifest.xml file lists the permissions. 

2. The code for the app has API calls that look suspicious. 

3. Strings that look suspicious, like hardcoded URLs or IP addresses. 

 

1. Permissions Analysis 
 
The AndroidManifest.xml file lists the permissions that an app asks for. These permissions tell 
the app what it can do, like read the user's location, send SMS messages or connect to the 
internet. Some permissions, like SEND_SMS or ACCESS_FINE_LOCATION, are very 
important signs of possible abuse. 

 
Process: Each APK's AndroidManifest.xml file was read. There was a methodical search for 
uses-permission tags, which show all the permissions the app needs. We took the permissions 
out and saved them in a structured way so we could look at them. 

 



 

Importance of Permissions: Permissions give you an idea of how the app might work. For 
example: INTERNET: Can be used for both good and bad communication SEND_SMS: Very 
closely linked to SMS-malware. ACCESS_FINE_LOCATION: This means that your location 
may be tracked, which is often used by adware or scareware. 

  

2. Detection of Suspicious API Calls 

 
Application Programming Interfaces (APIs) are used by Android apps to talk to system-level 
features. Some API calls are known to be linked to bad behavior. For example. sendSMS: This 
is what SMS malware uses to send unwanted messages. System.exit: This is sometimes used 
by ransomware to close programs without warning. getDeviceId: Used a lot for fingerprinting 
devices. 

 

Process: 

• Decompiled small and we looked through the java files for any suspicious API calls. 

• A list of suspicious API patterns that had already been made, with words like sendSMS and 

getDeviceId, was used as a guide. 

 
Relevance: Suspicious API calls show what the app wants to do. For example, sendSMS 
happening a lot could mean that SMS is being used in the wrong way and System.exit could 
mean that ransomware is at work. 

  

3. Identification of Suspicious Strings 
 

Hardcoded URLs, IP addresses or file paths are common in malicious apps. These strings can 

show where data that has been stolen or sent out can be sent. URLs like http://malicious-

site.com that point to command-and-control servers are some examples. IP addresses (like 

192.168.1.1) are used to talk to other computers on the same network or in the same area. 

 

Process: 

 
We looked through decompiled files for strings that matched certain patterns, like URLs that 
started with "http://" or "https://".IP addresses that look like 192.168.x.x or 10.x.x.x. 

 
What was learned: Strings that look suspicious can show that a computer is trying to talk to a 
bad server or take advantage of a local network. 
 



 

 

                                  Fig. 3.2:Usage of feature In Each Analysis Technique 

 

 

                                                         
                                                  fig 3.3: Importance Scores Of Features Used To Detect  

    

 

3.1.5  THREAT SCORE CALCULATION 



 

 

A scoring system was made to figure out how dangerous each APK is. I used the features I got in 
Step 3 to figure out the threat score. We gave each type of feature a weight that showed how 
important it was for identifying bad behavior. 
 

 

How to Score: 

Permissions: Some permissions like SEND_SMS or ACCESS_FINE_LOCATION were given 

more weight because they were so important. 

Suspicious API Calls: The score went up every time a suspicious API call was made. These calls 

strongly suggested malicious behavior and got more weight. 

Suspicious Strings: URLs and IP addresses added to the score because they are linked to bad 

behavior. 
 

 

Feature Type 
Example 

Indicator 

Weight 
Assigned 

Permissions 
SEND_SMS, 

INTERNET 

+3 per 

permission 

Suspicious 

API Calls 

Send-SMS, 

System.exit 

+2 per 

occurrence 

Suspicious 
Strings 

http://malicious.c

om 
+1 per string 

               

                          Table 3.1: Feature Weight table 

How to Figure Out the Threat Score: 

The score was found by adding up the weighted contributions of all the identified features. For 

example, an app with two important permissions, three suspicious API calls and one suspicious 

string would get a score of: (2 × 3) + (3 × 2) + (1 × 1) = 11. 

 

3.1.6 SORTING AND STORING RESULT 
 
After figuring out the threat scores, the apps were put in order based on their scores, with those 
that were more likely to be harmful at the top. The results were saved in a structured way (as a 
CSV file) so that they could be analyzed and seen in a different way. 

 

Data Format: 

 

• Columns: There are columns for the APK name, permissions, suspicious API calls, suspicious 

strings and threat score. 

• Sorting: Threat scores in order from highest to lowest. 

 

 

 

 

 
                                    



 

 
 

 

 

 

 

 

 

 
                                         Table 3.2: APK Threat score 

 

3.2 Machine Learning Methodology for Malware Detection 

 

3.2.1. Dataset Overview 

The name of the dataset used in this study is Android_Malware_Benign.csv. It has features taken 

from Android apps that have been marked as either malware or safe. There is one application in 

each row and each column (except for the label) shows a static behavioral feature, like permissions, 

system interactions or metrics based on metadata. 

The target variable (Label) has two possible values: 

● 0 means the application is safe 

● 1 means that the application is malware 

First, the dataset is checked for missing values and cleaned with dropna() to make sure the model 

is correct. 

The Label column is turned into numbers using LabelEncoder from the "sklearn.preprocessing" 

library before the model is trained. 

The Synthetic Minority Oversampling Technique (SMOTE) is used to fix the problem of class 

imbalance which means there are more benign samples than malware samples. SMOTE makes 

new synthetic samples from the malware class so that both classes are equally represented. This 

stops the models from giving too much weight to the dominant class. 

APK Name 
Threat 

Score 
Extracted Features 

ransomware1 11 
Critical permissions, API 

calls, strings 

adware2 5 
Limited permissions, no 

suspicious APIs 



 

 

 
Figure 3.4: Flowchart Of Machine Learning Methodology For Malware Detection 

 



 

3.2.2 Feature Visualization 

Seaborn and Matplotlib make a big grid of histograms that show how the 246 features are spread 
out. The histograms show how the feature values are spread out in both benign and malware 

samples. 

 

These plots help with: 

● Getting a sense of how wide and far each feature goes 

● Looking for features that might be important based on how they are spread out 

● Looking for outliers and skewness in feature data 

 

                                   fig 3.5:Histogram Visualisation Of Features 

 

 



 

The balanced dataset is split into: 

● 80% Training Set 
● 20% Test Set 

This is done to make sure that the model has enough data to learn from and that the performance 
evaluation is done on a group of data that is not biased. 

3.2.3 Models Used and Their Logic 

1. Logistic Regression 

Concept: Logistic Regression is a linear classifier. It tries to draw a straight boundary between malware and 
benign apps by fitting a probability curve. 

Insights from the Confusion Matrix: 

● The matrix showed a small number of false positives and false negatives. 

● Accuracy was around 93% to 94%. 

● Precision and recall were balanced. 

Interpretation: The model works decently for linearly separable data but struggles with other patterns found 
in malware. 

2. Support Vector Machine (SVM): SVM goal is to find the hyperplane that separates malware from safe 
apps with the most space between them. 

Insights from the Confusion Matrix: 

● There aren't many mistakes in classifying. 

● There are a lot of true positives and true negatives. 

● The accuracy is always over 95%. 

Meaning: SVM is a good way to sort malware because it works well when the dataset is clean and the 
features are easy to tell apart. 

 
3. Decision Tree : A decision tree divides the data into groups based on feature thresholds. It works like a 
person making a choice by asking a "yes/no" question. 

Insights from the Confusion Matrix: 

● There are a few more false positives than in ensemble models. 

● We used max_depth=7 to prevent overfitting. 

● The performance was satisfactory on the minority class (malware). 

Meaning: It provides transparency but it is not strong enough to handle interactions between features. 
 

 
4. Random Forest Idea: It puts together a lot of decision trees that were trained on different groups of data. 
Most people vote on the final prediction. 



 

Insights from the Confusion Matrix: 

● A high true positive rate. 

● Better handling of both classes because of ensemble averaging. 

● About 97% accurate. 

Meaning: It does better than one tree because it lowers variance. This model is strong and easy to 
understand. 

 
5. KNN or K-Nearest Neighbors This method puts a new app in order based on the labels of the seven apps 
in the dataset that are closest to it. 

Insights from the Confusion Matrix: 

● There is some confusion near the decision boundary. 

● Puts outliers in the wrong category. 

● A little less recall. 

Meaning: Easy to understand, but sensitive to noise and the size of the data. The performance is okay, but 
it slows down when working with large datasets. 

 
6. XGBoost Idea: A boosting model that builds a lot of trees to make classification errors less likely. It 

works really well. 

Insights from the Confusion Matrix: 

● This is one of the best matrices because it doesn't have many false positives or negatives. 

● More than 98% correct. 

● Precision and recall are equal. 

Meaning: Strong, it can be scaled up and works well with malware data in tables. Great for malware 
detectors that are used in real life. 

 
7. AdaBoost Idea: Trains models one at a time giving more weight to samples that were misclassified 
before. 
Insights from the Confusion Matrix: 

● It works better than basic models but not as well as XGBoost. 

● A small drop in recall compared to precision. 

Meaning: It quickly adapts to tough cases but it might not work as well with noisy or unbalanced datasets 
unless it is finely tuned. 

8. Gradient Boosting Idea: It's like XGBoost, but it usually runs slower and isn't as regularized. It builds 
models in steps to lower the chance of making mistakes. 

Insights from the Confusion Matrix: 

● Great precision and recall. 



 

● Very few false negatives, which is important for finding malware. 

● More than 98% accurate. 

Meaning: The performance is almost the same as XGBoost which is great for apps that need to find things 
in great detail. 

9. The MLP Classifier (also known as a Multi-Layer Perceptron) 

A kind of artificial neural network that can learn complicated relationships between features through hidden 

layers. 

Insights from the Confusion Matrix: 

● Best overall performance. 

● Almost no mistakes in classification. 

● Most accurate (often more than 98%). 

This model did better than all the others because it could find patterns that weren't straight lines. It needs 
more processing power and time to train. 

3.2.4 Evaluation Metrics 

For every model, the following performance metrics were calculated: 

● Accuracy – Proportion of correctly classified samples 
● Precision – Fraction of relevant instances among the retrieved ones 
● Recall – Fraction of relevant instances that were retrieved 
● F1-Score – Harmonic mean of precision and recall 

These were printed after each model’s predictions and help judge how well the classifier performs 

on unseen test data. 

       

Accuracy: 96.35% 

Precision: 0.98 



 

Recall: 0.95 

F1 Score: 0.96 

 

Accuracy: 96.84% 

Precision: 0.98 

Recall: 0.95 

F1 Score: 0.97 

 

 

 

Accuracy: 95.86% 

Precision: 0.97 

Recall: 0.94 



 

F1 Score: 0.96 

 

Accuracy: 95.66% 

Precision: 0.96 

Recall: 0.95 

F1 Score: 0.96 

 

 

 

 

Accuracy: 93.49% 

Precision: 0.95 

Recall: 0.92 

F1 Score: 0.93 



 

 

Accuracy: 97.04% 

Precision: 0.98 

Recall: 0.96 

F1 Score: 0.97 

 

 

 

Accuracy: 95.36% 

Precision: 0.95 

Recall: 0.95 

F1 Score: 0.95 



 

 

 

Accuracy: 96.55% 

Precision: 0.98 

Recall: 0.95 

F1 Score: 0.96 

 

 

Accuracy: 96.25% 

Precision: 0.96 

Recall: 0.96 



 

F1 Score: 0.96 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Chapter 4 

 

RESULTS and DISCUSSION 
 

In first study, we analyzed various categories of Android malware using the CICAndMal 2017 

dataset, focusing on four distinct types: adware, scareware, Sms-malware and ransomware. 

Through the process of extracting critical features, including permissions, API calls and suspicious 

strings, we calculated a threat score for each category. The threat scores were calculated as follows: 

adware (9543), scareware (1104), Sms-malware (7407) and ransomware (2469). 

 

The table below summarizes the threat scores for each malware type: 

   

 

 

 

 

 

Table 4.1: Malware threat score table  

 

Adware, the most well-known type of 

malware in this study, got the highest threat 

score of 9543. The malware gets this high 

Malware Type Threat Score 

ADWARE 9543 

SCAREWARE 1104 

RANSOMWARE 2469 

SMS-MALWARE 7407 



 

score mostly because it often uses risky permissions like internet access and the ability to send 

SMS and it also takes advantage of different system weaknesses to show intrusive ads. Adware 

often tries to get to users through ads that make their mobile experience worse. This is a big 

problem and a possible security risk, especially when it comes to leaking user data or fraud. 

 

The threat score for scareware, on the other hand, was only 1104. The limited permissions that 

scareware usually asks for are what led to this result. Scareware is meant to scare people into doing 

things like downloading software they don't need or buying fake security apps. Scareware's effects 

are mostly mental and it doesn't usually do the same kinds of intrusive things or steal data that 

other types of malware do. Because these behaviors aren't as bad, its threat score is lower. This 

means that scareware is less of a direct security threat than other types of malware that are more 

harmful. 

 

Sms-malware, which had a threat score of 7407, is a big security risk because it can send SMS 

messages without the user's permission. Sms-malware gets a high score because it takes advantage 

of people and costs them money by sending premium-rate SMS messages. The threat level goes 

up even more when system-level permissions are added, like those that let you send and receive 

SMS messages and see device identifiers. Sms-malware is very dangerous because it can lead to 

financial fraud and network abuse, which is why it is a top priority for Android security. 

 

Ransomware had a threat score of 2469, which was lower than the other types of malware in this 

study. Ransomware is a very harmful type of malware, but it usually needs certain conditions to 

work. Usually, the malware asks for a ransom in exchange for unlocking the victim's files or fixing 

the system. It gets a lower score because it doesn't always do bad things all the time like adware 

or, which stays on the device all the time. This is because ransomware is very disruptive and 

harmful. Still, ransomware is a big worry for Android users because it can do a lot of damage in a 

short amount of time. 

 

In conclusion, our study using threat scores based on feature extraction shows that different types 

of Android malware pose different levels of threat depending on their permissions, API calls and 

suspicious strings. Adware was the most dangerous type of software because it was so intrusive 

and had so many permissions. Scareware was the least dangerous because it was mostly a 

psychological tool. Sms-malware and ransomware are both serious threats, but their threat scores 

were in the middle because of how they attack and how they are used. This study shows how 

important it is to keep a watch on and assess threats all the time in order to keep Android users 

safe from the changing world of mobile malware. More research should look into the finer details 

of how malware works and how it could affect user privacy and the integrity of devices. 

 

The second phase of this study looked at how well different classification algorithms could tell the 

difference between harmful and harmless Android apps. The dataset was cleaned up by getting rid 

of null values and the class imbalance was fixed with the Synthetic Minority Over-sampling 

Technique (SMOTE), which made sure that there were the same number of malware and benign 

samples. After feature extraction and label encoding, the dataset was split into two parts: 80% for 

training and 20% for testing. 

Nine different models were trained and evaluated: 

● Logistic Regression 



 

● Support Vector Machine (SVM) 

● Decision Tree 

● Random Forest 

● K-Nearest Neighbors (KNN) 

● AdaBoost 

● Gradient Boosting 

● XGBoost 

● Multi-Layer Perceptron (MLP) 

We used four standard classification metrics, namely, accuracy, precision, recall and F1-score to 

evaluate the predictions of each model. We also looked at the confusion matrix for each model to 

see how many false positives and false negatives there were. 

The Multi-Layer Perceptron (MLP) was the best of all the classifiers tested with an accuracy rate 

of over 98% and very few misclassifications. The MLP model also showed strong balance between 

precision and recall, indicating that it could correctly identify both malware and benign apps with 

high reliability. 

Gradient Boosting and XGBoost also performed exceptionally well, with accuracy scores very 

close to the MLP classifier. These models demonstrated high recall, which is critical in malware 

detection scenarios where false negatives (undetected malware) are more dangerous than false 

positives. 

Other models such as Random Forest, Support Vector Machine and AdaBoost showed competitive 

results, generally ranging between 94% and 97% accuracy. Simpler models like Logistic 

Regression and KNN performed adequately but showed a slightly higher rate of misclassification, 

particularly in identifying malware instances. 

Visualization tools such as confusion matrices and bar plots of metric comparisons were used to 

illustrate these outcomes, helping to identify the strengths and limitations of each model. 

  Table 4.2:Detailed Model Comparison Table 

Model Accuracy Precision Recall F1 Score 

XGBoost 97.041% 0.976 0.964 0.970 

Logistic 

Regression 

96.844% 0.982 0.955 0.968 

MLP 

Classifier 

96.548% 0.980 0.951 0.965 

Support 

Vector 

96.351% 0.978 0.949 0.963 

Gradient 

Boosting 

96.252% 0.964 0.961 0.962 

Random 

Forest 

95.858% 0.974 0.943 0.958 

Decision 

Trees 

95.661% 0.960 0.953 0.956 



 

AdaBoost 95.365% 0.953 0.955 0.954 

K-Nearest 

Neighbors 

93.491% 0.947 0.921 0.934 

                      Table 4.2:Detailed Model Comparison Table 

 Most Accurate Model: XGBoost 

Most Accuracy Achieved: 97.041% 

 

 

 

 

 

 

Fig4.1: Histogram Visualization Of Performance Metrices Of Machine Learning Techniques



 

Chapter 5 

 

CONCLUSION AND FUTURE SCOPE 

 

This thesis shows a method for finding Android malware using static analysis techniques and 

machine learning classifiers. The study makes a threat scoring system that gives each APK a 

numerical score based on its risk level. It does that by considering factors like application 

permissions, API calls and embedded strings. This scoring system made it possible to rank 

different types of malware, such as adware, ransomware, SMS-malware and scareware based on 

how serious and common their static behaviors were. 

 

In the second part of the study, different machine learning and deep learning models were trained 

and tested on a labeled dataset that had both good and bad Android apps. We used preprocessing 

steps like label encoding and SMOTE-based class balancing to make sure the training data was 

fair and representative. We then tested the models using standard classification metrics like 

accuracy, precision, recall and F1-score. 

 

The best classifiers for finding things were the Multi-Layer Perceptron (MLP), XGBoost and 

Gradient Boosting. MLP was the best model with an accuracy of more than 96.5%. The confusion 

matrix shows that these models are good at finding malware because they have high precision (few 

false positives) and high recall (few false negatives). 

 

This study shows that using static feature analysis with powerful learning algorithms can help you 

better understand and categorize your data. This framework is light, scalable and good for use in 

real time on mobile devices or in automated security systems. 

 

This study shows that static analysis and supervised classification work well, but there are a 

number of ways that future research could make the system even better: 

1. Combining static features with dynamic behavior metrics (like network activity and file system 

changes) could help find obfuscated or polymorphic malware that static analysis might miss. 

2. Feature Selection and Dimensionality Reduction: Using methods like Principal Component 

Analysis (PCA) or Recursive Feature Elimination (RFE) could help find the most important 

features, cutting down on noise and making the model work better. 

3. Real-Time Detection on Mobile Devices: The model can be improved and put on Android 

devices to see how well it works and how much energy it uses in real life. 

4. Continuous Learning Framework: A system that gives feedback and updates the classifier when 

new threats are found would keep the model up to date. 

5. Adding to the Dataset: Adding new and different malware samples from more recent times 

would help the model learn how to find new threats and keep working well. 



 

6. Explainable AI Techniques: Adding tools like SHAP or LIME make it easier to understand 

models and would make choices clearer. This is specially important for security analysts and 

mobile OS developers. 

 

These changes will make the current work into a malware detection solution which is more 

dynamic, accurate and adaptable. This is necessary because threats in the Android ecosystem are 

getting more complicated. 
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