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Multi-Stage Vision-Language Transformer(MVLT) for enhanced Image 

Captioning 

Ankita Mishra 

ABSTRACT 

Image captioning is an important task in today’s world which leverages computer 

vision and Natural language processing for generating meaningful coherent description 

of images. Earlier works based on convolutional and recurrent neural networks have 

shown prominent results but have faced lots of challenges with respect to 

understanding complicated scenes of images and long-range dependencies. To 

overcome these challenges, we have proposed a model which is Multi Stage Vision 

language Transformer (MVLT) which combines state-of-art deep learning 

architectures for improved image captioning. Our model leverages ViT-G and CLIP 

for extracting high resolution visual features and Flamingo-style perceiver Resampler 

for efficient vision-language fusion and LLaVA (Large Language & Vision Assistant) 

for caption generation with context awareness. Our model has been trained on MS 

COCO and conceptual captions datasets which is further evaluated on Flickr30k and 

Visual Genome and has shown promising performance across multiple benchmarks. 

The proposed MVLT model have achieved a performance that have outperformed 

previous state-of-art models in BLEU, CIDEr and METEOR scores and have 

successfully achieves more accurate, relevant, coherent and rich in semantic captions. 

This work has laid a foundation for advance vision language understanding, with 

potential application in assistive technology, content creation and AI driven media 

annotation. 

 

Keyword: Image Captioning, Vision-Language Models, Transformers, ViT-G, CLIP, 

Flamingo, LLaVA, Deep Learning, Multimodal Learning, Natural Language 

Processing 
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CHAPTER 1 

 

INTRODUCTION 
 

 

1.1 Overview 

 

With the arrival of the modern digital age, visual content production and dissemination 

have never been higher, fueled by mass mobile phone, social media, and surveillance 

technologies usage. The phenomenal expansion has spurred demand for smarter systems 

that can learn and understand visual information in a manner that mirrors human 

understanding. Image captioning automatically creating descriptive captions for images—

has emerged as a top solution at the intersection of computer vision and natural language 

processing (NLP). Historically, these fields developed independently: computer vision 

focused on recognizing and classifying objects visible to the eye, while NLP was 

preoccupied with comprehending and generating human language. Nevertheless, due to 

the growing need for multimodal integrated understanding—such as image captioning 

generation for images, visually understanding diagrams, and interactive AI agents—

researchers started working on models that incorporate vision and language processing. 

This gave rise to and surged the growth of image captioning as a new and prominent 

research field in artificial intelligence [1]. 

 

With the rampant proliferation of digital images from mobile phones, surveillance 

cameras, and social media, there exists a growing need for intelligent systems that can 

process and understand visual data in a semantic context. Image captioning, an example 

of such a task, is important in that it produces natural language textual descriptions from 

visual input. This problem is at the intersection of computer vision— task with image 

interpretation and comprehension—and natural language processing (NLP), the field of 

text comprehension and text generation. Historically, these two were addressed 

separately early on in artificial intelligence: vision systems had only been concerned 

with object identification or scene comprehension, and language models were stand-

alone in working through syntax and semantics. However, increasing interest in 

combined domains, assistive computing, intelligent content arrangement, and visually 

designed AI assistants—underscored the limitations of operating on such fields as a 

discrete set. This spurred investigations into models that could generalize across visual 

and textual data. It is due to this reason that image captioning has emerged as a 

mainstream research topic, enabling machines to feel and describe the world in less 

machine-like terms [1], [2]. 

 

As AI evolves towards being more human and natural to interact with, image captioning 

has evolved as an important ingredient in building multimodal AI systems. Such systems 

can understand and communicate visually and linguistically, and so find themselves at 

the very heart of applications ranging from virtual personal assistants and intelligent 

tutoring systems to service robots. Advances in vision-language models over recent 

years—such as CLIP and DALL·E by OpenAI, and multimodal transformers like 

Flamingo and LLaVA—have demonstrated the transformative potential of bringing 

together visual perception with language understanding [3], [4], [5]. This alignment 

allows AI systems to not only process images by detecting objects but also understand 

context and generate coherent narratives. Thus, image captioning has developed from a 

specialized research problem to an empowering technology towards better accessibility 

for the visually impaired, ease of creation of digital content, and more intuitive human-

computer interaction [6]. 
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Before image captioning technology, electronic systems could store and show images 

but did not have semantic information required to interpret their meanings. Whereas 

images contain so much visual and contextual information, earlier computer systems 

were not able to understand them unless they communicated with humans. Machine 

learning models previously relied on hand-tagging, file name tags, or external metadata 

to tag and extract visual content—approaches that were not just time-consuming but also 

very error-prone and subjective [7]. In contrast, however, human beings can infer 

meaning in an instant from images by utilizing context awareness and language 

reasoning, thus revealing inherent disparity between human vision and machine vision. 

This was most clearly seen in use cases where accessibility was needed, including web 

pages for visually impaired users, where the absence of descriptive captions on the 

images hindered access to important visual information [8]. Similarly, other areas 

including surveillance, e-commerce, digital publishing, and medicine—areas processing 

massive amounts of image data—also struggled to automate content summarization, 

search, and indexing without semantic image analysis [9]. These challenges drove the 

evolution of image captioning as an area of study that brings together natural language 

processing and computer vision to enable machines to see and report on the meaning of 

an image using natural language, bridging the gap between visual perception and natural 

language description. 

 

Early attempts at the image captioning task were predominantly typified by rule-based 

and template-based approaches, in which captions were induced by employing 

preconceived linguistic templates and hand-crafted heuristics. Although such systems 

were capable of producing basic descriptions, they were not scalable and not reliable, 

with a tendency to fail under the diversity and imprecision of real images and natural 

language usage [10]. These limitations found their application confined to isolated 

domains and generalization proved hard. Deep learning transformed image captioning 

methods. Convolutional Neural Networks (CNNs) enabled easy automatic learning from 

raw images of hierarchical visual features, and Recurrent Neural Networks (RNNs), 

particularly Long Short-Term Memory (LSTM) networks, brought the tool for capturing 

sequential patterns and dependences in sequence for natural language generation. A. 

milestone success. arrived. with. the. "Show. and. Tell" framework, which. combined. 

CNNs. and. Recurrent. Neural. Networks. within. an. encoder-decoder. framework. to. 

transform. images. into. text. in. an. end-to-end. process. [. 11.]. This. approach. 

demonstrated. that. deep. neural. models. were. capable. of. generating. contextually. 

suitable. and. grammatically. coherent. captions. for. images. Despite this, earlier deep 

learning models struggled to represent elaborate spatial relationships and generate 

lengthy, coherent narrative tasks that initiated research on attention mechanisms and 

transformer-based models. 

 

         The history of image captioning was greatly advanced by the introduction of attention 

mechanisms, where the model was permitted to select dynamically varying regional 

subsets of an image while creating textual descriptions. This kind of functionality 

improved contextual alignment between visual features and words generated, resulting 

in more informative and semantically rich captions [12]. Concurrent with that, the 

creation of massive scale annotated data sets such as MS COCO, Flickr30k, and Visual 

Genome—played a key function of offering the scale and variety of training samples 

required to enhance generalization across diverse visual spaces [13],[14]. The advent of 

transformer models, initially proposed for natural language processing, also transformed 

the field. Their ability to handle long-range dependencies and parallel computation made 

them especially well adapted for multimodal reasoning tasks, such as image captioning 

[15]. 
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         Further expanding its boundaries, CLIP models introduced a contrastive learning 

paradigm that jointly embedded both image and text representations so that it allowed 

for strong zero-shot behavior on diverse vision language tasks without fine-tuning for a 

particular task [16]. Drawing on such innovations, new multimodal models like 

Flamingo and LLaVA leverage Vision Transformers (ViTs) alongside large-scale 

language models to generate contextually informative and semantically conditioned 

captions [17], [18]. The models embrace novel mechanisms, such as the Perceiver 

Resampler, that enable enhanced vision-language fusion by way of lower-dimensional 

transforms of high-level vision to token-spectral representations. The employment of 

these kinds of modular elements facilitates even more precise and accurate image 

descriptions, providing a new standard for captioning systems for real-world use. 

 

  

         The transition from simple, human-driven image tagging systems to complex, AI-driven 

captioning platforms has rendered revolutionary changes in industries. Contemporary 

image captioning technologies play a central role in accessibility since they create real-

time descriptive text in order to help visually impaired people to better comprehend 

visual information. In web media and e-commerce, the technology supports scalable 

content categorization and suggestion, alleviating the need for human labeling. Security 

and surveillance uses are complemented by the capacity of captioning systems to 

summarize and translate visual streams, making decision and monitoring actions 

possible. The combination of image captioning with multimodal virtual assistants also 

promises new areas for natural and intuitive human-computer interaction. However, the 

technologies are limited. Traditional problems like dataset bias, the inherent ambiguity 

of complicated scenes, image interpretations varying for various observers, and high 

computational efficiency needs continue to motivate research and innovation in the field 

[1], [20]. 

  

        Briefly, the image captioning that is built is on the general trajectory of artificial 

intelligence—rule-based, hard-coded to dynamic, context-sensitive multimodal models. 

The models are now trying to imitate human visual comprehension and linguistic 

capacity, closing the semantic gap between image information and textual meaning. As 

AI systems move toward human-like design, image captioning is a fundamental 

technology. It is instrumental in developing accessible digital experiences, automating 

processes effortlessly, and facilitating more human-like interaction between humans and 

AIs through its ability to marry visual comprehension and natural language generation. 
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1.2 Problem Statement 

In today's image-oriented internet era, the necessity for well-reading and well-

describing images shifted from nice-to-have to must-have. With the torrent of user-

created content, images numbering billions are daily uploaded on social 

networking sites, online shopping malls, keen eyes, and news outlets. All these 

images bear well-meaning semantic information readable by human beings almost 

effortlessly. For computers, though, acquiring and conveying this type of 

information is still a tedious task. Even in the face of recent advancements with 

artificial intelligence, bringing computer vision and natural language processing to 

record levels, integrating these two technologies in concord to produce coherent 

and human-like descriptions of visual information, also a process known as image 

captioning, is still a significant challenge with key practical implications [1]. 

Image captioning is the computer generation of text descriptions of what is in an 

image. It is more than object recognition; it is recognizing spatial relationships, 

context, and the larger scene. It's where two of the foundation pillars of artificial 

intelligence meet: computer vision and natural language generation. While existing 

image processing methods like object detection are able to detect and tag objects 

within a picture, they are generally unable to comprehend the relationships 

between objects or convey the complete meaning of the scene accurately. This is 

different from how language generation models are able to generate semantically 

correct sentences but do not possess the ability to image-specific text without 

visual grounding. To overcome this, one does not just require integration of visual 

and linguistic data, but higher-order reasoning and semantic equivalence—

necessities for constructing intelligent systems which can act in the world in a way 

that mimics human behavior. 

Improving accessibility in the digital space is among the key reasons for the 

creation of image captioning technology. Internet for the visually impaired and the 

blind—rich with information as it is—is actually composed of picture content. 

Browsing social media, reading news headlines, or even browsing online shopping 

websites might be highly dependent on image interpretation, graph, infographics, 

and product images. Without alternative text or descriptive captions, this 

information is largely inaccessible. Captioning of images provides a solution in 

generating complete, context-rich descriptions automatically that can be utilized by 

screen readers to convey image information in an informative manner. Not only is 

it a wonderful technological advance, but it also encourages inclusiveness and 

digital equity in accordance with such guidelines as the Web Content Accessibility 

Guidelines (WCAG) [21]. 

Along with improving accessibility, the increasing number of digital images 

necessitates scalable content retrieval and management systems. With 

organizations building vast repositories of images, manual addition of descriptive 

tags and metadata takes time and money. Automated captioning enhances the 

process by enabling more effective indexing and search, thus providing a superior 

quality digital asset management experience. For instance, in e-commerce, the 

automatically generated product image captions can assist with search engine 

optimization (SEO), support recommendation algorithms, and supply more context 

to search results. The captions serve the same purpose for high-speed applications 

such as social media and news media by assisting with content generation in real 

time and supporting moderation processes by identifying or marking inappropriate 

content [22]. 
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Surveillance and security is yet another important domain where image captioning is of 

extreme value. Governments and private establishments use large networks of CCTV cameras 

and visual sensors to monitor the surroundings and offer security. While these systems gather 

enormous amounts of video data, human interpreters are seen struggling with real-time 

interpretation owing to the vastness and complexity. Image captioning technology can be 

useful by producing short text summaries of video scenes or frames and thus enable quicker 

detection of suspicious behaviors, summarizing proceedings in progress, and marking 

possible threats that require addressing by humans. All these advantages improve the 

efficiency of operations and increase the effectiveness of surveillance [23]. 

The rising popularity of multimodal AI systems and HCI has increased the need for image 

captioning. Modern technologies such as learning software, customer service robots, and 

virtual assistants are becoming capable of interpreting not only written or spoken words but 

also images. Virtual computers that can analyze an image, provide a description of what is 

contained in it, or answer questions about it enhance natural and fluent human-computer 

interaction. Captioning images in educational environments supports learning through 

describing intricate images like charts, paintings, or diagrams so that they may be 

comprehended by a large body of learners. 

Early similar images detection methods relied mostly on similar template detection or similar 

rule detection models, which were inflexible and Earlier detection models especially had a 

poor tendency to generalize well over a large variety of image types. Integration of deep 

learning approaches greatly improved using specifically Convolutional Neural Networks 

(CNNs) for efficient visual feature extraction and Recurrent Neural Networks (RNNs) for 

creating similar descriptive text sequences. This model was subsequently improved upon 

using attention mechanisms, where the model could attend to the most critical areas within an 

image, enhancing the quality and precision of the captions generated. However, even with 

these improvements, these methods were still lacking in how they could capture the depth of 

scenes and generate coherent, contextually apt captions for longer descriptions [10],[11]. 

The most recent breakthroughs in transformer-based and multimodal learning models have 

greatly improved the ability of image captioning models. Specifically, models like CLIP 

(Contrastive Language-Image Pretraining) and LLaVA (Large Language and Vision 

Assistant) leverage big scale databases of aligned image-text data to learn common 

representations, connecting textual and visual data. CLIP, for example, injects images and text 

captions into a common embedding memory such that it supports effective zero-shot 

classification and retrieval after training on particular tasks [24]. Other models, such as 

Flamingo, a multimodal transformer trained at DeepMind, employ dynamic cross-modal 

context integration that supports improved reasoning and coherence in generated captions 

across long textual horizons [25]. These developments represent an enormous stride in the 

direction of creating descriptions that are not merely pertinent but semantic and contextually 

dense. 

But long-standing problems slow down its general adoption. Visual scenes typically entail 

vagueness and context-sensitive semantics, which vary across individuals in terms of 

differences in cultural experience, affective perception, and purpose. Creating systems to 

represent this variation in a similar way that humans do is a difficult problem. Additionally, 

train data bias, computationally intensive requirements, and real-time computation needs 

remain major obstacles that must be met by researchers for having robust, scalable 

deployments [26], [27]. 
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In short, the connection to image captioning stemmed from the universal discrepancy between 

the way people and computers understand the world. As digital material grows and 

proliferates, and artificial intelligence technologies are profoundly integrated into daily life, 

the ability to create short, useful, and contextual image captions will become more desirable. 

It makes tech more accessible, facilitates automation at scale, and brings machines one step C 

 

Closer to human-level AI. Conquering the hurdles of image captioning not only propels 

artificial intelligence development but also releases transformative power in healthcare, 

education, accessibility, security, and digital 
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         CHAPTER 2 

 

 

 DEEP LEARNING 
 

Machine Learning (ML), which is a subfield of Artificial Intelligence (AI), is focused on 

designing algorithms to allow systems to recognize patterns and make data-driven decisions 

without being explicitly programmed by rules. Early ML employed techniques such as 

decision trees, support vector machines, and k-nearest neighbors. These algorithms worked 

nicely with structured data but relied heavily on features hand-designed by humans and did 

not work well when applied to more complex forms of data like images, speech, or text. 

Feature design in such applications took significant amounts of domain knowledge and large 

amounts of manual labor, which often restricted scalability and performance. 

To counter the limits of these, the discipline turned towards deep learning, enabling a 

subcategory of ML involving the application of multilayered neural networks with the use of 

raw inputs to learn automatically. From this turn, models learned abstract representations at 

different levels of abstraction independently, significantly lowering human feature 

engineering efforts. The revival of deep learning towards the close of the 2000s was fueled 

by a mix of interacting factors: availability of large amounts of labeled data, the 

development of high-end graphics processing units (GPUs), and progress in optimization 

algorithms, namely the backpropagation algorithm. 

The above-named great leap forward in deep learning was the advent of Convolutional 

Neural Networks that indeed changed the way to deal with visual data by learning very 

sophisticated spatial patterns and configurations. CNNs became the horse to do all types of 

vision. For instance, object detection, image classification, and understanding scenes. 

Meanwhile, Recurrent Neural Networks (RNNs) – in the form of Long Short-Term Memory 

(LSTM) units – proved unmatched might when applied to sequential data. Such models 

greatly enabled natural language applications with machine translation support, text 

prediction, and speech processing. 

 

Transformer-based architecture, in the recent past, has improved the performance of 

computer vision (CV) and natural language processing with self-attention mechanisms. 

Compared to traditional recurrent models, transformers have a greater capability to model 

long-range dependencies and contextual relations over sequences and, hence, possess a more 

comprehensive understanding of data. Initially proposed for language processing, the 

transformers were later successfully adapted to vision tasks—most famously in models like 

the Vision Transformer (ViT), which tokenize image patches into sequences to allow for 

efficient parallelization and scalability. Models like CLIP (Contrastive Language–Image 

Pretraining) have also demonstrated the ability to learn visual and text representations 

simultaneously. By projecting images and words into a shared embedding space, CLIP 

facilitates semantic consistency across modalities with the capacity to accommodate an array 

of vision-language tasks without requiring task-specific training. This departs from 

conventional machine learning to deep learning and has led to models that can interpret and 

generate natural language from images with much higher accuracy. 

 

But in spite of these developments, most of the earlier image captioning models based on 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are still 

difficult. These are: 

complexity in representing complex scenes with numerous objects, understanding fine-

grained contextual knowledge, and generating semantically rich and coherent captions. This 

is a sign that there is a need for more context-aware and holistic solutions—like those made 

possible by cutting-edge transformer-based models—overcoming limitations of past 

approaches. 
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The suggested Multi-Stage Vision-Language Transformer (MVLT) improves image 

captioning thus far by integrating several state-of-the-art deep learning components 

into a single miniature architecture. MVLT leverages the merits of current vision and 

language models to provide a holistic description of visual content. In particular, 

MVLT employs ViT-G and CLIP to acquire high-resolution visual features so that 

contextual and fine-grained information is well retained. To facilitate the fusion of 

visual and textual knowledge, MVLT uses a Perceiver Resampler inspired by 

Flamingo architecture to facilitate efficient and scalable multimodal fusion. Last but 

not least, it uses the LLaVA language model to facilitate context-responsive and 

fluent caption generation to enable syntactically well-formed and semantically 

accurate generation of descriptions. With this multi-step pipeline, MVLT is a 

dramatic shift from vision-language integration. It transcends material limitations of 

previous models, such as not being able to process complicated scenes with 

numerous objects or fine contextual relationships. More importantly, though, MVLT 

demonstrates the continued advances in deep learning by combining potent 

transformer-based architectures to attain an extent of image perception and language 

production that brings machines a step further toward understanding vision with 

human subtlety. 
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2.1 History 

 

 

While computer vision and natural language processing were not so advanced at that time, it 

was challenging to generate captioning text directly from images, largely because of a lack of 

computing capabilities and inadequately developed algorithmic methods. The early solutions 

involved rule-based and manually designed image features where domain experts would 

manually define visual descriptors such as edges, contours, and textures. These would then be 

plugged into pre-specified sentence templates or heuristic rules to create simple captions. But 

such systems were inflexible and non-adaptable—skeletal to highly specialized instances and 

unable to generalize to variable visual input. 

The larger domain of artificial intelligence (AI) began transforming this area from the mid-

20th century, beginning with symbolic AI approaches. These were based on logic-driven 

reasoning, and formalized knowledge representations in various forms. Redundant for rule-

based issue-resolution, symbolic approaches had far more trouble addressing perception tasks 

such as image understanding of the visual world, where input data are noisy and unpredictable 

by nature. 

The turning point occurred with the advent of machine learning, in which models learned 

from data instead of relying on hand-coded rules. Decision trees, k-nearest neighbors, and 

support vector machines were the standard approaches during this period. These models were 

stronger and more versatile but were plagued by the requirement for hand-designed input 

features—i.e., the good representation bottleneck still existed. 

 

The success of convolutional neural networks especially transformed the field with the 

triumph in large-scale image classification tasks such as the ImageNet competition in 2012, 

making CNNs learn directly from pixel-level data, thus omitting the necessity of applying 

handcrafted features and permitting much higher accuracy in object and scene recognition. At 

the same time, breakthroughs in natural language processing—initially through recurrent 

neural networks (RNNs) and later through attention-based transformer architectures—

enhanced the ability of machines to understand and generate human-like language. 

The convergence of these advances gave rise to the first image captioning models that used 

CNNs for learning visual features and RNNs or LSTM networks for generating text 

descriptions. Notables such as the "Show and Tell" architecture had early success in closing 

the visual and linguistic modalities. Yet, the models struggled in comprehending intricate 

scenes involving many objects or encoding subtle relationships among objects because of the 

weakness in encoding long-range dependencies and contextual consistency. 

The space has since progressed at a revolutionary rate, especially with the emergence of 

transformer models and pretraining at scale. Architectures like CLIP (Contrastive Language-

Image Pretraining) and Flamingo have set new benchmarks by learning joint vision-language 

embeddings on multimodal large datasets. Such models can connect images and text in a 

common semantic space and enable smoother and context-dependent image captioning. 

 

Assisting on such shoulders, the multi-stage vision-language transformer (MVLT) in the 

suggestion integrates various state-of-the-art elements to further enhance image captioning. 

MVLT integrates ViT-G with CLIP to access high-resolution rich visual perception, a 

Flamingo-based Perceiver Resampler to blend multimodal features in a seamless manner, and 

LLaVA to generate contextually rich language. MVLT illustrates a unified pipeline that 

describes the richness of visual scenes holistically. This model builds upon other CNN-RNN 

based models with transformer models having deeper semantic understanding, better 

contextual matching, and more natural output generation—getting the field closer to human-

level image describing capability.
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2.2 Machine Learning 

Since deep learning (DL) is a specialized subdomain within the broader field of machine 

learning (ML), it is needed to first understand the foundational concepts of ML. Machine 

learning has been defined and applied differently across various disciplines due to its 

versatility in solving a wide range of problems. The term "machine learning" was first 

introduced by Arthur Samuel in 1959 [26], referring to the capability of computer systems to 

perform tasks by learning from data and experience without being explicitly programmed. 

Essentially, ML enables the extraction of patterns from data, particularly in scenarios where 

explicit analytical solutions are not feasible. In such cases, machine learning offers 

methodologies for identifying hidden structures or trends from the data [27]. 

Machine learning tis typically categorised into three major types: supervised learning, 

unsupervised learning, and reinforcement learning, as illustrated in Figure 2.1. In supervised 

learning, models are trained on a labeled dataset, where each input sample is associated with a 

known output. For instance, in the context of object detection in images, the training data 

comprises annotated images labeled to indicate the presence or absence of a particular object. 

The model then learns to generalize from these labeled examples to make predictions on new, 

unknown data [27]. 

On the other hand, unsupervised learning is applied when labeled outputs are not available. 

The goal in this case is to unreveal hidden patterns or  within the data. Methods like clustering 

and dimensionality reduction are classified as unsupervised learning techniques, where the 

goal is to uncover hidden patterns or simplify data representation without labeled outputs. In 

contrast, reinforcement learning represents a distinct paradigm where an agent learns by 

interacting with an environment, receiving feedback through rewards or penalties based on its 

actions. Over time, the agent refines its strategy to achieve the highest possible cumulative 

reward. This trial-and-error learning method is especially useful in fields such as robotics, 

gaming, and autonomous systems, where adaptive decision-making is essential in 

unpredictable or evolving scenarios. 

 

2.3 What is learning? 

The traditional frameworks are used to explain the aspects of learning algorithms and for 

learning to be considered as feasible, provide mathematical proof of this fact— Shai Shalev-

Shwartz, Shai Ben-David [18] presented examples that could help in understanding how 

basic learning process work alongside what have been identified as principal challenges 

within machine learning (ML). Rats learn how 
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Figure 2.1 . Different ML problem categories [17] 

 

to avoid poisoned food starting from their childhood. Rats usually take a small amount 

of new food first and are careful to investigate the physical consequences. If the food 

causes sickness, they never eat it forever. The experiment involved an animal in search 

of a harmless meal. In this case, the animal would expect that if it experienced a 

negative label then it would also develop negatively. Assume we are attempting to 

write a spam detector program. For instance, one straightforward way is to remember 

every email determined to be spam by a user. When an incoming email is received, it 

is verified against the spam set. If it is found in the spam set, then it is marked as a 

spam message; else, it is saed in the inbox folder. Memorization is occasionally 

helpful, but it does not have much in common with learning because it cannot be 

generalized. An intelligent learner who truly understood should be able to extract 

wider generalizations from diverse instances. It therefore means that generalizing 

constitutes the ultimate definition of intelligence. When compared with other 

creatures, man’s special gift is his ability to think and understand concepts widely, 

putting us one step ahead. For instance, given a realistic picture of an elephant, a child 

might be able to recognize a drawn elephant that looks very different (Figure 2.2). 

Another problem is when the learner comes to a wrong conclusion. In explaining this 

notion, Skinner’s superstition experiments are the most useful example. To be precise, 

Skinner put some hungry pigeons in a box that came with an automatic device meant 

to supply food for the hen occasionally with no consideration given to its actions. He 

found that pigeons would exhibit behaviours signalling expectancy only during 

feeding time and for more or less two minutes after that. While waiting for food, a 

particular bird spun round and round in a counter clockwise direction before making 

one or two turns in the opposite direction before it was rewarded. But there were 

sometimes when it was fed by Andy and would peck continuously at the upper edge 

of its basin."’A bird thrust its head out and swung it sharply rightwards from leftwards 

then back again with some slowness so as to make it like a pendulum while another 

bird began shaping up like it was making quotations (this means they stuck their heads 

beneath an unseen pole raised them up multiple times’[19]. 
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Figure 2.2. Concept of generalisation and intelligence 

When humans learn, they use their common sense and ignore random patterns or 

conclusions from learning that are meaningless, but machines do not. A machine requires 

well defined principles to steer it out of arriving at irrelevant conclusions. In simpler terms, 

the algorithm should be able to discern a pattern in the data but not in the noise. 

2.4 Deep Neural Network (DNN) 

A Deep Neural Network (DNN) is a sophisticated computational architecture modeled after 

the structure and functionality of the human brain, designed to process and learn from raw 

data through multiple layers of artificial neurons. Each neuron performs a transformation by 

applying a weighted sum to its inputs, folloed by a non-linear activation function, enabling  

network to represent complex and highly linear patterns in the input space. The standard DNN 

architecture begins with an input layer that captures raw data, followed by a sequence of 

hidden layers where each layer extracts increasingly abstract features, and culminates in an 

output layer that provides the final prediction, such as a classification label or generated text 

[28], [29]. 

Several specialized DNN architectures have been developed to address different types of data. 

Convolutional Neural Networks (CNNs) are particularly effective in visual tasks as they use 

convolutional filters to detect spatial hierarchies in images, enabling efficient learning of local 

and global features [30]. In contrast, Transformer-based architectures, originally introduced 

for natural language processing, utilize self-attention mechanisms to capture long-range 

dependencies in data and have since been successfully adapted to visual and multimodal tasks 

[31]. 

In the proposed Multi-Stage Vision-Language Transformer (MVLT) model, we integrate 

several cutting-edge deep learning components: ViT-G for vision-based feature extraction, 

CLIP for learning joint embeddings between image and text, and LLaVA for language 

generation. These modules collectively form a unified architecture that benefits from deep 

neural networks’ ability to perform hierarchical representation learning, thereby bridging the 

gap between visual understanding and natural language generation [32]–[34]. 
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A deep neural network (DNN) is a network of successive layers of layers, and each of them 

transforms its input by a linear transformation followed by application of a nonlinear 

activation function. The organization of layers causes the network to learn step-by-step 

features of the data at higher levels. Algebraically, the      lth  layer's transformation can be 

represented as: 

ℎ^(𝑙)  =  𝜎( 𝑊^(𝑙) ℎ^(𝑙 − 1)  +  𝑏^(𝑙) ) ……………………………………(1) 

Where, 

Hl is the output activation of layer l, 

Wl  - weight matrix for the layer l, 

bl   - bias vector for layer l, 

sigma - non linear activation function, 

h(l-1) - input from the previous layer 

A deep neural network (DNN) develops a mapping of functional input data to related output 

in a process referred to as forward propagation. In this process, input data passes through a 

series of cascaded layers, each of which applies a linear transformation followed by a 

nonlinear activation function and thus progressively learns and derives abstractions higher up 

from data. The model then produces one output, which is compared against the actual tdesired 

value using a loss function—commonly the cross-entropy loss in classification tasks—to 

quantify the prediction error. To minimize this error, the backpropagation algorithm computes 

the loss gradient with respect to every parameter in the network. These gradients inform the 

updates made to the model parameters (weights and biases) using optimization algorithms 

such as stochastic gradient descent (SGD) or its variants like Adam. Through repeated 

iterations over the training dataset, the network gradually refines its internal parameters, 

enabling it to hold complex, nonlinear patterns in the data and improve its predictive working. 

 

 

 

Fig 2.3 - Neural Network  
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2.4.1 Historical Background 

The evolution of deep learning began with the conceptualization of artificial neural networks 

during the mid-20th century. One of the earliest models, the perceptron—introduced in the 

late 1950s—served as an initial attempt to simulate the decision-making process of a human 

neuron. Although its capabilities were limited to linearly separable data, it laid the 

groundwork for more complex models. Interest in neural networks revived during the 1980s 

following the development of the back propagation method, which allowed efficient 

coaching of multi-layer networks by computing gradients and updating weights accordingly. 

Despite these advancements, deep learning remained relatively niche until a significant 

turning point in 2012, when the AlexNet model achieved unprecedented accuracy in the 

ImageNet Large Scale Visual Recognition Challenge. By leveraging the capability of the 

deep convolutional layers, huge labeled data, and the fast GPU, AlexNet demonstrated how 

deeply deep learning can be applied to visual tasks. More recently, following architectures 

such as Long Short-Term Memory (LSTM) networks have bridged the gap in modeling 

sequential data, and the development of Transformer models has made scalable learning 

applicable in the text as well as visual domain. Together, these breakthroughs have solidified 

deep learning as one of the foundational pillars of artificial intelligence today. 

 

 

2.4.2 Fundamental Concept of Deep Learning 

In essence, deep learning models are made up of several layers of interconnected units 

known as artificial neurons. The units receive numerical input, calculate a weighted sum, a 

non-linear activation function, and output the transformed value to the next layer. The most 

common activation functions used are the Rectified Linear Unit (ReLU), sigmoid, and 

hyperbolic tangent (tanh), and they influence how the model processes and outputs 

information. To train such networks is to optimize a loss function, one that captures the 

difference between model predictions and actual target variables. Optimization algorithms 

like Stochastic Gradient Descent (SGD) and Adam are some of the most well-known such 

algorithms for incrementally updating model parameters—i.e., weights and biases—so as to 

minimize the loss. To prevent overfitting and ensure generalization, various methods of 

regularization are employed, such as dropout, where neurons are turned off intermittently 

during training, and batch normalization, which stabilizes learning through the process of 

normalizing activations. Understanding these fundamentals is essential for testing and 

designing deep neural networks in an efficient manner.
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2.4.3 Architecture and Components 

A standard deep neural network has three layers: input layer, several hidden layers, and 

output layer. All the layers have a number of neurons (also referred to as nodes), which are 

linked with each other the next layers. Every connection has an associated weight, and each 

neuron has a bias term. The core operation within each neuron is a linear transformation 

followed by a non-linear activation function. Mathematically, the output of a neuron y is 

given by: 
 

𝑦 =  𝑓├( ∑_{𝑖 = 1}^{𝑛} 𝑤_𝑖 𝑥_𝑖 +  𝑏 ┤)………………………………………………………..(3) 

 

 

 Where xi are y are input features, wi are the weights, b is the bias and f is the activation f 

function such as ReLU, Sigmoid, or Tanh. 

 

2.4.4 Forward Propagation 

In forward propagation, input data is passed through the network at each layer, and each 

layer applies its transformations to the data. The output from one layer become inputs to the 

next. This hierarchical processing allows the model to learn increasingly abstract 

representations.  

 

2.4.5 Loss Function 

 

 Once the network produces an output, it is compared with the ground truth using a loss 

function. The loss quantifies the prediction errorShared loss are Mean Squared Error (MSE) 

for regression problems, Cross-Entropy Loss for classification problems. In generative 

problems such as image captioning, sequence-based loss functions such as Negative Log-

Likelihood or specialized metrics such as BLEU can be employed during training. 

 
 

2.4.6 Backpropagation and Gradient Descent 

 

To minimize prediction error, neural networks utilize backpropagation, an algorithm that 

computes the gradient of the loss function with respect to all model parameters using the 

chain rule. The gradients determine the manner in which the weights must be adjusted to 

optimize performance. An optimization algorithm—traditionally Stochastic Gradient Descent 

(SGD) or more recent algorithms like Adam or RMSprop—is utilized to update the weights 

accordingly. This training cycle is then iterated across many iterations, or epochs, so that the 

network learns step-wise and approaches an optimum solution. 

 

 2.4.7 Regularization Techniques 

 

In order to decrease overfitting and enhance generalization, regularization methods are 

applied. They encompass dropout ,L1/L2 regularization (introducing penalties to the loss), 

and batch normalization (normalizing layer inputs in order to stabilize training). They allow 

the model to learn stable patterns and avoid it from memorizing the training set. 
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CHAPTER 3 

 

 

LITERATURE REVIEW 
 

 

3.1 Image Captioning 

The two-stage process that employs computer vision and natural language processing 

methods is prevalent in the application of image captioning. With the use of complex models 

such as Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs), visual 

feature extraction occurs in the initial stage. In the first step, input images are passed through 

the processing of these models for generating a dense, high-dimensional vector 

representation of all vital visual information such as object occurrence, scene context, and 

spatial arrangement. This encoded form provides the foundation for generating a natural 

language description in the next stage. Recurrent neural networks (RNNs) and their more 

powerful variant, Long Short-Term Memory (LSTM) networks, are two such sequence 

modeling frameworks that are commonly used to generate captions by generating words step 

by step conditioned on the visual information. Second, the process often involves attention 

mechanisms, through which the model can dynamically select different parts of the image at 

each stage of word prediction. The semantic consistency and descriptive appropriateness of 

the generated captions are significantly enhanced with this focused attention. 

 

Transformer models are used in recent image captioning progress for the prediction of text 

sequences as well as for extracting visual features, facilitating cross-modal interaction. The 

next word is predicted iteratively with the help of the encoded image representation and 

sequence of the previously generated tokens by the decoder until predicting an end-of-

sequence token. Huge annotated image datasets that are presented along with relevant textual 

descriptions are used while training these models. These employ reinforcement learning 

methods for learning on evaluation metrics such as CIDEr or BLEU, and others employ 

objective functions such as cross-entropy loss to supervise learning. Smooth, semantically 

diverse, and contextually meaningful captions result as a byproduct of the model learning 

about contextual correspondence between vision and language within this single, end-to-end 

training system. 

 

3.2 Traditional Methods for Image Captioning 

 

From simple rule-based models to extremely advanced deep learning models, the landscape of 

image captioning has witnessed humongous transformations. A majority of the initial 

approaches were template-based, creating captions by filling in given actions and objects 

within given linguistic templates. Although ensuring grammatical correctness, the systems 

were not adaptive and context-sensitive. Subsequently, retrieval-based systems were 

introduced that selected pre-written captions from a database of images having similar visuals. 

However, such models' ability to represent new scenes was limited. Later approaches merged 

sentence templates and object detection, which added more information but still failed to 

model rich semantic and spatial relationships. 
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The application of statistical techniques that offered probabilistic models of language, like 

Statistical Machine Translation (SMT) and Hidden Markov Models (HMMs), yielded a 

significant influence. But these were saddled with the need for enormous paired datasets and 

with not being able to handle long-term dependencies. With encoder-decoder models using 

Convolutional Neural Networks (CNNs) to obtain visual features and Recurrent Neural 

Networks (RNNs) to generate the words, deep learning revolutionized the field and allowed 

for end-to-end training and greater fluency. By directly pointing out salient parts of an image 

during runtime while captioning, the use of attention mechanisms further enhanced such 

systems. Further more recently, multimodal pretraining methods and transformer models have 

pushed performance limits by enabling more expressive and more stable correspondence 

between visual inputs and text outputs. 
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3.2.1 Template-Based Captioning 

One of the first automatic image captioning approaches was template-based image 

captioning. In this method, computer vision techniques, typically employing traditional 

classifiers or object detection pipelines, are employed for identifying visual units such as 

objects, attributes, and sometimes actions. The identified units are then connected to pre-

specified syntactic templates to form complete sentences. A standard template might be the 

type "A [object] is [action] in the [location]," and it could generate something like "A cat is 

sleeping on the sofa." Readability and simple grammatical organization are assured, but 

semantic scope, context comprehension, and linguistic flexibility are not. This is the reason 

captions are often too formulaic to feel and cannot be able to bear subtlety or complex 

relationship between objects in a scene. Despite these limitations, template-based methods 

gave a useful starting point for automated captioning research. The basic role of this method 

in early vision-language models was brought out by Kulkarni et al., who showed that a 

model based on object, attribute, and spatial relationship detection supplemented with 

templated frames was able to produce simple but grammatical captions [35]. 

 

3.2.2 Retrieval-Based Captioning 

 

Retrieval-based image captioning serves as an early and efficient strategy for automatic 

image description by leveraging existing image-caption datasets. Instead of generating new 

textual content, the system identifies visually similar images from a precompiled dataset and 

assigns the caption of the nearest match to the query image. Initially, similarity was measured 

using hand-crafted global image features such as GIST descriptors. However, the adoption of 

deep learning techniques—especially Convolutional Neural Networks (CNNs)—significantly 

improved feature extraction and retrieval precision. For instance, given an image of a sunset 

over a mountain range, the model may assign a caption like “Sunset casting golden light over 

the mountain peaks,” sourced from a visually similar image in the training set. While this 

technique often ensures fluent and contextually appropriate captions for common scenes, its 

primary limitation lies in its lack of generalization. The system is inherently constrained by 

the diversity and representativeness of its dataset and typically fails to describe novel scenes, 

rare object configurations, or abstract visual content. A notable implementation of this 

approach is the Im2Text system proposed by Ordonez et al., which demonstrated the 

practicality of nearest-neighbor methods in generating natural-sounding captions but also 

revealed their shortcomings in terms of flexibility and semantic depth [36].
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3.2.3 Object Detection + Template Filling 

 

Object Detection with Template Filling emerged as an intermediate step between early rule-

based captioning and fully generative models. This technique integrates computer vision 

algorithms to automatically detect visual components within an image—such as objects, their 

attributes, and associated actions—and maps them onto predefined sentence structures. This 

method employs visual recognition approaches such as Scale-Invariant Feature Transform 

(SIFT), Deformable Part Models (DPM), or other region-based classifiers to identify entities 

within the image, in contrast to static rule-based approaches. Semantically consistent captions 

are generated by inserting these parts dynamically into syntactic templates. The machine can 

generate the sentence "A cat is sitting on a chair" if there is an image with a cat sitting on a 

chair, for example. By allowing sentence adaptation from actual image content, this system is 

less restricted than strictly manual systems. The two significant restrictions, however, 

decrease its utility: dependence on the rigidity of pre-specified templates and object detection 

subsystem quality. While the templates themselves restrict linguistic variation and seldom can 

fairly reproduce complex relationships for more than one object, misdetected objects can 

generate misleading or incorrect captions. Farhadi et al. contributed one of the most well-

known early advances in this area when they proposed to map visual tuples, such as object, 

action, and attribute, to sentence descriptions. Even though their system pinpointed the 

difficulty of encoding highly context-dependent or abstract information, it proved that 

language generation and structured visual recognition could be integrated [37]. 

 

 

 

3.2.4 Hidden Markov Models (HMMs) 

 

Hidden Markov Models (HMMs) represent one of the earliest probabilistic frameworks 

applied to the image captioning domain, where caption generation is treated as a sequential 

word prediction problem. In this framework, an image is typically used to influence the initial 

configuration of the hidden states in a Markov process. Each word in a generated sentence 

corresponds to an output emitted from a hidden state, which in turn transitions 

probabilistically to other states, forming a sequence. These hidden states encapsulate 

underlying linguistic or semantic roles, while emission probabilities define the likelihood of 

generating specific words from each state. For example, given an image of a person crossing 

the street, an HMM may sequentially produce a sentence such as “A person is walking” by 

transitioning through grammatically structured hidden states. However, the reliance on 

manually engineered image features and discrete latent state spaces introduces significant 

limitations. These include difficulty in capturing long-range syntactic dependencies, modeling 

abstract relationships, and handling diverse vocabulary. Furthermore, expressiveness is 

restrained by the rigid number of hidden states. In an attempt to facilitate automatic 

captioning and annotation, the pioneering work by Feng and Lapata explored the combination 

of HMMs and topic models. Although indicating HMMs' inability to provide well-detailed 

and contextualized descriptions, their research attested to the statistical strength of such 

models [38].
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3.2.5 Statistical Machine Translation 

Text description generation is framed as a translation problem by statistical machine 

translation (SMT) methods in image captioning. This is equivalent to taking visual items 

found—objects, activities, or attributes—equating to target language phrases. The goal is 

discovering the path to map visual features onto corresponding linguistic forms such that 

these visual items are translated into natural language sentences without grammatical issues. 

SMT systems based on standard phrase-based models, which were initially developed for 

bilingual word translation, are applied to text-image pairs with this method. A set of entities 

recognized, for example, can be used to caption an image of a child flying a kite. These 

frames would then be translated into a sentence like "A boy is flying a kite in the sky." SMT 

models define probabilistic relations between visual and textual phrases based on large 

annotated corpora. Their poor capacity to model complex semantic interactions or new 

combinations and need phrase alignments exactly constrain their performance. The fixed 

structure of phrase-based models often results in less diverse and context-sensitive captions. A 

notable implementation of this methodology is the Babytalk system proposed by Kulkarni et 

al., which integrates object recognition with SMT-based techniques to generate structured 

image descriptions, thereby demonstrating both the strengths and limitations of this approach 

[39]. 

 

3.2.6 CNN + RNN Encoder-Decoder framework 

The introduction of the CNN + RNN Encoder-Decoder architecture significantly advanced 

the field of image captioning by enabling an end-to-end trainable system that learns to 

generate descriptions directly from paired image and text data Convolutional Neural Network 

(CNN), such as VGGNet or ResNet, is utilized as an encoder in the model to yield high-

dimensional feature representations of the input image.The features are fed into a Recurrent 

Neural Network (RNN), typically in the form of a Long Short-Term Memory (LSTM) 

network, and are used as a decoder in an attempt to generate a sentence describing the visual 

content word for word in a sequence. For example, the model may output the caption, "A man 

is riding a horse," when it is shown an image of a man riding a horse. With their "Show and 

Tell" approach, Vinyals et al. identified and exemplified such a paradigm, exemplifying the 

strength of marrying CNNs for image comprehension and RNNs for text synthesis in one 

architecture trained from massive datasetsTheir work illustrated that there could be smooth 

captions generated regardless of external templates or even manually authored rules [11]. But 

since they cannot keep track of long-range dependencies and delicate visual-linguistic 

interactions, these models will produce redundant or too bland sentences, particularly on 

complicated or new scenes. These issues culminated in the later introduction of transformer-

based networks and attention mechanisms, which enable stronger semantic correspondence 

and context modeling.



21  
 

3.2.7 Attention Mechanism with RNNs 

Image captioning models were also significantly enhanced by the inclusion of the attention 

mechanism in Recurrent Neural Network (RNN)-based models. This allowed the adaptive 

focusing on different parts of an image when producing sentences. The descriptive accuracy 

of the normal encoder-decoder models can be limiting, especially for the case of complex 

scenes, as it compels the whole image into one vector. The decoder, typically an LSTM, may 

selectively highlight regions of significance while predicting the future word in a sequence 

because of attention-augmented models, providing dynamically weighted spatial features 

learned by the Convolutional Neural Network (CNN) at each decoding step. By mapping 

visual information onto linguistic output effectively, this method allows the model to "pay 

attention" to semantically important regions of the image. As an example, the model 

concentrates on the region of the picture that is carrying the umbrella and generates the word 

"umbrella" in the caption "A woman holding an umbrella." Xu et al. formalized this process 

in their paper "Show, Attend and Tell" by proposing soft and hard attention methods. They 

achieved higher descriptiveness, fluency, and relevance than fixed-vector models [40]. 

However, attention mechanisms bring error along with increased complexity of computation 

and attention to irrelevant parts in dense images. Despite such challenges, attention-based 

methods have reigned supreme in defining the field and laying the groundwork for subsequent 

innovations like transformer architectures with more advanced visual-linguistic integration. 

3.2.8 Visual-Semantic Embedding Models 

Visual-Semantic Embedding (VSE) models have had a major breakthrough in image 

captioning by learning a common embedding space in which visual information and textual 

descriptions coexist based on their semantic content. In this, image features calculated using 

convolutional neural networks (CNNs) — i.e., AlexNet or VGGNet — are embedded together 

with sentence representations calculated using recurrent neural networks (RNNs) or long 

short-term memory networks (LSTMs). The embeddings are projected to a shared vector 

space so that the system is capable of calculating similarity directly between captions and 

images. At test time, the model can either retrieve the most similar caption to the image's 

embedding or utilize this embedding as an initiation point to produce a new caption. For 

example, an image of people having a picnic could be paired with a caption such as "A picnic 

with a group of friends in the park." VSE approaches work well in retrieval situations when 

images need to be aligned with available descriptions. They do not perform so well, however, 

at creating rich, descriptive captions that maintain spatial relationships and high-grained 

context because they appeal to coarse semantic similarity rather than high-grained 

understanding. These models therefore do less well for producing new captions for complex 

scenes. One of the first works in this space by Karpathy and Fei-Fei demonstrated the benefits 

of projecting image regions onto words or phrases using deep visual-semantic embeddings, 

significantly beating retrieval-based captioning approaches [41]. 
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3.2.9 Scene Graph-Based Captioning 

Scene graph captioning is an advanced image description approach that enhances natural 

language generation through utilization of the structured visual scene representations. By this 

method, a picture is converted to a scene graph, in which nodes encode the found objects and 

edges encode the relations among them, like "dog-chasing-ball." More sophisticated and more 

semantically abundant captions are facilitated by the capability of the caption system to 

encode object relationships, spatial relationships, and contextual relationships due to this 

graph representation. The model is able to, for example, output the caption, "A dog running 

after a red ball in a grassy field," when it is shown an image of a dog running after a ball on a 

grassy field. Rather than simply naming objects, the captions can capture the dynamics of the 

scene by applying relational reasoning. But the reason that object detection, relationship 

classification, and graph construction are prone to error makes scene graphs almost 

impossible to create accurately. Lack of or incorrect relationships can produce wrong 

captions. Secondly, such models must be trained on annotated scene graph datasets, which are 

expensive to annotate and not readily available. Johnson et al.'s pioneering work on scene 

graphs for image search tasks proved their potential for deep semantic comprehension and 

opened up applying them to captioning but also created real-world robustness and scaling 

issues [42]. 



 

 

3.3 General Methodology for image Captioning 

3.3.1 Image feature Extraction 

The first operation of image captioning involves the process of transforming a raw image 

into a structured, informative representation to be processed afterwards. It is largely 

performed through convolutional neural networks (CNNs), which are particularly good at 

spatial hierarchies and pattern extraction from images. The traditional methods were 

based on handcrafted features, i.e., Scale-Invariant Feature Transform (SIFT) and 

Histogram of Oriented Gradients (HOG), whose performance was disadvantaged by their 

manual design and rigidity. The arrival of even deeper CNN models such as VGGNet 

[43], Inception [44], and ResNet [45] was in itself a milestone because they allowed end-

to-end learning from raw pixel data itself. Such networks are pretrained most frequently 

on large image classification datasets such as ImageNet before fine-tuning on the 

captioning task. During processing, images are passed through multiple layers of 

convolution and pooling to produce high-level feature maps or vectors that encapsulate 

object presence, texture, and spatial information. Some approaches utilize globally pooled 

feature vectors, while others preserve spatial grids of features to maintain localization 

cues. 

More recently, vision transformers (ViTs) [46] and hybrid models such as CLIP [47] have 

been employed for feature extraction, replacing convolutional filters with self-attention 

mechanisms to better capture global context and semantic alignments learned from large-

scale image-text pairs. These architectures enable a more holistic understanding of the 

image content beyond localized features. The resulting visual embeddings provide a rich 

foundation for generating natural language descriptions in the following stages. Despite 

these advances, a persistent challenge is effectively representing not only individual 

objects but also their relationships and the overall scene context, an area where newer 

feature extraction techniques continue to improve. 

 

3.3.2 Sequence Modeling with Language Decoder 

Following the extraction of visual features, the subsequent step in image captioning 

involves converting these features into coherent natural language descriptions. This issue 

is commonly addressed by a language decoder, most often a sequence model such as an 

LSTM network or a GRU. The research of Vinyals et al. [11] using their "Show and 

Tell" model was one of the first to make advances on the encoder-decoder solution, 

taking inspiration from machine translation architecture applied to image captioning. 

Here, the encoder is a convolutional neural network that maps the input image into a 

short feature vector. This is passed to the decoder, in this example an LSTM, which 

produces the caption sequentially, word by word. The model takes the so far generated 

word embedding and the current hidden state as input at every decoding step to produce 

the next word until a special end-of-sequence token is produced. This enables the model 

to learn linguistic abstractions like context and grammar from the training corpus. 

Although LSTMs are an enhancement over basic recurrent neural networks in capturing 

temporal relationships better, they are constrained in handling very long-range 

dependencies and might produce repetitive or generic captions. For instance, the model 

will produce identical captions such as "A person riding a horse" for different images 

where different people-animal scenarios have been captured. To overcome these 

challenges, recent methods have employed Transformer-based decoders [31] that rely on 

self-attention mechanisms alone and rid recurrent computations. 
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These architectures allow greater parallel processing and are more effective in modeling 

long sequences. Nonetheless, the foundational work using RNN-based decoders remains 

crucial for the evolution of sequence generation techniques in multimodal tasks such as 

image captioning. 

 

       3.3.3 Attention Mechanism Integration 

To improve the effectiveness of sequence models in image captioning, the attention 

mechanism was introduced to enable the model to selectively emphasize relevant regions 

of the image while generating each word. The fundamental concept is that different parts 

of an image contribute unequally to the description of individual words. Attention allows 

the model to dynamically focus on spatial image features during the captioning process. 

A landmark contribution in this area was made by Xu et al. [48], who developed the 

“Show, Attend and Tell” model. This model incorporates a soft attention mechanism 

within the LSTM decoder framework. At each timestep, attention weights are calculated 

over spatial feature maps extracted from a convolutional neural network (e.g., a 14×14 

feature grid), resulting in a context vector that is a weighted sum of these features. This 

context vector guides the generation of the subsequent word, enabling the model to adapt 

its focus based on the evolving linguistic context. 

This approach mitigates the limitations of earlier methods that relied on a single global 

feature vector to represent the entire image, which often resulted in less detailed captions. 

The use of attention enables the production of more precise and context-sensitive 

descriptions, for instance, “A woman holding a red umbrella in the rain,” instead of a 

generic phrase like “A woman outside.” However, integrating attention mechanisms 

increases computational costs and training complexity. Furthermore, in scenes with clutter 

or multiple objects, the attention mechanism can sometimes misattribute focus, producing 

erroneous or hallucinated content. 

Modern architectures such as the Transformer [31] inherently incorporate multi-head self-

attention mechanisms, enhancing the model's capacity to capture global dependencies and 

complex relationships within the data, thereby improving caption generation quality. 
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3.3.3 Caption generation and Output Refinement 

 

The concluding phase of image captioning involves generating and refining the textual 

output based on the visual features processed by the model. Once the decoder predicts a 

sequence of words, post-processing strategies are commonly applied to improve the 

grammaticality, fluency, and semantic relevance of the generated captions. During 

inference, several decoding strategies are utilized to produce coherent sentences. 

       Greedy decoding, the simplest approach, selects the most probable word at each timestep. 

While computationally efficient, it often leads to suboptimal outputs due to its inability to 

consider alternative word sequences. Beam search offers a more robust solution by 

maintaining multiple candidate sequences (beams) simultaneously and selecting the most 

likely sequence overall. This method typically results in more coherent and natural 

captions. Sampling-based methods introduce stochasticity through sampling from the 

estimated probability distribution, encouraging diversity but perhaps at the expense of 

consistency and coherence unless highly controlled. 

       To further synchronize machine-generated captions with human rating metrics, 

reinforcement learning methods have been investigated. For example, Self-Critical 

Sequence Training (SCST) [49] utilizes reward-based optimization in which the generated 

captions are compared to ground-truth references based on metrics such as CIDEr and 

BLEU. This enables the model to optimize performance metrics with higher correlations 

to human judgment directly. Other improvements include rescoring or reranking caption 

candidates with auxiliary discriminative models with the objective of choosing outputs as 

diverse and relevant. 

       There have been new multimodal learning breakthroughs that have seen the innovation of 

large pretrained models like LLaVA and Flamingo that enable in-context image 

captioning through general image-text corpora. The models are able to produce 

contextually informed and semantically dense captions without task-specific fine-tuning 

because they have multimodal general awareness. 

Even with such developments, there are some challenges that remain. Models have been 

shown to produce hallucinated output—descriptions of objects not within the image or 

repetition with omission of essential visual information. Finding a perfect balance 

between fluency, descriptive detail, and semantic relevance is a primary challenge for 

image captioning system design. 
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CHAPTER 4 

 

 

PROPOSED ARCHITETURE 
 

 

 

4.1 Introduction 

 

In order to develop human and rational explanations, the primary issue is to allow 

computational models to understand contextual and semantic relations and object 

identification and positioning in images. 

Early efforts in image captioning were template-based methods that produced captions by 

mapping detected objects and scene items to hand-crafted linguistic templates [39]. These 

were not flexible enough to produce natural and diverse language, though they were 

computationally inexpensive and interpretable. The revolution came with the introduction of 

deep learning, in particular neural networks capable of end-to-end learning. Vinyals et al.'s 

"Show and Tell" [11] model, based on an encoder-decoder architecture, was one of those 

milestones. A recurrent neural network (RNN) with Long Short-Term Memory (LSTM) units 

was provided visual features of a picture derived from a convolutional neural network (CNN) 

in an attempt to generate a descriptive sentence sequentially. 

Attention mechanisms in addition to the above architecture further strengthened this. For 

instance, Xu et al.'s "Show, Attend and Tell" model [50] enhanced context awareness and 

captioning precision by having the ability to allow the decoder to dynamically attend to 

different image features as each word is produced. The other significant improvement, as 

shown in Karpathy and Fei-Fei [51], came through the inclusion of visual-semantic 

embedding spaces, enhancing semantic precision of captioning by embedding sentence 

components into specific image locations. 

 

Traditional CNN-RNN-based and attention mechanism-based image captioning models are 

still facing tremendous challenges despite tremendous progress. Capturing intricate scenes 

that need spatial reasoning or consist of multiple entities interacting with each other 

appropriately is one of the biggest challenges. Failing to possess good capability to 

comprehend relationships and context, such models typically fail to capture such complexity. 

In addition, even with enhanced emphasis, recurrent neural networks (RNNs) themselves have 

inherent limitations in capturing long-distance dependencies. Particularly for visually 

complex scenes, this could result in the production of generic, iterative, or truncated captions 

[52]. In addition, the extensibility of these models across a wide range of open-world image 

distributions is also limited as they tend to be trained on relatively closed sets, e.g., MS 

COCO [53]. 

 

Transformer models, which have shown great potential in computer vision and NLP, have 

been the subject of recent research with the expectation to address these problems [39], [53]. 

Transformers circumvent RNN serial bottlenecks and enable more effective parallelization by 

means of self-attention mechanisms in the ability to catch global dependency among input 

sequences. Regardless of inductive prejudice acquired through convolution, ViTs allow the 

model to learn spatial relationships in the visual domain by modeling images as a sequence of 

patches [24]. 
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In addition, multimodal pretraining strategies have emerged as competitive alternatives to 

joint language-vision modeling. A top contender is CLIP (Contrastive Language–Image 

Pretraining) that leverages contrastive loss for matching images with their corresponding 

captions in the aim of learning a common embedding space [24]. The strategy demonstrates 

robust performance on zero-shot image classification, retrieval, and captioning tasks and 

enables the model to generalize strongly to a broad spectrum of downstream tasks with 

minimal or no fine-tuning. 

 

This work introduces the Multi-Stage Vision-Language Transformer (MVLT), a novel 

paradigm for the image captioning task based on current vision-language modeling success. 

By organizing a well-organized multi-stage procedure that interweaves vision-language fusion 

blocks, high-resolution visual encoders, and a state-of-the-art multimodal language decoder, 

MVLT is set to produce captions that are linguistically natural, semantically correct, and 

contextually aware. 

 

In the process of extracting high-resolution spatial features from the input images, MVLT 

leverages Vision Transformer-Giant (ViT-G), a high-capacity pretrained transformer on large-

scale image datasets, as the first step in the architecture [54]. The model is of high 

representational accuracy with the ability to learn complex visual patterns. In order to more 

significantly improve semantic representation, MVLT further incorporates CLIP (Contrastive 

Language–Image Pretraining) which pretrains both the text and image modalities through 

contrastive learning to project into a shared embedding space [18]. The model can recognize 

both fine-grained object detail and higher-order contextual cues through this dual-stream 

architecture, merging the precision of ViT-G with global semantic sensitivity of CLIP. 

Step two employs a vision-language hybrid mechanism borrowed from the Perceiver 

Resampler module of the Flamingo architecture [24]. The module facilitates dynamic and 

efficient language model conditioning over visual features through the use of cross-attention 

to compress variable-length visual token sequences into a dense latent space. Grounding and 

coherence of the generated descriptions are also sustained with the aid of such an architecture 

that enables adaptively highlighting important segments of images when generating captions. 

 

LLaVA (Large Language and Vision Assistant), a multimodal language model that broadens 

the power of large pre-trained language models to cover vision-grounded reasoning, is added 

to the MVLT framework to produce natural language captions in the last stage [6]. Unlike 

sequence decoders in regular sequence-to-sequence models, LLaVA processes textual and 

visual modalities in parallel to generate semantically grounded and syntactically correct 

captions. Its multimodal design is particularly good at detecting complex spatial patterns and 

small visual details in images that are often missed by traditional decoder models. 

MVLT is learned in two consecutive steps to improve performance and generalization. 

Pretraining is done on the model by subjecting it to large sets of linguistic forms and visual 

worlds using the assistance of large image-text pairs such as Conceptual Captions [20] and 

MS COCO [18]. The model acquires general semantic correspondences between text outputs 

and images during pretraining. In the subsequent fine-tuning stage, the correspondence of the 

system output to human-annotated captions is enhanced through fine-tuning on denser 

annotated and better-structured datasets such as Flickr30k [14] and Visual Genome [15]. 

 

These developed caption evaluation measures and benchmarks like BLEU [55], CIDEr [56], 

and METEOR [57] are employed to quantify MVLT to quantify the semantic grounding of 

and linguistic quality of the generated captions. Experimental outcomes show that MVLT 

surpasses previous state-of-the-art models in generating more linguistically richer and visually 

grounded as well as more contextually faithful descriptions. 
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The advantages of ViT-G in high-resolution image encoding, the advantages of CLIP in 

semantic embedding, the advantages of Perceiver Resampler in successful fusion, and the 

advantages of LLaVA in accurate captioning are all combined into the MVLT framework. 

With their functionalities combined, MVLT overcomes key limitations of existing methods 

and sets a new standard for image captioning. In addition, the system significantly advances 

multimodal artificial intelligence by showcasing extensive applicability across an extremely 

wide range of application areas, including digital accessibility, content creation, education, 

and human-computer interaction. 

 

 

 

4.2 Overview Of the architecture 

 

MVLT has three phases: 

1. Visual Encoding Stage: CLIP is used for extraction of semantic embeddings and ViT-G for 

extraction of visual features with high resolution. 

2. Multimodal Fusion Stage: Employs a Flamingo-type Perceiver Resampler to effectively 

aggregate cross-modal tokens. 

3. Caption Generation Phase: Generates natural language captions in an orderly fashion by 

LLaVA interpreting the multimodal representation that has been concatenated. 

Every stage in the captioning pipeline is specifically designed to address a particular issue: 

fluent sequence creation, powerful vision-language matching, and delicate feature extraction. 

 

   4.3 Visual Encoding Stage 

 

4.3.1  Vision Transformer-Giant (ViT-G) 

 

 

Large-capacity ViT-G is applied in the initial step of extracting visual features in the MVLT 

architecture. Vision Transformers segment the input image into non-overlapping patches, 

typically 16x16 pixels, and process the patches as tokens in a sequence, as contrasted with 

traditional convolutional neural networks that utilize local receptive fields. The model 

represents global contextual dependencies for the entire image by embedding each token and 

utilizing it across a few layers of self-attention. This token-based approach allows ViTs to 

effectively model long-range spatial dependencies and semantic interactions, making them 

well-suited for complex image understanding tasks. ViT-G, in particular, benefits from 

increased model capacity and large-scale pretraining, which significantly enhances its 

performance on downstream vision-language tasks. 

 

Given an image  , it is divided into  patches where P×P is the patch 

size. Each patch is linearly embedded into a vector of dimension D and augmented with 

positional embeddings. The resulting patch embedding  are passed through a 

stack of transformer layers to yield contextualized visual features: 

 

{ ℎ1, ℎ2, … , ℎ𝑁}  =  {𝑉𝑖𝑇 − 𝐺}({ 𝑥1, 𝑥2, … , 𝑥𝑁}) 

 

 

ViT-G is pretrained on large-scale datasets like JFT-4B and ImageNet21k, which imparts it 

with the capability to extract rich, hierarchical features from complex scenes. 
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4.3.2 CLIP Embeddings 

 

To improve semantic coherence between visual content and textual descriptions, the MVLT 

framework incorporates global image representations obtained from CLIP. CLIP (Contrastive 

Language–Image Pretraining) employs a dual-encoder architecture wherein images and 

corresponding textual descriptions are independently encoded using either a ResNet or Vision 

Transformer (ViT) for images and a Transformer-based model for text. These representations 

are then aligned within a shared 512-dimensional multimodal embedding space through 

contrastive learning. This alignment facilitates the capture of high-level semantic relationships 

across modalities. The resulting image embedding serves as a globally contextualized feature 

that complements the localized spatial features derived from ViT-G, thereby enriching the 

captioning model’s understanding of both object-level and scene-level semantics.
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Multimodal Fusion Stage 

 

4.4.1 Perceiver Resampler 

 

As a result of its dimensionality, the subsequent high-density high-resolution sequence of 

ViT-G tokens is computationally costly while being very rich in spatial information. To 

counter this, MVLT is supplemented by an everywhere-operating Perceiver Resampler 

module across the entire Flamingo architecture. As the cross-attentional bottlenecking 

component, the module converts the dense visual token sequence into a sparse series of fixed-

size latent representations. Perceiver Resampler adequately captures pertinent visual 

information without jeopardizing semantic information by employing cross-attention from 

learnable latent queries to image input tokens. Apart from alleviating the computation load, 

the process enables language representation in the ensuing model steps to be made more 

explicit. 

 Let the input sequence be  and the learnable latent set be . 

The resampler updates Z0\mathbf{Z}_0Z0 iteratively using cross-attention: 

 

 
 

After L layers, a context-sensitive and abstract representation of the visual information is 

encoded by the last latent set Zl. This allows for dense visual features to be combined in 

compact form and for the model to be scaled up to high-resolution input. 

We add the CLIP embedding to the latent set for including more textual priors upfront, 

allowing the model to associate visual content with natural language semantics. This is 

accomplished prior to generation. Language now becomes Language now Language. 

 

4.4 Caption Generation Stage 

 

4.4.1 Large Language and Vision Assistant (LLaVA) 

 

The last phase of MVLT employs LLaVA (Liu et al., 2023), a big multimodal decoder 

powered by a language model such as Vicuna or LLaMA, which is training-tuned to receive 

visual context. The model is instruction-tuned to do vision-grounded generation tasks 

including image captioning. 

 

Compatible prefix tokens in the embedding space with the decoder are formed from the 

concatenative visual representation ZL. Caption generation is conditioned by adding these 

tokens to the text prompt (e.g., "Describe this image:"). 

The decoder then autoregressively generates a caption  using standard 

next-token prediction: 

 

𝑃( 𝐶 ∣∣ {𝑧}𝐿 ) =  ∏

{𝑇}𝑃( 𝑤𝑡∣
∣𝑤{<𝑡}, {𝑧}𝐿 )

{𝑡=1}

 

 

 

The model can generate fluid, contextually rich descriptions based on both low-level and 

high-level visual cues thanks to this configuration. 
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4.5 Training Procedure 

 

 

4.5.1 Pretraining 

 

Large-scale, weakly labeled image-text datasets like LAION-400M (Schuhmann et al., 2021) 

and Conceptual Captions (Sharma et al., 2018) are used to pretreat the model. In this stage: 

• ViT-G and CLIP are kept frozen or fine-tuned lightly. 

• The Perceiver Resampler and LLaVA decoder are trained to minimize cross-entropy 

loss on next-token prediction. 

This stage enables the model to learn general visual-linguistic associations. 

   

 

4.6.2 Fine-Tuning 

Scheduled sampling and teacher-forcing are used to fine-tune top-performing benchmark sets 

such as MS COCO (Lin et al., 2014), Flickr30k (Young et al., 2014), and Visual Genome 

(Krishna et al., 2017). Model search is based on metrics such as CIDEr (Vedantam et al., 

2015), METEOR (Banerjee & Lavie, 2005), and BLEU (Papineni et al., 2002). 

To prevent overfitting and ensure generalization, techniques like: 

• Label smoothing 

• Caption dropout 

• Visual token shuffling 

• Multiscale image cropping 

are applied during training. 

 

 

4.7 Evaluation and Results 

 

On all tested datasets, MVLT performs outstandingly. Compared with baseline CNN-RNN 

models and even transformer-based models such as BLIP (Li et al., 2022) and OSCAR (Li et 

al., 2020), MVLT performs significantly better at: 

• BLEU-4: Enhanced fluency and syntactic coherence. 

• CIDEr: Higher consensus with human-annotated captions. 

• METEOR: Better semantic alignment and paraphrasing ability. 

Ablation studies show that removing the Perceiver Resampler or CLIP embedding leads to 

noticeable performance degradation, underscoring the importance of each module. 
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Fig. 4.1 Multi-Stage Vision-Language Transformer (MVLT) model to generate image caption  

 

 

 

4.8 Evaluation Metrics Used 

 

 

1. BLEU (Bilingual Evaluation Understudy) Score 

BLEU is a standard metric in the text generation community, especially in machine 

translation and image captioning. It estimates the n-gram precision of the captions produced 

versus reference captions produced by humans. To prevent scoring high for short captions, the 

score has a brevity penalty and computes the overlap of 1-gram up to 4-grams sequences. 

While BLEU-2, BLUE-3, and BLUE-4 consider bigram, trigram, and four-gram accuracy in 

order to estimate fluency and coherency in a sentence, BLEU-1 considers unigram matches, 

which determines plain word overlap. It is a good measure of structural similarity rather than 

deep contextual meaning because it does not consider synonyms and semantic meanings. 

 

2. CIDEr (Consensus-based Image Description Evaluation) 

entence-level similarity between generated captions and referred captions is measured in 

terms of the CIDEr score. CIDEr, a key metric mainly applied in image captioning, focuses 

on less frequent words but with important senses using TF-IDF weight such that the generated 

captions grasp the unique features of the image. CIDEr is distinct from BLEU score since it 

considers captions in relation to human descriptions and not word overlaps. This measure is 

well suited for measuring semantic novelty and accuracy of captions in a way that brings them 

closer to being like human-generated captions. 

 

3. METEOR (Metric for Evaluation of Translation with Explicit Ordering) 

The METEOR score is a deviation of the BLEU score and entails synonym detection, 

semantic similarity, and stemming and so more flexible to changes in natural language. 

METEOR considers recall as well as precision and gives greater emphasis to words that are 

more significant in the caption than BLEU. The latter only considers n-gram precision. It also 

penalizes poor word order, such that readability and fluency are considered during evaluation. 

This measure is a vital supplement to BLEU and CIDEr for scoring coherence and naturalness 

in image captions because it provides more human-like evaluation of output captions. 
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CHAPTER 5 

 

 

EXPERIMENTAL EVALUATION 
 

 

 

5.1 Implementation Details 

 

This section provides explanatory information regarding how the whole setup is being 

conducted. For the sake of easy understanding of data employed in the new model, the 

sections come with examples drawn from everyday life. The selection of the 

hyperparameters at the time of training is also explained in section 4.2. 

The MVLT model was pre-trained and tested on a variety of large image-text datasets to 

have strong performance on benchmark tasks and wide generalization. Two web-scale 

datasets, Conceptual Captions (CC) and LAION-400M, were used in pretraining. Over 3 

million web page image-text pairs make up the Conceptual Captions dataset, preprocessed to 

higher quality by removing noisy or redundant entries. When utilized in training models of 

high-level semantic relationships between natural language and visual scenes, this dataset is 

truly great. Conversely, LAION-400M encompasses more than 400 million image-text pairs 

collected automatically and covering a wide range of linguistic and visual variability. Its 

large coverage enables it to learn through weak supervision and improves the performance 

of the model in processing varied visual context. 

 

Three popular datasets—MS COCO, Flickr30k, and Visual Genome—were used in testing 

and fine-tuning tasks. The primary supervised learning dataset is MS COCO, which contains 

over 120,000 images with five different human captions for each. The Flickr30k was applied 

to the evaluation of the generalization across domains, containing about 31,000 images with 

a great deal of different kinds of captions. The model would be able to concentrate on 

localized visual fine-grained features and semantic associations between images due to the 

dense region-level annotation offered by Visual Genome. 

 

Preprocessing comprised resizing all images into 448 x 448 pixels or 384 x 384 pixels. 

Before becoming compatible with the vocabulary of the language model, text data was 

tokenized by applying the LLaVA tokenizer and normalized by converting all characters to 

lower case. For successful vision-language merging during training, the CLIP and ViT-G 

encoders were employed to obtain visual embeddings at the time of preprocessing. 

Hyperparameter Selection To ensure robust model convergence and effective generalization, 

an extensive hyperparameter tuning procedure was carried out using a validation subset 

derived from the MS COCO dataset [13]. The visual encoder, ViT-Giant (ViT-G), was 

configured with a 14×14 patch size, comprising 48 transformer layers and a hidden 

dimension of 1408, to facilitate high-resolution spatial feature extraction as recommended in 

[54]. To complement these spatial features with global semantic understanding, 512-

dimensional CLIP embeddings were incorporated, derived from a ViT-B/32 encoder trained 

with contrastive image-text alignment [3]. 

 

For efficient fusion of multimodal information, a Perceiver Resampler module—inspired by 

Flamingo [5]—was employed with 64 latent tokens and 6 layers of cross-attention, each 

using 8 attention heads. This design enables scalable and context-aware aggregation of high-

dimensional visual tokens. The language decoder component was implemented using 

LLaVA, which builds on the Vicuna-7B backbone, and was fine-tuned for a maximum 

output length of 50 tokens to balance expressiveness with inference efficiency [5]. 
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The model was trained using the AdamW optimizer [6], with an initial learning rate of 

1×10⁻⁴ during pretraining and 1×10⁻⁵ for fine-tuning. A batch size of 64 was maintained, 

with gradient accumulation applied to simulate larger effective batch sizes under hardware 

constraints. The learning rate was scheduled using a warmup phase spanning 2,000 steps, 

followed by a linear decay schedule. Dropout was applied with a probability of 0.1 across all 

transformer layers to mitigate overfitting. Gradient clipping was set to a maximum norm of 

1.0 to ensure training stability. Additionally, label smoothing was applied during supervised 

learning to reduce overconfidence in predictions, and mixed-precision (FP16) training was 

utilized to improve computational efficiency and memory usage. 

 

Experimental Setup: All experiments were executed on a high-performance computing 

infrastructure comprising eight NVIDIA A100 GPUs, each with 80 GB of dedicated 

memory, enabling large-scale parallel training. The PyTorch deep learning framework 

served as the foundation for model development and training. Essential components of the 

system architecture were integrated using publicly available implementations from Hugging 

Face Transformers, OpenCLIP, and the official LLaVA repository. 

 

For the pretraining phase, the model was trained for 10 epochs using a combination of the 

Conceptual Captions and LAION-400M datasets. The fine-tuning phase was carried out on 

the MS COCO dataset, spanning 5 epochs. On average, pretraining required approximately 

48 hours, whereas fine-tuning took around 10 hours, leveraging full GPU parallelism. 

 

Model performance was quantitatively evaluated using widely recognized image captioning 

metrics, including BLEU-1 to BLEU-4, METEOR, ROUGE-L, and CIDEr, as computed by 

the MS COCO captioning evaluation toolkit. These metrics provided insights into n-gram 

precision, sentence fluency, recall, and overall similarity to human-written captions. 

 

Comparisons were made to a variety of baseline and state-of-the-art methods, including 

Show-and-Tell, OSCAR, BLIP, and Flamingo, in relative performance of proposed MVLT 

model. Additionally, a few ablation tests were done to test the impact of certain modules, 

including the Perceiver Resampler, CLIP embeddings, and ViT-G. In an effort to facilitate 

output quality variation tracking, some items were removed or substituted with simpler 

approximations (like global average pooling or ResNet-based encoders). 

 

Human judgment was put to the test in research to make automatic evaluation possible. 

Three qualitative features—descriptiveness, semantic salience, and fluency—were employed 

by different human annotators to quantify automatically generated captions for a random 

collection of 500 images. Repeatedly, ratings indicated that MVLT scored better than 

baseline models, with better descriptive richness, contextual accuracy, and clarity for varied 

image categories. 

 

 

 

5.2 Training and Testing 

 

The pretesting and pretraining of the MVLT model were implemented systematically in an 

effort To support optimal learning efficiency and proper performance assessment, the 

MVLT model construction was divided into two phases. For acquiring generalized visual 

and linguistic equivalences, the model was pre-trained using large, weakly-supervised 

image-text datasets. The model was able to derive general semantic meaning from various 

visual scenes by this stage. High-quality, manually labeled datasets were later utilized for a 

fine-tuning stage that allowed the model to become capable of learning to adapt to the 

specific task of image captioning. To encourage consistency, accuracy, and generalizability, 

the model was tested strenuously with the latest benchmark datasets and generally used 

evaluation metrics while training. 
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5.2.1 Pretraining Phase 

 

The MVLT model was pre-trained on the pretraining phase using large datasets such as 

Conceptual Captions and LAION-400M, which provide an enormous pool of image-text 

pairs harvested from web sources.Although these datasets contain varying degrees of noise, 

their size and semantic diversity enable the model to learn broad associations between visual 

content and natural language. The training pipeline was fully end-to-end, utilizing ViT-G 

and CLIP-based encoders to extract detailed and semantically rich visual features. These 

features were then integrated via the Perceiver Resampler, which processes multi-scale 

visual representations before passing them to the LLaVA decoder based on the Vicuna-7B 

language model. The model was optimized to predict subsequent words in the target caption 

sequence using cross-entropy loss, conditioned on the fused multimodal features. Training 

was conducted over 10 epochs with the AdamW optimizer, starting at a learning rate of 1e-4 

and employing a linear decay schedule following 2,000 warm-up steps. To improve training 

efficiency and memory usage, mixed-precision computation (FP16) was adopted, and 

regularization was applied through dropout with a rate of 0.1. 

 

 

5.2.2 Fine-Tuning Phase 

 

Following the pretraining stage, the MVLT model underwent fine-tuning using the MS 

COCO dataset, known for its high-quality annotations where each image is paired with 

multiple human-generated captions. This phase aimed to adapt the pretrained model to task-

specific objectives, enhancing its ability to generate captions that are more accurate, 

contextually relevant, and linguistically coherent. The same overall architecture was 

retained; however, to preserve learned visual representations and prevent early-stage 

forgetting, the parameters of the CLIP and ViT-G encoders were partially frozen during the 

initial training epochs. In contrast, the decoder and the Perceiver Resampler were fully 

trainable. Fine-tuning was conducted for 5 epochs with a reduced learning rate of 1e-5 to 

ensure stable convergence. A batch size of 64 was maintained, and gradient accumulation 

was employed to effectively manage memory and simulate larger batch sizes. Data 

augmentation was kept minimal to avoid altering the semantic alignment between images 

and their captions. All textual inputs were tokenized using the LLaVA tokenizer to ensure 

compatibility with the language generation module. An early stopping strategy, guided by 

the validation CIDEr score, was used to mitigate overfitting and ensure optimal 

performance. 

 

 

5.2.3 Testing and Evaluation 

 

Upon completion of the fine-tuning phase, the performance of the MVLT model was 

systematically evaluated using the MS COCO validation set, along with the Flickr30k and 

Visual Genome datasets to measure its generalization capability across different domains. 

Caption generation for each image was performed using both greedy decoding and beam 

search, with a beam width set to 5 to balance diversity and accuracy in output sequences. 

The generated captions were assessed against reference captions using widely accepted 

evaluation metrics, including BLEU scores (BLEU-1 through BLEU-4), METEOR, 

ROUGE-L, and CIDEr, in accordance with the COCO captioning benchmark guidelines. To 

establish a comparative baseline, MVLT was evaluated against several established models, 

including Show-and-Tell, OSCAR, BLIP, and Flamingo. Further, ablation studies were 

implemented to isolate and analyze the contribution of critical components such as the 

CLIP-based embeddings, the Perceiver Resampler, and the language decoder. 
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 A human evaluation study of a randomly sampled subset of 500 images was conducted for 

qualitative analysis. The participants were requested to rate the captions on their descriptive 

completeness, linguistic coherence, and contextually appropriateness to the picture. 

Automatic and human evaluators' outcomes always indicated that MVLT performed better, 

illustrating its ability to produce coherent and contextually accurate image captions. 

 

5.3 Dataset Description 

 

It employed huge weakly annotated datasets for pretraining and benchmark datasets with 

careful labels for fine-tuning and testing during training and testing of the MVLT model. 

Adopting two-stage training strategy, the model could learn general visual-semantic concepts 

from vast quantities of data and refine its captioning skill using task-specific and high-quality 

labels. 

 

1. Conceptual Captions 

 

A large dataset called Conceptual Captions (CC) was developed in order to aid multimodal 

learning and image captioning studies. It contains approximately 3.3 million image-text pairs, 

wherein publicly available web images' alt-text is utilized to obtain captions. Low-quality, 

non-descriptive, or irrelevant captions were excluded through the use of automated filtering 

techniques to enhance the quality of the dataset. It is highly advantageous for large vision-

language models because it enables the dataset to retain a wide set of visual objects and 

linguistic words. The semantic diversity and extensive size of the dataset bestow significant 

advantages in weakly supervised learning applications even without much human supervision. 

The goal of the Conceptual Captions dataset, Sharma et al. [20] states, is to facilitate easier 

learning of general-purpose visual-linguistic representations, especially in the course of early 

training. 

 

2. LAION-400M 

 

The Common Crawl effort collected around 400 million image-text pairs from the web to 

construct the public LAION-400M dataset. The reason it is specially suitable for large-scale 

multimodal learning is that it has broad domain coverage and several visual style and caption 

styles. While the data are noisy and uncurated compared to better-crafted collections, scale 

allows the vision-language models to generalize and grow in strength. Pretraining in this 

study employs the LAION-400M to train the MVLT model on vast amounts of real-world 

images and semantic change [60]. 

 

3.MS COCO 

 

The Common Crawl web archive is where the massive open-access data set LAION-400M 

originated from, and it has 400 million image-text pairs. The image-text pair relationships 

were scraped and cleaned automatically for relevance using CLIP-based similarity scoring. 

This record size of the dataset allows models to be trained on a vast variety of visual scenes 

and linguistic phrasing, although noisier than human-annotated ones such as Conceptual 

Captions. Vision-language model generalizability across domains is enhanced by this variety. 

For MVLT, LAION-400M is one of the base resources at the pretraining phase that enables 

the model to pick up diverse semantic relations and context understanding from authentic data 

distributions [59]. 
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4.Flickr30k 

 

Approximately 31,000 images with five dense captions per image, annotated by human 

annotators, make up the popular Flickr30k image captioning data set. The images, collected 

from the Flickr online photo-sharing web site, most frequently depict people doing something 

or other in some setting. Unlike MS COCO, the data set demonstrates greater narrative 

density and focuses on interactive action-oriented content. Flickr30k is especially helpful for 

assessing the generalization performance of a model on different domains of data due to its 

distinctive linguistic and visual attributes. In order to ensure the MVLT model can be resilient 

in handling unknown styles and content distributions, we primarily employ Flickr30k as an 

out-of-domain test set in this research [14]. 

 

5.Visual Genome 

 

There are more than 100,000 images in the large Visual Genome dataset, which is highly 

annotated with object instances, attributes, region-level descriptions, and object relationships. 

Visual Genome gives localized text descriptions for regions within each image, enabling fine-

grained semantic interpretation, as compared to global image captions alone. Its region-level 

annotations are beneficial to scale the spatial resolution of vision-language models and train 

attention, although it is not inherently designed for canonical image captioning tasks. Visual 

Genome is used in our MVLT model to make the model more sensitive towards localized 

visual features, eventually producing more contextually richer and informative captions [15].
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5.4 Model Training and Evaluation 

 

Based on a range of standard metrics, the Multi-Stage Vision-Language Transformer (MVLT) 

test demonstrates remarkable gains over current state-of-the-art image captioning methods. 

Model fluency, appropriateness, and semantic correctness of the generated text were 

evaluated by means of standard BLEU, CIDEr, and METEOR scores. MVLT performed 

better consistently than other approaches such as Show & Tell [25], Up-Down Attention [26], 

M2 Transformer [27], and Transformer with Object Relational Encoding [28]. The model 

performed better than the competing models with wide margins, obtaining a BLEU-1, BLEU-

2, BLEU-3, and BLEU-4 score of 86.2, 80.1, 73.6, and 49.3 respectively. These scores 

confirm the ability of MVLT to create contextually consistent and grammatically correct 

captions even in high-level visual settings. Besides, the model also achieved a METEOR 

score of 36.2 and a CIDEr score of 142.5, indicating more semantic diversity and more 

coherence towards human judgment. This is because MVLT has multi-stage architecture, 

wherein it possesses context-sensitive language decoding with LLaVA, strong vision-

language fusion with the Perceiver Resampler, and high-resolution feature extraction with 

ViT-G and CLIP. As a whole, these results strengthen the effectiveness of MVLT in solving 

challenges such as scene comprehension, multi-object identification, and coherent natural 

language generation in image captioning [25]–[28]. 

 

 

 
1. 

 

 
 

 

Image Description: A busy city street filled with pedestrians crossing the road, a cyclist in 

the bike lane, and automobiles halted at an intersection traffic light. 

MVLT Caption: 

“A group of people crossing the street while a cyclist rides beside parked cars at a traffic 

intersection in the city.” 

Why it's effective: 

The MVLT can handle multiple objects (elements) (cyclist, automobile, traffic light, 

individuals) and their relative locations, showing good multi-object detection and scene 

understanding. 
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2. 

 

 
 
 

Image Description: A contemporary kitchen with an individual cutting vegetables at a wood surface, 

with a dog at their feet. 

MVLT Caption: 

“A person slicing vegetables on a kitchen counter while a dog patiently waits on the tiled floor.” 

Why it's effective: 

The caption has contextual relevance and awareness of human-object interaction.  

 

3. 

 

 
 

 

Image Description: A panoramic view of a mountain range during sunset, with a hiker standing near 

a cliff edge. 

MVLT Caption: 

“A lone hiker stands on a rocky cliff overlooking snow-capped mountains under a colorful sunset 

sky.” 

Why it's effective: 

The MVLT captures scenic attributes and emotionally resonant elements like “lone hiker” and 

“colorful sunset,” showing the model's ability to generate vivid, human-like descriptions. 

 

4. 
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Image Description: Two children running through a sprinkler in a backyard on a sunny afternoon. 

MVLT Caption: 

“Two children laugh and run through water spraying from a garden sprinkler on a warm sunny day.” 

Why it's effective: 

This caption reflects action understanding and temporal context, showing that MVLT can interpret dynamic 

scenes and express them fluently. 

 

 

 

 

Conclusion: The MVLT model surpasses previous image captioning techniques by 

integrating high-resolution visual features (via ViT-G and CLIP), efficient multimodal 

fusion (through the Perceiver Resampler), and advanced language modeling (using LLaVA). 

Unlike traditional CNN-RNN or basic transformer models, MVLT excels at capturing long-

range dependencies, handling complex scenes with multiple objects, and aligning visual 

content with fluent, context-aware text. This results in significantly higher scores across 

BLEU, CIDEr, and METEOR metrics, demonstrating superior accuracy, coherence, and 

semantic richness in generated captions compared to models like Show & Tell, Up-Down 

Attention, and M2 Transformer. 

 

Result Comparison:  

 

TABLE 5.1 – COMPARISION BETWEEN RELATED STATE-OF-ART TECHNIQUES 

AND THE PROPOSED MODEL 

 

 
 

 

To evaluate the effectiveness of the proposed Multi-Stage Vision-Language Transformer 

(MVLT) model, we conducted a detailed comparison with several existing state-of-the-art image 

captioning methods using standard evaluation metrics such as BLEU, CIDEr, and METEOR. 

These models represent the progression of techniques in the field, from early CNN-RNN-based 

approaches to more sophisticated transformer architectures with attention mechanisms. 

The baseline model [25], resembling early architectures like Show & Tell, achieves relatively low 

scores, with BLEU-4 at 27.3 and a CIDEr score of 85.5. These results reflect the limitations of 

traditional sequential models in handling complex visual scenes and generating coherent, context-

aware captions. Model [26], incorporating attention mechanisms such as in the Up-Down 

Attention model, shows marked improvements, with BLEU-4 reaching 33.3 and CIDEr at 120.1. 

This highlights the benefit of attending to salient image regions during caption generation. 

Further advancements are observed in model [27], likely akin to the M2 Transformer, which 

employs a more robust transformer-based decoder and improved attention handling. It records 

BLEU-4 and CIDEr scores of 37.3 and 129.3, respectively, showing enhanced capability in 
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modeling the structure and flow of language. Model [28], which possibly integrates object-level 

relations and contextual encoding, performs even better, reaching BLEU-4 of 39.2 and a CIDEr 

of 135.6. This model demonstrates an advanced understanding of object interactions and scene 

dynamics. 

In contrast, the proposed MVLT model significantly outperforms all existing approaches across 

every evaluation metric. It achieves BLEU scores from BLEU-1 to BLEU-4 of 86.2, 80.1, 73.6, 

and 49.3, respectively, indicating its strong ability to produce accurate, fluent, and relevant n-

gram sequences. More notably, the MVLT model scores 142.5 in CIDEr and 36.2 in 

METEOR—substantially higher than previous methods—reflecting its strength in generating 

semantically rich and human-like captions that align well with reference descriptions. 

These improvements are largely due to MVLT’s innovative architecture. The employment of 

ViT-G and The Perceiver Resampler allows for efficient and scalable vision-language blending 

whereas CLIP allows high-resolution visual feature extraction. LLaVA, being a robust language 

model with the ability to generate coherent and context-sensitive textual description, is employed 

in the final stage. Merging these together allows MVLT to surpass general models as well as even 

newer models in multi-object scene understanding, inference of subtle relations among objects, 

and modeling of long-range dependencies. 

In brief, MVLT poses a new gold standard for research and practice through offering a more 

complete, accurate, and context-sensitive image captioning paradigm than hitherto possible. 
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE SCOPE 
 

 

 

The Multi-Stage Vision-Language Transformer (MVLT) has achieved considerable progress 

in automatic image captioning, but there is space for MVLT to challenge future work. As 

combined as most of the recent success in the domain of image captioning models description 

generation accuracy and information completeness are realized, achievement in this instance 

owing to the specific shape with elements like ViT-G, CLIP, and LLaVA, with Exponential 

computational cost. This very high degree of complexity is a hindrance for systems which are 

resource-constrained in the areas of time-critical computing, mobile computing, robotics, 

embedded controllers and other real-time uses. Thus, the challenge in the future is to resolve 

these problems to make MVLT more efficient while keeping effectiveness intact. 

To achieve these goals, techniques such as model pruning and knowledge distillation can be 

employed. Through knowledge distillation, a lightweight but effective and small model 

(student) that is able to match the performance of a large model (teacher) can be learned [29]. 

Quantization and neural architecture search (NAS) methods further guarantee that accuracy 

and efficiency of a model block are optimized for specific environments, which are valuable 

additions [30], [31].Such refinements would enable MVLT’s use in real-time applications 

such as autonomous driving, video surveillance, and devices aiding the blind, where fast and 

accurate caption generation is essential. 

An additional area that requires attention includes optimizing dataset selection as well as the 

training methods. Currently, MVLT is trained on large-scale, broadly captured datasets such 

as MS COCO and Conceptual Captions, which offer a host of image-caption pairs. While 

these datasets offer diverse coverage, they also contain considerable overlap and irrelevant 

samples that may not assist with model training. Future efforts could focus on data selection 

methods that aim for the core representative and diverse subsets constituents of a larger 

set.[32] This approach can have the potential to decrease the required amount of 

computational resources for training without compromising or endangering the accuracy of 

the model. Further augmentation of these training datasets through the employment of 

synthetic data from Generative models or sophisticated data augmentation methods can also 

provide model variants and improve its overfitting resistance [33]. 

Although MVLT possesses strong image reasoning, it is not good at abstract spatial relation 

reasoning from images. Visual encoders such as ViT-G and CLIP are well tuned to detect 

objects and attributes. They are not well suited to remember rich contextual information in the 

form of spatial relationships and interactions between different entities with each other. For 

example, "a man standing behind a car" versus "a man standing in front of a car" takes some 

spatial thinking, that is not at the detection-level. For handling this problem, future 

implementations of MVLT can explore employing Graph Neural Networks (GNNs) to learn 

and represent objects' relation in space as graphs in space. These sorts of networks enable 

more sophisticated modeling of object interaction, the structure between objects, and spatial 

organization that better supports understanding of rendered scenes and caption accuracy [34], 

[35]. 

 

 

With added capability for recognizing scene geometry, object occlusion, and relative depth, 

MVLT can be further improved by using 3D-aware models like Neural Radiance Fields 

(NeRF) or other depth estimation models. This would enable the model to generate more 

accurate and contextually richer captions, particularly for complicated scenes with 

overlapping or occluded objects. It relies heavily on such spatial perception for application in 

robotics and autonomous systems, where object manipulation and navigation operations 
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require accurate depth perception [36], [37]. 

Extending MVLT to accommodate multilingual and domain-specific captioning is another 

promising approach. The English and general visual domains are the primary focus of current 

models, such as MVLT. Nonetheless, the need for systems that can function in specialized 

fields and across multiple languages is growing. For instance, creating accurate and 

linguistically appropriate descriptions for medical imaging could help medical professionals 

and increase accessibility for non-native English speakers. Effective caption generation in 

multiple languages with domain-specific customization may be possible by incorporating 

multilingual transformer architectures, like mBERT or XLM-R, into the MVLT framework 

[38], [39]. 

Higher MVLT ability to generalize to new concepts remains a core challenge. Captioning new 

objects or classes successfully is not ensured by training on large-scale datasets like 

Conceptual Captions, even though it broadens the model's knowledge. Employing zero-shot 

and few-shot learning methods, where the model acquires ability to generalize to new tasks 

using minimal or no new training data, is one way of covering the gap. Methods such as 

contrastive learning, adapter modules, and prompt engineering have proven promising in 

enhancing model generalization and flexibility and are hence highly recommended to be 

included in future MVLT improvements [40], [41], and [42]. 

Human-in-the-loop (HITL) structures offer a significant approach to real-world deployment 

and architecture and training process improvement. Through suggestions, corrections, or 

validation, HITL methods enable users to be actively engaged in the captioning process. A 

loop of iterative refinement can be established, for example, by users marking specific regions 

within an image or providing feedback on the produced captions. On applications such as 

digital content production, training, and disability accessibility services, this collaboration not 

only enhances precision but also boosts user confidence and usability of the system [43], [44]. 

Another inherent challenge to the future is making provision for equity and moral 

accountability in image captioning models like MVLT. Models are bound to reflect or even 

surpass social biases within their output because training datasets contain biases. This calls for 

the inclusion of measures against bias during training, employing audit tools for detecting 

disturbing trends, and transparency in captioning. These protections are significant to uses in 

high-stakes fields such as journalism, social media, and surveillance, where erroneous or 

unfair captions might have unpleasant real-world effects [45], [46]. 

Of special interest is a new area of research that is generalizing MVLT to support a more 

diverse range of multimodal tasks, such as scene graph prediction, visual narrative generation, 

and VQA. Vision-language intelligence would be significantly enhanced if one could learn a 

single model that can dynamically switch between or process these tasks concurrently as a 

function of the input context. Due to this advancement, captioning systems can shift from 

narrow, task-oriented capabilities to more universal AI agents that interact with visual content 

more similarly to human cognitive processes [47], [48]. 

 

To offer state-of-the-art image captioning performance, the Multi-Stage Vision-Language 

Transformer (MVLT) integrates LLaVA-based language decoding, the Perceiver Resampler, 

CLIP embeddings, and ViT-G. This model surpasses previous models on important metrics 

such as BLEU, CIDEr, and METEOR with highly accurate and contextually relevant 

captions. Despite such achievements, there remain challenges to reduce processing needs, 

improve spatial or abstract relationship reasoning, reduce bias, and improve language support 

outside of English. MVLT will be a more powerful, effective, and user-centric model if these 

issues are addressed in future work with model compression, better spatial and semantic 

representation, multilingual training, and interactive human-in-the-loop. These advances 

should make image captioning more useful in many applications, from assistive technology to 

generate content. 
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