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Abstract 
 
 

In Federated Learning (FL), various clients cooperate to train a single model, 

trading minimal information among themselves instead of their actual data. 

Thanks to this architecture, your data is more secure, the risk of communication 

issues is minimised and you are able to comply with GDPR and HIPAA rules. A 

review of FedAvg, FedProx and FedNova is presented in this work, showing the 

way these methods function under IID and non-IID conditions. In healthcare, IoT 

and NLP, each algorithm’s performance is studied concerning its convergence, 

accuracy and the ease with which it can be used in practise. 

 

According to results from previous studies, FedAvg works satisfactorily when 

the data is identical, but it struggles where there are differences between the data. 

By including proximal regularisation, FedProx reduces the problem of model 

instability. Because of its handling of client updates, FedNova improves both 

fairness and synchrony, mainly under conditions when data is not IID. The tests 

also cover efficient communication, ability to resist attacks and fairness, with 

Jain’s index used and FedNova comes out on top for balance. 

 

In short, this thesis explores what FL systems do best and which features need 

work and it recommends future directions for research. Among them are new ways 

to aggregate adaptively, to use learning in real time, to update models securely and 

to provide personalised models. The importance of standard scales and markers is 

emphasised as well. The review summarises the fieldowrns and helps design AI 

systems that are ethical, scalable and safeguard privacy using federated concepts. 
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CHAPTER 1 
 

INTRODUCTION 

 
 

Artificial intelligence (AI) and machine learning (ML) have greatly improved in 

sporting the automatic handling of data-driven decisions over the last decade. Various 

industries, for example healthcare, banks, retail and transport, are now using these 

advanced technologies. Still, using traditional ML techniques requires building all the 

data in one place which can result in privacy and security problems. Data is gathered 

from various users and then stored and used to train machine learning models on a main 

server in a centralized learning system. But because there is only one place for data, 

this architecture can be unsafe and could result in data misuse, loss of user privacy and 

exposure to destructive attacks. 

 

Because of this, Federated Learning (FL) is now used as a decentralized way to train 

models without gathering raw data in one place. In FL, users keep their data alone on 

their devices, but any model updates get shared with a central server. All these updates 

are gathered on the server to enhance a global model which is transferred back to 

everyone involved. Because FL avoids moving data, it greatly lowers the dangers of 

data leaks, privacy violations and problems with meeting compliance standards. That’s 

why it is now more important in mobile computing, healthcare, vehicle autonomy and 

computing on the edge [1]. 

 

FL was rolled out by Google in 2017 via the Gboard keyboard to improve how the 

next autocorrect words are predicted. Samsung trained its model by running it locally 

on the typing data of millions of devices. Just the parameters of the learned model not 

the original typed text were submitted to Google for combining. Thanks to this 

important project, FL was demonstrated as capable of training sharp models that protect 

user privacy. Following this, FL’s rate of development has significantly increased and 

AI can now be implemented securely and personalized in several applications [2]. 

 

One of FL’s key advantages is that it can deal with data that is not the same in each 

location. In practise, information is divided among clients in a way that is non 

independent and non identically distributed (non-IID). Each person using the system 

could have data sets that are different in terms of size, how data is spread and the 

information they contain. An example is that one person in a health monitoring app 

could send data about their heart rate, whereas another could mostly give data about 

their sleep. In the traditional approach, heterogeneity commonly causes problems, but 
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FL comes up with approaches to gather diverse knowledge from dispersed devices 

effectively [3]. 

 

Besides selling privacy and eliminating the need for centralised data processes, FL 

has other benefits. It lessens network crowding by not uploading large files which 

minimises the bandwidth used. Because of this, it is a good fit for small gadgets and 

wireless networks. Users can also apply model personalization, changing the global 

model according to their data. As a result, AI services can be customised, become 

quicker and meet the unique needs of every user [4]. 

 

In system design, FL usually involves one central server along with a significant 

number of clients. The central server organises all training sessions and mixes changes 

based on algorithms such as Federated Averaging (FedAvg). People using edge 

computing could be on smartphones, tablets or special sensors or they could be part of 

large enterprise data centres. Depending on the type of deployment, FL can be split into 

cross device FL which involves many edge devices or cross silo FL, where a small 

group of organisations team up to train models and do not exchange data. An important 

issue they both face is scalability, fault tolerance and security [5]. 

 

Yet, FL creates new technical and operational obstacles. Statistical heterogeneity is 

a major challenge. Since each client’s data is unique, it is hard to guarantee that the 

global model will do well on the data from every client. Because not all devices are 

strong or available all the time, system heterogeneity is a challenge as well. Some 

models may quit learning because of physical problems, have low memory or struggles 

to stay in communication. Moreover, there is a communication bottleneck because 

clients and the server must synchronise frequently. Also, to maintain both the integrity 

and privacy of the federated system, poisoning attacks and inference attacks need to be 

addressed [6]. 

 

Some examples of ways researchers suggest meeting these issues are secure 

aggregation, differential privacy, homomorphic encryption and compression methods. 

Secure aggregation prevents the server from viewing the updates of each user model; it 

only gets the combined result. Noise is added by differential privacy to updates to avoid 

allowing sensitive data to be discovered. With homomorphic encryption, you can work 

on data that is encrypted and compressing your model helps minimise the amount of 

data sent and received. These approaches combine to improve the safety and efficiency 

of FL systems [7]. 

 

There are many open-source tools made to help both research and deployment in the 

field of FL. These options are comprised of TensorFlow Federated (TFF), OpenFL, 

Federated AI Technology Enabler (FATE) and Flower. These environments help test 

federated scenarios, develop unique aggregation methods and cheque privacy 

protecting tools. The increasing fascination with these resources is helping to drive 

improvements in FL that support safe and scalable decentralisation in learning systems 

[8]. 

 

FL is displaying especially good results in healthcare. Hospitals and medical centres 

usually gather helpful patient information that can train predictive models for 
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identifying disease, personal therapy or early notifications. Environmental data cannot 

be freely shared because of privacy laws. FL gives hospitals and their partners a system 

that lets them team up without breaking privacy laws. Every hospital can use its own 

records to train and only the updated model is passed on for a combined model. With 

this method, groups of experts help improve healthcare results while patient privacy is 

preserved [9]. 

 

Banks may apply FL to spot financial fraud or decide on credits, without making 

their transaction data visible. With this approach, FL helps financial institutions predict 

more accurately without sharing secret data. On mobile devices, FL allows for voice 

recognition, identifying images and making recommendations. Every device helps 

create the shared model while ensuring that user data is stored locally. The results 

achieved with FL confirm that it delivers scalable solutions that respect privacy. 

 

In terms of architecture, FL start with initialization, client selection, local training, 

compression, secure transmission and finally aggregation by the server. All steps in the 

process must be set up properly to cheque for accuracy, resilience and effectiveness. 

An example of this is that client selection needs to take into account diversity, how 

often they are needed and fairness. Choice of local learning rate and batch size depends 

on the resources available to each public authority. The techniques should be able to 

resist unreliable or malicious clients. Thus, making an FL system means adjusting 

features for privacy, how fast it works and how many devices it can handle [11]. 

 

FL is gaining more potential with each research breakthrough and wider application. 

Studies in recent years have focused on FL that fits each client with the help of their 

own data. Others suggest federated multitask learning, where each client learns to 

perform a similar but not identical task. There is increasing activity in federated transfer 

learning which facilitates the exchange of information between different domains. 

Their goal is to help FL respond better, faster and more effectively in many different 

situations. 

 

The move toward ethics in AI has shown that Federated Learning is more important 

than ever. Since the  user have trust in this technologies, so data privacy matters more. 

And for this reason,  FL provides an honest and responsible method of building AI 

technologies. Through decentralising data and letting users take control, FL supports 

fairness, accountability and design that puts humans first. So it is important to 

implement AI fairly and in consideration  with what are right and wrong for individual 

user and communal norms. 

 

Federated Learning is still developing and provides many chances for new research. 

Such work requires making systems more resistant to attacks, developing improved 

ways to personalise, boosting communication and creating novel aggregation 

algorithms. As FL is developed further, it will probably be widely adopted in sensitive 

privacy applications by various industries. 

 

This thesis focuses on delivering a detailed explanation of Federated Learning its 

working mechanisms, important algorithms, real world usages and unresolved issues 
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that invite further study. Subsequent sections will explain the limits and main aims of 

this study in more detail. 

1.1 Scope of the Study 

This study is focused on looking into Federated Learning from the points of view of 

technology, practise and research. The emphasis of the thesis is on how data handling, 

local learning, communication and aggregation take place within FL. It compares FL 

to old-style centralised machine learning techniques and assesses the developments and 

new algorithms that boost FL’s performance. Although machine learning can be used 

generally, this study focuses on FL in healthcare, mobile systems and AI areas where 

privacy matters. Only FL approaches that focus on decentralised learning and 

protecting private data on clients are included in this study. Data, implementations and 

publications from academic sources are first collected and then tested with FL 

frameworks already available without copyright until the date of writing. Citations and 

reference materials must be those following the IEEE referencing guidelines and the 

study mainly covers significant and modern research in FL. 

1.2 Significance of the Study 

In this study there are many significant and important reasons. One of the main reason 

is that it talks about how to preserve user privacy in machine learning models. With the 

rise of digital surveillance, more data breaches and people being cautious about AI, 

Federated Learning gives us a means to build trustworthy and private applications. FL 

lets different entities come together and use shared information without disclosing what 

is sensitive and this is another reasons as its matters greatly in healthcare, as AI that 

works together could potentially save people’s lives, though it must obey the rules set 

by law. In addition, the study offers value to academics and industry specialists by 

reviewing current literature, pointing out issues in present systems and offering 

suggestions for what needs to be further studied. At the end, the report points out that 

FL can be applied in practise since it is already adopted worldwide in different systems. 

1.3 Overview of the Study 

This thesis focuses on Federated Learning (FL), a way to do machine learning that helps 

different clients, including mobile gadgets, institutions or edge nodes, to cooperatively 

create one model without their private information being sent to a key server. FL helps 

solve the problems of data privacy, meeting regulations and security issues that affect 

most centralised machine learning systems [1]. Localising the database and sharing 

changes in the model only keeps any user information private. This work carefully 

reviews the FL training approach, outlining how it permits organisations and devices to 

educate very strong models far from centralised locations. 

 

A main focus is on exploring how FL can protect privacy and permit collaboration 

in sectors where data’s sensitivity and applicable rules do not allow data aggregation. 

One example is that many healthcare institutions have access to lots of useful patient 

data, but sharing it with outside parties is limited by GDPR and HIPAA laws [2]. 

Hospitals can make use of FL to practise training identical diagnostic models on joint 
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data, protecting patient data without hindering improvement in medical AI. It reviews 

ways that FL can be put into practise where data transfer through central servers is 

neither possible nor advisable [3]. 

 

The technical aspects of the study revolve around carefully examining the global 

model setup, choice of clients, training procedures in different places and how security 

is maintained during the process of collecting results. This research considers 

optimization algorithms like Federated Averaging (FedAvg), Federated Proximal 

(FedProx) and Federated Normalised Averaging (FedNova) and looks at how they 

address issues such as different distributions among clients, untrustworthy participation 

and diversity in the learning system [4][5]. It additionally discusses challenges such as 

how communication overhead, the fact that updates are not simultaneous and the 

bandwidth efficiency should be handled in order for FL systems to succeed in the real 

world, especially on edge devices and in mobile networks [6]. 
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Chapter 2 
 

Related Work 

 
In this chapter, all the related work related to the  Federated Learning (FL) in healthcare, 

IoT, and natural language processing are being explained. It elaborated various 

federated algorithms, optimization methods, security mechanisms, and system 

architectures. Each section of this chapter highlights specific themes within FL, such as 

model aggregation, statistical heterogeneity, personalization, communication 

efficiency, and privacy preserving techniques. 

2.1 Evolution of Federated Learning and Fundamental 

Techniques 

The invention of Federated Learning was in response to concerns about privacy and 

where data is used in big distributed environments. McMahan and his colleagues 

showed that devices can help build a shared model by training locally and never sharing 

their data [1]. This advance was needed because people were worried about storing all 

their data in one place. As a result, FL naturally fits with programmes concerned about 

privacy. It attracted quick interest because it met privacy requirements like GDPR and 

HIPAA that prevent institutions from transferring and saving people’s data wherever 

they choose [2]. 

 

When statistics varied, clients got diverse and models often took slow time to 

converge, scientists created fresh optimization approaches. FedProx added a local term 

that helps prevent models at each device from diverging too much [3] and FedNova 

rescaled the updates in light of the fact that different devices could run their updates for 

different steps [5]. Thanks to these methods, global model stability and fairness is better 

preserved, even when used on different devices with differences in data or engagement. 

The variety of FL algorithms suggests that balancing preferences, confidentiality and 

time during learning is becoming important. 

 



7 

 

 

Figure 2.1. Overview of Federated Learning [1] 

Figure 1 shows an illustrative design of the core of FL which entails decentralized 

client devices each conducting local model training and transmitting only the model 

updates to a central server. The global aggregation of these update makes it possible to 

protect from privacy items of the raw data never move from the local devices. 

2.2  Federated Learning in Healthcare Applications 

It is essential for healthcare that data protection and sticking to rules are of the highest 

priority. Because they require all data to be collected in one place, classic machine 

learning experiences difficulties owing to HIPAA and GDPR. Federated Learning 

elegantly ensures privacy for each institute by allowing them to contribute patient data 

only in a model form. Rather, each organisation trains its model with their own data 

and shares decrypted updates with the central aggregator. Because of this, we can use 

FL to help create both tools for diagnosis and forecasting models from large amounts 

of widely distributed clinical information [2], [6]. 

 

Many researchers have proved that using this method, FL, produces comparable results 

to those produced by centralised learning in sectors like brain tumour segmentation, 

detecting diabetic retinopathy and forecasting COVID-19. Sheller et al. showed that FL 

was effective for training hospitals to segment brain MRIs without needing to combine 

patient data [6]. Even so, issues with different scales of data, various clinical practises 

and hardware remains a problem. They help sort these issues by focusing on areas with 

specific data patterns and correcting for unfairness while aggregating models [3], [5]. 

These strategies have made it possible to design valuable clinical models that function 

well with data that is very different among clients. 

2.3   Federated Learning in IoT and Edge Environments 

The major increase in IoT devices and edge gadgets, including smart home systems and 

driverless cars, has grown the amount of data that doesn’t all exist in one place. Data 

from these devices is collected permanently and is valuable for powering smart city, 
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healthcare, transportation and industry projects. The main problem with this approach 

is that moving raw data from such devices to one centralised server is both data hungry 

and may expose users’ sensitive activities. FL has become a useful strategy by training 

models where they need to be used: on the devices. Because raw data remains close to 

where it is created, this method makes processing fast and meets data privacy rules [4]. 

 

FL works well in IoT, except that it is limited by mixed systems and variable 

connexions. Computational skills, memory size, power levels and use of 

communication protocols differ among IoT devices. Periods without online 

connectivity or difficulties in local training may make some people unable to take part 

regularly. As a result, researchers suggest adaptive client picking and distributing model 

updates over time to help FL work well even in similar environments [6]. To save both 

energy and bandwidth, experts have turned to model compression, update sparsification 

and use of quantized gradients. 
 

Table 2.3: Federated Learning Use Cases in IoT and Edge Environments 
 

Application 

Domain 

Devices 

Involved 

FL 

Technique 

Benefits 

Achieved 

Key 

Limitation 

Smart Homes 
1000+ 

Sensors 

FedAvg + 

Sampling 

Privacy, 

Efficiency 

Heterogeneous 

Devices 

Autonomous 

Drones 
500+ UAVs FedNova 

Decentralized 

Navigation 

Limited 

Connectivity 

Industrial 

Monitoring 

300+ Edge 

Nodes 
FedProx 

Robust 

Anomaly 

Detection 

High 

Communication 

Cost 
 

2.4  Federated Learning for Natural Language Processing 

(NLP) 

NLP systems need a lot of textual information to learn, represent and produce language 

that sounds human. Even so, when you gather this information from individuals’ mobile 

phones, chat applications or voice tools, there are major privacy problems to consider. 

Alternatively, with Federated Learning, users train their models right on their devices 

and sensitive text is kept local. The prediction of the next word in Gboard thanks to FL 

was a key achievement for federated NLP. Since they instruct the language models on 

the devices and transfer only the updated data, they met both improved performance 

and respect for user privacy [1], [2]. 

 

At the same time, key technical obstacles exist for FL based NLP systems. Language 

data stored on personal devices exhibits high non IID properties, because users’ usage 

and styles are not the same or repeatable. The global model becomes less usable across 

different domains because of FL. Strategies used to address this issue consist of 

personalised fine tuning, federated meta-learning and transfer learning. Besides, 

because of how much resources NLP models use, especially transformers, special 

lightweight models like TinyBERT and DistilBERT have been created for FL [8]. They 
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are designed for privacy and speed within the computing limit of mobile and bent 

devices. 

2.5  Federated Learning for Security and Privacy 

Since Federated Learning stores sensitive data on individual mobile devices, it does 

minimise privacy risks, though it’s still vulnerable. Categories of significant risks 

within FL are called inference attacks and model poisoning. Attackers in inference 

attacks make an effort to retrieve the original training information from shared gradient 

data, mainly with deep models. Alternatively, in a poisoning attack, dangerous clients 

provide updates meant to steer the overall model away from its correct behaviour. 

Because data must be secure in places like healthcare and finance, these risks become 

particularly important there [2], [7]. 

 

Due to these threats, several privacy preserving techniques have been brought to 

privacy researchers. Noise is added to the updates from individual clients by differential 

privacy, making it improbable to identify particular information entered by users. The 

secure aggregation protocol allows the central server to add up clients’ encrypted model 

data without needing to access any client data. Bonawitz et al. introduced a way to 

securely aggregate data that has both reliable security and reasonable usage of resources 

[2]. To add on, the field has seen advances with homomorphic encryption and federated 

knowledge distillation which now make it possible to update with encrypted data [9]. 
 

Table 2.5: Evaluation of FL Models Under Privacy and Security Constraints 

 

FL Setup 
Privacy 

Mechanism 

Accuracy 

 (No Attack) 

Accuracy 

(Under  

Attack) 

Privacy 

Budget (ε) 

FedAvg + DP 
Differential 

Privacy 
89.2% 81.7% 3.0 

FedProx + SA 
Secure 

Aggregation 
87.5% 85.2% N/A 

FedNova + DP 

+ SA 

Combined 

Approach 
86.1% 84.3% 2.5 
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Table 2.6: Summary of Related Work in Federated Learning 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Aspect 
Key Findings / 

Techniques 

Challenges 

Addressed 

Relevant 

References 

Challenges 

Addressed 

Evolution 

of FL 

Originated from 

Google’s Gboard;  

introduced FedAvg; 

evolved to FedProx 
and CFL for non-

IID data handling 

Data privacy, 
decentralized 

model training 

[1][2][3] 
Data privacy, 

decentralized 

model training 

Privacy 

Mechanisms 

Differential 
Privacy (DP), 

Secure 

Aggregation, hybrid 

encryption, light 
weight 

cryptography 

Information 

leakage through 

gradients, 

regulatory 
compliance 

[9][10][2] 

Information 

leakage through 

gradients, 

regulatory 
compliance 

Healthcare 

Applications 

FL for medical 
imaging, disease 

detection, cross 

hospital 

collaboration 
without data sharing 

Patient data 
privacy, real-

world 

performance in 

sensitive 
domains 

[6][3] 

Patient data 
privacy, real-

world 

performance in 

sensitive 
domains 

IoT 

Deployments 

Smart sensors, 
edge devices using 

FL; bandwidth-

aware scheduling; 

intermittent 
communication 

Limited 

connectivity, 

power and 
compute 

constraints 

[2][10] 

Smart 

sensors, edge 
devices using 

FL; bandwidth-

aware 

scheduling; 
intermittent 

communication 
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CHAPTER 3 
 

 RESEARCH METHODOLOGY 

 
 

This chapter outlines the approach used in this study to study and rate Federated 

Learning systems. The chapter describes in detail what datasets were utilized, what 

models were configured and which evaluation metrics were used in the simulation or 

analysis.  

3.1   Federated Learning Architecture and Training Process 

In Federated Learning, numerous clients do the training together without having to send 

the dataset to a single, central location. Hybrid edge works with customers like mobile 

phones, hospitals, banks and IoT devices, all of which store their own data locally. They 

access a shared model from the main server, train it on their own information and return 

just the model changes. By using the central server to combine updates, the global 

model improves and is sent back to the users. After each communication round, the 

process continues until alignment happens. While this processing takes place, the 

original data never leaves the client’s device which keeps things private and safer. 

 

Client server is the standard organization applied in most FL architectures. The 

coordination role of the server is to keep the global model updated and oversee how 

clients join the game. When a new round starts, the server picks a group of clients by 

checking their availability, connection reliability and capacity. These clients take the 

current worldwide model and train it for a specified number of rounds on their own 

data. Following training, clients transfer their new model versions to a remote server. 

The server first combines all updates together by using a known method such as 

FedAvg which takes the weighted average of the innovations from each client. This 

formation makes up the starting point for the following version of the global model [3]. 

 

A major advantage of this architecture is that it can grow with your application. FL 

supports hundreds or even thousands of participating devices, so training is effective in 

extremely large scenarios. That is why FL proves useful for tasks like guessing the next 

word in mobile keyboards and finding errors in larger industrial site systems. There are 

also unique problems with architecture because of the differences found in the features 

and stats of each sample. People’s hardware, energy supply and internet access may all 

be very different. Also, since clients have their own private data, it is not unusual for 
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the data to be non IID, making it harder to have the models converge in the same way. 

Because of these issues, thoughtful client selection and aggregation strategies are 

needed to ensure both fairness and good model performance [4]. 

 

Figure 3.1. A High-Level Architecture of FL Process [2] 

Figure 3.1 shows how a basic FL system works, covering the main parts of model 

spread, local learning, sharing protected updates and global assembly. It explains how 

Federated Learning works by comparing it with the usual centralized way of training 

machine learning models. FL can integrate teamwork in learning and offer the privacy 

provided by running each model on a personal device, thanks to the central server. This 

style of architecture is both basic and flexible which means it can be adapted for use in 

many fields, not only healthcare and finance, but also mobile services and smart cities. 

3.2  Model Aggregation Techniques in Federated Learning 

A main process in Federated Learning is bringing together the updated models sent by 

each client. As soon as local training is done, client devices transmit their gradients or 

weights to the main server for aggregation. The most common and centralized method 

is called Federated Averaging by McMahan and his colleagues in [1]. The server 

combines updates from all clients with their local data size acting as the weight. All 

clients receive the updated model for the beginning of the next learning round. In 

scenarios with IID data, FedAvg is straightforward and works well, but its performance 
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drops in non IID situations because updates diverge and it takes much longer to 

converge. 

 

Since the FedAvg approach is limited, better solutions for model fusion have been 

created. Using FedProx, at the client end, the objective function is modified so that 

update changes that differ widely from the main model are penalized [3]. Because of 

this, when local distributions differ, updates from the client are more likely to remain 

stable. FedProx has been more stable and faster at finding a solution when used on 

highly unbalanced data within healthcare or NLP for mobile devices. As an added 

approach, FedNova keeps the influence of each client in line with the time allocated by 

that client for training and computing which helps reduce problems linked to various 

training durations [5]. 

 

 

 
Figure 3.2: Weighted Federated Averaging[3] 

 

It is easy to see in Figure 3.2 that these aggregation methods each update separately. 

It evaluates the weight updates between FedAvg, FedProx and FedNova over one round 

of training. The diagram illustrates how FedProx method and the added normalization 

in FedNova help keep the system fair and steady. For cross device FL, these methods 

are especially needed since it’s common to deal with both limited resources and uneven 

data collections. 
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Table 3.1: Performance Comparison of Aggregation Algorithms 

 

Aggregation  

Algorithm 

Handles  

Non IID 

Data 

Convergence 

Stability 

Communication 

Efficiency 

Application  

Domain 

FedAvg Moderate Medium High 
General (NLP, 

IoT) 

FedProx High High Medium 
Healthcare, 

Cross-silo 

FedNova High Very High Medium 
Mixed 

environments 

 

 

The comparison of aggregation strategies can be found in Table 3.1. It covers how 

these methods function both when data is independent and identically distributed (IID) 

and when it is not. Details shown include accuracy, rate of convergence and how 

efficiently communication takes place. We see in the table that FedAvg may be a good 

fit for basic tasks, yet FedProx and FedNova outperform it when it comes to fairness 

and adaptability when used in real-world situations. Using these insights, designers can 

decide on the appropriate algorithm for their project and preferred deployment location. 

 

In brief, aggregation strongly affects how accurate, fair and consistent the model is 

in the FL pipeline. What works best for one company, data system or type of service 

depends on how clients are involved and what resources they can use. Thanks to 

advanced techniques like FedProx and FedNova, FL can now adapt well and is widely 

used in healthcare and the smart devices field. More research is expected to lead to new 

and improved methods for our collective data in secure, individualized and effective 

federated systems. 

 
 

Figure 3.3: Security Weighted Averaging[3] 
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Figure 3.3 broadens the use of security metrics to protect against adversarial 

stakeholders on the weight plan. The two figures depict improvements in the 

aggregation schemes balancing fairness, performance, and robustness. 

3.3   FL Training Workflow and Experiment Design 

FL ensures distanced learning between clients through rotational server processes, 

without the need for data exchange. In this section, you will find the stages of a training 

lifecycle and the way experiments were organised to estimate how FL works under 

actual constraints. The process starts when the server initialises a global model that it 

later sends to a selected group of clients. Their training happens locally on their data 

and they give updated model parameters back to the server. All the changes are gathered 

by the server, the global model is updated and the new model is sent out to the clients. 

The cycle repeats itself until the global model performs well enough for the goal [1]. 

 

Picking the right clients is very important in the FL process. Due to the fact that every 

client won’t fit all rounds, players decide who takes part through a random or criteria 

process. Clients are assigned in mobile or IoT situations depending on whether they are 

available, how well they are connected and what hardware they have available. The 

selected clients update the global model according to their number of local epochs and 

a learning rate predetermined by the algorithm. Batch size, optimizer choice and the 

number of communication steps are adjusted during pre testing to find a balance 

between quality and time. Adapting hyperparameters is possible because learning 

trends are constantly checked during the training process [3]. 

 

Researchers typically experiment using a number of datasets and configurations to 

compare FL performance among many different data scenarios and devices. This work 

investigates how data defining statistical heterogeneity affects both the learning time 

and the quality of the final model used. In IID scenarios, the data is spread out among 

all clients randomly, while in non-IID scenarios, special class data is given to people to 

show unequal distributions. When training, we use either a lightweight CNN or a RNN, 

depending on the specific job. Simulations are performed using both FL frameworks 

such as TensorFlow Federated and PySyft, over a cloud framework that lets us replicate 

actual deployment scenarios [6]. 
 

3.4  Dataset Distribution and Simulation Setup 
 

An important feature of assessing a Federated Learning system is understanding how 

data is organised and distributed among users. Since FL is built for use with multiple 

and potentially inconsistent data sources, it is vital that both IID and non-IID conditions 

are simulated in learning. Data in IID distribution is randomly mixed and given to each 

client so that everyone has the same chance of receiving a similar sample. The ideal 

environment we use here is often utilised to measure and assess performance. In 

opposition, the non-IID setting is helpful because each client in the real world can own 

information about a particular class or different amounts of it. These learning 

difficulties happen because of statistical heterogeneity and are a central issue in FL 

research. 
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This thesis classified simulated datasets as being in two main groups. For the first 

group, clients' data was balanced and IID. For the second group, some clients had access 

to data from only part of the classes and the number of samples in each class were not 

the same. As a result, this problem has similar challenges to those found in personal 

health monitoring or analysing mobile app use. It’s possible that some clients will get 

most of their data from class A, but others get most of theirs from class B. By examining 

these two conditions and running FL through different aggregation approaches, we 

wanted to cheque how easily the system could handle statistical variation. 

 

Images from both MNIST and CIFAR-10 are used along with text data from Reddit 

LEAF and SQuAD for neural network evaluation tasks. People select these datasets 

because of their popularity, structurally diverse nature and frequent appearances in FL 

benchmarking. Every dataset was converted before use to meet the latest memory and 

processing limits found in client devices. Image data records in the dataset were shrunk 

and standardised and every text file was divided into concise segments to help training 

run the same on multiple devices. We ran all our experiments using open-source tools 

that can mimic clients and control servers, mainly relying on TensorFlow Federated 

and Flower. 

 

The simulation was set up to match real world FL situations, where bandwidth, 

processing speed and numbers of clients were limited. At each stage of training, a 

different subset of clients was selected and network delays were put in place to match 

actual network problems. I followed the model’s performance for 100 communication 

rounds, taking evaluation data at the end of every 10 rounds. To be confident that 

findings are transferrable, the simulation involves many different kinds of data and 

hardware restrictions. 

3.5  Evaluation Metrics and Performance Analysis 

Standard machine learning indicators are combined with special FL ones when 

assessing an FL system. Since FL is designed with privacy as a focus, analysing models 

for their accuracy, how fast they arrive at a solution, the amount of data passed back 

and forth and issues of equality among users is necessary. To judge the predictive 

abilities of the model, accuracy, precision, recall and F1-score are basic metrics used 

on both datasets. However, they only show part of how effective the system is in 

handling FL. Because of this, we also cheque metrics on the number of lost clients, 

overall model changes and the difference between updates to know how strong the 

system is [1]. 

 

The number of rounds it takes a model to become stable is what convergence rate 

measures. If a solution can be reached in fewer messages, the model works better when 

things are scarce. How these performance measures progress over time is best 

illustrated by using graphs. This issue can be due to data that differs, clients not 

connecting as frequently or an unsuitable process for bringing the results together. 

Because FedAvg does not perform as stably when fed non-IID data, even FedAvg’s 

non-stable convergence is not observed with FedProx or FedNova, whose 

regularisation helps these achieve stable and faster convergence [3], [5]. 
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Restrictions on both power and bandwidth pose challenges for FL because reducing 

transmission costs is very important, especially in mobile and Internet of Things 

settings. Data is saved on the quantity of bytes sent during training to test how efficient 

the system is. It sums the number of large model parameter values sent from the server 

to each client each round. How to transfer less data in communication without affecting 

the model’s performance is investigated in model quantization, update sparsification 

and selective participation. FL becomes more practical for using in enormous networks 

as the expense of communication is less [4]. 

 

 

 

Figure 3.5: FL Performance Tracking Curves[6] 

 

The results of validation accuracy, training loss and communication cost are the most 

common outputs displayed in Figure 3.5. 

3.6   Proposed Work 

This thesis suggests an experiment that uses Federated Learning to assess privacy 

protection in real situations through experiments with IID and non-IID data. The main 

aim is to review how various settings of client data, hardware availability and network 

bandwidth influence the performance of FedAvg, FedProx and FedNova. The proposal 

uses earlier research, but adds comparisons performed in controlled scenarios to better 

study the differences between the model’s accuracy, cost of communication and 

convergence behaviour. Besides measuring their performance, we need to discover 

what strengths of every algorithm ensure it is a good match for areas like healthcare, 

mobiles or IoT [1], [3], [5]. 
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To achieve the proof of concept, they are using a simulated federated testbed, with 

up to 100 clients configured differently. In these clients, a realistic constraint model 

assumes that users may miss some sessions, exchange messages asynchronously and 

have different computing resources. In order to act privately, clients hold their original 

data offline and only send information about the changes they make to their models. 

The server carries out aggregation and performance cheques without examining any 

real data examples. By creating this simulation with TensorFlow Federated and Flower, 

the environment matches how FL is used in practise in both edge and shared server 

locations [6]. 

 

This work also investigates how sensitive FL algorithms are to shifts in how the data 

is distributed. Experiments begin with a uniform IID distribution and are followed by 

scenarios where clients have data from various classes and unequal amounts of data. 

The adaptation of every algorithm is studied by observing model accuracy, convergence 

speed, divergence of updates and fairness index throughout the rounds. A hypothesis is 

that although FedAvg achieves acceptable performance under balanced conditions, 

FedProx and FedNova are more reliable and stable in settings where the distribution is 

skewed. Because both systems are evaluated, the thesis will analyse if a particular 

algorithm fits for use in FL with many users. 

 

Moreover, the suggested research introduces a communication-aware analysis of 

ways for making FL algorithms more energy efficient. Since federated training depends 

a lot on network connexions, the study looks at how various aggregation approaches 

affect the use of bandwidth. To optimise, methods using model compression, 

performing sparse updates or inviting only some clients are investigated. The authors 

add suggestions to expand ideas on how FL can perform better without sacrificing 

accuracy or fairness. Examining these factors guarantees that mobile health apps and 

rural sensor networks will work sustainably, wherever they are deployed. 

 

All things considered, this work presents a detailed way to assess and compare 

different FL algorithms under different situations. It takes contribution from measuring 

the usual numbers as well as from looking at limitations caused by limited contact, 

distinguishing kinds of data and unpredictable client actions. Developers and 

researchers should find the findings useful when deciding on the best algorithms and 

the right parameters for privacy-preserving machine learning tasks. Overall, these 

efforts support the transformation of FL from an early experiment into a useful 

scaleable solution for decentralised AI. 
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CHAPTER 4 
 

RESULTS 

 
 

This chapter reports the findings from existing federated learning studies discussed in 

this thesis. It examines the performance of several FL algorithms, FedAvg, FedProx 

and FedNova, under a range of IID and non-IID experimental setups. Priorities include 

accurately predicting results, transmitting information fast, quickly coming to a solution 

and standing up to different data circumstances. Information from tables and figures in 

the literature is included in the discussion. Each area of the study tests how top FL 

approaches do in different ways, allowing for a better understanding of their use in 

healthcare, IoT and NLP. 

 

4.1 Performance Comparison on IID vs. Non-IID Data 
 

Managing statistical heterogeneity when clients have data that vary and is not 

independent is a major difficulty in Federated Learning (FL). You will find here 

comparisons of results for FedAvg, FedProx and FedNova, both when data is IID and 

non-IID. From what has been studied, models built with IID data reach higher accuracy 

faster and sooner than others. However, the performance suffers a lot in non-IID 

settings, where clients have updates that differ massively because of uneven data 

samples or individual behaviours. The results provide vital information about how well 

the approach works and its applicability to real federated applications [1], [3], [5]. 
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Figure 4.1: Accuracy Comparison under IID vs. Non-IID [5] 

 

In Figure 4.1, model accuracy is shown to increase through the communication 

rounds in both scenarios. When fed with independent identically distributed data, 

FedAvg shows quick convergence and a steady, reliable improvement pattern. Even so, 

in the non-IID situation, the convergence of FedAvg deteriorates, but the progress of 

FedProx and FedNova remains more stable. Therefore, having regularisation and 

normalisation in these algorithms seems to be successful at decreasing the problems 

caused by variation in the data. The visualisation illustrates how better architecture 

makes the system more reliable when some clients have more data than others. 

 

This analysis is further supported by Table 4.1 which shows the final accuracy of each 

algorithm after a fixed number of training rounds in both data settings. The performance 

of FedProx is higher than FedAvg in non-IID scenarios because of its extra proximal 

regularisation term. Generalisation is one of FedNova’s main strengths when working 

with combined data. The research demonstrates that adaptive aggregation works better 

in real projects since non-IID data is the standard. Thanks to such insights, software 

developed for mobile typing prediction or medical diagnosis can serve clients who have 

specific categories of data. 

 

Table 4.1: Final Model Accuracy Under IID and Non-IID Conditions 

 

Algorithm 

Final  

Accuracy 

(IID) 

Final  

Accuracy 

(Non-IID) 

Convergence 

Speed 
Notes 

FedAvg 89.4% 77.6% Fast (IID) 
Unstable 

under non-IID 

FedProx 88.9% 82.7% Moderate 

More stable 

due to 

proximal term 

FedNova 87.8% 84.1% 
Stable (both 

settings) 

Effective 

normalization 

on variable 

updates 

 

4.2  Communication Cost and Training Efficiency 
 

It is especially challenging to communicate large amounts of data between clients and 

the server in Federated Learning, particularly when many clients take part. Here, we 

look at how efficiently three main aggregation algorithms FedAvg, FedProx and 

FedNova enable communication during federated learning. Not only do the algorithms 

use different global update techniques, but they also differ in the number and size of 

updates sent during training. Most of the time, communication cost is reported in 

megabytes sent per round and accumulated throughout all the rounds. According to the 

research I looked at, FedAvg is efficient in cases where the data is identical, but because 

it needs more retraining with different data, it increases the amount of communication 

required [5]. 
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Despite spending a bit more time to process on the client’s side, FedProx and 

FedNova outperform other methods by needing fewer total back and forth messages to 

converge under non-IID situations. Because of this advantage, the bigger packets they 

send are not a drawback. Ultimately, communication costs during the full training cycle 

are often the same or less than those of FedAvg. As a result, FedNova’s normalization 

ensures fluctuations in update size are reduced, supporting better reliability and 

consumption of network resources. 

 

 

Figure 4.2: Cumulative Communication Cost of FL Algorithms[5] 

 

These behaviors are reflected in Figure 4.2, which illustrates cumulative 

communication cost for all three algorithms under both IID and non-IID distributions 

[5]. 

 

Table 4.2 includes the total amount of data exchanged (in MB) and the average 

number of steps needed for all simulations until consensus was reached. The outcomes 

reveal that, even though FedAvg sends less information per round, its poor performance 

on diverse datasets means it needs more rounds for good results. Meanwhile, FedProx 

and FedNova train more quickly with larger updates which usually brings comparable 

or better efficiency for exchanging messages among the federation. Such insights 

matter for FL systems that run on limited bandwidth such as health apps, homes with 

automation and monitoring networks. 
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Table 4.2: Communication Data and Convergence Summary 

 

Algorithm 

Avg. 

Rounds to 

Converge 

Avg. 

Update Size 

per Round 

(MB) 

Total 

Communication 

(MB) 

Remarks 

FedAvg 120 1.5 180.0 

More rounds 

due to 

instability in 

non-IID 

FedProx 90 1.9 171.0 

Fewer rounds 

due to better 

regularization 

FedNova 85 2.0 170.0 

Most stable 

under both 

data settings 

 

4.3 Fairness and Client-Level Performance Variability 

Fairness in Federated Learning means the global model works the same for all clients 

regardless of how their data is distributed or the resources they possess. Most 

importantly, it is vital in non-IID environments because clients may not be well-

represented or their data is not fair. The studies in this thesis reveal that performance 

among clients is often quite different, particularly when data is not similar, using 

aggregation algorithms such as FedAvg. Such differences can cause trust issues and 

make applications such as healthcare less effective, because every party wants results 

they can rely on [3], [5]. With mechanisms such as those in FedProx and FedNova, both 

algorithms are more fair to all clients. Because FedProx employs a proximal term, every 

client’s version of the model is meant to be close to the average one. FedNova relies on 

normalized updates, so the smaller clients and those training for a shorter time have an 

impact just like the bigger ones. 
 

Table 4.3 compares the standard deviation of each algorithm’s client accuracies along 

with Jain’s fairness scores. Lower average variation means clients’ models are similar 

in their performance and closer to 1 for the fairness index points to similar accuracy 

across clients’ models. Results demonstrate that FedAvg works fine when training data 

is similar, but it is less just in heterogeneous settings. FedProx addresses the issue and 

FedNova always delivers the fairest results. Using these insights in the real world 

ensures that trust, equality and dependability are given as much importance as the 

ability to give correct results. 
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Table 4.3: Fairness Metrics Across FL Algorithms 

 

 

Algorithm 
Std. Deviation of  

Client Accuracy 

Jain’s Fairness 

Index 
Remarks 

FedAvg 7.8% 0.82 

High disparity 

under non-IID 

conditions 

FedProx 5.4% 0.88 

Improved fairness 

due to proximal 

regularization 

FedNova 3.9% 0.93 

Most balanced 

performance 

across all clients 

 

4.4 Robustness Under Adversarial Conditions 

Because FL relies on multiple decentralized devices, its robustness is crucial because it 

can suffer from model poisoning and attacks on its gradients. In FL, adversaries could 

behave as clued-in clients in training rounds, putting altered updates in the system to 

purposely damage the global model’s accuracy or to create backdoors. FedAvg was 

found to be the most easily attacked because it does not inspect the updates from devices 

before averaging them. Consequently, adversarial attacks have an easier impact on the 

global model, particularly whenever we deal with non-IID data that makes the model 

more uncertain [2], [7]. 

 

FedProx improves its robustness by making sure local updates are close to the server 

model, so few mistaken updates are received. Normalizing updates based on each 

client’s information in FedNova suppresses overwhelming changes that occur in 

adversarial settings. Neither IID nor non-IID datasets show up in contradiction to the 

observations, whose importance is clear in applications where precision is key like in 

high-risk areas like finance and personal medicine [5], [9]. 

 

The table presents the results of evaluating how attacks either reduced accuracy or 

led to successful attacks. The lowest attack rate and least performance drop in FedNova 

prove that it is sturdy. The results suggest that as long as algorithms are carefully 

designed to include update normalization and regularization, federated systems can 

become much stronger against adversarial threats. Relying on secure aggregation or 

differential privacy in future may help improve how real-world results can be trusted. 
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Table 4.4: Robustness Metrics of FL Algorithms 

 

Algorithm 
Accuracy Drop 

(%) 

Attack Success 

Rate (%) 
Remarks 

FedAvg 14.2% 61.3% 

Highly vulnerable 

without defense 

mechanisms 

FedProx 8.7% 38.5% 

Improved 

resistance due to 

proximal 

constraint 

FedNova 5.2% 26.1% 

Most robust; 

normalized 

updates limit 

poisoning 

 

 

4.5 Summary of Observed Results 
 

Looking at how Federated Learning algorithms work in various experiments, some 

similarities keep appearing. In the IID data setting, FedAvg, FedProx and FedNova 

showed similar convenience and precise results. But, when the data set was non-IID, 

important differences were observed. The results suggest that FedAvg had difficulties 

with stability and accuracy, due to longer convergence. As a result, using certain 

aggregation approaches greatly affects FL in cases where data is mixed, as is typical in 

real applications [3], [5]. 

 

The length of communication rounds and the total cost of exchanging data were 

significantly higher for FedAvg when data was uneven among clients. Although 

FedProx and FedNova update more information per round, this didn’t stop them from 

achieving faster convergence and more stable results. A fairness analysis revealed that 

FedNova has the shortest fog client standard deviation and the highest fairness index, 

so it is better suited for use in situations where equality is important such as in 

healthcare or education [5]. It was also noticed that FedAvg readily falls prey to 

adversarial model poisoning, but FedProx and FedNova both show better resistance, 

mainly owing to FedNova’s normalization strategy during updates [9]. 

 

Overall, FedNova regularly performed well in all the main factors such as accuracy, 

how fast it converged, fairness, communication efficiency and robustness. FedProx did 

very well with data that was not the same, though it was slightly more intense for the 

machines to perform. Even though FedAvg is simple and fair for IID environments, it 

was found to perform the worst in real FL settings. As a result of these findings, FL 

methods can be chosen that suit a particular application’s needs and underline the role 

of aligning algorithm traits with the system and privacy conditions. 
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CHAPTER 5 
 

FUTURE WORK 

 
 

As FL is gaining notice for keeping data private, many new research areas have been 

spotted that deserve additional analysis. Enhancing FL’s performance on unbalanced 

and uneven data will be an important task for further research. It appears that statistical 

heterogeneity limits the effectiveness of current methods such as FedAvg, FedProx and 

FedNova. Future studies should concentrate on finding ways for clients to adapt their 

aggregation approach using information such as the data’s properties, their 

neighbourhood capabilities or the dependability of their updates. Adopting these 

strategies may lead to models that converge more strongly and can be used equally well 

for clients of different backgrounds [3], [5]. 

 

We expect that integrating personalised federated learning will bring excellent 

results. Traditional FL designs a single model to fit all clients, yet real-world examples 

often find user specific models more useful for fitting local behaviour. By using meta-

learning, model fine tuning and clustered FL, the global model provides a good idea of 

what to expect, but also allows the network to adapt to each user’s specific needs. We 

require further studies to support the building of scalable personalization frameworks 

that still uphold fairness and privacy. Personalization really matters in healthcare and 

smart device industries, due to the wide variety in users’ data patterns [4], [6]. 

 

Maintaining security and robustness will always be a main goal in the development 

of FL platforms. Secure aggregation, differential privacy and update normalisation have 

made FL better protected, but adversarial attacks such as poisoning, insertion of 

backdoors and model inversion still remain a danger. In the future, we could use 

blockchain as a framework for trust, combine federated anomaly detection and zero-

knowledge proofs to prove model update correctness and safety. Using these tools will 

help secure FL services, so they are private and protected from unauthorised 

manipulation [2], [9]. 

 

 One more area for investigation is optimising resources and maintaining 

sustainability in scalable FL networks. For many FL clients, network speed, energy 

access and online access are somewhat limited. Further studies might focus on methods 

that use less energy, transmit less data and let different devices train on their own time 

to help low-resource devices. Flexible model architectures and limited data distribution 
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could greatly help FL be practical for tasks like monitoring the weather and diagnosing 

health problems remotely [4]. 

 

Natural, the research area lacks a standard for assessing FL, available data and actual 

user-side deployments. Having consistent testing platforms for FL, used with different 

data types, networking systems and safety rules, could unite researchers and allow them 

to compare results fairly. In addition, studies that track the behaviour of FL systems as 

time passes and as the datasets and users evolve, are very important. These findings 

will help shape FL algorithms and advise policymakers and corporations interested in 

using FL in privacy-compliant AI systems [1], [12]. 

 

A new direction for research in this field is to link Federated Learning with other key 

disciplines such as reinforcement learning, generative models and transfer learning. 

Federated Reinforcement Learning would help decentralised agents by letting them 

gain their own knowledge from their environments and all agents together build a 

common policy. Likewise, FL-based models could allow different institutions to 

securely generate synthetic data, easing research where it is difficult to obtain actual 

data. The use of these hybrids in FL may allow it to handle tough responsibilities such 

as on-the-spot decision making and data enhancement, all without compromising 

privacy [8]. 

 

Real-time federated analytics is in increasing demand, so future FL systems must 

focus on use cases such as autonomous driving, remote monitoring and predictive 

maintenance. Because these scenarios constantly update, the models have to adapt on 

the fly to new user preferences and surroundings. Stream-based FL and federated online 

learning could fulfil such needs. They would support a continuous, gradual way of 

learning from fresh data, all the while respecting people’s privacy. Focusing on 

lightweight update approaches, adjustable model compression and speeding up on-

device learning could make it possible to deploy models instantly at scale [7]. 

 

In addition, policies, governance practises and ethical structures for FL should be 

further developed. As FL grows, more attention is being given to how accountable, 

clear and consensual it becomes. Authorities should rely on technical experts to draught 

standards for secure and proper use of FL systems. Further studies could focus on how 

bringing law, ethics and AI together helps create protocols for controlling data, 

traceability, transparency in AI predictions and controlling user permission situations 

in federated environments. The achievement of FL hinges on creative algorithms, but 

it is equally important that it is in line with peoples’ values and sets of laws [10], [11] 
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CHAPTER 6 
 

CONCLUSION 

 
 

A detailed analysis and examination of Federated Learning (FL), a recent approach 

for secure training of machine learning models on several devices, has been carried out 

in this thesis. Traditional central learning processes data but Federated Learning (FL) 

enables different clients to work together towards the same result without sending their 

original data, helping to maintain privacy and win over users. By looking closely at 

important algorithms such as FedAvg, FedProx and FedNova, the thesis showed how 

FL is being used in healthcare, IoT and NLP, along with its ongoing role as a main 

aspect of privacy-aware AI technologies [1], [3], [5]. 

 

It was noticed in this overview that while FL brings strong protection for privacy and 

helps with distributed processing, it also encounters many problems. Such problems 

involve varied data in clients, extra communication needed for largescale systems and 

an increased threat from attackers. It was observed that FedAvg achieves good results 

when the data is IID, but performs poorly when non-IID data is used. FedProx achieves 

better and more stable performance on mixed data types by using a regularisation term 

and FedNova shows the best performance for accuracy, fairness and security [5], [6]. 

 

Experimental results from the reviewed studies were examined in this thesis to show 

how gathering approaches manage under different conditions. Both simulations and 

real data sets suggested that FL works best when attention is given to the type of 

aggregation algorithm as well as client selection, protocol communication and system 

resources. It becomes clear from these evaluations that changing FL for use in smart 

devices, hospitals and edge sensors requires careful consideration of the context present 

in each environment [4], [7]. 

 

Additionally, the research pointed out that interest in adding extra technologies and 

methods to FL is currently increasing. Examples are: user-specific customization, 

linking to security methods like secure aggregation and differential privacy and testing 

out new designs such as federated transfer and meta-learning. The thesis identified that 

more benchmarks, longer research and stricter ethics are required for FL technology in 

high-stakes environments. They illustrate opportunities for further investigation [8], 

[10], [12]. 
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All things considered, Federated Learning introduces a groundbreaking method in 

machine learning that allows work to be done together without violating user privacy. 

As an emerging area of study, its applications for AI that can be personalised, protected 

and scaled to many users are promising. This review has brought together the major 

developments, research outcomes and current difficulties in FL. This thesis points out 

promising paths for further research that will help guide the responsible use of FL in 

practical applications. 
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