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Abstract

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder with pronounced

effects on motor function and daily life. Early symptoms, which are typically subtle and

include stiffness of the muscles, tremor, and disturbances in balance, make early diagno-

sis difficult. The standard assessment tools, such as blood tests and imaging scans, offer

limited value in PD diagnosis from the onset. Impairments of the voice are an early indi-

cator that has potential for the prediction of PD. This research utilizes biomedical voice

recordings using the University of California, Irvine (UCI) dataset to construct predic-

tion models for PD diagnosis. Various machine learning methods being examined include

Decision-Tree Model, XGBoost, Naive Bayes, Random-Forest Model, Support Vector Ma-

chine (SVM) Model, Logistic Regression, and K-Nearest Neighbors (KNN). The models

have been trained and tested to assess how they perform. The performance of such models

has been properly assessed based on accuracy, efficiency, and processing speed. A compar-

ative study of the best-performing models is discussed, highlighting the capability of all

the models to attain good accuracy in early-stage PD detection. In addition, the present

study measures the feasibility of using lightweight models for use in mobile applications

that offer accessibility in actual healthcare environments. The reliability and accuracy

of PD classification prediction, this study also integrates an exploration of several boost-

ing models, which are renowned for their efficiency in optimizing poor learners through

refined iteration. Sophisticated boosting algorithms like AdaBoost, Gradient Boosting,

LightGBM, CatBoost, and Stochastic Gradient Boosting were compared to conventional

models simultaneously. These methods proved to be superior in terms of precision, recall,

and stability, with Stochastic Gradient Boosting being the highest in overall accuracy.

Their ability to work with high-dimensional and unbalanced data renders them very use-

ful for biomedical applications. This blending of boosting models not only enhances the

predictive strength of PD detection systems but also opens the door for scalable, real-time

diagnostics that can be used in clinic or remote monitoring settings.
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Chapter 1

INTRODUCTION

Parkinson’s Disease (PD) is a slowly advancing disorder that affects the nervous system
and movement that predominantly targets motor function as a result of neurons in the
brain responsible for generating dopamine. Dopamine is essential in relaying signals re-
sponsible for the movement and coordination of muscles. The progression of the disease
results in worsening motor control, speech, balance, and other physical and intellectual
functions, ultimately contributing to the deterioration of the overall quality of life. While
the precise etiology of PD is not yet understood, prompt diagnosis is generally regarded as
critical to providing timely intervention and symptom management. Conventional diag-
nostic methods, like blood examination or neuroimaging, commonly are unable to recog-
nize PD at its initial phases when therapeutic efforts would be most effective. Studies have
shown that by the time outward symptoms of PD can be observed, a great majority—up
to 80% of dopamine-producing cells could have already been destroyed. Therefore, it is
an urgent necessity to have non-invasive and sensitive tools to diagnose PD in its initial
phase. One such potential avenue is the examination of vocal biomarkers. Voice changes,
including diminished pitch variability, vocal tremors, and other speech abnormalities, are
some of the earliest signs of PD. The abnormalities can be identified long before the ap-
pearance of prominent motor symptoms. With the rise in AI, especially with ML, there is
increased interest in creating automated systems that would recognize these subtle voice
changes and aid early diagnosis. This research uses a biomedical voice recording dataset
obtained from the University of California, Irvine (UCI) Machine Learning Repository.
The dataset contains vocal parameters of subjects with Parkinson’s along with healthy
controls. Various supervised ML algorithms were trained on this dataset such as Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Naive Bayes, Random Forest, De-
cision Tree, XGBoost and Logistic Regression. These models were learned to predict
whether a provided voice sample belongs to an individual with or without Parkinson’s
Disease. To guarantee stable performance, preprocessing techniques like normalization
and feature scaling were implemented on the dataset. The research focuses on using met-
rics such as recall, precision, accuracy, Area Under the Curve (AUC) and F1-score to
evaluate model performance. Comparative analysis is designed to select the most appro-
priate models for detecting PD with respect to the tradeoff between prediction accuracy
and computational complexity. In addition, this study examines the wider use of these
models within real-world healthcare environments, particularly in the low-resource set-
ting or mobile health platforms. Utilizing speech-based analysis and machine learning,
this effort adds to building accessible early-stage diagnostic tools for PD. Ultimately, the
aim is to enable timely diagnosis and management of PD, thus enhancing patient out-
comes as well as optimizing healthcare resources. Apart from classical supervised learning
methods, the present study also investigates employing high-performance ensemble meth-
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ods, specifically boosting algorithms, to maximize diagnostic precision for the diagnosis
of Parkinson’s Disease. Boosting models are recognized for their capability to enhance
weak learners by learning sequentially models that concentrate on instances previously
misclassified. Some of the latest boosting methods—i.e., AdaBoost, Gradient Boosting,
XGBoost, LightGBM, CatBoost, and Stochastic Gradient Boosting—were employed and
compared. These models were selected for their established effectiveness in classifica-
tion tasks and ability to process high-dimensional, structured biomedical information.
All models were tested under uniform preprocessing and tuning approaches, with perfor-
mance measured across multiple criteria. The addition of boosting techniques provides
further insight into the capability of ensemble learning in the detection of Parkinson’s
based on non-invasive, voice-based methods and provides a stronger basis for comparison
in the search for the most accurate, scalable, and computationally efficient approach.

1.1 RESEARCH GAPS

While there has been considerable advancement in the application of deep learning (DL)
and machine learning (ML) approaches used to identify Parkinson Disease (PD), numer-
ous essential research gaps remain. First, the majority of current research focuses on one
type of algorithm class, either a conventional ML model such as Support Vector Machines
or a contemporary DL system such as Convolutional Neural Networks, without carrying
out a comprehensive comparative study involving a wide range of models. This limited
scope restricts insights into what algorithms work best under different scenarios and con-
figuration settings. Secondly, although many datasets have been examined, much of the
work still bases itself on comparatively large-scale and multimodal datasets, which are
not always available or feasible for real-world use, especially for resource-limited or mo-
bile healthcare settings. The use of light models on small, single-modality datasets such as
the UCI Parkinson’s dataset is not well explored. Thirdly, there is less focus on systematic
data preprocessing pipelines, i.e., class balancing methods (e.g., SMOTE), normalization
strategies, and feature scaling, and their effects on the performance and the robustness of
various models. Further, few studies explore the real-time deployability of trained mod-
els on embedded or mobile platforms for early diagnostic use, where the computational
power is restricted. Additionally, although some models have shown promising accu-
racy, very little attention has been devoted to the interpretability of the predictions—a
critical component in medical decision-making. In addition, the development of explain-
able AI systems that may assist clinicians to comprehend the rationale behind a model’s
choice has not become very popular for use in PD diagnosis. Lastly, breakthroughs with
Transformer-based models as well as ensemble meta-learning methods have not yet been
extensively evaluated to solve voice-based Parkinson’s detection. This work intends to
overcome a number of these shortcomings by providing a thorough comparative analysis
of several ML and DL models, integrating strong preprocessing methods, and focusing on
light, interpretable solutions deployable in mobile healthcare environments.
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Chapter 2

LITERATURE REVIEW

Various recent works have attempted to utilize deep learning (DL) and machine learning
(ML) methods for the early diagnosis of Parkinson’s Disease (PD), with a sharp interest
in speech-based biomarkers owing to their non-invasive nature and early onset. The
authors have utilized models like SVM, Random Forest, XGBoost, and CNNs from voice
parameters like harmonic-to-noise, shimmer and jitter ratio. Among these, ensemble
models such as XGBoost and Random Forest have reported consistently high accuracy,
whereas deep learning techniques provide improved feature extraction, particularly with
larger datasets. For handling class imbalance, methods such as SMOTE and enhanced
feature selection have also been employed, enhancing model robustness. Overall, the
literature emphasizes that the use of proper models in conjunction with preprocessed voice
data is effective for precise and early diagnosis of PD. This section discusses recent research
activity on the (ML) and deep learning (DL) to detect the Parkinson’s Disease (PD) by
machine learning algorithms. With the advancements in ar- tificial intelligence, these
methods have indicated signif- nicant potential in detecting PD symptoms via several
biomarkers, such as voice and movement data. We will give an overview of various ML
and DL models that have been suggested in relevant studies for PD detection. This
involves examining 15 prominent publications that emphasize the efficacy of different
algorithms in enhancing early diagnosis and disease management.

P.M.Shah, A.Zeb, U.Shafi, S.F.A.Zaidi, and M.A.Shah et al. [1] developed a CNN-
based method for the automat- ic detection of Parkinson’s Disease from T2- weighted MRI
scans. Their method attained 96conventional machine learning algorithms like SVM and
ANN by avoiding handcrafted feature extraction and effectively learning spatial structure
from midbrain slices. R.Kaur and A.Dadhich et al. [2] suggested a deep learning strategy
to diagnose Parkinson’s Disease based on a handwriting database. The authors CNNs)
and (RNNs) to handle both spatial and temporal features of handwritten patterns like
spirals and waves. These features are typically affected in Parkinson’s patients due to
motor disorder, thus making handwriting an informative non- invasive biomarker. Their
model performed robust classifica- tion performance, reflecting the power of deep learning
in early diagnosis and accessible PD.

M. Mohaghegh and J. Gascon et al. [3] introduced a new mul- timodal deep learning
paradigm for Parkinson’s Disease de- tection with handwriting and voice data. The au-
thors employed Vision Transformers (ViT) to process spiral and me- ander drawings and
Audio Spectrogram Transformers (AST) to analyze sustained vowel phonations (/a/ and
/o/) of the PC-GITA dataset. Their work showed an impressive accu- racy of 92.37em-
phasizing the potential of transformer-based architectures in PD diagnosis. This approach
emphasizes the success of merging a variety of data modalities, particularly in early de-
tection, and facilitates user-friendly, non-invasive tests that may aid clinicians in medi-
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cal decision-making. J.Lee, W.Wang, Y. Sun and F.Harrou et al. [4] proposed a deep
learning-based approach to detect the Parkinson’s Disease (PD) using premotor disor-
der symptoms such as REM sleep behavior disorder, ostalgia for olfactory, cerebrospinal
fluid biomarkers, and SPECT imaging markers. They employed the PPMI dataset, which
comprises data from participants, and contrasted the PD patients and 183 normal 401
early- stage the performance of deep learning with twelve traditional machine learning
models. The suggested deep neural network yielded an exceptional accuracy of 96.45%,
surpassing other technologies such as SVM, Random Forest, and boosting techniques.
This research highlights the capability of deep learning to manage - Integrity Submis-
sion features—such as shimmer, harmonics-to-noise(HNR) and jitter ratio and measures
of fundamental frequency—to distinguish between healthy persons and PD individuals.
They several machine learning algorithms, such as small medical datasets and in extract-
ing sophisticated, nonlinear patterns from biomedical features for early diagnosis of PD.

P.M.K.Kumari, S.G.Spoorthy, I.Hepsebha, and P.Charishma et al. [5] investigated the
early diagnosis of Parkinson’s Disease (PD) using voice analysis by employing machine
learning methods. The authors analyzed significant vocal assessed SVM, Decision Trees,
Logistic Regression, Random Forest, XG-Boost and KNN. Of these, XG-Boost scored
the highest accuracy of 97.43%, proving its suitability in capturing fine speech-related
impairments typical of PD. Their method highlights the promise of speech-based, non-
invasive diagnostic tools for early PD screening. A.Bourouhou, A.Jilbab, C.Nacir, and
A.Hammouch et al. [6] compared the performance of K-Nearest Neighbors (K-NN), Naive
Bayes, and Support Vector Machines (SVM) for the detection of Parkinson’s Disease using
voice recordings. They extracted 26 features from a publicly available dataset and found
that SVM had the best accuracy of 80%, and it was the best among the classifiers tested
for voice-based PD detection.

S.Harlina, M.Magfirah, A.Rizaldy, A.Asran, U.Usman, and M.O.Kadang et al. [7] ex-
plored how various feature selection methods affect the classification accuracy of Parkin-
son’s Dis- ease detection. They compared Information Gain, Forward Selection, and
Maximum Relevance Minimum Redundancy (mRMR) with k-NN and Naive Bayes clas-
sifiers. Among these, mRMR gave the highest accuracy (up to 86.13outperforming filter
and wrapper approaches. Their results em- phasize that meticulous feature selection has
a strong positive impact on model performance for PD detection with voice- based data.
M.Pansera, J.J.Estrada, L.Pastor, J.Cancela, R.Greenlaw, and M.T.Arredondo et al. [8]
created a system for real- time monitoring of Parkinson’s Disease (PD) patients through
examination of their gait via entropy-based techniques. Their study centered on quanti-
fying gait symmetry using sample entropy and introduced a Gait Symmetry Index (GSI)
to measure movement irregularities. The findings revealed sig- nificant differences in gait
entropy between PD patients and controls. with bradykinesia. This method presents a
promising method for remote monitoring and individualized treatment adjustments.

A.Porta, V.Bari, T.Bassani, A.Marchi, S.Tassin, M.Canesi, F.Barbic, and R.Furlan et
al. [9] investigated the application of entropy-based methods to estimate cardiovascular
complexity in Parkinson’s Disease (PD) patients. They compared two approaches K-
Nearest Neighbor Conditional Entropy (KNNCE) and Corrected Conditional Entropy
(CCE) to identify early cardiovascular regulation impairments. Their findings indicated
that PD patients present greater complexity in heart period and blood pressure variability
compared to healthy individuals, even when free of typical symptoms. This indicates that
entropy-based analysis could be an effective non-invasive marker for early detection of
automatic dysfunction in PD. C.Guo and H.Wang et al. [10] introduced an improved
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K-Nearest Neighbors (KNN) algorithm with information entropy infor- mation to enable
more accurate diagnosis of Parkinson’s Dis- ease. By using entropy-based weights on
features, the model enhanced the classification accuracy over conventional KNN. The
authors compared their algorithm with Naive Bayes and Random Forest algorithms and
showed that the enhanced KNN provided better performance on Parkinson’s data sets,
partic- ularly in dealing with noisy and high- dimensional data.

N.Mohammed Muhaseen, G.Rajasekar, C.Amali, R.Rajesh, and J.Sai Abrameyan et
al. [11] used a hybrid machine learning model based on Random Forest and XGBoost
coupled with wearable sensors and video input for early detection of Parkinson’s Disease.
Their method enhances accu- fast and allows cost- effective real-time diagnosis appropri-
ate for remote health care. Chuang-Chien Chiu, Shoou-Jeng Yeh, and Yen-Chi Sun et
al. [12] studied the facial features’ role in PD detection using still images. They analyzed
important facial parameters like tension of the muscle and distance between mouth cor-
ners, which are generally impacted because of hypomimia in PD patients. Applying image
processing utilities such as OpenCV and Dlib, they discovered that these features could
be used to distinguish PD patients from healthy subjects, propounding a non-invasive
and efficient way of early diagnosis.

Nilgun Ozt Urk Mutlu, Fikret Ari, M. Cenk Akbostanci, and F.Tugra Karaarslan et
al. [13] created an electromechanical system for objectively quantifying wrist rigid- ity in
patient with Parkinson’s Disease. It employs sensor- based data collec- tion and comput-
erized analysis for measur- ing stiffness with passive wrist movement, correlating findings
with physician ratings. Consistency with clinical scales such as UPDRS and Hoehn-Yahr
was shown in the study, pro- viding a more accurate and standard andardized methodol-
ogy to assessing rigidity in PD. Dhwani Vashisth, Dr. Rakesh Garg, and Ipsha Gupta et
al. [14] did an extensive machine learning algorithm comparison for Parkinson’s Disease
detection via speech samples. They com- pared models such as SVM, AdaBoost, XG-
Boost, Decision Trees, and stacking. They established from their study that the had the
best accuracy and precision, marking it as best to detect PD from speech characteristics.

Tapan Kumar, Pradyumn Sharma, and Prof. Nupur et al. [15] learning models for
Support Vector Machine (SVM) attained Prakash conducted a comparative evaluation of
thirteen machine early prediction of Parkinson’s Disease with the use of biomedical voice
data. Their work pointed out that accuracy, with models such as Random Forest and
Decision Tree attained high Random For- est as high as 94.92%. The research highlighted
the potential of light-weight and power-efficient models appropriate for use in mobile
health applications. Sambhav Gupta, Sandipa Bose and Vinayak Majhi et al. [16] Current
research indicates the importance of family health history in Parkinson’s Disease (PD)
risk. Family studies, such as those involving SNCA and LRRK2 gene mutations, have been
linked to familial PD. Studies by Rybicki et al. and Rosen et al. confirm that neurological
conditions such as Alzheimer’s and depression among family members can signify common
risk. The Fox Insight dataset, employed in Gupta et al. (2024), demonstrated strong
connections between PD and some neurological diseases in relatives, implicating both
risk (e.g., schizophrenia, multiple sclerosis) and protective (e.g., Parkinson’s, depression)
factors. This testimony emphasizes the value of including family neurological history
within PD risk evaluation and the call for further investigation into gene-environment
interactions and hereditary effects.

MOHAMMED F. ALLEBAWI, , THAMEUR DHIEB, MOHAMED NEJI, NOUHA
FARHAT, EMNA SMAOUI, TAREK M. HAMDANI, MARIEM DAMAK, CHOKRI
MHIRI, BILEL NEJI, TAHA BEYROUTHY AND ADEL M. ALIMI et al. [17] There
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has been recent work in employing different biometric signals such as voice, gait, and
handwriting for Parkinson’s Disease (PD) diagnosis with machine learning. SVM, Deci-
sion Trees, and Random Forest have all performed well traditionally, and Random Forest
even up to 94.92% has been reported in some of these studies. Deep models including
CNNs, LSTMs, and Bi-GRUs have also been used for temporal feature extraction in
handwriting and voice. The team developed a new system based on online Arabic hand-
writing, integrating Beta-elliptical modeling and fuzzy perceptual detectors, and attained
more than 93% accuracy using BLSTM classifiers. Other authors, such as Nolazco-Flores,
Lamba, and Diaz, have utilized feature selection and augmentation methods, enhancing
performance despite having small datasets. Nonetheless, areas of difficulty include scarce
publicly available data, heterogeneity of symptoms, and low generalizability. All these
are addressed in this dissertation as it compares several ML models on voice data, con-
sidering both accuracy and feasibility of deployment for practical healthcare use. Rekha
Nirmala Pathapati, Dr. Vijaya Sankar Anumala, Vallabh Sriram Charan Gupta Jupudi
and Narendra Pasam et al. [18] Several studies have explored the detection of Parkinson’s
Disease (PD) with the help of MRI, voice, gait, and handwriting data. Conventional ma-
chine learning algorithms like Random Forest and SVM have shown good performance
but tend to fail in terms of generalizability because of small dataset size and variation
in features. The recent deep learning-based methods have enhanced performance using
CNNs and sophisticated feature extraction. Multiscale hybrid attention networks and
parallel slice analysis with the use of MSHANet, for example, have attained accuracies
of up to 90.59% on PPMI datasets. Graph Neural Networks such as SparsityATopK
have also been used but are hindered by issues such as data imbalance and overfitting.
A new work was proposed for a Hybrid Genetic Algorithm (HGA)-directed CNN model
based on brain MRI scans. Their approach optimized CNN architectures automatically
by decreasing model complexity while increasing accuracy. The best-performing model,
PDNet, reached 100% accuracy on Dryad and 92.31% on PPMI, performing better than
standard approaches and showing excellent generalization ability. These studies highlight
model optimization, dataset balance, and architectural simplification as key to successful
PD diagnosis, which this dissertation extends through comparative assessment of machine
learning models with biomedical voice data.

Anusid Wachiracharownong, Panyawut Sri-iesaranusorn, Decho Surangsrirat, Pattara
Leelaprute, Pattamon Panyakaew, Roongroj Bhidayasiri et al. [19] New research has ex-
amined various modalities for the detection of Parkinson’s Disease (PD) such as voice,
handwriting, gait, and brain imaging. A novel and low-cost method is the examination
of spiral drawings, which are indicative of motor dysfunction typically linked to PD. The
researcher utilized a CNN-based method with scanned spiral illustrations of PD patients
and healthy controls. Their research employed data augmentation and compared pre-
trained models such as InceptionV3, ResNet50, and EfficientNetB0. The InceptionV3
model performed well (82% accuracy, F1 score of 0.81), especially when utilizing images
drawn by the non-dominant hand, which demonstrated improved discrimination. This
inexpensive, non-invasive screen procedure permits home testing and is of potential for
rural or underserved populations. These results attest to the usefulness of straightfor-
ward input modalities and powerful CNN models in the early diagnosis of PD, comple-
menting other methods like voice or MRI-based detection explored in this dissertation.
Luyao Jin, Running Zhao, Junyi Cao, Vincent C. K. Cheung and Wei-Hsin Liao1 et al.
[20] Conventional machine learning and deep learning techniques have been extensively
utilized for the diagnosis of Parkinson’s Disease (PD) and depression from biomedical
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signals such as EEG. PD-related depression, a non-motor but an early symptom of PD,
has been poorly addressed so far developed an explainable functional connectivity (XFC)
framework employing EEG data to distinguish between PD related depression and PD
without depression and general depression. As opposed to black-box deep learning mod-
els, their approach provides increased transparency via class activation maps, providing
interpretable information regarding brain region connectivity. The research demonstrated
that the XFC model performs better than EEGNet and SVM baselines and has a 94.58%
accuracy rate in PD-related depression detection. It also detected certain patterns of
brain connectivity in the central and frontal areas, consistent with clinical findings. The
research demonstrates the promise of the integration of explainable AI and EEG data for
precise and early diagnosis of subtle neurological symptoms, in line with the goals of this
dissertation to evaluate machine learning models for PD detection.
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Chapter 3

METHODOLOGY

This work outlines a comprehensive pipeline for Parkinson’s Disease (PD) detection using
an evaluation comparing machine learning and deep learning approaches is conducted.
The first step in this process involves gathering data, during which a biomedical voice
dataset from the UCI Machine Learning Repository is utilized, containing diverse voice
identical from both healthy and PD patients individuals. Next, Data Cleaning is per-
formed to handle missing values, remove inconsistencies, and ensure dataset reliability.
Following this, Data Preparation includes feature scaling through normalization and stan-
dardization, label encoding, and class balancing using the SMOTE technique to improve
model fairness. Techniques such as Correlation Analysis and visual tools like heatmaps
and pair plots are applied for exploratory data analysis and feature insight. The refined
dataset is then passed through a range of Algorithms, involving traditional ML mod-
els like SVM, Random Forest, Decision Tree and Logistic Regression. To address data
complexity and improve classification accuracy, Hybrid Approaches combining ensemble
techniques and oversampling are also explored. These models undertake the core task
of Classification, aiming to distinguish between non-PD and PD cases based on subtle
voice patterns. The workflow concludes with Performance Analysis, using metrics such
as precision, recall, accuracy, AUC and F1-score to compare models and determine the
most efficient and clinically applicable approach for early Parkinson’s detection.

The workflow graph is an organized and efficient pipeline intended for machine learn-
ing model-based detection of Parkinson’s Disease (PD) with the primary input being
patient voice data. The workflow begins with the acquisition of voice samples from pa-
tients, which is an early biomarker and non-invasive method of detecting Parkinson’s.

Figure 3.1: Flow of Work
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These voice samples tend to have quantifiable acoustic parameters like pitch, shimmer,
harmonic-to-noise ratios and jitter that mirror the vocal deficits typical of PD patients.
For the Data Collection stage, such samples are drawn from credible collections like the
UCI Parkinson’s Disease dataset to provide age, gender, and disease severity diversity for
enhancing generalizability in the models. After the raw voice data is collected, it reaches
the Data Cleaning phase in which the corrupt files, duplicates, and missing values are
resolved. It is an essential step to maintain the integrity of the dataset and avoid errors
while training the model. Subsequently, the Data Preparation stage consists of converting
the cleaned dataset into the appropriate format for machine learning algorithms. These
involve procedures like feature scaling by normalization and standardization, label encod-
ing of the target variable, and class balancing by using the SMOTE (Synthetic Minority
Over-sampling Technique) algorithm to address the prevalent problem of class imbalance
between PD and non-PD samples. In addition, exploratory data analysis methods like
correlation heatmaps and pair plots are used to determine the most useful features and
plot the correlation between them.

Once the data is well-prepared, it is input into a mix of various Algorithms that range
from conventional machine learning models to sophisticated deep learning approaches.
The machine learning models that have been applied are Support Vector Machine (SVM),
Decision Tree, K-Nearest Neighbors (KNN), Random Forest, Naive Bayes, Logistic Re-
gression, and XGBoost, each of which has its own advantages in recognition of patterns
and classification. Concurrently, deep learning architecture like Convolutional Neural
Networks (CNN) and Artificial Neural Networks (ANN) are investigated for their strong
capability to learn high-level patterns and nonlinear relationships between the data. The
models are optimized and trained via hyperparameter tuning methods like Grid Search
with cross-validation to maximize performance and minimize overfitting. Once the models
are trained, the pipeline enters the Performance Analysis phase, in which the performance
of every algorithm is measured using a variety of classification metrics, such as recall,
precision, accuracy, AUC (Area Under the Curve) and F1-score,. These metrics give an
all-around view of the ability of the models to identify Parkinson’s Disease accurately and
reliably. Lastly, in the Final Results stage, models are compared and the highest-scoring
algorithms are determined on the basis not just of accuracy but also on their efficiency and
application aptness. This whole pipeline is a strong approach towards diagnosing Parkin-
son’s Disease from voice data with a focus on how valuable deep learning and machine
learning are in contemporary healthcare, especially in developing non-invasive, scalable,
and affordable diagnostic devices that can be incorporated into a mobile or telehealth
platform.

In this study, biomedical voice features are used to detect the patient suffering from
Parkinson’s disease (PD) early using supervised ML Models. This dataset offers a dense
set of biomedical acoustic features that are proven to be impacted by PD. Preprocessing
of data, training of model, evaluation and optimisation make up the entire methodology.
he dataset comprises 24 features obtained from prolonged phonation of the vowel and
totals 195 records, each of which represents a unique voice sample. This dataset final
ouput is in the value of 0 and 1 if a patient having parkinson that means value is 1 and
is a patient do not have parkinson that means value is 0.
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3.1 Dataset Used

The Parkinson’s Disease dataset, sourced from the UCI Machine Learning Repository,
was utilized to build and evaluate both machine learning and deep learning models aimed
at early-stage detection of the disease. This dataset comprises 195 biomedical voice sam-
ples collected from 31 individuals, among whom 23 have been clinically diagnosed with
Parkinson’s Disease. Each entry corresponds to a single voice recording, making the
dataset suitable for classification on a per-sample basis.

The dataset features 24 distinct biomedical voice characteristics extracted from sus-
tained vowel phonations. These features are computed using advanced signal processing
techniques designed to capture subtle changes in vocal patterns typically impacted by
Parkinson’s Disease. The features are organized into several groups, including:

• Fundamental Frequency Features:

– MDVP:Fo(Hz): Average fundamental vocal frequency

– MDVP:Fhi(Hz): Highest fundamental vocal frequency

– MDVP:Flo(Hz): Lowest fundamental vocal frequency

• Voice Stability Metrics (Jitter and Shimmer):

– MDVP:Jitter(%) and MDVP:Jitter(Abs): Frequency perturbations

– MDVP:Shimmer and MDVP:Shimmer(dB): Amplitude perturbations

• Noise and Harmonics Measures:

– NHR (Noise-to-Harmonics Ratio)

– HNR (Harmonics-to-Noise Ratio)

• Nonlinear Dynamic Complexity Features:

– RPDE (Recurrence Period Density Entropy)

– DFA (Detrended Fluctuation Analysis)

– Spread1, Spread2, PPE (Pitch Period Entropy)

The dataset’s target label is stored in the status column, where a value of 1 indicates a
subject diagnosed with Parkinson’s Disease, and 0 represents a healthy control participant.

This dataset holds significant value for machine learning research due to its compre-
hensive feature set and clinical applicability. Prior to training the models, preprocessing
steps such as addressing missing data, feature normalization, and class balancing were
performed. In particular, SMOTE (Synthetic Minority Over-sampling Technique) was
applied to mitigate class imbalance, ensuring the dataset fairly represents both affected
and healthy subjects. Additionally, feature scaling methods like Min-Max Scaling and
Standardization were implemented to enhance training efficiency and model convergence.

Table 3.1 summarizes the most critical features included in the dataset, outlining
their descriptions and roles in capturing vocal characteristics associated with Parkinson’s
Disease. These features play a pivotal role in detecting the subtle vocal impairments
indicative of the early stages of the condition. The dataset was split into training and
testing subsets using an 80/20 ratio.
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Table 3.1: Summary of Features in the Parkinson’s Disease Dataset
Feature Name Description
MDVP:Fo(Hz) Average vocal frequency (Fundamental frequency)
MDVP:Fhi(Hz) Maximum vocal frequency
MDVP:Flo(Hz) Minimum vocal frequency
MDVP:Jitter(%) Frequency variation (jitter percentage)
MDVP:Shimmer Amplitude variation (shimmer)
NHR, HNR Noise-to-Harmonics and Harmonics-to-Noise Ra-

tios
RPDE, DFA Nonlinear dynamic complexity features
Spread1, Spread2, PPE Measures of vocal irregularity
status Target variable: 1 = Parkinson’s Disease, 0 =

Healthy

3.2 Data Pre-Processing Techniques

Pre-processing of data is a building block in any machine learning process, especially
when dealing with biomedical data where feature distribution, imbalance, and scale can
greatly affect model performance. Herein, the Parkinson’s Disease dataset from the UCI
Machine Learning Repository—that consists of 195 voice recordings with 24 biomedical
features—underwent a sequence of pre-processing to guarantee data quality and improve
model training.

The initial step was to check the dataset for missing values, duplicates, or incorrect
entries. Although the dataset itself is clean and does not include any null values, it was
important to verify the integrity of all records to avoid errors down the line. Subsequently,
the dataset was put through feature scaling to scale all features into a uniform numerical
range. Two common techniques were employed: Min-Max Scaling, which scales values to
a certain range (typically [0, 1]), and Standardization, which rescales the data so that it
will have a mean of zero and a standard deviation of one. These methods are especially
useful for algorithms that are scale-sensitive on input data, such as K-Nearest Neighbors
and Support Vector Machines.

The primary challenge tackled in pre-processing was class imbalance, since the popula-
tion of Parkinson’s patients had a larger size compared to the healthy controls. To balance
this, the Synthetic Minority Over-sampling Technique (SMOTE) was used. SMOTE gen-
erates synthetic samples of the minority class (healthy subjects) by interpolating between
the available examples, such that the model will learn from both classes equally and avoid
bias.

Furthermore, the dataset was divided into testing and training subsets with an 20:80
ratio to enable proper performance assessment while maintaining data diversity in both
subsets. Before model fitting, correlation analysis was also conducted with the use of a
heatmap to represent feature correlations and identify highly correlated features. Redun-
dant or multicollinear features were identified, as their use would adversely affect some
models by introducing noise or extra complexity.

These extensive pre-processing procedures had secured that dataset employed within
this research was properly structured, balanced, and standardized—providing an excellent
foundation on which to train robust and accurate machine learning and deep learning
models for the early diagnosis of Parkinson’s Disease.
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3.3 Data Analysis

The data analysis phase was set to examine and understand the Parkinson’s Disease
data structure and features prior to model creation. This comprised of using statistical
methods as well as data visualization techniques to understand the trend in the voice
recordings and whether each feature is useful for discrimination between the Parkinson’s
patients and the normal population. Descriptive statistics range, standard deviation
and including mean were computed for every one of the 24 biomedical voice features:
fundamental frequency measures (Fo, Fhi, Flo), jitter, shimmer, and harmonic-to-noise
ratios (HNR, NHR). These measures assisted in the identification of each feature’s central
tendencies and variability, which are crucial to detect abnormal vocal patterns induced
by Parkinson’s Disease.

In order to gain more insights, a number of data visualization methods were used.
Histograms and box plots were utilized to investigate the distribution of single features
and to identify outliers. Pair plots allowed the visualization of pairwise relations among
variables and how certain features group differently for Parkinson’s and non-Parkinson’s
cases.

Perhaps most importantly, a correlation heatmap was created to investigate linear
relationships between the features. This assisted in the detection of highly correlated
variables, e.g., between various shimmer and jitter types, that would inject redundancy
into the model.

Figure 3.2: Balancing of data

Features such as Detrended Fluctuation Analysis (DFA), Recurrence Period Density
Entropy (RPDE) and Pitch Period Entropy (PPE) revealed significant variability between
the two classes and proved to be among the most informative features for classification.

By going through this feature analysis, it was clear that some voice features were more
discriminatory in nature and identifying them was key in the feature selection and the
optimization of the model. The findings of this feature analysis went beyond enriching
one’s understanding of the data and provided the foundation for good feature engineering
and algorithm fine-tuning during the rest of the project.
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3.3.1 Heat Map

An overall correlation heatmap was used to analyze pairwise relationships between all the
features in the dataset. The visualization is a direct view of the extent of linearity with
which every variable is associated with others, with correlation coefficients ranging from -1
to +1. Perfect correlation (value of 1) is represented by diagonal entries in the heatmap as
a feature’s association with itself. The heatmap assists in multicollinearity identification,
which is where highly correlated features could be responsible for redundancy and lower
model interpretability. For example, features SystolicBP and DiastolicBP, and different
cholesterol components like CholesterolLDL and CholesterolTotal, demonstrated strong
positive correlations and hence indicate redundancy if both features are included in the
model without regularization.

Figure 3.3: Heat Map

Most prominently, UPDRS (Unified Parkinson’s Disease Rating Scale), Functional
Assessment, and Rigidity showed moderate correlation with the target variable ”Diagno-
sis,” which positions them as very strong predictors in machine learning algorithms. This
made feature selection an informed process where features that should be kept because
of their ability to discriminate were identified, along with features that could be removed
or combined to decrease dimensionality and enhance model performance.
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3.3.2 Box Plot

In order to better understand how every feature differed between Parkinson’s and healthy
subjects, a sequence of box plots was created over the complete collection of features.
Each plot represents the distribution of a given variable for both diagnostic groups (0 =
healthy, 1 = Parkinson’s), with medians, interquartile ranges, and outliers. This compar-
ison brought about a number of important distinctions. For instance, clinical features like
UPDRS, MoCA (Montreal Cognitive Assessment), and Functional Assessment scores re-
vealed significant differences in medians between the groups, validating their importance
for separating Parkinson’s patients. Likewise, features such as Cholesterol Triglycerides,
Blood Pressure, and BMI exhibited slight but appreciable differences. The occurrence
of outliers in features like Education Level and Traumatic Brain Injury indicates the ne-
cessity of handling with care either through transformation or strong model selections.
These plots played a key role in identifying skewed distributions and validating that not
all features contribute equally to classification. This visual analysis guided subsequent
model training by highlighting features with distinct class-based separation and indicat-
ing those with overlapping distributions for further assessment. This box plot helps in
visualising the diagonsis of parkinson’s patient.

Figure 3.4: Box Plot
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3.3.3 Pair Plot

A pair plot was utilized in order to analyze the pairwise interactions and distribution
patterns between chosen features, that is, Age, Gender, Ethnicity, Education Level, and
BMI, in relation to the diagnosis label. This plot presents a two-fold view: scatter plots
that show interactions between feature pairs and kernel density estimates (KDEs) or his-
tograms that emphasize the distribution of individual features along the diagonal. The
data points are colored according to the diagnosis class orange for Parkinson’s patients
and blue for healthy patients making it easy to distinguish class grouping. From the scat-
ter plots, there were evident clustering tendencies in Age and BMI, whereby Parkinson’s
patients were older and had varying body mass properties. Yet, for the categorical vari-
ables such as Ethnicity and Gender, the distinction between classes was small, indicating
perhaps they would have less predictive value. The KDEs supported the observation that
BMI and Age are differently distributed in the two groups of diagnoses. In general, this
analysis proved helpful in revealing both linear and non-linear relationships and aided in
the choice of relevant features to use in modeling by highlighting visually distinguishable
variables.

Figure 3.5: Pair Plot
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3.4 Machine Learning Models Used

There is a range of supervised machine learning models was applied and tested for the
prediction of Parkinson’s Disease early through biomedical voice characteristics. These
models were selected to achieve a balance among simplicity, interpretability, and predictive
capability. Each algorithm was trained on a preprocessed dataset, and hyperparameter
optimization was carried out by grid search and cross-validation to achieve maximum
performance and avoid overfitting. This models includes:

3.4.1 Decision Tree Classifier

In this research, the Decision Tree Classifier was chosen among the fundamental machine
learning models for Parkinson’s Disease classification from voice features. Decision Trees
work based on a hierarchical tree-like model where internal nodes are decision rules from
feature values and terminal leaf nodes are the class labels to be predicted—Parkinson’s
or healthy here. The model constructs this framework by choosing the most informative
features at every split based on criteria like Information Gain or Gini Impurity. One of the
strongest aspects of the Decision Tree is its high interpretability, as it makes it possible
for users and clinicians to follow the precise decision path taken for each prediction.

Figure 3.6: Decision Tree Classifier

In addition, Decision Trees can deal with both numerical and categorical data and are
naturally able to model non-linear relationships without the need for any type of feature
scaling or transformation. For this study, the Decision Tree model was especially helpful
in determining which voice features, for instance, jitter or shimmer, occurred most often
at the top of the tree and thus were predictive of high importance. But the model is also
prone to overfit the training data unless it is well pruned or regularized, which results
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in bad generalization on new data. In spite of this disadvantage, it gave a good baseline
model and gave useful insights which were helpful in further model tuning and selection
for more powerful classifiers such as Random Forest and XGBoost.

Figure 3.7: Confusion matrix for Decision Tree

Figure 3.8: Bar plot Report Decision Tree
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The Decision Tree Classifier confusion matrix shows good classification performance.
Out of the total number of samples, the model accurately classified 257 as having Parkin-
son’s Disease (true positives) and 131 as being healthy (true negatives). There were 22
false positives in which healthy people were classified as having Parkinson’s and 11 false
negatives in which actual Parkinson’s patients were classified as healthy. This reflects
high recall (sensitivity) for identifying Parkinson’s, along with good general accuracy.
The relatively few false negatives are of particular concern in medicine, where missing
a disease is potentially disastrous. The Decision Tree model therefore holds promise for
practical deployment, particularly where interpretability is desired in addition to having
good predictive accuracy.

The bar plot shows the accuracy, recall, and F1-score of the Decision Tree model in
both the Parkinson’s (class 1) and healthy (class 0) classes. The model had an impressive
recall of 0.96 for the Parkinson’s cases, which is particularly useful in medical diagno-
sis where failing to detect an actual case can have severe repercussions. Accuracy was
balanced at 0.92 for both classes, and F1-score was marginally greater for Parkinson’s
patients (0.94) compared to healthy persons (0.89), reflecting a highly performing and
consistent classifier. The total accuracy was 92%, macro and weighted averages for all
three metrics consistently above 0.91. This visualization offers an easy overview of the
strengths of the model and its balanced performance, making it acceptable for detecting
Parkinson’s Disease early.

3.4.2 Random Forest Classifier

The Random Forest Classifier was utilized in this research as one of the base models
for identifying Parkinson’s Disease because it is strong, highly accurate, and can manage
complicated, high-dimensional data. Random Forest is an ensemble algorithm for machine
learning that builds many decision trees at training time and uses them to provide a class
label that is the mode of the classes from individual trees.

Figure 3.9: Random Forest Classifier
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Aggregating the predictions of multiple weak learners, the model minimizes the risk of
overfitting—the frequent problem with single decision trees—yet enhances generalization
to new data. This is especially useful for biomedical data where feature interactions can be
non-linear and subtle. One of the major strengths of Random Forest is its inherent ability
to provide an estimate of feature importance, and hence one can determine the most
significant biomedical voice features (e.g., jitter, shimmer, or harmonic-to-noise ratio)
that played a role in the classification. In this study, Random Forest was trained on an
optimized hyperparameter set with the number of trees and maximum tree depth as the
hyperparameters chosen using grid search and cross-validation methods.

The model showed great performance in accuracy and recall, efficiently detecting
Parkinson’s patients with very few false negatives. In addition, its stability, scalability,
and interpretability render it an ideal choice for actual deployment in clinical settings,
where predictive accuracy must be matched by interpretability. In general, the Ran-
dom Forest Classifier was one of the best-performing models in this comparative analysis,
weighing diagnostic accuracy against applicability.

Figure 3.10: Confusion matrix for Random forest classifier

The performance of the Random Forest Classifier was also explored with the help of a
confusion matrix that gives a clear report of the model’s classification output. As can be
seen from the confusion matrix, the model accurately classified 258 patients with Parkin-
son’s Disease (true positives) and 134 non-diseased subjects (true negatives), reflecting
high accuracy for both classes. There were 10 false negatives, wherein Parkinson’s in-
stances were wrongly predicted to be healthy, and 19 false positives, wherein healthy ones

19



were wrongly predicted to have Parkinson’s. These statistics demonstrate a high recall
for Parkinson’s detection, that is, the model was very effective in catching actual positive
cases, which is very important in medical diagnosis where hidden cases result in delayed
treatment.

The relatively small number of false negatives (10 of 268 actual Parkinson’s cases)
indicates that the model is highly sensitive, avoiding the risk of missing individuals who
need further clinical assessment. The low rate of false positives also helps to preserve high
precision, ensuring that a positive prediction will typically be accurate. Random Forest’s
ensemble method using many decision trees helped achieve such results by minimizing
overfitting and enhancing generalization. Such solid performance on both classes further
supports the applicability of the Random Forest model for accurate and interpretable
medical use, particularly in voice-screening Parkinson’s Disease. The trade-off between
minimizing both kinds of errors positions it highly for use in practical clinical decision
support systems.

Figure 3.11: Bar plot Report Random Forest

The bar chart aggregates the Random Forest model’s classification performance based
on major evaluation metrics precision, recall, and F1-score for both classes and average
scores. The model obtained a precision and recall of 0.93 for Parkinson’s patients (class 1),
indicating its capability to both accurately classify and consistently predict true positives.
For healthy subjects (class 0), the model obtained balanced scores of 0.88 for all metrics.
The overall accuracy of 91% is in agreement with the macro and weighted averages, both
greater than 0.90, showing well-balanced performance on imbalanced classes. The robust
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and stable performance of the Random Forest model on all measures further supports its
application in Parkinson’s Disease detection based on biomedical voice features.

3.4.3 Logistic Regression

Logistic Regression was used in this work as a baseline model because it is simple, easy
to interpret, and performs very well for binary classification problems.

Figure 3.12: Logistic Regression

It estimates the probability that a certain input belongs to a particular class in this
instance, that an individual has Parkinson’s Disease or not via the logistic (sigmoid)
function. The model approximates the correlation between the input attributes and the
target variable by assuming a linear decision boundary. In this study, Logistic Regression
facilitated the evaluation of the 24 biomedical voice parameters, such as jitter, shimmer,
and harmonic-to-noise ratio, for their predictive ability. While it makes the assumption
of a linear relationship between features and the log-odds of the target, which could
limit the capacity of the model to fit complex patterns in the data, it is nonetheless
a useful model for speed, scalability, and interpretability. Also, the learned coefficients
by the model give explicit information about how the influence of every feature on the
outcome of the prediction, which is especially valuable for medical applications where
explaining the rationale behind predictions is essential. The Logistic Regression model
was trained with L2 regularization to avoid overfitting and to improve generalization on
new data. Although it might not perform better than more complicated non-linear models
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such as Random Forest or XGBoost in pure accuracy, its robust baseline performance
and simplicity of use make it an effective tool for benchmarking and for use in clinical
environments where interpretability of the model is crucial.

Figure 3.13: Confusion Matrix for Logistic Regression

The Logistic Regression model’s performance was assessed through a confusion matrix,
which shows an exhaustive description of the results of classification in terms of true and
false predictions. According to the matrix presented, the model predicted 234 instances of
Parkinson’s Disease (true positives) and 107 healthy individuals (true negatives) correctly.
But it also incorrectly classified 34 Parkinson’s patients as healthy (false negatives) and
46 healthy patients as patients of Parkinson’s (false positives). These findings state that
although the model had a decent sensitivity-specificity balance, overall performance was
mediocre compared to more sophisticated models such as Random Forest or XGBoost.

The larger number of false negatives (34) is most worrisome in medical diagnosis, as it
suggests some patients with Parkinson’s were mislabeled as healthy and thus might have
further assessment or treatment delayed. The false positive rate is comparatively higher,
so some healthy people may be unnecessarily identified, leading to emotional distress or
unwarranted follow-up testing. While these are the limitations of Logistic Regression, this
model is still useful because of its simplicity and interpretability. It offers an understanding
of how each feature impacts the prediction through its model coefficients, which makes it
appropriate for use in applications that require transparency and explainability.

In summary, the confusion matrix emphasizes that although Logistic Regression is a
good baseline and has significant interpretability, it is not necessarily best when used as
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a single model in clinical applications that require very high sensitivity. Its output is still
useful, though, when used along with more sophisticated models in an ensemble or hybrid
strategy for the detection of Parkinson’s Disease.

Figure 3.14: Bar plot Report Logistic Regression

The bar graph shows the precision, recall, and F1-score attained by the Logistic Re-
gression classifier. For Parkinson’s Disease patients (class 1), the model registered a
relatively good precision and recall of 0.84 and 0.87, respectively, which translated to
an F1-score of 0.85. For the healthy class (class 0), all these metrics were significantly
lower at around 0.70 to 0.76, reflecting higher misclassifications for healthy subjects. The
average accuracy was 81%, with the macro and weighted averages also being stable at
around 0.80–0.81, indicating well-balanced, if slightly biased, performance. This serves to
reinforce that Logistic Regression does reasonably well, especially in identifying patients
with Parkinson’s, but less so in marking good cases accurately—implying a requirement
for more complex models where such diagnostic applications are crucial.

3.4.4 Support Vector Machine

The Support Vector Machine (SVM) classifier was used in this study because it has been
demonstrated to perform well with high-dimensional data and can build stable decision
boundaries. SVM is a robust supervised learning algorithm that operates based on finding
the best hyperplane for separating data points of various classes, in this instance, separat-
ing Parkinson’s Disease patients from healthy individuals. One of the greatest advantages
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of SVM is that it can function within both linear and non-linear spaces with the help of
kernel functions.

Figure 3.15: Support Vector Machine

In this research, the Radial Basis Function (RBF) kernel was employed in order to
identify non-linear patterns between intricate voice features like jitter, shimmer, pitch
period entropy (PPE), and harmonic-to-noise ratio (HNR).

SVM is especially appropriate for biomedical datasets with possibly overlapping classes
and a high number of input features compared to the number of samples. It is one of
the few algorithms that aims to maximize the margin between classes, hence it is less
susceptible to overfitting and more generalizable to new data. The model was optimized
with scaled features so that all attributes equally contributed to the kernel calculation.

The SVM model in this research showed robust classification performance, particularly
in classifying Parkinson’s patients correctly. It gave a high recall rate that is critical in
medical diagnosis in order to avoid false negatives. Though it had a marginally higher
computational expense, SVM continued to be among the best-performing models on pre-
cision, recall, and F1-score. Moreover, SVM’s support vectors and decision boundaries
gave the data distribution interpretability, which enhanced model transparency. Over-
all, Support Vector Machine was an extremely effective classifier for Parkinson’s Disease
prediction, offering accuracy along with robustness in feature-rich spaces.

The performance of the Support Vector Machine (SVM) classifier for identifying
Parkinson’s Disease was measured using a confusion matrix, which gives a clear idea
of the model’s prediction accuracy. Based on the matrix, the SVM model accurately
identified 242 out of 268 Parkinson’s Disease patients (true positives) and identified 104
out of 153 healthy subjects (true negatives) correctly. But it also incorrectly classified 26
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Parkinson’s patients as normal (false negatives) and 49 normal individuals as Parkinson’s
patients (false positives).

This performance indicates the SVM model’s ability to identify Parkinson’s Disease
with a strong true positive rate, which is critical in medical diagnosis to ensure that the
affected are not left behind. The false negative of 26 tells us that there is still potential
for improvement in the model to reduce undiagnosed cases of Parkinson’s, although it
fared better than basic models such as Logistic Regression. Conversely, the compara-
tively higher false positive tells us that the model could possibly be a tad too sensitive,
incorrectly flagging a few healthy people. Although this might be tolerable in screening
processes when early identification is paramount, it means worry or further testing for
those misclassified.

Figure 3.16: Confusion Matrix for SVM

Generally, the SVM provided a fair balance of sensitivity and specificity, with ro-
bust performance in detecting Parkinson’s patients and decent performance in separating
healthy cases. Its capacity to capture complex, non-linear patterns through the radial
basis function (RBF) kernel was a major factor in its classification ability. The findings
validate that SVM is a strong and reliable model for Parkinson’s Disease detection, es-
pecially where the stakes of failing to make a positive diagnosis are high. Subsequent
research may investigate the integration of SVM with other models within ensemble or
hybrid schemes to minimize misclassification rates further and enhance overall diagnostic
consistency.
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Figure 3.17: Bar plot for SVM

The bar graph encapsulates the classification performance of the Support Vector Ma-
chine (SVM) model with respect to pivotal assessment measures precision, recall, and
F1-score. In the case of Parkinson’s Disease cases (class 1), the model performed a high
recall of 0.90 and an F1-score of 0.87, thereby showing how effective it is in identifying true
positive cases. Nevertheless, accuracy in the healthy class (class 0) was lower at a recall of
0.68 and F1-score of 0.73, which showed that the model found it harder to identify healthy
individuals correctly. Overall accuracy was 82%, and macro and weighted averages for
all metrics were still around 0.80–0.82, which showed overall balanced but slightly biased
performance towards the detection of Parkinson’s. This is consistent with the medical
requirement for minimizing false negatives at the cost of reasonable classification accuracy.

3.4.5 Naive Bayes Classifier

Naive Bayes classifier was used in this research as a light-weight yet efficient model for
Parkinson’s Disease classification from biomedical voice features. Naive Bayes is a prob-
abilistic machine learning algorithm that follows Bayes’ Theorem with the very strong
assumption that all features are conditionally independent given the class label. Although
this assumption does not often occur in empirical data sets particularly biomedical ones
in which voice features like jitter, shimmer, and harmonic-to-noise ratios will often be
correlated Naive Bayes has still been found to work well in most real-world applications
because of its efficiency and simplicity.

The Gaussian Naive Bayes version was utilized since it is optimized for continuous
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features that have a normal distribution. The model calculates the posterior probability
of the individual classes for the particular input instance and predicts the most proba-
ble class. Naive Bayes, in spite of its simplistic assumptions, can be extremely robust,
especially in high-dimensional spaces and with comparatively small training sets.

Figure 3.18: Naive Bayes Classifier

Performance-wise, Naive Bayes classifier showed moderate accuracy with good recall
in identifying Parkinson’s patients but comparatively higher false positives in predicting
non-Parkinson’s patients. Although it was beaten by other more sophisticated models
such as Random Forest, SVM, and XGBoost on precision and F1-score metrics, its utility
lies in computational speed, interpretability, and overfitting resistance.

The Naive Bayes classifier’s confusion matrix gives a complete picture of how it has
performed in Parkinson’s Disease prediction. Based on the matrix, 220 Parkinson’s pa-
tients (true positives) and 115 healthy persons (true negatives) were correctly classified
by the model. But it also incorrectly classified 48 Parkinson’s patients as healthy persons
(false negatives) and 38 healthy persons as Parkinson’s patients (false positives). These
findings show that although Naive Bayes was quite good at determining true positives, it
was worse than the other models when reducing false negatives and false positives.

The rate of false negatives, where genuine Parkinson’s cases were predicted to be
healthy, is quite high for a medical scenario and may result in delayed diagnosis or un-
derdiagnosis. This drawback is paramount in clinical use, where sensitivity (recall for the
positive class) is usually desired. Likewise, the false positives indicate lower specificity, or
some healthy people may be subjected to unwarranted worry or follow-up testing. These
are largely due to the Naive Bayes model’s feature independence assumption, which fails
for most of the biomedical voice features utilized in this research, e.g., shimmer, jitter,
and harmonic ratios—features that are not independent.
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Figure 3.19: Confusion Matrix for Naive Bayes

While having these limitations, Naive Bayes is still useful as a lightweight, speedy,
and interpretable model. Its simplicity of implementation and low training time make it
appropriate for rapid screening purposes or even as a baseline in a larger ensemble system.
The probabilistic nature of the model also provides for an open understanding of class
confidence, which can be helpful in decision support applications. In conclusion, although
the Naive Bayes classifier is not necessarily the most accurate model in this comparison
study, it presented an evident trade-off between performance and computational simplic-
ity, further supporting its position as a competent diagnostic tool in time-sensitive or
resource-limited settings.

To test the performance of the Naive Bayes classifier in identifying Parkinson’s Dis-
ease, a classification report was created and graphed using a bar chart summarizing ma-
jor performance metrics: precision, recall, and F1-score for both classes (healthy and
Parkinson’s) as well as macro, weighted averages, and overall accuracy. The visualization
presents an easy-to-understand comparison of the performance of the model with respect
to various metrics, which helps to better interpret the balance and trade-offs involved
between prediction accuracy and error types.

For the Parkinson’s class (label 1), the model has high precision as well as recall, both
ranging around 0.85 and 0.82 respectively, giving a robust F1-score of 0.84. This means
that the classifier is extremely good at detecting actual cases of Parkinson’s Disease while
having relatively low false positives. However, performance for the healthy class (class 0)
was moderately poorer with precision, recall, and F1-score levels in the order of 0.71–0.75,
indicating a higher misclassification rate for non-Parkinson’s patients. This imbalance
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can be anticipated in most real-world healthcare data sets where classes are unbalanced
or where the model might optimize sensitivity (positive class recall) at the expense of
specificity.

Figure 3.20: Bar plot for Naive Bayes

The model had an overall accuracy of 0.80, with the macro average and weighted
average scores falling within 0.78–0.80 on all three dimensions of evaluation. The stability
of the macro and weighted averages indicates that the model, even though there is a
performance differential between classes, has a fairly even prediction capability. The F1-
score, as the harmonic mean of recall and precision, further indicates that the model is
not excessively biased in favor of one metric over the other.

In summary, the visualization of the classification report confirms that the Naive Bayes
model gives a solid and computationally light baseline for Parkinson’s Disease prediction.
Its excellent performance on the Parkinson’s class also makes it a good candidate for
early screening tools, particularly where quick, interpretable, and resource-friendly mod-
els are necessary. Nevertheless, for more sensitive diagnostic purposes, improvement or
even a combination with ensemble methods might be necessary to better minimize the
misclassification in the healthy class and enhance overall robustness.

3.4.6 KNN Classifier

The K-Nearest Neighbors (KNN) algorithm was used in this research as a supervised
learning model for the Parkinson’s Disease classification using biomedical voice features.
The KNN algorithm is a non-parametric, instance-based learning algorithm where predic-
tions are made by comparing the similarity of a test instance with its nearest neighbors in
the training set. The forecast relies on a majority vote of the ’k’ nearest training instances
in the feature space and is easy and effective in pattern recognition applications.

For this study, KNN was chosen for its simplicity and capacity to detect complex,
non-linear relationships without the need for explicit model training. The algorithm was
then used following rigorous data preprocessing in the form of normalization and feature
scaling since KNN is sensitive to feature magnitudes and distance computations. The
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best k value was found using cross-validation, with a bias-variance tradeoff that neither
overfits (low k) nor underfits (high k).

Figure 3.21: KNN Classifier

Figure 3.22: Confusion Matrix for KNN Classifier
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The KNN performance in this research was comparable, particularly in detecting
Parkinson’s cases since the algorithm efficiently clustered similar patterns according to
voice features like jitter, shimmer, and harmonic-to-noise ratios. KNN, however, had some
shortcomings in separating healthy people since there were overlapping distributions of
features and the curse of dimensionality, where performance dwindles with a rising number
of irrelevant or weakly informative features.

All these difficulties notwithstanding, KNN was useful in revealing insights about data
structure and acted as a good baseline to compare against. Its simplicity of deployment,
absence of assumptions regarding data distribution, and robust performance on moder-
ately sized data sets make it a competitive choice in initial diagnostic software.

Finally, the K-Nearest Neighbors classifier was a trustworthy and understandable ap-
proach for Parkinson’s Disease prediction. Though less accurate than all models con-
sidered, its transparency, simplicity, and ability to identify intricate patterns make it a
valuable part of this study’s comparative analysis.

The K-Nearest Neighbors (KNN) classifier was tested with a confusion matrix to an-
alyze how well it could differentiate between Parkinson’s patients and healthy patients.
The matrix indicates that the model was able to classify 194 Parkinson’s patients as such
(true positives) and 98 healthy patients as healthy (true negatives). But the classifier also
misclassified 74 Parkinson’s patients as healthy (false negatives) and 55 healthy patients
as Parkinson’s patients (false positives). These findings point to relatively poorer perfor-
mance compared to other models in the study, particularly sensitivity towards Parkinson’s
cases.

The moderately high false negative count is concerning in a medical setting, as it
suggests that a large percentage of the people with Parkinson’s Disease were wrongly
classed as healthy. This misclassifications might have an effect of causing delayed or false
diagnoses, which would lower the reliability of the model in a clinical setting. The false
positive ratiow hen healthy persons are classified as having Parkinson’s Disease is also
considerable, and can cause undue anxiety or follow-up treatment.

Figure 3.23: Bar plot for KNN Classifier
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These performance problems are due to the inherent constraints of the KNN algorithm
when implemented on high-dimensional and overlapping feature sets such as biomedical
voice features. As KNN depends on feature space proximity, it is prone to noisy, irrelevant,
or non-discriminatory features. Even with normalization and choice of distance metric,
the algorithm can perform poorly when feature clusters are not suitably separated. Addi-
tionally, since KNN doesn’t learn a discriminative model but rather utilizes the complete
training set in inference, it has a greater computational expense at prediction time.

The above bar chart shows the major evaluation metrics for the K-Nearest Neighbors
classifier. The model produced a precision score of 0.78, which was the highest among
all listed metrics, showing its effectiveness in accurately predicting positive instances.
The F1-score was 0.75, which reveals a good balance of precision and recall. Recall
was 0.72, indicating moderate sensitivity in identifying actual Parkinson’s cases, and the
accuracy achieved 0.69, indicating overall modest performance. These results illustrate
that while KNN may be able to identify certain patterns within biomedical voice data, its
performance falls short of more advanced classifiers such as Random Forest or XGBoost.
However, its interpretability and ease of use continue to render it useful for exploratory
and baseline modeling.

3.4.7 XGBoost Classifier

Extreme Gradient Boosting (XGBoost) was utilized in this research as among the most
powerful and high-performance machine learning algorithms for Parkinson’s Disease de-
tection. XGBoost is a highly efficient distributed gradient boosting library that is designed
to be flexible and portable. It applies machine learning algorithms under the framework
of gradient boosting and supports both classification and regression. Within the frame-
work of this study, XGBoost was used to predict individuals from a set of biomedical
voice characteristics like jitter, shimmer, and harmonic-to-noise ratios—parameters that
are known to differ distinctly between healthy individuals and patients with Parkinson’s
Disease.

Figure 3.24: XGBoost Classifier
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The major strength of XGBoost is its capability to blend the outputs of numerous
weak learners (in this case, decision trees) to create a strong predictive model. Every
subsequent tree is trained to learn from the mistakes of the previous ones, and boosting
algorithm enables the model to learn continuously and enhance its precision. XGBoost
further assists in regularization methods (L1 and L2), which are useful in minimizing
overfitting—a major problem in high-dimensional data. Its capability to handle missing
values, its parallelization, and tree pruning also increase its scalability and performance
and recommend it for real-world biomedical use.

In this study, the XGBoost model performed outstandingly, having the best accuracy
(0.938) among all classifiers investigated. It also achieved higher scores in most important
evaluation measures, such as F1-score (0.952), recall (0.963), and precision (0.942). These
outcomes showed that XGBoost was not only good at detecting Parkinson’s patients with
a low number of false negatives but also had high precision, lowering the number of
false positives. Such a mixture is of utmost importance in clinical diagnosis, wherein
underdiagnosis and overdiagnosis may have severe consequences.

Even though it is of greater complexity than more straightforward models such as
Logistic Regression or KNN, XGBoost is very interpretable via feature importance scores
and SHAP values, which were utilized to identify which features played the strongest role
in predicting the model’s output. Features such as pitch period entropy (PPE), jitter,
and shimmer were identified as leading predictors in this research, consistent with clinical
findings and the literature.

In summary, XGBoost was the best performing and most stable model for voice-based
Parkinson’s Disease diagnosis in this research. Its high capacity for modeling complex
interactions between features, minimizing overfitting, and achieving stable high predictive
performance across all datasets makes it a prime candidate for use in screening tools and
clinical decision-making systems. The findings from XGBoost provide a standard against
which future enhancements and validations on more extensive, diverse datasets will be
measured.

Figure 3.25: Confusion Matrix for XGBoost Classifier
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The XGBoost classifier’s confusion matrix depicts its outstanding ability to differen-
tiate between Parkinson’s Disease patients and healthy subjects. As noted, the model
was able to classify 258 out of 268 actual Parkinson’s patients correctly (true positives)
and 137 out of 153 healthy subjects correctly (true negatives). It incorrectly classified 10
Parkinson’s patients as healthy (false negatives) and 16 healthy subjects as having Parkin-
son’s (false positives). These findings show that the XGBoost classifier has a high degree
of sensitivity and specificity, ranking among the most accurate models in this research.

The small number of false negatives is especially important in a healthcare setting, re-
flecting the model’s high ability to detect true instances of Parkinson’s Disease—reducing
the risk of underdiagnosis. Moreover, the proportionally low rate of false positives means
that healthy people are not incorrectly identified, thereby minimizing the risk of unneces-
sary medical procedures or psychological distress. Both these aspects combined indicate
a high degree of diagnostic accuracy, which is crucial in any predictive metric used for
healthcare purposes.

XGBoost’s gradient boosting means that it is able to capture complex, non-linear
interactions through continually refining weak learners. Its regularization features also
assist in keeping overfitting in check, and internal missing data and outlier management
also allows for solid and generalized performance.

In all, this confusion matrix confirms the finding that XGBoost is not only the highest-
scoring classifier in this comparative analysis but also among the most balanced for min-
imizing false positives and false negatives. Through its stable and accurate predictions,
XGBoost stands the best chance of being successfully implemented in clinical decision
support systems for early and precise diagnosis of Parkinson’s Disease from biomedical
voice data.

Figure 3.26: Bar plot for XGBoost Classifier
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The bar plot shows the performance of the XGBoost classifier on four key evaluation
metrics: accuracy, F1-score, recall, and precision. The highest among all metrics was
recall, which was 0.9627, indicating the model’s high capability to accurately identify
genuine Parkinson’s cases with few false negatives. The F1-score (0.9520) indicates the
model’s superb balance between precision and recall. Furthermore, accuracy was also
measured at 0.9416, which shows high reliability in positive predictions, while general
accuracy was 0.9382, reconfirming XGBoost’s superiority against other models tested.
These measures confirm the model’s robustness and reliability, thus making it a priority
for actual medical diagnostic use in Parkinson’s Disease prediction.

3.5 Boosting models Technique used

A series of ensemble-based boosting models was implemented and tested for the predic-
tion of Parkinson’s Disease based on structured clinical and biomedical voice features.
The models were selected for their strength to enhance predictive performance through
sequential combination of weak learners and minimization of bias and variance in learn-
ing. Each boosting model was trained on a preprocessed data set through standardized
pipelines. In order to maximize performance and generalize, hyperparameter optimization
was conducted via cross-validation and grid search. The boosting models considered in
this research are:

3.5.1 AdaBoost

AdaBoost (Adaptive Boosting) is one of the first and most popular boosting algorithms
for ensemble learning. In this research, AdaBoost was utilized to boost the prediction of
Parkinson’s Disease on a wide variety of structured biomedical features. The underlying
concept of AdaBoost is to transform a set of weak learners usually decision stumps into
a robust classifier through giving increasing weights to the misclassified instances.

Figure 3.27: AdaBoost Classifier
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AdaBoost was trained in this research using the preprocessed dataset that contained
35 pertinent features like UPDRS and MoCA scores, lifestyle factors, and neurological
manifestations. A default decision tree base learner was used to train the model, and the
hyperparameters such as the number of estimators and learning rate were tuned using
grid search and cross-validation to obtain optimal performance.

The analysis of AdaBoost showed a training accuracy of 83.09% and an accuracy of
89.83% in the test set, with an AUC (Area Under the ROC Curve) value of 0.8244. These
results show that AdaBoost performed a good trade-off between learning the training
set and generalizing to new data. While its performance was only marginally less than
more sophisticated boosting methods such as CatBoost or Stochastic Gradient Boosting,
AdaBoost retained competitive accuracy and was less computationally demanding.

One of the advantages of AdaBoost is its simplicity and ease of interpretation, which
make it suitable for preliminary diagnostic models or use in systems that have limited
computational resources. Its vulnerability to outliers and noisy data is still a disadvantage,
as these data are weighted more in later iterations, which can have an impact on the overall
robustness of the model.

In conclusion, AdaBoost was a useful baseline among the boosting techniques used in
this research. Although it might not be superior to contemporary gradient-based tech-
niques, it is a lean, understandable alternative for Parkinson’s Disease prediction under
circumstances where computational requirements and model explainability are significant
concerns.

Figure 3.28: Confusion Matrix AdaBoost
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AdaBoost classifier confusion matrix displays the performance of the model in separat-
ing Parkinson’s Disease (PD) and healthy ones based on structured biomedical informa-
tion. The model classified 244 out of 421 patients correctly as having PD (true positives)
and 132 as healthy (true negatives). While this, of course, isn’t good since it means that
21 good individuals were erroneously labeled as PD cases (false positives) and 24 PD
patients were erroneously classified as healthy (false negatives), the values represent an
accuracy of about 89.3%, a precision of 92.1%, a recall of 91.0%, and an F1-score of about
91.5%. The high recall reflects the model’s good capacity for detecting real PD cases,
which is vitally important in medical diagnosis so that intervention comes in a timely
manner. The comparatively low false negative rate shows how effective AdaBoost can
be in the minimization of missed diagnoses. Likewise, the moderate false positive rate
reflects a tolerable rate of over-diagnosis, which in practical clinical application may be
better than under-detection. Overall, the confusion matrix validates the fact that Ad-
aBoost offers a balanced and robust predictive model for detecting Parkinson’s Disease,
thus making it an efficient candidate for health care decision support systems.

Figure 3.29: Bar plot for AdaBoost

The bar chart of the AdaBoost classifier’s performance metrics shows a compact visual
summary of the efficiency of the model in predicting Parkinson’s Disease based on struc-
tured biomedical data. The model’s accuracy was around 89.31%, meaning almost nine
out of every ten predictions were accurate for both PD and non-PD cases. Its precision
rate of 92.08% indicates AdaBoost’s high capability for accurate identification of true
positive instances without losing much to false positives. It is especially useful in medical
applications where overdiagnosis could result in undue stress or treatment. Consequently,
the model’s recall or sensitivity is 91.04%, which means that it accurately identified a vast
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majority of true PD cases—a critical characteristic for medical screening models where
false negatives would mean postponing treatment. The R² of 0.54 reflects the model’s
predictive power in explaining more than half the variance in the diagnostic result from
the input features, which is moderate predictive power in a regression setting. Together,
these measures confirm that AdaBoost provides a strong and balanced solution, boasting
high classification accuracy while being reliable both in precision and recall. Its perfor-
mance, as plotted in the bar plot, highlights its use as a reliable model for the diagnosis
of early-stage Parkinson’s Disease, especially when interpretability and efficiency are of
essence.

3.5.2 Gradient Boosting

Gradient Boosting is a very strong ensemble learning method which constructs predictive
models in a stage-wise fashion by iteratively adding new models to the residual errors
produced by existing ones. The next model is trying to fix the previous model’s limitations
by reducing a particular loss function via gradient descent. In this research, Gradient
Boosting was utilized to predict Parkinson’s Disease (PD) based on structured clinical
and biomedical features. The strength of the algorithm is its flexibility, enabling one to
add various loss functions and regularization methods to enhance model performance and
avoid overfitting.

Figure 3.30: Gradient Boosting

Gradient Boosting model was trained on the preprocessed dataset with a varied set of
features spanning demographic information, voice parameters, and clinical markers like
UPDRS ratings and cognitive tests. Hyperparameter optimization was done through grid
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search and cross-validation to identify the best number of estimators, learning rate, and
tree depth. This precise tuning helped keep the model in a delicate balance between the
ability to learn and generalization.

The test results illustrated that Gradient Boosting obtained a training accuracy of
97.06% and a test accuracy of 93.22%, in addition to an AUC of 0.8737. These findings
show that the model not only learned the training data well but also generalized excellently
to unseen instances, which is a key consideration for clinical applications. The high test
accuracy indicates good power in discriminating PD from non-PD cases, while the AUC
score verifies the model’s discriminability at varying classification thresholds.

Gradient Boosting’s performance illustrates its ability to identify intricate relation-
ships and non-linear interactions within the dataset. Furthermore, its modular framework
enhances interpretability by facilitating feature importance analysis, whose value lies in
the identification of the contributions of single features like rigidity, severity, and cogni-
tive scores. Nevertheless, the computational cost of the model is comparatively higher
compared to less complex models, something that might restrict its use in low-resource
or real-time settings.

Figure 3.31: Confusion Matrix for Gradient Boosting

The Gradient Boosting classifier confusion matrix is a qualitative and quantitative as-
sessment of the model to classify between Parkinson’s Disease and healthy controls. From
the matrix, the model accurately classified 257 true positive (PD correctly classified) and
136 true negatives (healthy individuals correctly classified). Moreover, there were 11 false
negatives, which refer to patients with Parkinson’s Disease that were classified as healthy,
and 17 false positives, which refer to healthy patients incorrectly labeled as suffering from
the disease. These numbers give a total test accuracy of around 93.22%, which indicates
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the model’s high predictive power. The low false negative rate is especially impressive
within a clinical setting, where not being able to detect an actual case of Parkinson’s
Disease could lead to delayed intervention. The precision and recall values extracted from
this matrix are also impressive, with the model showing a good balance between accurate
detection of actual PD cases and avoiding misclassifying healthy subjects. This perfor-
mance reflects Gradient Boosting’s strength in learning subtle, non-linear trends of the
biomedical dataset. Its low misclassification rates without overfitting indicate that it is a
good choice for healthcare applications of early detection. Overall, the confusion matrix
confirms Gradient Boosting as a sound and efficient algorithm for Parkinson’s Disease
classification in practical diagnostic settings.

Figure 3.32: Bar plot for GradientBoost

The bar chart showing the performance metrics of the Gradient Boosting classifier has
a clear and complete assessment of how well the model can identify Parkinson’s Disease
from clinical and biomedical data. The model had an impressive 93.35% accuracy, as it
correctly classified the overwhelming majority of instances in the dataset. Its accuracy,
at 93.80%, indicates the model’s capacity to suppress false positives—a significant aspect
in medical diagnosis to prevent undue anxiety and treatment for healthy patients. The
recall or sensitivity, which is at 95.90%, is particularly noteworthy and significant within
the medical field, as this reflects the model’s high capacity to recognize valid instances
of Parkinson’s Disease. This high recall is guaranteed to miss very few true PD cases,
so there would be no risk of patients going undiagnosed and receiving no treatment in a
timely fashion. The R² score of 0.7125 also shows the model’s ability to account for a
large amount of variance in the classification results, which is an indicator of its reliability
in detecting the patterns in the dataset. Together, these findings emphasize the strength
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and discrimination capability of Gradient Boosting as a model for prediction. The equi-
librium between high precision, recall, and accuracy evident in the bar plot emphasizes
its application in real-world scenarios in diagnostic measures, especially where detection
of Parkinson’s Disease in early stages accurately is critical.

3.5.3 LightGBM

LightGBM (Light Gradient Boosting Machine) is a fast gradient boosting framework by
Microsoft that achieves excellent speed and scalability, making it ideal for big machine
learning tasks. It utilizes a histogram-based decision tree learning algorithm with reduced
memory consumption and increased training speed through discretization of continuous
values into discrete bins. LightGBM was used in this work to classify Parkinson’s Disease
(PD) from structured clinical and biomedical features with a robust trade-off between
prediction performance and computational cost.

Figure 3.33: LightGBM Boosting

The model was learned using a comprehensive dataset with patient demographics,
clinical evaluations like UPDRS and MoCA scores, as well as motor and non-motor symp-
tom markers. LightGBM was chosen due to its ability to manage categorical variables
properly and the capacity to accommodate parallel and GPU learning. Hyperparameters
were optimized using grid search with cross-validation to avoid overfitting and enhance
generalizability to new data for the number of leaves, maximum depth, and learning rate.

In performance, LightGBM had a training accuracy of 92.65% and a test accuracy
of 91.53%, with a very good AUC score of 0.8905. These figures show the prowess of
LightGBM in sustaining stable performance from training to testing, an indicator of
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excellent generalization capability. The high recall and precision scores affirm that the
model effectively reduces false positives and false negatives, which in the medical field
is particularly crucial. Furthermore, LightGBM can scale with bigger datasets and train
faster than classic boosting models, which renders it an applicable solution for real-time
diagnostic systems or mobile health apps.

Another advantage of LightGBM lies in its support for feature importance ranking,
which allows for an interpretable understanding of which clinical variables most influence
model predictions. This interpretability can be valuable for clinicians in validating and
trusting the model’s recommendations. Still, like with the majority of gradient boosting
algorithms, LightGBM can still need to be adjusted for best results and is also sensitive
to unbalanced data, but this was not a limiting factor in the present study due to class
balance.

Figure 3.34: Confusion Matrix for LightGBM

The LightGBM classifier confusion matrix illustrates the accuracy of the model to dis-
tinguish between Parkinson’s Disease (PD) and non-PD conditions using orderly clinical
and biomedical data. The matrix indicates that the model identified 252 true positive
cases (PD patients correctly identified) and 137 true negative cases (healthy people cor-
rectly identified). Conversely, it created 16 false positives, wherein healthy subjects were
falsely predicted to have PD, and 16 false negatives, wherein real PD cases were not iden-
tified. These correspond to an excellently balanced performance in terms of classification,
with slight misclassification in both classes. The low and almost equal rate of false posi-
tives and false negatives implies that the model is not biased toward one class or another
and retains excellent generalization properties. In healthcare, the low false negative rate
is particularly important as it guarantees that most patients with Parkinson’s Disease
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are accurately identified to permit early intervention and treatment. Moreover, the low
number of false positives reduces undue medical procedures and patient anxiety in the
wrongly identified positive cases. Altogether, the confusion matrix attests that Light-
GBM is a sound and accurate model for the prediction of Parkinson’s Disease, providing
balanced diagnostic precision with minimal danger of severe errors in medical screening
applications.

Figure 3.35: Bar plot for LightGBM

The performance of LightGBM classifier provides significant proof of the model’s
efficacy and reliability in identifying Parkinson’s Disease from biomedical data that is
structured. The model was able to attain a high accuracy of 92.39%, showcasing the
high capability of the model in accurately classifying Parkinson’s cases as well as non-
Parkinson’s cases in the dataset. The precision and recall, which are both 94.03%, show
the model’s remarkable capability in achieving a balance between detecting true positive
instances and avoiding false positives. In medical use cases, this balance is critical, as it
allows the model to capture most actual PD cases (high recall) but avoid misclassifying
healthy persons as much as possible (high precision). This reliability is especially crucial
in screening instruments wherein early identification and proper referral can substantially
impact the outcome of treatment.

The R² measure of 0.6714 also strongly supports the explanatory power of the model,
revealing that more than 67% of variance in the classification outcome is explained by
the model using the features supplied. This points towards the efficacy of LightGBM in
identifying hidden patterns and relationships in the dataset even when there are complex
non-linear relationships. Moreover, LightGBM’s efficiency and scalability further allow
it to be appropriate not only for research settings but also for real-time use in clinical
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decision support systems.
In summary, the bar plot for these metrics highlights the LightGBM classifier’s strength

and balance and places it among the best performing models in this research. As a strong
but effective diagnostic tool, it can meaningfully contribute to early detection tactics in
Parkinson’s Disease treatment and research.

3.5.4 CatBoost

CatBoost (Categorical Boosting) is a high-performance gradient boosting algorithm de-
signed by Yandex, particularly tailored for efficient dealing with categorical features with-
out intensive preprocessing. For Parkinson’s Disease (PD) diagnosis, CatBoost provides
a strong solution because it can successfully capture intricate interactions in structured
clinical data while retaining interpretability and robustness.

During this research, CatBoost was fed with a dense biomedical dataset that contained
35 structured attributes, such as demographic information, clinical indicators, motor and
cognitive tests such as UPDRS, MoCA scores, and neurological symptom indicators. In
contrast to standard boosting techniques that call for encoding categorical variables man-
ually, CatBoost handles categorical data internally with advanced methods such as target
statistics and ordered boosting, minimizing overfitting and enhancing generalization.

Figure 3.36: CatBoost Classifier

CatBoost had better classification performance, with a test accuracy of 94.06% and
balanced precision and recall values. The confusion matrix indicated that the majority of
the PD and non-PD instances were classified correctly by the model with few false positives
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and false negatives. Such performance indicates good generalization, especially valuable
for medical applications where incorrect classification can have serious implications.

From a metrics perspective, CatBoost had excellent precision and recall values, which
reflect the model’s ability to accurately identify Parkinson’s Disease while avoiding false
predictions. Furthermore, the model’s R² value reaffirms its performance in explaining
variability and complexity found in biomedical data sets. The model’s effectiveness and
low requirement for extensive tuning make it an excellent candidate for deployment in
the real world, particularly for clinical decision support systems and mobile health appli-
cations.

As a whole, CatBoost is one of the most consistent models tried in this research,
offering a balance of prediction accuracy, computational speed, and simplicity. Its overall
performance on all metrics of evaluation supports its value for use in early diagnosis of
Parkinson’s Disease, where maximization of sensitivity and specificity are critical.

Figure 3.37: Confusion Matrix for CatBoost

The CatBoost classification model confusion matrix shows an optimal level of predic-
tive accuracy with 139 true negatives and 257 true positives, which clearly indicates that
the model is efficient in differentiating between the two classes. The small number of
misclassifications—14 false positives and 11 false negatives—also strengthens the model’s
credibility. These outcomes confirm that the classifier is sensitive and accurate, with low
levels of incorrect classifications while still having a very high capacity to identify true
cases. The balanced distribution of correct predictions over both classes also indicates
that the model does not lean toward any specific outcome. The confusion matrix in sum-
mary verifies the efficacy and practicality of the CatBoost model for binary classification
purposes.
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Figure 3.38: Bar plot for CatBoost

The new evaluation criteria for the CatBoost model reveal a general improvement
in classification accuracy. With 94.1% accuracy, the model accurately classifies an over-
whelming majority of cases, whereas precision of 94.8% reflects its capability to reduce
false positives to ensure high reliability in positive predictions. Especially of interest here
is the 95.9% recall, which indicates the model’s robust ability to identify nearly all true
positive instances, minimizing the potential for false negatives. Also of interest is the R²
value of 0.74, though this metric is normally used to measure regression tasks, providing
further indication that more than 74% of the variability in the target variable is explained.
These findings, as plotted in the included bar plot, confirm the stability and performance
of the CatBoost algorithm for high-risk binary classification problems, particularly where
precision and recall are both of major concern.

3.5.5 Stochastic Gradient Boosting

Stochastic Gradient Boosting (SGB) or Stochastic Gradient Boosted Trees is an enhanced
ensemble learning method that pushes the bounds of standard Gradient Boosting by
adding stochasticity to the learning process. Contrary to standard Gradient Boosting,
where each tree is trained on the complete dataset, SGB samples randomly a fraction of
the data at each iteration. This stochastic method decreases overfitting and enhances gen-
eralization, which makes the model highly efficient for intricate biomedical classification
tasks like Parkinson’s Disease (PD) detection.

In this research, SGB was utilized in a structured data set with clinical and biomedical
features of PD patients and healthy participants. The features comprised demographic
characteristics, neurological parameters, voice-related measurements, and cognitive mea-
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sures like UPDRS and MoCA scores. The model was trained with stratified sampling and
stable preprocessing methods, such as normalization and correlation-based feature selec-
tion. Hyperparameters like learning rate, subsample ratio, number of estimators, and tree
depth were finely tuned using grid search with cross-validation to achieve optimal model
performance.

Figure 3.39: Stochastic Gradient Boosting

The SGB model produced excellent performance in classifying Parkinson’s Disease.
With a 94.30% accuracy in testing, it was the best-performing model out of all boosting
techniques tested in this study. The model also had a very good recall score, reflecting its
capability to identify most true cases of PD, which is particularly important in the context
of medical diagnosis. Precision was also high, reflecting that very few false alarms would
occur for healthy patients. These statistics all confirm the model’s capacity to achieve a
good balance between sensitivity and specificity.

One significant strength of SGB is the overfitting resistance from the incorporation of
randomness, especially useful when dealing with high-dimensional biomedical data. Addi-
tionally, the model also facilitates feature importance analysis, where researchers and clin-
icians can understand which features are most predictive of disease. The interpretability
introduces an invaluable dimension of transparency, supporting clinical decision-making.

In summary, Stochastic Gradient Boosting was a very effective model for Parkinson’s
Disease diagnosis. It caters to the precision and complexity of Gradient Boosting while
merging the generalization and stability of stochastic sampling. Such characteristics make
it especially applicable to incorporation within clinical decision support systems for the
purposes of early diagnosis and individualized patient treatment.
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Figure 3.40: Confusion matrix for Stochastic Gradient Boosting

The Stochastic Gradient Boosting (SGB) model’s confusion matrix shows superb per-
formance in identifying Parkinson’s Disease (PD) with high accuracy from well-structured
biomedical data. From the matrix, the model identified 260 true positive cases (PD pa-
tients) and 137 true negatives (healthy subjects) correctly. It incorrectly labeled 8 actual
PD patients as healthy (false negatives) and 16 healthy subjects as having PD (false pos-
itives). This high classification result indicates extremely high precision and recall, which
are very important in clinical use where both underdiagnosis and overdiagnosis pose heavy
penalties. The low false negative ratio guarantees that almost all PD patients are diag-
nosed appropriately, allowing early diagnosis and timely treatment. At the same time,
the small number of false positives prevents undue anxiety and clinical intervention for
non-diseased people. These findings confirm that SGB has a strong balance between sen-
sitivity and specificity, with reliability in both classes. The close symmetrical distribution
of errors also indicates a lack of bias in the model’s predictions. Overall, the confusion
matrix confirms SGB as a very reliable and clinically feasible algorithm for Parkinson’s
Disease diagnosis, ideally best suited for diagnostic equipment that necessitates both ac-
curacy and consistency.

The bar plot is a summary illustration of the performance of the Stochastic Gra-
dient Boosting (SGB) model in identifying Parkinson’s Disease. The model performed
impressively with an accuracy of 94.30%, indicating its high capability to correctly clas-
sify instances into PD and non-PD classes. With precision and recall both above 94%,
the model exhibits high dependability in both true case identification and false alarms
reduction. The 97.01% recall is particularly valuable for clinical applications because it
guarantees that almost all actual PD cases are accurately identified, minimizing the rate
of missed diagnoses. In addition, the R² Score of 0.75 validates the fact that the model
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can account for a considerable percentage of the variance of the target labels given the
input features. This performance demonstrates the strength and versatility of the model
in working with intricate, real-world biomedical data. In general, the high performances
indicated in the bar chart validate the conclusion that SGB ranks among the best per-
forming and reliable models for early-stage Parkinson’s Disease diagnosis in this study.

Figure 3.41: Bar plot for Stochastic Gradient Boosting
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Chapter 4

RESULTS and DISCUSSION

The present study sought to investigate and compare the performance of different machine
learning (ML) and deep learning (DL) models in predicting Parkinson’s Disease based on
biomedical voice features. Critical performance metrics like accuracy, precision, recall,
F1-score, and R²-score were employed in the evaluation, offering a comprehensive per-
spective of each model’s performance. The findings highlight the heterogeneity in model
functionality and the necessity for proper model selection for healthcare-based prediction
tasks.

4.1 Ensemble and Tree-Based Models

All the models that were run, XGBoost was the most accurate and stable classifier with
an excellent accuracy of 93.8%, F1-score of 95.2%, recall of 96.3%, and precision of 94.2%.
The results reiterate XGBoost’s efficacy in dealing with high-dimensional, skewed data
and learning intricate feature interactions. The model’s capability to minimize both false
negatives and false positives makes it a trustworthy option for early-stage Parkinson’s
screening. Its accuracy is due to characteristics like gradient boosting, regularization, and
tree pruning, which all serve to improve both variance and bias control. Random Forest
also performed well with accuracy of 93.1%, F1-score of 94.7%, and recall of 96.3%.
Being an ensemble of decision trees, Random Forest eliminates overfitting by reducing
over-reliance on individual features and promotes generalization, which was reflected in
its stable performance across metrics. The model gave high interpretability via feature
importance and proved to have high resilience to noise and irrelevant features. The
Decision Tree classifier, being less complex than XGBoost and Random Forest, achieved a
significant accuracy of 92.1% and F1-score of 93.9%. It was an effective baseline because
of its interpretability and low computational expense. Nevertheless, it tends to overfit
more easily and thus gains immensely from ensemble methods.

4.2 Linear and Kernel Models

In this research work, both Support Vector Machine (SVM) and Logistic Regression
showed moderate but significant performance in Parkinson’s Disease detection. Logistic
Regression, with accuracy at 81.00%, was an intuitive and easy model that is well-suited
for situations where computational ease and interpretability are the top priority. It is
a reliable baseline classifier and still a good fit for fast deployment, particularly where
resources are low. Conversely, SVM with the RBF kernel marginally surpassed Logistic

50



Regression at an accuracy of 82.19%. The advantage of SVM is that it can deal with the
non-linear relationships in the data, which are necessary for identifying the fine differences
in biomedical voice features. While both models were beaten by ensemble methods, they
provided balanced precision and recall and hence can be used as dependable alternatives
in clinical applications where model interpretability or restricted computing power is an
issue.

4.3 Results on Machine Learning Models

Support Vector Machine (SVM) showed respectable performance with 82.2% accuracy,
90.3% recall, and 86.6% F1-score. The strength of the model comes from its capability to
form non-linear decision boundaries with the RBF kernel, thus being ideal for complicated
classification problems. SVM is, however, sensitive to hyperparameter tuning and kernel
functions, which may compromise its scalability in practical environments.

Logistic Regression, a linear model, attained accuracy of 81.0%, and F1-score of 85.4%.
It is especially appreciated because it is highly interpretable and simple. Although it did
not perform better than the more complex models, it provided meaningful insights into the
contribution of features using its coefficients. This model is most suited for applications
involving clear decision-making.

Figure 4.1: Comparison Bar plot for different Boosting Models

4.4 Results on different Boosting Models

The bar chart shows a comparative accuracy comparison of six boosting models employed
in Parkinson’s Disease detection. Of these, Stochastic Gradient Boosting had the best
accuracy of 94.30%, which was followed by CatBoost (94.06%) and XGBoost (93.82%),
reflecting their ability to generalize well and perform well with complicated medical data.
Gradient Boosting and LightGBM also compared competitively at 93.35% and 92.40%,
respectively, whereas AdaBoost yielded a modest but acceptable accuracy of 89.31%.
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These findings attest the strength of sophistic boosting algorithms, especially those that
include stochasticity or categorical optimization, to make dependable early PD prediction.

Figure 4.2: Comparison Bar plot for different Boosting Models

4.5 Probabilistic and Distance-Based Models

Naive Bayes performed modestly with an accuracy of 79.6% and F1-score of 83.6%. Al-
though it performed well on the Parkinson’s class, its feature independence assumption
likely put a cap on its performance given voice features’ intertwined nature. Naive Bayes
is still a quick, low-memory classifier that can be used for early diagnostic stages or even
embedded systems. K-Nearest Neighbors (KNN) was one of the weakest models in this
experiment, with accuracy of 69.3%, F1-score of 75.0%, and recall of 72.4%. Its vulner-
ability to the curse of dimensionality and the computationally expensive prediction time
were major limitations. That being said, the model’s simplicity and performance in small,
nicely clustered data sets are still its advantages. The experiment involving varying values
of k reflected minor improvements in performance, but not to the level where it can rival
ensemble or DL models.

4.6 Summary on different Machine Learning Models

In brief, XGBoost performed better than all the remaining models in almost all the
metrics, validating its appropriateness for this classification problem. Random Forest and
CNN were close competitors as well. Logistic Regression and Naive Bayes, being simpler
models, though less accurate, were nonetheless useful because they were interpretable and
efficient. The results highlight the significance of selecting the most appropriate model
considering the trade-off between accuracy, explainability, and computational expense.
Ensemble and deep learning techniques show the most promise for near-term use in actual
clinical practices.
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Table 4.1: Performance Comparison of ML Models for Parkinson’s Disease Detection
Metric Decision Tree Random Forest Logistic Regression SVM Naive Bayes KNN XGBoost
Accuracy 0.9216 0.9311 0.8100 0.8219 0.7957 0.6936 0.9382
F1-Score 0.9397 0.9468 0.8540 0.8658 0.8365 0.7505 0.9520
Recall 0.9590 0.9627 0.8731 0.9030 0.8209 0.7239 0.9627
Precision 0.9211 0.9314 0.8357 0.8316 0.8527 0.7791 0.9416
R2-Score 0.6612 0.7022 0.1786 0.2300 0.1170 -0.3245 0.7331

4.7 Summary of different Boosting Models

Table 4.2: Comparison of Boosting Models Across Evaluation Metrics
Model Accuracy F1-Score R2 Score Recall Precision
AdaBoost 0.8931 0.9208 0.5400 0.9104 0.9208
Gradient Boosting 0.9335 0.9397 0.7125 0.9590 0.9379
XGBoost 0.9382 0.9520 0.7331 0.9627 0.9416
LightGBM 0.9240 0.9403 0.6714 0.9403 0.9403
CatBoost 0.9406 0.9500 0.7430 0.9600 0.9500
Stochastic GB 0.9430 0.9600 0.7536 0.9701 0.9420

The table gives an overall picture of some of the boosting models tested for Parkinson’s
Disease detection. Out of them all, Stochastic Gradient Boosting showed the best accu-
racy (94.30%), followed by CatBoost (94.06%) and XGBoost (93.82%), which is indicative
of their excellent predictive performance. These models also fared equally well on other
measures such as F1-Score, Recall, and Precision. Conversely, AdaBoost possessed the
worst R² Score and performance overall, reflecting its relative lack of efficiency in this
medical classification problem. Overall, the findings justify that sophisticated boosting
methods are extremely beneficial for sure and accurate prediction of early-stage PD.
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Chapter 5

CONCLUSION

This dissertation has given a thorough comparative study of traditional machine learning
models for Parkinson’s Disease detection based on biomedical voice features. The key
objective of this study was to assess and compare the performance of various supervised
learning models applied to a structured voice dataset including features like jitter, shim-
mer, and harmonic-to-noise ratios. These parameters, obtained from sustained phonation
recordings, are reported to detect very slight irregularities in speech patterns that are
typically seen in Parkinson’s Disease.

The models tested in the present study were Decision Tree, Random Forest, Logistic
Regression, Support Vector Machine (SVM), Naive Bayes, K-Nearest Neighbors (KNN),
and XGBoost. All these classifiers were trained and tested in the same preprocessing set-
tings, and their performances were measured by main metrics such as accuracy, precision,
recall, and F1-score. XGBoost was the most efficient model among them that demon-
strated the highest overall accuracy (93.82%) and performed the best on all performance
metrics. Its gradient boosting process, along with regularization and tree pruning, en-
abled it to generalize well and learn intricate patterns, thus making it a very consistent
option for diagnostic systems in the real world.

Random Forest also performed very well with an accuracy of 93.11%. Being an en-
semble method involving numerous decision trees, it minimized overfitting but retained
the benefits of tree-based decision-making. Its feature importance ranking also boosted
interpretability and shed light on the relative significance of diverse vocal parameters in
terms of predicting Parkinson’s Disease. The Decision Tree model, as less complex, also
held up with a performance of 92.16%, being useful for interpretable and fast diagnostics
where transparency counts.

Under the traditional models category, Logistic Regression and Support Vector Ma-
chine (SVM) gave balanced and moderate performance. SVM, with the RBF kernel, had
82.19% accuracy, indicating its power in detecting non-linear class borders. Logistic Re-
gression, being linear in nature, had 81.00% accuracy and was a strong baseline, providing
the benefits of simplicity, computational speed, and interpretability.

Naive Bayes and K-Nearest Neighbors (KNN) were behind the other models when
it came to performance, with their respective accuracies of 79.57% and 69.36%. Naive
Bayes, on account of its assumption of independence of features, was less appropriate
for the relatedness of voice features, though it still had decent precision as well as recall
values. KNN suffered especially because it was feature scaling-sensitive and cursed by the
high dimensionality, which made it hard to provide accurate predictions within a high-
dimensional space. However, both models were valuable for providing insights within
baseline comparisons and are still applicable for small-scale or computationally restricted
environments.
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In conclusion, this research finds that ensemble techniques, particularly XGBoost and
Random Forest, are most appropriate for the classification task of Parkinson’s Disease
diagnosis based on voice characteristics. Their capability to handle complex interactions,
avoid overfitting, and provide robust high performance makes them great options for clin-
ical decision support systems. At the same time, less complex models such as Decision
Tree and Logistic Regression also possess high value because they are easy to interpret
and can be deployed quickly. Future research can try to incorporate multiple data modal-
ities, enhance feature engineering, and test the models on bigger and more varied patient
datasets to further improve clinical utility and generalizability.

The conventional machine learning methods, this dissertation also performed an ex-
tensive comparison of several advanced boosting algorithms to further improve diagnostic
accuracy in the detection of Parkinson’s Disease. Boosting models like AdaBoost, Gradi-
ent Boosting, LightGBM, CatBoost, and Stochastic Gradient Boosting were implemented
and compared for evaluating their ability in modeling complex patterns in the biomedical
data. Of these, Stochastic Gradient Boosting proved to be the best performer with the
highest classification accuracy (94.30%) and best recall, which is most critical to reduce
lost diagnoses in medical usage. CatBoost and XGBoost also performed very uniformly
well across all evaluation measures, proving themselves to be robust, scalable, and flexible
to learning from structured medical data. These boosting methods successfully circum-
vented the limitations of individual weak learners by iteratively refining prediction errors,
allowing more generalization. The outcomes verify that contemporary boosting algorithms
do not only compete with conventional models but, in most instances, outperform them in
both predictive ability and reliability. Their incorporation into actual healthcare systems
is highly promising for early and correct screening of Parkinson’s Disease, particularly
for mobile or limited-resource settings. Future research should investigate their use in
longitudinal research and real-time diagnostic tools to realize maximum clinical benefit.

5.1 FUTURE SCOPE

While this work has presented meaningful insight into comparative performance of tradi-
tional machine learning models for the detection of Parkinson’s Disease, it also presents
several avenues of future research beyond model performance. One of the directions under
exploration includes the use of real-time voice analysis using edge computing or mobile
phones to allow monitoring on the go for patients. As wearable and voice-controlled tech-
nologies increase, applying these models to smart devices may aid in ongoing monitor-
ing of vocal impairment, opening doors for early treatment beyond clinics. Also, future
research could address adaptive and user-personalized machine learning models. Such
models would adapt to one’s baseline voice features and learn from long-term patient
information, thus enhancing detection performance over time as the model adapts to the
user. The other critical domain is federated learning for privacy-preserving diagnostics.
Because medical information is highly sensitive, it is imperative to build decentralized
learning systems that train locally on patient devices while ensuring privacy, making
the system secure and scalable. Additionally, extending the framework to incorporate
cross-domain data sources, including medical images, genetic information, and electronic
health records, could result in more robust prediction models. The resulting hybrid sys-
tems could provide multi-view analyses, making the diagnosis more robust and granting
deeper knowledge of the disease. Lastly, the future research would need to focus on build-
ing collaborative networks with medical institutions so that larger and more diversified
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datasets are accessible and clinical trials can be undertaken to prove the practicality of
the models being proposed. These collaborations could help greatly in bringing these
machine learning developments from the laboratory to actual healthcare applications.

5.2 LIMITATIONS

In spite of the encouraging outcomes yielded in this investigation, there are a number of
limitations that need to be noted. First, the dataset utilized was comparatively small in
magnitude and extent, incorporating voice samples of a narrow population group. This
might affect the external validity of the findings towards broader and more diverse groups
of populations. Further research is needed to incorporate larger, more diverse datasets to
enhance model resilience. Second, all models in this study used only vocal biomarkers for
prediction. Though voice features are descriptive, Parkinson’s Disease manifests across
several modalities such as motor symptoms, gait disturbance, and handwriting patterns.
Single-modality reliance limits the system’s diagnostic capability and can result in false
negatives or positives in difficult-to-classify cases. One such limitation is the lack of real-
world model validation and deployment within clinical environments. Models worked well
within an experimental laboratory setup, but their usability in real-world situations is yet
to be validated. Real-world consideration of elements like background noise, variability in
recording devices, and voice-specific features of patients might impact prediction accuracy.
Finally, this research did not assess interpretability of the models clinically. Although
there are models that provide high accuracy, they are still black boxes to clinicians.
Future research should investigate explainable AI methodologies to improve transparency
and trust in automated PD diagnosis.
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prompted industrial stakeholders to reassess their approaches to sustainable
operations, particularly in areas such as smart cities, smart transportation,
smart industries, and healthcare. Leveraging computer-aided techniques,
predictive methods, and expert systems has become increasingly vital for
researchers and practitioners in navigating the complexities of these real-time
applications.

ABOUT -M.P.NACHIMUTHU M.JAGANATHAN ENGINEERING COLLEGE
M.P.Nachimuthu M.Jaganathan Engineering College, Chennimalai, Erode is one among the best self-financing engineering colleges. The main
thrust is given to discipline, quality education and also in moulding young minds to become fully competent engineers. The main scope of this
institution is to provide education for the rural students and economically deprived students as per the ardent desire of the Founder
Correspondent Thiru.J.Sudhanandhen. Free education is offered to the meritorious students and also, fees concession is provided every year for
the under privileged students. The college has full-fledged infrastructure facilities, i.e., buildings, laboratories, hostels, sports etc. and provides a
better learning environment to the students through the dedicated, efficient and well qualified faculty. Also, the institution offers much needed
academic exposure to the students along with communication skills and personality development programmes. The vibrant and active Training
and Placement Cell provides continuous training to the students and better placements in various Multi -National Companies. All efforts are
pursued assiduously to build the Institution as a Model One.

Track-1

ICSSAS 2025
3rd International Conference on

Self Sustainable Artificial Intelligence Systems

Organized by

About ICSSAS 2025

CALL FOR PAPERS

 Systems Thinking and Engineering
Applications

Knowledge Representation, Search, and Analysis for
Systems Engineering
Explainable AI (XAI) and Visualization Methods in
Systems Design and Analysis
Multi-Attribute Optimization and Simulation Techniques
for Systems Engineering
Soft Computing Approaches for Smart Cities Planning and
Management
Large-Scale Optimization Techniques for Complex
Systems
Big Data Optimization for Large-Scale System
Applications
Autonomous Systems for Environmental Monitoring and
Management
Artificial Intelligence for Stability Analysis and Control in
Industrial Systems
Decision Support Tools for Systems Engineering
Computation
Soft Computing Techniques for Distributed Systems
Engineering

Dr. Veerpratap Meena
Assistant Professor,
Department of Electrical Engineering
National Institute of Technology Jamshedpur, India
Chair, IEEE Systems Council Systems Education
Technical Committee.

Chief Patron
Dr. VASANTHA SUDHANANDHEN
 (‘‘Bharat Vidya Shiromani’’) Correspondent
M P Nachimuthu M Jaganathan Engineering College

Patron
Dr. M. RAMESH
IEEE Systems Council
Principal
M P Nachimuthu M Jaganathan Engineering College

CONFERENCE CHAIR
Dr. D. Sabapathi
HoD/EEE
M P Nachimuthu M Jaganathan Engineering College
Coordinators
Dr. P. SENGUTTUVAN, Professor / ECE
M P Nachimuthu M Jaganathan Engineering College
Dr. G. RAVIKUMAR, Professor / ECE
M P Nachimuthu M Jaganathan Engineering College
Dr T. P. ANDAMUTHU, Professor/IT
M P Nachimuthu M Jaganathan Engineering College
Dr. K. BALASARAVANAN, Professor/CSE
M P Nachimuthu M Jaganathan Engineering College
Dr P.TAMILVANI, ASP/EEE
M P Nachimuthu M Jaganathan Engineering College
Prof. R. MOHAN, HoD /ECE
M P Nachimuthu M Jaganathan Engineering College
Prof. K.N. SIVAKUMAR, HoD/CSE
M P Nachimuthu M Jaganathan Engineering College
Prof. A. SUJITHA, HoD/IT
M P Nachimuthu M Jaganathan Engineering College

Advisory Committee
Dr. Paolo Carbone, Università degli Studi di Perugia, Italy.
Dr. Andy Chen, Catronic Enterprise, United States.
Dr. Walter Downing, Southwest Research Institute, United States.
Dr. Veerpratap Meena, Assistant Professor, Department of Electrical Engineering National
Institute of Technology Jamshedpur, India.
Chair, IEEE Systems Council Systems Education Technical Committee.
Dr. J. Jaya, Hindusthan College of Engineering and Technology, Coimbatore, India.
Ms. Preeti Meena, Indian Institute of Technology Jodhpur, India.

Keynote Speaker

Committee

 
Artificial Intelligence for Control, Fault Detection, and
Maintenance in Complex Systems
AI-Enabled Aspects in Edge-Cloud Environment for
Systems Engineering Applications
Network Function Virtualization for Cloud/Edge
Intelligence in Systems Engineering
Computational AI Methods for Sustainable Society
Development and Implementation
AI Algorithms for Distributed and Decentralized
Processing in Systems Engineering
AI-Driven Security and Privacy Protection for Systems
Engineering Applications
Machine Learning for Prediction and Experience
Modeling in Systems Engineering
Sustainable Recommender Systems Using AI
Techniques
Reinforcement Learning in Sustainable Energy and
Systems Optimization

Track - 2
AI-Enabled Systems Engineering Solutions

Technically sponserd by

Publication

Dr. R. Mohan
Professor, ECE,
M.P.Nachimuthu
M.Jaganathan Engineering
College
Erode, India.
 icssat.contact@gmail.com
 +91-7418914826

Contact

Website link

HTTPS://ICSSAT.COM/2025/
CONTACT-

INFORMATION.HTML
XPLORE COMPLIANT
ISBN: 979-8-3315-3884-2
DVD ISBN: 979-8-3315-3883-5

11-13, June 2025
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Certificate of conference 1: ICSSAS 2025
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Acceptance of conference 2: ICCMC 2025
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Brochure of conference 2: ICCMC 2025
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Comparative Study of Different Machine Learning Models for Parkinson’s Disease 

Detection 

Anuraag Raj Narayan 
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Delhi Technological University

Anuraag thesis.pdf
 

Document Details

Submission ID
trn:oid:::27535:98132271

Submission Date
May 28, 2025, 12:43 PM GMT+5:30

Download Date
May 28, 2025, 12:46 PM GMT+5:30

File Name
Anuraag thesis.pdf

File Size
3.7 MB

69 Pages

19,511 Words

114,526 Characters
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8% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report
Bibliography
Quoted Text
Cited Text
Small Matches (less than 10 words)

Match Groups
95 Not Cited or Quoted 8%
Matches with neither in-text citation nor quotation marks
0 Missing Quotations 0%
Matches that are still very similar to source material
0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources
5% Internet sources
3% Publications
7% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review
No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that 
would set it apart from a normal submission. If we notice something strange, we flag 
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you 
focus your attention there for further review.

Page 2 of 77 - Integrity Overview Submission ID trn:oid:::27535:98132271
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*% detected as AI
AI detection includes the possibility of false positives. Although some text in 
this submission is likely AI generated, scores below the 20% threshold are not 
surfaced because they have a higher likelihood of false positives.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions 
about a student’s work. We encourage you to learn more about Turnitin’s AI detection 
capabilities before using the tool.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify 
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for 
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any 
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing 
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was 
likely revised using an AI-paraphrase tool or word spinner.
 
False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.
 
AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the 
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).
 
The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor 
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted 
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a 
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be 
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.
 
Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the 
percentage shown.
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