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ABSTRACT 

The performance and dependability of SPV systems are heavily impacted by environmental 

conditions such as solar irradiation, temperature, humidity, dust deposition, and shadowing 

etc. These circumstances create nonlinearity, intermittency, and soiling induces 

deterioration, which reduces SPV power production and increases maintenance 

requirements, and further complicates grid integration. This work proposes a complete AI-

based framework that combines deep learning approaches, real-time soiling analytics, 

thermal imaging, and cleaning method assessment to improve the forecasting, fault 

detection, and maintenance efficiency of solar PV systems. 

A hybrid deep learning model that combines CNN and LSTM was created to anticipate 

short-term solar power production using meteorological data such as UV index, humidity 

wind speed, temperature, cloud cover etc. The developed model outperformed classic 

MLP, standalone CNN, and LSTM models, particularly in bright and cold circumstances, 

with a R² value of up to 0.9898. In addition, the research addressed soiling effect using a 

real-time dust monitoring system, which allowed for precise modelling of power losses. A 

layered LSTM architecture was used to estimate dirty PV power production, resulting in 

an astounding 99.13% prediction accuracy and allowing for preventive maintenance 

planning. 

Thermal imaging was used to mitigate performance deterioration caused by hotspots, 

together with powerful deep learning classifiers such as AlexNet, ResNet-18, and 

Inception-ResNet-v2. These models demonstrated excellent detection accuracies up to 

99.3% for defects produced by dust and partial shadowing, allowing for accurate and timely 

fault diagnosis. To meet the increased need for efficient cleaning tactics, many procedures 

were tested, including manual, robotic, sprinkler-based, and nano-coating technologies. 

Manual cleaning is still commonly employed, although its inefficiency under changing 

soiling patterns and seasonal circumstances restricts its usefulness. 

To provide data-driven and balanced decision-making, a hybrid MICMAC-TOPSIS 

framework was used to evaluate and rank cleaning solutions using technical, 

environmental, safety, and economic factors. The study found that nano-coating and 

robotic cleaning systems are the most efficient alternatives for long-term performance and 
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sustainability, whereas manual approaches are the least effective. The MCDM technique 

allowed for objective prioritizing of possibilities, which aided the creation of a context-

sensitive cleaning strategy. 

This interdisciplinary architecture combines forecasting, diagnosis, and maintenance into 

a single intelligent system, laying the groundwork for completely autonomous, self-

optimizing SPV operations. The findings lay a solid foundation for the future development 

of novel, AI integrated, condition-based cleaning solutions aided by multi-criteria analysis 

that can dynamically adapt to site-specific environmental conditions, ensuring consistent 

energy yield, lower operational costs, and long-term SPV system performance. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

1.1.1 Renewable Energy Scenario Worldwide 

The global energy scenario is undergoing a rapid transformation toward sustainability, with 

renewable energy becoming increasingly significant.  The world installed a record 510 GW 

of renewable energy capacity in 2024, which represents a 50% year-on-year increase the 

fastest in two decades.  Fig.1.1 illustrates that SPV technology was the driving force behind 

this expansion, with over 75% of the new installations attributable to it.  The total installed 

capacity of SPV systems worldwide has exceeded 1.6 TW as of early 2025, rendering it 

the fastest-growing renewable energy source.  This development is primarily driven by 

lower installation costs, strong government incentives, increased environmental awareness, 

and advancements in energy storage and forecasting.  However, this expansion is not 

without its challenges.  Grid integration, storage, and the intermittent nature of solar energy 

demand intelligence forecasting and system optimization techniques are necessary to 

ensure efficiency and stability in a variety of climatic zones and energy markets [1]. 

1.1.2 Renewable Energy Scenario in India 

India has become a worldwide leader in the implementation of renewable energy, 

especially in the solar energy domain. Despite the significant expansion in capacity, 

operational limitations especially dust deposition on modules and forecasting inaccuracies 

persist in hindering the optimum performance of solar systems. Recent improvements have 

concentrated on using intelligent cleaning technologies and AI-driven forecasting systems 

to tackle these difficulties.  Numerous experimental projects have used robotic cleaning 

systems, real-time dust sensors, and computational dust modelling to mitigate soiling 

losses and decrease human maintenance.  Concurrently, deep learning architectures are 

being engineered for short-term photovoltaic power forecasting using dynamic 

meteorological data inputs.  These AI-driven systems seek to facilitate predictive 
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maintenance, optimize grid integration, and augment the operational efficiency of solar 

power facilities. 

 

 

Fig. 1. 1 World SPV Capacity for 5 Years 

As of early 2025, India's total installed power generation capacity is approximately 470,448 

MW (470.448 GW), as depicted in the Fig. 1.2. Driven by aggressive renewable energy 

integration and infrastructure modernization, India's power sector remains one of the 

largest and fastest-growing in the world. 

 Thermal power (coal, gas, diesel) comprises 247,590 MW which is 52.6% of the base-

load supply.  Solar, wind, biomass, minor hydro, and waste-to-energy are among the RES 

that have grown significantly to 167,710 MW which is 35.65%. This growth has 

contributed to India's progress toward its 500 GW non-fossil commitment by 2030.  

Nuclear energy accounts for 8,180 MW which is 1.77%, while large hydropower 

contributes 46,968 MW which is  about 9.98%. Notwithstanding these technical 

breakthroughs, structural challenges such land acquisition impediments, transmission 

congestion, and supply chain interruptions remain.  The MNRE has extended the project 

commissioning date for affected plants to December 2025, recognizing the difficulties 

encountered by developers.   
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Fig. 1. 2 Total Installed Capacity and its Dynamic QR Code. 

Fig. 1. 3 India SPV Capacity during 2014-2025 

 These developments collectively indicate a strategic transition in Indias solar sector, 

moving from simple capacity expansion to the incorporation of intelligent, adaptive, and 

self-optimizing solar infrastructure. 
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1.1.3 Enhancing Solar Power Production: Challenges and Future Directions 

Enhancing SPV power production is essential for attaining long-term energy security, 

achieving climate objectives, and facilitating the sustainable growth of contemporary 

electrical systems. Notwithstanding significant advancements in SPV implementation, 

certain operational and environmental issues persist, hindering system performance and 

dependability.  One of the most urgent concerns is contamination resulting from dust 

collection, especially common in arid and semi-arid areas like northern and western India.  

Research indicates that energy production may decrease by 10% to 30% as a result of soiled 

module surfaces, significantly affecting performance if not adequately remedied.  

Conventional cleaning techniques such as hand washing and water spraying are labour-

intensive, time-consuming, and increasingly unsustainable in areas experiencing severe 

water constraint.  Furthermore, hotspot development, caused by partial shade, cell 

discrepancies, or localized dust, leads to irreversible module deterioration, power losses, 

and, in severe instances, fire hazards. 

 A notable issue is the sporadic and erratic character of solar irradiation, which impedes 

stable energy production and complicates load balancing and grid integration.  Traditional 

statistical and rule-based forecasting models often prove insufficient, since they do not 

adequately account for the complex nonlinear and dynamic interactions inherent in real-

time meteorological data.  Moreover, the lack of predictive maintenance protocols, real-

time system monitoring, and proactive fault detection mechanisms elevates operational 

costs and leads to unanticipated downtimes. 

 Recent advancements aim to address these constraints by using AI-based forecasting 

models, including LSTM, Bi-LSTM, and CNN.  These DL frameworks can accurately 

handle time-series data and environmental elements, enabling short-term photovoltaic 

power estimates that adjust to real-world unpredictability. The development of autonomous 

cleaning technologies, such as robotic dust sweepers, electrostatic repulsion devices, and 

superhydrophobic or photocatalytic surface coatings, is concurrently gaining momentum.  

These devices are designed to reduce losses caused by soiling without necessitating 

physical intervention. 

 The future of SPV optimization will be defined by the integration of physics-informed 

machine learning, edge computing, and IoT-enabled smart diagnostics.  These integrated 
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solutions provide real-time defect identification, adaptive maintenance planning, and 

intelligent cleaning management.  They together represent a transition from traditional 

photovoltaic systems to self-healing, adaptive, and resilient solar infrastructures.  This 

advanced ecosystem—driven by deep learning, computer vision, and autonomous 

technology embodies the next frontier in optimizing solar energy production while 

maintaining operational sustainability across various climatic and geographic 

environments. 

1.2 FUNDAMENTALS OF SPV SYSTEMS 

SPV systems are designed to transform solar energy into electricity using the photovoltaic 

effect shown in semiconducting materials.  A conventional SPV system consists of many 

essential components: SPV modules, inverters, mounting frames, balance of system parts, 

and optional energy storage devices. 

 The fundamental component of the system, SPV modules, comprises linked solar cells 

usually constructed from crystalline silicon that produce DC energy upon exposure to 

sunlight.  The DC output is then transformed into AC by inverters to ensure compatibility 

with the utility grid or local load specifications.  Mounting structures provide perfect 

module alignment and stability, and monitoring and control units enable real-time 

performance assessment, fault identification, and energy flow management. The efficacy 

of SPV systems is affected by several environmental parameters like solar irradiation, 

ambient temperature, angle of incidence, dust accumulation, and shadowing.  Internal 

losses, such as mismatch losses, thermal impacts, and deterioration due to age, adversely 

affect the net energy output. Precise modelling, consistent maintenance, and astute 

optimization strategies are crucial for maximizing output efficiency and prolonging the 

operational lifespan of photovoltaic systems. 

1.3 INTEGRATION OF AI IN SPV SYSTEMS 

The implementation of AI in SPV systems represents a notable progression towards the 

development of intelligent, autonomous, and highly efficient solar energy infrastructures.  

AI techniques, including ML and DL, are used to improve several operational areas, such 

as power forecasting, defect detection, performance optimization, and autonomous 

maintenance. 
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 AI-driven forecasting models, including LSTM, GRU, CNN-LSTM, and ensemble 

learning architectures, can learn intricate temporal patterns in real-time meteorological 

data, facilitating precise short- and medium-term forecasts of photovoltaic power 

generation.  This forecasting capacity is essential for aligning power supply with grid 

demand, especially in areas with variable weather patterns. In fault management, computer 

vision techniques integrated with thermal imaging and DCNNs are used to identify and 

categorize abnormalities such as hotspots, cell fractures, and shading defects.  These 

solutions provide real-time issue diagnostics, minimizing operating downtime and 

enhancing the safety and dependability of solar infrastructure. Moreover, AI is crucial in 

mitigating performance decline due to soiling by intelligently evaluating dust collection 

and implementing automatic cleaning systems. This encompasses robotic systems, 

electrostatic repellents, and hydrophobic coatings, all governed by AI-driven decision 

algorithms that enhance cleaning frequencies and resource efficiency. 

 The integration of AI, edge computing, and IoT technologies is facilitating the 

development of advanced SPV systems that are predictive, self-correcting, and responsive 

to fluctuating environmental circumstances. 

1.4 RESEARCH MOTIVATION AND PROBLEM FORMULATION                                                                                                     

Despite the fast growth and extensive deployment of SPV systems across the world, their 

actual field performance often falls short of theoretical predictions.  This disparity is caused 

by a number of ongoing operational and environmental issues, including as dust collection, 

hotspot development, intermittent irradiation, and a lack of adaptive, intelligent control 

systems.  In large-scale SPV systems, traditional maintenance procedures, such as manual 

inspection and cleaning, are not only labour-intensive and time-consuming, but also 

reactive, resulting in delayed problem identification, poor energy production, and higher 

operating expenses. Furthermore, standard statistical or rule-based models for SPV power 

forecasting lack the complexity to deal with complicated, non-linear climatic patterns, 

especially when the atmospheric conditions change dynamically.  This leads to erroneous 

power projections, which impairs grid stability, energy trading accuracy, and effective load 

balancing particularly in high-penetration renewable energy conditions. 
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Motivated by these constraints, the current study provides a complete AI-driven framework 

for greatly improving the performance, reliability, and efficiency of SPV systems.  The 

work is structured around the following key research objectives: 

DL based forecasting models, such as LSTM and Bi-LSTM networks, have been developed 

to provide accurate, real-time predictions of SPV power production while combining 

several meteorological factors. 

The use of thermal imaging and sophisticated image processing methods to identify, 

classify, and mitigate performance-degrading events such as hotspots, shading, and partial 

faults.  

Design and mathematical modelling of dust buildup processes, as well as experimental 

validation under various climatic conditions, are required to precisely assess the influence 

of soiling on module efficiency. 

Development of intelligent and resource-efficient cleaning solutions, integrating robotic 

platforms, surface modification (e.g., hydrophobic or photocatalytic coatings), and AI-

based decision algorithms to minimize energy losses and operational overhead.  

The ultimate goal of this study is to close the gap between the physical limits of SPV 

systems and computational advances in AI and sensor technologies. The suggested 

strategy, which combines predictive analytics, real-time diagnostics, and intelligent 

maintenance techniques, aims to increase energy production, decrease maintenance load, 

and prolong the operational lifetime of SPV systems.  Finally, this research adds to the 

development of autonomous, adaptable, and high-performance SPV energy systems, 

allowing for a more sustainable and scalable solar future. 

1.5 THESIS ORGANIZATION 

This thesis is divided into seven chapters: an introduction, a literature review, an 

exploration of deep learning techniques for SPV power forecasting, mathematical 

modelling of dust accumulation, hotspot detection and mitigation using image processing, 

design and development of mitigation technologies, and a conclusion with future research 

directions.   

Chapter 1 covers renewable energy, with an emphasis on SPV systems. It examines the 

worldwide and Indian renewable energy realities, as well as the obstacles associated with 
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increasing SPV power generation. Furthermore, the use of artificial intelligence in SPV 

systems is investigated. The chapter concludes with the research motivation and problem 

formulation, followed by a summary of the thesis framework.   

Chapter 2 provides a literature review of SPV power forecasting strategies. It investigates 

the influence of dust collection on SPV modules and mitigation tactics, as well as the 

establishment of hotspots and how to reduce their consequences. The chapter ends with an 

appraisal of research gaps and contributions.  

Chapter 3 focuses on the deep learning method to SPV power forecasting. It emphasizes 

the importance of meteorological characteristics and weather conditions in forecasting, 

delves into several deep learning models, and describes data collecting and preparation 

techniques. The design and implementation of models, as well as performance evaluation 

and results, are discussed in detail.  

Chapter 4 discusses the mathematical modelling of dust collection on SPV modules. The 

effect of dust on module efficiency is investigated, and mathematical models for dust 

buildup are created. The models are evaluated using simulations and case studies, and the 

findings are described in detail.  

Chapter 5 covers hotspot generation in SPV modules as well as image processing-based 

mitigating approaches. It studies the causes and consequences of hotspots and presents 

image processing techniques for hotspot identification. The chapter also goes over the 

creation of mitigation approaches, experimental settings, and data collecting, followed by 

a discussion of the findings.  

Chapter 6 examines the design and development of dust-mitigation solutions for SPV 

modules. It examines existing technologies, suggests novel mitigation strategies, and 

describes the design and development process. The success of these strategies is assessed 

using outcomes and analysis.  

Chapter 7 concludes the thesis by investigating the research's contributions and 

emphasizing their limitations. Future research paths are indicated for improving SPV 

power forecasting and system efficiency. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents a detailed review of the major study issues in SPV systems, such as 

power forecasting, dust buildup impacts, soiling mitigation, and hotspot identification.  

Both traditional and advanced AI-based techniques are explored, with a focus on deep 

learning, image processing, and automated maintenance technologies. The analysis 

highlights key research needs in real-time forecasting, intelligent cleaning, and AI-powered 

problem diagnosis.  These discoveries serve as the cornerstone for the issue formulation 

and AI-based optimization approach presented in this thesis. 

2.2 SPV POWER FORECASTING TECHNIQUES 

Solar energy is generally regarded as a prominent renewable energy source owing to its 

minimal environmental effect and ability to supply global energy demand.  Although the 

COVID-19 epidemic temporarily impacted the market in early 2020, the SPV industry 

swiftly recovered, topping 800 GW of installed capacity.  However, the intrinsic fluctuation 

and nonlinear behaviour of solar irradiance, especially under overcast situations, provide 

considerable hurdles to reliable power forecasting and grid stability[2] [3].   

On cloudy days, the solar irradiation received by SPV modules experiences considerable 

changes due to cloud movement, which significantly impacts SPV production. Due to its 

non-stationary and non-linear characteristics, it is necessary to predict solar irradiance to 

provide more reliable solar photovoltaic plants and manage supply and demand. Numerous 

methods exist for forecasting solar irradiance [4]. The increasing frequency [4]. The 

increasing frequency of SPV systems in constructed areas makes accurate forecasting both 

more critical and increasingly difficult to do. Forecasting methodologies have been 

extensively classified into statistical methods, artificial intelligence models, and hybrid 

framework [5] [6] [7]. Some statistical methods used for SPV prediction in many works 

but this model can only learn from linear data since they lack the ability to process 

complicated information. For this reason, ST-based approaches are not suggested for 
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solving issues that need nonlinear predictions, such as those linked with SPV power. It has 

become clear that AI-based models perform far better than their physical and statistical 

counterparts. It has been shown that AI-based models are more effective than physical and 

statistical ones [8],[9]. In [10] a wavelet-coupled support W-SVM model was used to 

predict worldwide incident sun radiation using a constrained meteorological dataset. The 

predictor variables for this model were sunlight hours (St), lowest temperature (Tmin), 

maximum temperature (Tmax), wind speed (U), evaporation (E), and precipitation (P). [11] 

use wavelet transforms (WT) and artificial intelligence to predict the one-hour power 

output of a photovoltaic (PV) system based on solar radiation and temperature data. The 

proposed method employs wavelet transform to enhance SPV power time-series data and 

AI to more effectively capture nonlinear photovoltaic variability. Contemporary machine 

learning techniques are used to enhance the reliability and stability of photovoltaic systems. 

Time-series LSTM network, ConvLSTM, CNN, RF, SVM, and XGBoost regression 

models forecasted solar irradiance in Johannesburg, RF, SVM, and XGBoost regression 

models predicted Johannesburg's sun irradiance In [12] AI-driven methodologies surpass 

conventional techniques. AI-driven methodologies may manage flawed inputs, facilitate 

straightforward updates and maintenance, and engage in reasoning. In [13] proposes a 

random forest that integrates current and past SPV power forecasts from many models 

together with meteorological data to improve day-ahead SPV power estimations. The 

annual performance of the integrated model is evaluated against various combination 

techniques. Smart persistence, artificial neural networks, and random forests are evaluated 

for predicting global horizontal, beam normal, and diffuse horizontal solar irradiance in 

Odeillo, France, a region characterized by considerable weather fluctuation [14]. In [15] 

offers a five-layer CNN-LSTM model for solar photovoltaic power forecasts using data 

from Temixco, Morelos, Mexico. In the hybrid model, convolutional layer filters analyze 

local data properties, while the long short-term memory network captures temporal aspects. 

The five-layer hybrid model is ultimately contrasted with a single LSTM, a two-layer 

CNN-LSTM hybrid model, and two notable benchmarks.LSTM and CNNs are perhaps the 

most popular DL approaches. The primary concept behind employing such models on time-

series data is that LSTM networks are capable of capturing sequence pattern information, 

whereas CNN models are beneficial for extracting valuable features and may filter out 
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noise in the input data. However, although LSTM networks are designed to work with 

temporal correlations, they only use the attributes provided in the training set, whereas 

CNNs are not typically adapted for long temporal dependencies despite being used to 

extract patterns of local trend and the same pattern that appears in different regions of time-

series data. Thus, a hybrid model that combines the strengths of both deep learning 

approaches might enhance the accuracy of predictions. Hybrid model forecasting is one of 

the most appropriate models for forecasting power. The authors in [16] Proposed a CNN-

LSTM model to forecast anomalies in photovoltaic power generation (PVPG) that existing 

machine learning models struggled to comprehend well.  The hybrid model can precisely 

forecast the amount of photovoltaic electricity generated by including factors that influence 

its production.  Subsequently, to demonstrate the model's utility, they contrasted it with 

other machine learning techniques.  The model extracts patterns from multivariate time 

series data on the PVPG and temporal variations.  The findings indicate that the 5D CNN-

LSTM model effectively predicts PVPG, outperforming both the standalone LSTM model 

and the 2D CNN-LSTM model. Some algorithms improve performance further by 

categorizing input days based on weather conditions or integrating results from various 

predictors [17].  Comparative studies consistently indicate that CNN-based and hybrid 

deep learning frameworks outperform standalone models in predicting solar radiation and 

electricity production based on irradiance, temperature, cloud cover [18][19]. These 

improvements highlight the need of AI and hybrid deep learning for accurate, robust, and 

real-time SPV power forecasts. 

Forecasting power production is critical from an economic standpoint. Furthermore, SPV 

power generation forecasting allows the systematic planning of electricity production to 

effectively address difficulties such as system stability and balance in power generation. In 

spite of this, it is difficult to get hourly solar energy data, even from stations that have 

previously taken measurements. Because of this, it is essential to estimate solar energy in 

order to fulfil the requirements for renewable energy. Researchers employ models such as 

fuzzy logic to anticipate SPV production for smart grids in order to estimate the amount of 

solar energy that is produced globally [20][21]. As solar energy continues to expand, it is 

becoming increasingly vital to make accurate predictions regarding radiation, the author in 

[22] a study conducted in Spain utilized a combination of models such as Support Vector 
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Regression (SVR) and Random Forest Regression (RFR) in order to enhance short-term 

observations of radiation. Accurate estimates of SPV assist reduce the need for additional 

backup energy, which in turn drives down costs and improves the efficiency of power 

dispatch, which in turn helps to maintain grid stability.  

In recent years, different models have arisen to forecast SPV power over a long period. The 

SPV power forecasting models are based on CNN and LSTM neural networks [23]. 

Various complex models based on machine learning have been suggested to enhance the 

accuracy of solar power forecasting by utilizing a variety of meteorological inputs and 

datasets.  In [24], a hybrid LSTM-CNN model was trained on one year of data, accounting 

for parameters including relative humidity, temperature, pressure, global horizontal 

irradiance, wind speed, and cloud type.  It outperformed conventional models across a 

variety of seasons and atmospheric conditions, achieving a Mean Absolute Error (MAE) 

that ranged from 27.38 W/m² to –37.02 W/m². [25] A comparative study between LSTM 

and ANN, which utilized inputs such as temperature, humidity, cloudiness, radiation, and 

seasonal features (month and day) over a year, demonstrated that LSTM outperformed 

ANN. The RMSE values for LSTM were 1.23–1.82%, while those for ANN were 1.67–

8.02%.  Another method, LSTM-PVPF, was introduced in [26] . It was tested over a three-

year period and utilized six input parameters, including wind speed, ambient temperature, 

and daily rainfall.  It reported MAPE values ranging from 6 to 9%, which is suitable for 

large-scale datasets and provides high prediction accuracy at a reduced computational cost.  

In [27] author proposed a CLSTM model that was exclusively derived from solar irradiance 

data over a 12-year period. This model achieved an RMSE of approximately 1.515%, an 

MAE of approximately 4.672%, and an APB of approximately 1.233%. It also exhibited 

superior performance compared to isolated models such as CNN, LSTM, and DNN. 

2.3 ANALYSIS OF DUST ACCUMULATION AND ITS EFFECT ON 

SPV MODULES 

Dust significantly impacts the performance and productivity of SPV modules. The 

characteristics of dust (such as kind, size, shape, meteorology, etc.) vary according on the 

geographical location [28].     
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Environmental variables directly affect PV cell performance and efficiency, making them 

important in mathematical modeling of SPV systems. By including these parameters, models 

may better anticipate SPV system behavior under different situations. To achieve the optimal 

design of SPV systems with great dependability, mathematical models are used, and the 

impacts of weather conditions and solar irradiation are included in these models. Researchers 

wanted to provide models and methods to determine SPV system variables. Literature studies 

have modeled transmittance ratio [29], reduction in solar energy gain [30], degradation rate 

[31] solar cell power, efficiency, and I-V characteristics [32]. 

The sophistication of models is enhanced by the inclusion of additional factors that influence 

the system's performance. However, there is always a trade-off between the accuracy, 

complexity, and number of factors in the derived model. 

More than 100 parameters have been examined in [33] to predict the soiling losses in PV 

systems at 20 stations in the United States. Particulate matter (PM), particularly PM10 and 

PM2.5, as well as certain precipitation parameters and the average number of days between 

consecutive rainfalls, were identified as the most effective soiling predictors. In [34], a NN 

model was proposed that predicts SPV power output by considering the physical, chemical, 

and spectral characteristics of soil. The model utilizes a hybrid data clustering algorithm to 

provide efficient data preprocessing and a new data division technique to ensure that the 

training data set contains an adequate amount of data. In comparison to other networks, the 

neural network hybrid models demonstrated superior performance for both known and 

unknown soil samples. A RM and neural network NN were devised in another study [35] to 

forecast the loss of SPV power as a result of artificial soiling. The NN model was found to 

be more effective at certain irradiance levels and soil types, while the RM model was more 

effective at other levels and types. Both models were experimentally validated at a diversity 

of irradiance levels and five types of soils. In order to determine the power loss resulting 

from soiling in 1 MWp plants in Southern Italy, four Bayesian neural network (BNN) models 

were created to be used both before and after cleansing [36]. In [37] author seeks to create a 

dust-solar cell model. The single-diode model models PV cell performance based on current-

voltage relationships. Soiled SPV modules affect installation production. The module's angle 

of inclination and climatic conditions such as aerosols, relative humidity, ambient 

temperature, pressure, etc.  cause this effect. In [38] authors setup an experimental SPV plant 
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to analyses soiling losses and anticipate SPV plant production in one to three hours. The 

author in [39] develops a computational model to research the impacts of residue and 

encompassing temperature on the presentation of a SPV framework. The models assess 

change productivity using improved counterfeit brain organization ANN models' multi -

input multi-output. The model-building approach is displayed and confirmed for 

accuracy using several measures. Daily cleaning boosts SPV system performance, and 

an artificial neural network boosts accuracy to 99.8%. The author in [40] uses artificial 

neural networks to assess and anticipate the power production of a grid-connected 20-

kWp SPV power plant in Tiruchirappalli, India, a reputable manufacturing industry. A 

multilayer perceptron-based ANN model is suggested for power generation day-ahead 

prediction. A monocrystalline silicon SPV module's power was predicted by an artificial 

neural network. PV module soiling refers to the deposition of dust, soil, and microfibers 

from the environment, as well as the growth of minute particles such as moss and fungi. 

It is a lesser-known factor that substantially reduces the power output by operating as a 

barrier for photons of effective light used by a module. The anticipated loss in irradiance 

and power can be calculated using a soiling ratio (𝑆𝑅) parameter [41]. Author in [42] 

presents methodologies to quantify 𝑆𝑅 and soiling rate (𝑆𝑟𝑎𝑡𝑒) for two representative 

commercial technologies, polycrystalline or multi crystalline silicon (mc-Si) and thin-

film cadmium telluride (CdTe) modules, through soiling monitoring stations deployed in 

the selected climate regions. These methodologies can be applied to polycrystalline or 

multi crystalline silicon (mc-Si) and thin-film cadmium telluride (CdTe) modules. Data 

used to compute  𝑆𝑅 and  𝑆𝑟𝑎𝑡𝑒 in accordance with the international standard IEC 61724-

1/2017 was used. Since SPV module cleaning is essential, constant monitoring and 

evaluation are required to optimize these processes [43]. 

2.4 HOTSPOT FORMATION AND ITS MITIGATION TECHNIQUES 

IN SPV MODULES 

Solar energy has emerged as one of the most promising and commonly used renewable 

energy sources owing to its availability, sustainability, and little environmental effect [44]. 

However, various operational and environmental parameters, including as dust deposition, 

shade, temperature, humidity, and module aging, have a significant impact on SPV system 
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efficiency [45] [46] [47]. Dust collection is especially harmful since it limits the quantity 

of incoming solar energy while also causing heat hotspots and permanent module 

degradation.  The type and content of dust particles, such as red soil, limestone, and fly 

ash, have been proven to drastically affect the optical characteristics of the SPV surface, 

resulting in decreased performance.  Theoretical models have been created to forecast the 

effect of regional air pollution on PV production, and they have been confirmed using 

experimental data from contaminated metropolitan areas [48].  Furthermore, the 

interactions between dust, humidity, and air velocity are complicated and interconnected, 

requiring a comprehensive approach to solar cell design and performance improvement 

[49]. 

 Empirical investigations in Kathmandu found that natural dust deposition caused a 29.76% 

decline in efficiency over a five-month period, emphasizing the importance of cleaning 

frequency and dust density (measured at 9.67 g/m²) [50].  Similar studies in Eastern Saudi 

Arabia have shown that SPV modules left uncleaned for more than six months might lose 

up to 50% of their power, stressing dust as a major driver of long-term deterioration [51] 

[52].  Author in [53] conducted a thorough examination of the kinds of defects induced by 

environmental variables and established baseline procedures for defect analysis and 

monitoring. 

To offset these performance losses and improve problem detection capabilities, researchers 

have increasingly relied on AI solutions.  Recent research has used signal processing, 

feature extraction, and machine learning methods like SVMs and NNs to predict fault 

location and severity with greater accuracy [54][55].  Thermographic imaging has emerged 

as a promising technique in this context, allowing for non-invasive and quick assessment 

of PV modules by identifying thermal anomalies associated with dust-related hotspots 

[56][57]. IR thermography, together with fuzzy logic, has been utilized to automatically 

detect defect types by comparing IR pictures of problematic and healthy panels [58]. 

 Deep learning technologies have improved fault diagnoses.  The author in [59] created a 

deep learning system for detecting and classifying hotspot defects and hot substring faults 

in terrestrial and aerial thermal pictures, with an outstanding 98% accuracy   In addition, a 

DRNN was presented to estimate regional dust concentration and investigate dust 

dispersion patterns using unique pre-processing and segmentation approaches.  The model 
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accurately predicted with a R² of 78.7% and MAE of 3.67, tested under three real-world 

scenarios [60]. 

 Building on these advances, a transfer-learning-based multi-scale CNN was presented for 

detecting PV faults using thermographic pictures.  The model corrected class imbalance by 

oversampling and obtained 97.32% accuracy in identifying 11 distinct defect types, 

including diode failure, hot spots, and fractures  [61].  Other research has shown that drone-

based picture classification is useful for assessing PV deterioration, making this the first 

time such datasets have been used for automated diagnostics.These deep CNNs 

outperformed expectations in terms of accuracy, recall, and F1-score, demonstrating their 

suitability for large-scale monitoring [62]. 

 In addition, multispectral deep CNNs have been used for visual defect identification, while 

anisotropic diffusion filters and sophisticated segmentation algorithms have improved 

picture clarity for diagnostic tasks [63] [64].  A Naive Bayes-CNN hybrid architecture has 

been proposed to fuse temporal video frame data for more robust crack identification, 

demonstrating unique data fusion approaches [65]. Furthermore, two-dimensional CNNs 

trained on scalogram features extracted from SPV system time-series data have 

successfully classified a broad variety of abnormalities [66]. 

 Finally, when combined with transfer learning, convolutional neural networks such as 

Alex-Net have shown high generalization capabilities across domains, allowing for 

accurate classification of SPV modules flaws even under complicated environmental 

settings [67]. These developments highlight the importance of sophisticated inspection 

systems in improving SPV module dependability, lowering maintenance costs, and 

facilitating the worldwide transition to sustainable energy. Despite algorithm-based SPV 
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failure detection research, best classifier performance remains an issue. Their performance 

depends on the type of problem, input signals or images, number of inputs, number of 

layers, and network settings. In Fig. 2.1. complete CNN algorithm is given. 

In [68] a deep learning-based SPV module defect detection method using 

electroluminescence images. It addresses two technical challenges: generating high-quality 

EL images for limited samples, and creating an efficient model for automatic defect 

classification using the generated EL image. A deep joint learning model discussed in [69] 

identifies the kind and location of hot areas. Categories of experiments are done on the 

acquired dataset to benchmark the suggested framework. It has limited fault detection 

capability, is expensive and time-consuming, and is incapable of quickly identifying the 

actual site of the defect [70]. This research in [71] describes a novel method for identifying 

modules that detect hot areas and locating them. To provide a robust detection framework, 

two new region-based convolutional neural networks are combined. The key contribution 

is the use of thermography and telemetry data to offer a module condition monitoring 

response. CNN model automatically classifies thermographic pictures into hotspot and 

operational classes. Various pre-processing approaches were assessed to decrease picture 

noise. Using a dataset with various acquisition procedures, the model achieved 99% 

accuracy [72]. The suggested technique beats benchmarked alternatives in effectiveness 

and efficiency [73] proposes an end-to-end deep learning pipeline that uses EL pictures to 

identify, localise, and segment cell-level irregularities in solar PV modules. The modular 

pipeline uses modified Faster-RNN for object recognition, Efficient Net for image 

classification, and autoencoder for weakly supervised segmentation. The modular pipeline 

enables upgrading deep learning models to state-of-the-art upgrades and adding new 

functions. A new automated solar cell fault detection and classification system is provided 

in [74]. Support vector machine is used for classification in different applications 

[75].Further the proposed Deep Feature-Based (DFB) technique classifies deep neural 

network-extracted image features using support vector machines, K-Nearest 

Neighborhood, Decision Tree, Random Forest, and Naive Bayes. The suggested method in 

[76] automatically classifies thermographic pictures from the system's CNN with 98% 

accuracy in two-minute testing. This method is faster than others in literature, with lower 

expenses, diagnostic time, and power production losses. This study develops a computer 
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vision method to semi-automatically extract PV modules from thermographic UAV 

footage. Deep 2-dimensional CNN are utilized in a novel approach to extract features from 

2-D scalograms of PV system data, thereby facilitating the detection and classification of 

faults. An exhaustive quantitative evaluation of the proposed method is juxtaposed with 

previous approaches to PV array failure classification, such as traditional machine learning 

and deep learning [77]. [78] presents two improved RF classifiers for FDD: the Euclidean 

distance-based reduced kernel RF (RK-RFED) and the K-means clustering-based reduced 

kernel RF. [79] uses two sophisticated convolutional neural network models to categories 

the panel's defect type and identify its area of interest. The proposed method compares 

classification models using F1 score, with ResNet-50 transfer learning model scoring 85.37 

%. 

2.5 MITIGATION TECHNIQUES OF DUST ACCUMULATION 

ON SPV MODULES 

Dust is generated by desert storms, volcanic eruptions, industrial emissions, building 

debris, traffic, automobile emissions, microorganisms, pollen, plant matter, dander, and 

other sources. Dust-related energy losses from SPV modules are a huge problem that 

cannot be ignored [80]. However, dust is among the critical factors influencing the 

economics, output, and performance of SPV modules. The geographical places specify the 

dust properties, such as types, sizes, shapes, and meteorology. Researchers have recently 

focused on developing effective methods to reduce and remove dust accumulation on SPV 

modules, as dust significantly reduces their efficiency. Various approaches, including 

mechanical cleaning systems, hydrophobic and self-cleaning coatings, and even 

electrostatic and robotic cleaning solutions, have been explored to maintain the best energy 

output and reduce maintenance costs [81]. A study of 186 US SPV sites found that cleaning 

an SPV plant halfway through dry summer without rainfall can boost energy harvesting by 

0.81% to 4.7% yearly and up to 9.8% using an automated cleaning system [82]. 

Two types of cleaning methods, passive and active, are used to improve SPV module 

power.  Passive SPV module cleaning options include rain, tilting modules for natural 

shedding, hydrophobic coatings, and smooth surfaces. Manual, automatic, and self-

cleaning SPV modules using robotic arms with water jets are active techniques. Passive 
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methods are cheap but inefficient to work in all situations. The active methods clean better 

but cost more. SPV modules are being cleaned using one of three techniques: mechanical, 

coating, and electrostatic. The four mechanical methods, air-blowing, robotic, water-

blowing, and ultrasonic vibration, are studied to clean the surface of SPV modules. These 

techniques require much energy to operate and have moving parts. While consuming much 

water is a significant limit of this method, especially in dry areas. Electrostatic cleaning 

has been the subject of a new design and implementation. Considering the electrode 

designs, the cleaning performance of this device has been evaluated [83]. The electrostatic 

dust removal action of transparent conductive films made of carbon nanotubes is the basis 

for a novel electrostatic adsorption dust removal technique for SPV modules investigated 

in this work [84]. This study investigates the optimal counteracting force required to 

eliminate dust particles stuck to SPV modules. A self-cleaning system that utilizes fluid 

velocities to lift dust particles stuck to a SPV modules surface while minimizing the 

generated static charge has been developed [85]. This work offers the design and 

experimental analysis of a revolutionary self-powered SPV module cleaning mechanism 

system to clean the SPV module. This cleaning method does not require electricity from 

the SPV module, which must be cleaned because it is powered by two little SPV modules 

with rechargeable batteries [86]. The author in [87] presents an SPV module cleaning robot 

that autonomously cleans SPV modules regularly. The robot cleans the surface of the 

modules by using air blowing, liquid spraying, wiping with a wiper, and drying any 

moisture on the modules using a cylindrical brush. The suggested robot is operated by the 

IoT from a remote location, thereby minimizing human labour at the solar facility and 

enabling remote monitoring SPV modules to generate electricity from solar irradiation 

directly. How much light SPV modules use impacts their efficiency. SPV modules use 

30%–40% of incident solar irradiation. Due to ambient dust and module glass reflection, a 

lot of incident irradiation remained unutilized. To overcome these technological 

challenges, self-cleaning/superhydrophobic antireflection coatings are popular [88]. Solar 

superhydrophobic coatings are a difficult area of study due to the necessity to attain both 

transparency and high-water repellent qualities, a combination that is frequently discussed 

in detail in the existing literature. While many of the research focus on superhydrophobic 

coatings broad uses, such as water and oil separation, ice formation resistance, biofouling 
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avoidance, and self-cleaning characteristics, few focus specifically at their development 

for solar energy systems. The necessity for optical transparency severely restricts the 

materials and production processes available, making the development of coatings 

appropriate for SPV modules extremely challenging. The authors in [89] tries to reduce 

that gap by determining the influence of dust accumulation on SPV module performance, 

and the function of transparent, self-cleaning superhydrophobic surfaces in minimizing 

associated optical, thermal, and economic losses. Dust-related power loss in SPV systems 

must be mitigated to deploy solar in arid places economically. High aerosol concentrations 

and frequent sandstorms cause solar array dust to accumulate. Dust remains due to 

occasional light showers. An automated robotic cleaning system was used to test the 

effectiveness of dry-cleaning SPV modules [90]. Existing cleaning methods have 

drawbacks like high cost, energy use, and limited efficiency. There is a requirement for a 

cleaning system that offers a low-power, efficient solution that works well on any module 

orientation. 

2.6 SUMMARY OF GAPS AND RESEARCH CONTRIBUTIONS 

➢ Most current models use restricted meteorological inputs, neglecting critical 

parameters such as module temperature, wind speed, and humidity that affect 

photovoltaic output. Deep learning methodologies provide enhanced precision; 

nevertheless, hybrid models that include these characteristics remain 

underexplored.  

➢ Thermal imaging is extensively used for defect detection; however, it has not yet 

been incorporated into real-time, AI-driven performance improvement.  

➢ The impacts of dust deposition, taking into account particle type, humidity, and 

geographical fluctuation, are not well modelled.  

➢ Present cleaning techniques mostly rely on physical labour or predetermined 

schedules, with limited advancements in intelligent, adaptive cleaning systems that 

adjust to seasonal and environmental variations.  

These deficiencies underscore the need for a cohesive, intelligent system to improve 

forecasting, problem detection, and maintenance in SPV operations. 
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2.7 PROBLEM FORMULATION  

The main objectives of the proposed research work based on the above-mentioned research 

gap is formulated as follows: 

1. SPV power forecasting using deep learning approach considering meteorological

parameters and weather conditions

2. Study analysis for hotspot formation and its mitigation technique using image

processing.

3. Mathematical and analysis of dust accumulation on SPV modules.

4. Design and development of new technologies for mitigation of dust accumulation

on SPV modules.
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CHAPTER 3 

DEEP LEARNING APPROCH FOR SPV POWER 

FORECASTING 

3.1 INTRODUCTION 

SPV power generation has emerged as a critical component in the global transition to 

renewable energy. However, the inherent variability and intermittency of solar electricity 

present considerable hurdles to its integration into the electrical grid. Accurate forecasting 

of PV power generation is critical for effective grid management, load balancing, and 

energy trading. Deep learning approaches have grown in prominence in time series 

forecasting in recent years due to their capacity to understand complicated, nonlinear 

relationships in data. This chapter investigates the use of deep learning models in 

forecasting SPV power generation, showing both the benefits and drawbacks of such 

approaches.  

3.2 FORECASTING METHODS 

Based on these time horizons various forecasting models have been studied and 

implemented various models are short term forecasting models are statistical model, 

intelligent techniques, hybrid models and long and medium-term forecasting models are 

econometric models, end use models and statistical models. Accurate prediction is a main 

challenging area for the SPV system when integrated with grid. For keeping the SPV 

modules working at its maximum efficiency with a maximize output following research 

problems are proposed and formulated. Statistical models are categorized as AR, MA, 

ARMA, and ARIMA, while intelligent models include fuzzy logic, genetic algorithm, and 

expert system. Machine learning models are linear regression, SVR, FFNN, RBFNN, 

MLP, Beysian Algorithm, Decision Tree, Reinforcement and deep learning includes 

DRNN, LSTM, GRU, DCNN, DBN, RBN, SAE, S2S as shown in Fig. 3.1. 
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Fig. 3. 1 Forecasting Models for Medium and Long-Term Forecasts 

3.3 PROPOSED TECHNIQUE 

3.3.1 CNN for Feature Extraction 

The efficacy of models depends on by the quantity of stacked layers and the kind and 

dimensions of the kernel. Convolutional and pooling layers are used to extract profound 

characteristics from the input layer data. 

 

Input layer Convolution layer

Fully connected layer

Output layer

 

Fig. 3. 2  Schematic Architecture of CNN 

The characteristics are then sent to the fully connected layer, which classifies the resultant 

values. A CNN is used to extract hierarchical image features. Consequently, a CNN may 

extract pertinent information from sequential and two-dimensional input data [91]. A CNN 

fundamentally seeks to construct many filters that may extract latent features by sequential 
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convolution and data pooling, as seen in Fig. 3.2. Ultimately, the fully connected layer 

integrates these abstract characteristics, and an activation function is used to address the 

classification or regression task. In the convolution layer, the feature maps from the 

preceding layer are convolved with a convolution kernel, resulting in the generation of 

output feature maps via an activation function [92]. The convolution layer applies a 

convolution kernel to the feature maps from the preceding layer, resulting in the generation 

of output feature maps.1D-CNNs are often used to analyze natural language or time series 

due to their capability to manage sequential data. 1D-CNNs vary from 2D-CNNs since 

both the convolution kernel and the data sequence possess a one-dimensional 

configuration. As seen in Fig. 3.3, the kernel of a 1D-CNN traverses a singular dimension. 

Kernal

Time series data

Seconds

X- axis

 

Fig. 3. 3  1D-CNN Computation Method 

3.3.2  LSTM Model 

The LSTM network is a kind of recurrent neural networks.  In contrast to conventional 

MLPs, RNNs use the temporal context of the incoming data.  The LSTM network has 

layers that facilitate the modelling of long-term relationships in sequential data.  The 

network has been trained to identify patterns and trends in SPV power, including temporal 

connections that allow precise projections.  The LSTM output elucidates the temporal 

dynamics of SPV power generation.  This is feasible with an RNN because to the recurrent 

interconnections among the neurons.  An LSTM may retain and retrieve information due 

to the configuration of neurons inside a memory cell.  These memory cells may retain 

information indefinitely.  Figure 3.4 illustrates that the memory unit has three gates 

designated as "Input gate (it)," "Forget gate (ft)," and "Output gate (ot)," together with a 

recurrent connection.  It regulates the ingress and egress of information inside the cell.  

Every gate in the LSTM receives information from the input neuron.  Each gate is equipped 
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with a mechanism for activation and deactivation.  It has a single input, xt, and two 

feedbacks from the preceding state, st-1 and ct-1.  The sigmoid activation function (g) is used 

by gates, whilst the tanh function is utilized by states.  The memory unit of the LSTM may 

be elucidated by a series of equations, wherein w represents the weight parameter and b 

denotes the bias.  An LSTM has a fundamental architecture of three layers: forget, input, 

and output.  Initially, xt and st-1 are included into the LSTM design.  A decision is made 

about the retention of the information.  All tasks are executed by the forget layer ft [93].  

𝑓𝑡 = 𝑔 (𝑤𝑥𝑓𝑥𝑡 + 𝑤ℎ𝑓𝑠𝑡−1 + 𝑏𝑓)                                                                             
(3.1)   

     where activation function (g). Also, the input layer it is given by equation 3.2.  

𝑖𝑡 = 𝑔(𝑤𝑥𝑖𝑥𝑡 + 𝑤ℎ𝑖𝑠𝑡−1 + 𝑏𝑖)                                                                                 (3.2)   

The last step is to use the following expressions in the output layer to get the output data. 

The process described above keeps going back and forth. This model learns weight parameters 

(w) and bias parameters (b) to minimize the difference between actual training values and LSTM 

output values 

 

  𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑖𝑡𝑡                                                                                                         (3.3)   

𝑖𝑡𝑡 = 𝑡𝑎𝑛ℎ( 𝑤𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐𝑠𝑡−1 + 𝑏𝑖𝑡𝑖                                                                        (3.4)   

𝑜𝑡 = 𝑔(𝑤𝑥𝑜𝑥𝑡 + 𝑤ℎ𝑜𝑠𝑡−1 + 𝑏0)                                                                                (3.5)   

𝑠𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ( 𝑐𝑡)                                                                                                         (3.6)   

     St
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Fig. 3. 4 An Internal Architecture of a LSTM Cell 



 
 
26 

3.3.3  CNN-LSTM MODEL 

In this method CNN and LSTM layers are combined as shown in Fig. 3.5 here, the selected 

inputs are sent to the CNN layer first for feature extraction, then to the flatten layer, and 

finally to the LSTM layer for prediction. After pre-processing, the CNN layer uses time 

series to find local features. The one-dimensional CNN works well for time series 

applications because the convolution kernel moves in a clear direction. This allows it to 

automatically pull out the unobserved data characteristics in the time direction. The 

retrieved features from the encoder CNN are fed into the LSTM architecture. The training 

data, as well as the various gates of the LSTM network, are constantly changed so that the 

LSTM model may find the relationships between the input and output sequence [94]. The 

proposed model parameters considered are shown in Table 3.1 and the proposed work is 

shown in Fig. 3.6. Following are the steps for proposed work. 

Stage 1- Input dimension reconstruction 

1. Inputs are selected that are correlated with the SPV power six inputs are considered for 

training the models. 

2. The reconstruction of inputs such as cloud cover, UV index, Wind Speed, Irradiance, 

temperature, humidity are done to extract spatial features while historical SPV power to 

obtain temporal features. 

3. These inputs are given in proposed model CNN-LSTM and LSTM and CNN deep 

learning model 

Stage 2- Model development 

The Deep learning models are developed with the help of Jupyter notebook platform. 

The 3 deep learning models are trained individually by giving the inputs\Fine tuning of 

parameters is done in this stage to make the model more accurate to predict SPV power 

Step 3 – Evaluation and assessment 

The 3 deep learning model are employed for evaluating the performance in terms of three 

weather conditions sunny, partially cloudy and extremely cloudy and four different seasons 

(winter, summer, rainy and post monsoon) 
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Stage 4- Interpret Results 

The best SPV power prediction among the 3 deep learning models is analysed based on the 

performance metrices such as RMSE, MSE, MAE and R2. 

Table 3. 1 Hybrid CNN- LSTM Model Parameters 
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Fig. 3. 5 Structure of CNN-LSTM Hybrid Model 

Model layers Values 

Inputs Size 3,7 

Conv1D Kernal Size 2 

Max pooling Pooling size 2 

Conv1D Kernal size 2 

Max pooling Pooling size 2 

Flatten - - 

LSTM layers Hidden Neurons/Activation 64/ Relu 

LSTM layers Hidden Neurons/Activation 64/ Relu 

Learning rate - 0.0001 

No. of epochs - 500 

 Optimiser - Adam 
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Best performance model 

for SPV power 

forecasting is CNN-

LSTM

When compared with 

statistical 

indicators(RMSE,MSE,

MAE and R2)

Cloud Cover (%)
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Temperature (° C) 
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Fig. 3. 6 Flowchart of Proposed CNN-LSTM Model 

3.3.4 Multilayer Perceptron (MLP) 

MLP is one of the frequent artificial neural network architectures to resolve scientific 

issues. It can approximate non-linear connections. Complex function modelling ANNs. 

They can easily modify their weights and disregard noise and irrelevant data. They're user-

friendly. MLP has two phases: the entry of data through the MLP's inputs and the error 

corrections through Backpropagation. This cycle is run numerous times to reduce error 

using Bayesian Regularization, a standard approach [17]. MLP consist of three layers i.e., 

input, output and hidden. For most problems, however, a single hidden layer is enough 

[18]. Fig. 3.7 shows a neuron (j), xi represents the inputs, wij represents the weights that 

connect each input I to the neuron j, and yj is the output of the neural network. Neurons 

conduct the propagation rule and activation function. Inputs and synaptic weights define 

the propagation rule (Z). The sum of inputs xi by neuron j weights wij is the most common. 

This function travels through the origin. Adding threshold bj removes this constraint. This 

is another fixed-value input whose weight bj must be modified. The rule for propagation is 

calculated. 

In this equation, Zj represents the result of applying the propagation rule to neuron j, xi 

represents the input vector I, wij represents the weight that links input I to neuron j, and bj 

represents the threshold that is linked with neuron j. The output of neuron j is determined 

by the activation function (A), which takes into account the neuron's activation. This is 
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dependent on the rules of propagation, such as Aj is the neuron's activation, and f is its 

activation function. Each layer of a neural network is interconnected with the ones below 

it, besides forming a neural network. In the context of neural networks, a layer refers to a 

collection of neurons that share a common z-index, the simultaneous information 

processing of the network. The neural network's behaviour is determined by each neuron 

activation function and the topology and training used to determine the weights. 
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Fig. 3. 7 Schematic Representation of Neurons. 

3.4 DATA PREPARATION 

This chapter uses dataset which is dived into two cases  

   Case 1: Irradiance, Temperature which are obtained from solar analyzer 9018T and 

humidity, windspeed are obtained from the solcast site and cloud cover, UV index and SPV 

power is mathematically modelled for obtaining higher accuracy results. Solcast has access 

high-resolution historical Time Series and TMY data with minimal uncertainty for energy 

simulations and reliable solar resource assessments. Prepared for integration through API 

and the solar analyzer is a portable instrument utilized for troubleshooting, monitoring, 

measuring, and analyzing a variety of SPV system parameters.  The data used is for one 

year from 24 November, 2021 to 24 November, 2022 containing 52560 data i.e., 365 x 24 

x 6, the data collected is at 10 minutes interval, the dataset comprises of inputs having 

irradiance, humidity, wind speed, Cloud cover, Temperatures, SPV power, UV index as 

shown in Fig. 3.8. The Fig. 3.9 is a correlation matrix from here the correlation of several 

meteorological parameters with power is been shown, in this proposed deep learning model 
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from the correlation matrix the inputs which are having highest correlation with SPV power 

is considered as an input for prediction of SPV power. The multi-input chosen in this work 

are Humidity, Temperature, UV index, Irradiance, Wind speed, Cloud cover, SPV power 

which are provided to the CNN, LSTM, CNN-LSTM model for prediction of SPV power. 

  Case 2. The data used for training was recorded at every 30 minutes and there are 17614 

sample data. The data recorded at every 30 minutes. The meteorological data for New Delhi 

is collected and analyzed by the solcast site during one year. In this data the parameters 

that were included are direct normal irradiance, global horizontal irradiance (GHI), 

diffused horizontal irradiance, wind speed, air temperature, and relative humidity were all 

included in this data. The collected real-time data has a time step of 30 minutes. 

3.4.1 Selection of Inputs based co-relation matrix 

This section explains the inputs used to construct the SPV power prediction model. The 

choice of input variables and location is critical to the operation of the SPV system. 

Despite the flat terrain, the movement of clouds and the kind of clearness index in the sky 

have an influence on the power output of the PV system. SPV power is affected by changes 

in ambient temperature, humidity, wind speed, cloud cover, UV index, and irradiance 

shown in Fig. 3.10. Mathematical computation of cloud cover and UV index is done in this 

section. The modelling of cloud cover and UV index with the help of meteorological 

parameters such as wind speed, irradiance, humidity, and temperature these data is 

recorded on intra hourly basis so as to get the cloud cover and UV index at 10 min of 

intervals. The usage of proper sorts of input parameters results in better performing 

prediction models. The inputs considered for prediction are shown in the Fig. 3.8. This 

figure is plotted considering one year of data 

If the inputs used are redundant, have a low correlation factor, or essential parameters are 

missing, the prediction results will be complicated [95]. 

A) Modelling of SPV power. 

To forecast SPV power, the real irradiance incident on the SPV , the exact wind speed on 

the SPV module, and the modules temperature must be estimated. The SPV power equation 

is as follows [16]: 
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𝑃𝑐 = 𝑃𝑟𝑆𝑚(1 + 𝐾1log(𝑆𝑚) + 𝐾2log(𝑆𝑚)2 + 𝐾3𝑇𝑎 + 𝐾4𝑇𝑎log(𝑆𝑚)

+ 𝐾5𝑇𝑎log(𝑆𝑚)2 + 𝐾6𝑇𝑎
2)

(3.7) 

𝑇𝑎 =
𝑆𝑚

26.9 + 6.2 ∗ 𝑤𝑖𝑛

(3.8) 

𝑆𝑚 =
𝑆𝑚1

1000

(3.9) 

𝑇𝑎 = 𝑇𝑎1 − 25𝜊𝐶 (3.10) 

𝑊𝑖𝑛 =
𝐷𝑚

0.2

𝐷𝑎
∗ 𝑤𝑠 

(3.11) 

where Pc is the real time module estimated power, win is the speed of wind on the module, 

Ta is the change in temperature caused by wind speed, and K1 - K6 are PV module constants. 

Da is the distance between the PV module and the ground surface, and Dm is the distance 

between the anemometer and the ground surface. Table 3.2 shows the values of the 

constants used to calculate SPV power. The power received for one year is displayed in 

Fig. 3.8 g) when Pr is set to 5 kW. 

Table 3. 1 Parameters for Calculating SPV Power 

B) Modelling of Cloud Cover

Cloud cover is the percentage of the sky that is obscured by clouds at a given place and 

time. It is frequently stated as a percentage or fraction range from 0 to 1, with 0 representing 

clear sky with no clouds and 1 representing totally overcast sky with clouds covering the 

whole sky. 

Parameters Values 

K1 -0.046689

K2 -0.072844

K3 -0.002262

K4 0.000276 

K5 0.000159 

K6 -0.000006

Dm 10 meters 

Da 7.2 meters 
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Authors in [96] included Cloud cover, temperature, relative humidity, and wind speed to 

develop a model for estimating global solar irradiance. The correlation can be expressed as  

𝐻 =
[𝐻𝑜 sin ∝𝑠 (𝑎0 + 𝑎1

𝑁
10 +  𝑎2 (

𝑁
10)

2

+  𝑎3(𝑇𝑎) + 𝑎4. 𝑅𝐻 + 𝑎5𝑤𝑠 + 𝑑)]

𝑘
 

(3.12) 

There is an inverse relation between cloud cover and Irradiance which means more the 

cloud less will be the Irradiance  

where a0, a1, a2, a3, a4, a5, d, and k are regression coefficients; N is the cloud cover in tenths; 

𝑇𝑎is the ambient temperature (°C). Here H is hourly global solar radiation (GSR) and 𝐻𝑜 is 

GSR on any horizontal surface under clear sky [97]  

There is an inverse relation between cloud cover and Irradiance which means more the 

percentage of cloud cover less will be the Irradiance  

   𝐻 =  𝐻𝑜[1 − (1 − 𝑘) 𝐶]                                                                                               (3.13) 

where H0 represents the expected daily global radiation for a clear sky, C represents the 

monthly average proportion of the daylight sky covered by clouds, and k represents a 

constant defining solar radiation transmission inside clouds. This formula has a structure 

similar to the Anstrom-Prescott (A-P) formula, which describes the relationship between 

sunlight duration (S) and global solar radiation (H) as: Calculate H from equation (12) 

Relation between H and S is as below. 

  𝐻 =   𝐻𝑜 [𝑎 + 𝑏 (
𝑆

𝑆𝑜
)]                                                                                                      

(3.14) 

a and b are regression coefficients to be found If the estimate is exact and devoid of 

aesthetic flaws, the total cloud amount should follow the relationship as[98]: 

 𝐶 =   [1 − (
𝑆

𝑆𝑜
)]                                                                                                                

(3.15) 

Nonlinearity was discovered in the connection between C and (1-
𝐻

𝐻𝑜
 ), where Ho represents 

extraterrestrial solar radiation.                                                                                                

In this work, a relationship between cloud cover and sunlight every 10 minutes for a one-

year New Delhi location data is considered having latitude is 28.75 longitude is 77.12. For 

more accurate cloud cover estimation sunshine hour data is required. 

We can estimate S/S0 using the correlations reported in (3.13). Then, multiplying this 

amount by S0 gives us the value of S. cloud cover is calculated from (3.14). 
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C) Modelling of UV index 

The UV Index is scaled from 0 to 11, with 0 being the lowest and 11 being the most intense. 

These figures are organised as follows: 

In UV index 2 or less means low, 3 to 5 means Moderate, 6 to 7 means High, 8 to 10 means 

very high and 11 or higher means extreme as in Table 3.3, ultra violet (UV) radiation this 

effect the SPV power as the correlation with power is 0.8574. 

UV relation with SPV power is linear as the UV is more power production will be high, 

UV index is related to Irradiance as in equation (3.16) 

   UVI =
1

25
mW/m2𝑈𝑉𝐸       (3.16) 

𝑈𝑉𝐸 = 40 ∫ 𝐸𝑔𝑙(λ)𝜀(λ)𝑑λ                                                                                    
0.40

0.28

 
 (3.17) 

where 𝐸𝑔𝑙(λ) and 𝜀(λ) are UV global irradiation at the surface and erythemal 

photobiological global radiation at the surface and the erythemal photobiological reaction 

action spectrum for human skin at the wavelength (λ). Micrometres (μm) are used to talk 

about the boundaries of the integral. Each UVI measure is equal to 25 milliwatts per square 

metre of broadband UVE.  

Table 3. 2 UV Index Scale Range 

The cloud cover and UV index from the Fig. 3.8 above shows that when the cloud cover is 

1 UV index is minimum and vice versa the cloud cover and UV index is modelled with the 

help of the meteorological inputs and the data obtained is at every 30 minutes. The 

correlation of the inputs with SPV power is shown in Fig.3. 11 where the Irradiance is the 

best factor which effects the SPV power as in Table 3.4. 

UV Index Rating 

11 or higher Extreme 

8 to 10 Very high 

6 to 7 High 

3 to 5 Moderate 

2 or less Low 
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Fig. 3. 8 Cloud Cover and UV Index Relation for 24 Hours. 

The power output of the SPV system is considerably influenced by a variety of 

meteorological parameters, as illustrated by a comprehensive correlation analysis of the 

dataset obtained from the Solcast platform.  In Fig 3.10, the correlation matrix is shown, 

which clearly demonstrates the nature and strength of these relationships. 

 The UV index exhibits the greatest positive correlation with SPV power output among the 

observed parameters, with a correlation coefficient of 0.8574.  This robust correlation 

suggests that the fundamental operating principle of photovoltaic cells is the direct 

correlation between increased photovoltaic generation and higher UV radiation levels. This 

is consistent with the fact that SPV cells convert ultraviolet and visible light into electricity. 

 Additionally, SPV power exhibits a moderate positive correlation of 0.6315 with 

temperature.  Although moderate temperature increases can initially enhance the 

semiconductor properties of PV cells, excessive heating typically results in a decrease in 

efficiency.  However, the overall impact is still positive to a significant extent under the 

normal operating conditions depicted in the dataset. 

 On the other hand, SPV power exhibits a very low positive correlation of 0.08937 with 

wind speed.  While wind can indirectly improve SPV performance by cooling the modules 

and thereby reducing temperature-induced efficiency losses, its direct impact on solar 
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irradiance capture is negligible.  Consequently, its influence on SPV output is negligible 

when examined with other variables. 

 SPV power output exhibits a moderate positive correlation of 0.3591 with sea level 

pressure.  This implies that, although atmospheric pressure fluctuations can have a minor 

impact on solar irradiance penetration and, consequently, PV generation, they are not the 

determining factors. 

 Conversely, the output of SPV systems is negatively correlated with both humidity and 

cloud cover.  The amount of sunlight that reaches SPV modules is reduced as a result of 

the scattering and absorption of solar radiation by the increased water vapor in the air, 

which is indicative of high humidity levels.  In the same way, increased cloud cover 

prevents direct sunlight from reaching the surface and reduces GHI, which leads to a 

reduction in photovoltaic generation.  The negative correlations underscore the fact that 

both humidity and cloud cover are critical adverse factors and must be meticulously 

incorporated into SPV power prediction models to enhance the reliability of the forecast. 

A comprehensive set of meteorological parameters is included in the dataset obtained from 

Solcast, which serves as a solid foundation for predictive modelling.  The direct 

relationships between the six specified input features (UV index, temperature, wind speed, 

sea level pressure, humidity, and cloud cover) and SPV power generation are numerically 

depicted in Table 3.4, while the feature correlation matrix in Fig. 3.10 visually summarizes 

these interrelationships. 

 

Table 3. 3 Correlation Coefficient Between the Six Selected Inputs to the SPV Power 

 

 

 

 

Inputs Correlation Coefficient (R2) 

Irradiance 1 

Temperature 0.6315 

Humidity -0.6509 

Wind Speed 0.3937 

Cloud cover -0.2931 

UV index 0.8574 
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Fig. 3. 9 Daily plots of 1 year for (a) cloud cover (%) (b) UV index (c) wind speed (m/s) (d) 

Irradiance (W/m2) (e) Temperature ° C (f) Humidity (%) and (g) power (kW) 
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In conclusion, this correlation analysis emphasizes that humidity and cloud cover are the 

significant negative predictors of SPV power output, while UV index and temperature are  

the dominant positive predictors.  Consequently, in order to improve the reliability of SPV 

energy yield predictions, forecasting models must strategically evaluate these parameters. 

Correlation plot of different inputs with SPV power is shown in Fig. 3.11 were Fig 3.11(a) 

illustrates a negative correlation between cloud cover and power, suggesting that solar 

generation is diminished in overcast conditions. Fig. 3.11(b) illustrates a robust positive 

correlation between the UV index and power output, with greater UV levels resulting in 

increased power output.  Power generation is also mildly positively influenced by wind 

speed in Fig. 3.11(c), which may facilitate panel cooling.  Solar radiation is the most critical 

factor, as evidenced by Fig. 3.11(d), which indicates a direct linear increase in power. Fig. 

3.11(e) indicates that power output increases as temperature increases, although this may 

be contingent upon the efficacy of the panel at elevated temperatures.  Finally, Fig. 3.11(f) 

suggests that solar power output is generally reduced as a result of increased humidity, 

which is likely due to atmospheric scattering and absorption. 

Fig. 3. 10 Feature Correlation Matrix 
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3.5 RESULT AND DISCUSSION 

3.5.1  Result and Discussion for Dataset 1 

Deep learning models and proposed hybrid models are employed for the prediction of SPV 

power using multivariate time series data. The selection of the inputs that are utilised in the 

Fig. 3. 11 Correlation Plot of SPV Power with (a) Cloud Cover b) UV Index (c) Wind Speed 

(d) Irradiance (e) Temperature (f) Humidity 
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models that are run through deep learning is covered in Section 4. In the first place, a hybrid 

model that consists of CNN and LSTM features is presented. The dataset that was used for 

this analysis spanned one year containing 52560 (365*24*6), and additional LSTM layers 

were connected in order to learn the pattern of SPV power prediction based on weather 

scenarios i.e sunny, partially cloudy and extremely cloudy. The CNN model assisted in the 

extraction of features from the dataset. The outcomes that were predicted are then 

compared with the LSTM and CNN models. In this section. The dataset was divided into 

four seasons: winter, summer (pre monsoon), rainy and post monsoon. Deep learning 

models such as CNN, LSTM, CNN-LSTM, and ARIMA are trained to predict SPV power 

based on the seasonally divided dataset. To further improve the accuracy of SPV power 

predictions, the models were trained on data divided by different weather patterns. This 

section is divided into 2 parts first part discusses the prediction based on seasonal patterns 

i.e (winter, summer, rainy and post monsoon) and then in the second shows the prediction 

based on 3 weather conditions and third parts discusses the performance metrices. 

Data is collected throughout a year and used to train deep learning models such as CNN-

LSTM, CNN, and LSTM. In addition, the ARIMA model is trained to predict SPV power. 

The dataset contains 365 data points for a year. Fig. 3.12 (a) depicts a comparison 

prediction plot of deep learning models. The error plots are shown in Fig.3.12 (b). Based 

on the data shown in Fig. 3.12 a), it can be concluded that the CNN-LSTM model is a better 

approach for predicting SPV output, with less mistakes than other proposed methods. 

 

 

 

 

 

 

 

 

 

                             (a)                                                                            (b) 

 

 

Fig. 3. 12 Comparison of CNN-LSTM, LSTM, CNN and ARIMA models for one year 

data a) solar PV power prediction plot with actual power   b) error plots 



 
 
40 

 

3.5.1.1 SPV Power Prediction Based on Different Seasons 

The complete dataset is divided in four different seasons—winter, summer (pre monsoon), 

rainy (monsoon) and post monsoon—  

The winter season encompasses the months of December to March. 

The summer (pre monsoon) season spans from April to June. 

The monsoon season, known as the rainy season, spans from June to September. 

And the post monsoon season spans from October to December 

These different seasonal pattern datasets are used to train the deep learning models for 

different seasons. The deep learning models are trained based on different seasonal pattern 

and SPV power prediction is made according to different seasons. From Fig. 3.13 it can be 

observed that maximum power is obtained in months of summer the variations are also less 

as compared to rainy, post monsoon and winter conditions. Fig. 3.13 below shows the SPV 

power prediction comparison plot and error plot of various deep learning models with the 

traditional model i.e. ARIMA. 
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3.5.1.2 SPV power prediction based on weather conditions 

One year of SPV power data is analyzed based on three different weather conditions these 

weather conditions are obtained based on the Table 3.5. 

Table 3. 4 Distributions of Different Weather Conditions 

UV index Type of weather conditions 

0% to 20% Clear day (sunny) 

21% to 60 % Partially Cloudy 

61% to 100 % Extremely Cloudy 

Based on the above-mentioned Table 3.5 the dataset is divided into 3 different weather 

scenarios. The sunny dataset has 144 data points, the partially cloudy dataset has 141 days, 

and the Extremely cloudy dataset has 81 days 

3.5.1.2.1. SPV Power Prediction for Sunny Day  

The data collected from sol cast site for one year where sunny condition data were used to 

train the three models i.e CNN, LSTM and the proposed hybrid CNN-LSTM. The Sunny 

data is 144 these data is used to train the deep learning models for SPV power prediction. 

Fig. 3. 13 Comparison of Different Deep Learning Models With ARIMA Model in Four 

Different Seasons 
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From Fig.3.14 (a) it can be observed when there is sun in sky power increases or decrease 

gradually in the sky. Seven inputs were given to all the three model for analysing they were 

Humidity, temperature, wind speed, Solar radiation, UV Index cloud cover, SPV power 

and the predicted output is SPV power the forecasted results for all the three models is 

shown in Fig. 3.14 (a) it is observed that CNN-LSTM predicted more accurately  

than CNN model and LSTM model. The error between all the three models is been 

compared which shows CNN-LSTM have less errors than the other two model the error 

plot is shown in Fig. 3.14 b) and it is observed that CNN -LSTM have less error than other 

CNN and LSTM model. Traditional methods of prediction are compared for sunny 

conditions in order to show that the proposed deep learning model performs much better 

than Traditional model the traditional model considered is ARIMA (Auto regressive  

integrated average). 

\\\ 

(a) (b) 

For comparison MSE is calculated for ARIMA model it comes out to be 0.00220 and MSE 

for proposed CNN-LSTM model comes out to be 0.000645 comparison is shown in 

Fig.3.13 (a). Additionally, the models are compared using Root Mean Square Error, Mean 

Absolute Error, Mean Square Error, and R2 for the goal of conducting more accurate 

analyses. 

Fig. 3. 14 Comparison of CNN-LSTM, LSTM, CNN and ARIMA Models in Sunny 

Conditions a)  SPV Power Prediction Plot with Actual Power b) Error Plots 
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3.5.1.2.2.  SPV Power Prediction with Partially Cloudy Conditions 

The data collected from sol cast site for one years where extremely cloudy condition data 

were used to train the three models i.e. CNN, LSTM and the proposed hybrid CNN-LSTM. 

The extremely cloudy data is 81 these data is used to train the deep learning models for  

SPV power prediction. In extremely cloudy condition frequent fluctuation of SPV power 

is observed. And the SPV power generated is less in extremely cloudy  

conditions. From Fig. 3.15 a) it can be observed when there are clouds in the sky, there is 

an immediate shift in the amount of fluctuation in the power generation. Seven inputs were  

 

(a)                                   (b) 

given to all the three model for analysing they were Humidity, temperature, wind speed, 

Solar radiation, UV Index cloud cover, SPV power and the predicted output is SPV power. 

The forecasted results for all the three models is shown in Fig. 3.15 it is observed that 

CNN-LSTM predicted more accurately than CNN model and LSTM model. The error 

between all the three models is been compared which shows CNN-LSTM have less errors 

than the other two model the error plot is shown in Fig. 3.15 (b). It can be observed that 

CNN-LSTM error is very less compared to CNN and LSTM model. Traditional methods 

of prediction are compared for extremely cloudy conditions in order to show that the 

proposed deep learning model performs much better than Traditional model, the traditional 

model considered is ARIMA. For comparison MSE is calculated for ARIMA model it 

Fig. 3.15  Comparison of CNN-LSTM, LSTM, CNN and ARIMA Models in Partially 

Cloudy Conditions a) SPV Power Prediction Plot with Actual Power b) Error Plots 
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comes out to be 0.00820 and MSE for proposed CNN-LSTM model comes out to be 0.0012 

the comparison is shown in Fig. 3.15. 

 

3.5.1.2.3. SPV Power Prediction with Extremely Cloudy Conditions 

The data collected from sol cast site for one years where extremely cloudy condition data 

were used to train the three models i.e. CNN, LSTM and the proposed hybrid CNN-LSTM. 

The extremely cloudy data is 81 these data is used to train the deep learning models for 

SPV power prediction. In extremely cloudy condition frequent fluctuation of solar PV 

power is observed. And the SPV power generated is less in extremely cloudy conditions. 

From Fig. 3.16 (a) it can be observed when there are clouds in the sky, there is an immediate 

shift in the amount of fluctuation in the power generation. Seven inputs were given to all 

the three model for analysing they were Humidity, temperature, wind speed, Solar 

radiation, UV Index cloud cover, SPV power and the predicted output is SPV power. The 

forecasted results for all the three models is shown in Fig. 3.16 it is observed that CNN-

LSTM predicted more accurately than CNN model and LSTM model. The error between 

all the three models is been compared which shows CNN-LSTM have less errors than the 

other two model the error plot is shown in Fig. 3.16 (b). It can be observed that CNN-

LSTM error is very less compared to CNN and LSTM model.  

 

 

 

 

 

 

 

 

(a)                                  (b) 

 

 

 

Fig. 3.16 Comparison of CNN-LSTM, LSTM, CNN and ARIMA Models in Extremely 

Cloudy Conditions a) SPV Power Prediction Plot with Actual Power b) Error Plots 
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Traditional methods of prediction are compared for extremely cloudy conditions in order 

to show that the proposed deep learning model performs much better than Traditional 

model, the traditional model considered is ARIMA. For comparison MSE is calculated for 

ARIMA model it comes out to be 0.00820 and MSE for proposed CNN-LSTM model 

comes out to be 0.0012 the comparison is shown in Fig. 3.16. 

3.5.1.3  Performance Evaluation 

Performance estimation is an essential factor for determining a model's prediction 

accuracy. RMSE, MAE, MSE and R2 are variables used for comparison analysis. MAE 

aids in analysing the prediction model's constant prediction errors, RMSE assesses the 

model's overall accuracy, and R2 represents the relationship strength between the predicted 

and actual values of the models. Table 3.7 for partially cloudy, extremely cloudy and sunny 

prediction error is shown.  

Where "N" number of windows, "𝐴𝑖" actual value, and Pi does the Predicted value. The 

arithmetic mean of the actual value is �̅�. 

Table 3.6 and 3.7 analyse the performance of proposed methodology for varying weather 

conditions and seasons, respectively. According to the Table 3.6, the CNN-LSTM 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐴𝑖 − 𝑃𝑖|                                                                                                                                             

𝑁

𝑖=1

 
(3.18) 

𝑁𝑀𝐴𝐸 =  
𝑀𝐴𝐸

𝑅𝑎𝑛𝑔𝑒(𝐴𝑖) 
                                                                                                                                               (3.19) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝐴𝑖

𝑁

𝑖=1

− 𝑃𝑖)
2                                                                                                                                             

(3.20) 

𝑁𝑀𝑆𝐸 =  
𝑀𝑆𝐸

𝑅𝑎𝑛𝑔𝑒(𝐴𝑖)
                                                                                                                                               (3.21) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐴𝑖 − 𝑃𝑖)2                                                                                                                                 

𝑁

𝑖=1

 
(3.22) 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑅𝑎𝑛𝑔𝑒(𝐴𝑖)
                                                                                                                                      (3.23) 
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algorithm's performance is superior than that of both CNN and LSTM.  performs better 

than LSTM in the majority of deep learning applications; nevertheless, when compared 

with the CNN-LSTM model, its performance is less accurate in terms of performance 

evaluation. It is possible to draw the conclusion from Table 3. 6 that the deep learning 

model is superior to cloudy weather circumstances in terms of its ability to forecast. 

 

Table 3. 5 Estimation Errors of Various Prediction Model with Weather Conditions such 

as Sunny, Partially Cloudy and Extremely Cloudy 

 

Furthermore, it is possible to deduce from Table 3.7 that the models have a high level of 

accuracy when applied to the winter and post-monsoon datasets. In both Table 3.6 and 

Table 3.7, deep learning models perform better than the ARIMA. 

CNN-LSTM is the deep learning model that performs the best across all of the weather 

patterns and seasons that were taken into consideration. In Table 3.8, the work of previous 

author is compared with the proposed, and the results show that the proposed model is 

more effective. 

Model (Sunny) MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.0286 0.0308 0.04800 0.05175 0.00230 0.00248 0.9636 

CNN 0.0271 0.0292 0.04406 0.04750 0.00194 0.00209 0.9643 

CNN- LSTM 0.0163 0.0176 0.02541 0.02739 0.00064 0.00069 0.9898 

ARIMA 0.435 0.469 0.05400 0.05821 0.00220 0.00237 0.9239 

Model (Partially 

Cloudy) 
MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.9951 0.7420 0.14622 0.1090 0.02138 0.01594 0.7734 

CNN 0.0919 0.0685 0.1237 0.0922 0.1529 0.1140 0.8378 

CNN- LSTM 0.0236 0.0175 0.0346 0.0258 0.00120 0.00089 0.9872 

ARIMA 0.1234 0.0920 0.19622 0.1463 0.00820 0.00611 0.7234 

Model (Extremely 

Cloudy) 
MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.0719 0.0555 0.1046 0.0808 0.0109 0.0084 0.8967 

CNN 0.0535 0.0413 0.1246 0.0962 0.03186 0.02461 0.7045 

CNN- LSTM 0.2521 0.1947 0.0824 0.06366 0.00679 0.00524 0.9358 

ARIMA 0.1576 0.1218 0.2146 0.1658 0.0423 0.0327 0.6045 
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 Table 3. 6 Estimation Errors for Various Prediction Model Trained Based on Different 

Seasons 

Model (Winter) MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.02424 0.02601 0.0395 0.04237 0.00155 0.00166 0.9628 

CNN 0.06323 0.06783 0.08511 0.09131 0.00724 0.00776 0.8271 

CNN- LSTM 0.00862 0.00924 0.0126 0.0135 0.000158 0.000169 0.9962 

ARIMA 0.0525 0.05632 0.08900 0.09548 0.00780 0.008368 0.9239 

Model 

(Summer) 
MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.06974 0.07376 0.1037 0.10968 0.01075 0.01137 0.7225 

CNN 0.05405 0.05716 0.0723 0.0765 0.00524 0.00554 0.7674 

CNN- LSTM 0.02869 0.03034 0.0425 0.0449 0.00181 0.00191 0.9197 

ARIMA 0.23363 0.24710 0.2789 0.2949 0.0123 0.01301 0.5674 

Model (Rainy) MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.07394 0.05893 0.1094 0.08719 0.01196 0.00953 0.8396 

CNN 0.14043 0.11193 0.18216 0.14519 0.03318 0.02645 0.6554 

CNN- LSTM 0.02592 0.02066 0.08858 0.07060 0.00784 0.00625 0.8947 

ARIMA 0.15578 0.1242 0.2345 0.1869 0.004323 0.00344 0.5556 

Model (Post 

Monsoon) 
MAE NMAE RMSE NRMSE MSE NMSE R2 

LSTM 0.02599 0.03228 0.0429 0.05298 0.0018 0.002236 0.95078 

CNN 0.06499 0.08074 0.1195 0.1484 0.01429 0.01775 0.71822 

CNN- LSTM 0.01203 0.0149 0.04225 0.0525 0.00178 0.00221 0.9523 

ARIMA 0.07157 0.0889 0.24146 0.2998 0.01523 0.0189 0.6238 
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Table 3. 7 Comparison of the Proposed CNN -LSTM Method with Previous Work 

Ref. Method 

Proposed 

Input Parameters Dataset Performance 

Metric 

Observation 

[99] CNN-LSTM 

with a Semi 

Asynchronous 

Personalized 

Federated 

Learning 

Framework 

Not given 990 

days 

0.689 (RMSE) The suggested system improved 

the PV power production 

performance projection. 

[100] CNN-LSTM Time sampling 1 month 0.03105 (RMSE) CNN LSTM outperforms LSTM 

method 

 

[101] 

 

Deep ESN 

and CNN-Dee 

ESN 

Wind speed, humidity, 

SPV power, radiation, 

diffuse radiation, 

average phase current, 

and temperature 

11 

months 

0.04101(RMSE) 

0.0381(MAE) 3.3313 

(MAPE) 

In SPV power generation 

prediction, the suggested 

 hybrid model beat other single 

models  

[15] CNN-LSTM SPV power 1 year 0.485 and 0.2775 

RMSE for sunny and 

cloudy respectively 

CNN-LSTM Outperforms in 

sunny Weather conditions 

[102] CNN-LSTM Humidity Wind speed, 

output power, diffuse 

radiation 

- O.623 (RMSE) The suggested hybrid prediction 

model outperforms the single 

model LSTM, CNN 

[103] MODWT-

LSTM 

Wind speed, wind 

direction, Active power, 

temperature, humidity, 

global horizontal 

radiation, 

 

1 year 0.1231 (RMSE) As compared to 1 day and 10 

days, the suggested technique is 

found to be more dependable  

 Proposed 

model 

Temperature, 

humidity, wind speed, 

cloud cover, UV index, 

solar irradiance, SPV 

power 

12 

 

Months 

0.025407 RMSE 

(sunny) 

0.03465 

RMSE (partially 

cloudy) 

0.0824 RMSE  

(Extremely cloudy) 
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3.5.2 Result and Discussion for Dataset 2 

17614 records were taken with a 30-minute time span, from November 30, 2021, to 

December 1, 2022, available at the solcast site. These data set are the time series data, a 

historical record of solar radiation data and other weather parameters for the location of 

New Delhi. For the implementation of the suggested model, data was recorded. SPV power 

has been computed with the assistance of these recorded data taking into consideration the 

meteorological parameters. The data set is divided into training and testing sets to do 

forecasting. For the training set, 16500 data were used, while for the testing set, 614 data 

were used and remaining 1000 for validation. This was done in order to train the model. 

LSTM and MLP are the models that are being employed. Python is the environment in 

which these models are developed. In this case study 16500 data are used for training and 

for prediction here a window size is kept 5 so that while training process it uses 5 sample 

data as input for learning and predicting the power output. Table 3. 9 shows the parameters 

considered for building the model. 

Table 3. 8 List of Parameters 

 

In LSTM model first process is dividing the dataset into training and testing data set and 

then it is passed through the LSTM model and MLP model, then plotting the forecasted 

outputs i.e power, the plot for training is shown in    Fig. 3.17 here 16500 training samples, 

are used for forecasting using LSTM and MLP and its comparative plot is shown. Further  

the forecasted results of LSTM and MLP compared with the actual power plot considered 

for 109 data samples for test. for test are shown in Fig 3.18. 

Models LSTM MLP 

Input size 5,1 5,1 

Optimizer Adam Adam 

Activation function Relu Relu 

Epochs 10 10 

Learning rate 0.001 0.001 

No. of layers  

Hidden layer/neurons 

1/64 1/100 
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                                     (a)                                                   (b) 

When MLP and LSTM forecasting models are compared LSTM performance is better than 

MLP as the performance evaluation i.e. RMSE, MSE, R2, MAE for LSTM is better than 

MLP. Performance table is shown. Fig. 3.19. shows the comparison plot of LSTM and 

MLP with the actual data set, for the 1st 30 samples because the data set is very large so in 

order to see the comparison clearly only 30 samples are considered and plotted in Fig. 3.19. 

Table 3.10 shoes the comparison of statistical indicators for the Two considered model that 

is LSTM and MLP 

 

 

 

                        

                                   

 

                      (a)                                                  (b) 

 

 

 

Fig. 3. 17 Train Data Forecasting using (a) LSTM (b) MLP 

Fig. 3. 18 Test Data Forecasting using (a) LSTM (b) MLP 
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  Table 3. 9 Comparison of LSTM And MLP Estimation Errors 

Models MAE MSE RMSE R2 

LSTM 49.907 7989.66627   89.3849 0.97827 

MLP 43.7589 8781.0951 93.70749 0.97612 

3.6  CONCLUSION 

A prediction model for PV power generation can enhance the design, operation, and 

stability of PV power plants by making more accurate forecasts based on meteorological 

data. But because the weather changes all the time, it is difficult to know how much PV 

power is produced. To make a good prediction model that only uses past data and leaves 

out data on solar radiation that is highly correlated with PV power production, you need a 

statistical method for figuring out how past and short-term data depend on each other. In 

this chapter, a CNN-LSTM hybrid model is proposed for estimating how much PV power 

is produced. The suggested model addresses the shortcomings of the previous models while 

retaining their benefits. The proposed model has been compared to other deep learning 

models in which only LSTM and CNN models are given multiple inputs in dataset 1. 

However, their performance is less accurate than the hybrid model because in the proposed 

hybrid model, the CNN model first learns the pattern of different weather conditions, and 

then separate LSTMs for prediction SPV power help the model make more accurate 

Fig. 3. 19 Forecasted SPV Power with Actual Power for both LSTM and MLP Techniques 
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prediction of PV power. A quantitative evaluation also showed that the proposed model 

has RMSE of 0.0254, 0.03465 and 0.0824, MAE of 0.0163, 0.0236 and 0.2521, MSE of 

0.000645, 0.00120 and 0.00679 and R2 of 0.9898, 0.9872 and 0.9358 for sunny, partially 

cloudy and extremely cloudy-day data, respectively. The normalised RMSE, MAE and 

MSE comes out to be 0.0176, 0.02739, 0.00069 for sunny conditions. For partially cloudy 

conditions the normalised RMSE, MAE and MSE comes out to be 0.0175, 0.0258, 0.00089 

and for extremely cloudy conditions the normalized RMSE, MAE and MSE comes out to 

be 0.1947, 0.06366 and 0.00524. This model works better when the weather is sunny. 

When different season datasets is considered the proposed CNN-LSTM models performs 

better in winter seasons and worst in rainy season. is It is seen that PV power is increased 

in sunny conditions and decreased in non-ideal conditions i.e partially cloudy and 

extremely cloudy. The amount of power a PV power plant can make depends on the size 

of the installation and the weather, so the model needs to be changed. In a future study, the 

power-generating capacity of PV power plants should be changed to predict SPV power. 

To make forecasts more accurate, optimisation methods automatically change models 

based on data from the system. Solar radiation and the properties of SPV modules must 

also be analysed. For dataset 2 Evaluation of the SPV power data was predicted and 

calculated from the meteorological parameters obtained from the solcast site for one year 

from November 30, 2021, to December 01, 2022. This information was divided into two 

categories: training and test sets for SPV power forecasting. The challenge of estimating 

photovoltaic power for the next 30 minutes was explored. The proposed model's findings 

were compared using the most widely used technique, i.e., MLP. MLP was used to estimate 

and examine its correctness and performance. In comparison to the MLP technique, the 

proposed LSTM model provided higher practical values in all performance metrics. It can 

be observed that deep learning models works better than MLP. 
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CHAPTER 4 

MATHEMATICAL MODELLING OF DUST 

ACCUMULATION ON SPV MODULES 

4.1 INTRODUCTION 

SPV technology is widely acknowledged as a crucial element in the worldwide shift 

towards sustainable energy. Nonetheless, environmental variables, especially dust 

deposition on SPV modules, present considerable barriers to their effectiveness. Dust 

accumulation on SPV modules diminishes solar penetration, hindering energy production 

and possibly resulting in significant power output losses. This problem is particularly 

common in areas with dry or semi-arid climates, when dust deposition rates are elevated. 

As a result, comprehending and alleviating the impact of dust on SPV systems has emerged 

as a primary study focus in recent years. 

Recent studies have aimed to quantify the effects of dust accumulation on SPV efficiency, 

emphasizing the correlation between environmental variables—such as wind speed, 

temperature, humidity, and particle concentration—and dust deposition rates. Researchers 

have created empirical models to evaluate the influence of dust layer thickness on SPV 

output and have investigated the contribution of climatic elements on dust accumulation 

dynamics. Machine learning and data-driven methodologies have gained prominence in the 

industry, with research using extensive datasets to forecast dust-related losses and enhance 

cleaning schedules. Nevertheless, while these models have enhanced comprehension, they 

often fail to include the intricate and changeable characteristics of dust buildup across many 

meteorological and geographical situations. 

This work seeks to provide a comprehensive mathematical model for forecasting dust 

collection on SPV modules in light of these restrictions. Through the analysis of historical 

data about environmental conditions and module features, the model will elucidate the 

dynamic interactions that affect dust accumulation rates and retention. Recent 

breakthroughs in computer modelling and predictive analytics will be used to augment the 

model's precision, using approaches such as machine learning to refine parameter estimate 

and generalization across varied settings. 



 
 
55 

This study enhances the existing literature on SPV efficiency optimization by offering a 

thorough, flexible model for dust buildup. The findings are anticipated to enhance 

maintenance procedures and promote cost-efficient operation of SPV systems, particularly 

in arid, dust-prone areas. This model may effectively inform decision-making for solar 

plant operators, save operating expenses, and improve the long-term dependability of SPV 

installations, thereby promoting the wider use of solar energy. 

4.2  METHODOLOGY OF WORK 

4.2.1 Collection of Data 

For the study analyses of soiling loss from the Dust IQ soil monitoring system installed on 

the rooftop of Utilization lab, New Delhi, the SPV module is first clean Fig. 4.1 represent 

the 5kW SPV system and the data is been collected from the Dust Explorer software in 

which the soiling loss and transmission losses are recorded for 6 months from March, 2023 

to August 2023 i.e. 180*24= 4320 data points. 

Data is collected at log interval of 60 minutes by the Dust IQ soil monitoring system. This 

monitoring system is installed on 5 kW PV system a total of 20 modules are arranged in a 

layout of 10 x 2, with 2 arrays of 10 modules in each array having SPV modules of 250 

Wp rating. The location of the monitoring system is in center of the 5 kW PV system as 

shown in Fig. 4.1. It should be aligned with the SPV modules in terms of both azimuth and 

tilt angle. This guarantees that the soiling conditions assessed by Dust IQ accurately reflect 

the circumstances that impact the modules. The weather inputs considered are considered 

from solcast site [104] which is at every 60 minutes for 6 months. 

4.2.2 Dust IQ Soil Monitoring System 

To determine the quantity of dust and dirt that is present on SPV modules, Dust IQ uses an 

optical sensor technology. This technique involves evaluating the light that is transmitted 

and reflected from the surface of the module. It provides useful data that can be utilized to 

improve maintenance schedules and boost the overall performance of SPV power systems. 

This is accomplished by continually measuring the amounts of soiling that are present.  
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Fig. 4. 1 Dust IQ Setup on a 5 kW SPV System. 

The unique, high-quality soil monitoring system device measures module soiling-induced 

light loss. The soiling of nearby PV modules causes light loss. Dust IQ soil monitoring 

system device has industrial data collecting and control system-optimized digital signal 

processing and interfaces. An intuitive interface with RS-485 Modbus® data transfer from 

Kipp & Zonen connects PLCs, inverters, digital control devices, and digital data recorders. 

Measurement of reflected light and local dust calibration are needed to determine light loss 

with the requisite accuracy. Table I lists Dust IQ soil monitoring system specifications for 

data recording on a 5-kW SPV module. 

 Table 4. 1 Specification of Dust IQ Soil Monitoring System 

 

 

Range of Transmission loss (TL) 0 – 50 % 

Range of Soiling Ratio (SR) 100 – 50 % (SR = 100 –TL) 

Transmission loss measurement accuracy ± 1 % and ± 1/10 of reading 

Ambient working temperature -20 to +60 ˚C 

Storage temperature -20 to +80 ˚C 

Power (DC) 12 to 30 VDC, 200 to 70 mA 



 
 
57 

Following are the steps of proposed work. 

Step 1: Soiling Ratio data collection:  

Use the soil monitoring device to collect reliable measurements of the degree of soiling on 

PV modules. The Dust IQ system uses advance sensing technology to analyses the build-

up of dust, dirt, microfibers, and other particulate matter on module surfaces. Maintain 

frequent monitoring and data collecting to establish a comprehensive understanding of the 

soiling ratio over time. 

Step 2: Soiled SPV power calculation: 

Calculate the power output produced by the PV system considering climatic characteristics 

such as irradiance, temperature, windspeed, which is obtained from solcast these variables 

affect SPV power. And further SR is obtained from Dust IQ. 

Step 3: Comparing soiled and cleaned power output: 

Analyze the calculated power output without taking into account cleaning activities (Soiled 

power). Compare the uncleaned power output to the power output produced after the SPV 

modules consisting no dust accumulation. Calculate the difference between two power 

values further used to assess the impact of cleaning on power generating efficiency. 

Step 4. Forecasting of soiled SPV power:  

In order to further verify the generalizability of the model, k-fold cross-validation was 

implemented.  The dataset was partitioned into k equal subsets (folds) in this method, and 

the model was iteratively trained on k-1 folds while being validated on the remaining fold.  

This procedure guaranteed that the model's performance was not excessively reliant on a 

specific data partition and that it maintained consistency across a variety of data 

distributions. 

 Furthermore, data augmentation methodologies were implemented during the training 

phase.  This incorporated controlled randomness and variability into the training set, 

thereby improving the model's resistance to unobserved variations and decreasing 

overfitting.  The deep learning models exhibited enhanced adaptability to new, previously 

unencountered input conditions by synthetically expanding the diversity of training 

samples, such as through noise addition, temporal distortion, or synthetic soiling patterns. 

 In general, the development of highly accurate, robust, and adaptive predictive models for 

estimating the performance degradation of soiled SPV modules under varying 
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environmental and operational conditions was facilitated by the combination of optimized 

hyperparameters, advanced deep learning architectures, rigorous cross-validation, and 

strategic data augmentation 
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Fig. 4. 2 Architecture of the Proposed Work 

4.2.3 Stacked LSTM Model 

A stacked LSTM architecture is described as an LSTM model with numerous LSTM layers 

Fig. 4.2. In [105] author developed a stacked LSTM, sometimes known as deep LSTM. 

The stacked LSTM model, like the DRNN model, employs numerous LSTM layers that 

are stacked before being sent to a dropout layer and output layer at the final output. In a 

stacked LSTM, the first LSTM layer generates sequence vectors that are utilized as input 

to the succeeding LSTM layer. Furthermore, the LSTM layer gets input from its preceding 

timestep, enabling for the capture of data patterns. To minimize overfitting, the dropout 

layer additionally excludes 10% of the neurons. The fundamental structure of LSTM, as 
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shown in the LSTM layer in Fig. 4.2 consists of an input gate 𝑖𝑡, output gate 𝑜𝑡, forget gate 

𝑓𝑡, and memory cell 𝑐𝑡. A single LSTM layer features a second-order RNN architecture 

that excels in storing consecutive short-term memories and retrieving them at a later time. 

𝑓𝑡 = 𝜎(𝑊𝑓 . 𝑥𝑡 + 𝑈𝑓. ℎ𝑡−1 + 𝑏𝑓)  (4.1) 

𝑖𝑡 = 𝜎(𝑊𝑓. 𝑥𝑡 + 𝑈𝑖 . ℎ𝑡−1 + 𝑏𝑖)        (4.2) 

𝑜𝑡 =  𝜎(𝑊𝑜. 𝑥𝑡 + 𝑈𝑜. ℎ𝑡−1 + 𝑏𝑜)        (4.3) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡. 𝜎(𝑊𝑐 . 𝑥𝑡 + 𝑈𝑐 . ℎ𝑡−1 + 𝑏𝑐)  (4.4) 

4.2.4   Bi-LSTM Model 

The bidirectional LSTM model detects temporal relationships inherent in data in both 

directions. This means that, given a vector of inputs, the model can understand the link 

between past and future samples moving in both the past-to-future and future-to-past 

directions. Such models have been used in research [106], and the architecture of the 

bidirectional LSTM layer is shown in Fig. 4.2 of the of the proposed work. This design 

uses the same input, output, and one dense layer as the normal model. As previously stated, 

the bi-directional LSTM layer looks for temporal relationships in the data in two directions, 

while the traditional LSTM layer only scans in one direction. In the above two discussed 

Deep learning models are trained with soiled SPV power further performance optimized 

hyperparameters are used for training the models as discussed in Table 4.2. 

Table 4. 2 Hyperparameter Configuration for Model Training 

Hyperparameter Stacked LSTM Bi-LSTM 

Number of LSTM Layers 2 2 

Number of Units per Layer 64, 32 64, 32 

Activation Function ReLU ReLU 

Optimizer Adam Adam 

Learning Rate 0.001 0.001 

Batch Size 32 32 

Dropout Rate 0.1 0.1 

Number of Epochs 50 50 



 
 
60 

4.3  Mathematical Modelling for Proposed Work 

This section develops a mathematical relation between dust and SPV power and helps in 

calculating soiled power with the help of soiling ratio. 

4.3.1 Soiling Ratio 

The SR is the ratio of the irradiance used by a module that has been soiled to the irradiance 

used by a module that has been cleaned in order to create the corresponding short-circuit 

current or power [107]. The SR is obtained from soil monitoring system 

𝑆𝑅 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 (𝑃𝑠)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑒𝑎𝑛 𝑝𝑜𝑤𝑒𝑟(𝑃𝑐)  
                                                                                 (4.5) 

𝑡𝑙𝑜𝑠𝑠 = 1 − 𝑆𝑅                                                                                                                         (4.6) 

4.3.2  Transmission Loss 

The transmission loss 𝑡𝑙𝑜𝑠𝑠 is represented in (4.6), refers to the transmission loss that occurs 

as a result of soiling. There are many different mathematical models that may be used to 

predict the performance of PV modules as a function of the amount of irradiance and the 

temperature. 

4.3.3   Modelling of Dust 

In this work an empirical correlation for dust deposition density 𝜌𝐷 based on an optimal 

tilt angle 𝛽 is developed. The study team included this association, power equation to 

compute dust in non-tracking tilting SPV modules (4.7). They also used math to examine 

the dust shield's effect on transmittance during tilt angle changes as in (4.11). Thus, they 

provided a second planned correlation (4.8-4.14). 

𝜌𝐷 = 680.96 ∗ ⅇ−0.0469∗𝑆𝑅                                                                                                        (4.7) 

   𝑇𝑚 = 𝑇𝑎𝑚𝑏 +
𝑆𝑚

26.9+6.2∗𝑤𝑖𝑛
                                                                                                      (4.8)  

 𝑇𝑎 = 𝑇𝑚 − 25𝜊𝐶                                                                                                                       (4.9) 

𝑊𝑖𝑛 =
𝐷𝑚

0.2

𝐷𝑎
∗ 𝑤𝑠                                                                                                                    (4.10) 

𝑇 =  𝑇𝑎𝑚𝑏 {1 − 34.37𝑒𝑟𝑓 [0.17(−8.5 ×  10−3𝜌𝐷0
𝛽 + 0.82𝜌𝐷)

0.8473
]}                  (4.11)  

𝑆𝑚𝑡 = 𝑆𝑡𝑖𝑙𝑡𝑒𝑑 .  𝑇                                                                                                                      (4.12) 
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𝑆𝑡𝑖𝑙𝑡𝑒𝑑 = 𝑆𝐵𝑅𝑏 +  𝑆𝐷(1 − 𝐴𝑖) (
1+𝑐𝑜𝑠𝛽

2
) [1 + 𝑓𝑠𝑖𝑛3 (

𝛽

2
)] +  𝑆𝐷 (

1−𝑐𝑜𝑠𝛽

2
)                  (4.13)  

 𝑆𝑚 =
𝑆𝑚𝑡

𝑆𝑠𝑡𝑐
                                                                                                                              (4.14) 

SB is direct radiation, SD diffuse radiation, The ratio of direct radiation on an inclination 

to horizontal radiation is 𝑅𝑏. Ai is the anisotropic index, and f is the correction coefficient, 

using 𝑆𝑚𝑡 from (4.12) calculate accurate solar irradiation considering tilt angle and effect 

of transmittance T. Density of dust on horizontal surface 𝜌𝐷0
 (𝛽= 0). 

4.3.4   Effect of Soiling on Power 

To model PV power, the irradiance is incident on the SPV module, the exact wind speed 

on the SPV module, and the SPV module temperature must be estimated. The SPV power 

equation is as follows 

𝑃1 = 𝑃𝑟𝑆𝑚(1 + 𝐾1log (𝑆𝑚) + 𝐾2log(𝑆𝑚)2 + 𝐾3𝑇𝑎 + 𝐾4𝑇𝑎log (𝑆𝑚) + 𝐾5𝑇𝑎log(𝑆𝑚)2

+ 𝐾6𝑇𝑎
2)                                                                                                   (4.15) 

𝑃2 =  𝑃1/𝑆𝑅                                                                                                                       (4.16) 

𝑃𝑟 is the rated power, 𝑊𝑖𝑛 is wind speed on SPV modules, 𝑇𝑎 is wind-induced temperature 

change, 𝑇𝑚 is module Temperature, 𝑇𝑎𝑚𝑏 is the ambient temperature, and 𝐾1 − 𝐾6 are SPV 

module constants. 𝐷𝑎 is the distance between the PV module and the ground surface, and 

𝐷𝑚 is the distance between the anemometer and the ground surface [108]. 𝑆𝑚𝑡 here is 

calculated by (4.12) and then the   𝑆𝑚 is calculated from (4.14). From which Ps is calculated 

from (4.15). 

The (4.16) gives the cleaned power and (4.15) gives soiled power which is used for further 

soiled power forecasting. (4.18) shows the effect of soiling on power the old power 

equations discussed in [109]  don’t have soiling parameters Use the new Smt calculated 

from (4.15).  

The mathematical relation between soiling ratio and module temperature (𝑇𝑚) curve fitting 

analysis is done shown in (4.17). It illustrates an inverse correlation, signifying that when 

the soiling ratio reduces (with more dust collection), the module temperature is increased.  

The effect is primarily due to decreased light absorption efficiency, resulting in buildup of 

heat on the module surface when the SR decreases to 83% owing to dust collection, the 

module temperature may rise to 36.7°C, whereas a clean module (SR = 100%) maintains a 
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lower temperature of around 25.23°C. This correlation helps in understanding the relation 

between Tm and SR it is inverse relation which shows that lesser the soling ratio which 

means more dust, temperature is high. 

𝑆𝑅 = 0.0146 ∗ 𝑇𝑚
3 − 1.4196 ∗ 𝑇𝑚

2 + 44.2150 ∗ 𝑇𝑚 −

346.9506                                                                                                                                   (4.17)  

𝑃𝑠 = −0.002 ∗ 𝑆𝑅3 + 0.94 ∗ 𝑆𝑅2 − 79 ∗ 𝑆𝑅 − 0.002                                                    (4.18)  

 

 

Fig. 4. 3 Correlation plot of Soiling Ratio with (a) Module Temperature (b) Dust 

Deposition density 

The correlation between soiled power and Soiling ratio is shown in (18) which is 

polynomial type of equation. It measures the direct impact of dust collection on PV module 

power loss. Power production declines nonlinearly when SR drops because less irradiance 

is available for power generation.  Further corelation between dust deposition and module 

temperature is shown in Fig. 4.3. This relation shows how the soiling ratio affects the 

module temperature and further effects the soiled power this soiled power is further 

forecasted which helps in scheduling cleaning.  

The mathematical modelling methodology utilized in this work offers a systematic way for 

quantifying power losses due by soiling, allowing for a more exact assessment of its 

influence on PV performance.  By combining real-time soiling data, transmission loss 

measurements, and climatic factors, the model reflects the dynamic link between dust 
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deposition and power loss.  This enables a data-driven knowledge of how varied amounts 

of soiling affect energy production in various environmental circumstances.  The insights 

acquired from this model help in identifying important thresholds were performance 

declines dramatically, directing the deployment of optimised cleaning schedules to 

minimise efficiency loss. Furthermore, the use of deep learning algorithms, namely 

Stacked LSTM and Bi-LSTM, improves prediction capacities by understanding 

complicated temporal relationships in soiling patterns and power variations.  These models 

use past power generating data and weather parameters to properly predict dirty power 

output, allowing a proactive approach to PV system repair. 

4.4 RESULT AND DISCUSSION 

In this work examination of the effect of soiling ratio, transmission loss on SPV power 

system performance is analysed. Evaluation of the performance of clean and soiled PV 

system is done. To evaluate the soiling ratio, a smart explorer Dust IQ soil monitoring 

system software is used. Further the soiled power is mathematically calculated and 

Prediction is done in order to forecast the soiled power for further evaluation and cleaning 

schedule. This section 5 is divided into 2 parts, 1st part shows the effect of modelled soiled 

power by accumulated dust on SPV module using soil monitoring system based real time 

data. The 2nd part shows the comparison of predicted soiled PV power using DL models 

i.e. Bi-LSTM and stacked LSTM.

4.4.1   Performance Analysis of Dust on PV System using Soil Monitoring System 

Performance analysis of dust is required to find out the relation between dust and power.  

The setup is used for capturing the data which collects data for a month for study aspects. 

The soiling ratio measured by the Dust IQ soil monitoring system for 6 months i.e., March, 

April, May, June, July and August,2023 is shown in Fig. 4.4 (a). The soiling ratio indicates 

the amount of dust that has accumulated on the SPV modules. The soiling ratio 

progressively reduced during the first 12 days in the month of march, suggesting a decrease 

in PV system performance owing to dust collection. On the twelfth day, the soiling ratio 

increased rapidly and dramatically, reaching 100%, indicating no soiling loss. This fast rise 

implies a natural cleaning of the SPV modules, maybe caused by rain. As illustrated in Fig. 

4.4 (a) the soiling ratio steadily increase after the natural cleaning event. During the span 
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of 6 months 6 times natural cleaning occurred, and in the month of July it can be seen that 

there is maximum accumulation of Dust on PV system when no cleaning action takes place. 

Fig. 4.4 (b) depicts the transmission loss to further examine the influence of the soiling 

ratio on SPV power output transmittance loss is less Performance analysis of dust on PV 

system using soil monitoring system when the modules are cleaned as at day 12 natural 

cleaning of modules occurs so the loss is zero. Transmission loss is the reduction in the 

quantity of sunlight travelling through the soiled modules, resulting in lower power 

production. Relation between the soiling ratio and the resulting drop in power production 

can be learned by analyzing this plot.  

In conclusion, the examination of the soiling ratio and its influence on SPV power output 

demonstrates that the modules gradually accumulate dust. Periodic natural cleaning events, 

on the other hand, aid in the general cleanliness of the modules. The decline in the soiling 

ratio and the resulting transmission loss highlights the need of routine cleaning and 

maintenance in order to optimise the performance of SPV power systems. (4.3) is used to 

determine the cleaned output power, which takes temperature, irradiance, and windspeed 

into consideration. This estimate takes into account the data received by solcast, a platform 

that delivers solar irradiance and meteorological data. 

It is been observed that when there is slight rainfall cleaning of SPV modules are not 

efficient still there are dust accumulated as it can be seen in Fig. 4.4 on 16 May there is 

slight rainfall so SR is 98.06 % because of which proper cleaning is not done SPV power 

output is less on 30 March and May there is a heavy rainfall hence losses are less with 

heavy rainfall 0 % PV loss and with slight rainfall 1.94 % PV loss occurs. 

The information was gathered over the course of 6 months from March 1, 2023 to August 

31, 2023. After accounting for -environmental variables such as temperature, irradiance, 

and windspeed, it estimates the power provided by the SPV modules. It is crucial to 

remember that dust collection on SPV modules might result in a decrease in output power  

The Dust IQ system calculates the soiling ratio, which measures the level of dust deposition 

on the modules. The comparison between Soiling ratio and ρ(d) is represented in Fig. 4.4 

(b). Soiled power calculated from (4.12) and mathematically modelled soiled power (4.18) 

is shown in Fig. 4.5. 
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Soiled power is calculated with the help of cleaned power and soiling ratio. Fig. 4.6 (a) 

shows a comparison of the power output of soiled modules and cleaned modules. 

According to Fig. 4.6 (a), the highest power loss owing to the presence of dust on the 

modules is 285.35 W in the month of July. This decrease in power output demonstrates the 

influence that dust collection has on SPV module performance. The soiling ratio, as 

determined by the Dust IQ method, is critical in calculating power loss due to dust 

collection. 

 

Fig. 4. 4 Comparison plot of (a) Soiling Ratio and SPV loss (b) Soiling Ratio and Dust 

deposition density 

In order to ensure accurate and effective analysis, it is necessary to evaluate the relationship 

between SR and Psoiled in (4.18) and then compared with modelled soiled power (4.12). 

 

 Fig. 4. 5 Comparison of soiled power plotted from (4.15) and (4.18). 
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Fig. 4. 6 Comparison plot of (a) clean and dusty modules (b) soiling ratio and PV power. 

Comparison of PV power with Soiling ratio is shown in Fig. 4.6 (b) as the dust is 

accumulated the PV power is reduced when there is natural cleaning the PV power is 

enhanced. Fig. 4.7 shows the relation of temperature with soiling ratio it can be analyzed 

that when soiling is more accumulated temperature is increased the maximum temperature 

is 36.70 º C where SR is 83% and minimum temperature is 25.23 ºC where SR is 100%. 

Fig. 4. 8 shows the comparison of maximum, minimum and average of soiling ratio, 

mathematical modelled soiled power and soiled power calculated normally using (4.12) 

respectively which helps in analyzing the impact of soiling and further shows how natural 

cleaning effects the PV system performance. SR reaches minimum of 83 % in the month 

of July among the six months showing transmission loss of 13% from Fig. 4.8 (a). 

Maximum power is obtained in the month of March which is 2051.06 W and the least 

power is obtained in the month of July which is 1393.2 W 

4.4.2 Sensitivity Analysis 

Light rain (<1mm) may not effectively remove dust off SPV modules owing to weak water 

impact and poor SPV module surface wetting, resulting in partial cleaning or even mud 

formation.  Moderate rain (1-5mm) enhances cleaning efficiency but may still leave residual 

dust, particularly in areas where fine particulate matter prevails.  Heavy rain (>10mm) has 

been shown to be the most effective in restoring module cleanliness because it causes more 

surface runoff, effectively removing dust and debris.  Correlating these rainfall categories with 
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soiling ratio improvements allows us to calculate the minimal threshold necessary for 

successful natural cleaning. The dust deposition mentioned in table 4.3 is been calculated from 

equation (4.7). 

Fig. 4. 7 Comparison Plot of Temperature and Soiling Ratio. 

Wind may affect dust re-deposition even after a rainstorm event, lowering the total cleaning 

impact. Humidity may affect dust adhesion; greater humidity levels may enhance 

cohesiveness between dust particles, making cleanup more difficult; in dry circumstances, 

dust may be carried by wind rather than washed away [110]. The results highlight the need 

for alternate cleaning solutions in areas where light rainfall is common yet inefficient. The SR 

and dust deposition in Fig. 4.4 (b) are divided in three different cases as shown in table below 

where it is observed that after light rain, dust is still accumulated there is very less change in 

dust deposition while in heavy rain the dust is reduced drastically showing maximum cleaning 

efficiency. There is a moderate change of dust deposition after a moderate rain fall. The table 

4. 3 is made with the help of Fig. 4.4 (b).
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Table 4. 3 Sensitivity Analysis of Rainfall Intensity on Dust Deposition and SR Recovery 

4.4.3   Comparison of Predicted Soiled SPV power 

Soiling ratio helps in getting soiled SPV power, soiled power data is modelled for every 

one hour, this soiled power is the input which is given to the two DL model i.e., Stacked 

LSTM and Bi LSTM for soiled PV power prediction. 

Rainfall 

Category 

Rainfall 

Amount 

(mm) 

SR Recovery (%) Dust 

Deposition 

density (P(d), 

g/m²) before 

cleaning 

Dust 

Deposition 

density (P(d), 

g/m²) after 

cleaning 

Remarks 

Light Drizzle <1mm 96 -98 9 8 May form mud layers, 

leading to re-adhesion 

of dust. 

Moderate 

Rain 

1-5mm 90 – 96 10 7 Efficiency depends on 

duration and wind 

conditions. 

Heavy Rain >10mm 85– 90 14 6 Transmission loss 

reduced to zero, 

ensuring maximum 

cleaning efficiency. 

And SR becomes 100 

% 
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Fig. 4. 8 Performance Analysis of (a) Soiling Ratio (b) Soiled Power Influenced By Dust 

Accumulation on SPV Modules. 

This prediction of soiled power helps in getting us knowledge about the power reduction 

of SPV module because of dust accumulated on SPV modules the two DL comparison of 

predicted soil power is shown in Fig. 4.9. This figure is difficult to comprehend; for greater 

clarity, it is depicted for two different days: first, on July 26th, when maximum dust 

accumulates and results in a decrease in power output as shown in Fig. 4.10 (a); and second, 

after cleaning occurs with minimal power losses and a significant increase in power output. 

The practicality of the two DL models, Stacked LSTM and Bi-LSTM, for accurate 

predictions in the context of predicting the performance of the models must be evaluated. 
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Performance estimate is an important aspect in establishing a model's forecast accuracy. 

Variables used in comparison analysis include RMSE, MAE, MSE), and R2. MAE helps 

to analyze the prediction model's constant prediction mistakes, RMSE evaluates the 

model's overall accuracy, and R2 reflects the strength of the connection between the 

projected and actual values of the models [111]. Table 4.2 shows the estimation errors for 

the DL models.     
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Where "N" number of windows, "𝐴𝑖" actual value, and Pi is the Predicted value. The 

arithmetic mean of the actual value is �̅�    

Fig. 4. 9 Soiled SPV Power Comparison Plot of Proposed Forecasting Models i.e. 

Stacked LSTM and Bi LSTM. 
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Fig. 4. 10 Soiled SPV Power Comparison Plot of Forecasting Models at Hourly Interval 

i.e. Stacked LSTM and Bi LSTM for (a) Maximum Soiled (b) After Cleaning.

In deep leaning prediction there is an issue of over fitting but this model is not over fitted. 

To avoid excessive model complexity, L1/L2 regularization is used in this work to 

implement weight penalties this helps in ensuring that the models did not overfit the 

training data. Early stopping was used to stop training whenever the testing loss slowed 

down, eliminating additional training cycles that might damage generalization. further a 

dropout layers were utilized to randomly deactivate neurons, forcing the model to learn 

additional features rather than recalling patterns from the training set. 

Fig. 12 shows the comparison of the training and testing loss curves for the Stacked LSTM 

and Bi-LSTM models the graph shows their learning efficiency across numerous epochs. 

Both models' loss values steadily decrease throughout training, demonstrating optimization 

and convergence. No substantial difference between training and testing loss reduction 

curves shows the models are not overfitting. Additionally, the Stacked LSTM model 

consistently has a lower total loss than the Bi-LSTM model, indicating better learning 

efficiency and generalization.  
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Fig. 4. 11 Comparison of Training and Testing Loss Function Graph for Both Stacked 

LSTM and Bi- LSTM Models. 

Further performance metrics calculated from 19-22 shown in table 4.4, stacked LSTM is 

the most efficient model according to the obtained result, providing an ideal combination 

of computational cost and prediction accuracy.  While Bi-LSTM improves temporal 

learning by processing input in both forward and backward directions, it greatly increases 

computational complexity while providing no significant accuracy benefit.  The findings 

reveal that Stacked LSTM not only trains approximately 3.5 times quicker than Bi-LSTM, 

but it also has somewhat higher accuracy, making it a more practical option.  In real-time 

applications requiring quick forecasts and frequent model retraining, Stacked LSTM is the 

recommended model for efficient and dependable forecasting because to its cheap 

computing cost and good predictive performance. In addition  when compared to different 

studies as: In [105] discusses neural network-based modeling and sensor data to estimate SPV 

system power output when soiled. The results show that soiled PV modules may be predicted 

with accuracy of 97%. This study introduces a hybrid AI model combining ResNet-50 CNN 

for real-time CSP mirror soiling detection and LSTM RNN for predicting future soiling trends 

using image and meteorological data, achieving 89.5–95.2% accuracy and offering major 

efficiency improvements for SPV power plant management [112]. 
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Table 4. 4 Estimation Errors for Prediction Model 

Models (hourly) MAE MSE RMSE R2 Training Time(sec) 

Stacked LSTM 0.051 0.0078 0.00883 0.9913 17.35 

Bi - LSTM 0.0588 0.0082 0.00907 0.9850 61.70 

[113] presents a model to correlate soiled SPV module power output, irradiance, and soil

particle size composition. Multi linear regression predicts power with 97% accuracy. [34] 

hybrid clustering for neural network training data preparation. It also uses data division to 

anticipate soiled SPV module power production with 98% accuracy. The proposed deep 

learning approach, forecasts soiled power more accurately and effectively. 

4.5 CONCLUSION 

Power generated by SPV modules is affected by dust and other particulates on their 

surfaces. These dusts adhere to SPV modules, causing scratches and corrosion and 

shortening their lifespan. Solar plant design must consider several factors, including local 

conditions and dust characteristics. In order to develop dust-cleaning methods that are both 

safe and effective for SPV modules, it is helpful to first investigate the challenges posed 

by the accumulation of dust on modules, in addition to the negative impacts. In this chapter 

the real time soiling ratio measured from the soil monitoring system helps in modelling the 

accurate soiled power which helps in further analysis of loss of power in presence of dust 

and study the impact of temperature on dust accumulation. The maximum loss achieved is 

285.35 W. And it will further degrade if continuous dust accumulation occurs, so cleaning 

of SPV modules should be at a prior importance to avoid SPV power loss, this chapter 

further helps in prediction of soiled SPV power using stacked LSTM and Bi-LSTM models 

and the trained results shows that stacked LSTM performs much better than Bi- LSTM 

with 99.13%. The model presented in this research not only focuses on predicting power 

loss due to soiling, but also encompasses broader improvements in the development of 

future SPV systems. 
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CHAPTER 5 

HOTSPOT FORMATION IN SPV MODULES AND 

MITIGATION TECHNIQUES USING IMAGE 

PROCESSING  

5.1 INTRODUCTION 

Hotspots in SPV modules are localized regions of high temperatures that may result in 

performance decline, structural damage, and even safety hazards. These hotspots arise from 

uneven energy distribution, often resulting from shade, dirt buildup, or internal faults. This 

chapter examines the origins and effects of hotspots, with the use of image processing 

methods for detection and mitigation tactics aimed at enhancing the efficiency and lifetime 

of SPV modules. 

5.2 CAUSES OF HOTSPOT FORMATION 

Hotspots in SPV modules result from several contributing factors: 

Partial Shading: When certain sections of a panel are obscured by things like trees, 

buildings, or dust, they produce less current than the unshaded sections. This existing 

discrepancy compels shaded cells into reverse bias, resulting in the dissipation of surplus 

energy as heat.  

Cell Defects: Manufacturing flaws, micro-cracks, or compromised solder junctions 

increase local resistance, resulting in localized heating and possible failure. 

The mismatch in Electrical Attributes: Fluctuations in cell resistance, fill factor, or 

efficiency result in irregular power distribution, culminating in hotspot development. 

Dirt and soiling: Accumulated dust, bird waste, and pollutants restrict sunlight absorption, 

resulting in the overheating of damaged cells. 

Aging and Degradation: Prolonged exposure to environmental conditions, including UV 

radiation and temperature variations, diminishes cell function, hence increasing the 

probability of hotspots. 
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5.3 IMPACT OF HOTSPOTS 

Because SPV modules are used outside, they are susceptible to environmental factor [114]. 

Due to the following consequences, the PV module may not function well in these 

circumstances: Effect of shade: Direct or transient shadows can produce shading.  Direct 

shadows have a negative effect on the SPV module's performance. Shadows that are not 

permanent are produced by trees, buildings, snow, etc. The shading effect falls into two 

categories: partially shading and fully shading.  While full shade results in output power 

extraction, shading at least 1/36 of the cell reduces the output power by 75%, Partial shade 

reduces current, voltage, and output power to half the nominal value. Fig. 5.1. c)   

Fig. 5. 1 SPV module thermal images of a) healthy b) Dust c) shadowed 

Soiling effect: SPV modules soil when dust particles like sand, cement, dirt, and leaves 

combine. Various elements that contribute to soiling and power loss include tilt angle, SPV 

module cleaning solution, and weather. The thermal images captured is shown in Fig. 5.1 

b). 

5.4 IMAGE PROCESSING TECHNIQUES FOR HOTSPOT 

DETECTION 

Image processing methods provide a non-intrusive and effective approach for identifying 

hotspots in SPV modules. Several often used strategies encompass: 

Infrared (IR) Thermography: Employs thermal cameras to detect temperature fluctuations, 

emphasizing locations of excessive heat inside the module. 

Edge Detection Algorithms: Techniques such as Canny edge detection facilitate the 

identification of flaws in photovoltaic cells by examining thermal image gradients. 

Classification using Machine Learning: Deep learning architectures, particularly 

Convolutional Neural Networks (CNNs), accurately categorize and identify hotspots. 

Histogram Equalization: Improves contrast in thermal pictures, making hotspots more 

(a) (b) (c)
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discernible from typical regions. 

Fourier Transform Analysis: Examines frequency components in thermal pictures to detect 

anomalous heating patterns. 

5.5 IDENTIFICATION OF ENVIRONMENTAL FAULTS 

Thermography: Environmental flaws like SPV module temperature rise and shading effects 

are invisible. For such instances, thermography can detect the SPV module defect. At 

temperatures above 0 Kelvin, objects emit infrared radiation proportionate to their inherent 

temperatures[115][116].A thermal imager detects SPV module infrared radiation and 

determines module surface temperature when located 1m from the module. An imager 

turns infrared light into electrical impulses and displays them in different colours at 

different temperatures [117][118].  

Thermal Image Processing: Optimal image processing is a useful tool for enhancing the 

properties of image data. This study modifies the image processing technique to effectively 

capture the precise hotspot region of the PV modules and optimize the high level of image 

contrast for optimal neural network training. Fig.5.1a) shows the healthy modules thermal 

picture, whereas Fig. 5.1b) and Fig.5.1c) shows the faulty thermal images.  

Fault Detection and Identification: SPV modules can have faults that cause them to lose 

power permanently. However, if there are failure-specific patterns that can be used, a more 

detailed study may be useful. Because of finding the fault, the efficiency of the solar cells 

goes up.  Hotspots are areas of high temperature that affect a particular portion of a SPV 

module, reducing the power output and localised efficiency of the SPV modules. Dust 

accumulation and shadowing on the module are the primary causes of the hot spot 

phenomena. The early damage to the SPV module can be found via thermal imaging. The 

hot point on the module is visible in Fig. 5.1 b).  

5.6 MITIGATION TECHNIQUES USING TRANSFER LEARNING 

MODEL 

Transfer learning models provide a sophisticated and effective method for reducing 

hotspots in SPV modules by using pre-trained deep learning architectures. The following 

procedures are utilized: 
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Pre-Trained CNN Models: Models like ResNet, VGG, and MobileNet are optimized on 

thermal imaging datasets of SPV modules to reliably identify hotspot zones. 

Feature Extraction and Classification: Transfer learning enables pre-trained networks to 

derive pertinent features from thermal pictures and categorize hotspot severity with 

reduced data requirements and training duration. 

Real-Time Monitoring Utilizing AI: The integration of AI-driven transfer learning models 

with IoT sensors allows real-time hotspot identification and proactive maintenance. 

Adaptive Model Training: Continual learning is used for updating the model with new 

hotspot patterns, hence enhancing detection accuracy progressively. 

Automated Fault Diagnosis: The transfer learning model can categorize hotspots by 

severity and recommend mitigation measures, such cleaning, replacing defective cells, or 

modifying module positioning. 

Edge Computing Integration: The implementation of transfer learning models on edge 

devices enables rapid, on-site hotspot identification, eliminating the need for continuous 

cloud access and minimizing latency in mitigation efforts. 

5.7 DEVELOPMENT OF MITIGATION TECHNIQUES 

  Transfer learning can significantly enhance SPV module image processing and 

maintenance by adapting pre-trained models for specific tasks. Here’s a brief overview of 

how it can be applied: 

Defect Detection: Pre-trained models like VGG or ResNet can be fine-tuned to detect faults 

such as cracks, hotspots, and dirt accumulation on SPV modules. 

Efficiency Prediction: Transfer learning helps predict module efficiency by analyzing 

images of solar farms, detecting shading, misalignment, or dirt buildup. 

Dirt and Dust Detection: Fine-tuning models to detect dirt accumulation helps optimize 

cleaning schedules and prevent performance loss. 

Infrared Hotspot Detection: Transfer learning is applied to thermal images to detect 

hotspots indicating faulty modules or connections. 

Misalignment or Tracking Issues: Models can be fine-tuned to detect misalignment or 

malfunctioning tracking systems in solar farms. 
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Environmental Impact: Transfer learning can help identify cloud coverage, shading, and 

weather conditions affecting module performance. 

Image Enhancement: Transfer learning models improve low-light or low-resolution images 

for better inspection and defect detection. 

Data Augmentation: Transfer learning combined with data augmentation expands small 

datasets for more robust model training. 

Drone Inspection: Aerial and drone images can be analyzed with transfer learning to detect 

issues like dirt, misalignment, or damage. 

Predictive Maintenance: Transfer learning can predict when maintenance is needed by 

analyzing historical image data, automating maintenance requests. 

Transfer learning enables efficient and accurate SPV module monitoring, fault detection, 

and maintenance, improving performance and reducing costs. 

5.7.1 Convolutional Neural Network 

DL is a fundamental component of ML that involves the utilization of multiple layers of 

neurons to perform complex tasks such as abstraction and representation. This enables 

them to effectively perceive text, sound, and images. A subset DNN, CNNs) are intended 

to function on visual images [61] [119]. The CNN architecture retrieves and encodes the 

qualities and attributes of the input images, resulting in a notable reduction in parameters 

compared to conventional neural networks. 

5.7.1.1 Types of CNN 

Inception V3- Google developed the Inception-v3 deep convolutional neural network for 

image recognition. It employs various filter sizes and inception modules to efficiently 

capture features at various scales. It has influenced the development of subsequent versions 

such as Inception-v4 and Inception-ResNet by employing techniques such as batch 

normalization and regularization. These techniques enable it to perform well on image-

related tasks and have led to the creation of Inception-v4 and Inception-ResNet.  

ResNet-18 – It is a CNN that is a ResNet, which stands for residual network. In the chapter 

"Deep Residual Learning for Image Recognition" that was published in 2015. The ResNet-

18 model is one of the most straightforward ResNet models for the classification of images. 

Convolutional, batch normalization, ReLU activation functions, totally linked, and softmax 
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layers are the components that make up ResNet-18's "18" layer combination. Through the 

utilization of convolutional layers that contain residual connections, ResNet-18 is able to 

solve the problem of vanishing gradients and train DNN. 

Inception-ResNet-v2- This design uses Inception and ResNet ideas to create a deep 

convolutional neural network structure. The technique was created by Google researchers. 

This architectural design uses Inception and ResNet to increase Deep Neural Network 

(DNN) training and efficiency. Inception modules distinguish Google's 2014 Inception 

architecture. These modules enable the network to extract data at various spatial scales. 

ResNet is known for its residual connections, which enable deep network training without 

disappearing gradients. ResNet, developed by Microsoft in 2015, is now generally 

accepted. Using both architectures' essential features, Inception-ResNet-v2 improves 

accuracy and processing efficiency. It is suited for computer vision applications, including 

image classification and object recognition. Inception-ResNet-v2, trained on ImageNet, is 

utilized as a feature extractor or classifier in various applications. This model was pre-

trained using ImageNet. It also underpins transfer learning, which adjusts the pre-trained 

model on particular datasets for image classification, object recognition, and sem Alex Net 

AlexNet’s - Deep layers, comprised of 650 thousand neurons and 60 million parameters, 

allow it to categorise more than 1000 distinct classes. Alexnet consist of 8 layers out of 

which Five layers are convolutional layers (CLs) and three fully connected layers 

(FLCs).Input to the First convolution layer is 227 x 227 x 3 to the 1st convolutional layer 

have 96 filters of size 11 x 11 with sride of 4 pixel after the 1st convolutional layer pooling 

layer are connected with stride of 2 pixel this pooling layer is sued to reduce the image size 

then this pooling layer acts as input to the next convolutional layer here there are 256 filters 

of size 5 x 5 with stride 1 then it is connected to the next pooling layer which will further 

reduce the size, then all the remaining 3 conventional layers are connected without pooling 

layer connected in between the conventional layer then 3 fully connected layer are 

connected where the last layer which uses softmax activation function for output  

calculation which produces distribution over 1000 class label. The dimension of the 147-

input image for the Alex Net needs to be 227 × 227 × 3, and the first CL converts the input 

image with 96 kernels sized at 11 × 11 × 3 with a stride of four pixels. This image serves 

as the input to the second layer, and the other details are given in Fig. 5.2. 
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Fig. 5. 2 Structure of AlexNet 

Another convolutional neural network (CNN) trained with the Image Net database is 

Squeeze Net. The Squeeze Net was trained with more than one million photos and had fifty 

times fewer parameters than the Alex Net. This network is built on a fire module, which is 

made up of a squeeze layer and a 175 expand layer. The fire module serves as the 

foundation. The squeeze layer only has 1 x 1 convolution filters, and it feeds into an expand 

layer that contains 176 a combination of 1 x 1 and 3 x 3 convolution filters Fig.5.3. In order 

to identify modules as having hotspots or not having hotspots, the pre-trained SqueezeNet 

model is been used. 
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Fig. 5. 3 Structure of squeezeNet. 

5.8 DATA ANNOTATION    

A thermographic inspection of a SPV Module of 5 kW has been done where dust was 

manually created on a module which was 240 Wp for studying the hotspots and its effect 

on the module performances. Further, using a thermal camera image has been captured for 

hotspot detection and classification. The total number of images captured is 476 of which 

251 items is having one Hotspot, 136 items have 3 hotspots, and 89 items have no hotspots 

i.e., of a healthy module some images from the thermal imager is shown in Fig’s below 
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(a) (b)

(c) 

Fig. 5. 4 Healthy module without hotspot image captured from the thermal imager.  

System Implementation Methodology 

IR thermography uses midwave (MWIR, 3–5μm) or long-wave (LWIR, 7–14μm) infrared 

sensors to create thermal images or thermograms of things under inspection. Planck's black 

body radiation law says all objects produce infrared radiation proportional to their 

temperatures. IR thermography can measure the surface temperature and temperature trend 

of a body or SPV module under inspection. The thermal imager used for capturing the 

images are shown in Fig. 5.5. The hotspot are created by the effect of dust, here dust is 

spread on a modules in four parts in the first two parts a thin layer of dust is spread over 

50% and 100% of a module  and in the next parts thick layer of dust is spread over 50 % 

and 100% of the module and hotspots are formed due to the effect of dust these  
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Fig. 5. 6 Fluke TiS60 Thermal imager used for 

capturing images 

 

hotspot images are captured by the thermal camera and the power drop is recorded by the 

solar analyzer as shown in Fig. 5.6. Spread. Below are the steps that uses thermal imagers 

and further obtaining the fault classification. 

1. The input for the thermal image comes from the FLIR camera, which uses an already 

existing data set. 

2. The model then locates the spot in the binary mask through image segmentation and 

identifies the faulty class. 

3. Once thermal images are found, the system uses the CNN classifier to determine if a 

single Hotspot, multiple hotspots, or string features are extracted. 

4. Using a fault-classification model that has already been trained. 

Pre-processing: 

1. The data set is split into two groups: the training group and the validation group. 

2. Batch normalisation is used to process colours before they are used. 

3. A model based on machine learning and deep learning has been set up to help classify 

images. 

4. Images are put into groups with the help of a 3x3 convolution filter. 

5. Faults on the SoftMax layer, which are fully connected, are categorised with 476 images. 

 

 

                

Fig. 5. 5 Solar system Analyzer 9018BT 
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5.9 EXPERIMENTAL RESULTS CASE STUDY 1 

This part is divided into two sections in the first section, pre-trained Convolutional 

networks are used to detect the hotspots and classify faulty and healthy modules. These 

hotspots were created because of the dust accumulation, and in the second section, power 

losses due to the creation of Hotspot are discussed. 

5.9.1 Hotspot Detection Classification  

In this work for, hotspot detection classification is done by two methods, Squeeze-Net and 

Alex-net; these transfer learning is a machine learning technique that uses pre-trained data  

here total 476 images are used in which 251 items are of 1 hotspot and 136 items are of 3 

hotspots and remaining 89 items of healthy modules. All the images are been captured by 

the thermal imager, here 70% data is been used for training and 30% data is used for testing. 

5.9.1.1  Alex-Net Transfer Learning 

Alex-Net is CNN’s most representative model, with more excellent performance, fewer 

training parameters, and strong robustness. It is inspired by while simulating dual-channel 

visual transmission and learning picture attributes via two channels [120].  The pre-trained 

model is made in MATLAB environment. In Alex-Net, there is an input layer, five 

convolutional layers, three pooling layers, three fully-connected layers, and an output layer 

with 3 output class labels. In the full model, two channels are investigated individually in 

the convolutional layer and only crossed in the third feature extraction layer. The first fully-

connected layer cross-mixes the features of two groups. The next fully-connected layer 

repeats till the last fully-connected layer combines the features of two groups to generate a 

4096-dimensional feature vector. This pre-trained model is used for classification, which 

contains 25 layers, and to image input size is 227 x 227 x 3 for training; 70% of data is 

used and for testing, 30%. After loading the data training option used here is shown in 

Table 5.1, and the accuracy and loss plot of Alex-Net transfer learning techniques is shown 

in Fig. 5.7 and 5.8 respectively. The training accuracy of Alex-net comes out to be 99.7%. 
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Fig. 5. 7 Accuracy plot for Alex-Net transfer learning method 

Fig. 5. 8 Loss plot for Alex-Net transfer learning method 

5.9.1.2 Squeeze Net Transfer Learning 

It uses three ways to improve CNN networks. First, most decreases the number of network 

weights. It reduces input channels to 3x3 filters. It also reduces network weights. Larger 

activation maps are down sampled later in the network. It's hypothesized that the size of 

down sampled activation maps affects categorization accuracy. Removing the fully linked 

dense layers frequently employed in the network's last layers and replacing them with a 

convolution layer with the same number of output channels as data classes, dropout layer, 

and SoftMax activation function decreases the amount of network weights. It contains 68 
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layers, MATLAB 2021 for squeeze Net transfer learning image classification is used to 

train the images. Further, the accuracy and loss plot of Squeeze-Net transfer learning 

techniques is shown in Fig. 5.9 and 5.10, respectively; training options has been considered 

here as shown in table 5.1. The training accuracy of the squeeze net comes out to be 

95.01%.  

[121] implemented a Deep learning model AlexNet with normal type of images for training

the model and reported accuracy 93.33% . [122] uses VGG 19 model with thermal images 

for training the model and reported accuracy of 92% and Author in [123] introduces VGG 

16 model with thermal images for training the model and reported accuracy of 98% where 

the proposed work uses Alex-Net and Squeeze-Net model where Alexnet performs best 

with accuracy of 99.3%. 

Fig. 5. 9 . Accuracy Plot for Squeeze-Net Transfer Learning Method 

Fig. 5. 10 Loss Plot for Squeeze-Net Transfer Learning Method. 
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Table 5. 1 Network Parameters and Assigned Values 

Training Options Alex Net Squeeze net 

Learning Rate 0.001 0.001 

Mini batch size 50 30 

Max Epoch 20 20 

Solver Sgdm Sgdm 

5.9.2 SPV module performance with and without dust accumulation 

On the 5 kW SPV module, which is on the rooftop of Delhi Technological University, New 

Delhi, hotspots are artificially created with the help of dust, for study purpose here only 

considering five days of data is considered on the first day solar analyser setup was put on 

peak hrs in which module performs best, the solar analyser for 2 hrs from 11 AM to 1 PM  

are connected to get the details of modules performance, on the day one the SPV module 

output performance is shown in Fig. 5.11. 

 

 

Fig. 5. 11 Day 1 Maximum Power Plot Versus No of Samples Captured from the Solar 

Analyzer for 2 Hrs. 

 

On the second day to create Hotspot, some dust was intentionally sprinkled on half of the 

module to see the effect on output power of the SPV modules by the help of solar analyser. 



88 

Seeing the Fig.5.12. we can say that power gets reduced as the Hotspot was made from 

1680 W to 1601 W, the dust was kept for 2 hrs from 11 AM to 1 PM just for study purpose. 

The power reduced to 4.7 %. On the third day a thicker layer of dust was sprinkled on half 

of the SPV module to see the output power of the SPV module. In Fig. 5.13.  the power 

gets reduced as the Hotspot was created from 1688 W to 1587.89, the dust was kept for 

about 2 hrs from 11AM to 1 PM for study purposes. The power reduced to 5.983 %.  

Fig. 5. 12  Day 2 Maximum Power Plot Versus No of Samples Captured from the 

Solar Analyser for 2 Hrs 

Fig. 5. 13  Day 3 Maximum Power Plot Versus No of Samples Captured from the Solar 

Analyser For 2 Hr. 
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On fourth day some dust was sprinkled on the complete module to see the output power of 

the SPV module. In Fig. 5.14 the power gets reduced as the Hotspot was created from 

1798.9 W to 1682 W, the dust was kept for about 2 hrs from 11 AM to 1 PM for study 

purpose. The power was reduced to 6.49 %. 

 

 

Fig. 5. 14 Day 4 Maximum Power Plot Versus No of Samples Captured from the 

Solar Analyser for  2 Hrs. 

Fig. 5. 15  Day 5 Maximum Power Plot Versus No of Samples Captured from the 

Solar Analyser for 2 Hrs. 
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On Fifth day a thicker layer of dust was sprinkled to see the module performance and create 

Hotspot from 2015 W to 1810 W while keeping dust on the module for 2 hrs 11 AM. to 1 

PM. In Fig. 5.15. It shows that the output power gets reduced after the hotspot creation. 

The power reduced to 10.17 %. 

5.10 EXPERIMENTAL RESULTS CASE STUDY 2 

The following case study present a comparison of the fault images that were trained and 

tested in different neural networks. Additionally, they delve into the process of data 

collection and clustering of environmental defects in SPV modules. A 335 W SPV module 

is used to collect thermal images of dusty and shadowed faulty conditions the Fig. 5.16 

shows the experimental setup used for collecting thermal images. Fig. 5.17. shows the steps 

considered in the acquisition of faulty images from SPV modules. 

5.10.1 Collection of Dataset and Clustering 

No. of images collected is 492 where healthy images are 105 and hotspot created due 

to dust accumulation mimicked by applying artificial dust is 251 and total shadowed 

images is 136 which is mimicked by providing obstructions for creating partial 

shading. The images were subsequently split into 70 and 30 percent ratios for SPV 

module training and testing.  

 

Fig. 5. 16 Experimental Setup for Collecting Thermal Images by Fluke Thermal 

Imager  
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Fig. 5. 16 Methodology for Data Collection and Clustering. 

5.10.2 Neural Network Analysis  

The MATLAB software's Deep Network Designer tool trains images collected from the 

thermal imagers to create pretrained neural network such as Resnet-18, Inception V3 

and Inception- Resnet -V2. The model is trained as given in Table. 5.1 for best fitting of 

model. 

Table 5. 2 Training Parameters for Different Pretrained Networks 

 

In ResNet-18 model 70 % and 30% data are used for training and testing this model is 

trained with accuracy of 90.18 % and training time for this model is 82 minutes as shown 

in Table. 5.2 

In Inception v3 model 70 % and 30% data are used for training and testing this model is 

trained with accuracy of   93.34 % % and training time for this model is 97 minutes as 

shown in Table. 5.2.  

 

 

 

 

S. NO. Training options Value 

1. Solver SGDM 

2. Maximum epochs 20 

3. Mini batch size 30 

4. Max number of iterations 128 

5. Learning rate 0.0001 
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Fig. 5. 17 Accuracy Plot for Different Transfer Learning Model 

In Inception ResNet v2 model 70 % and 30% data are used for training and testing this 

model is trained with accuracy of   94.768 % % and training time for this model is 125 

minutes as shown in Table. 5.2 

 

Fig. 5. 18 Accuracy Plot for Different Transfer Learning Models 
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Comparison plot of performance of different transfer learning methods is displayed in 

Fig. 5.18. and loss plots are shown in Fig. 5.19. 

5.10.3 Performance Evaluation 

(i) Accuracy- Model accuracy is an evaluation metric that approximates performance

across all classes. To compute, use the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 +𝑡𝑛

𝑡𝑝 +𝑡𝑛+𝑓𝑛+𝑓𝑝
                                                                                       (5.1)

where tp, tn are the amount of true positives and true negatives, and fp, fn denotes the 

number of false positives and false negatives. 

(ii) Precision- Precision is a measure that is obtained by dividing the number of true

positives by the total number of positives (tp and fp). It is determined using the following 

formula: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
                                                                                                           (5.2)

(iii) Recall- This measure is the proportion of correctly identified positives (true positives)

to total positives (true positives and false negatives). It is determined using the formula 

given below: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
 (5.3)

F-1 score- The F-1 score is calculated as the weighted average of recall and precision.It

is calculated as follows: 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(5.4) 

Table 5. 3   Performance Evaluation of Various Transfer learning Methods 

Transfer 

learning Models 

Accuracy Recall Precision F1 score Computational time 

ResNet18 0.901 0.823 0.87 0.84 82 min 

Inception V3 0.933 0.88 0.89 0.90 97 min 

 Inception-

ResNet-v2 

0.947 0.89 1 0.94 125 min 
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There are various transfer learning models used for fault classifications. The authors in 

[61] proposed muti-scale CNN method with accuracy 93.51 %. The author [119] uses 

Squeeze Net, Google Net, shuffle Net for fault classification with 94.12%, 97.62% and 

94.12 % respectively. The proposed work uses much real time captured imaged and trained, 

where Inception-ResNet -V2 performs best. 

5.11 EXPERIMENTAL RESULTS CASE STUDY 3 

In this case a meticulous investigation and assessment of different DL architectures is 

done i.e. ResNet, GoogLeNet, VGG-16, and VGG-19 as proposed in Fig 5.19. By 

harnessing the power of transfer learning and initializing models with pre-trained weights 

sourced from extensive datasets. The focal point is the adaptation of pre-existing features 

to the unique nuances inherent in SPV systems for module condition monitoring. Rigorous 

evaluation was performed on a dedicated testing set, using comprehensive performance 

metrics, such as precision, sensitivity, accuracy, specificity, Matthew's correlation 

coefficient and F1-score.  

   The results and discussion of this case is parted into two major sections. In the first 

section, the SPV module condition is analysed using 𝑃𝑙𝑜𝑠𝑠. This loss in power is calculated 

using the data collected by solar PV analyzer 9018BT.𝑃𝑙𝑜𝑠𝑠 is computed by distinguishing 

between defective and healthy modules. Additionally, the section divides the data into four 

classes and constructs an image dataset for the purpose of training the transfer learning 

model. Where out of 660 images total 251, 136, 168 and 105 images are of hotspot and 

multi-hotspot, shadowing, cracked and healthy modules respectively. The classes used for 

classifications is divided in two parts faulty and healthy modules faulty modules are 

divided in three classes which are hotspot and multi-hotspot, shadowing by nearby objects, 

cracked modules and healthy modules.  
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Fig. 5. 19 Proposed framework for PV module condition monitoring. 

5.11.1 Comparative Performance for Different Classes on SPV Modules 

Different faulty conditions performance is considered, where the power is recorded on 3 

different real time PV module Fault scenarios. i.e. Shadowing, Cracked and hotspots which 

is created by dust and further compared the power recorded against healthy module. The 

magnitude of the power loss is determined by a variety of parameters, including the severity 

of the hotspot, the degree of shadowing, and fracture damage. 
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Fig. 5. 20 Comparative Performance of Different Classifications 

The power is recorded on a 335 W PV module for 10 minutes interval for different 

condition by the Solar system analyzer 9018 B for 4 hours. The power recorded is shown 

in Fig. 5.19 different classes of PV modules are discussed below. 

1) Healthy module- The module is cleaned and then power is recorded.

2) Shadowing module – The shadowed condition is been mimicked as short wide (SW)

shading condition, discussed in [124] .

3) Cracked module datasets- A same 335 W cracked module is considered to record power,

the cracked module considered is having severe cracks.

4) Hotspot modules- Dust was spread for mimicking a real time scenario.

The power loss in different condition is shown in Table 5.4. Where it is observed that the 

maximum power loss is due to Cracked Module. 

Based on this work power loss it can be defined that the solar PV modules as faulty. Here 

less than 20% power loss is considered to be recoverable and more than 20% power loss 

the module is stated as cracked and not recoverable and needs replacement. Table III 

discusses the power loss percentage for different faulty conditions. From Table II different 

faulty modules can be classified and thermal images are been captured for different stated 

classes. 
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Table 5. 4 Power Loss in Different Conditions 

5.11.2 Classification Using Transfer Learning Methods 

The captured thermal infrared images are used to train the deep learning CNN transfer 

learning models GoogLeNet, Resnet- 50, VGG-19 and VGG-16 to classify faulty and 

healthy solar PV modules. The “GoogLeNet” alters the last three layers of the network 

these three layers of the network -“loss3-classifier,” “prob,” and “output”- are replaced 

with “fully connected,” “softmax,” and “classification output” layers. Connect the last 

transferred layer (“pool5-drop_7×7_s1”) to the new layers. The data is divided in 8 The 

fluke thermal imager TiS75+ is used to create hotspots and capture thermal pictures. The 

photos are acquired over a span of 4 days in order to gather a dataset encompassing 4 

distinct classes. The purpose of these photos is to train deep learning CNN transfer learning 

models, such as GoogLeNet, Resnet-50, VGG-19, and VGG-16, to accurately detect 

defective and non-defective solar photovoltaic (PV) modules. The last three layers of 

"GoogLeNet" is modified. The layers of the network, namely "loss3-classifier," "prob," 

and "output," are substituted by "fully connected," "softmax," and "classification output" 

layers respectively. Establish a connection between the most recently transferred layer, 

namely the "pool5-drop_7×7_s1" layer, and the newly introduced layers. The data is 

partitioned into 80% for training and 20% for validation. 

 

 

 

 

 

Conditions Healthy Power (W) Faulty Power (W) 𝑷𝒍𝒐𝒔𝒔 (%) 

Hotspots and multi- 

Hotspots 
93.1672 W 77.9319 W 16.35 % 

Shadowing 
93.1672 W 91.9368 W 2.22 % 

Cracked 
93.1672 W 72.0247 W 

22.69 % 

 



 
 
98 

Table 5. 5 Performance Comparison of DNN Architecture During Training Phase 

Transfer learning Models Accuracy Computational time 

ResNet- 50 83.3 % 2 min 19 sec 

Google Net 73.5 % 5 min 17 sec 

VGG-19 90.9 % 52 min 12 sec 

VGG-16 95.5 % 50 min 2 sec 

 

The solver used for transfer learning models are Stochastic gradient descent with 

momentum (Sgdm). The data is split into training and testing into 80% and 20% 

respectively  

i.e. 528 training images and 132 testing images. The different model training plots of the 

input images is shown in Fig.5. 20.  

 

Fig. 5. 21 Comparative performance of various DNN architectures during training phase 

(a) Accuracy performance (b) Loss Analysis 

The training accuracy and loss plots of different transfer learning model i.e. Resnet-50, 

GoogLeNet, VGG-16 and VGG-19 is shown in Fig. 5.20 (a) and Fig. 5.20 (b). The models 

developed is optimized for better results VGG-16 comes out to be 95.5% with highest 

computational time of approx. 50 minutes and ResNet-50 performs with lowest 

computational time of 2 min 19 sec with accuracy of 83.3% shown in Table 5.20. From the 

Fig. 5.21 it is observed that the VGG -16 transfer learning model gives the best 

performances for classifying the various classes of dataset with highest accuracy. 
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Table 5. 6 Evaluation Metrices for different Classes of SPV Module Condition 

Performance comparison for complete dataset consisting of different cases is shown in 

Table 5.6, where 660 images are used to train the transfer learning models. Further after 

training the entire data set is tested and confusion matrix are made so as to find various 

performance matrices i.e accuracy, sensitivity, Specificity. The confusion matrix for each 

of the four DNN architectures for SPV condition monitoring is presented in Fig. 5.21. The 

four DNN architecture (ResNet-50, GoogLeNet, VGG-19 and VGG-16) symbolizing 

transfer learning method and their respective confusion matrix to evaluate the performance 

of each model. The accuracy plot for different classes is showed on the transfer learning 

models. A systematic approach is necessary to derive accuracy (sensitivity), precision, or 

specificity values from a confusion matrix. Perform the necessary computations to 

determine the True Positives (tp), False Positives (fp), True Negatives (tn), and False 

Negatives (fn) associated with a particular class of interest. As demonstrated by the 

confusion matrix provided in Fig. 5.21(c), the analysis that is centred on shadowing. tp 

represents the number of instances that were accurately classified as shadowing, which is 

14 in this instance. On the other hand, (fp) represents 13 irrelevant instances that were 

erroneously classified as shadowing, excluding the first column. This total is calculated by 

adding the values in the first row. Indicative of correctly identified irrelevant test instances, 

(tn) is obtained by deducting (fp) from the total number of irrelevant test instances. (tn) is 

calculated in this context using three irrelevant classes and fourteen test instances per class 

Models- ResNet-50 GoogLe Net VGG-19 VGG-16 
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A (%) 100 88 90 94 86 77 61 100 100 89 100 94 100 93 100 97 

P (%) 100 77 71 88 100 52 35 100 100 78 100 88 100 78 100 100 

Sn (%) 100 77 100 88 42 100 67 100 100 78 100 88 100 100 100 89 

Sp (%) 100 93 86 96 100 69 59 100 100 93 100 96 100 91 100 100 

F1 (%) 100 78 83 88 60 68 46 100 100 78 100 88 100 88 100 94 

MCC 

(%) 

100 70 78 84 59 60 23 100 100 70 100 84 100 84 100 93 
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as (3*14 -13), which equals 29. In order to identify (fn), which denotes shadowing 

instances that were incorrectly classified as other 

 

Fig. 5. 22 Confusion Matrix for Various DNN Architectures (a) ResNet-50 (b) GoogLeNet 

(c) VGG-19 and (d) VGG-16 

defects, the sum of the values in the first column (excluding the first row) yields 0. The 

sensitivity or accuracy of different classes is represented in the bottom row of the confusion 

matrix, whereas the precision of different classes is illustrated in the far-right corner. 

Subsequently, power measurements for both functional and malfunctioning modules are 

discussed. Thermal images are captured and categorized into four distinct classes, and a 
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performance analysis is conducted on the aforementioned classes. The performance 

metrices can be calculated by the confusion matrix w6th the help of fp, fn, tp, tn the testing 

data set is used to plot the confusion matrix the Fig. 5.21 describes the different classes 

sensitivity and precision and rest parameters are shown in Table 5.5. This tables concluded 

that VGG-16 transfer learning models performs best among the other transfer learning 

models discussed in this chapter. 

5.12 CONCLUSION 

SPV module hotspots reduce efficiency, performance, and longevity. Dust collection, 

partial shading, and module faults generate hotspots that impair power output and may 

cause irreparable damage. Hotspot analysis employing thermal imaging and deep learning-

based image processing has been successful in fault identification and classification. Alex 

Net, Squeeze Net, ResNet-18, Inception v3, Inception-ResNet-v2, ResNet-50, Google Net, 

VGG-16, and VGG-19 are CNNs and transfer learning models that can accurately identify 

damaged and healthy modules.  

Both studies emphasize the significance of thermal imaging and deep learning in SPV 

defect detection. Dust collection and shade reduce SPV efficiency by 4.7% to 10.17%, 

depending on coverage. In case 1 Alex Net detected dust-induced hotspots with 99.3% 

accuracy, whereas in case 3 Inception-ResNet-v2 classified faults across environmental 

conditions with 94.8% accuracy, 100% precision, and 94.2% F1-score and in Case 3 VGG-

16 model proved to be the best of the assessed models, with classification values 95.5 %. 

Early hotspot identification is crucial because dust collection and shadowing might cause 

permanent module deterioration. Various automated detection and maintenance solutions 

have been investigated to reduce hotspot development and increase SPV system 

dependability. Image processing methods separate and classify defects, allowing 

preventive interventions before major power losses. Hotspots may be reduced via module 

cleaning, anti-soiling coatings, and system optimization. Additionally, AI-driven 

predictive maintenance may improve SPV system performance and reduce expensive 

human inspections. Deep learning-based defect detection algorithms are promising, but 

model overfitting, computational costs, and dataset reliance persist. Future research should 

build lighter, more efficient models with excellent detection accuracy and minimal 
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processing power. Infrared thermography with AI-powered automation may increase real-

time monitoring and problem mitigation, increasing energy yields, lowering maintenance 

costs, and improving sustainability. 

These studies emphasize the relevance of AI-driven SPV system monitoring, enabling 

more dependable, cost-effective, and sustainable solar energy generation. Advanced deep 

learning and image processing may boost SPV module efficiency and lifetime, providing 

optimum energy production and operational stability. This chapter also focuses on future 

potential for severity based on fault labelling 



 
 
103 

CHAPTER 6 

DESIGN AND DEVELOPMENT OF MITIGATION 

TECHNOLOGIES FOR DUST ACCUMULATION ON SPV 

MODULE 

6.1 INTRODUCTION 

The collection of dust on SPV modules significantly diminishes their efficiency by 

obscuring sunlight and reducing power production. Various environmental conditions, 

including wind, humidity, and precipitation, affect dust deposition rates. Excessive dust 

collection might result in uneven shading, creating hotspots that diminish the module's 

longevity and effectiveness. The intensity of the problem varies by geographic location, 

with dry and semi-arid areas exhibiting the highest levels of dust buildup. 

Mitigation techniques are crucial for sustaining optimum performance and guaranteeing 

long-term dependability. Efficient dust removal techniques save maintenance expenses, 

enhance energy output, and mitigate environmental effects linked to conventional cleaning 

practices. This chapter examines current dust mitigation methods, suggests best cleaning 

methods, and further outlines the design and development process for efficient dust 

removal systems. 

6.2 CLEANING METHODS 

Several cleaning methods are developed for SPV module enhancement. There are two 

types of cleaning methods passive and active cleaning methods. Passive SPV module 

cleaning options include using rain, tilting modules for natural shedding, hydrophobic 

coatings, and smooth surfaces. Manual cleaning, automatic cleaning, or self-cleaning 

modules using robotic arms or water jets are active techniques. Passive methods are cheap 

but may not work in all situations, while active ones clean better but cost more. Location, 

weather, budget, and maintenance preferences determine the option. 

SPV modules are being cleaned using one of three techniques: mechanical, coating, or 

electrostatic procedures. Generally speaking, four mechanical methods—air-blowing, 
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robotic, water-blowing, and ultrasonic vibration—are studied to clean the surface of SPV 

modules. These techniques require a lot of energy to operate and have moving parts. While 

consuming a lot of water is a major downside of this method, especially in dry areas, it also 

saves energy. 

Electrostatic cleaning has been the subject of a new design and implementation. 

Considering the electrode designs, the cleaning performance of this device has been 

evaluated [83]. The electrostatic dust removal action of transparent conductive films made 

of carbon nanotubes (CNTs) is the basis for a novel electrostatic adsorption dust removal 

technique for SPV modules investigated in this work [84]. This study aims to investigate 

the optimal counteracting force required to eliminate dust particles that have stuck to PV 

modules. A self-cleaning system that utilizes fluid velocities to lift dust particles stuck to 

the surface of a SPV module, while minimizing the static charge created, has been 

developed [85]. In order to clean the SPV module, this work offers the design and 

experimental analysis of a revolutionary self-powered SPV module cleaning mechanism 

system. The cleaning method does not require electricity from the SPV module that has to 

be cleaned because it is powered by two little SPV modules that have rechargeable batteries 

[86]. This work presents a SPV module cleaning robot that autonomously cleans 

photovoltaic modules at regular intervals. The robot cleans the surface of the modules by 

using air blowing, liquid spraying, wiping with a wiper, and drying any moisture on the 

modules using a cylindrical brush. The suggested robot is operated by IoT from a remote 

location, thereby minimizing human labor at the solar facility and enabling remote 

monitoring [87]. SPV modules directly generate electricity from solar radiation. How much 

light SPV modules use impacts their efficiency. SPV modules use 30%–40% of incident 

solar radiation. Due to ambient dust and module glass reflection, a lot of incident radiation 

goes unutilized. To solve these technological challenges, self-cleaning/superhydrophobic 

antireflection coatings are popular [88]. Superhydrophobic transparent coatings are useful 

in solar energy for their low cost, self-cleaning, and dust-resistance. Solar energy self-

cleaning coatings are complex; therefore, few publications have studied them. Industrial 

SPV modules need strong coatings owing to demanding environments. Contrasting 

transparency and roughness cause self-cleaning. Solar superhydrophobic coatings are 

tricky to study. Transparent and superhydrophobic coating materials, deposition, and 
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synthesis were rarely covered in literature reviews. Many evaluations highlight 

superhydrophobic coatings, which segregate water/oil, resist ice, biofouling, and self-

clean. However, few studies address solar superhydrophobic coating development. Solar 

applications require transparency, making this topic difficult. This evaluation covers SPV 

module dust and efficiency. Self-cleaning, transparent cohabitation, and super 

hydrophobicity follow [89]. To economically deploy solar in arid places, dust-related 

power loss in SPV systems must be mitigated. High aerosol concentrations and frequent 

sand storms cause SPV array dust to accumulate. Dust remains due to occasional light 

showers. An automated robotic cleaning system was used to test the effectiveness of dry 

cleaning SPV modules [90].  

Therefore, this study employs MICMAC and TOPSIS methodologies in subsequent 

sections to comprehensively assess and rank available mitigation strategies based on a 

multi-criteria framework. 

6.3 MULTI CRITERIA DECISION MAKING 

The MCDM process involves selecting one of two or more solutions based on 

predetermined criteria and common problems. However, it is important to note that the 

decision made among the available solutions may not always be correct. MCDM treats a 

finite set of alternatives that are solved using a mathematical model. MCDM has 

experienced a substantial surge in usage over the past few decades, resulting in a significant 

expansion of its application area [125][126][127] MCDM approaches exist, each with 

conflicting criteria. There are several MCDM techniques with varying criteria. The MCDM 

technique is often used for both quantitative and qualitative analysis. This method 

integrates historical data and expert views by quantifying subjective judgment. AHP, 

PROMETHEE, ELECTRE, TOPSIS, and VIKOR offer several MCDM models. Each 

technique has its own algorithm, as shown in Fig. 6.1. To find the optimal SPV power plant 

location, the MCDM model combines DEA, FAHP, and TOPSIS techniques to consider 

both quantitative and qualitative factors. 
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6.4 PROPOSED METHODOLOGY 

This chapter uses MICMAC analysis to find the most suit- able SPV module cleaning 

parameters. Panel Surface Material (PSM), Location and Environment (LE), Tilt and 

Orientation (TO), Weather Conditions (WC), Cleaning Frequency (CF), Cleaning Agents 

(CA), Safety and Accessibility (SA), Cost (C), Panel Efficiency (PE), Manufacturer 

Recommendations (MR), and Professional Services (PS). are addressed. MIC- MAC 

analysis identifies the most influential driving and de- pendent factors. Next, TOPSIS-

MCDM was used. 

6.4.1 MICMAC Analysis 

Basically, the MICMAC technique consists of the following steps [128]: 

Step 1: Identify the variables. Variables can be determined by a literature research, expert 

opinion, or brainstorming. 

Step 2: Create a structural analysis matrix. The experts supply an integer matrix (M). Each 

cell aij in matrix M represents how variable i affects variable j. 

•  0 if there is no interaction between i and j. 

•  1 if there is little influence between i and j. 

•  2 if there is a significant influence between i and j. 

Fig. 6. 1 Different MCDM methods 
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•  3 if there is a significant influence between i and j. 

 • P if there is a possible influence between i and j. All diagonal cells (aij) are equal to zero. 

Step 3: Determine the direct influence. Direct analysis assesses a variable’s total influence 

(DIi) and dependence (DPi) on the system using a direct matrix. The formula for calculating 

influence power (DIi) and dependence power (DPi) is in equation 1, 2 respectively. 

MICMAC classifies in 4 variables i.e. Autonomous variables have limited influence and 

dependency. Dependent variables, which have high dependency but little effect. linkage 

Variables with significant influence and high dependency, independent variable have 

High- influence, low-dependence variables that drive the system. 

𝐷𝐼𝑖 = ∑ 𝑎𝑖𝑗 (𝑖 = 1,2,3, … … … … … … … 𝑛)                                                                           6.1

𝑛

𝑗=1

 

𝐷𝑃𝑖 = ∑ 𝑎𝑗𝑖 (𝑖 = 1,2,3, … … … … … … … 𝑛)                                                                           6.2

𝑛

𝑗=1

 

Step 4: Evaluate the indirect influence. Indirect analysis assesses the comprehensive impact 

and reliance of a variable by considering its relationship with other variables. Indirect 

classification is achieved by raising the matrix M to higher powers using matrix 

multiplication (M2 = M × M, M3 = M × M × M, etc.). The algorithms employed in 

MICMAC examine the propagation of interactions within the system by analyzing the links 

and feedback loops that link individual components. This enables the prioritization of 

factors depending on the number of lap settings and the loop length, ranging from 1 to n, 

for each component. Consequently, the obscure impacts, which provide a challenge for 

professionals to explicitly ex- plain, become apparent. Typically, the categorization 

remains consistent after undergoing 3, 4, or 5 rounds of multiplication. Categories of 

variables in MICMAC include: 

6.4.2 TOPSIS Method 

TOPSIS evaluates multi-criteria choices. In 1981, Ching-Lai Hwang and Yoon developed 

it. Yoon improved it in 1987 and Hwang, Lai, and Liu in 1993. It helps rank and choose 

the best alternative by distance. This research compares TOPSIS MCDM cleaning 

methods. The main goals are to find the best SPV cleaning process and lessen its 



 108 

environmental impact. TOPSIS helps decision-makers choose the optimal option. A 

comprehensive research study shows TOPSIS’s advantages, including: 

• Easy steps to follow.

• No matter what the options are, the number of steps stays the same.

• Other than when there aren’t many factors, it works better than other MCDM methods.

• Able to handle more than one set of factors at the same time.

• It’s easy to do calculations and they work well.

• A sensible and easy-to-understand idea to use.

The TOPSIS approach is ideal for dealing with group decision-making issues using precise 

numbers. The study aimed to include qualitative features into building project performance 

assessments and convert them into quantitative metrics. 

6.4.3 Mathematical Formulation of TOPSIS Method 

This section describes the TOPSIS approach and applies it to identify the best SPV panel 

cleaning procedure. Criterion weights and ratings are used in the traditional TOP- SIS 

MCDM method. Linguistic variables can indicate criteria and weights. Several academics 

have utilized grey system theory to broaden the MCDM technique to subjective criteria, 

interval data, and fuzzy environments. Designing a decision- making matrix is the initial 

step in solving any multi-criteria problem. The values of alternatives in such matrices can 

be  real, intervals, fuzzy integers, or qualitative labels. Assign variables C1,C2....Cm for 

various alternatives, and variables V1,V2....Vm for criteria to judge alternative performance. 

𝑋𝑖𝑗
𝑘 is the numerical value or interval data decision maker rating of alternative Ci for

criterion Vj. Where options are C and V,  Table 6.1 displays the multi-criteria problem in 

matrix form [129]. The proportional relevance of each criterion is defined by a set of 

weights that have been standardized to add up to 1. We may represent weights as Wᵏ = 

[w₁ᵏ, w₂ᵏ, ..., wₙᵏ] where k refers to decision maker. The criterion weights adhere to the 

constraints w₁ᵏ + w₂ᵏ + ... + wₙᵏ = 1 
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Table 6. 1 MCDM Criteria and Alternatives in Matrix Form  

 V₁ V₂ ⋯ Vₙ 

C₁ x₁₁ x₁₂ ⋯ x₁ₙ 

C₂ x₂₁ x₂₂ ⋯ x₂ₙ 

⋮ ⋮ ⋮ ⋱ ⋮ 

Cₘ xₘ₁ xₘ₂ ⋯ xₘₙ 

 

Step 1: Create decision matrix for key decision-makers and establish the weights of the 

criteria. The notation Xᵏ = (xᵏᵢⱼ) represents a decision matrix for a decision maker or expert. 

Step 2: Normalize the decision matrix for each decision maker. 

This stage is essential for obtaining numerical and comparable input data, while applying 

a similar scale and providing a norm or a standard to the input data. In the decision matrix, 

each criterion has either a monotonically increasing or monotonically decreasing value. 

Any consequence that is stated in a non-numerical form should be quantified using the 

appropriate scaling approach. Normalized values are calculated by equation (6.3). 

𝑟𝑘
𝑖𝑗 =  

𝑟𝑘
𝑖𝑗

√∑ 𝑟𝑘
𝑖𝑗

2𝑚
𝑖=1

                                                                                                                       6.3 

In the subsequent stage, the weights are changed during these computations with the help 

of equation (6.4) and (6.5). 

σ𝑗 = √
1

𝑚−1
∑ (𝑥𝑖𝑗 − 𝑥𝑗)̅̅ ̅̅ 2 𝑚

𝑖=1                                                                                                        6.4      

w𝑗 =
σ𝑗

∑ σ𝑘
𝑛
𝑘=1  

                                                                                                                                   6.5                  

Step 3: Determine the positive and negative ideal solutions for each decision maker. 

The positive ideal solution C⁺ᵏ for k-decision maker has the following form. C⁺ᵏ is a set 

that consists of elements r₁⁺ᵏ, r₂⁺ᵏ, ..., rₙ⁺ᵏ. These elements are defined as the maximum 

value of rᵢⱼᵏ for all j in set I, and the minimum value of rᵢⱼᵏ for all j in set J. The negative 

ideal solution C⁻ᵏ for a decision maker has the following form: C⁻ᵏ is a set that consists of 

elements r₁⁻ᵏ, r₂⁻ᵏ, ..., rₙ⁻ᵏ. Each element in C⁻ᵏ is determined by taking the minimum value 

of rᵢⱼᵏ for all j in set I, and the maximum value of rᵢⱼᵏ for all j in set J. 

C+ᵏ = {𝑟1+ᵏ, 𝑟2+ᵏ, … , 𝑟ₙ+ᵏ} ==  {(max (𝑟ᵢⱼᵏ) | 𝑗 ∈  𝐼), (min (𝑟ᵢⱼᵏ) | 𝑗 ∈  𝐽)}              6.6   

C+ᵏ = {𝑟1+ᵏ, 𝑟2+ᵏ, . . . , 𝑟ₙ+ᵏ} ==  {(𝑚𝑎𝑥(𝑟ᵢⱼᵏ) | 𝑗 ∈  𝐼), (𝑚𝑖𝑛(𝑟ᵢⱼᵏ) | 𝑗 ∈  𝐽)}               6.7   
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Where I is related with the benefit criterion and J is associated with cost criteria, where 

cost criteria should be minimized and benefit criteria should be maximized. 

Step 4: Calculate the separation measures between the positive ideal solution and the 

negative ideal solution. 

Step 5 involves calculating the separation measures for each individual decision maker. 

The positive ideal answer d⁺ᵢᵏ for each k decision maker is provided as: 

d+ᵢᵏ = ∑  wⱼᵏ

m

j=1

 ((rᵢⱼᵏ −  rⱼ+ᵏ)p)
1
p) ,      i = 1,2, … … … … . m                                           6.8 

The negative ideal solution, d⁻ᵢᵏ for each decision maker, is provided as follows: 

d−ᵢᵏ = ∑  wⱼᵏ

m

j=1

 ((rᵢⱼᵏ −  rⱼ−ᵏ)p)
1
p) ,      i = 1,2, … … … … . m                                           6.9 

Here p ≥ 1. We use the Euclidean metric for p = 2. 

Compute the distance metric for the group. The group measure of the positive ideal solution 

is written as d⁺ᵢ: 

𝑑∗ᵢ+ =
1

𝑘
∑ 𝑑+ᵢᵏ                                                                                                                         6.10

𝑘

𝑘=1

 

𝑑∗ᵢ− =
1

𝑘
∑ 𝑑−ᵢᵏ                                                                                                                         6.11

𝑘

𝑘=1

 

Step 6: Calculate the relative proximity to the ideal solution. 

The proximity of the alternative Cᵢ to the positive ideal solution is expressed by equation 

(6.11): 

𝑅∗ᵢ =
𝑑∗ᵢ− 

𝑑∗ᵢ++ 𝑑∗ᵢ−
                                                                                                                          6.12                                                                                              

for i=1,2,3,.....m, the assessment of the alternative improves  as the index value 

increases,where,0≤ 𝑅∗ᵢ ≤1. 

 The distances between the positive ideal solution and the negative ideal solution represent 

the distances of alternatives in matrix form. A ranking of options is created and the most 

 favorable option is offered using the coefficient of relative closeness of each option to the 

positive ideal solution. 

 Step7: Prioritize the options or choose the alternative that is most similartothenumber1. 
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 The collection of options may now be ranked using the descending order of the value of 

𝑅∗ᵢ By following these steps, we can successfully implement the TOPSIS method. The 

alternatives are rated based on their proximity to the ideal solution 𝑅∗ᵢ (the greater the 

value, the better the option). The option with the greatest value is the optimal choice 

6.5 RESULT AND DISCUSSION 

This section covers several cleaning methods for SPV modules, including robot water-

based, pressure-based, and manual approaches. Cleaning techniques, including nano-

coating, are taken into consideration. There are various aspects to consider while choosing 

the finest cleaning techniques. Factors to consider include panel surface material, location 

and environment, tilt and orientation, weather conditions, cleaning frequency, cleaning 

agents, safety and accessibility, cost, panel efficiency, manufacturer recommendations, and 

professional services. To determine the proper criteria, consider MICMAC analysis is 

conducted by field specialists based on a survey. 

A matrix of direct impact (MDI) and indirect influence (MII) is created, as well as a matrix 

of possible direct and indirect influence depending on map parameters, for SPV panel 

cleaning procedures. Fig. 6.2 and 6.3 illustrate direct influence maps and graphs, 

respectively. The direct influence map displays the direct relationship between components 

and other variables. Autonomous variables: MR, SA, TO, WC, and PSM. 

Dependent Variables: CA Linkage variables: LE, CF, PS, and PE. Independent Variables: 

C is shown in Fig.6.3a. Fig. 6. 2 and 6. 3b show the matrix of the In-Direct impact map and 

graph, respectively. The indirect impact map depicts the relationship between the 

autonomous variables (MR, SA, TO, WC, and PSM) and other variables. 

The dependent variables are None, whereas the linkage variables are CA, LE, CF, PS, and 

PE. The independent variables are displayed in Fig. 6.3b. Fig. 6.2c and 6.3c show the MDPI 

matrix map and graph, respectively.  This extends the Direct Influence Matrix to include 

both current and projected influences between variables. This improves the understanding 

of variable interactions. The Potential Direct Influence Map displays the direct relationship 

between components and other variables. Autonomous Variables: MR, SA, TO, WC and 

PSM 
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Table 6. 2 Decision Matrix Considering Major Factors to Build Different SPV Panel 

Cleaning Methods 

Alternatives \ Criteria 

Locatio

n and 

Environ

ment 

Cleaning 

Frequency 

Cleaning 

Agent 

Cost Panel 

Efficiency 

Professional 

services 

Robot water-based cleaning 

technique 

3 3 4 2 2 2 

Robot pressure-based 

cleaning technique 

3 3 2 3 3 2 

Manual cleaning technique 2 2 3 1 2 3 

Nano-coating cleaning 

technique 

4 4 2 3 4 1 

 Fig. 6.2c displays the dependent variables (CA), linkage variables (LE, CF, PS, and PE), 

and independent variables: C shown in Fig. 6.3b. Matrix of Potential Direct influence 

(MDPI) map and graph is shown in Fig.6.2c and Fig.6.3c respectively.  

Table 6. 3 Normalized Decision Matrix 

Alternatives \ 

Criteria 

Location and 

Environment 

Cleaning 

Frequency 

Cleaning 

Agent 

Cost Panel 

Efficiency 

Professional 

services 

Robot water-

based cleaning 

technique 

0.487 0.487 0.645 0.408 0.487 0.408 

Robot pressure-

based cleaning 

technique 

0.487 0.487 0.484 0.408 0.487 0.612 

Manual cleaning 

technique 

0.325 0.325 0.484 0.204 0.325 0.612 

Nano-coating 

cleaning 

technique 

0.649 0.649 0.322 0.612 0.649 0.408 

It expands the Direct Influence Matrix (DIM) by including both present and potential 

impacts between variables. This enhances the under- standing of variable interactions. 

Potential direct influence map shows the direct relation of the factors with other variables 

in this Autonomous Variables: MR, SA, TO, WC and PSM. Dependent Variables: CA, 
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Linkage Variables: LE, CF, PS and PE and Independent Variables: C is shown in Fig. 6.2c. 

From the MICMAC analysis considerations include location and environment, cleaning 

frequency, panel efficiency, cost, and cleaning methods. 

Table 6. 4  Weighted Normalized Decision Matrix 

Alternatives \ 

Criteria 

Location and 

Environment 

Cleaning 

Frequency 

Cleaning 

Agent 

Cost Panel 

Efficiency 

Professional 

services 

Robot water-based 

cleaning technique 

0.065 0.065 0.091 0.124 0.065 0.041 

Robot pressure-based 

cleaning technique 

0.065 0.065 0.068 0.124 0.065 0.061 

Manual cleaning 

technique 

0.043 0.043 0.068 0.248 0.043 0.061 

Nano-coating 

cleaning technique 

0.086 0.086 0.046 0.083 0.086 0.041 

Agents are the most important elements in SPV modules cleaning, according to MICMAC. 

These elements are strong drivers and moderate to strong dependents. Next, we will rank 

cleaning techniques by these critical aspects using TOPSIS. Table 6.2 is the decision matrix 

which is filled by survey and further Table 6.3 is the normalization decision matrix done 

by TOPSIS using step 2 discussed in section 6.5.3. Weights are calculated by critic method 

by equation 6.4 and 6.5 as shown in Table 6.5. 
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Fig. 6. 2 (a) MDI Direct Map. (b) MII Indirect Map (c) MDPI Potential Direct Map (d) 

MPII Potential Direct Map 

Table 6. 5 Weights for Different Criteria 

Criteria Weight 

Location and Environment 0.133 

Cleaning Frequency 0.133 

Cleaning Agents 0.140 

Cost 0.248 

Panel Efficiency 0.133 

Professional Services 0.104 
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Fig. 6. 3 (a) MDI Direct Graph (b) MII Indirect Graph (c) MDPI Potential Direct Graph 

(d) MPII Potential Direct Graph

Table 6. 6 Ideal Best and Anti Ideal Solution 

Criteria Ideal Solution Anti-Ideal Solution 

Location and Environment 0.086 0.043 

Cleaning Frequency 0.086 0.043 

Cleaning Agents 0.091 0.046 

Cost 0.083 0.248 

Module Efficiency 0.086 0.043 

Professional Services 0.061 0.041 

Table 6. 7 Relative Closeness to Ideal Solution 

Alternative Relative Closeness 

Robot Water-based Cleaning 0.703 

Robot Pressure-based Cleaning 0.693 

Manual Cleaning 0.142 

Nano-Coating Cleaning 0.787 
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6.6 CONCLUSION 

This study presents a systematic and data-driven approach that combines MICMAC with 

the TOPSIS multi-criteria decision-making method to identify the best SPV module 

cleaning techniques. The hybrid framework tackles the crucial requirement for proper 

cleaning in PV systems to improve operating efficiency, durability, and sustainability. 

The MICMAC study effectively identified the primary driving and dependant factors that 

influence SPV module repair choices. The most significant elements were identified as 

location and environment, cleaning frequency, cleaning agents, safety and accessibility, 

cost, module efficiency, manufacturer recommendations, and professional services. These 

elements reflect a complete collection of technical, economic, and operational concerns 

necessary for long-term SPV module maintenance. 

Following that, the TOPSIS approach was used to rank several cleaning options based on 

their relative proximity to the optimum solution. The investigation found that nano-coating 

cleaning approaches performed the best overall, followed by robot-based solutions like 

mechanical and sprinkler systems. Manual cleaning, albeit ubiquitous, was placed last 

owing to its labour-intensive nature and poor long-term efficiency. 

This combined MICMAC-TOPSIS technique not only improves decision-making by 

providing clarity and impartiality, but it also establishes a solid platform for strategic 

maintenance planning in solar energy systems. The framework helps to optimize resource 

use, reduce operational inefficiencies, and promote environmentally friendly energy 

practices. 

In future study, the framework might be expanded to include hybrid MCDM models, real-

time sensor data, and environmental simulations. Such developments would allow for more 

dynamic and context-sensitive decision-making, increasing the feasibility of SPV systems 

in a variety of geographical and climatic contexts and further the MCDM decision making 

will help us survey and develop a more novel SPV module cleaning methods which are 

cheaper and more efficient. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE SCOPE OF WORK 

7.1 CONCLUSIONS 

Hybrid model significantly improves the precision of short-term photovoltaic power 

forecasts by effectively collecting both spatial and temporal trends from meteorological 

data. The model surpassed traditional CNN, LSTM, and MLP models under various 

weather situations, demonstrating especially excellent accuracy in sunny and cold 

circumstances. Its robust predictive capabilities enhance the reliability of energy planning 

and grid integration in SPV power systems. 

The effects of dust deposition on photovoltaic performance were comprehensively 

analysed alongside forecasts. Real-time soiling ratio data enabled precise modeling of dust-

induced power loss, with a maximum recorded loss of 285.35 W. A stacked LSTM model 

had a predictive accuracy of 99.13% for dirty output, exceeding that of the Bi-LSTM. 

These results underscore the need of astute forecasting amid soiling and advocate for the 

establishment of automated maintenance processes to guarantee consistent energy output. 

Thermal imaging integrated with deep learning methodologies shown efficacy in real-time 

hotspot identification and fault categorization in photovoltaic modules. Models like 

AlexNet and Inception-ResNet-v2 effectively identified flaws attributed to dust and 

shading, achieving classification accuracies of up to 99.3%. These methodologies facilitate 

predictive diagnostics and mitigate the danger of prolonged module deterioration, hence 

fostering AI-driven, low-maintenance SPV power systems suited for operational stability. 

A multi-criteria decision-making framework using MICMAC and TOPSIS was used to 

assess SPV module cleaning techniques in conjunction with performance optimization. 

Critical elements like cleaning frequency, safety, environmental conditions, and cost were 

examined. Nano-coating and robotic methods had the maximum efficacy; however, hand 

cleaning was the least advantageous owing to its ineffectiveness. The model provides a 

strategic basis for sustainable cleaning procedures and may be enhanced with real-time 

sensor data for adaptive maintenance planning. 
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7.2 FUTURE SCOPE 

➢ A potential approach is the merging of hybrid deep learning architectures with real-

time environmental data inputs for on-site, edge-based SPV forecasts. Lightweight,

adaptable models that function well with constrained computing resources would

enhance the scalability and practicality of forecasting tools for distant and

decentralized SPV systems.

➢ Future research may investigate the integration of sophisticated atmospheric

characteristics, including aerosol optical depth (AOD), air quality indices, and

particle composition, especially pertinent in areas with high pollution levels.

Incorporating these factors into forecasting and soil models may enhance predictive

accuracy and system resilience under swiftly changing environmental

circumstances.

➢ In hotspot detection, the integration of drone-assisted thermal imaging with real-

time AI-driven fault categorization may be enhanced to provide autonomous

problem localization and diagnosis over extensive solar farms.  Furthermore,

creating small and energy-efficient CNN models for implementation on embedded

monitoring devices might provide continuous surveillance with little energy

expenditure.

➢ Estimation of soiling loss may be enhanced using physics-informed AI models that

account for electrostatic adhesion, dust granulometry, surface energy, and humidity

interactions.  Such models would more accurately forecast deterioration rates

across diverse seasons and regions, facilitating informed cleaning regimens.

➢ There is considerable potential for creating an innovative, AI-enhanced SPV

module cleaning method that adapts in real-time according to soiling intensity,

environmental factors, and performance criteria.  Integrating this with MCDM

frameworks such as MICMAC-TOPSIS may improve future cleaning systems for

energy recovery, cost-efficiency, resource conservation, and operational

practicality in various deployment situations.
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7.3 SOCIETAL IMPACT  

➢ Enhancing Grid Stability and Energy Security: Grid management is considerably 

enhanced by precise short-term SPV power forecasts that are generated using 

hybrid AI models, particularly as solar penetration in global energy mixtures 

increases.  Reliable forecasts mitigate the risk of power imbalances, reduce 

dependence on fossil fuel-based reserves, and facilitate the development of smart, 

resilient energy infrastructures.  This is especially important as countries transition 

to net-zero emission goals. 

➢ Improving Operational Efficiency and Sustainability: The deployment of 

automated, optimized cleaning processes is facilitated by real-time modeling of 

dust deposition effects and predictive soiling analysis.  This minimizes water 

wastage, a critical issue in arid and semi-arid regions where solar farms are 

frequently situated, and diminishes the ecological impact of conventional manual 

cleansing methods.  It promotes the sustainable operation of SPV facilities with 

minimal environmental impact. 

➢ Increasing the Lifespan of Systems and Minimizing E-Waste: AI-powered thermal 

imaging for early hotspot and defect detection prevents irreversible module 

degradation, thereby reducing module failure rates and extending the lifecycle of 

solar assets 

➢ Reducing the Cost of Solar Energy for End-Users: The operational and maintenance 

costs of solar installations are reduced by implementing more accurate forecasting, 

predictive maintenance, and optimized cleansing strategies.  This promotes 

equitable energy access by making solar electricity more affordable and accessible 

to households, industries, and rural communities, as a result of the savings that can 

be transmitted down the value chain. 

➢ Fostering High-Tech Employment and Innovation: The implementation of DL and 

ML models in solar energy systems fosters innovation in the energy, AI, and smart 

infrastructure sectors.  This promotes the expansion of specialized employment 

opportunities in the field of AI-based energy analytics, predictive maintenance, and 

automation, thereby promoting technological leadership and economic 

development. 
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➢ Promoting the Objectives of Climate Change Mitigation: These technologies 

directly contribute to the reduction of carbon emissions by optimizing solar energy 

harvest and reducing inefficiencies caused by environmental factors such as 

thermal defects and pollution.  The displacement of fossil fuel generation is 

expedited by improved solar system reliability, which is consistent with the Paris 

Agreement and the global Sustainable Development Goals (SDGs). 

➢ Enabling Energy-Aware Societies and Smart Cities: Decentralized energy 

generation, AI-driven maintenance, and real-time data-driven decision-making will 

define future urban landscapes, and advanced SPV monitoring and predictive 

systems are critical enablers for smart city ecosystems.  Citizen awareness of energy 

sustainability is also enhanced by the availability of precise solar generation data 

to the public. 

7.3.1 Linking Research Objectives with SDGs for Societal Impact 

 

Fig. 7. 1 Integration of Sustainable Development Goals with the thesis objectives 
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The Fig. 7.1 demonstrates four important research targets in solar PV system development 

are aligned with three UN Sustainable Development Goals (SDGs).  Objective I (PV power 

forecasting) and Objective II (dust analysis) immediately contribute to SDG 7: Affordable 

and Clean Energy by increasing efficiency and dependability. Objective III (hotspot 

identification via image processing) and Objective IV (dust mitigation technology) help to 

achieve SDGs 7 and 11: Sustainable Cities and Communities by encouraging smarter, 

cleaner energy infrastructure.  Collectively, these aims indirectly improve SDG 3: Good 

Health and Well-being by promoting cleaner environments and lowering health risks, 

underlining PV research's larger sustainability advantages. 
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