
FACE DETECTION AND RECOGNITION IN

LOW RESOURCE ANDROID MOBILE DEVICES

A MAJOR PROJECT-II REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTERS OF TECHNOLOGY
IN

INFORMATION TECHNOLOGY

Submitted by

NITIN (2K23/ITY/20)

Under the supervision of

PROF. (DR.) DINESH KUMAR VISHWAKARMA

DEPARTMENT OF INFORMATION TECHNOLOGY
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi 110042

MAY, 2025

DEPARTMENT OF INFORMATION TECHNOLOGY
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, NITIN, Roll No – 2K23/ITY/20 students of M.Tech (Information Tech-

nology),hereby declare that the project Dissertation titled “FACE DETEC-

TION AND RECOGNITION IN LOW RESOURCE ANDROID MOBILE

DEVICES” which is submitted by us to the Information Technology, Delhi

Technological University, Delhi in partial fulfilment of the requirement for the

award of degree of Masters of Technology, is original and not copied from any

source without proper citation. This work has not previously formed the ba-

sis for the award of any Degree, Diploma Associateship, Fellowship or other

similar title or recognition.

Place: Delhi NITIN

Date: 2K23/ITY/20

i

DEPARTMENT OF INFORMATION TECHNOLOGY
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “FACE DETECTION

ANDRECOGNITION IN LOWRESOURCE ANDROIDMOBILE DEVICES”

which is submitted by NITIN, Roll No’s – 2K23/ITY/20, Department Name

,Delhi Technological University, Delhi in partial fulfilment of the requirement

for the award of the degree of Masters of Technology, is a record of the project

work carried out by the students under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Place: Delhi Signature

Date: Prof. (Dr.) Dinesh Kumar Vishwakarma

SUPERVISOR

Head of Department

Department Of Information Technology

Delhi Technological University

ii

DEPARTMENT OF INFORMATION TECHNOLOGY
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

I wish to express our sincerest gratitude to Dr Prof. (Dr.) Dinesh Kumar

Vishwakarma for his continuous guidance and mentorship that he provided me

during the project. He showed me the path to achieve our targets by explaining

all the tasks to be done and explained to me the importance of this project as

well as its industrial relevance. He was always ready to help me and clear our

doubts regarding any hurdles in this project. Without his constant support

and motivation, this project would not have been successful.

Place: Delhi NITIN

Date: 2K23/ITY/20

iii

Abstract

Nowadays, face detection and recognition are used in many mobile apps

like attendance systems, access control, and login systems. But when we try

to use these things in low-resource Android mobile phones, it becomes a bit

difficult because mobile phones have less RAM, CPU, and battery, so we have

to manage all these things properly. So, in my MTech thesis, I tried to make

face detection and recognition work in such low-resource Android phones. In

this project, for detecting faces, I used the Google ML Kit library. It is a

ready-made Android library, which works fast and is already optimized for

mobile phones. It can find faces in real time, draw boundaries on them, and

crop the faces also. For recognizing the faces, I used two models — FaceNet

and Mobile FaceNet. I converted both of these into TFLite format so that they

can run easily on Android devices. I created a full Android app from scratch

In the app itself when person register there face by using face detection and

face recognition model his face embeddings is save and when he recognise it

his embeddings are compared with the registered faces and whose embeddings

are less is comes as detected face

iv

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Content vi

List of Tables vii

List of Figures ix

List of Symbols, Abbreviations 1

1 INTRODUCTION 2
1.1 Background . 2
1.2 Importance of Face Detection and Recognition 2
1.3 Real-World Use Cases . 3
1.4 Challenges in Low-Resource Mobile Environments 3
1.5 Why We Need Optimized Face Recognition for Low-End An-

droid Phones . 4
1.6 What This Thesis Tries to Do 4

2 LITERATURE REVIEW 6

3 METHODOLOGY 13
3.1 Proposed Approach . 13
3.2 Face Detection . 13
3.3 Face Recognition . 13
3.4 Registration Activity . 14
3.5 Recognition Activity . 15

v

3.6 TensorFlow Lite . 17
3.7 Quantization . 19
3.8 Face Detection using ML Kit 20
3.9 Detect faces with ML Kit on Android 21

3.9.1 Configure the face detector 21
3.9.2 Get an instance of FaceDetector 22
3.9.3 Prepare the input image 22
3.9.4 Process the image . 23
3.9.5 Get information about detected faces 23

3.10 Dataset Used(LFW Dataset) . 24
3.11 Face Recognition . 24

3.11.1 The FaceNet approach 25
3.11.2 MobileFaceNet approach 27
3.11.3 How face recognition system works in my app 29
3.11.4 Adding the face recognition step 30

4 RESULTS and DISCUSSION 31

5 CONCLUSION AND FUTURE SCOPE 44

vi

List of Tables

2.1 Comparison of Face Detection Models 11
2.2 Comparison of Face Recognition Models 12

4.1 Comparison of Face Recognition Models: FaceNet vs Mobile-
FaceNet on LFW Dataset . 38

4.2 Comparison of various Face Recognition Models 38

vii

List of Figures

1.1 Face Registration and Recognition Model 4

3.1 Face Registration . 14
3.2 Saving face and embedding in to database 15
3.3 Face Recognition . 16
3.4 Comparing Embeddings value 16
3.5 Face Registration and Recognition 17
3.6 TensorFlow Lite Model . 18
3.7 TensorFlow Lite Architecture 18
3.8 Quantization . 19
3.9 Face Detection . 22
3.10 Face Recognition . 25
3.11 CNN Architecture . 27
3.12 Face Recognition Flow . 28
3.13 Face Recognition on Image . 29

4.1 Main Activity User Interface . 31
4.2 Teacher Login Activity . 32
4.3 Registered Student Details Activity 32
4.4 Student Login Activity . 33
4.5 Student Dashboard Activity . 33
4.6 Registration and Recognition Activity User Interface 34
4.7 Face Detection of app . 34
4.8 Dialouge box for face Registration 35
4.9 Face Recognition with name and Distance 36
4.10 Present Student Details Activity 37
4.11 Accuracy FaceNet(TFlite) vs MobileFaceNet(TFlite) 39
4.12 Precision FaceNet(TFlite) vs MobileFaceNet(TFlite) 40
4.13 Recall FaceNet(TFlite) vs MobileFaceNet(TFlite) 40
4.14 F1 Score FaceNet(TFlite) vs MobileFaceNet(TFlite) 41
4.15 Inference Time FaceNet(TFlite) vs MobileFaceNet(TFlite) . . . 41
4.16 Model Size FaceNet(TFlite) vs MobileFaceNet(TFlite) 42
4.17 Accuracy of various face recognition models 42

viii

4.18 Inference time of face recognition model 43

ix

List of Abbreviations

AI Artificial Intelligence
CNN Convolutional Neural Network
CPU Central Processing Unit
DTU Delhi Technological University
FPS Frames Per Second
GPU Graphics Processing Unit
LBP Local Binary Pattern
ML Machine Learning
MTCNN Multi-task Cascaded Convolutional Networks
PCA Principal Component Analysis
RAM Random Access Memory
SDK Software Development Kit
TFLite TensorFlow Lite
UI User Interface
YOLO You Only Look Once

1

Chapter 1

INTRODUCTION

1.1 Background

Face detection and recognition are now very common parts of computer vision
systems. They help the computer to find and recognize human faces from
photos or videos. These are used in many areas like security, login systems, and
even when humans interact with machines. Earlier, these systems were using
old methods like Viola–Jones, which worked with Haar features and cascade
classifiers. But these had problems like they didn’t work well in different
lighting conditions, or if the face is turned or covered. Later, deep learning
and CNNs came, which changed everything. Now the models can learn from
data automatically and work better, giving more accurate and strong results
in face recognition.

1.2 Importance of Face Detection and Recog-

nition

Face detection and recognition are very useful in many real-world areas:

• Security and Surveillance: Police and security teams use it to find
suspects and keep an eye on public areas[1].

• Mobile Authentication: In smartphones, face recognition is used for
unlocking the phone instead of using passwords or patterns[2].

• Access Control: Many offices use face recognition to allow only autho-
rized people to enter certain rooms or areas[3].

• Social Media: Apps like Facebook and Instagram use face detection to
auto-tag people in photos[4].

2

• Healthcare: In hospitals, face recognition is tested to identify patients
and reduce mistakes in admin work[5].

1.3 Real-World Use Cases

In recent years, many real-life places started using face recognition:

• Law Enforcement: Police in London are using live face recognition
cameras to catch people who are on their watchlist[6].

• Airports: Many airports use it to check passengers quickly and speed
up boarding[7].

• Retail: Shops use it to see customer age group, gender, and behavior so
they can improve their marketing and customer experience.

1.4 Challenges in Low-Resource Mobile Envi-

ronments

When we try to use face detection and recognition on low-end Android phones,
there are some big problems:

• Low Processing Power: These phones don’t have fast CPUs like lap-
tops or desktops, so running deep learning models becomes slow[8].

• Low RAM and Storage: Mobile phones have limited memory, so we
can’t use big models[9].

• Battery Usage: If face recognition keeps running, it will drain the
battery very fast[10].

• Heating Issues: If the phone works hard for long time, it gets hot and
affects user experience[11].

So, because of these problems, we have to use small and optimized models
that can work well on mobile devices.

3

Figure 1.1: Face Registration and Recognition Model

1.5 Why We Need Optimized Face Recogni-

tion for Low-End Android Phones

Now many people use smartphones, especially in countries where people mostly
use budget phones. So we need face recognition systems that can run even on
these cheap or low-end devices. If we make our models small and optimized,
more people can use them for taking attendance, secure logins, or personal
apps — without needing costly phones[12].

Also, when the face recognition happens inside the phone (on-device), then
we don’t need to send face data over the intern et. This makes it more private
and secure and helps in following privacy rules.[13]

1.6 What This Thesis Tries to Do

In this thesis, my aim is to:

• Make a good face detection and recognition system that can run on low-
end Android phones.

4

• Use small models like Mobile FaceNet (in TFLite format), which are fast
and lightweight.

• Test the system and check how accurate and fast it is, and how much
resources it uses on different low-end phones.

• Show how this system can be used in real apps like attendance systems.

5

Chapter 2

LITERATURE REVIEW

After reviewing different research papers, i observes that there are various ap-
proaches by which we can do the face detection and recognition also previsouly
various people did research on low resources by using the various way and find
out different way of doing this work.

In the research paper by Mubarak Alburaiki and his team [14], they made
a mobile-based attendance app that uses face recognition and also checks the
location of the user. They wanted to fix problems in old methods like QR code
and fingerprint-based systems, which can be misused or don’t work well in some
conditions. For detecting and recognizing the face, they used Azure Face API,
and for checking the location, they used Mapbox API. In their testing, 85% of
users were happy with the app. They also did beta testing with 30 people and
the system worked well in good lighting and stable internet. But there were
some issues — like in low-light conditions, the face recognition didn’t work
properly, and it needed a good internet connection all the time, which is a
problem for low-resource areas. Also, they didn’t talk much about how much
battery or CPU the app uses, which is important if we want to use it on low-
end Android phones. That’s why in my thesis, I focused on using lightweight
and optimized models that can work without needing heavy processing or fast
internet.

In the research by Amirul Mukhlis and his team [15], they made a web-
based attendance system that uses face recognition along with blockchain.
Their aim was to fix the problems in traditional attendance methods like us-
ing paper or QR codes, which can be misused or changed easily. They used
OpenCV with Python and got 98% accuracy in detecting faces, and it took
around 2 seconds to recognize one face. To keep the attendance data safe, they
used smart contracts on the Ethereum blockchain, which makes the records
unchangeable. They tested the system with 13 users and it worked well in

6

a controlled environment. But the system depends on webcams and central
servers, which is not suitable for low-end Android phones. Also, they didn’t
discuss how much processing power or battery the system needs, which is im-
portant when we want to run such systems on mobile devices. This is why
my thesis focuses on using small, optimized models that can run directly on
Android phones without needing too many resources.

In another research by Arjun Raj and team [16], they developed a smart
attendance system using face recognition to solve problems like fake attendance
and slow manual methods. They used the LBPH algorithm, which works better
than Eigenfaces and Fisherfaces, especially in different lighting. Their system
gave 98.5% accuracy. They built it using Raspberry Pi with OpenCV and
Dlib libraries. It also included steps like converting images to grayscale and
improving contrast to make face detection better. They even added a GSM
module to send messages when a student is absent. The system worked well
inside classrooms, but it needed fixed camera positions and didn’t perform
well when faces were covered or turned too much. Because of this, it’s hard to
use it in real-time on mobile phones, especially in low-resource devices. Even
though LBPH is fast and works on edge devices, they didn’t try to make it
suitable for Android phones with less power. That’s why my thesis focuses on
models that are optimized for mobile use, with low battery and CPU usage.

In the paper by Paul Viola and Michael Jones[17], they made a very fast
and accurate face detection method. They used something called a boosted
cascade of simple features, and their model could detect faces in real time,
even on an old computer with only 700MHz processor, with 15 FPS speed.
Their accuracy was also good, like 93.9% on the MIT+CMU dataset. They
introduced three main things: one is integral image which helps to calculate
features very fast, second is AdaBoost which selects the important features
like eyes and nose contrast, and third is cascade classifier which helps to skip
the areas where there is no face early, so the processing becomes faster. But
still, this model was not working well if the face is turned or the light is too
much or too low. Also, it only works on fixed size windows, like 24x24, and
uses handcrafted features, so it cannot handle all types of faces. This model
mainly works well for straight faces and in good lighting. But because it is
very fast and doesn’t need much resources, it was good for old devices like
handheld systems.

In paper by Kaipeng Zhang [18], in which they introduced MTCNN, which
is a deep learning based face detector and also does alignment. It uses three
neural networks: P-Net, R-Net and O-Net. This system works in three steps,

7

like first detecting face, then rejecting wrong ones, and then improving the
box. It gives very good accuracy like 95.1% on FDDB dataset and works in
real-time like 16 FPS on GPU. They also used some smart techniques like
training with multiple tasks together like detection and alignment, and they
also used only hard samples during training to improve the learning. But the
problem is, if the face is covered with sunglasses or very small, then it doesn’t
work well. And also it runs mainly on GPU, so it is not good for low-end
Android mobiles. But still, it is better than older models because it combines
both detection and alignment.

Moh. Edi Wibowo [19], used RetinaFace with some tracking to make the
face detection better in CCTV-type systems, especially when light is low or im-
age is low-quality. Their model got 91.4% precision on WIDER FACE dataset
and also improved recall by 4.47%, and it runs at 25 FPS. They did this by
combining many things like face detection, landmark detection, and pixel re-
gression into one loss function. Also, they used a buffer to track faces across
frames using IoU, so even if detection fails for a moment, tracking keeps it
going. But still, their system doesn’t work well in dark conditions or when
the face is too small, like less than 20x20 pixels. Also, the tracking part needs
more CPU, so it becomes heavy for real-time apps on Android. This shows
that if we want high accuracy, we need more power, so for mobiles we need to
find a balance.

Valentin Bazarevsky [20] introduced BlazeFace, which is made specially for
mobile phones. It is super fast, like even 1000+ FPS on high-end mobiles, and
they made it using GPU-based layers called BlazeBlocks. They also removed
some extra feature maps to make it run faster, and they used blending to
make the bounding boxes more stable. Their model is very small and fast, and
gives 98.6% accuracy on frontal faces. It is even better than MobileNet SSD
in speed. But still, it is mainly made for faces which are close to the camera,
and doesn’t work well for very small faces. Also, it needs GPU, so it may not
run well on low-end Android phones that don’t have GPU support. So there
is a trade-off between speed and hardware compatibility.

Glenn Jocher [21] used YOLOv5 for face detection. They changed the nor-
mal YOLOv5 model and made it work well for faces. They used CSPDarknet
for the backbone, and also used auto anchor boxes and other optimizations
using PyTorch. On the WIDER FACE dataset, they got 96.8% mAP and the
speed was very high, like 140 FPS on V100 GPU. They also made small mod-
els like YOLOv5s, which has only 1.7M parameters, so it is good for mobile
use. But the smaller model has lower accuracy, like 89.3%. Also, this model

8

doesn’t work very well when the face is too small or the light is very low. In
such cases, accuracy drops by 15 to 20% compared to models like RetinaFace.

In the paper by Yaniv Taigman [22], they introduced DeepFace, a very
powerful deep learning model for face recognition. This model uses 3D face
alignment to turn the face straight (called frontalization) and then uses a nine-
layer deep neural network with over 120 million parameters. They trained it on
a huge dataset of 4.4 million face images and got really good results—97.35%
accuracy on LFW and 91.4% on YouTube Faces. That was a big improvement
over older models. But the problem is, the model is very heavy—it takes
about 0.33 seconds to recognize one face on a CPU, and it also needs high-
quality color images. Because of this, it’s not really suitable for real-time face
recognition on Android phones or low-power devices. The 3D part and the
large size make it hard to use when memory and battery are limited.

In Anissa Lintang Ramadhani [23],study where they made a face recogni-
tion system for a robot using the Eigenface method, which is based on some-
thing called PCA (Principal Component Analysis). First, they detect the face
using the Viola-Jones method, then they do some preprocessing like convert-
ing to grayscale, aligning the face using eye positions, and adjusting brightness
with histogram equalization. They also collect many face images per person
and add mirror images to increase data. Then the PCA model learns the main
features, called eigenfaces. During recognition, it compares the new face with
stored ones and checks if they match. They tested it on six people and got
an average accuracy of 96.3%, and it was fast—less than 1 second per image.
So it’s good for simple or low-resource systems. But the downside is that it
doesn’t handle lighting or pose changes very well. It works best when the face
is clearly visible from the front in good light.

Peter N. Belhumeur [24] came up with another method called Fisherface,
which is more robust than Eigenface when lighting or facial expressions change.
This method first uses PCA to reduce the size of the image data, and then
applies Fisher’s Linear Discriminant to separate different people’s faces more
clearly. The advantage is that it ignores parts of the image that vary a lot
within the same person (like shadows or expressions) and focuses more on
what’s unique across different people. They tested this on the Yale and Har-
vard face datasets, and the results were much better than Eigenface—like in
one case, Fisherface had only 4.6% error while Eigenface had 41.5%. On the
Yale dataset, Fisherface had just 0.6% error in full-face images. Its speed
is similar to Eigenface, but it’s much more reliable in real-world situations,

9

especially on mobile devices—if the face is straight and clear.

Timo Ahonen [25] proposed a face recognition method using Local Binary
Patterns (LBP). In this method, they divide the face into small regions and
extract texture patterns from each part. These patterns are then combined to
form a full feature set. The best thing about LBP is that it’s very fast and
works well even when lighting is not perfect. It also doesn’t need any special
adjustment to brightness. They tested this on the FERET dataset and got
great results—97% accuracy for different expressions, 79% for lighting changes,
and even 64% for faces that had aged. It did better than other popular methods
like PCA and Bayesian methods. This method is lightweight, accurate, and
works even if the face position is a little off. That’s why it is suitable for mobile
phones and low-resource systems.

10

Table 2.1: Comparison of Face Detection Models

Model Accuracy
(Dataset)

Speed Hardware

Viola-Jones (2001) 93.9% De-
tection Rate
(MIT+CMU)

15 FPS CPU

MTCNN (2016)
95.1% AP
(FDDB)

16 FPS
GPU

94.3% AP
(WIDER
FACE)

RetinaFace (2020) 91.4% AP
(WIDER
FACE Hard)

5 FPS CPU/GPU

BlazeFace (2019) 98.6% AP
(Google Inter-
nal Front-Face)

1000 FPS Mobile GPU

YOLOv5-Face (2021)
96.8%
mAP@0.5
(WIDER
FACE)

140 FPS
GPU/TPU

93.2% mAP
(FDDB)

11

Table 2.2: Comparison of Face Recognition Models

Model Dataset Used Accuracy /
Key Metric

Processing
Time

DeepFace SFC (4.4M im-
ages)

97.35% (LFW) 0.33s/image

Eigenface (PCA) 6 users × 40 im-
ages (custom)

96.3% (avg,
custom set)

<1s/image

Fisherface (FLD) Harvard, Yale
Face Databases

Error: 4.6%
(Harvard, light-
ing)

Similar to PCA

LBP (Ahonen et al.) FERET (fb, fc,
dup I, dup II)

97% (fb), 79%
(fc), 66% (dup
I), 64% (dup II)

Fast, efficient

12

Chapter 3

METHODOLOGY

3.1 Proposed Approach

In my proposed approach for face detection and face recognition in low-resource
Android mobile devices, I created an Android app. In this app, there are two
main modules one is registration and the second one is recognition. So in the
registration module, a person can register his face. First, the face detection
model detects the face from the image, and then the face recognition model
creates and saves the embedding of that face. And later in the recognition
module, whenever the user wants to recognize a face, then the face embedding
is generated again and is compared with the previously registered face em-
beddings. If the embedding distance is minimum, then the face is recognized.

For the face detection part, I used Google ML Kit. It is an Android library
which we can directly use in Android Studio. For face recognition, I used two
models one is the FaceNet model in TFLite format, and the second one is the
MobileFaceNet model also in TFLite format.

3.2 Face Detection

So face detection means finding the face from the image, like where is the face,
its position, and size. After that, we can crop that part of the face and send
it for recognization.

3.3 Face Recognition

In this, the model checks the unique features of the face. The image is first
cropped, resized, and sometimes converted into grayscale before sending it to

13

the model.

My app has three main screens Main Activity, Registration Activity, and
Recognition Activity.

3.4 Registration Activity

This screen is used for registering the face and storing it in the database. The
registration process happens in four main steps:

1. First, take the image and pass it to the face detection model.

2. The model detects the face from the image.

3. The cropped face is then passed to the face recognition model, which
creates an embedding.

4. Then we ask the user to give the name of the person. We save the name,
roll number, branch, and the embedding in the database.

Figure 3.1: Face Registration

14

Figure 3.2: Saving face and embedding in to database

3.5 Recognition Activity

The recognization process also happens in four steps:

1. First, take the image and give it to the face detection model.

2. Detect the face from the image.

3. The cropped face is passed to the recognition model to generate the
embedding.

4. Then the new embedding is compared with all the registered embeddings.
The one with the smallest distance is the matched face.

When the image is captured by the camera in face registration activity it
is to be converted in to the bitmap format in order to use it inside machine
leaning model.

Also when we capture the image sometimes it is to be rotated by 90 degree.
So in order to change the orientation of the bitmap in to portrait mode so we
have to create a function that will handle this.

15

Figure 3.3: Face Recognition

Figure 3.4: Comparing Embeddings value

16

Figure 3.5: Face Registration and Recognition

3.6 TensorFlow Lite

TensorFlow Lite, or TFLite, is a small and light version of TensorFlow that
is mainly made for mobile phones and small devices like Android phones and
other edge devices. It is created by Google, and it helps to run machine learning
models on the mobile phone itself without needing internet. So, I don’t have
to send the data to a server again and again.

TFLite is an open-source library, and it allows machine learning to run on
the phone directly. So, even if there is no internet, we can still do things like
classification or regression using this. And this is very useful for mobile apps
because it works fast and gives results without delay.

One of the best things about TFLite is that it comes with tools that help
in converting the models. Like, if I have a normal TensorFlow model in .pb
or .h5 format, I can convert it into .tflite format using the TFLite converter.
And during this conversion, I can apply optimizations like quantization and
pruning, which help in making the model smaller and faster, and the accuracy
also mostly stays the same.

17

Using TensorFlow Lite in Android is very helpful. It gives fast results, and
it doesn’t need internet, so the app can also work in offline mode. Also, it uses
less CPU and memory, which is good for saving battery. And TFLite not only
supports Android but also supports iOS and other small devices, so it is very
flexible to use in different platforms.

Figure 3.6: TensorFlow Lite Model

With the help of TFlite we can deploy face recognition models like FaceNet
and MobileFaceNet in to the low resources android mobile devices These mod-
els are converted to the .tflite format and integrated into the Android applica-
tion to perform on-device face recognition. This approach mak esure that no
data reach to the round trip to the server our application is fast and secure
and works fine in low resource devices.

Figure 3.7: TensorFlow Lite Architecture

18

3.7 Quantization

Quantization is like a trick or method to make the model smaller and faster.
Normally, deep learning models use 32-bit float numbers, but with quanti-
zation, we change these big numbers into smaller ones like 8-bit integers or
16-bit floats. This helps a lot when we are using the models on low-end An-
droid phones where RAM, processing speed, and battery are all limited.

In my thesis, quantization is very important because I use it for face recog-
nition models like FaceNet, MobileFaceNet, and ArcFaceLight when I convert
them into .tflite format. After applying quantization, the size of the model
becomes 4 times smaller and the speed also increases. It can run faster on
mobile CPU, DSP, or NPU without losing much accuracy.

There are mainly two types of quantization. One is Post-Training Quanti-
zation, which is done after the model is already trained. It is very easy to use
and works well for mobile apps. The second one is called Quantization-Aware
Training, where the model is trained while keeping the quantization effects in
mind. This is used when we need high accuracy and the first method doesn’t
give good results.

By using quantization, the face recognition models I used in my app be-
come light and fast. It helps the app to run smoothly even on cheap or old
Android phones. And this is exactly what I wanted in my thesis—to make
face recognition work in real-time on low-resource Android mobile devices.

Figure 3.8: Quantization

19

3.8 Face Detection using ML Kit

For the face detection part, I used Google ML Kit. It is basically a light-weight
library that is made specially for mobile apps. It works directly on the mobile
phone, no need of internet or server, and it gives fast results even on low-end
Android devices. Google already trained this library with deep learning models
and provided it as a ready-made tool. We can just add it like a dependency
in Android Studio and start using it.

In this library, the face detection part is done using deep learning model,
but it is very optimized. So, even if the mobile phone has low RAM or slow
processor, still it will work smoothly. It doesn’t use the old style methods like
Haar cascade or Viola-Jones, which were not good in real-world conditions like
if light is low or if face is not straight. ML Kit is much better because it can
detect face even if it is slightly tilted or if there is different lighting.

Now if we compare it with some other methods

Like Haar cascade method, it is not suitable for mobile phones because it
is slow and not very accurate, especially if lighting or face angle changes. But
ML Kit handles those problems better.

Then comes MTCNN, it is a deep learning method also, but it is heavy
and slow for mobile, so it takes time. ML Kit is faster and almost same in
accuracy.

RetinaFace is very good in accuracy, but it needs a lot of GPU and power,
so it’s not good for low-end phones. ML Kit is better here also.

BlazeFace is also mobile friendly, but it works better with front camera
and straight faces. If face is from side, BlazeFace sometimes fails. ML Kit can
handle side faces also better.

YOLOv5 can also detect faces but it is more for general object detection
and it uses lot of memory and power. So again, ML Kit is more useful if we
just want face detection in mobile apps.

ML Kit internally uses CNN model which is compressed and optimized.
It uses 8-bit format (instead of 32-bit) which makes it smaller in size and
faster to run. It also supports Android’s hardware like GPU and NNAPI, so
detection becomes faster. And all of this runs on mobile itself, so it doesn’t
need internet, and privacy is also maintained.

20

It also gives many features. Like it not only detects the face but also gives
points on eyes, nose, lips, and mouth. It can also detect if the person is smiling
or has eyes closed. It can track faces in videos also and give unique IDs to
each person so we can identify them in next frame. That’s why it is very good
for real-time apps like video calls or games.

So overall, I used ML Kit for face detection in my app because it is fast,
works offline, and perfect for low-resource Android devices.

3.9 Detect faces with ML Kit on Android

First u need to add this dependency below in to thr build.gradle fiel of your
android application gradle file is the file where your app all dependencies and
other resources that you used are there dependencies are like the APIs in
android app you can use all feature of of MK kit with Ml kit dependency.

Once this is added, then we can start using all the features of ML Kit for
detecting faces in our app.

3.9.1 Configure the face detector

Before we start detecting faces in the image, we can also configure some settings
if we want better results. Like if we want more accuracy or we want to detect
facial landmarks like eyes, nose, and mouth, we can use the options object.

If we want real-time face detection with face contour (like full shape of
face), then we can use this:

21

Figure 3.9: Face Detection

3.9.2 Get an instance of FaceDetector

3.9.3 Prepare the input image

Now, to detect face in any image, we have to convert the image into InputImage
format. It supports different types like Bitmap, media.Image, ByteBuffer, or
even an image file. But most of the time we use Bitmap, so let’s go with that.
Also, ML Kit recommends that the image size should be at least 480x360 pixels
so that it can detect faces properly, especially if we are doing it in real-time
(like from a video frame).

22

To create an InputImage object from a Bitmap object, make the following
declaration: InputImage image = InputImage.fromBitmap(bitmap, rotation-
Degree); The image is represented by a Bitmap object together with rotation
degrees.

3.9.4 Process the image

Now to detect the face, we just need to pass the image to the face

3.9.5 Get information about detected faces

Inside the success block, we get a list of Face objects. Each Face object contains
all the details like the position of the face in the image and the things we
selected in options like landmarks, expressions, etc. For example, to get the
position (bounding box) of each detected face:

23

In Now if we want to draw a rectangle around the detected face in the image,
then we need to use Canvas to draw on the bitmap. But before doing that,
we must make the bitmap mutable, because by default bitmaps are immutable
(means we can’t change them). Once we make the bitmap mutable, then we
can create a canvas and draw on it, including rectangles on the face locations.

3.10 Dataset Used(LFW Dataset)

LFW dataset, which means Labeled Faces in the Wild, is a popular dataset
that is mostly used for testing face recognition models. It was created to
check how face recognition models perform in real-world situations, like when
the lighting is different, or the face is from a different angle, or the person
is making some other facial expressions. It has more than 13,000 images of
people’s faces, and around 5,749 different people are there in this dataset.
Some people have only one image, and some have more than one, so we can
use it for both identification and verification tasks. The images are collected
from the internet, and it contains real-life variations, so it is good for checking
how well our model works in practical conditions.

In my thesis work, I used this dataset to test my FaceNet and Mobile
FaceNet models, which I used for face recognition in Android mobile devices.
Before giving the face to the model, I resized all the images based on the input
size of the model and passed them through the models to generate embeddings.
Then I used those embeddings for training and testing using SVM classifier,
and I calculated the accuracy, precision, recall, F1 score, inference time, and
model size. This helped me to compare both the models and decide which one
is better to use in my app. FaceNet gives better accuracy but takes more time
and space, and MobileFaceNet gives slightly less accuracy but it is faster and
smaller, so I used MobileFaceNet in my attendance app.

3.11 Face Recognition

Face recognition: given an image of a person’s face, identify who the person
is (from a known dataset of registered faces) therefore Face Recognition is
the process of differentiating faces and classifying them to identify a person.
Therefore, to distinguish the two identical (but not the same).

In my app, I used face recognition to identify people by their face image, like
matching it from already registered faces. Basically, face recognition is used to
find out whose face it is by comparing it with known ones, even if two faces look
almost the same. In my Android app, I used two models for face recognition:

24

FaceNet and MobileFaceNet. I wanted to check which one works better in
Android phones, and whichever works best, I use that in my app. So first, I
added the FaceNet model into the assets folder of the Android project, and then
I created some classes like FaceClassifier interface and TLiteFaceRecognition
class. Same steps I did for the MobileFaceNet model also.

Figure 3.10: Face Recognition

3.11.1 The FaceNet approach

FaceNet is a deep learning model made by Google. It takes face images and
changes them into a 128-number vector which we call embeddings. The main
idea of this model is it tries to keep similar faces close together and different
faces far from each other in that number space. It uses something called triplet
loss to do that. This helps in face matching, verification, and grouping faces
properly.

In my project, I used FaceNet to create embeddings of each face. These
embeddings are then compared using distance formula like Euclidean distance.
If the distance is small, then it’s the same person, otherwise not. FaceNet is
very accurate, but the problem is that the full model is heavy and not suitable
for low-end Android phones. So I converted the model into TFLite format and
used optimization methods like quantization to reduce size and make it run
better on mobile. Still, it takes around 3.5 seconds to run. But it gives good
results and works offline also.

FaceNet is a CNN based model So, CNN full form is Convolutional Neural
Network. It is used for image-based problems like face detection and recog-
nition. It works better than normal neural networks (ANNs) when we are

25

dealing with images. In CNN, we don’t give the full image directly to the
model like in ANN, instead CNN uses filters which scan the image part by
part and extract features like edges, corners, etc.

Now, if we talk about how CNN actually works, the first step is convolution
layer. In this layer, we use a small filter which moves across the image and does
multiplication with small parts of the image and gives output. This output
is called feature map, and it shows where the important features are in the
image.

After this, we apply ReLU, which is a function that just removes negative
values from the feature map and keeps only the positive ones, because they
are more useful for detecting features.

Then comes the pooling layer. This layer is used to reduce the size of the
feature map. The most common one is max pooling, which just picks the
largest value from a small block of the image. This helps the model to work
faster and makes it focus on only the important parts of the image.

At the end, we have fully connected layers. These are like normal neural
networks where all the values are combined and final prediction is done — like
whether the face is present or not, or who the person is.

So, this is how CNN works step by step — first convolution for feature
extraction, then ReLU for non-linearity, then pooling for reducing size, and
finally fully connected layers for output.

In my thesis, I used CNN-based models like FaceNet and MobileFaceNet
for face recognition. These models convert the face into embeddings and match
them to recognize the person. Since they are based on CNN, they are able to
extract useful features from face images and give accurate results.

26

Figure 3.11: CNN Architecture

Using FaceNet with TFLite:

• Compare faces offline

• Accurate results

• Execution time ≈ 3.5 seconds

3.11.2 MobileFaceNet approach

MobileFaceNet is another face recognition model, but it’s made especially for
mobile and small devices. It’s developed by Watchdata Inc. from China. This
model is based on lightweight layers, similar to MobileNet, and it replaces
heavy layers with something called depthwise separable convolutions. Because
of this, the model becomes very small and fast.

Even though MobileFaceNet is only around 4 MB in size, it still gives accu-
racy similar to big models like FaceNet. So in my thesis, I used MobileFaceNet
as a better option for real-time face recognition in low-resource Android de-
vices. I took the model, converted it to .tflite format, and applied quantization
for optimization. Then I added this model in my Android app. It runs fast,
takes less memory and power, and the accuracy is also fine. So it’s a good
balance between speed and performance, and that’s why I chose it for my final
app.

First of all we need to add the dependicies of TenserFlow Lite Model

27

implementation (”org.tensorflow:tensorflow-lite:+”)
with the help of this we can load the tenserflow Lite into our model.after

that you need a create an object of face classifier interface so that u can add
get the value of the embeddings and than u can add them in to the table with
respect to the name present in to the table when the dialog is open.

A dialog box is open and soon as the registered face is detected by the face
detector it it ask for some things like student name, roll no, branch and there
is also a register button also there along with image of the person in the image
view.

By clicking on the register the face along with the embedding value is saved
in to the android local database that can be used further in order to get result
and compare embeddings.

The value of the embedding are saved in to hash map type string and
embedding first , This hash map is present in Main Activity file so that the
value of name and embedding data do not changed and deleted when app is
not in working condition or not active. In that case also the data is saved.

After saving the data when the cropped image is given as a parameter to
recogniseImage method it will compare the embedding of the image face with
the embeddings of other faces present in tha database and whose distance is
minimum it will given us that that face name and distance.

Figure 3.12: Face Recognition Flow

28

3.11.3 How face recognition system works in my app

So first, how this whole face recognition thing works step-by-step is like this:

• First of all, we detect the face from the input image.

• After that, we align the face properly. We use the face landmarks (like
eyes, nose) to adjust the face so that in all images, eyes and everything
are at the same position.

• Then we crop the face and resize it, so we can give it to the recognition
model. In this step, we also do some image cleaning like normalization
or whitening to make it ready for the model.

• After this, the main part comes — the Deep Neural Network (DNN). This
model takes the face as input and gives us a 128-number vector called
embedding. This embedding is used to compare with other embeddings.
So like, if we have two faces F1 and F2, we convert them into E1 and
E2 embeddings, and then compare both using Euclidean distance. If the
distance is small, it means both are of the same person.

Figure 3.13: Face Recognition on Image

29

3.11.4 Adding the face recognition step

First, I added the .tflite model file (FaceNet or MobileFaceNet) inside the
assets folder of the Android project. Then I changed some settings in the
DetectorActivity class. Like I set the input size to 112 and kept quantized
to false. Also, I changed the Classifier interface name to SimilarityClassifier
because now the model is giving similarity results, not confidence. So instead
of saying how confident the model is, we check how close the faces are using
distance. Smaller the distance, better the match. If the distance is 0, that
means both images are exactly the same. After that, I also changed the way
I store the data. I used a simple dictionary where the name of the person is
saved along with the recognition details (which includes the embeddings). In
the recognizeImage() method, we take the face, get its embeddings, and then
compare it with all the saved ones by doing a simple linear search — means
we check one by one to find the closest match.

30

Chapter 4

RESULTS and DISCUSSION

In results shows that face detection and recognition in low resources android
mobile devices is implemented in this app its kind of a attendence app which
is using the ML kit for face detectiin and FaceNet/MobileFaceNet model in
TFlite format for the detection purpose and keep the record of all the detected
faces inside device itself.

This is the Main Activity consist of two buttons one button for login as
a teacher and second button for login as a student which will progress you
towards respective activities.

Figure 4.1: Main Activity User Interface

31

After pressing the button for login as a teacher you are directed towards the
Teacher Login Activity in which teacher have to fill his login ID and password
there is an option of view password as well. On clicking on login button
Registered student Details Activity opens up.

Figure 4.2: Teacher Login Activity

Registered Student Details Activity contains all the student details who
registered themselves by detecting there face in the app and filling there roll
no and branch

Figure 4.3: Registered Student Details Activity

On clicking login as student in the Main Activity you are directed towards

32

the Student Login Activity in which student have to fill his login ID and
password there is an option of view password as well. On clicking on login
button Registered student Details Activity opens up.

Figure 4.4: Student Login Activity

On successful login of student, Student Dashboard Activity opens in which
there is an image view which take the image of the person and displayed
over here. There are Two button are also created named Registration and
Recognition. On clicking registration the Registration Activity will open and
on clicking recognition the Recognition Activity is opened.

Figure 4.5: Student Dashboard Activity

On clicking the Registration and Recognition buttons in Main Activity
Registration and Recognition Activity are opened. Both the activities have
the same layout. They contains two clickable card views and an image view

33

one clickable card view is to open gallery and take image from the gallery and
other card view is for opening the camera and click the image and then this
image is to be displayed over the image view

Figure 4.6: Registration and Recognition Activity User Interface

As the image is displayed over the image view the ML kit face detection
detect the face present in the image id there are multiple image present in the
image than multiple images of faces are detected and a red square are appeared
over the images which indicated that the face is detected.

Figure 4.7: Face Detection of app

In this image the registration dialogue is open as soon as face is detected
by the face detector. This registration dialogue is opened multiple times for

34

multiple faces and it contain the student information like student name , stu-
dent roll no and student branch than on clicking the register button all this
information is saved in to the database along with the embeddings of the image
in this way the face and the other information are saved in to the database
after detecting it

Figure 4.8: Dialouge box for face Registration

This how the face registration works after face registration we have to
recognize the regsitered face from the dataset for that the steps will be the
same we have to click an iamge using camera or select an image from the
gallary the we have to recognize.

As soon as we select the image it shows over the image view and the
embeddings of that image is compared with the embeddings of the images
that are present in to data dataset that we created after registering mutliple
images of face.

After subtracting the embedding values of the face image with each of
embedding value of other registered faces images the value whose distance is
minimum is the face of the person that is how we get the recognised facealong
with the distance.

35

Figure 4.9: Face Recognition with name and Distance

36

In last as soon as the face is detected the name of the person in the image
is saved inside the list view of Present Student Details Activity in which all
the students details who recognised there faces will be add in the list as soon
as there face is recognised

Figure 4.10: Present Student Details Activity

when comapre the FaceNet model with Mobile FaceNet model by evaluate
on the LFW dataset we can see that the accuracy of the FaceNet model is
high but the Time it takes for the inference is also high as compare to the
MobileFaceNet model also size of the model is also big.

In table 4.1 we can clearly see that the FaceNet(TFlite) model Accuracy,
Precision, Recall, F1 Score is better as comapre to teh MobileFaceNet(TFlite)
but otehr parameters like Inference time and Model Size is high as compare to
MobileFaceNet which is required for low resource android mobile devices.

37

Table 4.1: Comparison of Face Recognition Models: FaceNet vs MobileFaceNet
on LFW Dataset

Metric FaceNet MobileFaceNet

Accuracy 99.44% 71.60%

Precision 99.54% 70.54%

Recall 99.44% 71.60%

F1 Score 99.42% 68.01%

Inference Time 0.063222 sec 0.012811 sec

Model Size 22.54 MB 5.00 MB

Table 4.2: Comparison of various Face Recognition Models

Model Dataset Used
for validation

Accuracy Processing
Time

DeepFace LFW 97.35% 0.33s/image

Eigenface (PCA) LFW 78.41% 0.00038s/image

Fisherface (FLD) LFW 80.55% 1.1997s/image

LBP LFW 29.05% 5.28233s/image

FaceNet LFW 99.4% 0.063222s/image

MobileFaceNet LFW 71.60% 0.012811s/image

38

Figure 4.11: Accuracy FaceNet(TFlite) vs MobileFaceNet(TFlite)

39

Figure 4.12: Precision FaceNet(TFlite) vs MobileFaceNet(TFlite)

Figure 4.13: Recall FaceNet(TFlite) vs MobileFaceNet(TFlite)

40

Figure 4.14: F1 Score FaceNet(TFlite) vs MobileFaceNet(TFlite)

Figure 4.15: Inference Time FaceNet(TFlite) vs MobileFaceNet(TFlite)

41

Figure 4.16: Model Size FaceNet(TFlite) vs MobileFaceNet(TFlite)

Figure 4.17: Accuracy of various face recognition models

42

Figure 4.18: Inference time of face recognition model

43

Chapter 5

CONCLUSION AND FUTURE SCOPE

In today’s time, everyone is using mobile phones. Mobile phones are not
just for calling now, people are using them for so many things like banking,
shopping, learning, and even to verify their identity. So in my thesis, I tried
to bring the face detection and face recognition system into low-end Android
mobile phones. These mobile phones don’t have much RAM or fast processor
or big battery, so the challenge was to make it work properly on them.

The main aim of my project was to create one system that can detect
and recognize faces fast and accurately, and everything should run inside the
mobile only. No internet or cloud or big hardware should be needed. So for
face detection, I used the Google ML Kit, because it is already made library
by Google for Android, and it works very smoothly. And for face recognition,
I used lightweight versions of FaceNet and Mobile FaceNet models, both are
in TFLite format so they can work on mobile.

This type of face recognition system can be used in real life also, like for
student attendance, checking who is entering a building (access control), or
even for verifying identity. So overall, I proved that even low-end Android
phones can do this type of work properly.

So in cloclusion we can say that Face detection and recognition can run
inside the phone itself, no need for internet or server.The system works fine in
normal light and normal face conditions, but if the light is bad or the face is
turned or covered, then sometimes it may not work properly.Mobile FaceNet
model is small and fast, so it is good for phones, especially in those places
where people don’t have very expensive phones or fast internet.

Future work can focus on developing even more lightweight models that
maintain high accuracy while reducing computational requirements. Advanced
quantization techniques and neural architecture search could help create bet-

44

ter mobile-optimized models. In future the feature can be enhanced by Im-
prove the system to handle multiple faces simultaneously in crowded environ-
ments,Add anti-spoofing mechanisms to prevent photo-based attacks,Implement
on-device learning to adapt to changing facial features over time. At the same
time model can be used for broder applications like Integration with IoT de-
vices for smart home applications, Development of privacy-preserving feder-
ated learning approaches, Extension to other biometric modalities for multi-
modal authentication.

45

Bibliography

[1] A. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recog-
nition,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 14.

[2] H. Farooq, A. B. Kahng, and M. S. J. S. Lim, “Biometric authentication
in smartphones,” IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp.
59–65, 2017.

[3] S. Zafeiriou, C. Zhang, and Z. Zhang, “A survey on face detection in the
wild: Past, present and future,” Computer Vision and Image Understand-
ing, vol. 138, pp. 1–24, 2015.

[4] A. Bhattacharya et al., “Smart hospital management system using face
recognition,” in Proc. IEEE ICCCA, 2020.

[5] S. Biswas, M. S. Kankanhalli, and A. Roy-Chowdhury, “Privacy-
preserving face recognition,” IEEE Transactions on Image Processing,
vol. 27, no. 4, pp. 2118–2131, 2018.

[6] L. Fussey and D. Murray, “Independent report on the london metropolitan
police service’s trial of live facial recognition technology,” University of
Essex, 2019.

[7] D. J. Phillips and E. Curry, “Retail surveillance and the face,” Interna-
tional Journal of Communication, vol. 11, pp. 2994–3014, 2017.

[8] T. Howard, “Embedded deep learning for real-time facial recognition on
mobile devices,” in Proc. IEEE ICRA, 2018.

[9] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proc. IEEE CVPR, 2018.

[10] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compres-
sion and acceleration for deep neural networks,” IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 126–136, 2018.

46

[11] A. Ignatov et al., “Ai benchmark: Running deep neural networks on an-
droid smartphones,” in Proc. ECCV Workshops, 2018.

[12] S. Mehta and S. E. Sarma, “Edge computing for real-time facial recogni-
tion in low-resource environments,” in Proc. IEEE ICMLA, 2021.

[13] D. A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear? finger-
printing smart devices through embedded acoustic components,” in Proc.
ACM CCS, 2014.

[14] M. S. Mubarak Alburaiki, G. M. Johar, R. A. Abbas Helmi, and M. H.
Alkawaz, “Mobile based attendance system: Face recognition and location
detection using machine learning,” in 2021 IEEE 12th Control and System
Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 2021.

[15] A. M. B. M. Azli, H. K. Mammi, M. M. Din, and A. Abdul-Samad,
“Face-recognition based attendance authentication system,” in 2023 In-
ternational Conference on Data Science and Its Applications (ICoDSA),
Bandung, Indonesia, 2023.

[16] A. A. Raj, M. Shoheb, K. Arvind, and K. S. Chethan, “Face recognition
based smart attendance system,” in 2020 International Conference on
Intelligent Engineering and Management (ICIEM), London, UK, 2020.

[17] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 2001.

[18] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and align-
ment using multitask cascaded convolutional networks,” IEEE Signal Pro-
cessing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[19] M. E. Wibowo, A. Ashari, A. Subiantoro, and W. Wahyono, “Human
face detection and tracking using retinaface network for surveillance sys-
tems,” in IECON 2021 – 47th Annual Conference of the IEEE Industrial
Electronics Society, Toronto, ON, Canada, 2021.

[20] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann, “Blazeface: Sub-millisecond neural face detection on mo-
bile gpus,” arXiv preprint arXiv:1907.05047, 2019.

[21] D. Qi, W. Tan, Q. Yao, and J. Liu, “Yolo5face: Why reinventing a face
detector,” arXiv preprint arXiv:2105.12931, 2022.

47

[22] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
USA, 2014.

[23] A. L. Ramadhani, P. Musa, and E. P. Wibowo, “Human face recognition
application using pca and eigenface approach,” in Second International
Conference on Informatics and Computing (ICIC), Jayapura, Indonesia,
2017.

[24] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces
vs. fisherfaces: recognition using class specific linear projection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 711–720, 1997.

[25] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041,
2006.

48

Delhi Technological University

Nitin_23ITY20_MTech_Thesis_Face_detection_and_recogniti…

Document Details

Submission ID

trn:oid:::27535:98152118

Submission Date

May 28, 2025, 2:45 PM GMT+5:30

Download Date

May 28, 2025, 2:49 PM GMT+5:30

File Name

Nitin_23ITY20_MTech_Thesis_Face_detection_and_recognition_in_low_resources_android_mobile_….pdf

File Size

1.6 MB

41 Pages

8,176 Words

39,417 Characters

Page 1 of 47 - Cover Page Submission ID trn:oid:::27535:98152118

Page 1 of 47 - Cover Page Submission ID trn:oid:::27535:98152118

7% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Match Groups

46 Not Cited or Quoted 6%
Matches with neither in-text citation nor quotation marks

9 Missing Quotations 1%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

2% Internet sources

2% Publications

5% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Page 2 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Match Groups

46 Not Cited or Quoted 6%
Matches with neither in-text citation nor quotation marks

9 Missing Quotations 1%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

2% Internet sources

2% Publications

5% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Submitted works

Hofstra University on 2022-05-17 <1%

2 Submitted works

Istanbul Aydin University on 2021-06-14 <1%

3 Internet

developers.google.com <1%

4 Submitted works

University of Wolverhampton on 2021-05-05 <1%

5 Submitted works

University of Greenwich on 2015-02-03 <1%

6 Publication

Aditya Yadav, Shauryan Singh, Muzzamil Siddique, Nileshkumar Mehta, Archana … <1%

7 Submitted works

Coventry University on 2023-04-11 <1%

8 Submitted works

Technical University of Liberec on 2024-05-12 <1%

9 Submitted works

Terna Engineering College on 2023-04-23 <1%

10 Publication

Dheeraj Patel, Kumar Setu, Ramanand Sharma, Dinesh K. Vishwakarma. "Android… <1%

Page 3 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Page 3 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

https://developers.google.com/ml-kit/vision/pose-detection/android
https://doi.org/10.1109/INCET57972.2023.10170436
https://doi.org/10.1063/5.0203349

11 Internet

firebase.google.com <1%

12 Internet

www.mdpi.com <1%

13 Submitted works

The Indian Institute Of Management And Engineering Society on 2025-02-17 <1%

14 Internet

jivp-eurasipjournals.springeropen.com <1%

15 Submitted works

Manchester Metropolitan University on 2024-10-04 <1%

16 Submitted works

Troy University on 2025-03-03 <1%

17 Submitted works

University of Hertfordshire on 2022-07-16 <1%

18 Submitted works

University of Wollongong on 2023-12-08 <1%

19 Internet

dr.ntu.edu.sg <1%

20 Internet

mediatum.ub.tum.de <1%

21 Internet

repository.unika.ac.id <1%

22 Internet

www.ee.oulu.fi <1%

23 Publication

Bashir, Sirosh. "Face Detection and Recognition in Low Illumination Environment … <1%

24 Publication

Mahmudul Huq, Javier Garrigos, Jose Javier Martinez, JoseManuel Ferrandez, Edu… <1%

Page 4 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Page 4 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

https://firebase.google.com/docs/ml/android/label-images-with-automl
https://www.mdpi.com/1424-8220/21/19/6595/htm
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-020-00510-w
https://dr.ntu.edu.sg/bitstream/10356/73159/1/main_thesis.pdf
https://mediatum.ub.tum.de/doc/1659506/1659506.pdf
http://repository.unika.ac.id/19721/2/15.K1.0025%20DENNI%20AFREDO%20SURYONO%20HARTANU%20%285%29..pdf%20BAB%20I.pdf
http://www.ee.oulu.fi/~hadid/IPTA2008.pdf
https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31801452&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004
https://doi.org/10.1007/978-3-031-06242-1_63

25 Submitted works

National College of Ireland on 2022-05-15 <1%

26 Publication

Thangaprakash Sengodan, Sanjay Misra, M Murugappan. "Advances in Electrical … <1%

27 Submitted works

University of Birmingham on 2023-03-15 <1%

28 Submitted works

University of Stirling on 2024-06-14 <1%

29 Submitted works

University of Ulster on 2012-05-10 <1%

30 Submitted works

Xiamen University on 2022-07-02 <1%

31 Submitted works

Xiamen University on 2024-07-01 <1%

32 Internet

datahacker.rs <1%

33 Internet

hdl.handle.net <1%

34 Internet

herkules.oulu.fi <1%

35 Internet

www.researchgate.net <1%

36 Submitted works

University of Greenwich on 2014-04-23 <1%

37 Submitted works

University of Lancaster on 2025-04-07 <1%

38 Submitted works

University of Warwick on 2024-03-11 <1%

Page 5 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Page 5 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

https://doi.org/10.1201/9781003515470
https://datahacker.rs/017-face-detection-algorithms-comparison/
http://hdl.handle.net/10413/15645
http://herkules.oulu.fi/isbn9789514291821/isbn9789514291821.pdf
https://www.researchgate.net/publication/360572701_Pelican_Crossing_System_for_Control_a_Green_Man_Light_with_Predicted_Age

39 Publication

Prajwol Chhetri, Sunil Raut Kshetri. "Decoding Facial Recognition: Analyzing Stan… <1%

40 Submitted works

University of Macau on 2023-05-12 <1%

41 Submitted works

universititeknologimara on 2025-01-27 <1%

Page 6 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

Page 6 of 47 - Integrity Overview Submission ID trn:oid:::27535:98152118

https://doi.org/10.3126/jost.v4i2.78952

e-Receipt for State Bank Collect Payment

REGISTRAR, DTU (RECEIPT A/C)

BAWANA ROAD, SHAHABAD DAULATPUR, , DELHI-110042
Date: 28-May-2025

SBCollect Reference
Number :

DUO1242997 Category : Miscellaneous Fees from
students

Amount : 3000

University Roll No : 23/ITY/20

Name of the student : Nitin

Academic Year : 2024-25

Branch Course : Master of Technology in
Information Technology

Type/Name of fee : Others if any

Remarks if any : M.Tech Dissertation Fees

Mobile No. of the
student :

8368099458

Fee Amount : 3000

Transaction charge : 0.00

Total Amount (In
Figures) :

3,000.00 Total Amount (In words)
: Rupees Three

Thousand Only

Remarks : M.Tech Dissertation Fees

Notification 1: Late Registration Fee,
Hostel Room rent for
internship, Hostel cooler
rent, Transcript fee
(Within 5 years Rs.1500/-
& $150 in USD More than

& $150 in USD, More than
5 years but less than 10
years Rs.2500/- & $250 in
USD, More than 10 years
Rs.5000/- & $500 in USD)
Additional copies Rs.200/-
each & $20 in USD each,
I-card fee,Character
certificate Rs.500/-.

Notification 2: Migration Certificate
Rs.500/-, Bonafide
certificate Rs.200/-,
Special certificate (any
other certificate not
covered in above list)
Rs.1000/-,Provisional
certificate Rs.500/-,
Duplicate Mark sheet
(Within 5 years Rs.2500/-
& $250 in USD, More than
5 years but less than 10
years Rs.4000/- & $400 in
USD, More than 10 years
Rs.10000/- & $1000 in
USD)

Thank you for choosing SB Collect. If you have any query / grievances regarding the transaction, please contact
us

Toll-free helpline number i.e. 1800-1111-09 / 1800 - 1234/1800 2100

Email -: sbcollect@sbi.co.in

	75b44b1dd9de371578d741b450706077f6b31795471cba03adad6f2c08f45c4a.pdf
	75b44b1dd9de371578d741b450706077f6b31795471cba03adad6f2c08f45c4a.pdf

