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Abstract

Images captured at night affected by various degradation such as color distortion, low

contrast, and noise. Many existing methods improve low-light images may sometimes am-

plify noise, causes color distortion, and lack finer details. The existing methods require

larger number of parameters, which limits the adoption of these method in vision-based

applications. In this thesis, we proposed a QLight-Net method to achieve a better en-

hancement with a comparably lower number of parameters. We proposed a novel method

based on quaternion number representation utilizing a quaternion-based convolutional

layer and introducing quaternion based depth-wise convolution, and quaternion cross at-

tention to develop the two-branch architecture to enhance the input low-light images in

this thesis. The proposed dual branch model leverages gradient branch to extract color-

aware gradient features from the training images, and it uses color branch to extract

gradient-aware color features. The dual branch architecture inspired from the U-Net ar-

chitecture incorporates residual connections in the respective encoder and decoder blocks.

The branch leverages the knowledge and learning from the opposite branch throughout

the model by sharing cross information sharing methodology after each layer of encoder

and decoder. The proposed model achieve LPIPS score of 0.048, which surpasses the pre-

vious best results and parameter count of 0.7 million with 0.8804 and 28.05 scores of SSIM

and PSNR, respectively in LOLv1 dataset. Our approach attains a balance between the

computational efficiency and high-quality enhancement, providing improved results with-

out the computational cost of previous state-of-the-art models while trained on LOLv-1

dataset. The results are compared with 18 existing low-light image enhancement models

each contributing unique methods to enhancement and shows that it outperforms many

quantitatively.
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Chapter 1

INTRODUCTION

The rapid growth of digital imaging in diverse fields, including intelligent systems, has
driven a need for image enhancement. From military surveillance to underwater photog-
raphy, digital images are often captured in challenging low-light conditions, necessitating
reliable enhancement methods. Photographs taken outdoor in low-light environment may
suffer from low-light, lens flare or extra noise. Images shot in low-light conditions may
affect the decision-making capabilities of autonomous vehicles. Low-Light image enhance-
ment focuses mainly on improving the brightness while maintaining the color consistency
and reducing noise, and impact of color bias [8].

In the past decades, an extensive development in the domain of low-light image en-
hancement task proposed variety of approaches from traditional methods in the pre-deep
learning era to using of diffusion models in recent years. One of the earliest methods [9]
that introduces histogram equalization based method that proposed iterative histogram
modification that improves the contrast of digital images. Early works laid the ground-
work for modern image enhancement techniques that use gamma correction for brightness
and retinex theory for enhancing the images that suffer from low lighting environment.
Another work [10] created a foundational ground by introducing the Retinex theory,
explaining how human vision perceives color under varying lighting conditions by de-
composing the image into illumination and reflectence components. Later, Edwin Land
expands on the Retinex theory [1] by emphasizing how the visual system maintains color
consistency in different lighting conditions and to utilize it on the image enhancement
tasks. Since the introduction of Convolutional Neural Networks (CNN), many CNN-
based method for low-light image enhancement task have been proposed, and laid the
groundwork for using CNN’s for image enhancement tasks. In LLNet [11], it introduces
one of the intial CNN-based models for low-light enhancement, using a deep auto-encoder
to improve brightness and reduce noise in the low-light image. RetinexNet [1] combines
the concept of retinex theory with CNN to decompose the image into illumination and
reflectance. The works focus on decomposing and adjusting the illumination component.
In parallel there’s been rapid development in unsupervised methods. Jiang et al. [12]
used GAN technique that helps in enhancing extremely low-light images without paired
training data while preserve information.

While these approaches achieved significant performance improvement, they also present
certain limitations that motivate this research. Most existing deep learning-based methods
rely on large, complex architectures with millions of parameters. Such models are compu-
tationally expensive, which limits their deployment on edge devices such as autonomous
vehicles and mobile applications. Although some lightweight models are proposed [13],
many of them compromise on enhancement quality or fail to retain structural and color
details. Furthermore, current approaches typically operate in real-valued space, resulting

1



in a higher number of parameters. These models also struggle to explicitly model the
interaction between different types of features, which is crucial for producing perceptu-
ally realistic results in low-light conditions. There is a pressing need for a method that
enhances brightness and contrast but ensures adequate computational efficiency too.

To address the challenges, we proposed QLight-Net, a lightweight model for low-light
image enhancement task. The design of QLight-Net is motivated by the representational
efficiency of Quaternion Convolutional Neural Networks[14] (QCNNs), which leverage
quaternion algebra to encode and process multi-channel image features in a compact form.
By employing the Hamilton product, QCNNs reduce the number of learnable parameters
while retaining expressive power. However, we further optimize this architecture by in-
troducing depth-wise quaternion convolution, which processes features channel-wise and
significantly reduces both training and inference cost. Additionally, low-light enhance-
ment not only requires brightness correction but also demands preservation of structural
details and color consistency. To address this, we design a dual-branch architecture, where
one branch is developed to capture gradient-based features and the other for color infor-
mation. The outputs of both branches are fused to produce enhanced images that are
both perceptually pleasing and structurally coherent.

The key contribution of our QLight-Net are as follows:

1. We introduced a novel Depth-wise Quaternion Convolutional Layer that reduces the
number of parameter and computational cost while maintaining the performance.
The module builds on and simplifies traditional quaternion convolutional layers,
enabling efficient deep learning for low-light enhancement task.

2. We propose a Quaternion Cross-Attention Encoder-Decoder architecture for low-
light enhancement. This design enables robust feature extraction by leveraging the
representational power of quaternion algebra and attention mechanisms.

3. We design a two-branch architecture to emphasize both structural and color in-
formation. The Gradient Branch captures edge and intensity cues, while the Color
Branch focuses on chromatic fidelity. These branches are fused for optimal enhance-
ment results.

4. Our model outperforms several SOTA approaches on both quantitative and quali-
tative, benchmarks while using significantly fewer parameters. This demonstrates
an effective trade-off between the performance and computational efficiency.
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Chapter 2

LITERATURE REVIEW

In this section, we discussed various papers focusing on advancements in the field of
low-light image enhancement task. The domain witnessed significant progress over the
years, with the significant growth of models being deep learning-based. However, some
notable works [15, 16], explores some advance techniques as well like diffusion models
(used in various domains [17, 18, 19]) and attention mechanism. Initially, many studies
relied on Retinex theory-based methods for enhancement. LIME [20] proposed an illumi-
nation estimation technique inspired by Retinex theory. It estimates illumination using
the maximum of RGB channels and adjusts brightness and noise through the reflectance
layer to produce the final enhanced image. Several methods also proposed hybrid tech-
niques by combining Retinex theory with other mechanisms. Ma et al. [21] introduced a
decomposition network that generates high-quality illumination and reflectance maps by
leveraging attention mechanisms for improved results. Liu et al. [22] presented retinex
inspired unrolling model that dynamically adjusts the illumination component. Several
models have introduced unique and advanced methods, employing diverse approaches to
tackle the challenges of low-light image enhancement effectively. Restormer [23] utilized
a transformer-based methods that demonstrated exceptional performance in enhancing
high-resolution images. However, the practical applicability of these models remains lim-
ited due to their high computational demands. While most models rely on supervised
learning, there has been some progress in semi-supervised and unsupervised techniques
as well. Yang et al. introduced a semi-supervised model [24] that aims to balance the
fidelity and perceptual quality during the learning process. Further, EnlightenGAN [25]
employed an unsupervised learning method. Unsupervised techniques hold significant po-
tential and useful in real-world applications, but developing effective models using this
approach is highly challenging, as the methods like EnlightenGAN struggles to preserve
fine details, particularly in extreme low-light conditions that highlights the complexities
of such techniques. Zhou et al. proposed LEDNet [26], which attempts to address the
low-light and motion blur issue simultaneously. However, achieving a balance between
these two tasks becomes very difficult in extreme cases. Additionally, images that vary
in lighting conditions across different regions impact the performance of some models.
Xu et al. introduced the SNR-Aware approach [27], which considers the noise levels to
improve image quality. However, this method struggles to balance and differentiate effec-
tively under varying lighting conditions. Probabilistic deep learning techniques are also
explored for this task. LLFlow [28] uses a normalizing flow-based probabilistic genera-
tive modeling technique that tries to establish a bijective-mapping between the low-light
and enhanced images by leveraging the distribution of normal-light images during traning.
While it produces high-quality enhanced images, the significant weight of the model limits
its practical applications, posing a major drawback. Wang et al. proposed LLFormer [29],
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a transformer-based model that excels at enhancing fine details in an image. However, it
lacks in computationally efficiency for practical use. PairLIE [30] was introduced in 2023
as a lightweight model that learns from paired data. While effective, it faces adaptabil-
ity challenges in handling complex regions within image. Balancing between the model
weight or parameter count and enhancement results remains a critical and challenging
trade-off in this domain.

The domain of low-light image enhancement has developed significantly through the
application of deep learning techniques. Several methods integrate Retinex theory into
deep learning frameworks to enhance images effectively. Wei et al. [1] proposed a way
that utilizes and trained on LOL dataset and decomposes each input images into illumi-
nation and reflectance components, facilitating low-light image enhancement. Another
approach introduces a dual-information based network that trained spatial and channel
attention mechanism that produces competitive performance in [31]. While high-quality
enhancement is important factor, number of parameters in a model equally critical. The
approach proposed in Zero-Reference Deep Curve Estimation [32] is lightweight architec-
ture that estimates pixel-wise curves without requiring paired input and ground truth
data for training. Further, Li et al. [33] proposed a parametric Retinex model utilizes
gradient based regularization, which enhances illuminance component and reduces noise
in low-light images. Liu et al. [22] unrolls search algorithm motivated by Retinex model
that introduces optimization-based technique for image enhancement. Two network based
architectures are extensively getting used in recent advancement. In BLNet architecture
[34], two UNets based method is proposed with different role to learn, with one dedi-
cated in noise removal and another on color restoration, which makes it robust and fast
enhancement technique. Additionally, EEMEFN [35] merges two different models that is
for edge restoration and color preservation that enhances superior quality enhanced im-
ages. All the mentioned approaches shows the diversity of methods in the low-light image
enhancement technique, each methods addresses a unique challenges such as de-noising,
color restoration, and lightweight architectures, which remain critical for real-world ap-
plications.

Zhu et al. [36] introduced a novel approach that applies ghost imaging for multi-
illumination estimation. It reconceptualizes the LLIE task as a re-imaging process using
structured light estimation and differential ghost imaging. The method integrates light
modulation, gradient-guided denoising, and color adaptation to tackle over/underexposure.
Abbass et al. [37] developed transformer-based YUV network, YUVAtten-Net for low-
light enhancement. By leveraging the luminance-chrominance separation inherent in the
YUV color space, it designed a triplet-attention-based denoising and fusion framework
that achieves enhanced perceptual quality with reduced computational requirement. Xu
et al. [7] proposed BiFormer, a hybrid CNN-Transformer framework that harmonizes local
detail preservation and global consistency. The model develops collaborative perception
which integrates a local-aware convolutional attention module and a global-aware recur-
sive transformer. Ma et al. [38] addressed the challenge of low-light in the wild, where
diverse illumination zones coexist within a single image. RLLIE leverages Explicit Do-
main Supervision (EDS) to perform unsupervised segmentation and applies region-specific
enhancement strategies. This region-based paradigm marks a shift from monolithic en-
hancement models toward more granular and context-aware frameworks.
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2.1 Background: Quaternion Number System

Quaternion number system introduced the four-dimensional concept of extended complex
number, which provides the framework to represent 3D rotation and information of four
channel in a single channel. Since the introduction, the advantage of quaternion has been
leveraged in many concepts. The introduction of Gabor Filters[39] for texture segmen-
tation applied quaternion mathematics in image processing by capturing multi-channel
information more effectively. Uses of quaternion concepts in fourier transform[40] for
color image processing to jointly process RGB channel while preserve color relationships.
And, applying the quaternion concepts in wavelet transform[41] for color image enhance-
ment. From the development of QCNN(Quaternion-Convolutional Neural Networks)[14]
and[42] that utilizes the quaternion algebra for RGB channel while enabling the network
to model inter-channel correlations more effectively than traditional real-valued CNNs for
image classification and forensics tasks.

Quaternion algebra extends the complex numbers to four dimensions, with one real
valued and three imaginary components.

q = r + x̂i+ yĵ+ zk̂ (2.1)

Here r is the real-valued, and î, ĵ, k̂ being the imaginary part and x, y, z are real numbers.

2.1.1 Quaternion Properties

Key properties of quaternion number space:

Non-Commutative Multiplication: Quaternion multiplication is not commutative.

q1 · q2 ̸= q2 · q1 (2.2)

Imaginary Unit Multiplication Rules: The following rules define the multiplication
of the imaginary units:

î2 = ĵ2 = k̂2 = îĵk̂ = −1

îĵ = k̂ ; ĵ î = −k̂

ĵk̂ = î ; k̂ĵ = −î

k̂î = ĵ ; îk̂ = −ĵ

Conjugation: The conjugate of a quaternion q = r + xî+ yĵ + zk̂ is:

q∗ = a− xî− yĵ − zk̂ (2.3)

Norm: The norm of a quaternion is given by:

∥q∥ =
√
r2 + x2 + y2 + z2 (2.4)
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2.1.2 Multiplication(Hamilton Product):

In quaternion multiplication operation was introduced by William Rowan Hamilton[43].

q1 = r1 + x1̂i+ y1̂j+ z1k̂

q2 = r2 + x2̂i+ y2̂j+ z2k̂

It combines the components according to specific algebraic rules as follows-

q1 × q2 = (r1r2 − x1x2 − y1y2 − z1z2)

+ (r1x2 + x1r2 + y1z2 − z1y2)̂i

+ (r1y2 − x1z2 + y1r2 + z1x2)̂j

+ (r1z2 + x1y2 − y1x2 + z1r2)k̂

(2.5)

The Hamilton product can be represented as matrix-vector multiplication which can
be represented as -

q1 × q2 =


r1 −x1 −y1 −z1

x1 r1 −z1 y1

y1 z1 r1 −x1

z1 −y1 x1 r1



r2

x2

y2

z2

 (2.6)

The quaternion q1 is transformed into a quaternion matrix form and quaternion q2 is
represented in vector form.

2.1.3 Quaternion-Softmax

The Softmax function is commonly used in machine learning to transform a vector into a
probability distribution.
Let a vector of quaternion inputs Z = [q1, q2, .., qn], where qi = ri + xîi+ yîj+ zik̂.

QSM(qi) =
e∥qi∥∑n
j=1 e

∥qj∥
, for i = 1, 2, . . . , n (2.7)

Where ∥qi∥ is norm of quaternion qi.

2.2 Color Space Transform

The color space transform proposed in [44], addresses the limitations of RGB color space
under low-light conditions by converting the input RGB image into a derived color space
based on the HSV model. In low-light images, brightness(value V) is significantly reduced,
while color information(hue H, and saturation S) may still be preserved. Transforming
the image allows independent processing of hue, saturation and value, preventing color
distortion during enhancement. The brightness(value V) is computed as the maximum
intensity across the channels along red, green and blue channels. Hue(H), representing
the color tone, depends on the dominant color channel and is adjusted with specific
offset for red,green and blue. For gray-scale pixels, the hue is set to zero. Saturation(S),
which indicates the color intensity, is calculated as the normalized difference between
the maximum and minimum intensities, and it is set to zero when brightness is zero.
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To handle brightness sensitivity under low-light conditions, a trigonometric sine function
simulates non-linear sensitivity to brightness, influenced by a learnable parameter k, as
shown in 2.8:

Csensitive = (sin(V × 0.5× π) + ϵ)k (2.8)

Here, sin(V×0.5×π) outputs values between [-1, 1], and ϵ to avoids zero values. Raising
the result to the power k adjusts the sensitivity to brightness.

The hue is transformed into angular components:

cx−axis = cos(2π ×H)

cy−axis = sin(2π ×H)
(2.9)

This represents the hue directionally in a 2D plane.
The final output channels are derived as:

C1 = Csensitive · S · cx−axis

C2 = Csensitive · S · cy−axis

C3 = V

(2.10)

Here, C1 and C2 encode color information modulated by brightness sensitivity, while C3

directly retains the brightness(V). This three-channel output ensures enhanced low-light
images while maintaining accurate color representation.

2.3 Gradient Feature Map

In the paper[45], it uses the concept to detect vague edges for the transportation surveil-
lance under low-light environments which badly suffers from low brightness in the envi-
ronment. It tries to find the segments where there is sudden intensity shift at the pixel
level. Images shot in low-lighting conditions affected from reduced visibility because of
low brightness and sensor limitations, To address this, edges and boundaries are first
identified, as they are crucial for object detection. The RGB image undergoes Gaussian
smoothing(kernel size 3) to reduce noise and soften edges, followed by scaling and clip-
ping to ensure proper intensity range. The Laplacian operator then preserves edge details
by applying second-order derivatives. Finally, a Gradient Feature Map is generated by
normalizing pixel values to an 8-bit range, enhancing the model’s ability to differentiate
noise from true edges effectively.
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Chapter 3

METHODOLOGY

In this section, it contains detailed discussion of proposed architecture QLight-Net. The
proposed QLight-Net is a lightweight model with fewer parameters as it focuses on param-
eter sharing. We developed a new depth-wise quaternion convolution layer to effectively
process the spatial features within a set of channels, enabling fine-grained feature extrac-
tion while preserving computational efficiency. The framework of proposed QLight-Net il-
lustrated in Fig. 3.1. QLight-Net consists of two distinct branches; Gradient Branch (GB)
and Color Branch (CB). The input image is simultaneously processed to obtain log-based
gradient and HVI color space [44]. The GB processes log-based gradient combined with
the intensity channel of HVI color space. The CB processes HVI color space concatenated
with the log-based gradient. The GB and CB are U-Net inspired architectures with cross
information sharing structure consists of Color-aware Gradient Encoder-Decoder(CGE-D)
and Gradient-aware Color Encoder-Decoder (GCE-D), respectively.
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Figure 3.1: QLight-Net: Overview of the proposed low-light image enhancement architec-
ture. The architecture features two branches in parallel: the Gradient Branch (GB) and
the Color Branch (CB). GB enhances edge details using log-based gradients, as demon-
strated in the result shown above, where zooming in reveals edges extracted from a low-
light image. CST restores color information by transforming the input into a 3-channel
modified HSV color space. Attention mechanisms are applied across n-stages to progres-
sively refine image features. The outputs from both branches are fused using quaternion
convolutions and residual connections, followed by a addition operation to ensure accurate
color restoration and preserve image details.

The architectural details of CGE-D & GCE-D are discussed in 3.2 and 3.3, respectively.
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The detailed discussion of the proposed structure are presented in 3.4.

3.1 Depth-wise Quaternion Convolutional Layer (DQC)

In traditional depth-wise convolution [46], each input channel is convolved separately
with its own filter, effectively isolating the spatial features of each channel but ignores the
inter-channel correlations. To address this limitation, we propose Depth-Wise Quaternion
Convolution (DQC), a new approach that combines the efficiency of depth-wise opera-
tions with the quaternion algebraic representation. DQC processes four input channels
together, treating them as components of a quaternion, which inherently models inter-
channel relationships. By leveraging quaternion algebra, the proposed DQC captures
both intra-channel spatial features and inter-channel dependencies, resulting in enhanced
feature representation and processing.

The DQC performs quaternion convolution independently on every set of 4 input chan-
nels representing a single quaternion layer. Each group consists of 4 channels, which are
processed without filter sharing. To match the output dimensions and integrate the ex-
tracted features, we further introduce a point-wise quaternion convolution, as represented
in Fig. 3.2. Given a feature map X∈ RH×W×Cin (height H, width W , and Cin channels),
where Cin is divisible by 4, we group every 4 channels into a quaternion-valued features
representing single quaternion layer, represented as:

X(i, j, g) = xr(i, j, g) + xi(i, j, g)̂i+ xj(i, j, g)̂j+ xk(i, j, g)k̂ (3.1)

where g = 1, ..., G is the quaternion group index, G = Cin/4, and xr,xi,xj,xk ∈ RH×W×G

are real-valued quaternion components.
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Figure 3.2: Framework of our Depth-wise Quaternion Convolution (DQC).

9



The Depth-wise Quaternion Convolution processes each quaternion group indepen-
dently, applying a quaternion kernel of size k×k×4 without parameter sharing across
groups, where 4-depth corresponds to the quaternion components. The kernel for a single
quaternion group is defined as:

K(m,n, 4) = wr(m,n, 4) + wi(m,n, 4)̂i+ wj(m,n, 4)̂j+ wk(m,n, 4)k̂ (3.2)

where m,n ∈ {0, ..., k − 1}, and wr, wi, wj, wk are the real-valued components of the
quaternion filter K. The quaternion convolution operation between the input X and the
kernel K for a single group g is:

(X ∗K)g(i, j) =
k−1∑
m=0

k−1∑
n=0

Xg(i+m, j + n)⊗Kg(m,n) (3.3)

where ⊗ denotes hamilton product. Each quaternion group is convolved independently,
ensuring inter-channel dependencies within each quaternion group are maintained.

After depth-wise quaternion convolution, the output tensor has the same number of
groups G, where each group has 4 channels. To merge these features and match the desired
output channels Cout, we apply a point-wise quaternion convolution with a 1×1×Cout

kernel. The point-wise quaternion kernel P for a group is expressed as:

Yg(i, j) = Og(i, j)⊗Pg(i, j) (3.4)

where Og(i, j) is the output of the depth-wise quaternion convolution for group g. The
final output Y ∈ RH×W×Cout is obtained by convolution operations and appropriately
reshaping.

The proposed DQC inherently models cross-channel dependencies through its quater-
nion structure, ensuring that the relationships between channels, essential for tasks requir-
ing color and texture consistency, are effectively captured. The capability is particularly
beneficial from low-lighting scenarios, where subtle inter-channel variations play a crit-
ical role. Moreover, the representation of DQC is substantially enhanced by its ability
to encode both spatial (edge and structure) and spectral (color and intensity) informa-
tion within a single quaternion framework. This richer feature representation allows for
better handling of complex low-light scenarios that traditional DQC often struggles to
address. By preserving the relationships between channels, DQC ensures alignment and
consistency across the feature space, which is pivotal in low-light conditions where phase
shifts are common due to uneven lighting or noise. For instance, when the dominance
of one channel shifts relative to others, DQC effectively models and balances this shift,
preserving the integrity of the reconstructed image.

3.2 Color-aware Gradient Encoder (CGE) and De-

coder (CGD) Block

The Gradient Branch in our model contains Color-aware Gradient Encoder and Decoder
blocks to process the log-based gradient features. The CGE and CGD blocks leverages
the new quaternion cross attention to process the gradient features which are aware with
the color features. The low-light images often suffer from inadequate edge definition and
diminished contrast, therefore the encoders and decoders benefit from cross-branch feature
sharing to compensate for the deficiencies.
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Figure 3.3: Illustrates the architectures of the Color-aware Gradient Encoder-
Decoder(CGE-D) and Gradient-aware Color Encoder-Decoder(GCE-D) modules. This
module in both the branches take two inputs: one from the GB and another from CB. To
distinguish the inputs and output from the module, notations marked in Red and Blue
are colors represents Color-aware Gradient Encoder-Decoder and Gradient-aware Color
Encoder-Decoder, respectively. In GB, In−1

G and In−1
C are the inputs from the n − 1th

module of CGE-D from GB and GCE-D from CB, respectively.And in CB, In−1
C and In−1

G

are the inputs from the n− 1th module of GCE-D from CB and CGE-D from GB, respec-
tively. QG

Attn and QC
Attn are the attention computed in both the branch in GB and CB

respectively, which are being pass forwarded. In GB before producing the final output, it
performs an addition operation with QG

Attn as a skip connection and produces InG, while
in CB it directly outputs InC without performing any extra operation.

In the GB, the CGE and CGD blocks operate on the gradient features derived from
the image. These gradient features are then processed through quaternion convolutional
layer followed by a DQC. These steps effectively refine the spatial and channel-wise de-
pendencies of the feature map, enhancing the gradient features to be more localized and
contextually aware. The focus is that the GB should be color-aware despite being pri-
marily concerned with gradient features. To achieve this, the features from the CB are
shared with the GB to ensure that the gradient-based attention mechanism in the GB is
not only sensitive to the edges but also incorporates color-related components.

The attention mechanism in the CGE and CGD block is based on the dual-input
strategy: one input (I inpg ) comes from the Gradient Branch, while the other input (I inpc )
is obtained from the Color Branch. This approach ensures that the attention mechanism
considers the importance of both gradient and color features effectively. Specifically,
the quaternion query (Cq) is calculated from the color feature map Ixg of GB, and the
quaternion key (Gk) and value (GV ) are calculated from the gradient features Ixc of the
CB, which can be represented as:

Gq = QDQC [Qconv(I
x
g )] (3.5)

Ck, Cv = QDQC(Qconv(I
x
c )) (3.6)

where Ixg and Ixc represents the xth features from the GB and CB, respectively. The
quaternion convolution (Qconv) and depth-wise quaternion convolution (QDQC) are used
to process these inputs, ensuring that both spatial and channel-wise dependencies are
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captured efficiently. The input Ixg is first passed through quaternion convolution layer,
which doubles the number of feature maps. These features maps are then evenly split
into two parts Ck and Cv after the depth-wise quaternion convolution layer, ensuring that
the Gq, Ck and Cv have the same dimensions. This step aims to reduce computational
complexity while preserving relevant feature information for both branches.

The attention scores are then computed using hamilton product of Gq and Ck and
then the score is applied to the quaternion values Cv:

QG
Atten = QSM

(
Gq ⊗ C∗

k

∥Gq∥ · ∥Ck∥

)
⊗ Cv (3.7)

In this equation, Gq ⊗ C∗
k represents hamilton product of Gq with conjugate C∗

k , which
can be used to capturing rotational alignment. ∥Gq∥ and ∥Ck∥ is Norms of Gq and Ck

which provides normalization stability for quaternion interactions. Moreover, QSM is
Quaternion-Softmax stabilizes the attention map, which is then applied to Cv to adjust
the output feature maps accordingly. The significance of the quaternion attention map
similar to real-valued attention mechanism. By incorporating the quaternion attention
mechanism into the GB, the model enhances gradient features while ensuring that the
key, value from color features of the CB helps in color awareness, improving the overall
image enhancement in low-light conditions.

Building upon the attention mechanism within the CGE and CGD, the subsequent
processing focuses on refining features. The gradient feature maps refined by the attention
mechanism are processed through a quaternion convolution layer that doubles the number
of feature maps followed by a depth-wise quaternion convolution layer. This dual-layered
approach ensures robust extraction of structural details critical low-light conditions. Fol-
lowing this, the feature maps are chunked into illumination and reflectance components.
The illumination component emphasizes intensity variations, while the reflectance com-
ponent captures detailed textual features.

F 1
G, F

2
G = QDQC [Qconv(Q

G
Attn)] (3.8)

A hyperbolic tangent activation maps the quaternion values to the range [-1, 1], enhancing
contrast and capturing intricate intensity relationships, after the DQC on both F 1

G and F 2
G

separately along with skip connections respectively. The recombination of illumination
and reflectance via the Hamilton product results in a unified representation.

F 1
G = tanh(F 1

G +QDQC(F
1
G))

F 2
G = tanh(F 2

G +QDQC(F
2
G))

(3.9)

Ix+1
g = QG

Attn +Qconv(F
1
G ⊗ F 2

G) (3.10)

where Ix+1
g is the output feature map from the block. To further enhance edge sharpness,

a skip connection is incorporated. This connection adds the original gradient feature maps
directly to the refined output in an additive manner. The module preserves critical details
from the initial gradient maps while focusing on edge regions. This ensures sharpness,
more defined boundaries without sacrificing the integrity of the original features.

3.3 Gradient-aware Color Encoder (GCE) and De-

coder (GCD) Block

The primary challenge in color enhancement under low-light conditions is the loss of
vibrant and accurate color representation, which is exacerbated by low contrast and noisy
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features. The Color Branch addresses this issue by incorporating the gradient information
from the Gradient Branch, allowed the model to focus on enhancing color effectively
in conjunction with edge details. In the CB, the GCE and GCD blocks processes the
color features I inpc , estimated from the input image. The CB also benefits from feature
sharing with the Gradient Branch. The quaternion query (Cq), is computed from the
color features, Ixc , while the quaternion key Gk and value Gv are derived from the gradient
feature map, Ixg . The sharing of features ensures that the color enhancement process is
informed by the gradient related information from the GB, enabling better preservation
of color and boundaries transitions.

The attention mechanism in the Color Branch operates also leverages cross quaternion
attention with the color features used for estimating the quaternion query (Cq), while the
gradient features are used for computing key (Gk) and value (Gv). The expression for
quaternion cross attention is as follows:

Cq = QDQC [Qconv(I
x
c )] (3.11)

Gk, Gv = split[QDQC(Qconv(I
x
g ))] (3.12)

Similar to GB, the quaternion convolution layer and depth-wise quaternion convolution
layer ensure that spatial and channel-wise dependencies are captured efficiently, enabling
effective attention to both color and gradient information. The attention score between Cq

and Gk is calculated using the Hamilton product, and the final attention map is applied
to the Gv as follows:

QC
Atten = QSM

(
Cq ⊗G∗

k

∥Cq∥ · ∥Gk∥

)
⊗Gv (3.13)

This operation helps refine the color features in the CB while ensuring the gradient-based
edge information influences the refinement. The feature sharing between branches ensures
that the color features are enhanced not only based on their own characteristics but also
with awareness of edge structures from the GB, leading to low-light enhancement task
with better performance.

Following the attention mechanism, the refined features are further processed to ensure
optimal enhancement of color components, particularly in challenging low-light scenarios.
These features are passed through a quaternion convolution layer which doubles the fea-
ture map, followed by a depth-wise quaternion convolution layer, which extracts nuanced
structural and intensity information while preserving multi-dimensional dependencies.

F 1
C , F

2
C = QDQC [Qconv(Q

C
Attn)] (3.14)

Upon further enhancement of the representational fidelity, the processed feature maps are
split into illumination and reflectance components. This splitting enables independent
handling of light intensity and color details. A hyperbolic tangent activation function
maps these quaternion values to the range [-1, 1], capturing complex intensity relationships
and improving contrast. The illumination and reflectance are then recombined using
the Hamilton product to produce an enhanced feature representation with refined color
fidelity.

F 1
C = tanh(F 1

C +QDQC(F
1
C))

F 2
C = tanh(F 2

C +QDQC(F
2
C))

(3.15)

Ix+1
c = Qconv(F

1
C ⊗ F 2

C) (3.16)
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Here Ix+1
c is the final output image from the block. The impact of this additional seg-

ment into the CGE-CGD and GCE-GCD is further explored and results are discussed in
ablation study.

3.4 QLight-Net

Two primary issues often arise in enhancement task of low-light: first, the loss of edge
information; and second, the inability to recover the true color of the objects. To address
these challenges, the proposed architecture is designed with two parallel branches: the
Gradient Branch (GB) and the Color Branch(CB). Each branch focuses on different as-
pects of the image. In the Gradient Branch, we apply a log-based gradient on the input
image. This initial step is crucial for recovering subtle edges and boundaries in low-light
conditions. The gradient information ensures that objects and regions within the image
are properly delineated and can be process with better clarity. Subsequently, the Color
Branch focuses on processing the color features of the image. By focusing on the key color
components, the CB module ensures that the colors of regions in the image are preserved,
leading to more realistic enhancement. Both branches work in parallel, with their outputs
combined later in the network to generate a comprehensive enhancement of the original
low-light image. This approach allows the targeted improvements in both edge clarity
and color enhancement, addressing the core issues faced by low-light images in a balanced
and efficient manner.

In the log-based gradient, gaussian smoothing reduces noise and softens edges in low-
light images. The laplacian operator preserves edges by enhancing intensity shifts, pre-
serving critical structural details for improved visibility. After extracting the log-based
gradient feature map, which has a shape of 1×H×W , it directed to the GB after applying
a multiple stacking operations. First, the gradient feature map is stacked three times and
then the stacked feature maps is concatenated with the intensity channel I (C3) from the
channels generated by the Color Space Transform. This results in a 4-channel feature map
that represents a single quaternion layer with the shape 4×H ×W . This feature maps is
then forwarded as input to the Gradient Branch. In parallel, the output from the Color
Space Transform, which consists of a HVI color space image with dimensions 3×H ×W ,
is concatenated with the log-based gradient feature map, resulting in a 4-channel feature
maps representing color quaternion inputs of shape 4×H ×W to the Color Branch.

The GB and CB modules serve as the backbone of the proposed architecture, inspired
by the U-Net framework. The simultaneous enhancement of both edge and color is crucial
for accurate edges in low-light conditions. For effective feature enhancement, we utilize
feature sharing between the two branches at each stage. This feature sharing is illustrated
in 3.1, which depicts the connections between the GB and CB. The purpose of incorpo-
rating attention mechanisms in these modules is to address specific challenges in low-light
images, where certain regions may be excessively dark, making it difficult to discern edges
and accurately capture color information. To mitigate this, we apply targeted attention
to these regions, gradually enhancing them at each step. This allows the model to focus
on critical regions that require more attention, progressively improving the enhancement
results. To achieve this, the Gradient Branch and Color Branch are consists of six stages,
where each stage builds upon the previous one, progressively enhancing the image.

In both branches, it applies a single layer of quaternion convolution on the respective
inputs to the GB and CB, resulting in feature maps of size C × H × W to learn the
initial features and also to map the features to quaternion representations. In the first
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stage of encoder modules, it performs a down-sample operation on the feature maps and
transforms it to C × H

2
× W

2
, and directed to the CGE1 and GCE1 in the respective

branches after transmitting a residual connection-1. Before the second stage, it performs
down-sampling operation after transmitting a residual connection-2. The input to the
CGE2 and GCE2 modules is transformed to 2C × H

4
× W

4
. And the input to CGE3 and

GCE3, after residual connection-3 and down-sampling operation that alters the shape to
4C × H

8
× W

8
. The output from the CGE3 and GCE3, the shape is retained and connec-

tions are forwarded to the decoder-half of the network. From CGD3 and GCD3, image
restoration is initiated after the corresponding decoder modules are activated using the
residual connections. These residual connections allow progressive refinement of feature
maps, ensuring that important details are retained while enhancing the image structure.
The output shape of CGD3 and GCD3 is 4C × H

8
× W

8
, which will be transformed to

2C × H
4
× W

4
via up-sampling and concatenation with residual connection-3. Similarly,

CGD2-GCD2 and CGD1-GCD1 will perform the same set of corresponding operations
and the final output will be retransformed to the shape C ×H ×W . At the final stage,
the enhanced feature maps from both the GB and CB, will be directed to the last single
layer of quaternion convolution which will revert back the quaternion representations to
the real-valued number. The final output from both the branches will be a 1-channel and
2-channel feature maps which represent the modified color space and are concatenated
to produce a 3-channel final HVI output from the branch. Additionally, a residual con-
nection is established by adding the HSV image output from the Color Space Transform,
ensuring that the integrity of the image’s details and structure is preserved.

3.5 Loss Function

A loss function is equally important in an architecture, which helps the modules lo learn
efficiently and effectively. In the proposed architecture we inducted three main loss com-
ponents. First L1 loss to maintain the average absolute difference between the enhanced
image and ground truth. Since the architecture incorporates gradient feature map and
edge is one of the main factor of this proposed method so the losses on edges to preserves
the structural loss, along with the perceptual loss for high level features of the enhanced
image.

Since, the input image is in RGB color space and then converted to modified and
updated HSV color space, so the error rate or loss on conversion and handling needs to
be taken care off. Gradient Feature Map is also used to as a input to the GB, losses on
edge needs to be considered along with perceptual loss for both HVI color space image as
well as RGB color space image.

L = L1(Îen, IGT ) + Ledge(Îen, IGT ) + Lp(Îen, IGT ) (3.17)

Here, Îen and IGT represents the enhanced image and ground truth image respectively.
And, L1 is L1 loss, Ledge is about the edge loss and Lp is perceptual loss.

We use the pixel-wise L1 loss to minimize the average absolute difference between the
enhanced output Îen and the ground truth image IGT . This ensures overall luminance
and color fidelity. Given that edge preservation is crucial especially when using gradient-
based features and operating in the modified HSV color space, we include an edge loss
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to maintain structural consistency. The Sobel operator is applied to extract edge maps
from both Îen and IGT , and the L1 loss between them is computed. To capture high-level
semantic features and ensure perceptual similarity, we utilize a perceptual loss based on
a pretrained VGG network.
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Chapter 4

RESULTS and DISCUSSION

4.1 Implementation Details

The following experiments are conducted on Ubuntu 22.04 equipped system with a GPU
of 24 GB. With the batch size set to 16, the model was trained to 7500 epochs on the
LOLv1 and LOLv2 datasets. Using the patch size 256×256 cropped 10 samples from each
training image to ensure robust generalization. LOLv2 dataset is further is of two type:
Synthetic and Real. The training, validation and testing of our method follows the similar
splits as given in the official dataset. The results of these experiments are presented in
detail in subsequent sections on ablation studies, quantitative and qualitative sections
below.

4.2 Ablation Study

Extensive experiments are being conducted to validate the proposed architecture, which
consists of several critical components. We designed two focused ablation studies to
understand the contribution of each module. As part of the first study, the impact of
proposed Depth-wise Quaternion Convolution in the architecture and it’s role in learning.
In the second ablation, it evaluates the impact of our dual-branch architecture, analyzing
how the Gradient Branch (GB) and the Color Branch (CB) work independently in the
absence of other branch. This section provides a detailed analysis of these studies, along
with corresponding results to demonstrate the significance of these modules.

4.2.1 Ablation 1 - Depth-wise Quaternion Convolution

In this section, we present an ablation study to assess the impact of the proposed Quater-
nion Depth-wise Convolution (DQC) layer in terms of both performance and parameter
efficiency. The main advantage of Depth-wise quaternion convolution is its capacity to ap-
ply separate filters to every feature map. This preserves the model’s capacity to efficiently
process high-dimensional input while drastically lowering the number of parameters. The
ablation analyses the performance of using DQC in terms of computing efficiency and
performance metrics. To evaluate the impact of the DQC, we conducted experiments
under three configurations: first, without DQC layer to assess the model’s performance;
second, by replacing DQC with a quaternion convolution layer to understand the effects
of using traditional quaternion convolution; and finally, by incorporating the quaternion
depth-wise convolution layer into our proposed model to analyze its overall contribution
to performance.
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Configurations PSNR ↑ SSIM ↑ LPIPS ↓
w/o Depth-wise Quaternion Convolution 26.57 0.858 0.085

w/ Quaternion Convolution 28.09 0.875 0.056
w/ Depth-wise Quaternion Convolution 29.05 0.880 0.047

Table 4.1: Ablation study results for the impact of the Depth-wise Quaternion Convolu-
tion layer. Comparison of PSNR, SSIM, and LPIPS across various configurations

As shown in 4.1, it is clearly evident that removing the depth-wise convolution results
in a considerable drop in all performance metrics, indicating that this layer plays a crucial
role in learning discriminative features in low-light conditions. Although the use of tradi-
tional quaternion convolution improves performance compared to the baseline, it comes
at a significant computational cost. The proposed DQC layer, however, not only yields
superior results in evaluation of PSNR, SSIM, and LPIPS but is also parameter efficient.

DQC Quaternion Conv Conv PSNR ↑ SSIM ↑ LPIPS ↓ Parameters(M)

✗ ✗ ✓ 28.14 0.889 0.079 100.83
✗ ✓ ✗ 28.09 0.875 0.056 25.314
✓ ✓ ✗ 29.05 0.880 0.047 0.747

Table 4.2: Ablation study results for number of parameters with DQC and without DQC.
Comparison of parameters (in millions) across various configurations.

To further analyze the parameter reduction claim, we perform a comparison of the
number of trainable parameters under various combinations of convolutional modules, as
shown in 4.2. The configuration with only standard convolution achieves decent perfor-
mance but suffers from a very high parameter count (100.83 million). On the other hand,
replacing it with traditional quaternion convolution reduces parameters significantly to
25.314 million, while maintaining acceptable performance. However, our proposed con-
figuration that uses the Quaternion Depth-wise Convolution layer not only outperforms
both configurations in terms of image quality but also drastically reduces the parameter
count to just 0.747 million.

It is evident from the ablation that the DQC layer provides a trade-off between per-
formance and model complexity. By integrating this module into the network, we achieve
state-of-the-art enhancement results while maintaining a lightweight architecture.

4.2.2 Ablation 2 - Impact from Dual Branch

Our architecture incorporates a dual-branch design: Gradient Branch and Color Branch.
Both branches share information, ensuring mutual learning and contributing to robust
image enhancement. In this study, we evaluate the impact of these branches individually
and in combination on the final results as shown in 4.3.

We perform three experiments to analyze the roles of the two branches: first, retaining
only Color Branch to observe its ability to compensate for edge enhancement in the
absence of Gradient Branch; second, retaining only Gradient Branch to evaluate its impact
on color correction and refinement; and third, using both Gradient and Color Branches
together to assess their combined effectiveness.

The results demonstrate the significance of both branches in the proposed architecture.
The exclusion of Gradient Branch results in a PSNR of 27.92, SSIM of 0.860, and LPIPS
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GB CB PSNR ↑ SSIM ↑ LPIPS ↓
✗ ✓ 27.92 0.86 0.075
✓ ✗ 28.10 0.861 0.078
✓ ✓ 29.05 0.880 0.047

Table 4.3: Ablation study results for the impact of the Gradient Branch (GB) and Color
Branch (CB) on image quality. Comparison of PSNR, SSIM, and LPIPS with and without
the individual branches and both branches combined

of 0.075, indicating a decline in edge-focused learning, highlighting GB’s role in edge en-
hancement. Similarly, excluding Color Branch yields PSNR of 28.10, SSIM of 0.861, and
LPIPS of 0.078, reflecting its critical contribution to color correction and the preservation
of natural colors. When both Gradient Branch and Color Branch are included, the archi-
tecture achieves the best performance with PSNR of 29.05, SSIM of 0.880, and LPIPS of
0.047, confirming that the two branches collaboratively enhance the overall image quality
while addressing distinct aspects of edge and color refinement.

4.2.3 Ablation 3 - Impact of different input to GB of our method

To evaluate the impact of different input channel configurations on the performance of our
model, we conduct an ablation study focusing on the assignment of the real and imaginary
components (r, î, ĵ, k̂) in the quaternion representation, specifically in the Gradient
Branch (GB) of our proposed QLight-Net. We compare three different configurations of
quaternion inputs and report their performance in terms of PSNR, SSIM, and LPIPS
metrics. The results are summarized in Table 4.4. The performance of our model is also
included for comparison.

Configurations PSNR ↑ SSIM ↑ LPIPS ↓
Configuration 1 23.74 0.850 0.126
Configuration 2 25.67 0.855 0.066
Configuration 3 28.52 0.873 0.051
Our Method 29.05 0.880 0.047

Table 4.4: Ablation study of various configurations with different input to the gradient
branch of the proposed model.

In Configuration 1, the real part r is assigned the RGB gradient of the input image,
while the imaginary parts î, ĵ, and k̂ correspond to the gradients of the intensity channel
along the x-axis, y-axis, and combined x-y axes, respectively. This configuration provides
suboptimal performance. Configuration 2 assigns all four components (r, î, ĵ, and k̂)
with gradient maps derived from the intensity channel of the HVI color space. Although
it performs better than Configuration 1, the absence of color gradient information leads
to limited structural recovery. In Configuration 3, the real and first imaginary parts are
assigned to the intensity channel of the HVI image, while the remaining components are
set as RGB gradients. This configuration results in a noticeable improvement. Finally,
in our proposed method, we assign the gradient of the RGB image uniformly across
all quaternion components. The proposed method achieves the best performance across
all evaluation metrics (PSNR, SSIM, and LPIPS), indicating that the RGB gradient
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information enriches the spatial detail and structural integrity of the enhanced image.
Moreover, we observed that the quaternion input configuration in the Color Branch had
minimal effect on the enhanced results, as the network is capable of learning inter-channel
correlations during training.

4.2.4 Ablation 4 - Effect of Diverse Information Sources in Quater-
nion Representation and Input to GB-CB

As discussed in 3, our proposed architecture consists of two branches: the Gradient Branch
and the Color Branch. Both the branches are responsible for different tasks while sharing
information. Each of these branches processes 4-channel inputs, which are then forwarded
into a single layer of quaternion convolution layer. These 4-channels are treated as the r, î,
ĵ, k̂ components of a quaternion and are further processed accordingly. In this section, we
analyze the impact of different channel combinations for the quaternion representation.
The channels in the arrangement to the r, î, ĵ, k̂ components can influence the learning
process. With the studies and experimenting, we aim to understand the set of channels
that yield better performance.

Configurations Gradient Branch Color Branch PSNR↑ SSIM↑ LPIPS↓

Configuration 1

C1: Gradient RGB
C2: Gradient along x-axis of Intensity channel
C3: Gradient along y-axis of Intensity channel
C4: Gradient along x- and y-axis of Intensity channel

C1C2C3: HVI
C4: Gradient RGB

23.74 0.850 0.126

Configuration 2

C1: Gradient along I-channel of HVI
C2: Gradient along I-channel of HVI
C3: Gradient along I-channel of HVI
C4: Gradient along I-channel of HVI

C1C2C3: HVI
C4: Gradient RGB

25.67 0.855 0.066

Configuration 3

C1: I-channel of HVI
C2: I-channel of HVI
C3: Gradient RGB
C4: Gradient RGB

C1C2C3: HVI
C4: Gradient RGB

28.52 0.873 0.051

Table 4.5: Performance analysis when each channel in the Gradient Branch and Color
Branch contains heterogeneous information, combining different gradient and color com-
ponents in a single quaternion representation.

In 4.5 it presents a set of channels for the Gradient Branch and Color Branch in our
proposed architecture. In the Gradient Branch, the set of four channels: the first channel
is the log-based gradient applied on input RGB image, while the second, third and fourth
channel are derived from the I-channel of HVI color space, where a log-based gradient
is applied along the x-axis, y-axis and both x- and y-axes, respectively. Similarly, for
the Color Branch it takes the HVI channels along with a log-based gradient computed
directly from the input RGB image as the fourth channel. Gradient Branch is designed
to focus on edge information, it leverages the log-based gradient features extracted at dif-
ferent levels to enhance feature representation within the quaternion framework. While
the Color Branch benefits from color information and concatenation with gradient fea-
tures. However, the results suggest from 4.5 that the model struggles with this set of
channels combination. The model may struggle to effectively fuse such diverse direc-
tional information into a single quaternion representation. Quaternion-based processing
enhances efficiency, but representation of real and imaginary values in certain channel
configurations may pose challenges in achieving an optimal feature representation.
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4.2.5 Ablation 5 - Impact of Homogeneous Information in Quater-
nion Components and Input to GB-CB

With an update in architecture, 4.6 analyzes the impact of modification on the input to
Gradient Branch.

Gradient Branch Color Branch PSNR↑ SSIM↑ LPIPS↓
C1: Gradient along I-channel of HVI
C2: Gradient along I-channel of HVI
C3: Gradient along I-channel of HVI
C4: Gradient along I-channel of HVI

C1C2C3: HVI
C4: Gradient RGB

25.67 0.855 0.066

Table 4.6: Impact of using homogeneous information within each quaternion representa-
tion by assigning identical log-based gradient features across all channels in the Gradient
Branch, while keeping the Color Branch unchanged.

In the 4.5, it can be observed a significant drop in performance when incorporat-
ing diverse types of channels within a single quaternion representation. This indicates
heterogeneous information sources in quaternion components could negatively affect the
learning process. To address this, we configured a strategy where all four channels in the
Gradient Branch. Specifically, we applied a log-based gradient to the I-channel of the HVI
color space, and concatenated 4-times in a stack. Meanwhile, the Color Branch remains
the same configuration as in 4.5. This modification led to a noticeable increase in PSNR
and a decrease in LPIPS, indicating that providing similar information across quaternion
channels enables the model to learn more effectively.

4.2.6 Ablation 6 - Balancing Structural and Gradient Informa-
tion for Optimal Representation and Input to GB-CB

From both the prior methods, it is observed that channels with similar base information
within a single quaternion representation is more effective for learning. Building upon this
understanding, we configured the experiment with the Gradient Branch with two distinct
types of information, however within each group both the channels contain homogeneous
information. The first is the intensity of each pixel, which may contribute to detecting
edges by capturing intensity variations. The second is the log-based Gradient applied to
the RGB image, which enhances edge information extraction.

Gradient Branch Color Branch PSNR↑ SSIM↑ LPIPS↓
C1: I-channel of HVI
C2: I-channel of HVI
C3: Gradient RGB
C4: Gradient RGB

C1C2C3: HVI
C4: Gradient RGB

28.52 0.873 0.051

Table 4.7: Effect of mixed homogeneous groups, where each quaternion in the Gradi-
ent Branch consists of two distinct but internally homogeneous types of information:
intensity-based features and log-based gradient applied to the RGB image.

As quantitative results shown in 4.7, this approach leads to an improvement in struc-
tural quality, with a significant impact attributed to the log-based gradient on the RGB
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image. We can conclude the observation that incorporating log-based gradient informa-
tion from the RGB domain plays a crucial role in refining the final structure, making it a
highly influential component in our architecture.

4.3 Computational Efficiency Comparison

Model efficiency is an important aspect for real-world adaptability. Achieving superior
enhancement quality is essential, but a model with higher parameter count becomes com-
putationally expensive. In this proposed architecture, we address this issue by leveraging
a quaternion-based architecture, which maintains a significantly lower computational effi-
ciency as well as state-of-the-art quantitative results. Our focus is to achieve competitive
or superior performance while requiring substantially lower parameter count, demonstrat-
ing the efficiency of the proposed approach.

The quaternion representation plays a pivotal role in this proposed method as dis-
cussed in the methodology section. The inherent advantage allows our model to process
information more effectively, reducing redundancy and computational overhead. To quan-
tify the efficiency of our model, we compare it with existing methods on three primary
performance metrics as discussed above in 4.4. Many models achieve comparative high
performances but come with parameter counts in millions, making them computationally
expensive. In contrast, our model achieves comparable or superior results with 0.747 mil-
lion parameters, making it highly efficient even on standard GPU hardware configuration.

For a comprehensive comparison, 4.8 provides a detailed analysis. Additionally 4.1
illustrates the efficiency comparison across all three datasets. Specifically, we plot three
key efficiency graphs:

• PSNR vs. Parameters (in millions)4.1a: The x-axis represents the parameter count,
while the y-axis denotes the PSNR value. A model positioned closer to top-left
signifies superior efficiency, achieving a high PSNR with minimal parameters.

• SSIM vs. Parameters (in millions)4.1b: The x-axis represents the parameter count,
while the y-axis indicates the SSIM value. Similar to PSNR, a model closer to top-
left demonstrates the best trade-off between performance and efficiency. As high
the SSIM value to achieve with lesser number of parameter.

• LPIPS vs. Parameter (in million)4.1c: The x-axis represents the parameter count,
while the y-axis denotes the LPIPS score. In this case, a model closer to the bottom-
left is preferred, as it achieves a lower LPIPS value with fewer parameters.

From these graphical comparisons, it is evident that our proposed model consistently
outperforms existing approaches in terms of efficiency while maintaining state-of-the-art
enhancement quality.

4.4 Quantitative Evaluation

To compare the proposed architecture with state-of-the-art methods, it uses 3 primary
performance metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity
Index Measure) and LPIPS (Learned Perceptual Image Patch Similarity). These metrics
assess the performance of the architecture from different perspectives, helping to evaluate
its effectiveness and enabling comparisons with existing methods.
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(a) PSNR(dB) vs. Parameter Count(in millions) for various models for different datasets.
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Figure 4.1: Comparison of (a)PSNR(dB) vs. Parameter Count(in millions) (b)SSIM
vs. Parameter Count, (c)LPIPS vs. Parameter Count for various low-light image en-
hancement models across LOLv1(left), LOLv2-Synthetic(middle) and LOLv2-Real(right)
datasets. The proposed method QLightNet shown with a highlighted yellow tag.
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Methods LOLv-1 LOLv-2(Synthetic) LOLv-2(Real) Params/M

PSNR(dB)↑ SSIM↑ LPIPS↓ PSNR(dB)↑ SSIM↑ LPIPS↓ PSNR(dB)↑ SSIM↑ LPIPS↓

RetinexNet[1] (CVPR’ 18) 18.91 0.427 0.388 19.09 0.774 - 18.32 0.447 - 0.84

KinD[47] (CVPR’ 19) 20.86 0.802 0.207 16.25 0.591 - 17.54 0.669 0.375 8.02

ZeroDCE[13] (CVPR’ 20) 21.88 0.640 0.335 21.46 0.848 - 19.77 0.671 - 0.075

3DLUT[48] (IVP’ 20) 21.35 0.585 - 22.17 0.854 - 20.19 0.745 - 0.59

DRBN[24] (CVPR’ 20) 19.55 0.746 0.155 23.22 0.927 - 20.29 0.831 0.147 5.47

EnlightenGAN[25] (TIP’ 21) 20.00 0.691 0.322 16.57 0.734 - 18.23 0.617 - 114.35

LEDNet[26] (ECCV’ 22) 25.47 0.846 - 27.36 0.928 - 27.81 0.870 - 7.07

KinD++[4] (IJCV’ 21) 19.51 0.736 0.248 - - - 24.02 0.803 - 8.27

LLFormer[29] (AAAI’23) 23.64 0.816 0.1692 28.00 0.927 - 26.19 0.819 - 24.55

RetinexFormer[5] (CVPR’ 23) 25.16 0.845 0.850 28.99 0.939 - 27.69 0.856 - 1.61

WaveNet-B[6] (PG’ 23) 27.22 0.873 0.083 - - - - - - 17.42

EMNet[3] (TMM’ 23) 25.37 0.868 0.086 - - - - - - 12.52

GlobalDiff[15] (CVPR’ 23) 27.83 0.877 0.091 - - - 28.82 - - 17.36

RLLIE[38] (TIM’ 24) 20.12 0.770 0.220 - - - - - - -

YUVAtten.Net[37] (CG’ 25) 22.74 0.846 0.079 21.11 0.931 - 20.48 0.849 - 0.12

BiFormer-B[7] (TMM’ 25) 24.03 0.856 0.110 24.81 0.928 0.065 22.93 0.860 0.149 1.43

Ghillie-MD[36] (TCSVT’ 25) 23.87 0.835 0.132 - - - - - - 3.05

Our Method 29.05 0.880 0.047 28.40 0.939 0.050 29.98 0.895 0.084 0.747

Table 4.8: Comparison of Proposed method With the State-of-the-Art Low Light enhance-
ment Methods on LOL-v1[1], LOL-v2[2] with two versions of Synthetic and Real ordered
in timeline of publication. Comparing PSNR(↑), SSIM(↑) and LPIPS(↓). ↑ represents
Higher the better and ↓ represents Lower the better. Bold represents the best value and
UNDERLINE represents second-best result.

We present a comparative analysis of the performance of proposed model against sev-
eral state-of-the-art methods as shown in 4.8. Higher values of PSNR and SSIM indicate
better performance, whereas lower LPIPS values are preferable for improved perceptual
quality. We conduct experiments on three benchmark datasets: LOLv1, LOLv2-Synthetic,
and LOLv2-Real. The results for all competing methods where other models are com-
pared, and our proposed model is evaluated alongside these methods.

On the LOLv1 dataset, our model achieves the best performance among all evaluated
methods, outperforming the other models in terms of all the considered metrices. Specif-
ically, the proposed model attains a SSIM score of 0.880, PSNR of 29.05dB, and LPIPS
score of 0.047, which represents the highest values among all the compared models. In
terms of quantitative results, our model outperforms many models which are based on var-
ious techniques with fewer parameter. It is noteworthy that our model is computationally
efficient, achieving state-of-the-art results with only 0.747 million parameters.
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For the LOLv2-Synthetic dataset, the proposed model continues to exhibit competitive
performance, achieving the best scores on SSIM of 0.939 and LPIPS score of 0.050. While
the PSNR of 28.40dB places our model second best. Despite having a relatively small
number of parameters, the model still demonstrates the ability to achieve impressive
results on synthetic low-light data. This indicates that the proposed method is effective
across various types of low-light image data, even when dealing with synthetic datasets.

On the more challenging LOLv2-Real dataset, which consists of real-world low-light
images, our method significantly outperforms competing approaches. It achieves the best
scores in all three metrics which check different aspect of an enhanced image. With PSNR
value of 29.98dB and the SSIM score of 0.895 being the highest among all the comparing
methods with lowest LPIPS score of 0.084. These results highlighting the robustness
of our method in preserving fine image details and maintaining structural integrity in
real-world low-light conditions.

In summary, our proposed model demonstrates superior performance across all three
datasets when evaluated using objective metrics (PSNR, SSIM, and LPIPS). Despite
the relatively small number of parameters (0.74M), our approach offers state-of-the-art
performance with significantly reduced computational complexity. This validates the
effectiveness and efficiency of our method for low-light image enhancement, making it a
promising solution for both synthetic and real-world low-light scenarios.

The results of the proposed architecture, compared to other models, are detailed in
4.8. It is evident that our model outperforms many state-of-the-art models in multiple
metrics. From another perspective, considering the significantly lower parameter count,
the proposed model achieves results comparable to the leading methods in the field.
Specifically, when trained on the LOLv1 dataset, our model performs better than the
best model in PSNR, SSIM and LPIPS metrics and ranks the best models. On the
LOLv2-Synthetic dataset, our model achieves best rankings in both SSIM and LPIPS,
and provides the second-best performance in PSNR. In the case of LOLv2-Real, the
proposed model surpasses the best model in PSNR, SSIM, and LPIPS. When considering
the parameter count, it is clear that the proposed architecture achieves excellent results
with significantly fewer parameters compared to other models. This trade-off between
performance and parameter efficiency makes our approach highly competitive, offering
near-best results while being computationally efficient.

4.5 Qualitative Evaluation

In addition to quantitative evaluation, visual assessment plays a crucial role in evaluating
the perceptual quality of low-light image enhancement.

The proposed architecture enhances both image quality and structural consistency
effectively. In 4.2, we show a visual comparison of the output images generated by our
model with the input and the ground-truth. It is evident from these results that our
model is capable of producing high-quality images that closely resemble the ground truth,
demonstrating its effectiveness in enhancing low-light images. The enhanced images retain
key details, sharpness, and clarity, which are critical for perceptual improvement in low-
light scenarios. The primary goal of our model is not only to enhance the image but
also to preserve the original color information and structural integrity. The comparison
clearly highlights our model’s superior performance in this regard. Upon zooming into the
enhanced regions, it becomes apparent that our method avoids color distortion and over-
enhancement, preserving natural color tones and accurately matching the ground-truth
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Figure 4.2: Visual output from the proposed architecture on various training images from
LOLv1 dataset.

image.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.3: Visual results with zoomed-in marked red section of various methods for
”Pool” image. (a) input images; (b) EMNet[3]; (c) KinD++[4]; (d) RetinexFormer[5]; (e)
WaveNet-B[6]; (f) BiFormer-B[7]; (g) Our method; and (h) Ground Truth.

Our proposed architecture not only enhances image quality but also maintains struc-
tural consistency, effectively improving the visual appeal of enhanced images. Visual
results of various methods are given in 4.3 and 4.6 to compare the enhancement by our
model with other contemporary methods. The visual result contains enhanced images in
the top row in each figure and enlarged section of the enhanced result marked in the input
image in the bottom row for better clarity.

The results of EMNet show lightness enhancement with limited contrast. In addi-
tion, it is unable to retain the appropriate colors as shown in 4.3(b), 4.4(b), 4.5(b), and
4.6(b). It can be observed from 4.3(c) to 4.5(c) that KinD++ is not able to properly
enhance the lightness. Moreover, the lightness in the results shown in 4.4(c) and 4.6(c)
is enhanced; however, the details and color are not significantly enhanced. The results of
RetinexFormer enhance adequate lightness; however, the details in the enhanced images
are not clear due to over smoothing as shown in 4.3(d), 4.4(d), 4.5(d) to 4.6(d). WaveNet
enhances details and lightness as shown in 4.3(e), 4.5(e), and 4.6(e). However, WaveNet
provides faded colors in the enhanced images. In 4.3(f), 4.4(f), 4.5(f), and 4.6(f), the
results of BiFormer-B show faded colors and smooth details which results in poor en-
hancement quality. The enhanced images of QlightNet are given in 4.3(g), 4.4(g), 4.5(g),
and 4.6(g). The results are quite closer to the ground-truth images in terms of details,
contrast, and colors. The result shown in 4.5(g) shows slightly better colors than the
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.4: Visual results with zoomed-in marked red section of various methods for
”Teddy” image. (a) input images; (b) EMNet[3]; (c) KinD++[4]; (d) RetinexFormer[5];
(e) WaveNet-B[6]; (f) BiFormer-B[7]; (g) Our method; and (h) Ground Truth.

(a) (b) (h)(c) (g)(d) (f)(e)

Figure 4.5: Visual results with zoomed-in marked red section of various methods for
”Stands” image. (a) input images; (b) EMNet[3]; (c) KinD++[4]; (d) RetinexFormer[5];
(e) WaveNet-B[6]; (f) BiFormer-B[7]; (g) Our method; and (h) Ground Truth.

(a) (h)(b) (g)(c) (f)(d) (e)

Figure 4.6: Visual results with zoomed-in marked red section of various methods for
”Shelf” image. (a) input images; (b) EMNet[3]; (c) KinD++[4]; (d) RetinexFormer[5];
(e) WaveNet-B[6]; (f) BiFormer-B[7]; (g) Our method; and (h) Ground Truth.

ground truth image, which shows the details quite clearly in the image. These visual
results demonstrate the effectiveness of the proposed method, showing that it not only
enhances the visual quality of low-light images but also maintains the color and structures
that are essential for improving perceptual quality in various applications.
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4.6 Time Comparison

This section presents a comparative analysis of our proposed QLightNet with respect to
parameters and inference time. Table 4.9 shows the number of parameters (in millions)
and the average inference time (in seconds) for images of resolution 256 × 256, across
several state-of-the-art methods.

Methods Parameters(millions) Time(sec)

KinD++[4] 8.27 0.13
RetinexFormer[5] 1.61 0.35
WaveNet-B[6] 17.42 0.12
EMNet[3] 12.52 0.13

YUVAtten. Net[37] 0.12 0.19
BiFormer-B[7] 1.43 2.08
Ghillie-MD[36] 3.05 0.42
Our Method 0.747 0.09

Table 4.9: Comparison of parameter count and inference time of images across various
state-of-the-art methods.

It can be noted from table 4.9, our method achieves a parameter count of only 0.747
million, which is significantly lower than many contemporary methods. For instance,
KinD++ [4] and EMNet [3] require 8.27M and 12.52M parameters respectively, whereas
WaveNet-B [6] requires a heavy computational footprint with 17.42M parameters. Even
lightweight models such as RetinexFormer [5] and BiFormer-B [7] remain above the 1
million parameter mark.

Moreover, our model also demonstrates favorable inference efficiency, achieving an av-
erage processing time of 0.09 seconds per image, which is significantly faster than most ex-
isting models. Few methods like WaveNet-B [6] and KinD++ [4] show comparable speed
(0.12–0.13 seconds); however, they do so at the cost of significantly higher parameter
counts. On the other hand, YUVAtten. Net [37] achieves lower parameter count (0.12M)
but at the expense of increased inference time (0.19 seconds). Our method achieves a
balanced and efficient design, leveraging quaternion convolution to compress feature rep-
resentations without degrading inference speed. This shows the improved computational
efficiency of our proposed method.

28



Chapter 5

CONCLUSION AND FUTURE SCOPE

This paper presents a new quaternion based light-weight network for low-light image
enhancement. The proposed QLight-Net uses our novel depth-wise quaternion convolution
that captures intra-channel spatial features and inter-channel dependencies. Moreover,
we proposed a two-branch model that leverages the developed quaternion cross-attention
for encoder and decoder. The proposed model extracts features using gradient and color
branches to effectively enhance low-light images. The proposed method outperforms most
contemporary methods in quantitative and visual analysis. Furthermore, the proposed
method uses a lesser number of parameters to outperform other methods.

However, the proposed approach has certain limitations. The model is trained on
static image datasets and may not generalize well to dynamic scenes or video data. Also,
in cases of extremely low illumination or presence of severe artifacts such as motion blur,
the enhancement quality may degrade. In future work, we intend to extend the model to
video-based low-light enhancement by incorporating temporal information. We also aim to
explore domain adaptation techniques for better generalization across diverse scene types.
Furthermore, integrating self-supervised or semi-supervised learning methods could help
reduce the dependency on large-scale paired datasets.

Our method achieves superior enhancement in low-light images, but certain limitations
exist. A minor limitation of our method is the slight over-enhancement of certain color
components, such as orange hues, in some particular cases. This could arises due to
inherent nature of quaternion-based dedicated branch for color modeling. Future work
can focus in refining adaptive color correction strategies within the quaternion space to
mitigate this effect while preserving the advantages of quaternion-based feature learning.

In the main proposed architecture, the two branches parallel learning in different
aspect in intensity feature map and color feature map, and in the end concatenate the
information to form a final enhanced image. Since it is extracting the color feature map
and intensity feature map separately, so it need to be combined again in the same structure
as input image. Post processing restructure the enhanced image to reshaped it into the
same structure as of input image. From the results it can be concluded that the proposed
method has tried to provide a very optimal architecture to maintain the model lightweight
as well as able to achieve good results as compare to many state-of-the-art methods.
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 A B S T R A C T

Images captured at night suffer from various degradations such as color distortion, low contrast, and noise. 
Many existing methods improve low-light images may sometimes amplify noise, cause color distortion, and 
lack finer details. The existing methods require larger number of parameters, which limits the adoption of 
these methods in vision-based applications. In this paper, we proposed a QLight-Net method to achieve a 
better enhancement with a comparably lower number of parameters. We proposed depth-wise quaternion 
convolution, and quaternion cross attention to develop the two-branch architecture for low-light image 
enhancement. The proposed model leverages gradient branch to extract color-aware gradient features. Further, 
It uses color branch to extract gradient-aware color features. The proposed method achieves an LPIPS score of 
0.047, which surpasses the previous best results with lesser parameters, and achieves 0.88 and 29.05 scores of 
SSIM and PSNR, respectively. Our approach achieves a balance between computational efficiency and better 
enhancement.

1. Introduction

The rapid growth of digital imaging in diverse fields, including 
intelligent systems, has driven a need for image enhancement. From 
military surveillance to underwater photography, digital images are 
often captured in challenging low-light conditions, necessitating reli-
able enhancement methods. Photographs taken outdoor in low-light 
environment may suffer from low-light, lens flare, or extra noise. 
Images captured in low-light conditions may affect the decision-making 
capabilities of autonomous vehicles. Low-Light image enhancement 
focuses mainly on improving the brightness while maintaining the color 
consistency and reducing noise, and impact of color bias [1].

In the past decades, an extensive development in the field of low-
light image enhancement proposed variety of approaches, from tra-
ditional methods in the pre-deep learning era to using of diffusion 
models in recent years. One of the earliest methods [2] that introduces 
histogram equalization based method that proposed iterative histogram 
modification that improves the contrast of digital images. Early works 
laid the groundwork for modern image enhancement techniques that 
use gamma correction for brightness and retinex theory for enhanc-
ing images that suffer from low-light environment. Another work [3] 
created a foundational ground by introducing the Retinex theory, ex-
plaining how human vision perceives color under varying lighting 
conditions by decomposing and image into reflectance and illumination 
components. Later, Edwin Land expands on the Retinex theory [4] 
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by emphasizing how the visual system maintains color consistency 
under different lighting conditions and how it can be applied to image 
enhancement. Since the introduction of Convolutional Neural Networks 
(CNN), many CNN-based methods for low-light image enhancement 
have been proposed, and laid the groundwork for using CNN’s for low-
light image enhancement task. In LLNet [5], it introduced one of the 
initial CNN-based models for low-light enhancement, using a deep auto-
encoder to improve brightness and reduce noise in the low-light image. 
RetinexNet [4] combines the concept of retinex theory with CNN to 
decomposes image into reflectance and illumination. The work focus 
on decomposing and adjusting the illumination component. There are 
rapid development in unsupervised methods. Jiang et al. [6] used GAN 
that enhanced extremely low-light images without paired training data.

While these approaches achieved significant performance improve-
ment, they also present certain limitations that motivate this research. 
Most existing deep learning-based methods rely on large, complex 
architectures with millions of parameters. Such models are compu-
tationally expensive, which limits their deployment on edge devices 
such as autonomous vehicles and mobile applications. Although some 
lightweight models are proposed [7], many of them compromise on 
enhancement quality or fail to retain structural and color details. 
Furthermore, current approaches typically operate in real-valued space, 
resulting in a higher number of parameters. These models also struggle 
to explicitly model the interaction between different types of features, 
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