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Abstract

Video summarization is a critical task for enabling efficient browsing, retrieval, and

storage of large-scale video content by generating concise yet informative summaries.

In this paper, we propose the Global and Local Attention-based Video Summarization

Network (GLASN), a novel framework that combines global and local attention mecha-

nisms with positional encoding to model both long-range dependencies and local temporal

dynamics within video sequences. By leveraging the combination attention framework,

GLASN selectively focuses on semantically important frames while maintaining the global

context necessary for coherent summaries. We formulate video summarization as a se-

quential decision-making problem and adopt a reinforcement learning (RL) framework,

optimizing GLASN with reward functions that promote both diversity and representative-

ness—key factors for high-quality summaries. Importantly, our approach is fully unsuper-

vised, eliminating the need for labor-intensive, human-annotated labels, which is crucial

for scalability in real-world applications where annotating large volumes of data is infeasi-

ble. Extensive experiments on benchmark datasets demonstrate that GLASN effectively

captures the essence of video content and outperforms or competes with state-of-the-art

methods, showcasing the benefits of attention-based architectures and unsupervised RL

training for video summarization.
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Chapter 1

INTRODUCTION

1.1 Video Summarisation

With the explosion of video data across social media, surveillance systems, and enter-
tainment platforms, efficient video content management has become a pressing challenge.
Every minute, thousands of hours of video are uploaded online, creating a deluge of con-
tent that is neither scalable nor practical for manual browsing or processing. In this
context, video summarization (VS) has emerged as a crucial task — aiming to generate
short, representative summaries that capture the essential content of videos without los-
ing semantic meaning.

Video summarization refers to the task of creating a shorter version of a video that
preserves the most important and informative content. Summaries can be extractive (se-
lecting original frames or shots) or abstractive (generating new content), with extractive
summaries being more common due to their ease of implementation and lower risk of
semantic distortion.

A well-generated video summary offers enormous practical benefits — from facilitating
quick content retrieval and indexing to enabling surveillance monitoring, news clipping,
sports highlights generation, and assisting accessibility in education or healthcare [1].
However, summarizing videos is inherently challenging due to the complex, redundant,
and dynamic nature of video data, which is further compounded by its temporal dimen-
sion and the subjective nature of ”importance” in different contexts.

Early approaches relied on hand-crafted features like color histograms, motion vectors,
and shot boundaries to identify significant frames or segments [1] . While simple, these
methods struggled with generalization and semantic understanding. With the advent
of machine learning, researchers began exploring supervised models trained on human-
annotated datasets to predict frame importance scores.

However, supervised methods such as Gygli et al.’s approach — which proposed using
user preferences for summary generation — were limited by the subjective nature of an-
notations. The inherent diversity in human perception made it challenging to define a
”ground truth” summary. Moreover, collecting large-scale labeled datasets for video sum-
marization proved costly and time-consuming.

Traditionally, video summarization methods have relied on supervised or unsupervised
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learning techniques. Supervised approaches leverage human-labeled data to learn frame-
level importance, but they suffer from significant annotation overhead and subjectivity [1]
. Unsupervised methods reduce reliance on labels but struggle to capture the rich seman-
tics and diversity required for human-aligned summaries [2] . Moreover, most classical
models fail to model long-range temporal dependencies and semantic relationships across
video segments, which are critical for understanding narrative flow and context.

The introduction of deep learning models brought a paradigm shift. Models like adver-
sarial LSTM networks [3] enabled unsupervised summarization by optimizing adversarial
objectives to generate summaries indistinguishable from human-created ones. Similarly,
Panda and Roy-Chowdhury [4] proposed collaborative summarization techniques that
leverage topic-related videos to improve summary quality. Hsaio et al. [5] introduced
HSA-RNN, which dynamically adapts hierarchical temporal structures for more efficient
video summarization.

A significant milestone in the field came with attention-based methods, which have shown
exceptional ability to model spatio-temporal dynamics and semantic relationships. Gao
et al. [6] proposed a method that combines global and local attention mechanisms with
positional encoding to enhance the temporal structure and semantic fidelity of video sum-
maries. Their model not only captures frame-wise relevance but also encodes the relative
position of frames, thereby improving coherence and reducing abrupt transitions between
selected segments. This dual-attention mechanism allows for a more context-aware and
structurally consistent summary — critical for maintaining narrative flow in long or com-
plex videos.

Recent techniques such as the Spatiotemporal Vision Transformer (STVT) [7] leverage
attention mechanisms to further enhance summarization quality by modeling inter-frame
and intra-frame relationships. Together, the use of these attention-based frameworks have
significantly improved the semantic and structural quality of video summaries, making
them more consistent with human expectations.

1.2 Reinforcement Learning for Video Summariza-

tion

Reinforcement learning (RL) seems like a good alternative to the usual supervised learn-
ing, mainly because it lets models figure out how to summarize through trial and error
using a reward signal. In video summarization, this means the model can try out lots of
different summaries and keep tweaking its strategy to do better based on a reward that
measures stuff like how diverse or representative the summary is, and how short it can be
too.

Zhou et al. [1] introduced a deep reinforcement learning framework for unsupervised
video summarization that maximized a diversity-representativeness (DR) reward. This
reward function encourages the selected frames to be both representative of the video’s
content and diverse from each other. The model uses a RL agent to select frames based
on video features and optimises the summary generation using policy gradient methods.
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This helps us not need for expensive manual annotations.

Other reinforcement-based approaches have tried out different ways of designing the re-
ward function. Like, Mahasseni et al. [3] came up with an adversarial RL setup —
basically, one part of the model (the generator) picks key frames, and another part (the
discriminator) checks if the summary looks real or not by comparing it with the actual
one. This kind of training helps make the summaries look more natural and flow better.
RL also gives the model some flexibility — it can learn how to handle videos of different
lengths, types of content, and even scenes that are more complex.

Moreover, reinforcement learning uses exploration, which allows the model to consider
non-greedy selections and long-term rewards. This is particularly useful in the context of
video summarization, as local frame importance might not always lead to a globally pre-
size summary. By optimizing the selection of frame sequences, rather than just focusing
on individual frame scores, RL encourages the model to think more in terms of semantic
flow and overall information content.

The flexibility of reinforcement learning also makes it possible to integrate additional
modules, such as attention mechanisms and temporal encoders. These components fur-
ther enhance the model’s ability to focus on important segments and maintain the con-
tinuity of the storyline. Overall, RL-based approaches have continued to advance the
field of automatic video summarization, offering both theoretical soundness and practical
effectiveness.

1.3 Attention Mechanism for Video Summarization

The rise of attention mechanisms has significantly transformed the field of computer vi-
sion, enabling models to dynamically focus on the most informative parts of an image
or video sequence. At its core, attention allows a model to weigh different input regions
differently, emulating how humans naturally prioritize certain visual cues over others.
This becomes crucial in tasks involving large amounts of spatio-temporal data, such as
video summarization, where not all frames or regions contribute equally to the underlying
semantics.

The seminal work on the Vision Transformer (ViT) by Dosovitskiy et al. [8] demonstrated
that pure attention-based architectures could rival and even surpass convolutional neu-
ral networks (CNNs) on large-scale image classification tasks. Unlike CNNs that rely on
localized receptive fields, ViT processes images by dividing them into patches and feed-
ing them as sequences into transformer layers. These layers compute pairwise attention
between all patches, enabling the model to capture long-range dependencies and holistic
scene understanding. This global receptive field of attention mechanisms provides a signif-
icant advantage, especially when capturing relationships between distant but semantically
related regions within an image.

Extending this concept to video data, the Spatiotemporal Vision Transformer (STVT)
proposed by Hsu et al. [7] introduces attention mechanisms capable of handling both
spatial and temporal dimensions. STVT integrates inter-frame (temporal) and intra-
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frame (spatial) attention, allowing the model to effectively reason about how objects and
scenes evolve over time while simultaneously focusing on salient spatial regions within
each frame. This dual attention structure is particularly well-suited for video summariza-
tion tasks, where selecting temporally spread-out but contextually relevant segments is
key to generating informative summaries.

Gao et al. [6] took a complementary approach by combining global and local atten-
tion in a more structured manner and incorporating positional encoding directly into the
attention process. Their framework captures global temporal patterns while still attend-
ing to local variations within scenes. Notably, the positional encoding allows the model
to maintain awareness of the chronological order of frames, thus avoiding disjointed or
contextually inconsistent summaries. This is particularly important in long videos where
temporal coherence is crucial for narrative fidelity. Gao et al.’s hybrid attention model
effectively enhances both representativeness and diversity by ensuring the selection of se-
mantically rich yet temporally distributed frames.

In the context of video summarization, attention mechanisms help the model selectively
focus on frames or shots that contribute the most to the story flow or the overall meaning
of the video. Traditional approaches often rely on handcrafted features or simple uniform
sampling, which can miss subtle but important segments. Attention-based models, on
the other hand, learn to prioritize frames based on their context and relevance, which
makes the generated summaries more aligned with how humans perceive and remember
important events in a video.

Moreover, attention mechanisms offer interpretability, as they provide insights into which
frames the model considered most relevant. This transparency furthers in understanding
the decision-making process of the summarization model. Fajtl et al. [9] emphasized this
aspect in their work, demonstrating how attention visualizations can provide actionable
explanations for summary decisions.

GLASN integrates lightweight attention mechanisms in a reinforcement learning enviorn-
ment. This design allows the model to both focus selectively on semantically rich content
and optimize summary quality based on diversity and representativeness rewards. Specif-
ically, from PGL-sum by Gao et al. [6] we ensure that both local semantic structure
and global temporal structure are taken into consideration for in the summary generation
process.
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Chapter 2

LITERATURE REVIEW

Deep learning has profoundly transformed the field of video summarization by enabling
data-driven learning paradigms, in contrast to earlier rule-based or heuristic-driven meth-
ods. At its core, video summarization aims to extract the most informative and represen-
tative content from videos, and deep models excel in learning such abstract representations
from large-scale data.

One of the earliest and most influential approaches in deep video summarization uses
Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) net-
works, to capture temporal dependencies across video frames. LSTM-based models treat
video summarization as a sequential prediction problem, allowing the model to learn when
to include a frame in the summary based on past information. Zhang et al. [2] proposed
a bidirectional LSTM (BiLSTM) model, which processes video sequences both forward
and backward to better understand temporal dependencies. This design helps the model
maintain contextual awareness across the entire video.

To handle the hierarchical structure of videos, Hsaio et al. [5] introduced the Hierar-
chical Structure-Adaptive RNN (HSA-RNN), which uses a two-level LSTM architecture.
The first level identifies shots, and the second level determines the importance of those
shots, effectively modeling the multi-scale structure of videos and reducing redundancy
at both frame and segment levels.

Building on this, Mahasseni et al. [3] introduced the Deep Summarization Network
(DSN), an unsupervised adversarial model that uses an LSTM summarizer and a dis-
criminator. The summarizer generates keyframe selections, while the discriminator tries
to distinguish between generated and ground-truth summaries. The model is trained with
a diversity-representativeness reward, ensuring the summaries are both varied and infor-
mative.

Similarly, Yoon et al. [10] propose an unsupervised RL model with temporal consistency
and interpolation: they combine a transformer-CNN backbone with new consistency re-
wards, achieving state-of-the-art results on SumMe and TVSum. These methods eschew
hand-crafted rewards in favor of learned reconstruction or consistency signals. For exam-
ple, Wang et al. (2022) incorporate an auxiliary summarization loss to capture long-term
dependencies, showing that this loss “significantly improve[s] the performance” of LSTM-
based summarizers on SumMe/TVSum. Afzal and Tahir [11] similarly enhanced deep RL
by combining ResNet-152 features with a GRU-based policy, reporting improved F1 on
SumMe over the baseline DR-DSN. In summary, these unsupervised RL models demon-
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strate that learned rewards—whether via reconstruction, diversity/representativeness, or
feature consistency—can substantially boost summary quality on standard benchmarks.
[12].

Despite their strengths, LSTM-based models have limitations, particularly in modeling
long-range dependencies and handling complex relationships over extended sequences.
Attention mechanisms address these shortcomings by allowing models to selectively focus
on key parts of a video without being constrained by sequence length.

Hsu et al. [7] proposed the Spatiotemporal Vision Transformer (STVT), which lever-
ages transformer-based attention to capture both spatial and temporal patterns. Unlike
RNNs, transformers rely entirely on self-attention mechanisms and are particularly effec-
tive in modeling long-range dependencies. Inspired by the success of the Vision Trans-
former (ViT) in image classification [8] , many subsequent video summarization models
have adopted transformer-based architectures. This STVT model achieves state-of-the-
art performance on SumMe/TVSum by jointly modeling both temporal dependencies and
spatial context.

Transformer and attention mechanisms have been adapted for video summarization with
impressive results. For example, Hsu [7] introduce a Frame Index Vision Transformer
(FIVT) that treats frame segments as “words” and adds explicit index and class embed-
dings. This purely transformer-based, supervised model outperforms previous RNN/CNN
methods on SumMe and TVSum
Attention-based methods have also branched into handling multiple annotations or modal-
ities. Terbouche propose MAAM [13], a probabilistic attention model that aggregates
multiple human summaries via an EM framework. MAAM embeds frames with a Vi-
sion Transformer and uses an attention network to predict importance scores; the learned
“average-annotation” attention significantly outperforms single-annotation models on SumMe
and TVSum.
Other recent works leverage multimodal inputs. Zhu [14] introduce a topic-aware summa-
rization task: they build the TopicSum dataset (with video, audio, and textual annota-
tions) and design a multimodal transformer that fuses vision, audio, and text to generate
multiple topic-specific summaries.

Gao et al. [6] further refined the transformer architecture for video summarization by
proposing a model that integrates global and local attention mechanisms with learnable
positional encoding. Their model captures coarse global structure as well as fine-grained
temporal cues, enabling a balanced summary that preserves narrative flow and detail.
Notably, their use of learnable positional encoding enhances the model’s ability to reason
about frame order and importance, which is critical in video summarization.

Traditional supervised learning approaches require large amounts of annotated data,
which is expensive and time-consuming to collect. Reinforcement Learning (RL) has
emerged as a compelling alternative, particularly for unsupervised or weakly supervised
video summarization.

Zhou et al. [1] introduced a reinforcement learning-based framework that formulates
video summarization as a Markov Decision Process (MDP). In this setup, an agent se-
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lects keyframes to maximize a diversity-representativeness reward. This approach circum-
vents the need for human-labeled data while still learning effective summarization policies.

Similarly, Mahasseni et al. [3] utilized adversarial reinforcement learning to refine sum-
mary quality, combining the benefits of generative modeling with reward optimization.
Their summarizer-discriminator framework helps the model align with human-like sum-
marization without relying on explicit supervision.

Beyond deep learning, early video summarization relied on heuristic methods. Gygli
et al. [15] developed one of the first formalized frameworks that scores frames based on
handcrafted features such as motion, aesthetics, and uniqueness. Though simplistic by
modern standards, these methods established foundational principles around representa-
tiveness and diversity.

Hybrid approaches that combine deep learning with traditional methods have also shown
promise. Panda and Roy-Chowdhury [4] introduced a collaborative summarization frame-
work that merges deep visual features with high-level semantic metadata (e.g., tags, text).
This multi-source approach improves topic relevance and cross-video summarization.

Potapov et al. [16] contributed a category-specific video summarization approach that
utilizes domain knowledge to tailor summaries based on the semantic content of the
video. This method leverages classifiers trained for different video categories, enabling
the generation of summaries that are not only visually concise but also contextually rel-
evant. Their approach was among the first to demonstrate the benefits of aligning sum-
marization strategies with content types, thus enhancing user relevance and interpretabil-
ity. Building upon the idea of contextual awareness, Zhu et al. [17] proposed DSNet,
a detect-to-summarize framework that incorporates object detection features from pre-
trained detectors such as Faster R-CNN. DSNet effectively identifies salient objects and
events across frames, and integrates them into a summarization pipeline, ensuring that
important visual cues are preserved while maintaining compactness and diversity. This
approach bridges high-level object understanding with frame-level importance prediction,
enhancing the semantic fidelity of generated summaries.

Fajtl et al. [9] introduced a dynamic attention-based encoder-decoder model, where
frame-level importance scores are computed using temporal attention over the entire se-
quence. This allows the model to capture global temporal relationships and dynamically
adjust attention based on evolving context within the video, leading to more informative
and coherent summaries. Their model demonstrated that learning attention weights di-
rectly from data outperforms traditional fixed-window or heuristic approaches in temporal
summarization. Lastly, Metelli et al. [15] addressed the adaptability of summarization
systems by exploring configurable environments in reinforcement learning. Their work
suggests frameworks where summarization agents can be customized or fine-tuned based
on user preferences, domains, or task constraints. This direction points toward more
interactive and personalized summarization systems, where the summarization process
itself can adaptively learn from feedback or shifting objectives.

In conclusion, deep learning has propelled video summarization by introducing models
that can learn both low-level visual features and high-level semantic patterns. LSTM-
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based methods initially demonstrated success in modeling sequential dependencies. The
emergence of attention mechanisms and transformer-based models significantly improved
the ability to capture global context and long-range dependencies. Reinforcement learn-
ing, especially in unsupervised settings, further expands the scalability and adaptability
of these models. Going forward, hybrid models that integrate transformers, RL, and
multimodal learning—incorporating audio, text, and metadata—are likely to shape the
future of video summarization.
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Chapter 3

METHODOLOGY

3.1 Input

Video summarization relies on capturing and processing the most salient visual informa-
tion from video frames. Instead of feeding raw frames directly to the model, we use deep
feature extraction to transform each frame into a compact yet meaningful representation.
Convolutional Neural Networks (CNNs) have been widely adopted for image and video
analysis due to their ability to learn hierarchical feature representations. These networks
operate by applying a series of convolutional filters to an image, progressively learning
low-level features such as edges and textures, and high-level features such as object cate-
gories, spatial arrangements, and scene context. CNN-based feature extraction has been
instrumental in tasks like image classification, object detection, and action recognition
in videos [mettl]. For this purpose, we leverage GoogLeNet, a deep convolutional neural
network (CNN) pretrained on the ImageNet dataset [18] . We take the penultimate layer
of the network as the feature input for our model.

Among various CNN architectures, GoogLeNet (also known as Inception v1 stands out
due to its efficiency in extracting meaningful features while maintaining a reduced com-
putational footprint compared to deeper networks like ResNet. GoogLeNet, introduced
by Szegedy et al. [18] , incorporates the Inception module, which enables multi-scale fea-
ture extraction within a single layer. The Inception module processes input at multiple
scales simultaneously, allowing the model to capture both fine-grained details and high-
level scene representations. This is especially beneficial for video summarization, where
diverse visual patterns need to be analyzed. Unlike VGG-16 or ResNet-101, GoogLeNet
achieves high accuracy with fewer parameters, making it suitable for large-scale video
datasets. The final layer of GoogLeNet provides an abstract, semantically rich feature
representation of each frame, preserving key spatial relationships while discarding unnec-
essary details. For our summarization framework, GoogLeNet strikes a balance between
accuracy, efficiency, and generalization, making it well-suited for extracting meaningful
frame-level features.

Feature extraction using CNNs like GoogLeNet plays a crucial role in video summa-
rization by Reducing Dimensionality. Instead of raw pixel data (millions per frame), a
compact feature representation (e.g., 1024-dimensional vector) preserves relevant content
while making processing efficient. This also helps in enhancing temporal understanding,
since High-level visual embeddings enable the model to focus on meaningful transitions,
avoiding redundant frames. The extracted feature vectors serve as input for attention
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mechanisms, ensuring that the most important frames are identified effectively. It has
signigicantly reduces the time complexity for our model since we do not have to deal with
huge amounts of raw pixel data anymore.

3.2 Attention Mechanism

The attention mechanism has revolutionized sequential data processing by enabling mod-
els to focus on the most relevant parts of the input while maintaining a global context.
In video summarization, this capability is essential for identifying and emphasizing key
frames or segments that capture both spatial and temporal dynamics. Unlike tradi-
tional recurrent models like LSTMs, which process frames sequentially and struggle with
long-range dependencies, attention-based architectures—particularly Transformers—can
model relationships among all frames directly. Self-attention computes pairwise affinities
between frames, assigning importance scores that highlight salient moments and facilitate
the creation of concise, informative summaries.

At the core of our model we leverage stacked self-attention [19] and feed-forward layers to
learn inter-frame relationships effectively. Each video frame is embedded and processed
through this architecture, allowing the model to capture both local nuances and global
context simultaneously. This approach not only enhances computational efficiency but
also ensures the resulting summaries are cohesive and meaningful. By focusing on visually
and semantically important frames, the attention mechanism helps distill long videos into
engaging summaries that retain the essence of the original content, filtering out redun-
dancy and emphasizing critical events and transitions.

Our architecture utilises a multi-head attention mechanism and a fully connected re-
gressor network [9] . These layers use multi-head self attention to identify both long-term
connections as well as short-term relationships between frames, helping the model to pay
“attention” on the most important parts of our input. The feedforward neural network
(FFN) further transform the attention-weighted inputs, along with dropout regulariza-
tion and ReLU activation for improved generalization and non-linear feature learning.
Our setup, is configured with a total of 8 attention heads and a hidden dimension of 512,
making it capable of capturing diverse relational patterns among the frames.

Self-attention computes a representation of a sequence by relating different positions
within it. In the context of video summarization, this mechanism allows the model
to evaluate the contextual importance of each frame by comparing it to every other
frame, thereby capturing long-range temporal dependencies effectively. The self-attention
projects this input into three learned matrices - Queries Q, Keys K and Vectors V. The
scaled dot-product attention is defined as [19] :

A(Q,K, V ) = S

(
QK⊤
√
d

)
V (1)
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Where Q, K and V are the “query, key, and value matrices” respectively, obtained by com-
bining the input feature with learnable weight matrices vectors, d is scale factor of K, used
to scale the dot product. Intuitively, each frame’s query vector compares (dot-products)
against the key vectors of all frames; after softmax normalization, these attention weights
multiply the value vectors to produce a context-aware output for each frame. S is the
softmax function which normalizes the attention weights so that they sum to 1, allowing
the model to assign importance to each frame according to its relevance. This mechanism
allows every frame in a video sequence to attend to every other frame, capturing global
dependencies irrespective of their temporal distance.

Figure 1: Multi-head attention mechanism.

While dot-product attention captures relationships between frames, it lacks inherent po-
sitional awareness. To address this, positional encoding is incorporated. The classical
approach, as introduced in ”Attention is All You Need” [19] , uses sine and cosine func-
tions of varying frequencies:

PE(pos,2i) = Sin

(
pos

10000
2i

dmodel

)
(2)

PE(pos,2i+1) = Cos

(
pos

10000
2i

dmodel

)
(3)

where pos denotes the position in the sequence, and i denotes the dimension index. This
results in an F × D matrix, where F is the number of frames (or tokens) and D is the
feature dimension.

For our task of video summarisation, Instead of applying positional encoding over the
feature dimensions, we compute a F × F positional encoding matrix, explicitly modeling
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positional relationships between frames in the sequence [9] .

This matrix PEF×F , is added directly to the dot-product term of Query and Key before
the softmax operation. It is given as

A(Q,K, V ) = S

(
QK⊤
√
d

+ PEF×F

)
V (4)

This influences how each frame attends to every other frame, explicitly making the atten-
tion scores aware of positional relationships, hence more intuitive for video, as it models
inter-frame temporal dependencies directly at the attention score level. This modification
enhances the model’s ability to capture inter-frame temporal dependencies by influencing
the attention scores based on relative frame positions, making it more suitable for tasks
like video summarization.

To further refine the attention mechanism, [6] introduces a combination of global and
local attention. For computing local attention, we need to perform an additional step
of data segmentation, which splits the frame feature vectors into P non-overlapping seg-
ments. Each of these segments is then individually forwarded to a local multi-head atten-
tion block that focuses on the corresponding locality of the video within each segment.
This step also helps us have low computational complexity since it allows it to apply a
dimensionality reduction.

Figure 2: Regressor Network Architecture. It processes attention-encoded features and
outputs frame-level importance scores, indicating the probability of each frame being
included in the final video summary.

The global attention captures dependencies across the entire sequence, while local atten-
tion focuses on frame relationships within segmented intervals. The outputs of global and
local attention are fused using strategies such as addition, multiplication, averaging, or
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maximum selection. For the purpose of efficient back propagation, a residual connection
is added to this result. In the model, we use multi-head attention: multiple such atten-
tions run in parallel with different learned linear projections, here multiple such attentions
are computed in parallel to learn different subspace relationships between video frames [7].

For multi-head attention, the model computes multiple sets of Q, K, V and combines
the results as follows:

MA(Q,K, V ) = Concat(h1, h2, . . . , hh)W
O (5)

Here each head hi = Attention(QWQ
i , KWK

i , V W V
i ) and WQ

i ,WK
i andW V

i are learnable
projection matrices. The heads are concatenated and linearly transformed to yield the
final output. This allows the model to capture diverse patterns of similarity (e.g. attend-
ing to motion vs. color) simultaneously.

In video summarization, modeling temporal dependencies is critical since the importance
of a given frame or scene often depends on events that occurred earlier or later in the
video. Traditional models like LSTMs and GRUs tend to struggle with such long-range
dependencies due to issues like gradient vanishing and the inherently sequential nature of
their computation [2].

Figure 3: Training Global and Local Attention-based Summarisation Network (GLASN)
via Reinforcement Learning (RL). GLASN takes frame-level feature representation of a
video, passed through a CNN model (GoogLeNet) and generates a set of actions for each
frame determining which ones of them are included in the video summary. The agent of
our RL learns with the help of our Reward Function.

Following the attention modules, the model uses a regressor network [9] to assign a con-
tinuous importance score to each frame which acts as the probability for the particular
frame to be included in the summary. This regressor is composed of a feedforward layer
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with a sigmoid activation function, enabling output values in the range [0, 1], suitable
for interpreting as probabilities in the subsequent Bernoulli sampling step. The simplic-
ity and differentiability of this regressor structure make it especially useful for training
with backpropagation in an unsupervised setting. Its lightweight design and compatibil-
ity with reinforcement learning or sampling-based optimization methods make it ideal for
integrating into transformer-style or attention-based summarization models.

The final stage of GLASN includes a probabilistic decision-making mechanism that con-
trols which video frames we selecte for the summary and which ones we exclude. Instead
of using a fixed, deterministic policy, the model uses a probabilistic one, which gives it
more flexibility to try out different frame selections during training. This kind of explo-
ration is really helpful in reinforcement learning (RL) because it lets the model evaluate
and improve different summarization strategies based on the reward feedback. Using a
probabilistic policy encourages the model to create summaries that are not only short but
also diverse and representative of the original video. This approach is inspired by earlier
work in unsupervised video summarization with deep RL, where diversity and represen-
tativeness were included explicitly in the reward function [1] . It is given as:

pt = sigmoid(Wht) (6)

To decide whether a frame should be selected or not, we employ Bernoulli sampling,
where the action at ∈ {0, 1} is drawn from a Bernoulli distribution parameterized by by
the frame’s selection probability pt , given as:

at ∼ Bernoulli(pt) (7)

This stochastic decision process offers several advantages in an RL-based video summa-
rization setting:

• Exploration–Exploitation Trade-off: By sampling actions according to pt , the
agent naturally balances exploration of new summary compositions with exploita-
tion of high-confidence selections. Unlike deterministic thresholding, which can
become trapped in suboptimal patterns, Bernoulli sampling allows the model to
occasionally select low-probability frames, potentially discovering richer or more
representative summaries during training.

• Policy Gradient Compatibility: Bernoulli sampling fits seamlessly into policy
gradient algorithms. Gradients of the expected reward with respect to model param-
eters can thus be estimated directly via the score-function (log-probability) trick,
enabling end-to-end optimization without requiring a differentiable approximation
of the discrete decision.

• Discrete Action Semantics: Video summarization fundamentally involves a bi-
nary choice— whether to include a frame or not. Bernoulli sampling provides a
principled probabilistic model for such binary actions, preserving the discrete na-
ture of the task while still allowing smooth gradient-based learning.
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To summarise, stochastic sampling process introduces exploration into the learning
process, which is critical when applying reinforcement learning to video summarization.
Unlike deterministic selection (e.g., greedy or threshold-based methods), the Bernoulli-
based action sampling enables the model to explore different frame combinations, pro-
moting diverse and representative summaries over time [1].

If at = 1 the frame is included in the summary; otherwise, it is skipped. The com-
posed video summary is given as:

Summary = {Vyi |ayi = 1, i = 1, 2, 3, ...} (8)

Several prior works, have adopted similar probabilistic policies in the context of reinforce-
ment learning for video summarization. Like Yao et al. [20] proposed using stochastic
frame selection combined with adversarial training to encourage realism in the generated
summaries. Sampling allows the agent to explore new frame combinations, avoiding lo-
cal optima and leads to diverse summary candidates across training episodes, improving
generalization.

3.3 Reward function for Reinforcement Learning

The strength of RL in video summarization lies in its ability to optimize non-differentiable
evaluation metrics such as diversity and representativeness, which are crucial for high-
quality summaries but are not easily captured in conventional loss functions. Zhou
et al. [1] introduced a pioneering unsupervised framework that utilizes a diversity-
representativeness reward to guide the agent in generating balanced summaries without
any labeled ground truth. Similarly, Mahasseni et al. [3] proposed an adversarial rein-
forcement learning model where a summarizer network is trained alongside a discriminator
to distinguish generated summaries from real ones, pushing the model to produce more
human-like outputs. These strategies enable the agent to internalize the trade-off between
retaining salient content and avoiding redundancy, resulting in summaries that are both
concise and semantically rich. Crucially, the design of the reward function plays a pivotal
role; it must encode domain-specific goals and human preferences effectively, as poorly
constructed rewards can misguide the learning process and produce irrelevant summaries.
By enabling sequential reasoning and optimizing task-specific criteria, RL offers a flexible
and scalable approach for generating personalized and high-quality video summaries.

In our approach, we utilize the “Diversity-Representativeness Reward Function”, as used
in DSN [1] , to guide the training of our video summarization model. This reward function
is such that it assess and enhance the effectiveness of the generated summaries returned
with our model. A good video summary should not only capture the main content of
the input video but also minimize redundancy by incorporating diverse and representa-
tive elements. By incorporating this reward function, our model learns to strike a balance
between these two crucial aspects, leading to more meaningful and informative summaries.

The diversity reward motivates the model to choose frames that are varied from each
other. This is done by assessing the difference between the chosen frames within our vec-
tor space. The rationale is simple: a summary that repeatedly highlights similar content
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adds little value. By maximizing diversity, the model ensures that a wide range of unique
events or scenes from the original video is captured, offering a thorough summary. The
Rdiv is determined by calculating the average dissimilarity between each pair of chosen
frames:

Rdiversity =
1

|γ|(|γ| − 1)

∑
t1∈γ

∑
t2∈γ
t1 ̸=t2

distance(xt1 , xt2) (9)

Where distance computes the compliment of cosine similarity or the distance between
two frames xt1 and xt2 .

The representativeness reward, focuses on ensuring that the selected frames effectively
represent the entire video. This is modeled as a clustering problem, specifically the “k-
medoids” problem [21] . Our objective here is to select all the frames which becomes the
medoids that minimize the mean-square error between all video frames and the closest
selected frames. In other words, the chosen frames serve as cluster centroids or medoids,
representing the most significant features of a input. This ensures that the summary is
not only diverse but also representative of the original video’s main themes and events.
It is given as:

Rrep = exp

(
1

T

T∑
t=1

min ∥xt1 − xt2∥2

)
(10)

We train our model by taking the cumulative reward:

R(S) = Rdiv +Rrep (11)

During the training process, both the diversity reward Rdiv and Rrep are of comparable
magnitude. This ensures either of the reward is not dominating the gradient calculations.
In cases where no frames are selected, meaning the action sample consists solely of zeros,
the network receives a reward of zero, effectively discouraging this behavior [1].

3.4 Training

We employ Reinforcement Learning (RL) with the REINFORCE algorithm for training
our video summarization model, where the model learns a policy to select frames based
on rewards derived from the Diversity-Representativeness Reward Function. The core of
our approach is based on attention heads, which produce contextualized feature vectors
mt for each frame at time t. These vectors are used as the input to the policy function,
which in turn predicts actions (i.e., the frames to be included in the summary).

The training process in RL revolves around maximizing the cumulative reward over a
sequence of actions. For video summarization, the reward function is often designed to
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evaluate the generated summary in terms of representativeness and diversity. The agent
explores various frame selections to find the optimal combination that balances these two
factors. This trial-and-error approach allows the model to learn strategies for summary
generation that align closely with human preferences, even in the absence of explicit su-
pervision. By framing video summarization as a sequence of decisions, RL allows our
network to evaluate the effect of any frame selected to be included in video summary.
This ability is important for generating concise and relevant summaries which preserve
the core message of the original content without redundancy.

The REINFORCE algorithm is a foundational approach in reinforcement learning, of-
ten used for training models with policy-based methods. It is a Monte Carlo approach
where the agent learns by sampling trajectories—sequences of actions and their associ-
ated rewards—and uses this data to refine its policy. The main concept is to modify the
parameters of the policy such that probability of selecting frames that yield in higher
rewards is increased [22]. Doing this ensures only frames that are most relevant is taken
for summary. This is achieved by weighting the gradient of the log-probability of an
action by the cumulative reward associated with that action. In simpler terms, the al-
gorithm encourages actions that yield better outcomes while discouraging less favorable
ones. Despite being straightforward, REINFORCE is powerful for scenarios like video
summarization, where the reward signal is often sparse, and the model must consider the
long-term impact of its decisions on the overall summary.

Use of attention in our network enables the agent, in context of RL to focus on the
most relevant frames from a video, producing a detailed set of feature vectors for each
frame. These feature vectors are essential for assessing the significance of frames in the
video summary. Contextualized feature vectors are obtained from the outputs of the
transformer module. For each time step t, contextualized feature vector gt is given as the
aggregate of outputs from each attention head:

gt = Attention(x1,x2, . . . ,xT ) (12)

The policy gradient method is employed to train our network. The idea is we maximize
the expected reward, which is defined as the average reward over the action sequence:

J(θ) = Eπθ(a1:T )[Reward(S)] (13)

Here πθ(a1:T ) is the probability distribution over the sequence of actions a1:T predicted by
the policy network πθ and R(S) is the reward computed using the Diversity-Representativeness
Reward function [1].

For optimising the model, we compute the gradient of the Jθ for the policy parame-
ters θ. This gradient provides information on how to adjust the policy to maximize the
expected reward. For the objective function gradient is computed as:
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∇θJ(θ) = Eπθ(a1:T )

[
R(S)

T∑
t=1

∇θ log πθ(at|gt)

]
(14)

Since calculating the expectation over complex action sequences is computationally expen-
sive, we approximate the gradient using Monte Carlo sampling. We simulate N episodes of
action sequences and then take the average gradient across these episodes. The gradient
estimate becomes:

∇θJ(θ) ≈
1

N

N∑
n=1

T∑
t=1

Rn∇θ log πθ(at|gt) (15)

The gradient estimate above can exhibit high variance, which can lead to unstable up-
dates and slow convergence. To reduce variance, we subtract a baseline b from the reward,
which helps to stabilize the gradient updates. This technique is known as baseline sub-
traction, and it has been shown to improve the performance of policy gradient methods
by reducing the variance of the gradients. The modified final gradient update becomes:

∇θJ(θ) ≈
1

N

N∑
n=1

T∑
t=1

(Rn − b)∇θ log πθ(at|gt) (16)

The agent’s objective is to optimize the reward function, which motivates the model
to choose frames that would have both diversity as well as representativeness w.r.t the
input video, resulting in a high-quality video summary.

3.5 Regularisation

Since the goal of a RL model is to maximise the reward, it may have a tendency to select
more number of frames which eventually leads to higher reward score. To prevent this
a regularization term inspired by Mahasseni, Lam, and Todorovic 2017 [3] . This term
penalizes the probability distributions produced by the Attention based Video Summa-
rization Network (AVSN). This ensures that the selected frame percentage remains within
a reasonable range. It is given as:

Lpercentage =

∥∥∥∥∥ 1T
T∑
t=1

pt − ϵ

∥∥∥∥∥
2

(17)

Where ϵ is a hyperparameter that controls the intended proportion of frames to be in-
cluded in the summary. By minimizing this term, we effectively constrain the number of
frames that can be selected, ensuring that the summaries produced are concise and not
overly long.
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Additionally, to avoid overfitting and enhance the our network’s ability to generaliza-
tion capacity, we apply an L2 regularization term on the parameters θ f the network.
This penalizes excessively large values of the weights, helping the model avoid memoriza-
tion and ensuring it learns more robust features. The L2 regularization term is given as:

Lpenalty =
∑
i,j

θ2i,j (18)

Together, these regularization techniques help balance the frame selection process and
keep the model from overfitting, leading to better performance on unseen data.

3.6 Optimisation

The policy parameters θ are optimised using stochastic gradient approach. This is cen-
tral to training the agent to make effective frame-selection decisions. The objective is to
maximize the expected cumulative reward over a sequence of actions. Since direct opti-
mization is infeasible due to the non-differentiable nature of the reward, policy gradient
methods—such as the REINFORCE algorithm are employed to estimate the gradient of
J(θ) with respect to theta. This estimated gradient is then used to update the policy pa-
rameters through stochastic gradient ascent. To reduce the variance of gradient estimates
and improve training stability, techniques like baseline subtraction or entropy regulariza-
tion are commonly incorporated. It is given as:

θ = θ − α∆θ(−J + β1Lpercentage + β2Lpenalty), (19)

Where α, β1 and β2 are hyper-parameters balancing the regularisation.

3.7 Summary Generation

To generate summaries, we start by using the trained AVSN to predict frame-level im-
portance scores for a given test video. These scores represent the likelihood of each frame
being selected for the summary. Shot-level scores are calculated ntaking the mean scores
of all frames within a given shot. This step ensures that the importance is evaluated at
a higher, more meaningful level, aligning with the structure of the video.

For temporal segmentation, we rely on Kernel Temporal Segmentation (KTS) [16] a tech-
nique designed to detect significant transitions in video content. KTS works by grouping
visually similar frames into clusters, effectively segmenting the video into coherent shots.
This method captures natural boundaries in the content, providing well-defined units for
subsequent shot-level scoring and selection. By applying KTS, we ensure the segmenta-
tion process aligns with the video’s inherent narrative flow [12].

To create a concise summary, we select shots that maximize the total importance score
while adhering to a constraint: the summary’s total duration cannot exceed 15% of the
input video length. This selection of frames can be considered like a 0/1 Knapsack puzzle,
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a classic optimization challenge where items (in this case, shots) must be chosen to max-
imize value (importance score) without exceeding a capacity limit (summary duration).
Since it is an “NP hard” problem, hence it is computationally expensive to compute all
the solutions for large instances. To address this, we use a dynamic programming ap-
proach to achieve a near-optimal solution efficiently. This ensures the summary is both
informative and adheres to the length constraints.
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Datasets

To assess the effectiveness of our network and train it using two widely recognized bench-
mark datasets - SumMe and TVSum. These datasets are widely recognized in video
summarization research due to their diversity and high-quality annotations. SumMe com-
prises a dataset containing 25 human-generated videos that span a variety of themes, like
sports, travel, and holidays. Each video is relatively short, ranging from 1 to 6 minutes
in length, and is accompanied by multiple human-annotated summaries, with 15 to 18
individuals providing ground truth annotations for each video. This diversity of input al-
lows SumMe to serve as a robust testing ground for evaluating summarization techniques
against human-curated benchmarks.

Similarly, TVSum offers a larger dataset with 50 videos covering a broad range of topics,
including news broadcasts, documentaries, and more. The videos in TVSum are longer,
lasting upto 10 minutes with a minimum of 2 minutes, and each is annotated by 20 in-
dividuals who assign frame-level importance scores. These annotations reflect collective
preferences, offering a reliable measure of what viewers consider significant in the con-
tent. Together, SumMe and TVSum provide complementary evaluation platforms, one
emphasizing user-generated diversity and the other collective viewer insights allowing us
to thoroughly test the generalizability and performance of our summarization approach.

4.2 Evaluation Metrics

To ensure a impartial analysis with respect to existing approaches, we adopt the widely
recognized evaluation protocol introduced in [2] . This method employs the F-score as the
main metric to examine the allignment between the summary produced by the model and
the human-labeled ground truth summary. By balancing precision and recall, the F-score
effectively measures how well the our video summaries capture the most significant parts
of the video. It is gives as:

P =
overlapped(A,B)

A
, R =

overlapped(A,B)

B
(20)
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Fscore =
2PR

P +R
× 100% (21)

Where A is the ground truth summary and B is the generated summary. There we can
see that this metric describes the overlapped duration of the generated summary and its
ground truth.

4.3 Implementation Details

To enhance computational efficiency, we uniformly sample one frame per second from
all training and testing videos. Frame-level features are extracted using the Inception-
V3 network. Frame-level deep features are extracted using the pool5 layer output from
a pre-trained GoogleNet model [18] on the ImageNet dataset. The resulting in feature
vectors of dimensionality D = 1024. The number of video segments P on which local
attention is applied is set to 4. The number of heads H for global attention equals 8.
To segment visually consistent sequences, we employ the Kernel Temporal Segmentation
(KTS) algorithm [16], which groups consecutive similar frames into distinct shots. We
cap the number of generated shots at 50 for each video. For videos with fewer than 50
frames, segmentation is skipped, and the extracted frame-level features are directly used
as shot-level representations. To optimize our model parameters, we take a learning rate
of 0.001 along with a weight decay of 10−5.

The experiments were conducted on a Mac system running macOS 15.5 Sequoia, equipped
with an Apple M2 Pro chip (12-core CPU, 19-core GPU) and 16GB of unified memory.
The implementation utilized PyTorch version 1.13.0, leveraging the Metal Performance
Shaders (MPS) backend for GPU acceleration.

Table I: Performance comparison (F-score %) on SumMe and TVSum datasets

Model SumMe TVSum

DSN 41.4 57.6

Bi-LSTM 37.6 54.2

DPP-LSTM 38.6 57.1

GAN (DPP) 39.1 51.7

Hierarchical RL 43.6 58.4

CosNet 47.8 59.7

TR-Sum 54.5 62.3

GLASN (Ours) 50.6 66.2
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4.4 Performance Comparisons

To evaluate the effectiveness of our proposed model, we conducted a detailed performance
comparison against several prominent reinforcement learning (RL)-based video summa-
rization methods. These include DSN [1], DPP-LSTM and Bi-LSTM [2] , SUM-GAN(dpp)
[3], and more recent RL-based frameworks such as the hierarchical model by Chen et al.
[23], CoSNet [24], and TR-SUM [12] . The comparison was carried out using the widely
adopted SumMe and TVSum datasets, with the F-score metric serving as the primary
evaluation criterion due to its balanced consideration of precision and recall. Our model
demonstrates competitive performance, closely aligning with or outperforming several of
these existing methods. The details are given in Table 1.

4.5 Ablation Study

To gain a deeper understanding of the architectural choices in our proposed AVSN model,
we conducted a series of ablation experiments focused on key design components. These
experiments aim to identify the optimal configuration for video segmentation, feature fu-
sion, the number of attention heads used in both local and global attention mechanisms
and the use of core components of our model [6] .

Our first experiment investigates how the number of video segments—used to control the
granularity of local attention, affects summarization performance. In parallel, we explore
the fusion strategies for integrating the outputs of global and local attention modules.
Table II summarizes the performance across various configurations. Results demonstrate
that dividing videos into four segments and using addition-based fusion yields the most
favorable results on both TVSum and SumMe datasets. This combination likely allows
the model to preserve richer localized details while maintaining a coherent global context.

Subsequently, we analyze the impact of varying the number of attention heads in both
attention modules. We evaluate local attention with 2, 4, and 8 heads, and observe that
using 4 attention heads consistently produces robust performance across datasets. For
global attention, usage of 8 heads gives the best result whereas for local attention the
optimal number of heads is 4. This setting offers a strong balance, delivering consistently
competitive results across both datasets. The performance with different number of heads
is shown in Table III.

To further examine the contribution of individual architectural components within AVSN,
we designed three model variants by selectively removing key mechanisms: one without
the global attention module, relying solely on local attention to capture temporal depen-
dencies. Another without the local attention module, depending only on global attention
for sequence modeling and a third variant excluding the positional encoding used in at-
tention score computation. These variants were evaluated under the same experimental
conditions using five randomly generated data splits. The results, summarized in Table
IV, reveal that both global and local attention mechanisms are essential for strong per-
formance, with the absence of global attention having a particularly detrimental effect on
the SumMe dataset. The removal of local attention also caused noticeable performance
drops, demonstrating that both global and localized temporal structures are necessary for
comprehensive video understanding. Furthermore, excluding positional encoding reduced
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performance, especially on SumMe, confirming its role in enhancing the model’s ability
to capture the temporal structure of videos. Together, these findings highlight the syn-
ergistic importance of each component in maintaining the effectiveness of the full AVSN
architecture.

Table II: Ablation study showing the variation in performance (F-score %) of our model on
SumMe and TVSum with different numbers of video segments and data fusion strategies.

SumMe TVSum

Fusion

Segments
2 4 8 2 4 8

Addition 44.3 50.6 47.8 64.4 66.2 65.5

Average pooling 45.5 49.1 48.7 66.1 65.9 59.9

Max pooling 45.1 48.9 47.8 64.3 62.6 61.5

Multiplication 39.3 45.1 48.6 49.9 49.5 42.7

Table III: Ablation study on the performance (F-score %) of our model on SumMe and
TVSum using different numbers of attention heads in the global and local attention mech-
anisms.

SumMe TVSum

Global

Local
2 4 8 2 4 8

2 45.3 45.4 47.8 64.4 66.1 65.5

4 45.5 49.1 48.7 66.1 65.9 59.9

8 45.1 49.9 47.8 64.3 66.1 61.5

16 39.3 48.2 40.6 63.9 64.5 62.8

Table IV: Component-wise ablation study of GLASN model.

Model Variant SumMe F-score (%) TVSum F-score (%)
GLASN w/o Global Attention 39.2 59.1
GLASN w/o Local Attention 42.0 62.4
GLASN w/o Positional Encoding 47.3 65.7
GLASN (full model) 50.6 66.2
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Figure 1: Plot of rewards while training video-1

Figure 2: Ground Truth and importance scores (probabilities) of video-4 predicted by
GLASN
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Chapter 5

CONCLUSION AND FUTURE SCOPE

The domain of video summarization has experienced significant advancement, driven by
the urgent need for efficient techniques to condense and interpret vast amounts of video
data. Although supervised methods have demonstrated strong performance, their depen-
dence on large-scale labeled datasets presents a major limitation, as such annotations are
costly and often impractical to obtain. This challenge highlights the critical importance
of unsupervised learning approaches, which offer greater scalability and adaptability by
operating without extensive human supervision.

Attention mechanisms, especially those derived from transformer architectures, have shown
remarkable effectiveness in modeling temporal dependencies within sequential data. In
particular, combining global and local attention enables models to capture both the over-
arching context of the entire video and the fine-grained details within smaller temporal
segments. By selectively focusing on the most informative parts at multiple scales, these
hybrid attention mechanisms provide a richer and more nuanced understanding of video
content.

In this project, we have explored the application of combined attention-based techniques
for unsupervised video summarization, aiming to enhance summary quality and repre-
sentativeness. Global attention captures long-range dependencies by attending to the
entire video sequence, while local attention focuses on short-range, fine-grained interac-
tions within smaller segments. This multi-scale approach effectively models relationships
at different granularities, allowing the summarization system to better preserve both the
global storyline and important local details. Our findings indicate that integrating global
and local attention significantly improves summarization performance, producing outputs
that are more coherent, concise, and representative compared to traditional unsupervised
methods.

The results obtained from our evaluation on benchmark datasets like TVSum and SumMe
demonstrate that our model can generate summaries that are competitive with, and in
some cases exceed, the performance of existing state-of-the-art unsupervised approaches.
Importantly, the architecture’s design does not rely on ground-truth labels, making it
particularly suitable for real-world applications where manual annotation is unfeasible.
The ablation studies further confirm the contribution of each model component, validat-
ing the importance of combining local and global attention and optimizing the number of
attention heads and video segmentation granularity.
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Future work can explore several promising directions to build upon the current model.
One such direction involves the integration of multimodal data—including audio signals,
speech transcripts, and textual metadata—which can provide complementary contextual
information to guide the summarization process. The inclusion of such modalities has the
potential to further enhance the semantic richness and relevance of generated summaries,
particularly in videos containing dialogues, background music, or on-screen text.

Another fruitful area for expansion is the use of reinforcement learning to optimize sum-
mary selection policies over time. Although our current approach is entirely unsupervised
and static, reinforcement learning allows models to learn from user feedback or prede-
fined reward functions, offering dynamic adaptability and personalization of summaries.
Combining the strengths of attention-based architectures with reinforcement-based opti-
mization can result in more intelligent, context-aware summarization systems that align
better with human preferences.

Additionally, incorporating user-specific preferences and feedback mechanisms into the
model can personalize summaries based on individual viewing habits, domain interests,
or attention patterns. This opens up opportunities for adaptive video summarization
systems that not only summarize but also curate content according to the intended audi-
ence. Such systems could prove invaluable in educational platforms, streaming services,
or professional video review applications.

On the technical side, further research can focus on model compression and optimization
methods to make sure the model runs in real-time, especially when deployed in resource-
limited devices like mobile phones, drones, or embedded systems. Efficient transformer
versions or sparse attention techniques could be explored to keep good performance while
cutting down on the computational cost.

From a social impact perspective, effective video summarization can bring about trans-
formative changes across multiple domains. In education, for instance, automatic sum-
marization of long lecture videos can help students quickly revise key topics and enhance
learning efficiency. For journalists and media analysts, condensed versions of lengthy
broadcasts can facilitate rapid content review and curation. In law enforcement and
surveillance, automated video summaries can significantly reduce the burden of manual
footage review, helping with quicker incident response and decision-making.

Moreover, video summarization holds the potential to promote digital accessibility and
inclusion. For individuals with limited attention spans, cognitive impairments, or time
constraints, summarization tools can make video content more digestible and engaging.
By tailoring summaries to emphasize essential content, such technologies ensure broader
reach and inclusivity in digital communication. In humanitarian settings, rapid summa-
rization of aerial footage captured during natural disasters or conflicts can assist relief
workers in prioritizing areas for intervention, thereby saving lives and resources.

In conclusion, the future of video summarization lies at the intersection of interpretabil-
ity, adaptability, and scalability. The promising results achieved through attention-based,
unsupervised architectures reinforce the viability of such models for practical deployment.
By continuing to enhance model efficiency, integrate multimodal inputs, and incorporate
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user feedback, the field can move closer to realizing intelligent, context-aware summa-
rization systems that benefit diverse user communities across the globe. The ongoing
evolution of this technology holds immense promise for reshaping how we interact with,
analyze, and derive value from the ever-expanding universe of video data.
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