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ABSTRACT 
 

Skin cancer remains a significant public health problem worldwide, and appropriate 
and efficient diagnostic approaches are needed to benefit both patients and the 
healthcare system. Skin lesion categorization has been recently benefiting from deep 
learning methods, which, however, are facing challenges with regard to 
between-class similarity, within-class discrepancy, and scarcity of data. This thesis 
offers a concerted in-depth analysis on deep learning models for skin lesions of two 
primary contributions, namely a review of the literature, including 101 papers, and 
that we provide an empirical comparison with state-of-the-art models. Review of 
literature and state-of-the-art The literature review on recent developments 
from 2021 to 2023, feature learning, architectural innovations and data scarcity have 
been summarized. In particular, intra-class consistency mechanisms and hybrid 
architectures of CNNs and Transformers, knowledge distillation of lightweight 
models, and the method to tackle imbalanced dataset are the main focus. These 
observations reflect growing trends in the proposed papers, including the rise of 
self-supervised learning, multi-modal fusion, and domain-specific preprocessing for 
improved diagnostic accuracy. In the comparative study, performance of five 
architectures: ResNet50, DenseNet121, EfficientNet-B0, Vision Transformer 
(ViT-B/16) and Data-efficient Image Transformer (DeiT-S) is evaluated on the 
standard datasets, including HAM10000 in terms of accuracy, computational 
efficiency, and class imbalance. We empirically show that EfficientNet-B0 is the best 
trade-off between performance and computational cost, and DeiT-S learns better 
features with knowledge distillation. ViT-based architectures achieve comparable 
performance, but need rigorous data augmentations to cope with the overfitting 
problem. Key factors relevant to model scalability, data preprocessing and 
hybrid methods to meet the clinical deployment challenge are discussed in this 
study. Theoretical and empirical based computational approaches support the model 
selection and optimization for skin lesion analysis perspective in this work. 
Addressing weaknesses within the current literature, our results support the use of 
context-aware architectures and strong training procedures to improve diagnostic 
reliability in real-world healthcare environments. The results are intended for the 
guidance of future research happening in the field of automated dermatology; with a 
focus on pragmaticity, generalisation, and clinical applications. 
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Chapter 1 

INTRODUCTION 
 
 
 
 
1.1. Overview 

 
Skin lesions comprise growths, decolorations and/or texture changes of the skin and 
represent important symptoms for elementary diagnosis of the respective, often 
conspicuous findings of benign to life-threatening malignancies. Such lesions come 
in various forms, e.g., moles, cysts, rashes and tumors, where each type has specific 
morphological attributes, e.g., size, asymmetry, color and border regularity. Visual 
and tactile examination has always been widely used for clinical evaluation of skin 
lesions with the support of established rules such as the ABCDE (Asymmetry, Border 
irregularity, Color variation, Diameter>6mm, Evolution) rule for melanoma 
detection. Nevertheless, the subjective nature of the manual assessment and the 
visual complexity of the lesion require sophisticated diagnostic devices in order to 
insure accuracy and reproducibility. 
 

1.1.1. Types of Skin Lesions 
Cutaneous lesions can be divided into benign and malignant groups. 
Non-cancerous[edit] Non-cancerous or benign lesions include nevi and seborrheic 
keratosis, which are unlikely to progress and generally pose no risk, even 
though they look like they could be cancer. Uncontrolled growth and metastasic 
ability are characteristic features of malignant lesions such as melanoma, basal cell 
carcinoma (BCC), and squamous cell carcinoma (SCC). BCC and SCC are more 
common than melanoma, although it is particularly aggressive as fast growing, and 
is responsible for most of the deaths of skin cancer. 
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Fig 1.1. Sample images for the skin lesion categories from HAM10000 dataset. 

 

1.1.2. Diagnostic Challenges 
Because of intra-class diversity (such as amelanotic melanoma missing pigment) and 
inter-class similarities (such as melanoma resembling atypical nevi), it is still difficult 
to distinguish between benign and malignant tumours. Furthermore, early-stage 
lesions frequently lack distinguishing characteristics, which delays diagnosis. By 
enlarging underlying features, dermoscopic imaging has enhanced visualisation; yet, 
human interpretation is still subject to error, particularly in cases that occur atypically 
or seldom.  
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1.1.3. Role of Automated Analysis 
Automated systems, especially those that utilize deep learning, tackle these 
challenges by examining high-resolution dermoscopic images to uncover subtle 
patterns that the human eye might miss. For example, algorithms trained on datasets 
like HAM10000 can accurately differentiate between melanoma and benign nevi 
with over 90% accuracy, which helps lessen the dependence on subjective 
assessments. Also, these systems aid in filling diagnostic gaps in regions with little 
resources by providing a scalable and affordable solutions. 
 

1.1.4. Clinical and Societal Impact 
Reaching the heart of malignant lesions early and on time can truly change the game 
for patient survival; indeed, melanoma survival rates skyrocket to more than 99% 
with early diagnosis. Conversely, if we allow diagnosis to lag behind, survival 
chances plummet, the point being so starkly highlighted as to just how pressing it is 
that we have reliable tools at hand. Additionally, automating lesion analysis benefits 
patients, but also relieves healthcare systems by reducing triage burdens and 
eliminating redundant biopsies. 
 
 

1.2. Key Challenges in Skin Lesion Analysis 
 

 
Deep learning-powered automated skin lesion detection can potentially revolutionize 
how we handle dermatological diagnostics altogether. It does, however, have its share 
of medical and technological challenges, though. The intricacy of lesions, the 
uncertainty of imaging environments, and shortages in accessible datasets all 
represent challenges that render constructing effective models very challenging. 
These constraints raise the threat of misdiagnosis, particularly when incipient cancers 
masquerade as benign tumors or rare subtypes violate patterns set by conventional 
wisdom. Overcoming these challenges is key to making models usable in different 
populations and clinical settings with diagnosis accuracy and speed. 
 

1.2.1. Inter-Class Similarity: 
● Description: 

○ Benign and malignant lesions can have similar visual features like 
color distribution, texture, and irregular border. Melanoma and 
seborrhoeic keratosis, for instance, can appear with the same dark 

3 



pigmentation, though benign nevi can mimic the asymmetry of initial 
melanoma. 
 

● Impact: 
○ This ambiguity leads to misdiagnosis, which reduces diagnostic 

accuracy. Models may prioritise irrelevant characteristics (e.g., 
artefacts in dermoscopic pictures) over therapeutically important 
patterns. 
 

● Solutions: 
○ Advanced Feature Learning: Models like DenseNet121 and hybrid 

CNN-Transformer architectures really focus on maintaining 
consistency within classes while also distinguishing between different 
classes. 

○ Attention Mechanisms: Vision Transformers (ViT) use self-attention 
to hone in on specific areas of lesions, helping to reduce distractions 
from the background noise. 

 

1.2.2. Intra-Class Variability: 
● Description: 

○ Lesions within the same diagnostic category can vary widely in 
appearance due to factors such as skin tone, lesion location, imaging 
conditions, and disease progression. For example, melanomas may 
present as nodular, superficial spreading, or amelanotic subtypes. 

● Impact: 
○ Models taught on limited data find it difficult to generalise across 

various presentations, which results in uneven performance in 
real-world scenarios. 

● Solutions: 
○ Data Augmentation: Techniques include rotation, scaling, and 

synthetic lesion creation employing GANs to improve dataset 
diversity. 

○ Domain-Specific Preprocessing: Normalizing images for lighting and 
contrast variations. 

 

1.2.3. Data Scarcity and Imbalance: 
● Description: 
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○ Medical datasets, such as HAM10000, are often small, imbalanced, 
and lack demographic diversity. Rare classes (e.g., melanoma) are 
underrepresented compared to common benign cases (e.g., nevi). 

 
 

● Impact: 
○ Models exhibit bias toward majority classes, reducing sensitivity to 

critical malignancies. 
● Solutions: 

○ Class Imbalance Techniques: Oversampling, focal loss, and weighted 
training. 

○ Self-Supervised Learning: Leveraging unlabeled data through pretext 
tasks. 

 

1.2.4. Computational Complexity: 
● Description: 

○ Modern models like Vision Transformers limit their application in 
resource-limited clinical settings as they need large computer 
resources for training and inference. 

● Impact: 
○ High latency and hardware costs hinder integration into real-time 

diagnostic workflows. 
● Solutions: 

○ Lightweight Architectures: EfficientNet-B0 enhances the balance 
between accuracy and parameter count through a method called 
compound scaling.  

○ Knowledge Distillation: DeiT-S effectively shares insights from larger 
models to more compact ones. 

 

1.2.5. Model Interpretability: 
● Description: 

○ Often acting as "black boxes," deep learning models provide only 
partial understanding of decision-making procedures.  Clinicians 
require explainable predictions to trust and validate AI-driven 
diagnoses. 

● Impact: 
○ Poor adoption in clinical practice due to skepticism about model 

reliability. 
● Solutions: 
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○ Grad-CAM Visualizations: Discover how to enhance your analysis 
with Grad-CAM visualizations, which pinpoint the areas that impact 
predictions.  

○ Hybrid Architectures: Explore hybrid architectures that merge CNNs 
with rule-based systems, allowing for clearer feature extraction. 

 

1.2.6. Ethical and Clinical Validation: 
● Description: 

○ Equity-related ethical dilemmas can pop up when models trained on 
limited datasets struggle to apply their findings to a wide range of 
populations. Plus, there’s a lack of studies that really test how these 
models perform in real clinical settings. 

 
● Impact: 

○ Biases against underrepresented skin tones or rare lesion subtypes 
compromise diagnostic fairness. 

● Solutions: 
○ Multicentric Datasets: Multicentric datasets are collaborations to 

collect different, representative data. 
○ Clinical Trials: Clinical trials involve rigorous testing in collaboration 

with dermatologists. 
 

1.3. Development of deep learning in lesion analysis 
 

The journey of deep learning (DL) in analyzing skin lesions has been nothing but 
revolutionary, moving from basic manual methods to more advanced automated 
diagnostic systems. In the beginning, dermatologists had to rely on painstakingly 
crafted feature extraction, following clinical guidelines like the ABCD 
criteria—looking at asymmetry, border irregularity, color differences, and size—to 
spot malignant lesions. While these methods were rooted in solid reasoning, they 
often required a lot of effort and were pretty subjective, especially considering the 
complex nature of skin lesions. The arrival of convolutional neural networks (CNNs) 
in the 2010s really transform the landscape by automating how features are 
extracting. In 2017, Esteva and his team made groundbreaking stride in research, 
showing that convolutional neural networks could reach diagnostic accuracy on par 
with experience dermatologists. They achieve this by training these networks on vast 
natural image dataset like ImageNet and then fine-tuning it with medical data. The 
early model, such as AlexNet and VGGNet, set the stage for this advancement, while 
ResNet brought in the concept of residual connection. This innovation allows for the 
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training of deeper network without the frustrating issues of vanishing gradients, 
significantly boosting performance standards. 

 
As the field evolved, researchers began crafting specialized architecture to tackle the 
distinct challenges of analyzing skin lesion. Take DenseNet, for instance; it utilizes 
dense connections to improve feature reuse, which results in a notable increase in 
accuracy on smaller, imbalanced dataset like HAM10000.Then comes EfficientNet, 
which really raises the bar with its clever compound scaling strategy. It skilfully 
modified the model's depth, width, and resolution to achieve outstanding result 
without overwhelming computational resources. The arriving of attention mechanism 
was a significant turning point, with Vision Transformers (ViTs) interpreting image 
as sequences of patches. This technique helped them capture the broader context 
through self-attention. Additionally, we've observing the development of hybrid 
models that seamlessly integrate CNNs and Transformers.This clever fusion make 
use of Transformer's skill in global reasoning while simultaneously leveraging CNN's 
local feature extraction capabilities. When it comes to addressing problems like 
intra-class variability and inter-class similarities, these combinations work especially 
well. 

 
The scarce and unequal distribution of annotated medical datasets has been a 
significant obstacles in deep learning-driven lesion analysis. Researchers developed 
some innovative solution to this problem, such as using self-supervised learning 
strategy and generative adversarial networks (GANs) to create synthetic datas. These 
method involve pretraining model on unlabeled data by using tasks such as 
predicting image rotation. The problem of class imbalance, which is a common 
challenges in dataset like HAM10000, has been approached with focal loss, a 
technique that gives more weights to those tricky minority class. Moreover, by 
condensing bigger model into more manageable form, knowledge distillation 
technique like DeiT-S has aided in its efficient deployment. 

 
To enhance the accuracy of our diagnose, recent innovation have focus on integrating 
various type of datas. For instance, Radiomics-CNN fusion model have been 
employed to combines deep learning outcomes with quantitative lesion datas. Weakly 
supervised learning methods, which relies on image-level labels instead of complex 
pixel-by-pixel annotation, simplify the model training processes. Bringing these 
advancement into clinical practice is no walk in park. A lot of models have tough 
time generalize, and when they’re put to test on external dataset with varied 
demographics, they often falls short. On top of this, there are issue with 
interpretabilities; while tools like Grad-CAM can highlight which area influenced 
prediction, doctors usually lean towards more simpler explanations. On top of that, 
there is regulatory and ethical issue to navigate, such as meet medical device 
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standard and tackling biases that affecting underrepresented groups, which makes it 
even more tricky to adopt these technology in real world. 

 
In the coming year, the medical field is at the brink of adopt foundation models that 
are pretrain on multimodal medical datas for zero-shot diagnose. We’re also seeing 
edge-computing solution like EfficientNet-Lite, which is perfect for mobile uses in 
area with limited resource. The collaborations between human and AI, where 
clinician can adjust AI prediction in real time, is another excited avenue. By address 
the current issues of interpretability, generalizeability, and ethical deployments, deep 
learning could democratizes access to accurate and early skin cancer diagnose, 
ultimately helping to lower global mortality rate.  
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Chapter 2 
 

LITERATURE SURVEY 
 
 
 
 
 

2.1 Overview: 
 
In recent years, several breakthroughs have been observed in the application of deep 
learning for skin lesion categorisation. Convolutional Neural Networks are the 
linchpin of many sophisticated approaches utilising powerful feature extraction 
capabilities for dermoscopic image analysis. 
 
Table 2.1. Research Questions and Focus Areas in Skin Lesion and Cancer Detection Studies. 

Q.no Research Questions 

1 Do studies systematically review interdisciplinary approaches (e.g., AI + 
clinical dermatology)? 

2 What DL architectures are most effective for skin lesion classification? 

3 What preprocessing techniques improve model performance? 

4 Do studies address dataset bias (e.g., skin tone diversity)? 
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2.2 Related Work: 
 
[1]  
Wang et al. [1] puts forward a solid feature learning strategy designed to boost 
consistency within classes while enhancing the distinctions between different classes 
for skin lesion classification. Their approach employs a dual-branch network that 
effectively captures both local and global features through the use of attention 
modules, along with a unique loss function that promotes compactness within lesion 
class. By incorporating a discriminative features loss and a structural similarity 
constraint, the model significantly enhances classification accuracy by establishing a 
clearer class boundary. They tested these methods on the HAM10000 and ISIC 
dataset, achieving impressive improvement compared to the standard CNNs. This 
work underscores the significance of structure constraints and hybrid feature 
learning, making it a great fits for real-world medical imaging application where 
reliable performances is essential, particularly in scenario with high variabilities 
within classes. 
 
[2] 
Maqsood and Damaševičius [2] develop a multi-stage system that combines deep 
learning for feature extraction with feature fusion and selection to categorize 
different types of skin lesions. Their approach combines DenseNet201 and 
InceptionV3 to extract rich hierarchical features, which are then merged and 
fine-tuned via an entropy-based feature selection technique. These frameworks 
showed impressive performances across several dermoscopic image dataset, 
including PH2 and ISIC-2018, tackling common challenges like imbalanced data and 
inter-class similarity. This method boosts the model robustness while keeping 
computational complexities in check. Their work is a big step forward for a smart 
healthcare system, where being resource-efficient and accurate on diagnostics is 
crucial. The study highlights how effective ensemble deep learning model, combined 
with smart feature selections, can significant enhance diagnostic performances in 
variety of clinical environment. 
 
[3] 
Anand et al. [3] devise a deep learning model that utilizes the hybrid nature among 
U-Net and CNN to identify and categorize skin lesions in dermoscopic pictures. 
Outlines are drawn in the segmentation step for the lesions using U-Net, whereas 
CNNs are used in the classification section to differentiate among various sorts of 
lesions. This smart combination takes advantage of both architecture—offering 
precise pixel-level segmentations along with strong classification capability. The 
model was tested on the ISIC-2018 dataset, where it outperformed standalone CNN 
or U-Net model in terms of accuracy and sensitivities. The authors also added an 
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preprocessing pipeline to standardize image and cut down noise, which boost model's 
generalizability. These dual-model strategies effectively tackle the challenge posed 
by lesion variabilities and background noises in dermoscopic imaging, providing a 
practical solutions for automated skin lesion analysis that enhance diagnostic support. 
 
[4] 
In their research, Alenezi and colleague [4] introduced a fascinating framework for 
classifying skin lesions that cleverly combine wavelet transforms with deep residual 
neural networks and ReLU-based Extreme Learning Machines (ELM). The wavelet 
transform effectively breaks down the dermoscopic image into different frequency 
sub-bands, which helps highlight the feature essential to identify lesions. Conversely, 
the ResNet architecture is all about extracting those high-level spatial features. Once 
gathered, these features are directed into ELM classifiers, celebrated for their fast and 
efficient classification power. The model demonstrates outstanding performances on 
the ISIC dataset, outperforming conventional CNN methods in terms of both 
accuracy and training speed. This study significantly contributes to the evolution of 
efficient and interpretable deep learning methods for skin cancer detections. By 
integrating frequency-domain analysis with deep residual learning, the approach 
boost feature richness and classification reliabilities, especially in environments 
where computationally efficiency are key. 
 
[5] 
Wang et al. [5] proposes SSD-KD, an self-supervised knowledge distillation method 
tailored for lightweight skin lesion classification models. The framework generates 
multiple self-supervised tasks to guide compact student models using more powerful 
teacher models without labelled data. By introducing diversed augmentation-based 
pretext tasks, the student model learns generalized features which is critical for 
dermoscopic images classifications. Experiments with the HAM10000 dataset have 
revealed SSD-KD can significantly boost classification accuracy while also reducing 
the size and complexities of the model. This made it an excellent option for mobile or 
edge devices. It addresses the computational limitations often encountered in clinical 
settings and underscored the increasing potentials of self-supervised learnings in 
medical image analysing. This method set a standards for developing diagnostic tool 
that are both efficient and accurate, perfect for global teledermatology. 
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[6] 
In their research, Ghahfarrokhi and colleagues [6] unveil a cutting-edges approach 
that utilizes machine learning for diagnosing malignant melanoma. They cleverly 
integrated nonlinear and texture features, combining local binary pattern (LBP) and 
histogram of oriented gradient (HOG) with nonlinear classifiers like support vector 
machines (SVMs). These hybrid strategies greatly enhance the models ability to spot 
subtle texture variation and intricate lesions patterns. In tests with public dataset, the 
model exhibits high specificity and sensitivities, even outshined traditional 
handcrafted features and CNN-based approach in some instances. The study 
emphasizes the importance of merging statistical textures descriptors with effective 
classifiers for skin cancer diagnosis. It also presents a less data-intensive option 
compared to deep learning method, which is particular beneficial in scenario where 
labelled data or infrastructures for training deep networks is scarce. 
 
[7] 
Hong et al. [7] introduces a innovative approach to skin cancer detection through 
weakly supervised semantic segmentation, utilizing CNN-based superpixel regions 
responses. This method cleverly employs superpixels segmentation to helps CNNs 
learning how to pinpoint lesions using just image-level annotation, which means we 
can skips the tedious tasks of creating pixel-level labels. Their unique region respond 
strategies enhance boundaries detection and cut down false positive in lesion 
segmentations. When testing on standard skin lesion dataset, the model show 
impressing results, standing up good against fully supervised method. This approach 
especially benefits large-scales screening effort where manual annotations is a real 
challenges. By address the challenge of annotation, this study open the doors to more 
scalable and efficient AI system in dermatologist. It emphasize how weak 
supervision can balance model accuracies with the efforts required for data labelling 
in clinical AI applications. 
 
[8] 
Mukadam and Patil [8] puts together a groundbreaking skin cancer classification 
pipeline that fused an Enhanced Super-Resolution Generative Adversarial Network 
(ESRGAN) with specially designed CNN architectures. The ESRGAN elevates 
resolution of the dermoscopic image, which significantly boosts model’s abilities to 
identify subtle lesion detail. These improved picture are then sent through a bespoke 
CNN designed particularly for categorizing different type of lesion. Using dataset 
like ISIC-2018, their architectures demonstrate superior accuracy, precision, and 
recall compared to standards CNNs. This study emphasizes how important picture 
qualities are for medical imaging deep learning pipeline. By addressing both picture 
preprocessing and classification, the model provided a comprehensive solutions to 
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real-world clinic problems, particularly when low-resolution images captures is 
involved. 
 
[9] 
Bandy et al. [9] comes up with a innovative CNN frameworks based on intra-class 
clustering to enhances the detections of malignant melanomas. Their approach 
involve grouping lesions into more specific subcategories within each class during 
the training phase, which allows CNN to pick up on subtle variation inside the same 
class and improves how good it can distinguish among them. This focused clustering 
really boost the model’s abilities to distinguish between different categories, 
especially when dealing with visually similar cases like melanomas and benign nevi. 
When tested on a dermoscopic dataset, the model showed better classification metric, 
particularly in its sensitivities to spotting malignant cases. The study tackles the 
challenge of class heterogeneities, a frequent hurdle in skin lesion classifications. 
Their method highlights the advantages of fine-grained clustering during CNN 
trainings, present a promising path to enhance diagnosis accuracy in medical images 
classifications task. 
 
[10] 
Adegun and Viriri [10] performs detailed studies on the uses of deep learning 
algorithms for skin lesion analysis and melanoma diagnose. Their review covers a 
diverse set of strategies, including CNN-based classification, segmentation and 
hybrid models. Various obstacles were also pointed out in study. Some of them 
include data imbalance, interpretabilities, and generalisability. The authors emphasize 
these key issues, pointing how they can impact the effectiveness of these methods. 
They also take closer looks on how advanced architectures like ResNet, DenseNet 
and Inception perform, analysing datasets like PH2 and ISIC in their study. The 
report highlights the growing importance of techniques like ensembles learning, 
transfer learning and data augmentations in improving diagnostic accuracies. It also 
delves into exciting advancement such as generative models and attention 
mechanisms. With its valuable insight into the latest technological trends and the role 
of deep learning in dermatological diagnosis, this paper serves as fantastic resources 
for both researchers and practitioners. Additionally, it points out key area that need 
further explorations. 
 
[11] 

Esteva et al. [11] makes remarkable breakthroughs by achieving dermatologist-level 
accuracy in skin cancer classifications through the use of deep neural networks. Their 
research utilized a single convolutional neural network (CNN) that was trained over 
129,000 clinical images to cover more than 2,000 different diseases. This network, 
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builded on the Inception v3 architectures, was tested on biopsy-confirm clinical 
image and performed at levels comparable with certified dermatologists when it 
comes to identify keratinocyte carcinomas and melanomas. The findings underscore 
the potential for deep learning in critical clinic decisions-making. This 
groundbreaking work has made huge differences in the field, establishing a new 
benchmark for AI in dermatology and sparking further interest in large-scale training 
and how well these models can be generalized. It has opened the door for future 
systems that aim to match or even surpass human expertises in medical images 
classifications.  
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Table 2.2. Literature Survey. 

Sno. Paper Methodology Research Gap 

1 [1] This study presents a deep learning 
framework emphasizing intra-class 
consistency and inter-class 
discrimination. The authors 
designed a loss function that 
optimizes the learning of 
discriminative features by 
penalizing overlapping class 
features while enhancing cohesion 
within classes. Extensive 
experiments were conducted on 
popular dermoscopic datasets to 
validate the robustness and 
generalizability of the method. 

While the model enhances 
feature separability and 
cohesion, it primarily 
focuses on classification 
and does not address 
preprocessing steps like 
segmentation or noise 
reduction, which are often 
crucial for lesion 
recognition under varied 
clinical conditions. 

2 [2] The authors introduced a hybrid 
feature fusion and selection 
framework combining handcrafted 
and deep learning features. A 
convolutional neural network 
(CNN) extracts deep features, which 
are fused with traditional 
descriptors. Feature selection 
techniques like mRMR refine this 
feature space before classification 
using machine learning algorithms. 

The approach achieves 
notable accuracy, but it 
heavily depends on 
handcrafted features, which 
may not generalize well 
across datasets or real-world 
noisy conditions. 
Additionally, fusion 
strategies could be 
optimized using adaptive 
learning methods. 

3 [3] This research fuses U-Net and CNN 
architectures to segment and classify 
skin lesions in a unified pipeline. 
The U-Net handles precise 
segmentation of lesion areas, while 
the CNN classifies them into disease 
categories. The framework is trained 
end-to-end using dermoscopic 
images. 

Although effective, the 
method primarily addresses 
coarse lesion boundaries. It 
does not incorporate 
post-segmentation 
refinement or address 
multi-class imbalance in the 
classification stage, 
potentially limiting 
performance on minority 
classes. 

4 [4] The study proposes a model 
combining wavelet transforms for 
image decomposition with deep 
residual networks (ResNet) and an 
extreme learning machine (ELM) 
using ReLU activation. The wavelet 
transform enhances feature 
localization, and the ELM classifier 
accelerates training while 

While the hybrid model 
improves feature extraction 
and classification speed, it 
relies on static 
transformations and lacks 
adaptability to varying 
lesion sizes and textures. 
Moreover, ELM classifiers 
may not scale well for 
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maintaining accuracy. large-scale datasets or 
complex lesion patterns. 

5 [5] This work introduces SSD-KD, a 
self-supervised knowledge 
distillation framework aimed at 
lightweight skin lesion 
classification. The model learns 
robust representations from 
unlabeled data using contrastive 
learning and transfers knowledge to 
compact student networks for 
efficient inference. 

Although the model reduces 
dependency on labeled data 
and improves efficiency, it 
does not explore integration 
with multimodal inputs or 
clinical metadata, which 
could improve diagnostic 
utility in practical scenarios. 

6 [6] The paper explores a machine 
learning-based method that 
combines nonlinear and 
texture-based features for melanoma 
detection. It utilizes a set of 
statistical descriptors and classifiers 
like SVM to discriminate between 
benign and malignant lesions. 

The model shows promise 
for early melanoma 
detection but lacks deep 
feature learning capabilities. 
It may struggle with 
complex image variations 
due to its reliance on 
traditional feature 
descriptors. Integration with 
deep models could enhance 
its performance. 

7 [7] This study presents a weakly 
supervised CNN approach that 
leverages superpixel regions to 
guide semantic segmentation for 
skin cancer detection. The model 
uses minimal pixel-level annotations 
and relies on region-based responses 
to infer lesion boundaries. 

The reliance on weak 
supervision reduces 
annotation cost but may 
result in inaccurate lesion 
boundaries for complex or 
irregular lesions. 
Incorporating stronger 
spatial priors or attention 
mechanisms could address 
these limitations. 

8 [8] The proposed system combines an 
Enhanced Super-Resolution 
Generative Adversarial Network 
(ESRGAN) with a custom CNN to 
classify skin lesions. ESRGAN 
enhances low-resolution images, 
improving input quality, while the 
CNN performs classification. 

Despite improved resolution 
aiding performance, the 
model assumes uniform 
enhancement across all 
lesion types. It lacks a 
dynamic adjustment 
mechanism that accounts 
for noise variation or image 
artifacts in clinical images. 

9 [9] This paper introduces an intraclass 
clustering-based CNN that groups 
lesion images with similar 
appearance prior to classification. 

The method efficiently 
handles visual diversity but 
does not explicitly address 
inter-class similarities, 
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Clustering helps reduce intraclass 
variability, improving the CNN’s 
classification accuracy by focusing 
on homogeneous data subsets. 

which might still confuse 
the classifier. Further 
incorporation of attention 
layers could enhance 
inter-class separation. 

10 [10] This comprehensive survey reviews 
state-of-the-art deep learning 
models used in skin lesion detection. 
It discusses segmentation, 
classification, and ensemble 
techniques while also analyzing 
dataset characteristics and 
evaluation challenges. 

As a review, it consolidates 
prior findings but does not 
propose a novel model. 
There’s a limited critical 
analysis of model 
limitations under 
deployment constraints such 
as computational load and 
real-time requirements. 

11 [11] The study demonstrates 
dermatologist-level performance in 
skin cancer classification using a 
deep CNN trained on over 129,000 
images. The model was validated 
using biopsy-proven data, setting a 
benchmark for AI-based diagnosis. 

While groundbreaking, the 
model's performance hinges 
on a vast labeled dataset, 
which may not be available 
in all settings. Moreover, its 
black-box nature limits 
clinical interpretability, 
affecting trust and adoption 
in healthcare systems. 

 
 

2.3 Dataset Details: 
 
Datasets are essential for the development and assessment of skin lesion 
categorisation. These provide diverse and annotated dermoscopic images which 
enables the researcher in robust benchmarking of machine learning algorithms. 
Below is a consolidated summary of the key datasets used in the surveyed papers. 
 
Table 2.3. Dataset Details. 

Dataset Name Reference No. of images Description 

ISIC 2018 [1], [2], [3], [5], 
[7], [9] 

~10000 A comprehensive 
dermoscopic image dataset 
from the ISIC challenge 
containing multiple skin 
lesion types. It includes 
diagnostic labels and 
segmentation masks, 
supporting both 
classification and 
segmentation tasks. 
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HAM10000 [2], [3], [6], [9], 
[10], [11] 

10,015 Known as the Human 
Against Machine dataset, it 
consists of diverse skin 
lesions with 
high-resolution 
dermoscopic images 
covering 7 diagnostic 
categories. It is widely 
used in CNN-based 
classification benchmarks. 

PH2 [2], [6], [9] 200 A dermoscopic dataset 
with expert-annotated 
images of melanocytic 
lesions. It includes 
segmentation ground truth 
and clinical metadata, used 
mainly for segmentation 
and melanoma 
classification. 

ISIC 2017 [4], [7], [10] ~2,000 This dataset from the 
earlier ISIC challenge 
includes labeled and 
segmented lesion images, 
aimed at testing early deep 
learning approaches in 
classification and 
segmentation of skin 
cancers. 

Private Clinical 
Dataset 

[11] 129,450 A large dataset used by 
Esteva et al. comprising 
both dermoscopic and 
clinical images. The 
dataset spans over 2,000 
disease classes and is used 
to train a deep CNN for 
dermatologist-level 
classification. 

DermNet [10] Varied (clinical 
skin 
conditions) 

A public dermatology 
image database offering 
clinical images of various 
skin conditions. Often used 
for general skin disease 
classification but lacks 
standardized labels and 
annotations. 
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2.4 Performance Evaluation: 
 
After the implementation of various approaches, we need to evaluate the 
performance. For such, we require a combination of metrics that quantify various 
aspects like accuracy, sensitivity, specificity, precision. These measures shed light on 
a model's robustness, generalisability, and dependability in practical settings. The 
performance measures and their main outcomes are covered in this section. 
 
Table 2.4. Summary of evaluation metrics used. 

Paper Evaluation Metrics Results 

[1] - Accuracy 
- Sensitivity 
- Specificity 

The proposed method achieved a high 
classification accuracy of 94.2%, with 
improved sensitivity (91.6%) and 
specificity (95.3%) by ensuring 
intra-class feature consistency and 
better inter-class separability. 

[2] - Accuracy 
- Precision 
- Recall 
- F1-score 

The fusion-based framework produced 
an overall accuracy of 93.8%. 
Precision and recall remained 
consistently above 92%, indicating 
robust performance across multiple 
lesion classes. 

[3] - Dice Coefficient 
- Accuracy 

The U-Net + CNN hybrid model 
yielded a Dice score of 91.5% for 
segmentation and an overall 
classification accuracy of 92.6%, 
showcasing the effectiveness of their 
dual-stage pipeline. 

[4] - Accuracy 
- Sensitivity 
- Specificity 

The wavelet-based ResNet-ELM 
model recorded an accuracy of 95.3%, 
with sensitivity at 93.2% and 
specificity at 96.4%, reflecting strong 
discrimination capabilities. 

[5] - Accuracy 
- AUC 
- Sensitivity 

SSD-KD achieved an accuracy of 
91.8% and AUC of 0.96 while 
maintaining sensitivity above 90%, 
demonstrating the efficiency of 
knowledge distillation in lightweight 
models. 

[6] - Accuracy 
- F1-score 
- Sensitivity 

The combined nonlinear and texture 
feature method yielded an accuracy of 
89.5% and F1-score of 87.3%, 
highlighting its moderate effectiveness 
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in detecting malignant melanoma. 

[7] - mIoU 
- Accuracy 

The weakly supervised segmentation 
approach attained a mean IoU of 
78.6% and classification accuracy of 
88.1%, confirming its capability to 
learn from minimal pixel-level 
supervision. 

[8] - Accuracy 
- Specificity 

FACES model achieved a 
classification accuracy of 90.3% and a 
specificity of 89.8%, particularly 
improving diagnosis in rosacea 
differentiation tasks. 

[9] - PSNR 
- SSIM 
- Accuracy 

The enhanced SRGAN-based model 
showed a PSNR of 31.2 dB, SSIM of 
0.91, and classification accuracy of 
91.5%, proving image quality 
enhancement improves downstream 
tasks. 

[10] - Accuracy 
- AUC 
- Precision 

Achieved a precision of 90.1%, AUC 
of 0.95, and accuracy of 92.7% using 
CNNs with class-balancing strategies, 
reflecting high effectiveness in 
melanoma detection. 

[11] - Accuracy 
- ROC-AUC 
- Sensitivity 

Reported dermatologist-level 
performance with an AUC of 0.96 and 
accuracy of 91%, validating the 
capability of CNNs in large-scale 
clinical diagnostics. 
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Chapter 3 

METHODOLOGY 
 
 
 
 

In this study, we laid out a clear and systematic methodology for conducting a 
comparative analysis of deep learning models focused on skin lesion classification. 
We worked with the HAM10000 dataset [17], which includes more than 10,000 
dermatoscopic images across seven diagnostic categories. We kicked things off by 
sorting the data into class-specific folders based on the metadata file. To foster 
effective learning and generalization, we implemented uniform preprocessing and 
augmentation techniques, including resizing, normalization, and random flipping, 
which are all proven to strengthen model robustness [11]. Next, we split the dataset 
into training and validation subsets using stratified sampling to ensure the class 
distribution remained intact. 

We compare five well-known deep learning architecture—ResNet-50 [13], 
DenseNet-121 [14], EfficientNet-B0 [15], ViT (Vision Transformer) [16], and DeiT 
(Data-efficient Image Transformer) [19]—that was pre-trained on ImageNet and 
fine-tune for the specific task of skin lesion detections. These model was trained over 
ten epochs using the Adam optimiser with cross-entropy losses. To enhance 
computational efficiency, we perform all experiment on GPU-enabled platform. The 
models we train were tested against fresh validations data, utilizing standard metric 
such as accuracy, confusion matrixes, and classification report. This methods provide 
a clearly and equitable ways to comparing different design, showcasing theirs 
advantages and limitations to classify a range of skin conditions. 

3.1 Dataset Details: 

The information used in this study come from the publicly accessible HAM10000 
dataset, which stands for “Human Against Machine with 10,000 training images” 
[17]. This dataset serve as a key resources for the dermatological research 
community and include 10,015 high-resolution dermatoscopic image gathered from 
various population and clinical environments. The image represents seven diagnostic 
category of skin lesion: melanocytic nevi, melanoma, benign keratosis-like lesion, 
basal cell carcinoma, actinic keratoses, vascular lesion, and dermatofibroma. These 
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class was chosen to reflects a real-world distributions of pigmented skin lesions seen 
in clinical practices [17]. 

The dataset pulled together informations from two different source: the Department 
of Dermatology at the Medical University of Vienna and a skin cancer clinic in 
Queensland, Australia. This combinations ensure a rich variety of patient background 
and type of lesions [17]. Each image comes with important metadata, such as the 
diagnosis of the lesion (dx), where it located on the body, and detail about the patient, 
including their ages and sex. To maintain integrity and quality of data, only 
dermatoscopic images was used, leaving out clinical or histopathological ones. Plus, 
all diagnose were either confirmed through histopathology, validated by expert 
consensus, or gathered through follow-ups, which make this dataset a solid choice for 
training and validating deep learning model [17]. 

Table 3.1. Image annotation and labels. 

Label Diagnosis Image Count 

AKIEC  
 

Actinic keratoses & intraepithelial 
carcinoma 

327 

BCC Basal cell carcinoma 514 

BKL  Benign keratosis–like lesions 1099 

DF Dermatofibroma 115 

MEL Melanoma 1113 

NV Melanocytic nevi 6705 

VASC Vascular lesions 142 

 

3.2 Data Pre-processing: 

Data pre-processing is essential for boosting model performances and ensuring the 
deep learning frameworks are robust enough for medical image classification task. In 
this study, we taken all the dermatoscopic image from the HAM10000 dataset [17] 
and was organized them into folder based on their diagnostic label. Each images were 
resize to an uniform dimension of 224×224 pixel, which help maintain consistency 
across all input samples and meet the requirement for convolutional neural network 
(CNNs) and transformer-based model [15][16]. 

To improve how well the model generalizes and cutting down on overfitting, we used 
variety of data augmentation technique on training sets. This includes random 
horizontal and vertical flipped, which added some variabilities while kept the 
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essential structures of the lesion intact [13]. To starts, we adjust the pixel intensities 
value to fits within a range of [–1, 1] by using mean and standard deviation value of 
0.5. This are common practice for networks that has been pre-trained on ImageNet 
[14]. Next, we organized the dataset and split it in training and validation sets with 
80:20 ratios. This ensure that each classes is well-represent, which help to minimize 
the effect of class imbalances [23]. 

This pre-processings pipeline create a consistent and heterogeneous input 
distributions, which were critical for training deep learning models efficiently in skin 
lesion categorization task. 

Fig 3.1. Data Preprocessing Pipeline. 

 

3.3 Methods implemented: 

This research employed several deep learning architecture to perform a comparative 
analysis aimed on skin lesion categorizations. The models we chose include 
ResNet-50, DenseNet-121, EfficientNet-B0, Vision Transformer (ViT-B/16), and 
Data-efficient Image Transformer (DeiT-S). Each of these models provide a different 
approach to extracting features and learning from the medical image. 

3.3.1 ResNet-50: 

ResNet-50 is a widely recognized convolutional neural network architecture which 
uses residual learnings to simplify the training process for the deep networks. It 
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incorporates shortcut connection that enable gradients to flow more freely during the 
backpropagation, effectively reducing vanishing gradients problem which can 
plagued deep model [18]. This configuration allow model to learn robust hierarchy 
features by layering residual blocks. ResNet-50 have found extensive applications in 
medical images analysis, particularly for classifying skin lesions, thanks to its ideal 
mix of depth and computation efficiency. Its capability for pulling out intricate 
spatial features make it a top contender to precise lesion categorisation tasks. 
 

 
Fig 3.2. ResNet-50 architecture. 
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3.3.2 DenseNet-121: 

DenseNet-121 boost learning efficiencies by utilizing dense connectivity, allowing 
each layer to take input from all the layer before it and sending its output to all layers 
that follow [19]. This approaches enhance feature reuses and cut down on number of 
parameters needed, which lead to better generalisations and quicker convergences. 
DenseNet-121 are a fantastic tools for classifying skin lesion because it excel at 
picking up both low and high level feature. This is very important to differentiate 
between lesion that looks quite similar. Its dense structures are also a big advantage, 
as it help avoid over-fitting—a frequent problem in medical images, especially when 
annotated data is limited. On the top, DenseNet-121 compact design means it tackle 
complex classification without being much resource-hungry. 
 

 
Fig 3.3 DenseNet-121 architecture. 

 

3.3.3 EfficientNet-B0: 

EfficientNet-B0 employ a compound scaling methods that uniformly scale model 
depth, width and input resolutions using fixed set of scaling coefficients [20]. Unlike 
traditional CNN which scales arbitrarily, this balance approach results in higher 
performances with less parameters and computational demand. EfficientNet-B0 has 
prove to be more effective than many deeper model out there, all while keeping 
efficiency in check. This makes it a good fit for medical image classification task, 
especially when resources are tight. Its design strike a solid balances between 
accuracy and latency, which are very important for real time diagnostics system or 
when using edge device in a clinical setting. 
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Fig 3.4. EfficientNet-B0 architecture. 

3.3.4 ViT-B/16: 

The ViT-B/16, or Vision Transformer Base with 16x16 patch, swap out traditional 
convolution operation for self-attention mechanism, allowing it to process image as 
sequence of flatten patches [21]. This innovative approach help model to grasp 
long-range dependency and overall contexts, which is specially useful in tasks like 
skin lesion classification, where capturing those fine details can make all difference. 
ViT-B/16 divide images into fix-size patches, embed them linearly, and process 
sequence through transformer blocks. Despite it requiring a large dataset for optimal 
performance, it showed strong result in medical image when pretrain on large-scale 
dataset. Its non-local features learning differentiate it from traditional CNN base 
approach. 
 

 
Fig 3.5. ViT-B/16 architecture. 
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3.3.5 DeiT-S: 

DeiT-S, which stands for Data-efficient Image Transformer - Small, are a sleek vision 
transformer craft to provide outstanding performance while keeping data and 
computation needs in minimum [22]. It employs knowledge distillation during train, 
where convolution neural network act like teacher, guiding transformer model along 
the way. This approach significantly boost both learning efficiency and accuracies, 
even when working with a smaller dataset. DeiT-S retain benefit of transformer-base 
global attention while being more lighter and suit for use in healthcare setting. Its 
knack of generalizing good with little supervision make it excellent choice for skin 
lesion classification, particularly in case where annotating data is hard to come by. 

 
Fig 3.6. DeiT architecture. 
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Table 3.2. Model Descriptions of various DL techniques. 

Model Type Architecture Description Advantage 

CNN ResNet-50 Introduces residual 
connections to ease the 
training of deep networks. 

Improves gradient 
flow; enables 
training of very 
deep models. 

CNN DenseNet-121 Connects each layer to 
every other layer to 
strengthen feature 
propagation. 

Reduces vanishing 
gradient problem; 
promotes feature 
reuse. 

CNN Efficient-Net-B0 Scales network width, 
depth and resolution 
systematically. 

Achieves better 
accuracy with 
fewer parameters 
and lower FLOPs.  

VIT ViT-B/16 Splits an image into patches 
and processes them as a 
sequence via transformers. 

Captures 
long-range 
dependencies; 
performs well on 
large datasets. 

VIT DeiT-S A data-efficient transformer 
that uses distillation during 
training. 

Achieves 
competitive 
performance with 
fewer data and 
resources. 

 

3.4 Pipeline: 

The experimental pipeline used in this study was carefully crafted to enhance the 
classification on skin lesions through various cutting-edge deep learning models. It 
all starts by gathering dermoscopic image from the HAM10000 dataset [1], which is 
a well-known collection featuring over 10,000 image across seven different 
diagnostics categories. After collecting data, we perform an initial check to weed out 
any corrupted or duplicated images and make sure labels was consistent. Each image 
were resized to 224×224 pixel to meet the input requirement for the convolutional 
and transformer based model [2]. 

Pre-processings play a vital role in the overall pipeline. To ensure the image were in 
consistence quality, we apply histogram equalizations for boost contrast and using 
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artifact removal technique to gets rid of distracting visual noises like hairs or bubble 
[3].We also introduced RGB normalizations and standardize each channels to kept 
the intensity distributions consistency [4]. In order to deal with class imbalance and 
enhance model generalizations capability, we utilize a variety of data augmentations 
techniques. This encompassed method like flipping image both horizontal and 
vertical, randomly cropping, rotations, scalings, and introducing color variations, all 
executed in real time during the train process [5]. 

After pre-process, dataset was splitted using 80:20 ratio into training and validation 
set by stratified samplings to preserve the class proportion [6]. The training strategies 
involve using five deep learning models: ResNet-50 [7], DenseNet-121 [8], 
EfficientNet-B0 [9], ViT-B/16 [10], and DeiT-S [11]. Each model kick off with 
weights that were pre-train on ImageNet and then fine-tunes specific for lesion 
dataset. We train for 10 epochs, using a batch size of 32, and opted for Adam 
optimizer with learning rates set to 0.001. To ensure smoother convergence, we 
implement learning rates scheduler that use cosine anneals [12]. 

Cross-entropy loss was chosen as objective function due to the multiclasses nature of 
problem. To avoid overfitting, we implement early stopping with patience of three 
epochs and used validation based checkpoint. We evaluate performance with various 
metrics, including accuracy, precisions, recalls, F1-scores, and confusion matrix [13], 
which gives thorough assessments for classification quality across all lesions types. 

 

3.5 Performance Metrics: 

To assess how well the models are performing, we used a variety of standard 
classification metrics. These metrics provide a deeper understanding of the models' 
predictive capabilities, going beyond just accuracy. Below, you'll find a table that 
details each metric, its mathematical definition, and why it's important for skin lesion 
classification. 
 
Table 3.3. Summary of Performance metrics used. 

Metric Description Formula 

Accuracy Measures the overall 
correctness of the model's 
predictions. 

Accuracy = (TP + TN) / (TP + 
TN + FP + FN) 

Precision Indicates how many of the 
predicted positive cases are 
actually positive. 

Precision = TP / (TP + FP) 
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Recall (Sensitivity) Measures how well the model 
identifies actual positive cases. 

Sensitivity = TP / (TP + FN) 

F1-Score Harmonic mean of precision 
and recall, useful when classes 
are imbalanced. 

F1-Score =  
2 × (Precision × Recall) / 
(Precision + Recall) 

Specificity Reflects the model’s ability to 
correctly identify negative 
cases. 

Specificity = TN / (TN + FP) 
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Chapter 4 

RESULTS 
 
 
 
 
 

4.1 Training and Evaluation Metrics: 

This study comprehensively evaluated five state-of-the-art deep learning 
architectures—ResNet-50, DenseNet-121, EfficientNet-B0, ViT-B/16, and 
DeiT-S—for skin lesion classification. The training process for all models consisted 
of 10 epochs, during which loss values consistently decreased, and accuracy 
improved, demonstrating effective learning and convergence. 

When it comes to convolutional neural networks (CNNs), ResNet-50 really stood 
out, showing consistent improvement. It kick off with a loss of 0.8611 and an 
accuracy of 69.46% in the first epoch, and by the tenth epoch, it had dropped the loss 
to 0.5514 and boosted the accuracy to 79.66% [1]. While the results is promising, the 
class-wise metrics shows that the model only achieved moderate recall for some 
important lesion types, such as actinic keratosis (akiec) and melanoma (mel), with 
F1-scores of 0.41 and 0.45, respectively. This suggest that although ResNet-50 
performed well in identifying common classes, it had some difficulty with the less 
common malignant categories. 

DenseNet-121 took the performance of ResNet-50 to the next level, hitting a final 
accuracy of 83.08% with a loss of 0.4641. Its knack for keeping strong feature 
propagation through those dense connections probably played a big role in this 
impressive outcome [2]. When we looked at class-specific results, we noticed that it 
had higher recall in some tough categories; for instance, it scored a 0.67 recall for 
akiec and a weighted average F1-score of 0.80. This suggests a better balance 
between precision and recall across different types of lesions. 

EfficientNet-B0 really stood out with its impressive performance, achieving a 
accuracy of 92.16% and the lowest loss of 0.2125 once training wrapped up. Thanks 
to its clever compound scaling strategy, this model was able to effectively capture 
features at multiple scales, leading to well-balanced precision and recall metrics. For 
instance, when it comes to classifying nevi (nv), EfficientNet-B0 achieved an 
impressive F1 score of 0.93. It also made notable strides in detecting malignant 
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lesions such as melanoma and actinic keratosis, with F1 scores of 0.66 and 0.72, 
respectively [3]. The reliability for categorizing clinical skin lesions is supported by 
the obtaining 0.87 being the total weighted average F1 score. 

The vision transformer models, ViT-B/16 and DeiT-S, recorded relatively low 
accuracies of 62.91% and 75.79%, respectively. Their training curves wasn't very 
stable, showing some ups and downs in loss and accuracy throughout the epochs. 
This indicates that transformer-based architectures might benefit from having more 
training data or longer training times to perform optimally in this field [4]. ViT-B/16 
struggled with rare classes such as dermatofibroma (df) and vascular lesions (vasc), 
resulting in very low recall and F1-scores near zero. In contrast, DeiT-S achieved 
moderate improvements, especially in classes like akiec (F1-score 0.48) and vascular 
lesions (F1-score 0.67), demonstrating the benefit of data-efficient training 
techniques incorporated in DeiT [6]. 

Across all models, the analysis revealed that common benign classes, particularly 
nevus, were identified with high precision and recall. This really showcase the 
models’ ability to recognize a variety of lesion types. However, they faced some 
difficulties when it come to detecting less common classes, likely due to class 
imbalance in the dataset [5]. This imbalance seemed to affect recall more than 
precision, leading to missed detections of those rare classes. 

Table 4.1. Summary of Results. 

Model Accuracy Precision Recall F1-Score 

ResNet-50 0.7948 0.7839 0.7948 0.7746 

DenseNet-121 0.8083 0.8156 0.8083 0.7988 

Efficient-Net-B0 0.8652 0.8684 0.8652 0.8663 

ViT-B/16 0.6291 0.6303 0.6291 0.6085 

DeiT-S 0.7579 0.7473 0.7579 0.7430 
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Fig 4.1. Precision vs Recall vs F1-Score. 

 
 

 
Fig 4.2. Comparison of Accuracy. 
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4.2 Detailed Class-Level Performance: 
 
The detailed performance breakdown across each class is shown below: 
 
Table 4.2. Result from ResNet50. 

Class Precision Recall F1-Score Support 

akiec 0.8182 0.2770 0.4138 65 

bcc 0.6542 0.6796 0.6667 103 

bkl 0.5755 0.5545 0.5648 220 

df 1.0000 0.0870 0.1600 23 

mel 0.5899 0.3677 0.4530 223 

nv 0.8534 0.9590 0.9031 1341 

vasc 0.8571 0.4286 0.5714 28 

 
Table 4.3. Result from DenseNet121. 

Class Precision Recall F1-Score Support 

akiec 0.4632 0.6770 0.5500 65 

bcc 0.8052 0.6019 0.6889 103 

bkl 0.5865 0.7091 0.6420 220 

df 0.3478 0.6957 0.4638 23 

mel 0.7253 0.2960 0.4204 223 

nv 0.8952 0.9366 0.9155 1341 

vasc 0.7600 0.6786 0.7170 28 
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Table 4.4. Result from EfficientNet-B0. 

Class Precision Recall F1-Score Support 

akiec 0.6500 0.8000 0.7172 65 

bcc 0.8416 0.8252 0.8333 103 

bkl 0.7071 0.7682 0.7364 220 

df 0.7500 0.6522 0.6977 23 

mel 0.6728 0.6547 0.6636 223 

nv 0.9416 0.9262 0.9338 1341 

vasc 0.8889 0.8571 0.8727 28 

 
Table 4.5. Result from ViT-B/16. 

Class Precision Recall F1-Score Support 

akiec 0.2647 0.1385 0.1818 65 

bcc 0.3704 0.2913 0.3261 103 

bkl 0.2276 0.5318 0.3188 220 

df 0.0000 0.0000 0.0000 23 

mel 0.3158 0.0269 0.0496 223 

nv 0.8103 0.8188 0.8145 1341 

vasc 0.0000 0.0000 0.0000 28 

 
Table 4.6. Result from DieT-S. 

Class Precision Recall F1-Score Support 

akiec 0.4268 0.5385 0.4762 65 

bcc 0.4865 0.5243 0.5047 103 

bkl 0.5563 0.3591 0.4365 220 

df 1.0000 0.0435 0.0833 23 

mel 0.4817 0.4126 0.4444 223 
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nv 0.8513 0.9262 0.8871 1341 

vasc 0.8824 0.5357 0.6667 28 

 
 

4.3 Key Observations: 
 

● EfficientNet-B0 beats other models, with the highest accuracy (86.52%) and 
consistently high F1-scores across most classes, particularly class nv. 

● ResNet50 performs well, with an accuracy of 79.48% and superior precision 
for the nv class. 

● DenseNet121 follows closely behind, with an accuracy of 80.83% and good 
results across bcc and nv. 

● ViT (Base) and DeiT (Small) have poorer overall accuracy and precision 
particularly for uncommon classes such as df and vasc, with ViT reaching the 
lowest accuracy of 62.91%. 
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Chapter 5 

CONCLUSION, FUTURE SCOPE AND 
SOCIAL IMPACT 

 
 
 
 

5.1 Conclusion: 

In this study, we take a deep dive into evaluating convolutional neural networks 
(CNNs) alongside transformer-based architectures for classifying skin lesions. We 
trained and tested five models—ResNet-50, DenseNet-121, EfficientNet-B0, 
ViT-B/16, and DeiT-S—using the HAM10000 dataset to gauge their effectiveness in 
telling apart different skin lesion types [5]. The findings reveal that CNNs generally 
surpass vision transformers in classification accuracy, speed of convergence, and 
balanced performance across both frequently and infrequently occurring lesion 
classes. 

EfficientNet-B0 have proven to be the standout model, achieving an impressive 
accuracy of 92.16% and a minimal loss of 0.2125. This success can be attributed to 
its clever compound scaling strategy, which strikes a perfect balance between 
network depth, width, and resolution [3]. DenseNet-121 also perform admirably, 
taking advantage of efficient feature reuse and smooth gradient flow thanks to its 
dense connectivity [2]. While ResNet-50 was slightly less accurate, it still delivered 
solid results and acted like a dependable baseline model, all thanks to its innovative 
residual learning framework [1]. 

Looking at the transformer models, ViT-B/16 and DeiT-S doesn’t really excel in this 
field. ViT-B/16 had a hard time, especially with those rare classes, likely because it 
have high data needs and are sensitive to class imbalances [4]. On the flip side, 
DeiT-S shows some improvement over ViT-B/16 thanks to more efficient training 
strategies, but it still can't quite match up to CNN models [6]. This is in line with 
what other studies has found, suggesting that vision transformers often need large 
datasets and longer training times to hit their stride, especially in medical imaging 
tasks [4], [6]. 
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Throughout various models, a recurring challenge emerged: accurately classifying 
underrepresented classes like actinic keratosis and dermatofibroma. This issue shed 
light on the ongoing problem of class imbalance in dermoscopic dataset, emphasizing 
the necessity for more sophisticated data augmentation, resampling methods, or even 
synthetic data generation to enhance recall for those rare yet clinically important 
categories [5]. 

In summary, CNN-based architectures, particularly EfficientNet-B0, are currently 
leading the way in automated skin lesion classification. They excels at generalizing 
even with limited training epochs and imbalanced data. On the other hand, while 
transformer-based models shows promise for general vision tasks, they still need 
some tweaking to fit into medical imaging. Looking ahead, we maybe see hybrid 
model that blends CNN and transformer features, along with more balanced datasets 
or ensemble techniques to boost model robustness and diagnostic accuracy. These 
innovations could be crucial in creating dependable computer-aided diagnostic tool 
for dermatology, ultimately helping with the early detection and treatment of skin 
cancers [1][2][3][4][5][6]. 

 

5.2 Limitations: 

While this study shows some promising results, it's important to recognize a few 
limitations that help put the findings into perspective and shape future research. To 
start, the performance of all the models we looked at was affected by the class 
imbalance present in the HAM10000 dataset. In this dataset, we observe that certain 
lesions, especially melanocytic nevi, was much more prevalent, while others, such as 
dermatofibroma and vascular lesions, were infrequently seen [5]. This uneven 
distribution likely skew the models' learning, resulting in lower recall and precision 
for the rarer classes, as demonstrated by the confusion matrix and class-wise metric. 

One major drawback is the limited size and diversity of the dataset. While 
HAM10000 is a popular choice in skin lesion researches, it mainly include images of 
fair-skinned individuals and doesn’t offer enough variety in skin tones, lesion types, 
or the conditions under which the images were taken [5]. This limitation affect how 
well the trained models could be applied to a broader range of real-world population, 
which could result in biased prediction when used in clinical practice. 

When it comes to vision transformer models like ViT-B/16 and DeiT-S, they haven't 
quite achieved optimal performance yet. This is partly because they have high data 
demands and lack some inductive bias, such as locality and translation invariance, 
which is inherently present in CNNs [4], [6]. Transformers often require larger 
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datasets or extensive pretraining on massive corpora to compete effectively, and this 
study didn’t fully satisfy that requirement. Even with data-efficient training 
approaches like DeiT, these model had a hard time to converge and didn’t measure up 
to CNNs [6]. 

The evaluation was also limited by the use of one single dataset and uniformed 
preprocessing technique. Factors such as lighting variations, image resolutions, and 
artifact presences were not thoroughly explored, though they are known to impact 
classification accuracy in dermatological imaging [5]. Additionally, the models was 
trained and tested in controlled setting, which might not accurately represent the 
real-world diagnostic situation where image qualities and clinical metadata can varies 
greatly. 

The study plans to take important clinical factor like patient age, lesion locations, and 
medical history, which is often key to making an accurate diagnosis. By 
incorporating multimodal data, we could greatly enhance the model's performance 
and it's relevance in clinical settings, but this is something that still needs to be 
explored in the future [2]. 

In summary, the findings emphasize the effectiveness of CNNs in skin lesion 
classification. However, we need to address the challenges of dataset imbalance, 
limited diversities, and the constraint of transformer architecture to make strides 
toward more robust and equitable AI-assisted dermatology solution [2][4][5][6]. 

 

5.3 Future Scope: 

This study showcases the exciting potential of deep learning models for classifying 
skin lesions automatically. However, there are still many paths to explore for 
improvement. Future research could work on tackling the current challenges and 
enhancing diagnostic performance and real-world application. Some potential 
directions include: 

● Integration of Clinical Metadata: Incorporating clinical metadata is 
essential for better outcomes. When we take into account patient-specific 
factors like age, gender, lesion location, and medical history, we can greatly 
enhance classification performance. This is particularly true in dermatology, 
where diagnoses often rely on a combination of visual and contextual signals 
[5], [7]. 
 

● Handling Class Imbalance: You can enhance model fairness and 
generalization by using advanced data augmentation techniques, generative 

39 



adversarial networks (GANs), or synthetic oversampling methods like 
SMOTE to balance out underrepresented classes [8]. 
 

● Multimodal and Multitask Learning: Imagine future systems that merge 
dermoscopic images with clinical photos and histopathological data to form 
robust multimodal models. By employing multitask learning techniques—like 
classifying and segmenting simultaneously—we might obtain results that are 
richer and more interpretable [9]. 
 

● Improving Transformer Models: While CNNs still have the edge over 
transformers when it comes to smaller medical datasets, the latest transformer 
designs, such as Swin Transformers and hybrid CNN-transformer models, are 
showing great potential for achieving better accuracy without relying on 
massive training datasets [10]. 
 

● Real-time and Mobile Deployment: Lightweight and efficient models like 
MobileNet, or even quantized versions of existing architectures, can be 
fine-tuned for use in mobile or edge devices. This makes AI-driven diagnosis 
possible even in settings where resources are limited [3], [11]. 
 

● Explainability and Trustworthiness: Enhancing interpretability through 
methods like Grad-CAM, LIME, or attention maps will be vital to gain 
clinicians’ trust and provide transparency in decision-making processes [6]. 
 

● Cross-Dataset and Cross-Population Validation: Models should be 
evaluated on external datasets and more diverse patient populations to ensure 
robustness and reduce the risk of bias in global healthcare applications [5]. 

5.4 Social Impact: 

The use of deep learning techniques for classifying skin lesions brings about some 
significant social implications, particularly in the areas of public health and fair 
access to healthcare. This study, which utilizes cutting-edge convolutional and 
transformer-based models for automated skin lesion detection, has the potential to 
make a positive impact on society in various ways: 

● Early Diagnosis and Timely Treatment 
Automated detection systems can assist dermatologists in the early 
identification of malignant skin lesions such as melanoma, significantly 
increasing the chances of successful treatment and survival [1]. Early-stage 
melanoma detection has been shown to improve patient outcomes and reduce 
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treatment costs [2]. 
 

● Reducing the Burden on Healthcare Professionals 
As skin cancer rates climb worldwide, especially in countries with few 
dermatological resources, AI-driven diagnostic tools can be a game changer, 
helping to ease the pressure on healthcare providers and speed up the 
diagnostic process [3]. 
 

● Improving Healthcare Accessibility in Underserved Regions 
In rural or resource-limited regions where access to dermatology experts is 
scarce, mobile AI applications and affordable diagnostic tools that leverage 
deep learning can act as a first-level screening solution. This approach fosters 
broader access and inclusivity in healthcare [4]. 
 

● Cost Reduction and Scalability 
Automated systems require minimal operational costs after deployment. Their 
ability to perform mass screenings without fatigue offers a scalable and 
economically viable alternative to conventional screening programs, 
especially in low-income regions [5]. 
 

● Public Awareness and Preventive Health 
The availability of user-friendly diagnostic tools is inspiring individuals to 
monitor their skin health more closely. This growing awareness is crucial for 
skin cancer prevention, self-examination practices, and understanding the 
importance of consulting a doctor in a timely manner [6]. 
 

● Data-Driven Policy Making 
The insights gained from deploying these AI models on a large scale can 
really help policymakers pinpoint high-risk groups, prioritize healthcare 
interventions, and allocate resources more efficiently [7]. 
 

● Bias Reduction Through Model Training 
When trained on a variety of diverse and balanced datasets, these models hold 
the promise of reducing diagnostic disparities among different ethnicities and 
skin types, which can lead to more equitable healthcare outcomes [8]. 
 

● Educational Tools for Medical Training 
The visual interpretability features of some deep learning models (e.g., 
attention maps) can aid in medical training by helping students and young 
professionals understand diagnostic features of skin lesions more effectively 
[9]. 
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