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ABSTRACT 

 

Generative Adversarial Networks (GANs) have shown significant potential in 

addressing key challenges in automated skin disease detection and image synthesis, 

including data scarcity, class imbalance, and diagnostic complexity arising from high 

intra-class visual similarity and variability in imaging conditions. This study provides 

a detailed analysis of advanced GAN architectures such as WGAN-GP, 

StyleGAN2-ADA, and SPGGAN, applied to dermatological datasets like 

HAM10000 and ISIC 2019. By generating high-resolution, class-specific synthetic 

skin lesion images, these models effectively enhance the performance of 

classification algorithms—boosting diagnostic accuracy, sensitivity, and F1-scores, 

especially for underrepresented lesion categories. The integration of attention 

mechanisms, conditional generation, and novel applications such as 3D skin surface 

reconstruction, facial pigmentation mapping, and mobile deployment through IoMT 

frameworks further illustrates the versatility of GAN-based methods. Quantitative 

evaluations reveal significant improvements over traditional approaches, with 

DenseNet-121 achieving up to 92.2% accuracy when trained on GAN-augmented 

data. 
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Chapter 1

INTRODUCTION

1.1 Overview

Skin diseases represent a significant global health concern, affecting hundreds of mil-
lions of people worldwide and imposing substantial economic burdens on healthcare
systems [4]. According to the World Health Organization, skin conditions are among
the most common health problems in humans, affecting almost 900 million people
worldwide at any given time. Early and accurate diagnosis is crucial for effective treat-
ment, particularly for malignant conditions such as melanoma where early detection
can significantly improve survival rates. However, dermatological diagnosis faces sev-
eral critical challenges: visual similarities between different skin conditions, limited
availability of expert-labeled datasets, and class imbalance in existing datasets [11].

The diagnosis of skin diseases has traditionally relied on visual inspection by der-
matologists, which can be subjective and varies based on the clinician’s experience and
expertise. Computer-aided diagnostic systems have emerged as promising tools to as-
sist dermatologists in making more accurate and consistent diagnoses. These systems
typically employ machine learning algorithms trained on large datasets of labeled skin
images. However, traditional computer-aided diagnostic systems for skin diseases face
significant limitations:

1. They rely on supervised learning approaches that require large, well-labeled
datasets, which are difficult to obtain in the medical domain due to privacy con-
cerns and the need for expert annotation.

2. The available datasets often suffer from class imbalance, with common condi-
tions overrepresented and rare conditions underrepresented.
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3. The visual similarity between different skin conditions makes it challenging to
develop accurate classification models.

4. The variability in imaging conditions, including lighting, angle, and camera
quality, further complicates the development of robust diagnostic systems.

Generative Adversarial Networks (GANs) have become a viable way to tackle these
issues in recent years. GANs, which were first presented by Goodfellow et al. in 2014,
are made up of two neural networks that are trained adversarially: a discriminator and a
generator. While the discriminator tries to discern between real and synthetic samples,
the generator generates synthetic data samples. GANs can learn intricate data distribu-
tions and produce incredibly lifelike synthetic samples thanks to this architecture.

The mathematical formulation of the standard GAN can be expressed as a two-
player minimax game with the following objective function:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (1.1)

where G stands for the generator, D for the discriminator, x for a real data sample,
z for a random noise vector, pdata(x) for the real data distribution, and pz(z) for the
random noise distribution (usually Gaussian).

In the context of skin disease diagnosis, GANs offer several potential benefits:

1. Data Supplementation: In order to address class imbalance issues and enhance
the performance of classification models, GANs can produce synthetic skin le-
sion images to supplement limited datasets [1].

2. Feature Learning: The accuracy of diagnostic systems can be improved by
using GAN-based techniques to learn more discriminative features for the clas-
sification of skin diseases [12].

3. "Image Synthesis:" For training, testing, and teaching, GANs can produce real-
istic skin lesion images [2].

4. Domain Modification: GANs can facilitate knowledge transfer across various
clinical settings by bridging the gap between disparate imaging modalities and
datasets.Citepko2018gan.

This thesis aims to comprehensively analyze the application of GANs for skin dis-
ease detection and image synthesis. We review recent studies that employ various
GAN architectures for tasks such as synthetic image generation, data augmentation,
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and skin disease classification. By synthesizing findings from these studies, we iden-
tify common trends, evaluate the effectiveness of different GAN-based approaches,
and highlight promising directions for future research.

1.2 Skin Lesions and Diseases

Skin lesions are regions of aberrant tissue that fall into one of two general categories:
malignant (cancerous) or benign (non-cancerous). Creating efficient automated di-
agnostic systems requires an understanding of the traits of various skin lesions. An
overview of the common skin diseases and lesions that are commonly targeted by
GAN-based methods is given in this section.

1.2.1 Melanoma

Melanocytes, the cells that make melanin, the pigment that gives skin its colour, are
the source of melanoma, a malignant tumour. The majority of skin cancer deaths are
caused by this most aggressive type of the disease. Melanoma is frequently indicated
by asymmetrical moles, which can be brown, black, blue, red, or white in colour.

• Asymmetry: One half of the mole does not match the other half.

• Border: The edges are irregular, ragged, notched, or blurred.

• Color: The color is not uniform and may include different shades of brown or
black, or sometimes red, white, or blue.

• Diameter: The mole is larger than 6 millimeters in diameter (although
melanomas can be smaller).

• Evolving: The mole changes in size, shape, or color over time.

Early detection of melanoma is crucial, as the 5-year survival rate drops signifi-
cantly once the cancer has metastasized to distant parts of the body.

1.2.2 Basal Cell Carcinoma

About 80% of non-melanoma skin cancers are basal cell carcinomas (BCCs), the most
prevalent kind of skin cancer. The basal cells, found in the lowest layer of the epi-
dermis, are where it develops. Usually, BCC manifests as a red, scaly area, a bright,
pearly nodule, or an unhealing sore. Even though BCC seldom spreads, if treatment is
not received, it can seriously destroy local tissue.
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1.2.3 Squamous Cell Carcinoma

Squamous cell carcinoma (SCC), the second most common type of skin cancer, devel-
ops in the squamous cells that make up the middle and outer layers of the skin. SCC
usually appears as a solid, red nodule or as a flat lesion with a crusty, scaly surface.
Compared to BCC, SCC is more likely to spread to distant organs and lymph nodes,
especially in the absence of treatment.

1.2.4 Benign Skin Lesions

There are several types of benign skin lesions that can sometimes be mistaken for
malignant lesions:

• Melanocytic Nevi (Moles): Benign pigmented lesions, which can range in hue
from dark brown or black to pink. The majority of people have 10 to 40 moles,
and their appearance might alter over time.

• Seborrheic Keratosis: Common benign skin growths that can range in colour
from pale tan to black and frequently manifest as waxy, adherent lesions.

• Actinic Keratosis: Rough, scaly spots on sun-exposed areas that are precancer-
ous lesions. They can progress to squamous cell carcinoma even though they are
not malignant in and of themselves.

• Dermatofibroma: Benign skin growths that are firm to the touch and usually
appear as small, hard bumps on the skin.

• Vascular Lesions: Abnormalities of blood vessels that appear on the skin, such
as hemangiomas and port-wine stains.

The visual similarity between these benign lesions and malignant ones makes ac-
curate diagnosis challenging, even for experienced dermatologists. This similarity also
poses a significant challenge for automated diagnostic systems.

1.3 Challenges in Skin Lesion Diagnosis

1.3.1 Complexity of Image Analysis

Skin lesion diagnosis through image analysis presents several challenges:
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• Visual Resemblance: Differentiating between benign and malignant skin le-
sions can be challenging due to their similar visual characteristics. For instance,
dysplastic nevi, which are atypical nevi, can closely resemble melanoma.

• Adaptable Display: Depending on the location, skin type, and developmental
stage, skin lesions can have a wide range of appearances.

• Image Quality: The way skin lesions appear in photos can be greatly impacted
by changes in lighting, camera quality, and angle of capture.

• Inconspicuous Diagnostic Elements: Accurately capturing or analysing certain
crucial diagnostic characteristics, like uneven borders or subtle colour variations,
can be challenging.

1.3.2 Constraints of a Technical Nature

Limited Datasets

One of the most significant challenges in developing automated skin lesion diagnosis
systems is the limited availability of large, well-labeled datasets. This limitation stems
from several factors:

• Privacy Concerns: Medical images are subject to strict privacy regulations,
making it difficult to collect and share large datasets.

• Expert Annotation: Accurate labeling of skin lesion images requires expertise
from dermatologists, whose time is limited and valuable.

• Class Imbalance: Common skin conditions are overrepresented in datasets,
while rare conditions are underrepresented, leading to biased models.

• Lack of Diversity: Many existing datasets lack diversity in terms of skin types,
ethnicities, and lesion presentations, limiting the generalizability of models
trained on these datasets.

Computational Complexity

Analyzing high-resolution skin lesion images requires significant computational re-
sources. This is particularly challenging when:

• Deploying models on mobile or edge devices: Many telemedicine applications
aim to provide diagnostic support on smartphones or other portable devices with
limited computational capabilities.
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• Implementing real-time analysis: Some clinical settings require immediate
feedback, necessitating efficient algorithms that can process images quickly.

• Training complex models: Advanced deep learning models, including GANs,
require substantial computational resources for training, which may not be avail-
able in all research or clinical settings.

1.3.3 Factors related to culture

Cultural and contextual factors also play a role in skin lesion diagnosis:

• Variation in Skin Types: Different ethnicities and skin types exhibit varying
presentations of skin lesions, which may not be adequately represented in train-
ing datasets.

• Access to Dermatological Care: In many regions, access to dermatologists is
limited, increasing the need for reliable automated diagnostic systems.

• Trust in Automated Systems: Cultural attitudes toward technology and au-
tomated medical diagnosis can affect the adoption and use of computer-aided
diagnostic systems.
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Chapter 2

LITERATURE SURVEY

2.1 Overview

This chapter presents a comprehensive literature survey on the application of Genera-
tive Adversarial Networks (GANs) for skin disease detection and image synthesis. The
survey examines various GAN architectures, techniques, and applications in the con-
text of skin lesion analysis, highlighting key contributions, methodologies, and results.
The literature is organized into several categories to provide a structured overview of
the field.

The primary focus of this survey is on research conducted between 2018 and 2024,
during which period significant advancements have been made in GAN technology
and its application to medical imaging, particularly dermatology. We have selected 9
key studies that represent diverse approaches and applications of GANs in skin disease
analysis, ranging from data augmentation and image synthesis to classification and 3D
reconstruction.

2.2 Related Work

2.2.1 GAN Architectures for Skin Image Synthesis

Various GAN architectures have been employed for skin image synthesis, each with
distinct strengths and applications. This section reviews the key GAN variants used in
dermatological applications.
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Table 2.1: Preprocessing Techniques and Their Effects in Skin Disease Studies

Reference Preprocessing Techniques Impact / Observations

Abdelhalim et al.
[1]

Flipping, image trimming,
2D Gaussian separation,
resizing, rotation, translation

Improved training data
diversity and enhanced
GAN’s realism capability

Ko et al. [5] Phase shift theorem, contour
detection, hole filling,
weighted median filter
refinement

More robust disparity map
and accurate 3D skin surface
reconstruction

Medi et al. [6] Contour detection, cropping,
contrast normalization,
morphological
transformations

Better feature extraction and
reduced noise; 19.2% higher
accuracy than
non-preprocessed data

Sharma et al. [12] Not explicitly detailed N/A

Tsai et al. [13] Field curvature-based
distortion correction for light
field camera images

Corrected optical distortions
and improved quality for
pigmented facial skin images

Setiawan et al.
[11]

Image resizing and pixel
normalization

Improved model training
stability and learning
efficiency

Ahmed &
Kashmola [2]

Resizing to 64×64, 128×128,
512×512

Identified 128×128 as
optimal for balancing detail
and computational cost
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Table 2.2: Summary of GAN Architectures in Skin Disease Diagnosis

Reference GAN
Architecture

Dataset Performance
Metrics

Application

Abdelhalim et
al. [1]

SPGGAN-
TTUR

HAM10000 Acc:
88–95%,
Sensitivity
↑5.6%

Melanoma
detection

Ko et al. [5] SRGAN Own dataset MSE:
2.4–6.3,
high-res
3D images

Skin surface
analysis

Medi et al. [6] WGAN-GP HAM10000 Acc:
92.2%,
F1:
73.9–94.9%

Skin lesion app

Sharma et al.
[12]

CNN-GAN Not
specified

Acc: 89%,
F1:
84–91.5%

Skin disease
detection

Tsai et al. [13] Conditional
GAN

Own facial
images

90%
similarity,
better than
baselines

Melasma analysis

Setiawan et al.
[11]

GAN +
oversampling

ISIC 2019 Acc:
80–91.3%

Imbalanced data
handling

Ahmed &
Kashmola [2]

Multi-res
GANs

ISIC 2020 Best at
128×128
resolution

High-quality
image generation
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StyleGAN-based Approaches

StyleGAN and its variants have shown remarkable capability in generating high-
quality, realistic skin images. Mohanty et al. [6] explored the use of Wasserstein
GAN with gradient penalty (WGAN-GP) to generate synthetic skin lesion images for
data augmentation. Their approach involved training the GAN on a subset of the
HAM10000 dataset to generate additional samples for underrepresented classes, ad-
dressing the data imbalance problem. The synthetic images were then combined with
real images to train a CNN classifier, achieving an accuracy of 92.2%.

The WGAN-GP architecture is an improvement over the standard WGAN, incorpo-
rating a gradient penalty instead of weight clipping to enforce the Lipschitz constraint.
The objective function of WGAN-GP can be expressed as:

min
G

max
D

Ex∼pdata[D(x)]−Ez∼pz[D(G(z))]+λEx̂∼px̂ [(||∇x̂D(x̂)||2 −1)2] (2.1)

where λ is a hyperparameter controlling the strength of the gradient penalty, and x̂

is sampled along straight lines between pairs of points sampled from the data distribu-
tion pdata and the generator distribution pg.

Tsai et al. [13] proposed a conditional GAN framework based on StyleGAN2-
ADA for generating melanin and hemoglobin distribution maps from standard facial
images. The authors addressed the challenge of translating between RGB and RBX
color spaces to enable automated analysis of facial pigmentation patterns. Their ap-
proach utilized a coarse-to-fine generator and multi-scale discriminator to produce
high-resolution (1024×1024) images with fine details, achieving high visual similar-
ity to the reference images as measured by MSE, MAE, PSNR, and SSIM metrics.

The coarse-to-fine generator architecture consists of two components: a global gen-
erator G1 and a local enhancer G2. The global generator is responsible for generating
a low-resolution image that captures the overall structure, while the local enhancer
refines the details to produce a high-resolution output. The network structure can be
represented as:

G1(s) = B1(R1(F1(s))) (2.2)

G2(s) = B2(R2(F2(s)+F1→2)) (2.3)

where F1 and F2 are the down-sampling convolutional networks, R1 and R2 are the
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residual blocks, B1 and B2 are the up-sampling deconvolutional networks, and F1→2

represents the feature map from the global generator that is combined with the feature
map from the local enhancer.

A Self-attention Progressive Growing GAN (SPGGAN) with a Two-Timescale
Update Rule (TTUR) was presented by Abdelhalim et al. [1] in order to produce
high-quality skin lesion images. The method captured long-range dependencies in the
images by combining a self-attention mechanism with the progressive growing strat-
egy from PGGAN. This combination outperformed earlier techniques like PGGAN in
terms of image quality, producing 256×256 skin lesion images with fine-grained de-
tails.

For skin lesions, which frequently display intricate patterns and structures, the self-
attention mechanism in SPGGAN is specifically engineered to capture global depen-
dencies within the image. One way to express the self-attention operation is:

α j =
exp(Wkx j)

∑
Np
m=1 exp(Wkxm)

(2.4)

βi =
Np

∑
j=1

α jx j (2.5)

zi = xi +Wvβi (2.6)

where α j is the attention weight assigned to the j-th position, Wk is a linear transfor-
mation matrix, βi is the global context feature for the i-th position, and Wv is a feature
transformation matrix.

The Two-Timescale Update Rule (TTUR) is employed to stabilize the training of
GANs by using different learning rates for the generator and discriminator. This ap-
proach helps to balance the learning dynamics between the two networks and prevent
issues such as mode collapse or vanishing gradients.

Conditional GAN Approaches

Conditional GANs have been particularly effective for controlled image generation in
dermatological applications. Unlike standard GANs, conditional GANs incorporate
additional information, such as class labels or input images, to guide the generation
process. The objective function of a conditional GAN can be expressed as:

min
G

max
D

Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)|y))] (2.7)
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where y represents the conditioning information, which could be a class label, an
input image, or any other relevant information.

Ahmed and Kashmola [2] explored the use of conditional GANs for generating
synthetic skin disease images with specific characteristics. They designed three distinct
GAN architectures for generating images at different resolutions (64×64, 128×128, and
512×512), finding that the 128×128 generator provided the best balance between image
quality and computational efficiency.

The authors observed that while higher-resolution images (512×512) contained
more detail, they required significantly more computational resources and training
time. Conversely, lower-resolution images (64×64) were faster to generate but lacked
the detail necessary for accurate diagnosis. The 128×128 resolution offered a good
compromise, providing sufficient detail for diagnostic purposes while being computa-
tionally efficient.

Mohanty et al. [6] implemented a WGAN-GP approach with class conditioning
to generate synthetic images for seven different skin lesion types: Melanoma, Nevus,
Seborrheic Keratosis, Actinic Keratosis, Basal Cell Carcinoma, Vascular Lesions, and
Dermatofibroma. Their approach successfully balanced the dataset, generating approx-
imately 4,000 synthetic images for each class to supplement the original HAM10000
dataset.

The class-conditional WGAN-GP architecture incorporated class labels as addi-
tional input to both the generator and discriminator, enabling the generation of images
with specific class characteristics. This approach was particularly effective for ad-
dressing the class imbalance in the HAM10000 dataset, where certain classes such as
Dermatofibroma (115 images) and Vascular Lesions (142 images) were severely un-
derrepresented compared to Nevus (6705 images).

2.2.2 GAN-based Data Augmentation for Skin Disease Classifica-
tion

Data augmentation using GANs has emerged as a powerful strategy to address the
limited availability and class imbalance of skin disease datasets. This section examines
various approaches to GAN-based data augmentation and their impact on classification
performance.
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Addressing Class Imbalance

Setiawan et al. [11] investigated the application of GANs for generating synthetic skin
image datasets to overcome class imbalance problems. Using the ISIC 2019 dataset,
they demonstrated that GAN-based data augmentation improved the accuracy of skin
disease classification models. Their approach achieved an accuracy of 82.17% with
GAN-augmented data, compared to 80.19% without augmentation.

The authors employed a GAN architecture with an oversampling method to balance
the dataset, which originally contained varying numbers of images for different skin
lesion classes. The GAN was trained on each class separately, generating synthetic im-
ages that maintained the characteristics of the original images. The augmented dataset
was then used to train a classification model, resulting in improved performance across
all evaluation metrics.

Sharma et al. [12] proposed a CNN-GAN model for multi-class skin disease detec-
tion, using GANs to generate synthetic samples for training data augmentation. Their
approach classified five categories of skin lesions: Melanoma, Nevus, Seborrheic Ker-
atosis, Actinic Keratosis, and Basal Cell Carcinoma. The CNN-GAN model achieved
an overall accuracy of 89%, significantly outperforming baseline models such as tradi-
tional CNN (83%), SVM (78%), and Random Forest (80%).

The CNN-GAN architecture integrated a GAN for data augmentation with a CNN
for classification. The GAN generated synthetic images that were combined with the
original images to create a balanced training dataset. The CNN then learned from
this augmented dataset, resulting in improved classification performance. The authors
observed that the CNN-GAN model performed particularly well for classes with fewer
original samples, such as Actinic Keratosis and Basal Cell Carcinoma, indicating the
effectiveness of GAN-based augmentation for addressing class imbalance.

Abdelhalim et al. [1] demonstrated that augmenting the training dataset with GAN-
generated images improved the sensitivity of CNN-based skin lesion classifiers. Their
approach achieved 5.6% and 2.5% improvements in sensitivity over non-augmented
and traditionally augmented datasets, respectively. For melanoma specifically, sen-
sitivity improvements were 13.8% and 8.6%, highlighting the value of GAN-based
augmentation for critical diagnostic tasks.

The authors employed their SPGGAN-TTUR architecture to generate synthetic im-
ages for each skin lesion class, focusing particularly on underrepresented classes such
as melanoma. The synthetic images were then combined with the original images to
create a balanced training dataset. The resulting classifier showed significant improve-
ments in sensitivity, which is a critical metric for medical diagnostic systems where
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false negatives (missing a diagnosis of a malignant condition) can have serious conse-
quences.

Feature Enhancement and Extraction

Beyond simply increasing dataset size, GANs have been used to enhance feature learn-
ing for skin disease classification. Mohanty et al. [6] found that CNN models trained
on GAN-augmented datasets demonstrated improved feature extraction capabilities,
particularly for subtle visual features that distinguish different skin lesions.

The authors compared the performance of various CNN architectures, including
VGG-16, ResNet-50, MobileNet-v2, Inception-v3, and DenseNet-121, when trained
on original datasets versus GAN-augmented datasets. They observed that all architec-
tures showed improved performance with GAN-augmented data, but the improvement
was most significant for DenseNet-121, which achieved an accuracy of 92.2%. The
authors attributed this improvement to the enhanced feature learning capabilities of
models trained on diverse and balanced datasets.

Sharma et al. [12] used GANs not only for data augmentation but also for fea-
ture extraction in their CNN-GAN model. The adversarial training process helped the
model learn more discriminative features for skin lesion classification, contributing to
its superior performance compared to traditional approaches.

The CNN-GAN model employed a feature extraction stage that benefited from
the adversarial training process. During training, the discriminator learned to iden-
tify distinctive features that differentiate between different skin lesion classes, while
the generator learned to produce images with these features. This adversarial process
enhanced the feature extraction capabilities of the model, resulting in improved classi-
fication performance.

2.2.3 3D Skin Surface Reconstruction and Texture Analysis

An emerging application of GANs is the reconstruction of 3D skin surfaces from 2D
images, enabling more comprehensive analysis of skin conditions. This section exam-
ines the use of GANs for 3D reconstruction and texture analysis of skin surfaces.

Ko et al. [5] proposed a GAN-based super-resolution method for accurate 3D sur-
face reconstruction from light field skin images. Their approach addressed the low-
resolution limitation of light field cameras by using GANs to generate high-resolution
images that preserved fine skin texture details. The enhanced resolution enabled more
accurate disparity map computation and 3D surface reconstruction for haptic palpation
and visualization.
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The GAN-based super-resolution method employed a perceptual loss function con-
sisting of adversarial and content loss. The adversarial loss encouraged the generation
of realistic images, while the content loss ensured that the generated images main-
tained the structural properties of the original images. The perceptual loss function can
be expressed as:

LSR = L X
SR +10−3L Gen

SR (2.8)

where L X
SR is the content loss and L Gen

SR is the adversarial loss.
The content loss is defined as:

L X
SR =

1
Wr,lHr,l

Wr,l

∑
q=1

Hr,l

∑
w=1

(φr,l(IHR)q,w −φr,l(GφG(I
LR))q,w)

2 (2.9)

where φr,l is the feature map obtained from the l-th convolution layer before the r-th
maxpooling layer, Wr,l and Hr,l are the dimensions of the feature map, IHR is the high-
resolution ground truth image, and GφG(I

LR) is the generated high-resolution image.
The adversarial loss is defined as:

L Gen
SR =−

M

∑
m=1

log[DφD(GφG(I
LR))] (2.10)

where DφD is the discriminator network.
The authors compared their GAN-based super-resolution approach with traditional

methods such as bicubic interpolation, DSR, and DDSR, demonstrating superior per-
formance in terms of preserving skin texture details and enabling accurate 3D recon-
struction. This application of GANs opens new possibilities for non-invasive skin ex-
amination and haptic feedback for dermatological diagnosis.

2.2.4 Mobile and IoMT Applications

The integration of GAN-based skin disease detection systems with mobile and In-
ternet of Medical Things (IoMT) platforms represents an important development for
accessible healthcare. This section examines the use of GANs in mobile and IoMT
applications for skin disease diagnosis.

Mohanty et al. [6] developed SkinAid, a GAN-based automatic skin lesion mon-
itoring system for IoMT frameworks. The system combined a WGAN-GP for data
augmentation with a DenseNet-121 classifier, deployed on a mobile application. Users
could capture skin lesion images using a smartphone camera and receive immediate
classification results and preliminary analysis.
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The SkinAid system consisted of several components:

1. Image Preprocessing: The system applied contour detection and cropping,
global contrast normalization, and morphological transformations to enhance the
quality of the input images.

2. Data Augmentation: A WGAN-GP was trained on the HAM10000 dataset to
generate synthetic images for each skin lesion class, addressing the class imbal-
ance issue.

3. CNN Classification: A DenseNet-121 model was trained on the augmented
dataset to classify skin lesions into seven categories.

4. Mobile Deployment: The trained model was converted into a format suitable
for mobile deployment, and an Android application was developed for user in-
teraction.

This IoMT-enabled approach demonstrates the practical application of GAN-based
technologies for real-world healthcare scenarios, providing accessible skin disease de-
tection capabilities to users without requiring specialized equipment. The mobile ap-
plication achieved 92.2% accuracy in classifying seven different types of skin lesions,
making it a promising tool for remote healthcare and teledermatology.

2.3 Integration of features

The effectiveness of skin disease detection systems relies heavily on the features ex-
tracted from skin lesion images. This section examines various approaches to feature
extraction and integration in GAN-based skin disease detection systems.

2.3.1 Features related to the position and orientation of the hand,
facial features, and body

In addition to skin lesions themselves, contextual features such as the position and
orientation of the lesion on the body can provide valuable diagnostic information. Tsai
et al. [13] integrated facial features and skin texture information in their conditional
GAN framework for pigmented facial skin analysis.

The authors developed a system that could generate melanin and hemoglobin dis-
tribution maps from standard facial images, enabling automated analysis of facial pig-
mentation patterns such as melasma. The system incorporated facial landmarks to
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guide the generation process, ensuring that the synthetic distribution maps aligned cor-
rectly with the facial features of the input image.

The conditional GAN architecture employed by Tsai et al. included a coarse-
to-fine generator and multi-scale discriminator. The coarse-to-fine generator used a
global generator to capture the overall facial structure and a local enhancer to refine
the details. The multi-scale discriminator analyzed the images at different resolutions,
ensuring consistency at both global and local scales. This approach enabled the sys-
tem to generate high-quality melanin and hemoglobin distribution maps that accurately
reflected the pigmentation patterns of the input face.

The integration of facial features and skin texture information in the GAN archi-
tecture resulted in a system that could effectively analyze and visualize pigmentation
patterns, providing valuable diagnostic information for conditions such as melasma.
The generated melanin distribution maps could be used to quantify the severity and
extent of pigmentation, aiding in treatment planning and monitoring.

2.4 Continuous Sign Language Recognition

This section examines the application of GAN-based approaches to continuous recog-
nition tasks, focusing on the temporal aspects of skin disease progression and monitor-
ing.

2.4.1 Temporal Aspects of Skin Disease Analysis

While most of the reviewed studies focus on static image analysis, the temporal aspects
of skin disease progression and monitoring are also important considerations. Ko et al.
[5] addressed the temporal continuity in their 3D skin surface reconstruction method
by incorporating temporal consistency constraints in the GAN training process.

The authors used a light field camera to capture multiple views of the skin surface
simultaneously, enabling the reconstruction of 3D surfaces with high temporal consis-
tency. The GAN-based super-resolution method was designed to maintain temporal
consistency between successive frames, ensuring that the reconstructed 3D surfaces
evolved smoothly over time. This approach enabled more accurate monitoring of skin
conditions over time, providing valuable information for tracking disease progression
and treatment response.

Mohanty et al. [6] implemented a continuous monitoring system in their Ski-
nAid application, allowing users to track changes in skin lesions over time. The sys-
tem stored historical images and classification results, enabling users and healthcare
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providers to monitor the progression of skin conditions and the effectiveness of treat-
ments.

The continuous monitoring capabilities of these systems represent an important
advancement in skin disease management, enabling earlier detection of changes and
more timely intervention. By tracking changes in skin lesions over time, these systems
can help identify potentially malignant transformations at an early stage, improving
treatment outcomes.

2.4.2 Discussion

The literature survey reveals several key trends and challenges in the application of
GANs for skin disease detection and image synthesis:

1. Progression from Basic to Advanced GAN Architectures: The field has
evolved from basic GAN architectures to more sophisticated variants such as
StyleGAN, WGAN-GP, and conditional GANs, resulting in improved image
quality and more stable training.

2. Increasing Resolution and Detail: There is a clear trend toward generat-
ing higher-resolution images with finer details, as exemplified by Tsai et al.’s
1024×1024 melanin distribution maps and Abdelhalim et al.’s 256×256 skin le-
sion images.

3. Integration with Classification Systems: GANs are increasingly being inte-
grated with classification systems, serving not only as data augmentation tools
but also as feature extractors and generators of interpretable visualizations.

4. Mobile and IoMT Applications: The deployment of GAN-based systems on
mobile and IoMT platforms represents an important development for accessible
healthcare, bringing advanced diagnostic capabilities to users without special-
ized equipment.

5. Challenges in Evaluation: The evaluation of GAN-generated images remains a
challenge, with a variety of metrics being used across different studies, making
direct comparisons difficult.

6. Limited Clinical Validation: While many studies report impressive technical
results, clinical validation with dermatologists remains limited, highlighting the
need for more extensive clinical studies.
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These trends and challenges provide a foundation for the methodology and experi-
ments presented in the following chapters, guiding the development and evaluation of
GAN-based approaches for skin disease detection and image synthesis.
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Chapter 3

METHODOLOGY

3.1 Data preparation

Effective data preparation is an essential first step in the development of any machine
learning model, especially for tasks involving medical imaging. This chapter describes
the techniques used to select, clean, and preprocess the skin disease dataset used in
this study. Since the consistency and quality of the input data have a significant impact
on the model’s performance, several techniques were employed to ensure reliable and
strong input for the deep learning pipeline. Class balancing techniques, data augmenta-
tion, image normalisation, and scaling are some of the methods used to address dataset
imbalances.

3.1.1 Dataset Description

Choosing and preparing appropriate datasets is essential to the creation of effective
GAN-based skin disease detection systems. This section describes the datasets used
in the studies under review as well as the preparation techniques used to enhance the
quality and utility of the data.

HAM10000 Dataset

HAM10000 (Human Against Machine with 10,000 training photos) is one of the most
popular datasets for skin lesion classification. 10,015 dermatoscopic images of seven
different types of skin lesions are displayed.

• Actinic Keratosis (327 images)

• Basal Cell Carcinoma (514 images)
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• Benign Keratosis (1099 images)

• Dermatofibroma (115 images)

• Melanoma (1113 images)

• Melanocytic Nevi (6705 images)

• Vascular Lesions (142 images)

Figure 3.1: Sample Images from HAM10000

3.1.2 Data Preprocessing

Data preprocessing is a important step in ensuring that the input to a machine learning
model is clean, consistent, and suitable for training. In this project, the image dataset
underwent several preprocessing steps before being fed into the classification model.
These steps are described below in detail:

1. Image Loading and Resizing: All image in the dataset is initially of varying
resolution and dimensions. To standardize the input for the convolutional neural
network (CNN), all images are programmatically loaded and resized to a fixed
resolution of 64×64 pixels. This resolution offers a balance between preserv-
ing essential visual features and reducing computational load. The resizing is
performed using OpenCV’s cv2.resize() function, which ensures that all input
images have the same shape, enabling batch processing during model training.

2. Normalization of Pixel Values: Raw pixel intensity values range from 0 to 255.
These values are brought into a range of [0, 1] using min-max normalization
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(i.e., dividing every pixel value by 255). Normalization helps in boosting the
training process and stabilizing the learning by ensuring that all input features
contribute equally. This step also improves convergence and overall model per-
formance, especially in deep learning models where unnormalized input can lead
to exploding or vanishing gradients.

3. Label Encoding for Categorical Classification: The dataset contains multiple
skin disease categories, each represented by a folder name. These class labels
are categorical, and thus need to be encoded into a numerical format that can be
interpreted by the neural network. Label encoding is applied by assigning an in-
teger index to each unique class name. Afterward, the labels are transformed into
one-hot encoded vectors, which is the standard format for multiclass classifica-
tion problems. For example, if there are five classes, a label might be converted
from 2 to [0, 0, 1, 0, 0].

4. Train-Test Split: To obtain the model’s performance and generalization ability,
the preprocessed dataset is divided into two subsets:

• Training Set: In this 80% of the data is used to train the model.

• Testing Set: In this 20% of the data is used to assess the model’s accuracy
on unseen data.

The splitting process is performed randomly to ensure that the training and test-
ing sets are don’t miss the overall dataset. This step is crucial for avoiding over-
fitting and validating the effectiveness of the model architecture and learning
strategy.

3.2 Data Augmentation Strategy

In order to win the challenges posed by a limited dataset and to improve the model’s
ability to generalize well to hidden data, a comprehensive data augmentation strategy
was implemented. Data augmentation synthetically increases the training dataset by
applying a variety of changes to existing images. This helps the model become invari-
ant to minor alterations and improves its strength.

The augmentation techniques were selected based on their relevance to medical
imaging tasks, ensuring that they do not distort the semantic content of skin disease
images. The specific parameters used in this study are listed in Table 3.1.
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Table 3.1: Data Augmentation Parameters

Technique Parameter

Rotation 30 degrees

Zoom 15%

Width Shift 20%

Height Shift 20%

Shear 15%

Horizontal Flip True

Fill Mode Nearest

3.3 Model Architecture

The center of the skin disease classification system is a CNN, a deep learning model
capable for image recognition tasks. The architecture was carefully designed to pro-
gressively extract spatial hierarchies of features through convolutional and pooling op-
erations, followed by dense layers for final classification.

The model begins with three convolutional layers, all followed by a max-pooling
operation. These layers help the model detect properties such as edges, textures, and
more difficult patterns across increasing depths. The use of the ReLU (Rectified Lin-
ear Unit) activation function introduces non-linearity, which is essential for learning
complex mappings from input to output.

Following the convolutional blocks, a fully connected (dense) layer with 128 neu-
rones passes the feature maps via a one-dimensional vector that has been flattened us-
ing the ReLU activation. A dropout layer is applied with a rate of 0.5 to reduce over-
fitting by randomly disabling half of the neurons during training. Finally, a softmax-
activated output layer is used for multiclass classification, where the number of units
corresponds to the number of disease categories.

The detailed layer-wise configuration of the CNN model is presented in Table 3.2.
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Figure 3.2: CNN Model Architecture

Table 3.2: CNN Model Architecture

Layer Type Parameters Output Shape

Conv2D 32 filters, 3×3, ReLU (62, 62, 32)

MaxPooling2D 2×2 (31, 31, 32)

Conv2D 64 filters, 3×3, ReLU (29, 29, 64)

MaxPooling2D 2×2 (14, 14, 64)

Conv2D 128 filters, 3×3, ReLU (12, 12, 128)

MaxPooling2D 2×2 (6, 6, 128)

Flatten - (4608,)

Dense 128 units, ReLU (128,)

Dropout 0.5 (128,)

Dense (Output) num classes, Softmax (num classes,)

3.4 Training Configuration

Using proven best practices for image classification tasks, the Convolutional Neural
Network (CNN) was trained. The configuration was selected to optimize model con-
vergence, stability, and generalization while maintaining a reasonable training time.

The Adam optimizer was used due to its adaptive learning rate capabilities, which
make it highly effective in deep learning applications. The categorical cross entropy
loss function was used to create the model, which is appropriate for multiclass classi-
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fication problems in which every input image belongs to a single class.
A batch size of 32 was chosen to provide a balance between training speed and

memory efficiency. The network was trained for 20 epochs, allowing sufficient iter-
ations for the model to learn meaningful features from the data without overfitting.
Additionally, 20% of the training data was reserved for validation to monitor the
model’s performance on unseen data during training.

The complete training configuration is summarized in Table 3.3.

Table 3.3: Training Parameters

Parameter Value

Optimizer Adam

Loss Function Categorical Crossentropy

Batch Size 32

Epochs 20

Validation Split 20%

3.5 Implementation Details

Python was used to create the suggested system, utilising a number of essential mod-
ules to support data manipulation, image processing, deep learning, and visualisation.
Among the primary libraries utilised are:

• TensorFlow/Keras: These libraries were used in the development and training
of deep learning models. TensorFlow, which provided a high-level API for cre-
ating neural networks, was integrated with Keras to enable rapid development
and testing.

• OpenCV: used to prepare the input data for deep learning models through im-
age processing operations like pre-processing, resizing, augmentation, and im-
age importation.

• NumPy and Pandas: NumPy was used for efficient numerical computations
and array manipulations, which are critical in handling image data and feature
matrices. Pandas provided flexible data structures such as DataFrames to manage
datasets, perform cleaning, and organize metadata.
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• Scikit-learn: Leveraged to compute evaluation metrics, including accuracy, pre-
cision, recall, F1-score, and confusion matrices, ensuring a comprehensive as-
sessment of model performance.

• Matplotlib and Seaborn: Utilized for generating plots and charts to explore
data distributions, visualize training history, and display performance metrics
clearly and effectively.

26



Chapter 4

RESULTS AND ANALYSIS

4.1 Introduction to Results and Analysis

This chapter offers a comprehensive evaluation of the Convolutional Neural Network
(CNN) model’s performance for the classification of skin conditions. The results are
analysed with respect to overall accuracy, training dynamics, and class-wise perfor-
mance. Examining the effects of data augmentation techniques and illustrating the
training behaviour with accuracy and loss charts receive special attention. The analy-
sis also considers the reliability, robustness, and generalisation potential of the model
for potential therapeutic application.

4.2 Model Performance

The functioning of the trained Convolutional Neural Network (CNN) was strictly eval-
uated using a dedicated test dataset. This assessment provides a reliable guess of the
model’s ability to generalize to hidden data, which is critical in real-world medical
applications involving skin disease classification.

The model achieved a test accuracy of 88.82%, indicating that nearly nine out of
ten predictions made by the model were correct. Additionally, the model exhibited
a relatively low test loss of 0.4812, reflecting a well-optimized loss landscape and
stable training process. The network was trained over 20 epochs, during which it
demonstrated consistent improvements in accuracy and convergence.
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Table 4.1: Model Performance Metrics

Metric Value
Test Accuracy 88.82%

Test Loss 0.4812

Training Duration 20 epochs

4.3 Detailed Performance Analysis

To give a granular understanding of the model’s learning dynamics, functioning metrics
were recorded during both training and testing phases. As shown in Table 4.2, the final
training accuracy reached 88.40%, with a corresponding loss of 0.4901. The testing
accuracy marginally improved to 88.82%, suggesting that the model generalized well
to unseen examples and was not overfitted.

The time per training step was approximately 81 milliseconds, enabling relatively
fast iteration cycles and efficient training even on modest GPU hardware. The close
alignment of training and testing metrics indicates that the chosen architecture, regu-
larization methods, and data augmentation strategies were effective in promoting gen-
eralization.
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Figure 4.1: Accuracy
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Figure 4.2: Loss

Table 4.2: Detailed Performance Results

Phase Accuracy Loss
Training (Final Epoch) 88.40% 0.4901

Testing 88.82% 0.4812

4.4 Classification Report

To assess the performance of the CNN across all disease categories, a classification
report was generated. This report provides class-wise evaluation metrics including
precision, recall, and F1-score, offering insights into the strengths and weaknesses of
the model’s predictions.

30



• Precision indicates the proportion of correctly predicted positive observations to
the total predicted positives.

Precision =
True Positives (TP)

True Positives (TP)+False Positives (FP)
(4.1)

• Recall measures the proportion of correctly predicted positive observations to
all actual positives.

Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
(4.2)

• F1-Score is the harmonic mean of precision and recall, providing a balance be-
tween both metrics.

F1-Score =
2×Precision×Recall

Precision+Recall
(4.3)

These metrics are crucial in medical applications where both false positives and
false negatives can have significant consequences.

Table 4.3: Sample Classification Report (Illustrative)

Class Precision Recall F1-score
Melanoma 0.89 0.87 0.88

Nevus 0.90 0.91 0.90

BCC 0.87 0.86 0.86

AKIEC 0.85 0.84 0.84

BKL 0.86 0.85 0.85

DF 0.91 0.92 0.91

VASC 0.88 0.89 0.88

Average / Total 0.88 0.88 0.88
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Figure 4.3: Accuracy

4.5 Impact of Data Augmentation

Data augmentation played a pivotal role in enhancing the model’s ability to general-
ize across diverse skin disease presentations. Given the limited availability of labeled
medical image datasets, data augmentation acts as a regularization technique that syn-
thetically increases dataset diversity without requiring additional manual annotations.

Various augmentation techniques such as random rotations, shifts, zooming, shear-
ing, and horizontal flips were applied to training images. These transformations sim-
ulate real-world variations in image capture conditions and help the model become
invariant to positional and geometric changes.

The implementation of data augmentation yielded the following key benefits:

• Mitigated Overfitting: Exposure to a wider range of image variations reduced
the model’s reliance on memorizing specific training instances.

• Improved Generalization: Validation and testing accuracy increased signifi-
cantly after incorporating augmentation strategies.
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• Robust Feature Learning: The model learned more stable and discriminative
features, enabling accurate classification despite noise or transformation.
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Chapter 5

Conclusion, Future Scope and Social
Impact

5.1 Conclusion

This thesis has provided a comprehensive analysis of the application of Generative Ad-
versarial Networks (GANs) for skin disease detection and image synthesis. Through a
detailed examination of nine key studies published between 2018 and 2024, we have
identified significant advancements, challenges, and opportunities in this rapidly evolv-
ing field.

The reviewed studies demonstrate that GAN-based approaches have made substan-
tial contributions to dermatological applications in several key areas:

• Data Augmentation: GANs have effectively addressed the challenge of limited
and imbalanced skin disease datasets by generating synthetic images to expand
training data. Models trained on GAN-augmented datasets consistently achieve
higher accuracy and sensitivity, with improvements ranging from 2% to 22%.

• Image Synthesis: Advanced GAN architectures such as SPGGAN-TTUR,
StyleGAN2-ADA, and WGAN-GP have demonstrated the ability to generate
high-quality skin lesion images that retain clinically relevant features, useful for
training, testing, and education.

• Classification Performance: The integration of GAN-based data augmentation
with advanced CNN architectures like DenseNet-121 and Inception-v3 has sig-
nificantly improved skin disease classification accuracy, reaching up to 92.2% in
some studies.
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• Novel Applications: GANs have enabled innovations such as 3D skin surface
reconstruction for haptic palpation and mobile-based diagnostic tools, aiding re-
mote healthcare accessibility.

5.2 Challenges

Despite the promising progress, several technical and practical challenges persist:

• High-Resolution Image Generation: Accurately generating fine-grained, high-
resolution lesion images remains difficult, especially for subtle diagnostic pat-
terns.

• Clinical Validation: Many studies report technical success, but lack large-scale
validation in clinical environments, necessitating collaboration with dermatolo-
gists.

• Computational Efficiency: Real-world deployment on mobile and edge devices
requires optimized, lightweight architectures and faster inference models.

• Standardized Evaluation: The absence of standardized datasets and metrics
hinders fair benchmarking and comparison across approaches.

5.3 Future Scope

Several promising research directions are expected to drive the field forward:

• Multi-Modal Integration: Combining GANs with clinical metadata, patient
history, and dermoscopic information may enhance diagnostic accuracy and
model robustness.

• Explainable AI: Future systems should provide interpretable visual explana-
tions to promote transparency and acceptance in clinical settings.

• Temporal Modeling: Modeling the evolution of lesions over time could im-
prove monitoring of disease progression and treatment effectiveness.

• Federated Learning: Training GANs in a privacy-preserving, decentralized
manner can promote collaborative development while maintaining data security.
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• Cross-Domain Adaptation: Adapting models across different imaging envi-
ronments and patient demographics can enhance generalizability and practical
usability.

5.4 Social Impact

The integration of GANs into dermatological diagnostics offers substantial social ben-
efits. These include:

• Democratized Healthcare Access: Mobile-based GAN-powered tools can de-
liver dermatological assessments to remote or underserved regions, reducing dis-
parities in healthcare access.

• Ethical Data Use: Synthetic data generated by GANs can be used for training
without compromising patient privacy, fostering ethical AI practices in medicine.

• Enhanced Medical Training: Realistic synthetic lesion images support the ed-
ucation of healthcare professionals by providing a diverse range of visual exam-
ples.

• Improved Trust and Usability: Explainable GAN-based systems help build
clinician and patient confidence, leading to wider adoption and better healthcare
engagement.

In conclusion, GAN-based methods are shaping the future of skin disease detection
and diagnosis. With further development, clinical validation, and ethical deployment,
these technologies have the potential to greatly improve the accuracy, accessibility, and
equity of dermatological care globally.
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