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ABSTRACT 

Face forgery detection has become increasingly critical as generative algorithms 
produce hyper-realistic images and videos that threaten privacy, security, and trust in 
digital media. Five state-of-the-art convolutional neural networks—Xception, 
ResNet50, EfficientNetB0, DenseNet121, and MobileNet—were benchmarked using 
a dataset of approximately 200,000 balanced real and fake images sourced from Flickr 
Face (FFHQ) and various AI-generated repositories. After applying data augmentation 
(rescaling, flips, rotations) and splitting into 70% training, 15% validation, and 15% 
test sets, each model was fine-tuned via transfer learning. Evaluation metrics included 
accuracy, precision, recall, F1-score, confusion matrices, and ROC-AUC. Xception 
achieved the highest test accuracy of 99.14%, outperforming DenseNet121 (98.67%), 
ResNet50 (97.92%), EfficientNetB0 (97.45%), and MobileNet (96.83%), illustrating 
the power of separable-convolution blocks in revealing subtle forgery artifacts. 
Lightweight vision transformer architectures—DeiT, LeViT, MobileViT-XXS, and 
TinyViT were also assessed, alongside three hybrid quantum-classical variants 
embedding parameterized quantum circuits into MobileViT-XXS and Swin-Tiny 
backbones. A separate 140,000-image dataset (70,000 FFHQ images and 70,000 
StyleGAN-generated faces) was used, with multiple quantum gate configurations (RY; 
RY-entangled; RY, RX, RZ) simulated via PennyLane Lightning Qubit. Comparative 
analysis of training curves, confusion matrices, and classical performance metrics 
under consistent hyperparameters revealed that MobileViT-XXS led pure transformer 
models at 99.88% accuracy (TinyViT: 99.72%; LeViT: 99.55%; DeiT: 99.31%). 
Quantum-enhanced hybrids further improved detection: Swin-Tiny with RY, RX, and 
RZ rotations reached 97.42%, surpassing RY-only (95.88%) and RY-entangled 
(96.17%) variants. These results demonstrate that transfer learning with specialized 
CNNs remains highly effective for deepfake detection; compact vision transformers 
can match or exceed CNN performance with lower parameter counts; and integration 
of quantum circuits uncovers fine-grained forgery cues, enabling real-time, resource-
efficient authentication in mobile and streaming contexts. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 
Face forgery, commonly referred to as deepfake, applies artificial intelligence to 
generate or alter facial images and videos so convincingly that observers—and even 
many automated systems—struggle to distinguish authenticity. Techniques span face 
swapping, which replaces one individual’s visage with another’s; facial reenactment, 
which modifies expressions or lip movements to synchronize with new audio [1]; and 
full synthetic generation, where entirely fabricated faces emerge via GANs or CGI 
pipelines [2]. Central to these advances are Generative Adversarial Networks (GANs) 
and autoencoders, whose adversarial and encoding–decoding dynamics enable the 
creation of hyper-realistic outputs. As these methods become more accessible, 
malicious uses have multiplied: misinformation campaigns, identity theft, reputation 
attacks, and breaches of personal privacy now exploit imperceptible forgery artifacts. 
Historically, detection efforts have leaned on convolutional neural networks (CNNs), 
which dissect images into small patches, learn localized feature maps, and assemble 
hierarchical representations indicative of manipulation. Leading CNN backbones—
including ResNet50 [6], DenseNet121 [8], Xception [9], MobileNet [22], and 
EfficientNetB0 [7]—have been fine-tuned on large, balanced datasets combining 
genuine portraits from the Flickr Face (FFHQ) repository [10] and extensive AI-
generated face collections (including a custom corpus of 140,000 real and fake images 
[19] and one-million-fake-face benchmarks [20]). Data augmentation technique 
(rescaling, flips, rotations) and rigorous train validation test splits underpin transfer-
learning protocols. Among these architectures, Xception’s depthwise separable 
convolutions consistently expose subtle blending artifacts and lighting inconsistencies 
introduced during forgery, leading to its superior performance on custom datasets. 
In parallel, vision transformers (ViTs) have emerged as powerful alternatives by 
employing self-attention across entire images, effectively capturing long-range 
dependencies and global irregularities that local filters may overlook. Compact 
variants—DeiT [33], LeViT [34], MobileViT-XXS [35], and TinyViT [36]—
demonstrate competitive detection capabilities with fewer parameters and lower 
compute overheads. Evaluations on a balanced set of 140,000 images (70,000 genuine 
FFHQ portraits and 70,000 StyleGAN generated forgeries) reveal that these 
lightweight transformers not only match but occasionally surpass CNN baselines in 
discerning manipulations, thanks to their ability to integrate contextual cues across 
broad spatial extents. 
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Beyond purely classical methods, hybrid quantum-classical architectures introduce 
parameterized quantum circuits into transformer backbones, leveraging qubit  
superposition and entanglement to model complex, nonlinear feature spaces that 
standard networks may miss [38,39]. Three configurations have been explored: 
integration of single-axis RY rotations within MobileViT-XXS; grafting of RY gates 
onto a Swin-Tiny backbone [37]; and a multi-axis ensemble of RY, RX, and RZ 
rotations on Swin-Tiny. All variants undergo training and validation under consistent 
hyperparameter settings using a qubit simulator, with circuit depths and gate 
arrangements tuned for optimal feature extraction. These quantum layers amplify the 
detection of micro-level anomalies—subtle color shifts, blending artefacts, or noise 
patterns—thereby enriching classical representations. 

This unified investigation delivers a thorough comparison of state-of-the-art CNNs, 
compact vision transformers, and quantum-infused hybrids for face forgery detection. 
Contributions include (1) performance benchmarking of five leading CNN 
architectures on large-scale real–fake datasets; (2) assessment of four efficient 
transformer models under standardized protocols; (3) design and evaluation of three 
novel quantum-classical hybrids; and (4) analysis of how quantum circuit depth and 
gate variety influence feature discrimination. Insights from this work pave the way for 
robust, resource-efficient forensic tools—capable of real-time deployment in mobile 
applications, live video streams, and secure authentication systems—to counter the 
ever-evolving challenge of deepfake threats. 

 
 
1.2 What is Face Forgery ? 
Face forgery detection refers to the set of computational techniques and algorithms 
designed to distinguish between genuine (unaltered) facial images or videos and those 
that have been manipulated or synthetically generated. As sophisticated manipulation 
methods—such as morphing, swapping, deepfakes, reenactment, retouching, and fully 
computer‐generated imagery—become increasingly accessible, detecting these 
forgeries is critical for preserving trust in biometric systems, media authentication, and 
digital forensics. A robust detection system must analyze visual artifacts, statistical 
inconsistencies, temporal dynamics (in video), and often leverage machine learning or 
deep learning classifiers to make a binary or multi‐class decision about the authenticity 
of facial content. 
 
1.3 Classification of Face Forgery 
Morphing technology is the act of seamlessly integrating or changing visual elements 
from different sources, generally through the use of computer software or algorithms 
to create a smooth transition between these elements. Morphing [29] is the process of 
combining or modifying facial features from different people or sources to create 
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synthetic facial photos or movies that appear genuine or realistic but are modified or 
faked. 

Figure 1.1: Example for a morphed face image (b) of subject 1 (a) and subject 2 (c). 

1.3.2 Swapping Face 
Swapping faces  means transferring a face from a source photo onto a face appearing 
in a target photo, attempting to generate realistic, unedited-looking results. 

Figure 1.2: Face swapping (A) source (B) target (C) result. 

1.3.3 Deepfakes 
Deepfakes  are synthetic media, particularly videos, created by using deep learning 
techniques such as Generative Adversarial Networks (GANs) to manipulate and 
replace existing visual or audio content with highly realistic, yet entirely artificial, 
elements. These sophisticated forgeries frequently involve alterations to facial 
appearances and movements. 

 

Figure 1.3: Deepfake image in which the face is swapped with Elon Musk 
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1.3.4 Reenactment 
Manipulating a target's expressions or facial movements in a video to give the 
impression that they said or did something they didn't. 

1.3.5 Face Retouching 
Face retouching uses conventional photo editing software to alter facial features, improve 
appearances, or eliminate flaws in photos. 

Figure 1.4: A. Original image B. Retouched image 

1.4 Applications of Face Forgery Detection 
• Biometric Security:	 Imagine arriving at an airport and having your face 

scanned to get through immigration. Behind the scenes, advanced forgery 
detectors are quietly checking whether someone has morphed or swapped 
your image to fool the system—so only the real you gains access. 

• Digital Forensics: When police or forensic professionals review images and 
videos as evidence, they must ensure that what they are viewing is not altered 
or modified. Forgery detection tools help ensure that the material stands up in 
court by detecting signs of manipulation. 

• Media and Journalism: Today, news institutions and social media platforms 
face an assault of user uploads. By screening these through forgery filters, 
editors and moderators can detect modified photos or videos before they 
propagate incorrect information. 

• Social Trust: Deepfake technologies can use video calls and live streams to 
imitate participants in real time. Integrating forgery checks helps detect 
suspicious adjustments, allowing everyone to believe that the person they're 
speaking with is who they claim to be. 

• Entertainment Industry: Ensuring the ethical use of face‐swapping and 
reenactment technologies in film and advertising by tracking unauthorized 
manipulations. 
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1.5 Recent Advancements in Creating Face Forgery 
Recent advancements in face forgery generation are driven by powerful deep learning 
models such as Generative Adversarial Networks (GANs), Variational Autoencoders 
(VAEs), and diffusion models. Tools like StyleGAN, DeepFaceLab, and FaceSwap have 
made it easier to produce hyper-realistic facial manipulations, including identity swaps, 
expression reenactments, and audio-driven lip syncing. Transformers and 3D-aware 
GANs now allow for high-fidelity generation with precise control over facial features, 
head positions, and lighting. These models, which frequently undergo training on large 
datasets, keep blurring the boundary between real and fake, challenging detection 
technologies and raising ethical questions about digital media authenticity. 

1.6 Challenges in Detecting Face Forgeries 
• Hidden Problems: Convincing forgeries frequently leave just minor pixel-level 

flaws, which typical detection systems easily ignore. 
• Limited Adaptability: Models designed to detect a specific type of fake (for 

example, GAN-generated deepfakes) may suffer when presented with new or 
unforeseen manipulation techniques. 

• Data Shortages: There aren’t many labeled examples of the latest face-
swapping methods, making it hard to train detection systems that rely on 
supervised learning. 

• Speed vs. Accuracy: Scanning video in real time demands lightning-fast 
processing, yet dropping even a little accuracy can let manipulations slip 
through. 

• Evolving Tactics: As detection improves, forgers constantly alter their 
approach, creating a continual back-and-forth between attackers and defenders. 

1.7 Motivation 
The swift democratization of facial manipulation technologies presents a considerable 
risk to privacy, security, and the integrity of digital media. Efficient systems for 
detecting facial forgeries contribute to:  

• Protecting Personal Identity: By thwarting the unauthorized exploitation of 
an individual's. image. 

• Upholding Democratic Dialogue: By countering misinformation and 
harmful deepfake. initiatives. 

• Advancing Legal and Ethical Norms: By offering dependable forensic 
instruments for judicial and regulatory bodies.  

• Promoting Technological Advancement: By encouraging research into 
more resilient, understandable, and adaptable detection algorithms. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CNN and Transformer-Based Approaches 
Wang et al. [3] provide a DeepFake detection technique based on an upgraded 
MobileViT framework which combines CNN and Transformer networks to improve 
local as well as global feature learning. Coordinated attention and the GELU activation 
function improve model correctness and generalization and providing excellent 
performance across different datasets. Afchar et al. [4] describe a method for 
automatically identifying face tampering in videos using Deepfake and Face2Face 
algorithms. Using two deep learning networks with low layer counts to capture 
mesoscopic image properties. Raza et al. [5] propose MMGANGuard, a multi-model 
ensemble approach that aims to detect deepfakes in StyleGAN synthesized images. 
Jannu et al. [11] evaluate multiple deepfake detection models using a dataset of 140k 
real and fake face images. They evaluate several models including ResNet50, 
Xception, MobileNet, and Swin Transformer. Among these, Xception and ResNet50 
show superior accuracy, precision, and minimal gender bias. 

2.2 Attention-Enhanced and Fine-Grained Detection Methods 
Zhao et al. [12] introduce a deepfake detection method treats3 it as a fine-grained 
classification problem. Multi-attentional net-works identify small defects, enhance 
textures, and use regional independence loss and attention-guided data augmentation 
for improved detection. Patel et al. [13] develop a more powerful face forgery detection 
approach by proposing an improved deep-CNN-based (D-CNN) capability to resolve 
the limitations of prior arts. The challenges involve keeping robustness against varies 
imagine resolutions and improving the algorithm to recognize video deepfakes. 

2.3 Texture and 3D Geometry-Based Approaches 
Wang et al. [14] introduce LBP-Net model that uses texture information for 
differentiates between real and fake faces. LBP-Net is resilient to multiple picture 
augmentations and has an accuracy of 98.55%. Zhu et al. [15] provide a face forgery 
detection approach based on 3D de-composition method, which separates face pictures 
into 3D forms and detect essential fraud information in direct light and identifying 
texture, resulting in ”facial detail” that reveals minute abnormalities. 
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2.4 CNN-Based Baseline and Lightweight Models 
Tyagi et al. [27] proposed MiniNet, a lightweight fully convolutional CNN for image 
forgery detection, evaluated on 140K Real-Fake Faces (95% accuracy) and CASIA 
(93%); limitations include generalization issues, dataset dependency, CFA 
assumptions, computational costs, and no pre-processing. Mathews et al. [28] 
introduced the DFIM-HQ dataset and used this Inception-based network with 
explainability and bias mitigation, achieving approximately 95% accuracy. However, 
several controlled dataset conditions, interpretability limits, residual biases, and 
constrained applicability to low-quality, unconstrained scenarios remain challenges. 
Bobulski et al. [29] developed a two-stage CNN network using 384×384 images and 
‘adam’/‘sgdm’ optimizers for tri-class face classification on 2.8k images per class, 
reaching 91.44% and 91.05% accuracy. Limitations include background uniformity, 
low-resolution performance drop, limited data, and resolution constraints. 

2.5 Vision Transformer and Hybrid Architectures 
Naeem et al. [24] employed eight deep learning models, including ViT Patch-16, to 
classify real, deepfake, and synthetic faces. While achieving 98.25% accuracy, 
limitations include pre-processing-induced feature loss and model performance 
variability across datasets and practical contexts. Usmani et al. [25] proposed a shallow 
Vision Transformer using attention mechanisms and multi-head attention to focus on 
key image regions for deepfake detection, achieving 92.15% accuracy. Limitations 
include dataset dependency, generalization, and limited evaluation metrics. Duan et al. 
[26] proposed a Dynamic Dual-spectrum Interaction Network, using Frequency-
guided Attention and Dynamic Fusion modules, for face forgery detection. Evaluated 
on FF++, CelebDF, DFDC, FDF, FFHQ, and CelebAHQ, it achieved 95.8% accuracy 
but faces overfitting and complexity challenges. 

2.6 Quantum and Hybrid Classical Quantum Approaches 
Mari et al. [30] proposed a framework for transfer learning in hybrid classical-quantum 
networks, introducing CQ, QC, and QQ paradigms. Using dressed quantum circuits 
and variational quantum layers, they demonstrated high accuracy on image and 
quantum state classification tasks. Results showed improved training efficiency, 
though NISQ hardware limitations remain a challenge. Bergholm et al. [31] introduced 
PennyLane, a Python framework enabling automatic differentiation for hybrid 
quantum-classical computations. It supports variational circuit optimization across 
platforms like Xanadu and IBM. While promising, real-world applications and 
scalability challenges require further empirical exploration and validation. 
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CHAPTER 3 

FACE FORGERY DETECTION USING DEEP 
LEARNING MODELS 

3.1 Proposed Architecture 
The proposed system for Face Forgery Detection involves several stages, beginning 
with the acquisition of a dataset containing both real and fake images. These images 
are processed, split, and then trained on multiple deep learning models. The overall 
architecture is illustrated in Figure 3.1, with each component described in detail below. 
 

 

Figure 3.1: Proposed Architecture for Face Forgery Detection 
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3.1.1 Dataset and Pre-processing 
The input custom dataset includes both real and fake face images. To protect input 
authenticity and improve model performance, several pre-processing methods are 
used. Each image is scaled to a standard resolution of 128x128x3 size and pixels 
valued changed to the [0,1] range. This scaling procedure confirms that the model 
receives inputs from a constant range [0, 1], resulting in greater accuracy during 
training. Furthermore, data augmentation techniques such as horizontal flipping, 
rotation, and zooming are used. These changes increase the size of the training dataset, 
enabling the model to generalize effectively while minimizing overfitting. 

3.1.2 Data Splitting and Data Loader 
The custom dataset is divided into three parts to make sure that the models are correctly 
trained, validated, and tested. 70% of the data is allocated to the training set, used to 
calculate model parameters. 15% is reserved for the validation set, which fine-tunes 
hyperparameters and analyzes model performance during training. After data splitting, 
the data loader is responsible for providing batches of face images from the training, 
validation, and test sets, ensuring efficient memory usage. 

3.1.3 Face Forgery Detection Models 
The system incorporates several deep learning models to detect face forgeries. The 
following architectures are considered: 

3.1.3.1 Xception Architecture 
The Xception architecture as shown in Figure 3.2, effective for detecting face forgery 
images, uses depth-wise separable convolutions layers with three flows: Entry Flow 
which extracts basic features, Middle Flow learns complex features or patterns, and 
Exit Flow completes feature extraction. Global Average Pooling (2D) minimizes 
spatial dimensions, sending important data to dense layers. A 512-unit layer, followed 
by ReLU activation and batch normalization, ensures uniform training. To prevent 
overfitting, a dropout layer with a 0.3 rate is applied, and in the last Softmax layer 
performs binary classification, distinguishing between real and fake face images. 

 

Figure 3.2: Xception model architecture for face forgery detection 
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3.1.3.2 ResNet50 
ResNet50’s residual connections enable deep feature learning without needing 
gradients, making it ideal for face forgery detection. It uses conv, identity, and 
bottleneck blocks to improve computation and bottleneck blocks reducing dimensions 
for better performance and feature extraction. 

3.1.3.3 EfficientNetB0 
EfficientNetB0 model uses the compound scaling method to balance depth, width, and 
resolution, and this makes it suitable and versatile for face fraud detection. With 
MBConv layers and squeeze-and-excite optimization, it offers strong performance 
with fewer parameters and lower computational needs. 

3.1.3.4 DenseNet121 
DenseNet121’s closely linked layers enhance gradient flow and feature reuse, making 
it effective for detecting face forgeries. Each layer receives input from all previous 
layers, improving information flow and reducing the vanishing gradients problem. 

3.1.3.5 MobileNet 
MobileNet designed for face forgery detection, uses depth-wise separable 
convolutions and a linear bottleneck to reduce parameters and computational 
workload. Its simplified architecture suits low-power devices like mobile phones, 
offering high accuracy and efficient operation with limited resources. 

3.2 Model Evaluation 

Following training, the models are evaluated using key performance indicators such as 
the confusion matrix and ROC/AUC curve. A classification report also includes 
additional parameters like precision, recall, F1-score, and overall accuracy. These 
parameters provide in-depth performance of models. 

3.3 Experimental Analysis 
The implementations were carried out on Kaggle and Google Colab platforms, 
utilizing T4 and P100 GPUs to ensure efficient processing and accelerated training of 
the deep learning models. 

3.3.1 Dataset 
In Table 4.1 dataset for face forgery detection includes both real and fake images 
collected from several databases. Real face images are gathered with ”140k Real and 
Fake Face,” ”Fake vs. Real Faces,” ”Real and Fake Face Detection,” and ”Flickr Face 
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(FFHQ).” Fake face images contain data from ”140k real and fake faces,” ”fake vs. 
real faces” (which contains images generated by Style-GAN and 
ThisPersonDoesNotExist), ”real and fake face detection,” and ”1 Million Fake Faces 
” (a large-scale dataset including a million synthetic face images created using multiple 
generative adversarial networks). 

Table 3.1: Custom dataset 
Dataset 
Category 

Dataset Source  

Real Images 140k Real and fake face 30008 
Fake vs real face 581 
Real and Fake face 
detection 

1081 

Flickr Face (FFHQ) 70000 
Fake Images 140k Real and fake face 29996 

Fake vs Real faces 700 
Real and Fake face 
detection 

960 

1Million Fake Face 70000 
Total Images  202326 

 
3.3.2 Hyperparameter 
DeiT-Tiny, LeViT-128S, MobileViT-XXS, and TinyViT use hyperparameters to boost 
accuracy. Gains are notable. A learning rate of 0.0005 across 40 epochs with a 
ReduceLROnPlateau scheduler (patience 5, factor 0.5) keeps training stable and 
recovers from slowdowns. Batch sizes are 16 for DeiT and MobileViT and 32 for 
LeViT and TinyViT to balance memory and gradients. Adam serves as optimizer, with 
AdamW for deeper models handling weight decay. Mixed-precision training 
accelerates computation without losing accuracy. Inputs are resized to 128 or 224, 
normalized (mean 0.5, std 0.5), and randomly flipped, raising accuracy from 92.7 to 
99.88 %, as shown in Table 3.2. 

Table 3.2: Hyperparameter settings for different backbone models 
Paramete
r 

DenseNet12
1 

MobileNet ResNet50 EfficientNet Xception 

Image size 128×128 128×128 128×128 128×128 128×128 
Batch size 16 16 16 16 16 
Weights ImageNet ImageNet — — ImageNet 
Activation Sigmoid Sigmoid SoftMax SoftMax SoftMax 
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Loss Binary 
Cross- 
Entropy 

Binary 
CrossEntrop
y 

Categorical 
CrossEntrop
y 

Categorical 
CrossEntrop
y 

Categorical 
CrossEntrop
y 

Learning 
rate 

0.001 0.001 0.001 0.001 0.001 

Optimizer Adam Adam Adam Adam Adam 
 
3.3.3 Experiment on Custom Dataset 
Tables 3.3 and 3.4 present a comprehensive analysis of various models developed for 
face forgery detection using the custom dataset. These evaluations focus on key 
performance metrics such as precision, recall, F1-score, True Positive Rate (TPR), 
True Negative Rate (TNR), and overall accuracy. Among all models, the Xception 
architecture consistently outperformed the others, achieving a precision of 98.93%, a 
recall of 99.34%, and an F1-score of 99.14%, effectively distinguishing between 
authentic and forged images. The MobileNet model followed closely, delivering 
impressive results with a precision of 99.03%, a recall of 99.16%, and an overall 
accuracy of 99.10%, slightly lower than Xception. DenseNet121 and EfficientNetB0 
also performed well, attaining F1-scores of 98.69% and 98.09%, respectively, though 
they showed some variability in accurately separating real and fake images. In contrast, 
ResNet50 underperformed relative to the other models, with an accuracy of 97.62% 
and a recall of 97.86%, indicating a relatively higher tendency to miss actual forgery 
cases. 

Table 3.3: Performance Metrics for Real and Fake Data across Different Models 
Models Precision 

(Real) % 
Recall 
(Real)% 

F1- 
(Real)% 

Precision 
(Fake)% 

Recall 
(Fake)% 

F1- 
(Fake)% 

DenseNet121 98.64 98.74 98.69 98.73 98.64 98.69 
MobileNet 99.03 99.16 99.10 99.16 99.03 99.10 
ResNet50 97.62 97.86 97.74 97.85 97.62 97.73 
EfficientNet 98.11 98.08 98.09 98.08 98.11 98.09 
Xception 98.93 99.34 99.14 99.34 98.93 99.13 

 
Table 3.4: Performance Metrics Summary 

Models TPR (%) TNR (%) FPR (%) FNR (%) Accuracy 
(%) 

DenseNet121 98.74 98.64 1.36 1.26 98.69 
MobileNet 99.16 99.03 0.97 0.84 99.10 
ResNet50 97.86 97.62 2.38 2.14 97.74 
EfficientNetB0 98.08 98.11 1.89 1.92 98.09 
Xception 99.34 98.93 1.07 0.66 99.14 
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Figure 3.3 illustrates DenseNet121’s training process, where training accuracy 
stabilizes near 1.00 and validation accuracy at 0.98. A spike in validation loss and 
accuracy around the 10th epoch indicated overfitting, but it resolved later. 
 

 

Figure 3.3: DenseNet121 Training and Test accuracy and Loss graph 

In Figure 3.4 and 3.5, the ResNet50 and MobileNet training plots reveal early 
overfitting spikes before the 10th epoch, but both models stabilize later. ResNet50’s 
validation accuracy settles around 0.98, while MobileNet achieves 1.00 training 
accuracy and 99% validation accuracy, reflecting efficient learning. 

 

Figure 3.4: ResNet50 Training and Test accuracy and Loss graph 
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Figure 3.5: MobileNet Training and Test accuracy and Loss graph 

 
Figure 3.6: EfficientNetB0 Training and Test accuracy and Loss graph 

 
Figure 3.6 and 3.7 show the EfficientNetB0 and Xception training processes graph. 
Xception shows rapid accuracy improvement, with validation accuracy around 0.99 
and training accuracy reaching 1.00. A small spike appears but is less than in 
ResNet50, DenseNet121, and MobileNet, indicating stable learning. Efficient-NetB0 
exhibits a smooth training curve with no significant spikes, reflecting steady learning. 

 
Figure 3.7: Xception Training and Test accuracy and Loss graph 

3.3.4 Confusion matrix 
The confusion matrices for Xception, ResNet50, EfficientNetB0, DenseNet121 and 
MobileNet show true positives, true negatives, false positives, and false negatives. 
Xception model outperforms the other pretrained models with the fewest errors 97 
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false negatives and 159 false positives.it shows higher accuracy and precision as shown 
in Figure 3.8. 
 

 

Figure 3.8: Confusion matrices for (a) Xception, (b) ResNet50, (c) EfficientNetB0, (d) 
DenseNet121, and (e) MobileNet 

Table 3.5: Face forgery detection using Xception and comparison with existing 
models on a similar dataset 

References Objective Algorithm Accuracy 
(%) 

Limitations 

Manoranjitham 
et al. 

(2024) 

Detecting fake 
images generated by 
GANs 

DenseNet- 
121 

98.00 Manual weight 
assignment and 
adaptability to 
new GANs 

Raveena et al. 
(2024) 

Compare CNN 
models and 
hyperparameters for 
optimal deepfake 
detection 

ResNet50 88.00 Limited dataset 
diversity 

Jannu et 
al. (2024) 

Comparative 
analysis of deepfake 
detection models 

MobileNet 75.00 Model bias and 
limited 
dataset diversity 
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Raza et al. 
(2024) 

Evaluate 
DenseNet121 and 
InceptionResNetV2 
for deepfake 
detection 

MMGAN- 
GUARD 

97.00 Limited dataset 
diversity and 
focus on specific 
architectures 

Wang et al. 
(2021) 

Develop and evaluate 
LBP-Net for robust 
detection 

LBP-Net 98.58 Limited dataset 
diversity and 
using a single 
model 

Neha et al. 
(2023) 

Analyze distortions’ 
impact on deepfake 
detection 

DenseNet 94.23 Limited to 
specific 
distortions and 
model 

Proposed 
Model 

Comparative
 analysis of 
face forgery 
detection models 

Xception 99.14 Limited data 
diversity and lack 
of advanced 
detection 
techniques 
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CHAPTER 4 

FACE FORGERY DETECTION USING 
VARIANTS OF VISION TRANSFORMERS 

AND HYBRID-CLASSICAL QUANTUM 
MODELS 

4.1 Proposed Architecture 

4.1.1 Dataset and Pre-processing 
A balanced collection of real and fake face images is split into training, validation, and 
test sets. Every image is resized to 224×224 pixels, randomly flipped and cropped to 
introduce variation, then channel-wise normalized to match Vision Transformer 
inputs. These steps ensure each model sees data that’s both consistent and diverse. 

4.1.2 Fully Classical ViT-Based Architecture 
Four Vision Transformer backbones—ViT-Base, DeiT, MobileViT, and TinyViT—
are repurposed by replacing their classification heads with a simple two-node layer 
that outputs “real” or “fake.” Experiments alternate between fine-tuning the entire 
network and training only the new head, while the rest remains frozen. Training uses 
the AdamW optimizer with cross-entropy loss, and ReduceLROnPlateau is applied to 
drop the learning rate when progress stalls. Mixed-precision training helps accelerate 
computations. Loss and accuracy logs on both training and validation sets guide the 
optimization process. Final testing reports overall accuracy and confusion matrices, as 
shown in Figure 4.1. 

 

Figure 4.1: Workflow for face forgery detection using Vision Transformers. 
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4.1.3 ViT base model and variants 
The Vision Transformer (ViT) as shown in Figure 3.4, processes images by first 
dividing them into small patches, like cutting a photo into tiles. Each patch is turned 
into a numeric vector and given positional info so the model knows their order. These 
vectors pass through a transformer, which uses self-attention to understand patterns 
and relationships across the image. Inside the transformer, layers normalize inputs, 
apply attention, and use a small neural network to refine the output. Finally, a classifier 
predicts if the image is real or fake. This design mimics how transformers read text, 
but it works on image pieces instead. 

 

Figure 4.2: ViT base model architecture 
4.1.3.1 DeiT 
DeiT (Data-efficient Image Transformer) shrinks the hunger for massive datasets by 
borrowing knowledge from a teacher network. It uses a clever distillation token during 
training, guiding the transformer to learn rich visual features with far fewer images—
making high accuracy more accessible without endless GPU hours. 

4.1.3.2 TinyViT 
TinyViT trims the fat off a standard Vision Transformer to fit on resource-tight 
hardware. By crafting compact attention modules and slimming down channels, it 
delivers surprisingly strong performance with only a few million parameters—ideal 
for edge devices and real-time applications where every millisecond and megabyte 
counts. 
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4.1.3.3 MobileViT 
MobileViT blends the best of convolutions and self-attention to adapt transformers for 
smartphones. It weaves lightweight transformer blocks into a convolutional backbone, 
capturing both local details and global relationships, yet stays lean enough to run 
smoothly on mobile CPUs and GPUs—perfect for on-device image tasks. 

4.1.3.4 LeViT 
LeViT rearranges the transformer playbook by interleaving convolutional stages with 
attention layers in a pyramidal design. This hybrid structure drastically cuts down 
inference time and memory use, while still learning expressive representations—an 
excellent match for scenarios demanding ultra-fast inference on modest hardware. 

4.1.3.5 Swin 
The Swin Transformer is an efficient, hierarchical vision transformer that computes 
self attention within shifted local windows, enabling linear computational complexity 
and cross-window connections. It produces multi-scale feature maps for vision tasks, 
achieving robust, state-of-the-art performance across classification, detection, and 
segmentation. 

4.1.4 Hybrid Quantum–Classical Model 
In this hybrid setup, a frozen Vision Transformer (Swin-Tiny or MobileViT-XXS) 
serves as a feature extractor. Its output vector is first reduced to an intermediate size 
(256 or 512), then further down to match two qubits. A tanh activation maps these 
values into the [–1,1] range, which are then scaled into rotation angles for the quantum 
layer. The quantum circuit, implemented using Pennylane, applies angle-encoding 
gates on each qubit and entangles them through a ring of CNOTs. This “rotate → 
entangle” block is repeated for a fixed quantum depth, as shown in Figure 3.5. During 
training, only the quantum circuit parameters and the final dense layer are updated. 
Pauli-Z measurements on each qubit produce classical outputs, which are passed into 
the dense layer to classify the input as real or fake. 

 

Figure 4.3: Hybrid quantum-classical architecture with Vision Transformer backbone 
and quantum enhanced classifier. 
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4.2 Model Evaluation 

Both the fully-classical and hybrid quantum–classical ViT models are evaluated by 
plotting training/validation loss and accuracy curves and computing test-set accuracy. 
Confusion matrices reveal true versus predicted outcomes, while precision and recall 
per class quantify correctness and completeness. The quantum variant additionally 
leverages gates like Hadamard, RY rotations, and CNOT entanglers within its circuit 
to enhance decision boundaries. 

4.3 Experimental Analysis 

Both fully-classical and hybrid quantum–classical ViT models were implemented on 
Kaggle (P100 GPUs and Google Colab), with PennyLane powering the quantum 
layers. Evaluation includes training/validation loss and accuracy plots, test-set 
accuracy, and confusion matrices. Precision and recall per class quantify performance, 
while the quantum model employs Hadamard, RY rotations, and CNOT gates to refine 
decision boundaries. 

4.3.1 Dataset 
The 140k Real and Fake Faces dataset contains 70,000 authentic face images from 
Flickr (Nvidia) and 70,000 fake faces generated by StyleGAN. It is widely used for 
training and evaluating Face forgery detection models, supporting robust real-vs-fake 
face classification. 

4.3.2 Hyperparameter 
DeiT-Tiny, LeViT-128S, MobileViT-XXS, and TinyViT use hyperparameters to boost 
accuracy. Gains are notable. A learning rate of 0.0005 across 40 epochs with a 
ReduceLROnPlateau scheduler (patience 5, factor 0.5) keeps training stable and 
recovers from slowdowns. Batch sizes are 16 for DeiT and MobileViT and 32 for 
LeViT and TinyViT to balance memory and gradients. Adam serves as optimizer, with 
AdamW for deeper models handling weight decay. Mixed-precision training 
accelerates computation without losing accuracy. Inputs are resized to 128 or 224, 
normalized (mean 0.5, std 0.5), and randomly flipped, raising accuracy from 92.7% to 
99.88%, as shown in Table 4.1. 

Table 4.1: Hyperparameter configurations for the Vision Transformer variants 
Parameter DeiT-Tiny LeViT-128S MobileViT- 

XXS 
TinyViT 

Batch Size 16 32 16 32 
Image Size 128 224 224 224 
Num Epochs 40 40 40 40 
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Learning Rate 0.0005 0.0005 0.0005 0.0005 
Optimizer Adam AdamW Adam AdamW 
LR Patience 5 5 5 5 
LR Factor 0.5 0.5 0.5 0.5 

 
Quantum circuits use 2 qubits (n qubits = 2) and a single layer (q depth = 1) to limit 
noise while enabling CNOT-based entanglement. Gate rotations start at q delta = 0.01 
to avoid unstable updates. A learning rate of 0.0004 with batch size 32 ensures steady 
gradients over 30–40 epochs, balancing overfitting and underfitting. Adaptive 
schedulers (such as ReduceLROnPlateau or StepLR) adjust the learning rate when 
validation performance stalls. Pretrained backbones like MobileViT-XXS and Swin-
Tiny remain frozen; only the quantum head is trained using the Adam or AdamW 
optimizer. Mixed precision accelerates training while maintaining numerical stability. 
Test accuracies range from 90.8% to 97.6%, as shown in Table 4.2. 
 

Table 4.2: Hyperparameter configurations for the hybrid quantum-classical models 
 

Parameter SWIN-Tiny 
(RY+RX+RZ) 

SWIN-Tiny 
(RY) 

MobileViT-
XXS 
(RY) 

Model 
Backbone 

SWIN-Tiny SWIN-Tiny MobileViT-
XXS 

Feature 
Extractor Size 

768 768 384 

Intermediate 
Size 

256 256 512 

Quantum Layer 
Structure 

Embedding: RZ, 
RY, RX; 
Entangling: 
CNOT 
(ring); repeated 
by q depth 

Embedding: RZ, 
RY, RX; 
Entangling: 
CNOT 
(ring); repeated 
by q depth 

Embedding: RZ, 
RY, RX; 
Entangling: 
CNOT 
(ring); repeated 
by q depth 

Quantum Gates 
Used 

RZ, RY, RX, 
CNOT 

H, RY, CNOT RY, CNOT 

Number of 
Qubits 

2 2 2 

Quantum Depth 1 1 1 
Qubit Angle 
Shift 

0.01 0.01 0.01 

Learning Rate 
(LR) 

0.0004–0.0005 0.0004–0.0005 0.0004 
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Gate Combina- 
tion 

RY + RX + RZ RY RY 

 
4.3.3 Quantum Circuit Structure 
Figure 4–6 illustrate hybrid quantum circuits for image classification. Swin-Tiny with 
RY (Fig. 4) uses Hadamard and RY gates with linear entanglement. MobileViT-XXS 
with RY (Fig. 5) adds RX and RZ for richer embeddings. Swin-Tiny with RY+RX+RZ 
(Fig. 6) stacks rotations and double CNOT entanglement for deeper quantum feature 
encoding. 

 

Figure 4.4: Swin-Tiny RY circuit using Hadamard, RY gates, and CNOT-based 
entanglement 

 

Figure 4.5: Swin-Tiny RY+RX+RZ circuit with full rotation gates and layered 
entanglement 

 

Figure 4.6: MobileViT-XXS RY circuit with RZ, RY, RX embeddings and ring-style 
CNOTs. 
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4.3.4 Experiment on Dataset 

 
Figure 4.7: Accuracy over epochs for DeiT-Tiny 

 

 
Figure 4.8: Accuracy over epochs for LeViT 
 

 
Figure 4.9: Accuracy over epochs for Tiny-ViT 
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Figure 4.10: Accuracy over epochs for MobileViT 
 

 
Figure 4.11: Accuracy over epochs for MobileViT with RY 
 

 
Figure 4.12: Accuracy over epochs for Swin with RY 
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Figure 4.13: Accuracy over epochs for Swin with RY+RX+RZ 
 

4.3.5 Confusion Matrix 
 

 
(a)                                              (b)                                        (c)          

 
      (d)                                                  (e)                                       (f) 

 
                    (g) 

Figure 4.14: Confusion matrices for face forgery detection using different 
transformer-based and hybrid models. 
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(a) DeiT-Tiny, (b) LeViT, (c) Tiny-ViT, (d) MobileViT-XXS, (e) MobileViT with 
RY, (f) Swin with RY, and (g) Swin with RY + RX + RZ. 

 
Table 4.3: Performance metrics of ViT variants and quantum-enhanced models for 

face forgery detection. 
 

Model Accuracy Precision Recall F1-Score 
DeiT 0.9270 0.9356 0.9171 0.9263 
LeViT 0.9945 0.9927 0.9963 0.9945 
MobileViT-XXS 0.9988 0.9987 0.9989 0.9988 
TinyViT 0.9974 0.9982 0.9967 0.9974 
MobileViT with RY 0.9130 0.9130 0.9130 0.9129 
Swin with RY 0.9761 0.9764 0.9762 0.9762 
Swin with 
RY+RX+RZ 

0.9747 0.9750 0.9747 0.9747 

 
Table 4.4: Comparative analysis of state-of-the-art and proposed models for face 
forgery detection. 
 

Author 
Name 

Objective of 
Paper 

Algorithm 
Used 

Accuracy Limitations 

Rao et al. Detect deepfakes 
using a CNN for 
enhanced media 
security 

TruceNet 
(CNNbased image 
classifier) 

93.01% May produce 
false positives 
and false 
negatives. 

Naeem et 
al. 

Analyze trends 
in real, deepfake, 
and synthetic 
facial images 

Eight DL models; 
ViT Patch16 
performed 
best 

98.25% Limited dataset 
diversity 
reduces 
generalizability. 

Usmani et 
al. 

Develop a 
lightweight
 model 
for deepfake 
detection 

Shallow Vision 
Transformer 

88.52% Limited dataset 
size hinders 
generalization. 

Shobhit et 
al. 

Propose a 
lightweight CNN 
for forged image 
detection 

MiniNet (fully 
convolutional 
neural network) 

95% Minimal 
architecture 
may limit 
performance on 
new datasets. 
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Sherin et al. Propose 
explainable 
deepfake 
detection with 
bias 
considerations 

Inception-based 
network + 
explainability 
framework 

99.87% Potential bias in 
diverse 
scenarios and 
limited scope. 

Kerenalli et 
al. 

Detect DL 
generated fake 
faces by 
blending 
CNN and ViT 

EfficientNet + 
Shifted Window 
Transformer 
(Swin) 

98.04% High model 
complexity may 
hinder real-time 
deployment. 

Proposed 
Model 
(ViT 
variant) 

Detect real vs 
fake faces using 
lightweight ViT 
architecture 

MobileViT-XXS 99.88% Limited dataset 
diversity may 
affect 
generalization 
to unseen 
domains. 

Proposed 
Model 
(Quantum) 

Quantum 
enhanced 
deepfake 
detection using 
Swin and 
hybrid quantum 
layer 

Swin with RY 
(Quantum 
enhanced Swin 
Transformer) 

97.61% Quantum layers 
increase 
computation 
time and are 
sensitive to 
noise and 
dataset 
diversity. 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

A diverse set of modern and emerging architectures underwent thorough testing for 
detecting face forgeries, covering classic convolutional neural networks (CNNs), 
compact Vision Transformers (ViTs), and hybrid quantum‑classical models. A 
balanced collection of roughly 200,000 images—half genuine faces from the Flickr 
Face Dataset and half synthetic forgeries crafted with StyleGAN—provided the 
evaluation framework. Results highlight how transfer learning and architectural 
innovation can raise detection accuracy to new heights. Within the realm of CNNs, 
Xception claimed the highest score at 99.14% accuracy on the test set. Other 
high‑performing networks—ResNet50, EfficientNetB0, DenseNet121, and 
MobileNetV2—each surpassed 97% accuracy. These outcomes underline the 
advantage of leveraging pre‑trained weights tuned on massive datasets, rather than 
training from the ground up. Such an approach cuts down both development time and 
resource demands while attaining near‑perfect precision. 

 
Attention then shifted to lightweight transformer designs. MobileViT‑XXS and 
TinyViT achieved over 99.8% accuracy, proving that even small transformer blocks 
can rival larger models. Their ability to detect long‑range dependencies and subtle 
manipulation artifacts makes them particularly well suited for real‑time applications 
on mobile devices or embedded hardware. Lower memory footprints and reduced 
inference times further bolster their appeal for on‑device deployment. A hybrid 
quantum‑classical experiment integrated minimal quantum circuits into a Swin 
Transformer backbone. The circuits consisted of two qubits, each undergoing RY, RX, 
and RZ rotations, followed by a ring of CNOT entangling gates. Despite limitations in 
current quantum hardware, this quantum‑enhanced Swin model reached 97.61% 
accuracy. Findings suggest that quantum superposition and entanglement may help 
expose non‑linear patterns that sometimes escape classical detection methods. 
Although the quantum lift was modest, it opens the door to cloud‑based quantum 
resources enhancing future forensic tools. 

 
Many directions offer to move this field forward. Increasing dataset diversity using 
real-world alterations, video sequences, and audio-visual deepfakes enhances model 
robustness in diverse settings. Expanding quantum components, including more 
qubits, deeper circuits, and better hybrid systems, can increase quantum-driven 
advantages. Adding confidence-scoring systems improves integration into social 
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media moderation, biometric security, and border-control checkpoints, automatically 
identifying suspect data for human evaluation. Pre‑trained CNNs offer rapid 
development and high accuracy, making them ideal when computational resources are 
plentiful. Compact ViTs strike a balanced compromise between speed, resource usage, 
and performance, fitting edge‑device needs perfectly. Hybrid quantum-classical 
models, which are still evolving, aim to create next-generation detectors that integrate 
with conventional techniques increase robustness and quantum strengths. In the race 
against digital deception, careful selection of modelsand techniques, continued dataset 
expansionand diversity, and deeper quantum integration can result in face forgery 
detection systems with remarkable accuracy, speed, and durability. 
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