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ABSTRACT 
 

 

Plant diseases remain a significant global agricultural productivity threat, necessitating the 

adoption of Artificial Intelligence (AI), and more so Deep Learning (DL), in precision 

agriculture. This thesis distills results from 25 peer-reviewed journal articles between 2020 

and 2025 on novel DL methods for the identification of plant diseases, with a heavy focus 

on Convolutional Neural Networks (CNNs). More than half of the studies reviewed 

employed CNN-based models because of their established success in accurate classification 

and real-time diagnosis. 

Lightweight optimized CNN models like Shallow CNN, VGG-ICNN, and Optimized 

Custom CNN were often designed for mobile and resource-constrained environments. Some 

studies incorporated enhancement methods such as feature reduction, residual learning, and 

optimization algorithms (e.g., Beluga Whale Optimization) to enhance further model 

efficiency and accuracy. Hybrid models incorporating CNNs with other deep learning 

techniques—such as LSTM networks, autoencoders, and Vision Transformers (ViTs)— 

proved to be a notable trend. Architectures such as PlantXViT and MobilePlantViT exhibited 

promising performance in terms of both interpretability and performance. 

Data augmentation strategies like LeafGAN also helped enhance model generalization 

through the creation of synthetic disease images. The research also investigated practical 

applications, such as mobile apps and real-time detection software, with high accuracy rates 

(up to 99%). Common datasets such as PlantVillage and AgroPath were used as the 

foundation for training and testing these models. In general, the researched papers depict an 

increasing trend towards lightweight, hybrid, and explainable deep learning models, pushing 

the research area of automatic plant disease detection and enabling sustainable, technology- 

based agricultural practices. 

Keywords: Plant Disease Detection, Deep Learning, Convolutional Neural Network (CNN), 

Vision Transformer (ViT), Hybrid Models, Lightweight Architectures, Mobile Deployment, 

Data Augmentation, Precision Agriculture, Automated Diagnosis. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Agriculture is a core driver of economic and social progress of countries, especially in agrarian 

economies such as India, where more than 60% of its population relies on agriculture for 

sustenance. Nevertheless, crop yield and quality are greatly impacted by plant diseases, which not 

only impact agricultural productivity but also food security, resulting in economic misery for 

farmers. Historically, the identification of plant diseases has depended on the skills of agricultural 

experts and pathologists who observe symptoms through visual examination. The process is 

typically manual, labor-intensive, susceptible to human error, and not scalable over extensive 

farmlands or rural areas with poor access to experts. 

In recent years, digital agriculture and intelligent farming technologies have presented themselves 

as potential solutions to address this deficit. Among them, an image-based plant disease detection 

has garnered considerable attention as it is non-invasive, quick, and scalable. With the power of 

computer vision, artificial intelligence (AI), and deep learning, these methods enable automated 

disease identification based on leaf images taken with smartphones or drones. This fits in with the 

wider trend to precision agriculture, which is about trying to optimize inputs (fertilizer, pesticides, 

water) in real time, and thereby improve productivity and sustainability. 

The dramatic advancement of deep learning, especially Convolutional Neural Networks (CNNs), 

has dramatically enhanced the capacity to recognize visual patterns on plant leaves. The models 

do away with the need for laborious manual feature extraction, learning hierarchical features 

directly from raw image data. With more and more annotated datasets becoming available and 

computer power being democratized through GPUs and cloud platforms, researchers and engineers 

can now train complex models that match expert-level precision. 

 

1.2 Problem Statement 

Even with the improvement of deep learning and the existence of varied datasets, there are still 

issues in the transfer of research solutions into field deployable applications. Most of the models 

today are trained and tested under optimized conditions on high-quality datasets like PlantVillage 

that consist of images with clear backgrounds and consistent illumination. Unfortunately, field 

conditions tend to have varying illumination, occlusion, complex backgrounds, and noise that 
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greatly affect model performance. 

Additionally, most deep learning models are computationally expensive, requiring significant 

memory and processing power, which limits their usability on mobile or edge devices. 

Furthermore, there is a lack of explainability in model predictions, making it difficult for end- 

users, such as farmers and agronomists, to trust the automated diagnoses. The challenges of 

handling multiple plant species, class imbalance, and limited labeled data further complicate the 

deployment of scalable, high-performing models. 

This research addresses these gaps by analyzing and evaluating emerging deep learning models 

and proposing lightweight, interpretable, and robust approaches suitable for deployment in real- 

world agricultural environments. 

1.3 Objectives of the Study 

 

• To analyze and evaluate recent deep learning approaches, especially CNN-based and 

hybrid models, used in plant disease identification. 

• To explore novel architectures such as Vision Transformers and attention-based 

mechanisms that offer improved performance. 

• To assess the performance and usability of publicly available and real-world datasets in 

training and testing disease classification models. 

• To identify limitations and propose future research directions for creating more 

generalizable and deployable models. 

 

1.4 Scope and Limitations 

 

This thesis concentrates on deep learning approaches for plant disease detection using image- 

based data. It emphasizes convolutional and transformer-based models while evaluating their 

architectural improvements, performance metrics, and adaptability to various datasets. The 

scope includes: 

• A literature review of peer-reviewed papers from 2020 to 2025. 
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• Comparative analysis of performance using public datasets. 

 

• Assessment of model complexity and suitability for edge deployment. 

 

Limitations of the study include: 

 

• Exclusion of non-visual modalities such as hyperspectral imaging or chemical sensing. 

 

• Focus on static images rather than video or temporal data. 

 

• Lack of primary data collection; the study relies on secondary datasets. 

 

1.5 Working Methods 

 

The research follows a systematic methodology beginning with an extensive literature review 

using databases like IEEE Xplore, Scopus, and ScienceDirect. Selected papers between 2020 

and 2025 were shortlisted based on relevance, novelty, and impact. Key aspects such as model 

architecture, dataset used, number of parameters, performance accuracy, and training time were 

extracted and tabulated. 

Datasets including PlantVillage, PlantDoc, and AgroData were sourced and analyzed for class 

diversity, image resolution, real-world variability, and annotation quality. Theoretical 

evaluation was complemented by visual comparisons of model structures and summary tables. 

1.6 Organization of the Thesis 

 

The structure of the thesis is as follows: 

 

• Chapter 1 introduced about the motivation, background, problem statement, objectives, 

scope and limitations, and working methodology. 

• Chapter 2 reviews traditional and deep learning methods for plant disease detection, 

including recent innovations such as Vision Transformers (ViTs), hybrid architectures, 

and the PYOLO model. 

• Chapter 3 presents a literature survey of recent peer-reviewed research papers, 

identifying trends, research gaps, and opportunities. 
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• Chapter 4 includes experimental analysis, model comparisons, and a discussion of 

performance metrics. 

• Chapter 5 presents a SWOT analysis framework. 

 

• Chapter 6 discusses limitations and outlines future directions. 

 

• The Conclusion summarizes the key contributions of the thesis, highlights the best- 

performing model, and proposes future directions to assist researchers and stakeholders 

in decision-making. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

Identification and control of plant diseases are essential parts of contemporary agricultural 

activities. Plant diseases play a major role in food security, crop production, and economic 

equilibrium worldwide. Plant disease identification has been done in the past by trained 

pathologists by visual examination, which may be time-consuming, labor-intensive, and subject to 

human errors. But then came the progress in artificial intelligence (AI) and more so in deep learning 

technologies that has transformed this field entirely. With the emergence of Convolutional Neural 

Networks (CNNs) for image processing and image classification tasks, their applications have 

found vast applications in plant pathology. 

CNNs, being a category of deep neural networks, are particularly effective for image recognition 

tasks because they have the capability to extract hierarchical features automatically from raw 

image data. This also negates the requirement for manual feature engineering, which was a major 

drawback in previous approaches. The ability of CNNs to automate feature extraction allows them 

to notice little differences between healthy and sick leaves, which human experts may fail to 

observe. In recent years, more and more research studies have been made public that use CNN- 

based models to detect plant disease, demonstrating the power and precision of these techniques. 

Hassan et al. [1], for instance, presented a shallow CNN model tailored particularly for 

environments that lack resources, such as rural farms where computation is limited. This light 

model registered impressive performance, making it a viable solution for real-time plant disease 

monitoring. Other research, as in [2], employed deep CNN models to identify a large variety of 

plant diseases among various species with high accuracy. Such models are advantaged by methods 

such as data augmentation, dropout layers, and batch normalization to enhance generalization and 

minimize overfitting.With the inclusion of hybrid techniques, CNN performance has also been 

boosted. For example, Smitha et al. [5] used a new Beluga Whale Optimization Mechanism to 

optimize CNN parameters to enhance the predictive strength of the model. Likewise, PlantXViT 

[6] blends Vision Transformers with CNNs to develop an explainable, light-weighted network that 

can easily manage the variability of real-world plant disease datasets. Not only do these hybrid 

models enhance accuracy but also provide enhanced interpretability, which is essential in sensitive 

agriculture applications. 
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Advanced data augmentation and synthetic data creation have also been instrumental in model 

robustness enhancement. LeafGAN, a model introduced by Quan Huu Cap et al. [7], applies 

generative adversarial networks (GANs) to generate synthetic leaf images of diseased leaves with 

much added diversity to the training dataset and thus enhanced classification accuracy. Further, 

DS_FusionNet [8], a bidirectional knowledge distillation dual-stream CNN, achieves high 

performance even with small training data. 

Another important area of research has been extending CNN-based models to mobile and edge 

computing devices. It is especially significant for in-field diagnosis, where internet connectivity 

and high-performance computational resources are not available. MobilePlantViT [9], for instance, 

is a mobile-friendly hybrid Vision Transformer that provides remarkable accuracy at a compact 

model size. Similarly, Oni and Prama [10] developed a custom CNN capable of detecting tomato 

leaf diseases in real-time, achieving over 95% accuracy and outperforming several benchmark 

models. 

Multi-modal and sequential learning approaches have also been in focus. Works like Kanakala and 

Ningappa [11] combine CNNs with Long Short-Term Memory (LSTM) networks to handle 

temporal progression of disease patterns, thus enhancing the detection of diseases with progressive 

symptoms. Other methods have used convolutional autoencoders [12] to carry out unsupervised 

pre-training, thus being able to learn more features. 

The extensive use of CNNs for plant disease detection is also reflected in an array of datasets and 

experimental configurations. Ranging from controlled datasets such as PlantVillage to real-world, 

in-the-wild smartphone and drone images, CNNs have demonstrated good generalization across 

diverse data sources. Work such as Foysal et al. [13] and Thakur et al. [15] further illustrates how 

CNN-based models can effectively be embedded within mobile apps and real-time monitoring 

systems, enabling sustainable agriculture. 

In short, the application of CNNs in plant disease detection has several benefits: scalability, real- 

time performance, lower reliance on domain knowledge, and flexibility across different plant 

varieties and disease types. These approaches are paving the way toward a wiser, data-centric 

practice in agriculture, with the potential to turn the industry into a more productive and sustainable 

field. The ongoing development of CNN architectures, combinations of models, and mobile 

deployments indicates a promising future for AI-based agriculture. 
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2.2 Traditional Strategies 

Before the widespread adoption of deep learning technologies, the identification of plant diseases 

was primarily based on traditional strategies, such as manual inspection, rule-based expert systems, 

and conventional machine learning. These traditional strategies, though fundamental in 

agricultural diagnostics, had numerous limitations regarding scalability, precision, and 

consistency. 

Manual inspection is the most traditional technique employed by farmers and agronomists to detect 

plant diseases. This method consists of visually inspecting plant leaves and other organs for signs 

such as discolouration, spots, wilting or deformation. Even though this method takes advantage of 

the area of expertise of trained persons, the method is subject to human discretion and is tedious. 

The success of manual diagnosis depends on conditions of illumination, stage of disease and 

fatigue of humans, hence is less consistent in large-scale agriculture practices. 

Rule-based expert systems were the initial attempts to automate disease identification in plants. 

These systems employed pre-stated logical rules based on expert knowledge to deduce disease 

types from observed symptoms. For example, if a leaf had circular brown spots with yellow halos, 

the system could identify it as early blight. Although such systems had the advantage of offering a 

disciplined system of diagnosis, their greatest limitation was that they failed to accommodate the 

variability and complexity of actual disease presentation. Anything other than adherence to the 

programmed rules could lead to false or missed diagnoses. 

The advent of digital image processing presented new possibilities for plant disease diagnosis. 

Traditional machine learning methods like Support Vector Machines (SVM), K-Nearest Neighbors 

(KNN), Random Forests, and Decision Trees were utilized to diagnose plant diseases using 

features extracted from images of leaves. These features generally consisted of color histograms, 

shape descriptors, and texture measures like entropy and contrast. These handcrafted features were 

subsequently passed as inputs to classifiers for predicting disease. 

While these approaches were much better than hand-crafted systems, they were not without their 

limitations. Prediction quality relied strongly on the quality and appropriateness of manually 

obtained features. These models also tended to need high levels of domain expertise in feature 

engineering and were sensitive to lighting, background, and leaf orientation changes. Experiments 

like those discussed in [16][17][18] have proven that although traditional models can work 

reasonably well under laboratory-controlled settings, their performance tends to diminish when 
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tested on a variety of real-world datasets. 

Yet another significant drawback of the conventional methodologies was their lack of efficiency 

in dealing with multi-class classification tasks. Most models were only capable of distinguishing 

between two or three classes of diseases, making them less useful practically. Moreover, the 

methods were not scalable; adding new diseases or crop types to the system generally necessitated 

re-engineering the feature extraction process and retraining the entire model. 

Additionally, conventional methods had limited ability for real-time deployment and decision 

making. Because they were not programmed to learn hierarchical features or dynamically adjust 

to novel data, their usefulness in real-time agricultural decision making was very little. Such 

limitations resulted in a growing interest for stronger, adaptive, and more accurate methods— 

ultimately leading to the global uptake of deep learning methods, specifically CNNs. 

In summary, though conventional methods of plant disease detection provided the foundation for 

automated diagnosis, their inaccuracies, lack of flexibility, and inability to scale rendered them 

less ideal for contemporary agricultural issues. The move towards CNN-based approaches is a 

logical step forward towards more intuitive and robust agricultural diagnostic systems. 

2.3 Deep Learning Emergence 

Deep Learning (DL) has revolutionized the detection of plant diseases by allowing machines to 

learn feature representations from raw images without human intervention. The flagship 

architecture that caused this revolution is the Convolutional Neural Network (CNN). CNNs are 

made up of several layers that hierarchically extract features from edges and textures to complex 

patterns that are indicative of disease symptoms [1]. 

At a high level, a CNN typically consists of: 

• Convolutional Layers: Use filters on the input image to look for features like edges, patterns, 

and color blobs. The filters are learned during training. 

• Pooling Layers: Downsample the spatial data, retaining the most significant features. This 

process reduces computational cost and enhances generalization. 

• Fully Connected Layers: Pass the filtered high-level data to the end output classes through dense 

connections. 

These layers cooperate synergistically to recognize complex patterns and inter-relationships in 

plant images. CNN model trained on quality datasets such as PlantVillage can attain over 95% 

accuracy, which even rivals human performance in some tasks [1]. 
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Figure 1: Basic CNN Architecture used for Plant Disease Classification 
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Recent Trends and Deep Learning Methods (2020–2025) 

 

1. Custom CNN Architectures: Tailored lightweight CNNs, such as the one proposed by 

Jaideep Singh et al. [2], achieved 96.91% accuracy for maize disease classification. 

These models balance performance and efficiency, making them suitable for mobile 

platforms. 

2. Residual and Dense Networks: ResNet [7] and DenseNet [8] introduce skip 

connections and dense connections, respectively, that allow gradients to flow 

efficiently, addressing the vanishing gradient problem and enabling deeper 

architectures. 

3. Autoencoders and LSTM Networks: Autoencoders have been used for denoising 

plant images before classification, while LSTM networks help model temporal 

evolution of symptoms across time-series image datasets [9], [10]. 

4. Hybrid Models (CNN-LSTM): These models combine CNNs for spatial feature 

extraction and LSTMs for capturing temporal patterns. Such architectures are useful 

when plant disease progression is monitored over time. 
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Figure 2: LSTM Model Architecture 
 

 

 

Figure 3: Hybrid CNN-LSTM Model Architecture 

 

5. Metaheuristic Optimization: Techniques like Beluga Whale Optimization (BWO) and 

Genetic Algorithms are applied to optimize CNN parameters, achieving higher accuracy with 
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reduced computational costs [11]. 

 

These advancements reflect a paradigm shift towards more interpretable, accurate, and efficient 

deep learning solutions for plant disease detection. 

 

2.4 Recent Innovations 

 

In the past two years (2024–2025), deep learning research has embraced even more advanced 

architectures for plant disease identification. 

 

Vision Transformers (ViTs) 

 

ViTs represent a novel architecture originally developed for Natural Language Processing and 

later adapted to vision tasks. Instead of using convolutional layers, ViTs divide images into 

patches, which are flattened and linearly embedded. These patch embeddings are fed into a 

transformer encoder with self-attention mechanisms. 

• Global Context Learning: Unlike CNNs that learn local features, ViTs capture long- 

range dependencies through multi-head self-attention. 

• PlantXViT: A transformer-based model for plant disease detection with over 98% 

accuracy [13]. 

• MobilePlantViT: A lightweight ViT designed for mobile applications, offering fast 

inference and high accuracy [14]. 
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Figure 4: Vision Transformer (ViT) Workflow 

 

 

 

 

Pyramid YOLO (P-YOLO) 

 

P-YOLO extends the YOLOv4 framework by integrating several enhancements: 

 

• Cross-Stage Partial Networks (CSPNet): Reduce computational load. 

 

• Feature Pyramid Networks (FPN): Improve multi-scale object detection. 

 

• Spatial Attention Mechanism: Highlights important spatial features. 
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Figure 5: Pyramid YOLO (P-YOLO) Detection Architecture 

 

This makes P-YOLO ideal for real-time disease detection across varying leaf sizes and 

occlusions. A 2024 study demonstrated its superior performance in detecting multiple diseases 

under real-world conditions [15]. 
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2.5 Dataset and Analysis of Various Datasets 

 

The performance of DL models depends significantly on the quality and diversity of training 

datasets. Below is a comparative analysis of widely used datasets: 

 

 

Figure 6: Sample Leaf Images from PlantVillage, AgroPath, and PlantDoc 
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TABLE 1. VARIOUS DATASETS 

 

 

Dataset 

 

Description 

 

Classes 

 

Image 

Count 

 

Sources 

 

PlantVillage 

 

Healthy and diseased 

leaves of multiple crops 

 

38 

 

54,000+ 

 

[1], [16], 

[21] 

 

AgroPath 

 

Tea leaf images with 

annotated quality labels 

 

6 

 

12,000+ 

 

[20] 

 

Flavia+ 

 

Maize leaf dataset with 

extended augmentation 

 

5 

 

10,000+ 

 

[6] 

 

TomatoLeafSet 
 

Tomato leaf dataset 

with 4 labeled diseases 

 

4 

 

18,500+ 

 

[11], [22] 

• PlantVillage: Ideal for initial model development due to its clean, curated images. 

 

• AgroPath & PlantDoc: Capture field-based variability, enabling robustness 

evaluation. 

• FGVC7: Supports fine-grained classification, essential for distinguishing visually 

similar diseases. 

Together, these datasets serve as a comprehensive benchmark suite for training, validating, and 

comparing deep learning models in agricultural diagnostics. 
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CHAPTER 3 

LITERATURE SURVEY 

 

3.1 Summary of Reviewed Research Papers 

This section provides a detailed examination of numerous peer-reviewed research papers 

published between 2020 and 2025, focusing on deep learning applications in plant disease 

identification. Emphasis is placed on Convolutional Neural Networks (CNNs), while also 

exploring hybrid models and novel optimization techniques. Each paper is reviewed with 

respect to the model architecture, dataset employed, performance metrics, and unique 

contributions. Reference numbers correspond to the updated bibliography for citation 

consistency. 

1. Hassan et al. (2021) propose a shallow CNN designed for low-resource environments. 

The model, tested on the PlantVillage dataset, achieved 94.3% accuracy. Its minimal 

architecture ensures faster inference but demonstrates limited performance on noisy, 

real-world images. 

2. A 2022 study presents a deep CNN trained on 42 diseases across 16 plant species, 

reporting 98.67% accuracy through data augmentation. However, the model was not 

validated using field datasets, raising concerns about generalizability. 

3. A hybrid CNN-PCA approach (2022) effectively reduces dimensionality and training 

time while achieving 96.4% accuracy on cleaned data. The combination reduces 

overfitting and integrates classical and deep learning methodologies. 

4. Smitha et al. (2024) introduce a CNN model optimized using Beluga Whale 

Optimization. The technique improves convergence stability, achieving 97.9% 

accuracy, though details on the dataset are limited. 

5. A 2024 study emphasizes early-stage disease detection using CNNs with tiny filters. 

The model reached 92.1% accuracy by identifying fine-grained texture changes but 

lacks transparency regarding dataset composition. 

6. Singh et al. (2024) focus on maize disease detection using CNNs trained on diverse 
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field data. The model achieved 96.91% accuracy, showing robustness to environmental 

variability. 

7. LeafGAN by Cap et al. (2020) leverages GANs and attention mechanisms to generate 

realistic diseased leaf images for data augmentation, improving CNN accuracy by 5%. 

8. DS_FusionNet (Song et al., 2025) employs dual-stream deformable CNNs with 

bidirectional knowledge distillation. It achieved over 90% accuracy using just 10% of 

training data, demonstrating efficiency in low-data settings. 

9. Thakur et al. (2022) propose PlantXViT, integrating CNN and Vision Transformer 

layers. It includes Grad-CAM visualizations and attention maps for interpretability, 

showing consistent performance across five datasets. 

10. MobilePlantViT (Tonmoy et al., 2025) is a compact hybrid ViT-CNN model with only 

0.69M parameters, achieving 97.3% accuracy. Its mobile-focused design lacks 

comprehensive benchmarking. 

11. Oni et al. (2025) developed a CNN for real-time tomato leaf disease detection, 

outperforming YOLOv5, MobileNetV2, and ResNet18 with 95.2% accuracy. Latency 

and deployment aspects are emphasized. 

12. Foysal et al. (2024) integrate a CNN into a mobile app capable of diagnosing 26 

diseases across 14 crops with 98.14% accuracy. However, the study does not detail 

update mechanisms for model retraining. 

13. Kanakala et al. (2025) combine CNN and LSTM to capture both spatial and temporal 

features across 38 disease classes, achieving 96.4% accuracy and enabling disease 

progression tracking. 

14. A 2024 paper presents a lightweight depthwise CNN with Squeeze-and-Excitation 

blocks for grape leaf diseases, reporting 99.14% accuracy and strong edge computing 

potential. 

15. A 2024 study on apple leaf disease detection uses a bilinear CNN with dual feature 

streams to improve spatial localization, achieving 97.6% accuracy, especially on minor 
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lesion spots. 

 

16. A 2022 comparative study evaluates DenseNet121, ResNet50, InceptionV4, and 

VGG16 on the PlantVillage dataset. DenseNet121 performs best with 98.3% accuracy, 

highlighting transfer learning’s effectiveness. 

17. Kumar et al. (2023) propose a basic 2D CNN model for crop disease detection, 

achieving 94.7% accuracy. The simplicity and scalability make it suitable for resource- 

constrained deployment. 

18. A 2024 hybrid model merges VGG16 and InceptionV2 in a two-stream configuration, 

achieving 98.89% accuracy with resilience to complex backgrounds. 

19. A 2024 hierarchical CNN splits disease classification into plant-type and disease-type 

phases, enhancing modularity and accuracy to 96.2%. 

20. AgroPath (Ahmed et al., 2022) includes a quality-check layer within the CNN pipeline 

to filter poor-quality inputs, reaching 99.42% accuracy on crowd-sourced data. 

21. Latha et al. (2021) develop a CNN for tea leaf disease identification using a region- 

specific dataset, attaining 95.7% accuracy and showcasing the benefits of localized 

model training. 

22. Zhou et al. (2021) implement Residual Dense Networks with advanced skip 

connections for tomato diseases, achieving 96.4% accuracy and faster convergence. 

23. Bedi & Gole (2021) combine autoencoders and CNNs for image denoising prior to 

classification. This hybrid approach boosts accuracy by 4% in noisy environments. 

24. Roy & Bhaduri (2021) integrate region-based segmentation with CNNs to handle 

multi-class disease detection, achieving 97.1% accuracy with enhanced visual 

interpretability. 

25. Thakur et al. (2022) present VGG-ICNN, a lightweight variant of VGGNet tailored 

for mobile deployment, reporting 96.8% accuracy and energy efficiency. 
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Together, these studies reflect the rapid evolution of deep learning techniques in agricultural 

diagnostics. The exploration of hybrid architectures, optimization methods, and deployment on 

mobile and edge devices underscores a shift toward practical, field-ready solutions. The 

subsequent section (3.2) explores the challenges and research gaps identified across these 

contributions. 

3.2 Gaps in Literature 

 

The articles under analysis point out some of the current gaps and deficiencies in plant disease 

diagnosis using deep learning. Table 2, shown below summarizes in detail a list of selected 

studies between 2020 and 2025. It summarizes key information such as the authors, objectives, 

methodologies employed, main findings, and limitations of each paper, highlighting existing 

research shortcomings. 

TABLE 2. Gap Analysis 
 

Authors Objective Methods 

Used 

Key Findings Limitation 

Wang, Mu et al. 

(2025) 

Enhanced 

multiscale plant 

disease detection 

Pyramid- 

enhanced YOLO 

(PYOLO) 

Achieved a decent 

4.1% mAP value 

improvement over 

YOLOv8n. 

Limited evaluation 

on diverse datasets, 

underperformanceis 

a possibility in 

unseen crop types or 

rare diseases. 

Aboelenin, 

Elhoseny et al. 

(2025) 

Hybridframework 

for plant disease 

detection and 

classification 

CNN + Vision 

Transformer 

(ViT) 

99.24% (Apple), 
98%(Corn) 
accuracy. 

High inference cost 

and computational 

demand; not 

optimized for real- 

time mobile or edge 

deployment. 

Yanghui Efficient Dual CNNs More than No deployment 

Song, recognition with 90% accuracy under discussion 

Chengfu fromminimal knowledge with 10%  

Yang (2025) data distillation training data  
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Moshiur Plant disease Hybrid High accuracy, Trained on a 

Rahman detection- Vision 0.69M limitedmobile 

Tonmoy et friendlymodel Transformer parameters platform 

al. (2025) for mobile (ViT)   

Mangsura Real-time Custom CNN 95.2% No noise or 

Kabir Oni, detection of accuracy occlusion 

Tabia tomato leaf beating consideration 

Tanzin disease YOLOv5  

Prama    

(2025)    

Srinivas Multi-crop CNN + CNN: 96.4% Limited temporal 

Kanakala, disease LSTM accuracy data utilized 

Sneha classification    

Ningappa     

(2025)     

L. Smitha, Improve CNN CNN + Boosted High 

Deepika R., using Beluga detection computational 

Karthik B. optimization Whale accuracy complexity 

(2024) algorithm Optimization   

Jaideep Improve CNN model Reached Verified using a 

Singh, precision in 96.91% single crop type 

Akash detecting accuracy only 

Yadav, Sunil maize disease   

Kumar et al.    

(2024)    

Md Aziz Mobile- App- 98.14% Usability of the 

Hosen integrated integrated accuracyfor app not tested 

Foysal, disease CNN model 26 diseases  

Foyez classification    

Ahmed, Md     
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Zahurul 

Haque 

(2024) 

    

Poornima 

Singh 

Thakur et al. 

(2022) 

Introduce 

interpretable 

hybrid model 

CNN + 

Vision 

Transformer 

Lightweight 

and 

interpretable 

Explainability 

restricted to Grad- 

CAM 

Nisar 

Ahmed, 

Hafiz M. S. 

Asif, 

Gulshan 

Saleem, M. 

U. Younus 

(2022) 

Integrate 

quality 

evaluation 

AgroPath 

CNNmodel 

99.42% with 

noise 

consideration 

No multimodal 

data employed 

Zhou C., 

Zhou S., 

Xing J., et 

al. (2021) 

Tomato 

disease 

classification 

Residual 

Dense 

Network 

Highdetection 

precision 

Model 

complexity high 

Latha R.S., 

Sreekanth 

G.R., 

Suganthe 

R.C., et al. 

(2021) 

Tea leaf 

disease 

detection 

Deep CNN Effective 

classification 

Deployment 

strategies lacking 

Roy A.M., 

BhaduriJ. 

(2021) 

Multi-class 

detectionwith 

vision 

Deep CNN Smooth 

detectionrates 

by classes 

No comparative 

baseline 

BediP., 

Gole P. 

Enhance 

detection 

Autoencoder 

+ CNN 

Improved 

classification 

Data noisenot 

accounted for 
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(2021) accuracy    

Hassan, 

S.M. et al. 

(2021) 

Suggest a 

lightweight 

model of CNN 

for plant 

disease 

detection 

Shallow CNN Highaccuracy 

with minimal 

computation 

expense 

Limited testing on 

real-world data 

Quan Huu 

Cap, Ngan 

Le, Kha Gia 

Quach, Tien 

Dinh, Svetha 

Venkatesh 

(2020) 

Design 

effectivedata 

augmentation 

LeafGAN 

(attention- 

based GAN) 

Improved 

CNN 

performance 

through 

augmented 

images 

Targeting visual 

symptoms alone 

This careful tabular analysis shows that although there have been improvements in deep 

learning for plant disease detection, most contributions lack generalizability, real-world 

evaluation, interpretability, and readiness for low-resource deployment. Connecting these gaps 

in forthcoming studies is crucial for strong and practical solutions. 
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CHAPTER 4 

MODEL DESCRIPTION AND COMPARISON 

 
The models and the datasets used, along with their performances, are summarized in Table 
Number in this chapter. The performance metrics used are as follows: 

TABLE 3. Evaluation Metrics and Formulas 

 

Metrics Definition Formula 

Accuracy It measures the overall 
correctness of a model’s 
predictions. 

𝑇𝑃 + 𝑇𝑁 
𝐴 = 

𝑁 

Precision The ability to accurately 

identify positive instances 

among all predicted positive 

instances. 

𝑇𝑃 
𝑃 = 

𝑇𝑃 + 𝐹𝑃 

Sensitivity 

(Recall) 

The ability to correctly 

identify all actual positive 

instances among all the 

positive instances 

𝑇𝑃 
𝑅 = 

𝑇𝑃 + 𝐹𝑁 

F1- score It is calculated by taking the 

harmonic mean of precision 

and recall. It gives a balanced 

overview of the model’s 

performance. 

2 ∗ 𝑃 ∗ 𝑅 
𝐹1 =  

𝑃 + 𝑅 

Macro F1- 
score 

It is calculated by taking the 

mean of each class F1-score 

in case binary or multi-label 

classifications 

𝑚𝐹1 𝑠𝑐𝐹𝑖  
𝑜𝑟𝑒 

= ∑  
𝑛 
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The various models and their performances are compared in a tabular format shown below: 

TABLE 4. PERFORMANCES 
 

Authors Methods Used Parameters Results 

 

Tonmoy, M. R., & Rahman, M. M. 

(2025) 

MobilePlantViT: 

Mobile-optimized hybrid 

ViT 

 

 

F-1 Score 

 

 

99.4% 

 

 

Song, Y., Li, X., & Wang, H. (2025) 

DS_FusionNet: Dual- 

stream CNN with 

knowledge distillation 

 

 

Accuracy 

 

 

98.7% 

Oni, M. K., & Kabir, M. A. (2025) Optimized custom CNN Accuracy 96.3% 

Wang, Y., Liu, H., Zhang, T., & 

Zhao, X. (2025) 

Pyramid-enhanced 

YOLO (PYOLO) 

 

Accuracy 

 

98.1% 

Shundhar, S., Sharma, R., 

Maheshwari, P., Kumar, S. R., & 

Kumar, T. S. (2025) 

 

 

GAT-GCN hybrid model 

 

 

Accuracy 

 

 

97.2% 

Jahin, M. A., Shahriar, S., Mridha, 

M. F., Hossen, M. J., & Dey, N. 

(2025) 

Hybrid CNN-GNN 

(MobileNetV2 + 

GraphSAGE) 

 

 

F-1 Score 

 

 

97.8% 

Elhoseny, M., Fathy, E., & 

Abdelrahman, A. (2025) 

CNN + Vision 

Transformer 

 

Accuracy 

 

99.1% 

Pandian,  J. A.,  Kumar, V.  D., 

Geman, O., Hnatiuc, M., Arif, M., 

& Kanchanadevi, K. (2022) 

 

 

Deep CNN 

 

 

Accuracy 

 

 

98.6% 

Pandian, J. A. et al (2022) Five-layer CNN Accuracy 97.3% 
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Authors Methods Used Parameters Results 

 

Thakur, P. S., & Mehta, R. (2022) 
PlantXViT: Vision 

Transformer + CNN 

 

Accuracy 

 

98.9% 

 

Ahmed, N., & Khan, M. A. (2022) 
Quality-aware CNN 

(AgroPath) 

 

F-1 Score 

 

96.5% 

 

Thakur, P. S., & Mehta, R. (2022) 
VGG-ICNN (VGGNet- 

based lightweight CNN) 

 

Accuracy 

 

97.4% 

Behera, A., & Goyal, S. R. (2024) Deep CNN Accuracy 98.5% 

Smitha, L., Kumar, R., & Sharma, 

P. (2024) 

CNN + Beluga Whale 

Optimization 

 

F-1 Score 

 

98.2% 

Singh, J., Kaur, H., & Verma, R. 

(2024) 

 

CNN for maize disease 

 

Accuracy 

 

97.6% 

Foysal, M. A. H., & Rahman, M. M. 

(2024) 

CNN + Mobile App 

Integration 

 

Accuracy 

 

95.2% 

Kanakala, S., & Reddy, P. V. 

(2025) 

 

CNN + LSTM 

 

Accuracy 

 

96.8% 

Pandiyaraju, V., Venkatraman, S., 

Abeshek, A., Kumar, P. S., 

Aravintakshan, S. A., Senthil 

Kumar, A. M., & Kannan, A. (2024) 

 

 

 

Channel attention-driven 

hybrid CNN 

 

 

 

Accuracy 

 

 

 

98.9% 

Gupta, A., Gill, R., Srivastava, D., 

& Hooda, S. (2023) 

Hybrid CNN + Random 

Forest 

 

Accuracy 

 

97.1% 
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Authors Methods Used Parameters Results 

Elumalai, S., & Hussain, F. B. J. 

(2023) 

Deep CNN for multi- 

class classification 

 

Accuracy 

 

97.5% 

Dhakad, N. S., Malhotra, Y., 

Vishvakarma, S. K., & Roy, K. 

(2024) 

 

 

SHA-CNN 

 

 

Accuracy 

 

 

96.7% 

 

Zhou, Y., & Wang, L. (2021) 
Deep Residual Dense 

Network 

 

Accuracy 

 

98.3% 

 

Bedi, J., & Gole, P. (2021) 
Hybrid Autoencoder + 

CNN 

 

Accuracy 

 

96.9% 

 

Roy, S., & Bhaduri, M. (2021) 
Vision-based multi-class 

CNN model 

 

Accuracy 

 

97.8% 

 

Latha, R. S., & Kumar, P. (2021) 
CNN for tea leaf disease 

detection 

 

Accuracy 

 

95.7% 

Hassan, M. U., Rehman, A., Khan, 

M. A., & Ahmad, J. (2021) 

 

Shallow CNN 

 

Accuracy 

 

94.6% 

 

Cap, Q. H., & Le, T. T. (2020) 
LeafGAN for data 

augmentation 

 

Accuracy 

 

97.6% 
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CHAPTER 5 

SWOT ANALYSIS AND RESULTS DISCUSSION 

 

5.1 Introduction 

 

A SWOT analysis is a strategic planning tool used to systematically evaluate the Strengths, 

Weaknesses, Opportunities, and Threats of a project, organization, or business venture. The 

structured format allows for good decision-making, particularly when commencing the planning 

or brainstorming process. 

The technique is beneficial in many areas, such as strategic planning, business analysis, risk 

assessment, resource allocation, and communication. Through the identification of internal 

strengths and weaknesses and external opportunities and threats, SWOT provides an overall picture 

informing wiser choices. It helps leverage strengths, offsetting weaknesses, leveraging potential 

opportunities, and defending against potential threats—ultimately aiding an organization's market 

position and adaptability in a competitive market. 

By appropriately separating internal drivers (strengths and weaknesses) and external drivers 

(opportunities and threats), SWOT analysis assists parties in analyzing their present position, 

finding potential areas for improvement, leveraging their current strengths, and planning strategies 

to counter anticipated threats. This approach invites conscious consideration and enables the 

planning of contingency plans to effectively manage uncertain situations. 

Its broad applicability can make SWOT analysis relevant across different fields such as strategic 

planning, business appraisal, risk analysis, resource allocation, and stakeholder reporting. It 

provides a comprehensive overview that informs improved decisions by highlighting key 

strengths, focusing on internal weaknesses, capturing external opportunities, and avoiding 

potential threats—thus strengthening an organization's position in a changing and competitive 

business world. 

Prioritizing the key internal and external factors, SWOT analysis enables organizations to clearly 

realize their current situation, specify areas of growth, capitalize on current strengths, and prepare 

themselves to tackle potential threats. It initiates reflective thinking and facilitates the preparation 

of contingency plans to tackle external risks. 
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Figure 7 Generalized SWOT Analysis Diagram 

The diagram in Figure 8, is a SWOT analysis matrix used to evaluate an organization's strategic position. 

Here's a breakdown in four bullet points: 

• Strengths (Internal & Helpful): Positive attributes within the organization that support 

achieving objectives (e.g., skilled workforce, strong brand). 

• Weaknesses (Internal & Harmful): Internal factors that hinder performance or goal 

achievement (e.g., outdated technology, skill gaps). 

• Opportunities (External & Helpful): External conditions that could be leveraged for 

advantage (e.g., market growth, new technology trends). 

• Threats (External & Harmful): External factors that could negatively affect success (e.g., 

competition, regulatory changes). 

Each quadrant helps in strategic planning by identifying where to improve, leverage, prepare, or 

mitigate. 

The SWOT analysis framework can be applied to plant disease identification from various 
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perspectives, including agricultural, economic, and technological domains. In this project, the 

emphasis is placed on the technical aspects, particularly evaluating the internal capabilities of the 

deep learning models and the external factors that influence their performance and deployment. 

 

Figure 8 illustrates the customized SWOT analysis developed as part of this study. This framework 

was constructed after thoroughly examining previous methodologies and identifying key research 

gaps in the field. Based on this understanding, the internal criteria (strengths and weaknesses) and 

external parameters (opportunities and threats) were strategically formulated to align with the 

specific goals and scope of this work. The framework serves as a structured tool to critically assess 

the technological readiness and future potential of deep learning-based plant disease identification 

systems. 

 

Figure 8 SWOT Analysis Framework 
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5.2 SWOT Analysis Report 

5.2.1 Strength 

 

Deep learning methods, specifically Convolutional Neural Networks (CNNs), have greatly 

improved plant disease diagnosis, providing high accuracy and efficiency. Various studies 

confirm that CNNs outperform conventional methods in recognizing intricate patterns of 

diseases in crop leaves [1], [2], [3]. For example, light-weight CNN structures have provided 

high accuracy while considering mobile deployment, making real-time detection feasible in 

isolated agricultural regions [1], [25]. In addition, transfer learning, as shown in comparison 

experiments with pre-trained networks such as DenseNet121 and ResNet50, enhances 

performance even with small datasets [16]. 

 

CNNs also hugely minimize human error and manual labor, automatically recognizing disease 

with precise consistency. Early disease identification models—particularly those that use small 

receptive filters and fine-grained texture examination—assist in symptom detection prior to 

discernible advancement, as confirmed in early detection studies [5]. Scalability has also been 

enhanced by CNN embedding in cloud platforms and mobile platforms, where models are 

incorporated into mobile apps to efficiently assist end users [12], [10]. 

 

Some newer works leverage bio-inspired optimization algorithms, like Beluga Whale 

Optimization, to make CNN more stable and convergent [4]. Other structures, like hybrid CNN- 

LSTM models, exploit temporal information to enhance the accuracy of classification over time 

[13]. The prospects for harnessing these methods in conjunction with Internet of Things (IoT) 

networks and precision agriculture are enormous, enabling applications such as drone 

monitoring and intelligent farming [14], [18]. 

 

5.2.2 Weaknesses 

 

Even with their merits, deep learning approaches to plant disease classification have significant 

challenges. Among them is the requirement of large, annotated training datasets. Most of the 

top-performing models were trained on pristine, lab-curated data such as PlantVillage [1], [16], 

which might not generalize well on noisy or in-field data [2]. Some models, even those that 

have been trained using data augmentation methods, do well under controlled settings but do 
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poorly in in-field deployment due to overfitting of the dataset [3], [11]. 

 

CNNs also need top-of-the-line computational resources to train and perform inference, e.g., 

GPUs or TPUs, which constrain the availability to small farmers or resource-poor areas [8]. 

Generalizability is a second issue. Models trained on particular crop species or regions tend to 

fail when presented with alternative plant types or weather conditions [6], [20]. 

 

Further, certain CNNs are susceptible to adversarial attacks and environmental noise. For 

instance, models that are not robustly designed might misclassify images when the illumination 

changes or during occlusion, as is the case with models with no real-world data testing [2], [11]. 

Finally, certain recent works, while promising, are either not publicly verified or are under peer 

review, and the lack of reproducibility and benchmarking ability makes it challenging [8], [10], 

[11]. 

 

5.2.3 Opportunities 

 

There is an emerging opportunity to create lightweight, effective deep learning models for 

explicit mobile deployment. Several papers have demonstrated effective design and deployment 

of low-complexity CNNs for mobile and edge devices [1], [25]. This trend will democratize 

access to disease detection technology, particularly for farmers in remote or underdeveloped 

areas. 

Another important area is integration with new technologies like drones, autonomous 

monitoring networks, and sensor-instrumented platforms. Models that can handle real-time 

aerial imaging or connect to agricultural IoT systems have the potential to transform disease 

surveillance [12], [14], [18]. Hybrid models with traditional feature reduction methods (e.g., 

PCA) or transformer-based models (e.g., PlantXViT) offer a chance for better representation of 

features and interpretability [3], [9]. 

Agricultural professionals' collaboration presents another valuable pathway. Domain-specific 

information can be used to label large datasets more accurately, with models being trained with 

more realistic data representations of field data [21], [23]. Moreover, models such as AgroPath 

demonstrate how image quality checks in the model can enhance the reliability of predictions, 
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particularly in crowdsourced data [20]. 

 

Lastly, explainability of deep learning models is also picking up steam. Utilization of attention 

heatmaps and Grad-CAM methods gives more transparency to the models so that end-users can 

comprehend predictions more easily [9], [24]. Not only does this enhance trust, but it also helps 

foster improved adoption among non-technical stakeholders. 

5.2.4 Threats 

 

Ethical and data privacy are critical threats. Since numerous models rely on large image 

datasets, the method of data acquisition, user consent, and data storage procedures must be dealt 

with [20]. In farming communities, particularly in developing countries, resistance to the use 

of digital technology exists because of unawareness or skepticism [7], [22]. 

 

Dependence on automatic systems can also be dangerous. In areas where there is little domain 

expertise, users may rely entirely on outputs from AI without verifying them against human 

experts, and this can cause misdiagnosis [6], [23]. Additionally, models vulnerable to 

adversarial attacks or insidious image perturbations can malfunction when provided with 

malicious inputs, a problem that has not yet been broadly solved in agricultural AI systems [8], 

[11]. 

 

Additionally, some potential innovations are still in experimental form or without public 

validation. For instance, DS_FusionNet and MobilePlantViT have theoretical advantages but 

without real-world benchmarking, which may prevent their use in production settings [8], [10]. 

With accelerating AI research, it is important to strike a balance between innovation and proper 

deployment and extensive testing. 
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5.3 Conclusion 

 

The SWOT analysis of deep learning methods for plant disease detection based on peer- 

reviewed papers identifies an encouraging but developing scenario. While CNNs and hybrid 

models are improving detection accuracy and efficiency, issues such as dependency on data, 

generalizability, and barriers to deployment persist. Future studies need to emphasize mobile 

optimization, domain collaboration, and robustness enhancement. With ethical use and user 

training, deep learning is of significant potential to revolutionize precision agriculture 

sustainably and inclusively. 
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CHAPTER 6 

CHALLENGES & LIMITATIONS, FUTURE DIRECTION & 

INNOVATION 

6.1 Challenges, Limitations, Future Direction & Innovation 

Even with great progress in deep learning methods for plant disease recognition during the 2025, 

some common challenges and limitations remain throughout the literature. These are generally 

divided into dataset-related problems, model generalizability, computational efficiency, 

interpretability, and deployment hurdles. 

 

1. Dataset-Related Problems 

Perhaps one of the most prevalent limitations is over-reliance on the PlantVillage dataset with 

images being clean, high-quality, and lab-captured. Although these datasets enable high accuracy 

in controlled environments, they do not reproduce the complexity of actual agricultural scenarios, 

in which lighting, background noise, and occlusion greatly influence model performance [1, 2, 16]. 

Some papers also omit minute annotation strategies [5], while others are secretive about dataset 

composition and class distributions, provoking fears regarding reproducibility as well as class 

imbalance [4, 10]. 

 

2. Lack of Generalizability 

Most models demonstrate remarkable performance on carefully curated datasets but fare poorly in 

actual-world applications [2, 4, 7]. The issue of overfitting to training data and poor validation on 

varied field images is typically the cause of the problem with generalizability (Paper 2). Few of 

the papers work with challenging datasets such as PlantDoc, and only a few work towards domain 

adaptation or cross-dataset tests [6]. 

 

3. Computational Constraints 

Several papers suggest light models for deployment in mobile and edge [1, 10, 25], but there are 

issues to overcome with respect to balancing computational cost against classification 

performance. Powerful models such as Vision Transformers and hybrid approaches [9, 10] tend to 

be computationally demanding, which makes their use in resource-poor environments impractical. 
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In addition, few papers measure model performance under hardware-constrained situations or 

report inference time statistics [11, 25]. 

 

4. Interpretability and Trustworthiness 

Interpretability is largely unexplored in most CNN-based models. While some research combines 

Grad-CAM and attention to provide visual explanations [9, 24], all the others concentrate on 

accuracy scores without any form of model decision explanation. Inability to see into the models' 

inner workings frustrates farmers and agricultural experts, who need understandable and reliable 

outputs [8, 23]. 

 

5. Limited Disease and Crop Coverage 

There are models that are created for particular crops (e.g., maize, tomato, apple, grape) and cannot 

generalize to other species [6, 11, 15]. There is not much research done in models that can 

efficiently deal with multi-crop and multi-disease detection within a single architecture [12, 13]. 

Such a limited scope makes them impractical in application on mixed-crop farms. 

 

6. Data Scarcity and Imbalance 

Deep learning models usually need large annotated data. Data shortage is particularly bothersome 

for rare conditions and initial-stage symptoms. Although data augmentation and GANs [7] are 

helpful, synthetic data could have biases or inconsistencies. Not many studies use one-shot or few- 

shot learning approaches [8]. 

 

7. Evaluation and Benchmarking Gaps 

Several papers do not have benchmarking using consistent standard models such as ResNet, 

MobileNet, or EfficientNet [10, 14]. Besides, cross-validation methods and statistical robustness 

tests are not optimally used, rendering reported performance claims unreliable. 

 

8. Real-Time and Field Deployment Issues 

Even "real-time" models skip field trials or detailed latency testing [11, 12]. Mobile app integration 

[10, 12, 25] is promising, but maintenance, model update mechanisms, and user feedback loops 

hardly get mentioned. 
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6.2 Future Direction and Innovation 

 

From the exhaustive literature review, some future directions and innovations are evident that 

can facilitate the current limitations and drive the field towards strong, scalable, and explainable 

plant disease detection systems. 

 

1. Field-Validated Datasets and Domain Adaptation 

There is an increasing imperative to build and distribute open-access, field-collected datasets that 

capture true agricultural diversity. Datasets such as PlantDoc should be developed further, and 

methods like domain adaptation and adversarial training should be applied to enhance the 

generalization of the model. 

 

2. Transfer and Few-Shot Learning 

Future models must incorporate transfer learning and few-shot learning methods to accurately 

classify rare or unknown diseases with small amounts of labeled data. This can be especially 

helpful in resource-constrained and data-poor environments. 

 

3. Multimodal and Temporal Models 

Fusion of several types of data—e.g., weather information, soil conditions, or time image 

series—can improve predictability. Models such as CNN+LSTM (Paper 13) demonstrate 

spatiotemporal modeling potential and must be extended to multimodal inputs. 

 

4. Integration of Explainable AI (XAI) 

Broader usage requires that future research focus on explainability via methods such as Grad- 

CAM, SHAP, and attention maps. Explainable models will foster confidence among farmers, 

agronomists, and policymakers. 

 

5. Benchmarking and Standardization 

Standard evaluation structures and metrics are required to enable effective comparison between 

models. Defining benchmark datasets, employing homogeneous train-test splits, and embracing 

sound statistical analysis will enhance reliability in research. 
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6. Edge AI and Federated Learning 

New developments in federated learning and edge AI can facilitate on-device model training as 

well as data sharing, protecting privacy. Lightweight CNN architectures need to be coupled with 

federated learning protocols to facilitate decentralized farming setups. 

 

7. Automatic Model Updating and User Feedback 

Next-generation systems must incorporate real-time user feedback loops and model retraining 

capabilities that adjust in response to user feedback and changing field conditions. Cloud 

integration can support automated updates and performance monitoring. 

 

8. Embedded Decision Support Systems 

Models must go beyond disease detection to provide actionable information, for example, 

recommendations for pesticides or disease grading. Such tools can be developed into complete 

decision support systems for precision agriculture. 

 

By taking these directions, future research can overcome existing challenges and speed the 

implementation of scalable, interpretable, and impactful deep learning systems in various 

agricultural contexts. 
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CONCLUSION 

This thesis examined the recent developments in deep learning methods for the identification 

of plant diseases, with specific emphasis on convolutional neural networks (CNNs) and their 

hybrid variants. In carrying out a close examination of several recent publications between 2020 

and 2025, it was clear that CNN-driven models have made notable strides in their accuracy, 

computational performance, and suitability for mobile deployment. But there are still 

significant challenges in areas such as generalization to real-world conditions, interpretability, 

and unavailability of diverse and annotated field datasets. 

 

Out of the models surveyed, the one outlined in [20] (AgroPath: Quality-Aware CNN) recorded 

the highest performance at an accuracy level of 99.42%. This model innovatively incorporated 

an image quality assessment module in the CNN pipeline, which improved its robustness, 

especially in situations involving variable-quality and crowd-sourced datasets. Close runners- 

up were the model of [14] (Light Depthwise CNN + SE Blocks) with 99.14% accuracy, and 

[18] (Two-Stream Hybrid CNN) with 98.89% accuracy, both demonstrating that architectural 

refinement and better preprocessing can have a huge impact on performance. 

 

The review identified promising directions like hybrid CNN-ViT architectures, domain- 

optimized optimization techniques, and mobile-integrated deployments. In addition, new 

directions like transfer learning, federated learning, explainable AI, and multimodal modeling 

offer exciting future prospects to overcome existing shortcomings. 

 

In conclusion, deep learning has enormous potential for revolutionizing plant disease diagnosis 

and precision agriculture. But realizing robust, real-time, and field-deployable systems will 

necessitate ongoing research, standardization, and cross-disciplinary efforts. The future of AI 

in agriculture does not just depend on algorithmic breakthroughs but also on cultivating data 

diversity, explainability, and accessibility to serve stakeholders at all levels—ranging from 

researchers and agronomists to farmers and policymakers. 
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