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ABSTRACT 

A comparative study investigates five models—Support Vector Machine with 

Histogram of Oriented Gradients (SVM with HOG), Custom Convolutional Neural 

Network (Custom CNN), LeNet-5, VGG16, and MobileNetV2—for classifying seven 

facial emotions (Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral) on CK+48 and 

FER2013 datasets. The analysis assesses accuracy, F1-scores, and computational 

efficiency, tackling FER2013’s class imbalance (547 Disgust vs. 8,989 Happy 

samples) and noise. MobileNetV2 led FER2013 performance with 67.82% accuracy 

(F1-score: ~0.66), utilizing focal loss, Cutout, and Mixup to boost Disgust’s F1-score 

(~0.60). With ~2.4 million parameters and ~3-hour training, it suits real-time 

applications like mobile mental health monitoring or driver safety systems. Custom 

CNN achieved 99.32% accuracy (F1-score: ~0.99) on CK+48, leveraging the dataset’s 

981 high-quality, balanced images, making it ideal for controlled settings like 

psychological research labs. VGG16 attained 67% accuracy (F1-score: ~0.64) on 

FER2013, benefiting from transfer learning but hindered by overfitting due to ~14.7 

million parameters and ~4-hour training. SVM with HOG scored 64.86% accuracy, 

offering speed (~10 minutes) and noise robustness (~1.5% accuracy drop with 

Gaussian noise) but limited by handcrafted features. LeNet-5, with 49.47% accuracy 

(F1-score: ~0.45), struggled with FER2013’s noise and imbalance, highlighting 

shallow models’ inadequacy. FER2013’s low resolution (48x48) and imbalance 

caused errors in Disgust and Fear (F1-scores: ~0.50–0.60), driven by low samples and 

visual similarities (e.g., Fear misclassified as Sad/Surprise). The study emphasizes 

dataset quality, model complexity, and optimizations for effective FER. Future 

research should explore diverse datasets (e.g., AffectNet), Vision Transformers, video-

based FER with 3D-CNNs, and ethical considerations like bias mitigation and 

federated learning to ensure fairness and enhance applications in healthcare, education, 

and human-machine interaction. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Facial Emotion Recognition (FER) is a pivotal subdomain of affective computing and 

computer vision, dedicated to developing computational algorithms that identify and 

interpret human emotions from facial expressions. As a fundamental aspect of human 

communication, facial expressions serve as a universal language, conveying emotions 

such as joy, sorrow, fear, or anger with remarkable nuance. Automating the recognition 

of these emotional cues enables machines to understand human affective states, 

fostering more intuitive and empathetic interactions. The significance of FER spans a 

wide array of applications, from enhancing human-computer interfaces and 

revolutionizing mental health diagnostics to improving security systems and 

personalizing educational experiences. 

Recognizing emotions from someone’s face is like teaching a computer to read a 

person’s feelings through their expressions. The process unfolds in a series of clear 

steps. First, the system pinpoints the face in a photo, zeroing in on the area that matters 

most. Then, it picks out key details—like the shape of a smile or the furrow of a brow—

that hint at what someone might be feeling. After that, it sorts these clues into 

categories like happy, sad, or angry. Finally, it polishes the results to make its guesses 

as accurate as possible. 

Back in the day, older machine learning techniques leaned on carefully crafted clues, 

like the texture of the skin or the exact position of the eyes and mouth. But, as we saw 

in one study (Model 1), where a Support Vector Machine paired with Histogram of 

Oriented Gradients was used, these methods often stumbled in real-world scenarios. 

Things like dim lighting, a face partially covered, or even a slight head tilt could throw 

them off, leading to so-so results—hitting only about 50% accuracy on the FER2013 

dataset. 

Spotting emotions on a person’s face has come a long way, thanks to some pretty 

impressive deep learning techniques. Tools like Convolutional Neural Networks 

(CNNs), Residual Networks (ResNets), and Vision Transformers (ViTs) have changed 

the game by figuring out intricate patterns straight from raw images. Unlike older 

methods that needed humans to hand-pick specific facial features, these models learn 

on their own as they sift through heaps of data. By training on big datasets like 

FER2013 and CK+48, models like VGG16 (which hit about 68–72% accuracy in one 

study, Model 4) and MobileNetV2 (reaching around 76% in Model 5) have gotten way 

better at nailing down emotions. Plus, powerful hardware like GPUs and TPUs has 
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been a game-changer, making it possible to process everything quickly enough for 

real-time emotion detection. 

Despite these advancements, FER research faces persistent challenges, including 

cultural variability in emotional expressions, class imbalance in datasets (e.g., 

FER2013’s 547 Disgust samples vs. 8,989 Happy samples), and the difficulty of 

distinguishing spontaneous versus posed emotions. This thesis conducts a comparative 

study of ML and DL models across five models—SVM with HOG (Model 1), a custom 

CNN on CK+48 (Model 2, 99.32% accuracy), LeNet-5 (Model 3, ~55–60%), VGG16 

(Model 4), and MobileNetV2 (Model 5)—to evaluate their performance, address these 

challenges, and identify optimal strategies for robust FER systems. 

 

Figure 1.1: Pipeline of Facial Emotion Recognition 

 

A flowchart depicting the FER workflow: "Input Image" (a 48x48 grayscale face) → 

"Face Detection" (face with a bounding box) → "Feature Extraction" (landmarks or 

CNN feature map) → "Emotion Classification" (output vector with labels: Angry, 

Disgust, Fear, Happy, Sad, Surprise, Neutral) as shown in Figure 1.1. 

1.2 What is Facial Emotion Recognition? 

Facial Emotion Recognition is the automated process of analyzing facial expressions 

to infer human emotional states, mirroring the human ability to perceive emotions 

through visual cues. Grounded in Paul Ekman’s seminal work on six universal 

emotions—happiness, sadness, fear, anger, surprise, and disgust—FER systems often 

extend to include a neutral state or compound emotions, such as “happily surprised” 

or “sadly angry.” The core objective is to extract meaningful patterns from facial 

features, including landmarks (e.g., eye shape, mouth curvature), texture changes (e.g., 

wrinkles, muscle contractions), or global image characteristics, and map these to 

specific emotional categories. 

Bridging the gap between how humans express emotions and how machines interpret 

them is the core goal of Facial Emotion Recognition (FER). This field blends insights 

from computer vision, artificial intelligence, and psychology to help computers make 

sense of subtle human expressions. For instance, a tense brow paired with a 
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downturned mouth often suggests sadness, while a beaming smile and narrowed eyes 

typically signal happiness. In structured, controlled settings like the CK+48 dataset, 

custom-built CNN models—such as the one in Model 2—achieve remarkable 

accuracy (up to 99.32%) in recognizing these cues. However, in more unpredictable 

and noisy real-world environments like those represented by the FER2013 dataset, 

models such as MobileNetV2 (used in Model 5) are better suited due to their 

robustness and efficiency. 

The applications of FER are vast and transformative. In e-learning, FER systems 

monitor student engagement, detecting confusion or boredom to adapt teaching 

strategies. In healthcare, they assist in diagnosing mental health conditions, such as 

depression, by analyzing subtle facial cues. In autonomous vehicles, FER can detect 

driver fatigue or stress, enhancing safety. The growing demand for emotion-aware 

technologies underscores the need for accurate and robust FER systems, as explored 

through the comparative analysis in this thesis. 

 

Figure 1.2: Examples of the Seven Basic Emotions 

 

Seven basic facial emotion “Anger, Disgust, Fear, Happiness, Sadness, Surprise, and 

Neutral” from two widely used facial emotion recognition datasets: FER-2013 and 

RAF-DB as shown in figure 1.2 

 

1.3 Classification of Facial Emotion Recognition Approaches 

FER approaches are diverse, reflecting the evolution of computational techniques and 

their adaptation to the complexities of human expressions. These are categorized based 

on feature extraction and classification methods, each with distinct strengths and 

limitations. 

1.3.1 Traditional (Handcrafted) Feature-Based Methods 

Traditional methods rely on manually engineered features, emphasizing 

interpretability and computational efficiency. They include: 

• Geometric Features: Measure spatial relationships among facial landmarks, 

such as the distance between eye corners or the angle of the mouth. These are 

effective for detecting structural changes, like a smile, but sensitive to pose 

variations. 
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• Appearance Features: Capture texture information using descriptors like 

Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), or 

Gabor filters. Model 1’s SVM with HOG (~50% accuracy on FER2013) 

exemplifies this approach, struggling with noisy data. 

Features are typically fed into classifiers like Support Vector Machines (SVM), 

Random Forests, or k-Nearest Neighbors (KNN). While suitable for small datasets, 

these methods lack the robustness needed for real-world scenarios. 

 

Figure 1.3: Facial Landmarks Mapped for Geometric Feature Extraction 

 

A single face with 68 blue landmark dots connected by lines, forming a wireframe. 

Measurements are annotated (e.g., “Eye corner distance,” “Mouth angle”). A side-

by-side comparison shows a neutral face versus a happy face, highlighting how 

landmarks shift (e.g., wider mouth in happy) as shown in figure 1.3. 

1.3.2 Deep Learning-Based Methods 

Deep learning models, particularly CNNs, have redefined FER by learning features 

directly from images, eliminating the need for manual feature design. Key 

architectures include: 

1.3.2.1 LeNet-5  

A simple CNN with two convolutional layers, achieving ~55–60% accuracy on 

FER2013, limited by its shallow design. 

1.3.2.2 VGG16  

A 16-layer CNN, pre-trained on ImageNet, fine-tuned to ~68–72% accuracy, but prone 

to overfitting. 

1.3.2.3 MobileNetV2  

A lightweight CNN with depthwise separable convolutions, reaching ~76% accuracy 

with advanced optimizations (focal loss, Cutout). 
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1.3.2.4 Custom CNN  

A shallow CNN tailored for CK+48, achieving 99.32% accuracy due to the dataset’s 

simplicity. DL models excel in feature extraction but require large datasets and 

computational resources. 

1.3.3 Hybrid Models 

Hybrid approaches combine handcrafted and deep features to balance interpretability 

and performance. For example, HOG features may be concatenated with CNN outputs 

before classification. In video-based FER, CNNs are paired with Long Short-Term 

Memory (LSTM) networks to model temporal dynamics, though not explored in this 

study. 

1.3.4 Vision Transformers (ViTs) 

Vision Transformers treat images as sequences of patches, using self-attention to 

capture global relationships. Models like ViT and MobileViT achieve ~78–80% 

accuracy on FER2013, offering a promising alternative to CNNs with fewer 

parameters and better generalization. While not implemented in the five models, ViTs 

represent a future direction. 

1.4 Applications of Facial Emotion Recognition 

FER’s versatility drives its adoption across numerous domains, each leveraging 

emotional insights to enhance functionality: 

• Human-Computer Interaction (HCI): Emotion-aware virtual assistants, like 

Alexa or Siri, adapt responses based on user mood, improving engagement in 

smart homes or gaming. 

• Healthcare: FER detects depression, anxiety, or pain in non-verbal patients, 

enabling timely interventions. For instance, analyzing micro-expressions can 

reveal hidden emotional distress. 

• Security and Surveillance: FER identifies suspicious behaviors in airports or 

public spaces, supporting crowd monitoring and lie detection. 

• Marketing: Companies gauge consumer reactions to advertisements or 

products, optimizing campaigns based on emotional feedback (e.g., joy vs. 

indifference). 

• Education: Adaptive e-learning platforms track student attentiveness, 

adjusting content to maintain focus or address confusion. 

These applications highlight FER’s role in creating responsive, human-centric 

technologies, as evaluated through models like MobileNetV2 in Model 5. 
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Figure 1.4: FER Applications Across Domains 

 

A radial chart with “FER Applications” at the center, branching into five sectors: 

Healthcare (medical cross, “Depression detection”), Security (camera, “Crowd 

analysis”), Education (book, “Student engagement”), Marketing (graph, “Consumer 

response”), HCI (robot, “Emotion-aware assistants”). Each sector is color-coded with 

a brief description as shown in Figure 1.4. 

1.5 Recent Advancements in Facial Emotion Recognition 

Recent developments have propelled FER research, addressing longstanding 

limitations: 

• Large-Scale Datasets: FER2013 (35,887 images), CK+48 (981 images), 

AffectNet (~1M images), and RAF-DB provide diverse expressions across 

cultures, ages, and contexts, enabling robust training. 

• Transfer Learning: Pre-trained models (e.g., VGG16, MobileNetV2) fine-

tuned on FER2013 leverage knowledge from large face datasets like 

VGGFace, boosting accuracy. 

• Data Augmentation: Techniques like rotation, zoom, Cutout, and Mixup 

(Model 5) enhance generalization, reducing overfitting on imbalanced datasets. 

• Attention Mechanisms: Spatial and channel attention focus on critical facial 

regions (e.g., eyes, mouth), improving accuracy by ~2–3%. 

• Multimodal Approaches: Integrating facial cues with audio, speech, or body 

posture enhances context-aware emotion detection, particularly in video 

analysis. 

• Edge AI: Lightweight models like MobileNetV2 enable FER on mobile 

devices, supporting real-time applications. 

These advancements underpin the superior performance of DL models in Models 4 

and 5, compared to the ML approach in Model 1. 

1.6 Challenges in Facial Emotion Recognition 

Despite progress, FER faces significant hurdles that impact model performance: 
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• Pose Variation: Non-frontal faces distort landmarks, reducing accuracy, as 

seen in Model 1’s SVM struggles. 

• Occlusion: Accessories (glasses, masks) or hair obscure features, challenging 

models like LeNet-5 (Model 3). 

• Illumination Changes: Lighting variations affect texture-based features, 

impacting appearance-based methods. 

• Class Imbalance: FER2013’s skewed distribution (e.g., 547 Disgust vs. 8,989 

Happy samples) skews performance, addressed in Model 5 with focal loss and 

class weights. 

• Subjectivity: Cultural, personal, and age-related differences in expression 

complicate universal models. 

• Real vs. Fake Expressions: Distinguishing genuine emotions from posed or 

manipulated ones (e.g., deepfakes) is critical for security applications. 

These challenges highlight the need for robust models, as explored in the comparative 

study. 

 

Figure 1.5: Visualization of FER Challenges 

 

A collage of four sub-images: (1) “Pose Variation” (45° face with misaligned 

landmarks), (2) “Occlusion” (face with glasses/scarf obscuring mouth), (3) 

“Illumination” (well-lit vs. shadowy face), (4) “Class Imbalance” (bar chart of 

FER2013 classes, with Disgust’s bar shorter). Each sub-image is annotated to explain 

its impact as shown in figure 1.5. 
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1.7 Motivation 

The proliferation of human-machine interactions necessitates machines that not only 

process commands but also interpret emotional context, fostering empathetic and 

personalized experiences. The motivation for this thesis stems from several 

imperatives: 

• Enhanced AI Interaction: Emotion-aware systems, like chatbots or social 

robots, deliver context-sensitive responses, improving user trust and 

satisfaction. 

• Mental Health Support: FER enables early detection of emotional disorders, 

such as depression or anxiety, by analyzing subtle facial cues, supporting 

psychological interventions. 

• Personalized Experiences: Real-time emotion analysis tailors content in 

gaming, streaming, or e-commerce, enhancing user engagement. 

• Deepfake Mitigation: FER verifies emotional authenticity in videos, 

combating misinformation in an era of synthetic media. 

• Edge AI Deployment: Lightweight models like MobileNetV2 (Model 5) 

enable FER on resource-constrained devices, broadening accessibility. 

This thesis benchmarks ML and DL models across five models on CK+48 and 

FER2013, addressing challenges like class imbalance and low resolution. By 

comparing their performance—ranging from SVM’s ~50% to MobileNetV2’s 

~76%—the study aims to advance FER technologies, guide model selection, and lay 

the groundwork for future innovations in affective computing. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CNN-Based Approaches 

Tang et al. [42] proposed a deep ResNet-50 model, utilizing residual connections to 

mitigate vanishing gradient issues and sustain learning depth. Applied to FER2013, 

their method employed preprocessing techniques like cropping and normalization to 

enhance image quality. The model attained around 72% accuracy, excelling in 

detecting sad expressions (F1-score: 0.68) but struggling with fear (F1-score: 0.50), 

primarily due to underrepresentation of certain emotions. While effective, the model’s 

high computational demands, stemming from ResNet-50’s ~25 million parameters, 

limit its suitability for real-time applications. Both studies highlight the potential of 

deep architectures in FER, yet emphasize the need for strategies to address class 

imbalance and computational efficiency, informing the current study’s evaluation of 

models like MobileNetV2 and Custom CNN. 

2.2 Hybrid and Spatio-Temporal Models 

Li and his crew cooked up a clever hybrid model, blending VGG19 with a Recurrent 

Neural Network (RNN) to tackle emotion recognition on the FER2013 dataset. They 

got creative by turning static images into fake video-like sequences through data 

tweaks, treating them like a series of moments in time. This trick helped their model 

hit about 73% accuracy, doing especially well at spotting neutral faces (with a solid 

F1-score of 0.80), though it struggled to nail down disgust (F1-score of 0.48). Their 

approach showed how mixing spatial details with a sense of time can boost results, 

even if it makes the model a bit more complicated to handle. 

On another front, Hu’s team souped up a CNN by adding a Convolutional Block 

Attention Module (CBAM), which acts like a spotlight, zooming in on key facial 

features like eyes and mouths. They paired this with image tweaks like histogram 

equalization to smooth things out, reaching around 74% accuracy. Their model was a 

champ at catching happy expressions (F1-score of 0.82) but only so-so with fear (F1-

score of 0.55). While the attention trick made it better at focusing on the right spots, it 

came with a catch—more computing power needed, which could slow things down. 
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2.3 Lightweight Architectures for Real-Time Deployment 

Zhang et al. [43] explored MobileNetV2 for FER on FER2013, targeting resource-

constrained devices. Using minimal preprocessing (normalization, flipping), their 

model achieved ~68% accuracy, excelling for happy expressions (F1-score: 0.70) but 

struggling with disgust (F1-score: 0.40) due to FER2013’s class imbalance (547 

Disgust vs. 8,989 Happy). MobileNetV2’s lightweight design (~2.4 million 

parameters) ensures efficiency, ideal for real-time mobile applications. Compared to 

ResNet-50 [42], it offers practical advantages, aligning with this study’s MobileNetV2 

evaluation (67.82% accuracy) alongside Custom CNN and VGG16. 

2.4 Attention-Enhanced and Hybrid Models 

Liao and colleagues [6] introduced a model called RCL-Net, which blends elements 

of ResNet, CBAM, and Local Binary Patterns (LBP). This combination allowed the 

system to draw on both deep learning techniques and traditional texture-based 

methods. By applying data augmentation methods such as rotating images, they 

managed to reach an accuracy of 74.23%. The model was particularly effective at 

identifying happy emotions, earning an F1-score of 0.85. However, it struggled to 

recognize more subtle expressions like disgust, which only achieved an F1-score of 

0.50. Despite its solid performance, the model’s complexity and demand for 

computing resources make it less practical for use in devices or environments with 

limited processing power. 

2.5 Ensemble and Distilled Models 

Momin et al. [7] developed EmoXNet, an ensemble of models including VGG16, 

DenseNet121, SE-ResNet34, and SE-ResNext50. The ensemble achieved a leading 

accuracy of 85.07% on FER2013, with F1-scores of 0.93 (happy) and 0.58 (disgust). 

They also introduced EmoXNetLite, a distilled variant achieving 82.07% accuracy 

with reduced computational demands. Features like Test-Time Augmentation (TTA) 

added robustness. While ensemble learning improved overall performance, class 

imbalance remained a notable limitation. 

2.6 Temporal and Pose-Based Models 

Attrah et al. [8] implemented an LSTM-based model trained on FER2013, utilizing 

blendshape data extracted via MediaPipe to simulate facial motion. Limiting the 

classification to three categories (happy, sad, and unknown), the model achieved 

71.99% accuracy and an F1-score of 62.98%, with individual scores of 0.75 (happy) 

and 0.60 (sad). Although promising for video-based applications, the model’s reduced 

class scope limited its broader applicability to detailed FER tasks. 
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CHAPTER 3 

METHODOLOGY 
3.1 Overview 

The methodology for a comparative study of machine learning (ML) and deep learning 

(DL) models for Facial Emotion Recognition (FER), evaluating their performance in 

classifying seven emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. 

The study encompasses five models—SVM with Histogram of Oriented Gradients 

(HOG) features (Model 1), Custom Convolutional Neural Network (CNN) on CK+48 

(Model 2), LeNet-5 (Model 3), VGG16 (Model 4), and MobileNetV2 (Model 5)—

across two datasets, CK+48 and FER2013. The methodology covers dataset selection, 

model architectures, preprocessing, data augmentation, training protocols, 

hyperparameter tuning, and evaluation metrics, addressing challenges like class 

imbalance, low resolution, and noise. This structured approach ensures a robust 

comparison of accuracy, computational efficiency, and robustness, providing insights 

into optimal FER strategies. 

3.2 Datasets 

Two benchmark datasets, CK+48 and FER2013, are selected for their contrasting 

characteristics, enabling evaluation under controlled and real-world conditions. 

3.2.1 CK+48 

The Extended Cohn-Kanade Dataset (CK+48) comprises 981 grayscale images (48x48 

pixels) captured in a controlled laboratory setting, ensuring high-quality, frontal-facing 

expressions. It includes seven emotion classes with a relatively balanced distribution, 

making it suitable for models like the Custom CNN (Model 2, 99.32% accuracy). The 

dataset is split into 80% training (784 images) and 20% testing (197 images), with no 

separate validation set due to its small size. 
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Figure 3.1: Samples from the CK+48 dataset 
 

3.2.2 FER2013 

The FER2013 dataset contains 35,887 grayscale images (48x48 pixels) from real-

world scenarios, introducing noise, varying lighting, and pose variations. It covers the 

same seven emotions but is highly imbalanced: Happy (8,989), Neutral (6,198), Sad 

(6,077), Fear (5,121), Angry (4,953), Surprise (4,002), and Disgust (547). This 

imbalance challenges models, as seen in Models 1, 3, and 4. The dataset is divided into 

training (28,709 images, Training set), validation (3,589 images, PublicTest), and 

testing (3,589 images, PrivateTest). 

 

Figure 3.2: Samples from the FER2013 dataset 

 

 

Table 3.1: Dataset Characteristics 

 

Dataset Size Resolution Classes Split 

(Train/Val/Test) 

Notes 

CK+48 981 48x48 7 784/-/197 Controlled, 

high-quality 

FER2013 35,887 48x48 7 28,709/3,589/3,589 Noisy, 

imbalanced 

 

3.3 Models 

Five models are implemented, representing a progression from traditional ML to 

advanced DL. 
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3.3.1 Model 1: SVM with HOG 

This model uses a linear SVM classifier with HOG features, extracting edge 

orientations to form a feature vector for emotion classification. With no trainable 

parameters, it is computationally efficient but limited by handcrafted features, 

achieving ~50% accuracy on FER2013. 

 

Figure 3.3: General architecture of a support vector maching (SVM) mode 

 

3.3.2 Model 2: Custom CNN 

Tailored for CK+48, this CNN has three convolutional layers (32, 64, 128 filters, 3x3 

kernels), max-pooling (2x2), and two dense layers (512, 7 units with softmax). ReLU 

activation, batch normalization, and dropout (0.3) enhance learning, with ~0.1 million 

parameters yielding 99.32% accuracy. 

 

Figure 3.4: Architecture of a convolutional neural network (CNN)  
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3.3.3 Model 3: LeNet-5 

Applied to FER2013, LeNet-5 features two convolutional layers (6, 16 filters, 5x5 

kernels), two max-pooling layers, and three dense layers (120, 84, 7 units). With 

~60,000 parameters, its simplicity limits performance to ~55–60% accuracy. 

 

Figure 3.5: Architecture of a LeNet-5 

3.3.4 Model 4: VGG16 

VGG16, pre-trained on ImageNet, is fine-tuned on FER2013 with 13 convolutional 

layers (3x3 filters), GlobalAveragePooling, Dropout (0.5), and Dense (128, 7 units). 

With ~14.7 million parameters (~1.2 million trainable), it achieves ~68–72% accuracy, 

though prone to overfitting. 

 

Figure 3.6: Architecture of a VGG16 

3.3.5 Model 5: MobileNetV2 

MobileNetV2, also pre-trained, uses depthwise separable convolutions, 

GlobalAveragePooling, Dropout (0.6, 0.4), and Dense (128, 7 units). With ~2.4 

million parameters (~1.69 million trainable), optimizations like focal loss and Cutout 

yield ~76% accuracy. 
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Figure 3.7: Architecture of a MobileNetV2 

 

Table 3.2: Model Configurations 

Model Layers Parameters Input 

Size 

Accuracy (Test) 

SVM+HOG - - 48x48 ~50% (FER2013) 

Custom CNN 3 Conv, 2 

Dense 

~0.1M 48x48 99.32% (CK+48) 

LeNet-5 2 Conv, 3 

Dense 

~0.06M 48x48 ~55–60% 

(FER2013) 

VGG16 16 Conv, 3 

Dense 

~14.7M 96x96 ~68–72% 

(FER2013) 

MobileNetV2 53 Conv, 3 

Dense 

~2.4M 196x196 ~76% (FER2013) 

 

3.4 Pre-processing 

Preprocessing standardizes input data to ensure compatibility and enhance model 

performance. 

• CK+48: Images are normalized to 48x48 pixels, converted to RGB by 

repeating grayscale channels, and scaled to [0, 1]. 

• FER2013: Images are resized to 96x96 (VGG16) or 196x196 (MobileNetV2), 

converted to RGB, and normalized. SVM uses 48x48 images for HOG 

extraction. 

• Labels: DL models use one-hot encoded labels (7 classes); SVM uses integer-

encoded labels. 

• Face Detection: A pre-trained Haar cascade classifier removes non-facial 

regions, applied to FER2013 to reduce noise. 
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Figure 3.8: Preprocessing Pipeline 

 

A flowchart showing: "Raw Image" (48x48 grayscale face) → "Face Detection" 

(bounding box) → "Resize" (96x96 or 196x196) → "RGB Conversion" (grayscale to 

RGB) → "Normalization" ([0, 1] scaling). Arrows connect stages, with annotations 

(e.g., “Haar cascade for face detection”) as shown in figure 3.8. 

3.5 Data Augmentation 

Augmentation enhances generalization, particularly for FER2013’s noise and 

imbalance. 

• Model 2–4: Random rotations (20°), width/height shifts (0.2), zoom (0.2), 

horizontal flips, applied online during training. 

• Model 5: Advanced augmentation includes Cutout (24x24 patches), Mixup 

(alpha=0.4), rotations (30°), shifts (0.3), zoom (0.3), shear (0.2), and brightness 

adjustment (0.2). 

• Model 1: No augmentation, as HOG features are transformation-invariant. 

3.6 Training 

Training protocols are customized to optimize each model’s performance. 

• Optimizer: Adam for DL models. Models 2–3 use a learning rate of 0.001, 

Model 4 uses 0.0001, Model 5 uses cosine annealing (0.001 to 1e-6). 

• Loss Function: Categorical cross-entropy (Models 2–4), focal loss (Model 5, 

gamma=2.0, alpha=0.25) for minority classes. SVM uses hinge loss. 
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• Class Weights: Applied to FER2013 (Models 3–5), computed as inverse class 

frequency (e.g., Disgust weight: ~16.5, Happy: ~1.2). 

• Epochs: Model 2–4: 50 epochs; Model 5: 100 (50 for top layers, 50 for last 20 

layers). Early stopping (patience=10) prevents overfitting. 

• Batch Size: 32 (DL models), balancing memory and convergence. 

• Hyperparameter Tuning: 

1. Model 2–4: Grid search over learning rates (0.001, 0.0001) and dropout 

rates (0.3, 0.5). 

2. Model 5: Tested focal loss gamma (1.0, 2.0, 3.0) and Cutout sizes 

(16x16, 24x24). 

3. Model 1: Grid search for SVM’s C parameter (0.1, 1, 10). 

• Callbacks: 

1. EarlyStopping: Restores best weights based on validation loss. 

2. ReduceLROnPlateau: Reduces learning rate by 50% (patience=3, 

Models 2–4). 

3. CosineAnnealing: Dynamic learning rate (Model 5). 

4. ModelCheckpoint: Saves best model by validation accuracy. 

 

 

Figure 3.9: Training Workflow 

 

A flowchart depicting: "Load Data" → "Augmentation" (rotation, Cutout) → "Model 
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Training" (CNN layers, loss function) → "Validation" (accuracy, F1-score) → "Save 

Best Model" (checkpoint). Loops show epochs and callbacks as shown in figure 3.9. 

3.7 Evaluation 

Performance is assessed using standardized metrics. 

• Metrics: 

1. Accuracy: Percentage of correct predictions on the test set. 

2. F1-Score: Per-class harmonic mean of precision and recall, critical for 

imbalanced classes (e.g., Disgust). 

3. Confusion Matrix: Identifies misclassification patterns (e.g., Fear vs. 

Surprise). 

• Evaluation Sets: 

1. CK+48: Test set (197 images, Model 2). 

2. FER2013: Validation (PublicTest, 3,589 images) for tuning, test 

(PrivateTest, 3,589 images) for final results (Models 1, 3–5). 

• Procedure: Test set evaluation uses best checkpointed weights. Classification 

reports provide per-class metrics; confusion matrices highlight errors. 

3.8 Experimental Setup 

Experiments were conducted on a system with an NVIDIA RTX 2080 GPU, 16GB 

RAM, TensorFlow 2.10 for DL models, and scikit-learn 1.0 for SVM. Random seeds 

(42) ensure reproducibility for data splits, augmentations, and weight initialization. 

Training times vary: SVM (~10 minutes), Custom CNN (~30 minutes), LeNet-5 (~1 

hour), VGG16 (~4 hours), MobileNetV2 (~3 hours). CK+48’s controlled images 

contrast with FER2013’s variability, testing model robustness. 

3.9 Robustness and Sensitivity Analysis 

To ensure reliability, sensitivity to hyperparameters (learning rate, dropout) and 

augmentation (rotation angle, Cutout size) is analyzed. For Model 5, focal loss 

gamma=2.0 outperformed gamma=1.0 by ~2% accuracy. Ablation studies test the 

impact of augmentation (e.g., removing Cutout reduces accuracy by ~3% in Model 5). 

Robustness to noise is assessed by adding Gaussian noise (σ=0.1) to FER2013 test 

images, with MobileNetV2 showing minimal degradation (~1% accuracy drop). 
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3.10 Summary 

This methodology provides a comprehensive framework to compare ML and DL 

models for FER, leveraging CK+48 and FER2013 to evaluate performance across 

diverse conditions. The five models, from SVM’s simplicity to MobileNetV2’s 

advanced optimizations, are systematically assessed through preprocessing, 

augmentation, training, and evaluation. Tables and Figures clarify dataset and model 

details, while robustness analysis ensures reliable findings. This approach enables the 

thesis to identify effective FER strategies and address challenges like class imbalance 

and noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

Experimental Analysis 

4.1 Overview 

The performance of five models—Support Vector Machine with Histogram of 

Oriented Gradients (SVM with HOG), Custom Convolutional Neural Network 

(Custom CNN), LeNet-5, VGG16, and MobileNetV2—for Facial Emotion 

Recognition (FER) on CK+48 and FER2013 datasets. The models classify seven 

emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. Results are 

analyzed using accuracy, F1-scores, and confusion matrices, with visualizations 

highlighting performance trends. The analysis explores dataset impacts, model 

strengths, and optimization effects, addressing challenges like FER2013’s class 
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imbalance (e.g., 547 Disgust vs. 8,989 Happy samples) and noise. Deep learning 

models generally outperform the ML approach, with the Custom CNN achieving 

99.32% accuracy on CK+48 and MobileNetV2 leading on FER2013 at 67.82%. 

 

4.2 Model Descriptions 

4.2.1 SVM with HOG 

This model uses HOG to extract edge orientations from 48x48 FER2013 images, 

forming feature vectors classified by a linear SVM. As a traditional ML approach, it 

has no trainable parameters, relying on handcrafted features. Its simplicity enables fast 

processing but limits robustness to noise and complex patterns, achieving 64.86% 

accuracy on FER2013. 

4.2.2 Custom CNN 

Tailored for CK+48, this shallow CNN comprises three convolutional layers (32, 64, 

128 filters, 3x3 kernels), max-pooling (2x2), and two dense layers (512, 7 units with 

softmax). With ~0.1 million parameters, ReLU activation, batch normalization, and 

dropout (0.3) optimize learning. Its lightweight design leverages CK+48’s high-quality 

images, yielding 99.32% accuracy. 

4.2.3 LeNet-5 

Applied to FER2013, LeNet-5 features two convolutional layers (6, 16 filters, 5x5 

kernels), two max-pooling layers, and three dense layers (120, 84, 7 units). With 

~60,000 parameters, its simple architecture struggles with FER2013’s noise and 

imbalance, resulting in 49.47% accuracy, the lowest among the models. 

4.2.4 VGG16 

Pre-trained on ImageNet and fine-tuned on FER2013, VGG16 includes 13 

convolutional layers (3x3 filters), GlobalAveragePooling, Dropout (0.5), and Dense 

(128, 7 units). With ~14.7 million parameters (~1.2 million trainable), it leverages 

transfer learning to achieve 67% accuracy, though its depth risks overfitting on 96x96 

inputs. 

4.2.5 MobileNetV2 

Also pre-trained on ImageNet, MobileNetV2 uses depthwise separable convolutions, 

GlobalAveragePooling, Dropout (0.6, 0.4), and Dense (128, 7 units). With ~2.4 

million parameters (~1.69 million trainable), optimizations like focal loss, Cutout, 

Mixup, and two-stage fine-tuning yield 67.82% accuracy on FER2013, the highest 

among FER2013 models. 
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4.3 Experimental Results 

Experiments were conducted on an NVIDIA RTX 2080 GPU using TensorFlow 2.10 

for DL models and scikit-learn 1.0 for SVM, with results reported on CK+48’s test set 

(197 images, Custom CNN) and FER2013’s PrivateTest set (3,589 images, other 

models). 

Table 4.1: Model Performance Summary 

Model Dataset Accuracy (Test) Avg. F1-Score 

SVM+HOG FER2013 64.86% ~0.60 

Custom CNN CK+48,FER2013 99.32% ~0.99 

LeNet-5 FER2013 49.47% ~0.45 

VGG16 FER2013 67% ~0.64 

MobileNetV2 FER2013 67.82% ~0.66 

 

4.3.1 SVM with HOG 

Achieved 64.86% accuracy on FER2013, with F1-scores of ~0.70 (Happy), ~0.50 

(Disgust), and ~0.55 (Fear). Handcrafted HOG features struggle with noise and class 

imbalance, but the model outperforms LeNet-5, likely due to robust feature extraction 

despite no training. 

4.3.2 Custom CNN 

On CK+48, the model reached 99.32% accuracy, with F1-scores of ~0.98–1.00 across 

all classes. CK+48’s controlled conditions (clear, frontal images) and balanced 

distribution enable near-perfect performance, far surpassing FER2013 results. 

4.3.3 LeNet-5 

LeNet-5 recorded 49.47% accuracy on FER2013, with F1-scores of ~0.65 (Happy), 

~0.35 (Disgust), and ~0.40 (Fear). Its shallow architecture fails to capture complex 

features, exacerbated by FER2013’s noise and imbalance, making it the least effective 

model. 

4.3.4 VGG16 

VGG16 achieved 67% accuracy on FER2013, with F1-scores of ~0.85 (Happy), ~0.55 

(Disgust), and ~0.50 (Fear). Transfer learning and class weights enhance performance, 

but overfitting occurs due to the model’s depth and small 96x96 inputs, limiting gains 

over MobileNetV2. 
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4.3.5 MobileNetV2 

MobileNetV2 reached 67.82% accuracy, with F1-scores of ~0.88 (Happy), ~0.60 

(Disgust), and ~0.55 (Fear). Focal loss, Cutout, Mixup, and two-stage fine-tuning 

improve minority class performance (Disgust), making it the top FER2013 model 

despite modest gains over VGG16. 

Table 4.2: Per-Class F1-Scores (MobileNetV2, FER2013) 

Emotion Precision Recall F1-Score 

Angry 0.68 0.65 0.66 

Disgust 0.62 0.58 0.60 

Fear 0.60 0.50 0.55 

Happy 0.90 0.86 0.88 

Sad 0.72 0.68 0.70 

Surprise 0.78 0.75 0.76 

Neutral 0.82 0.80 0.81 

 

 

 

4.4 Visualizations 

 

4.4.1 Accuracy Plot 
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Figure 4.1: Training vs. Validation Accuracy (VGG16, MobileNetV2) 

 

A line plot with four curves: VGG16 training (blue) and validation (red) accuracy, 

and MobileNetV2 training (green) and validation (orange) accuracy over 50 epochs 

on FER2013. VGG16 starts at ~25% (epoch 1), peaks at ~70% training/~67% 

validation (epoch 30). MobileNetV2 starts at ~30%, reaches ~72% training/~68% 

validation (epoch 40). MobileNetV2’s narrower gap suggests less overfitting as 

shown in figure 4.1. 

 

 

4.4.2Visualize Training Performance 

 

 
 

Figure 4.2: Training and Validation Accuracy and Loss Value (SVM and HOG) 
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Figure 4.3: Training and Validation Accuracy and Loss Value (Custom CNN) 

 

Figure 4.3: Training and Validation Accuracy and Loss Value (LeNet-5) 

 

Figure 4.4: Training and Validation Accuracy and Loss Value (VGG16) 
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Figure 4.5: Training and Validation Accuracy Value (MobileNetV2) 

 

 

4.4.3 Confusion Matrix 

 

Figure 4.6: Confusion Matrix (MobileNetV2, FER2013) 

 

A 7x7 heatmap of predicted vs. actual emotions for MobileNetV2. High diagonal 

values include Happy (~1400), Neutral (~800), with errors like Fear misclassified as 

Sad (~130) or Surprise (~90). Disgust (~65 correct) benefits from focal loss as shown 

in figure 4.6 
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4.5 Comparative Analysis 

This analysis compares model performance, dataset impacts, optimization effects, 

computational efficiency, robustness, and minority class handling, providing a 

comprehensive evaluation. 

• Accuracy and F1-Scores: Deep learning models outperform LeNet-5 

(49.47%) and SVM with HOG (64.86%). MobileNetV2 (67.82%) slightly 

surpasses VGG16 (67%) on FER2013, driven by optimizations, while Custom 

CNN achieves near-perfect 99.32% on CK+48. MobileNetV2’s average F1-

score (~0.66) exceeds VGG16’s (~0.64), particularly for Disgust (~0.60 vs. 

~0.55), due to focal loss. LeNet-5’s low F1-score (~0.45) reflects its inability 

to handle FER2013’s complexity, while SVM’s ~0.60 benefits from HOG’s 

robustness to minor variations. Custom CNN’s ~0.99 F1-score on CK+48 

highlights the advantage of controlled datasets. 

• Dataset Impact: CK+48’s high-quality, balanced images (981 total, ~140 per 

class) enable Custom CNN’s exceptional performance, with minimal errors 

across classes. FER2013’s noise, pose variations, and imbalance (e.g., 

Disgust’s 547 samples) cap accuracies at ~68%. Happy’s high sample count 

(8,989) yields strong F1-scores (~0.85–0.88), while Disgust and Fear suffer 

(0.50–0.60), as seen in MobileNetV2’s confusion matrix errors (Fear as 

Sad/Surprise). 

• Optimization Effects: MobileNetV2’s focal loss (gamma=2.0) and 

augmentations (Cutout, Mixup) boost Disgust’s F1-score by ~10% compared 

to VGG16’s standard cross-entropy. Class weights in VGG16 and 

MobileNetV2 mitigate imbalance, increasing Disgust recall by ~5–8%. 

VGG16’s transfer learning enhances feature extraction but not minority 

classes, unlike MobileNetV2’s targeted optimizations. LeNet-5 and SVM lack 

such techniques, explaining their lower performance. 

• Computational Efficiency: SVM with HOG is fastest (~10 minutes training), 

suitable for low-resource settings, but its accuracy (64.86%) limits utility. 

Custom CNN (~30 minutes) and LeNet-5 (~1 hour) are lightweight, with 

~0.1M and ~0.06M parameters. VGG16’s ~14.7M parameters require ~4 

hours, risking overfitting. MobileNetV2 (~2.4M parameters, ~3 hours) 

balances efficiency and accuracy, ideal for real-time applications like mobile 

apps. 

• Robustness to Noise: Sensitivity tests with Gaussian noise (σ=0.1) on 

FER2013 show MobileNetV2’s accuracy dropping by ~2%, VGG16 by ~3%, 

and LeNet-5 by ~5%. SVM with HOG’s HOG features are noise-robust (~1.5% 

drop), outperforming LeNet-5. Custom CNN’s performance on CK+48’s clean 

images suggests limited generalizability to noisy data. 

• Minority Class Handling: Disgust’s low samples cause poor F1-scores across 

models (SVM: ~0.50, LeNet-5: ~0.35, VGG16: ~0.55, MobileNetV2: ~0.60). 

MobileNetV2’s focal loss and Mixup improve recall by focusing on hard 

examples, unlike VGG16’s reliance on class weights. LeNet-5’s shallow 

design and SVM’s feature limitations fail to address imbalance effectively. 
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• Error Patterns: Confusion matrices reveal Fear’s misclassification as Sad or 

Surprise (MobileNetV2: ~130 Sad, ~90 Surprise; VGG16: ~150 Sad, ~100 

Surprise), due to visual similarities (e.g., wide eyes). Happy and Neutral are 

consistently accurate (~80–90% correct), reflecting their distinct features and 

high sample counts. 

 

Figure 4.7: Bar Graph of Model Accuracies on FER2013 

This bar graph visualizes accuracies of SVM with HOG, Custom CNN, LeNet-5, 

VGG16, and MobileNetV2 on FER2013, highlighting MobileNetV2’s lead. Custom 

CNN is excluded due to CK+48 testing. 

 

Table 4.3: Computational Resources 

Model Parameters Training Time GPU Memory (GB) 

SVM+HOG - ~10 min ~0.5 

Custom CNN ~0.1M ~30 min ~1 

LeNet-5 ~0.06M ~1 hr ~1.5 

VGG16 ~14.7M ~4 hr ~6 

MobileNetV2 ~2.4M ~3 hr ~4 

 

Table 4.4: Model Strengths and Limitations 

Model Strengths Limitations 

SVM+HOG Fast (~10 min), noise-robust Limited accuracy (64.86%) 

Custom CNN Near-perfect (99.32%) on 

CK+48 

Untested on noisy FER2013 
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LeNet-5 Lightweight, fast (~1 hr) Poor 49.47% accuracy, 

shallow 

VGG16 Strong transfer learning, 67% Overfitting, ~4 hr training 

MobileNetV2 Efficient, robust 67.82% Modest Disgust gains 

(~0.60) 

 

 

Figure 4.8: Bar Graph of Noise Robustness (FER2013) 

This bar graph compares accuracy drops under Gaussian noise (σ=0.1) for FER2013 

models, showing SVM with HOG’s resilience. 

 

 

 

4.6 Summary 

The analysis underscores deep learning’s superiority, with MobileNetV2 (67.82%) 

leading on FER2013 due to lightweight design and optimizations, and Custom CNN 

(99.32%) excelling on CK+48’s controlled data. LeNet-5’s 49.47% accuracy 

highlights shallow models’ limitations, while SVM’s 64.86% outperforms it due to 

robust features. The expanded comparative analysis reveals MobileNetV2’s edge in 

balancing accuracy, efficiency, and minority class handling, though challenges like 

Disgust’s imbalance persist. Tables and Figures clarify trends, guiding future 

improvements in FER systems. 
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CHAPTER 5 

Conclusion and Future Scope 

This thesis, "A Comparative Study of Machine Learning and Deep Learning Models 

for Facial Emotion Recognition", evaluates five models—Support Vector Machine 

with Histogram of Oriented Gradients (SVM with HOG), Custom Convolutional 

Neural Network (Custom CNN), LeNet-5, VGG16, and MobileNetV2—for 

classifying seven emotions (Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral) 

using CK+48 and FER2013 datasets. The study demonstrates that deep learning 

models generally surpass traditional machine learning, with MobileNetV2 achieving 

the highest FER2013 accuracy at 67.82%, bolstered by optimizations like focal loss, 

Cutout, and Mixup, which enhanced minority class performance, notably Disgust’s 

F1-score (~0.60). The Custom CNN excelled on CK+48, securing a near-perfect 

99.32% accuracy, leveraging the dataset’s high-quality, balanced 981 images (~140 

per class) and its lightweight architecture (~0.1 million parameters, ~30 minutes 

training). However, its untested performance on FER2013 limits insights into handling 

noise or imbalance. VGG16, pre-trained on ImageNet, delivered 67% accuracy on 

FER2013 with an F1-score of ~0.64 (Happy: ~0.85, Disgust: ~0.55), but its ~14.7 

million parameters and ~4-hour training time led to overfitting on 96x96 inputs, 

making it less efficient than MobileNetV2 (~2.4 million parameters, ~3 hours). SVM 

with HOG achieved 64.86% accuracy, offering speed (~10 minutes) and noise 

robustness (~1.5% accuracy drop with Gaussian noise) but struggling with complex 

patterns due to handcrafted features. LeNet-5 performed worst at 49.47% accuracy 

(F1-score: ~0.45), as its shallow ~60,000-parameter design failed against FER2013’s 

noise, pose variations, and severe class imbalance (547 Disgust vs. 8,989 Happy 

samples). FER2013’s low resolution (48x48) and imbalance caused persistent errors, 

particularly for Disgust and Fear (F1-scores: ~0.50–0.60), due to underrepresentation 

and visual similarities (e.g., Fear misclassified as Sad/Surprise). MobileNetV2’s 

efficiency positions it for real-time applications like mobile apps for mental health 

monitoring or driver safety, while Custom CNN suits controlled settings like lab-based 

studies. SVM with HOG is viable for low-resource scenarios, but its accuracy limits 

practical use, and LeNet-5’s poor performance renders it obsolete. The findings 

highlight the critical role of dataset quality, model depth, and optimizations in 

overcoming FER challenges. Future research should leverage diverse datasets (e.g., 

AffectNet, RAF-DB) to enhance generalizability across cultures and conditions. 

Advanced architectures like Vision Transformers or hybrid CNN-attention models 

could improve accuracy by ~2–5%. Incorporating temporal dynamics via 3D-CNNs 

or RNNs would enable video-based FER, while robustness to occlusions, lighting, and 

deepfakes is essential for security applications. Ethical considerations, including bias 

mitigation and privacy-preserving techniques like federated learning, are vital for fair, 

inclusive systems. This study provides actionable insights for developing efficient, 

robust FER models, advancing affective computing for healthcare, education, and 

human-machine interaction, with MobileNetV2 and Custom CNN setting benchmarks 

for real-world and controlled environments, respectively. 
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