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Abstract

The escalating challenges to global food security, driven by climate change,

limited natural resources, and rising population demands, necessitate the adop-

tion of intelligent, data-driven solutions in agriculture. This thesis presents two

complementary deep learning frameworks aimed at addressing key aspects of

precision farming: accurate pre-season crop prediction and robust plant disease

detection. For crop prediction, a hybrid model integrating Convolutional Neu-

ral Networks (CNNs) and Bidirectional Long Short-Term Memory (Bi-LSTM)

networks is developed, effectively capturing spatial patterns and temporal trends

from historical crop rotation data and synthetic field-level features. To ensure

generalizability and prevent overfitting, the model leverages stratified k-fold cross-

validation and dropout regularization, consistently outperforming conventional

methods in terms of predictive accuracy and applicability to real-world scenarios.

In parallel, this work introduces a novel Vision Transformer (ViT) combined with

a modified High-Resolution Network (HRNet) for disease diagnosis across multi-

ple plant species, addressing challenges such as variation in leaf venation, texture,

and symptom presentation. By fusing global contextual reasoning from ViT with

fine-grained spatial precision from HRNet, the proposed architecture achieves su-

perior classification accuracy in both controlled and field environments. Together,

these models provide an end-to-end framework for predictive and preventive crop

management, advancing the goals of sustainable agriculture, early intervention,

and resilient food systems.
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Chapter 1

INTRODUCTION

1.1 Background

Agriculture plays a vital role in ensuring global food security, providing livelihoods

for billions and contributing significantly to the economy of developing nations.

However, the sector faces growing challenges including climate change, declining

arable land, unpredictable weather patterns, pests, and plant diseases. In the

face of these issues, the integration of Artificial Intelligence (AI) in agriculture

is emerging as a transformative approach to enable precision farming, efficient

resource management, and sustainable practices.

The agricultural landscape is evolving from traditional labor-intensive meth-

ods to technology-driven solutions. AI, combined with Machine Learning (ML)

and Deep Learning (DL), is reshaping farming systems through predictive analyt-

ics, automated disease detection, and smart decision-making. These technologies

enable the processing of large-scale agricultural data, leading to timely interven-

tions and optimized yields.
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1.2 Problem Statement

Conventional agricultural practices often rely on manual observation and experience-

based decisions, which are insufficient for handling complex and large-scale farm

data. Crop prediction and disease detection are particularly challenging due to

the variability in environmental factors, soil conditions, and crop characteristics.

There is a need for intelligent systems that can predict suitable crop types before

planting and identify plant diseases early to mitigate losses.

1.3 Motivation

With the global population projected to reach 9.7 billion by 2050, agricultural

production must increase significantly. This demand calls for innovative solutions

that maximize productivity while maintaining sustainability. AI-driven systems

offer promising capabilities in addressing critical issues like crop type prediction

and disease detection. The integration of hybrid deep learning models such as

CNN, Bi-LSTM, ViT, and HRNet provides powerful tools for modeling complex

agricultural data with high accuracy.

1.4 Objectives

The primary objectives of this thesis are:

1. To develop a hybrid CNN-BiLSTM model for accurate pre-season crop pre-

diction.

2. To design an integrated ViT-HRNet model for effective multi-crop plant

disease detection.

3. To evaluate and compare the performance of the proposed models with

existing state-of-the-art approaches.
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4. To contribute towards the development of scalable and interpretable AI

systems for real-world agricultural applications.

1.5 Scope of the Thesis

This thesis focuses on two critical components of smart farming: crop prediction

and disease detection. The study is based on two original research works:

1. An ensemble model using CNN and Bi-LSTM for pre-season crop prediction

using historical agricultural data.

2. A hybrid model combining Vision Transformer and High-Resolution Net-

work for precise plant disease detection across multiple crop types.

Both models are evaluated against benchmark datasets and are designed to

be scalable and applicable to real-world scenarios.

1.6 Organization of the Thesis

The thesis is organized as follows:

1. Chapter 2 reviews existing literature related to crop prediction and plant

disease detection using AI and deep learning.

2. Chapter 3 describes the methodology adopted for both models, including

data preprocessing, model architecture, and implementation details.

3. Chapter 4 presents experimental results and discusses the performance of

the proposed models.

4. Chapter 5 concludes the thesis with key findings, limitations, and future

research directions.

3



Chapter 2

Literature Review

2.1 Introduction

The emergence of AI in agriculture has inspired a range of research efforts to solve

persistent problems in crop management and plant health monitoring. This chap-

ter critically examines the developments in AI-driven crop prediction and plant

disease detection, analyzing classical approaches and contemporary deep learning

methodologies. The review also identifies gaps and limitations that motivate the

need for hybrid and scalable solutions.

2.2 Literature on Crop Prediction

Elbasi et al. [9] examined the role of GPS-equipped IoT sen sors in improving

agricultural productivity through machine learning. By analyzing dynamic en-

vironmental parameters such as temperature, humidity, pH, and rainfall, their

approach aids farmers in optimizing planting schedules, irrigation, and harvest-

ing decisions. Baumert et al. [10] introduced a proba bilistic framework for

crop type mapping in Europe, enhancing spatial and temporal resolution while

aligning with adminis trative datasets. This model is particularly beneficial for

areas where remote sensing data is sparse or impractical. Abernethy et al. [11]
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proposed an alternative machine learning method that identifies crop sequence

boundaries (CSBs) using field level polygons to summarize cropping patterns,

streamlining computational demands while maintaining accuracy. Zhang et al.

[12] integrated machine learning with crop phenology models, improving pheno-

logical predictions, particularly for rice, by considering climate variations across

different growth phases. Dupuis et al. [13] developed a Seq2Seq-LSTM model for

predicting crop rotation patterns and combined it with a conditional probability

approach to refine forecasts. This paper discusses sustainable fertilization strate-

gies that minimize chemical inputs while ensuring optimal yields. Raju et al. [14]

introduced an advanced stacking ensemble (IML ASE) model tailored for agro-

ecological zones, leveraging environmental and soil attributes to improve crop

prediction accuracy. Romero et al. [15] explored the potential of high through-

put phenotyping platforms (HTTP), which employ UAVs to estimate crop head-

ing and maturity timelines under varying irrigation regimes. Using vegetation

indices from RGB imagery, their model demonstrated predictive capabilities, ex

plaining a significant proportion of variance in wheat and oat phenology. Lastly,

Suruliandi et al. [16] proposed an ensemble deep learning framework, RFOERNN-

CRYP, which combines LSTM, BiLSTM, and GRU models, optimized via Red

Fox Optimization, for precise crop recommendations based on agro-parameters.

2.3 Literature on Plant Disease Detection

Nobela et al. [10] proposes a complex deep learning model for plant disease de-

tection, introducing DenseNetMini with a learning resizer and Gradient Product

(GP) optimization to improve accuracy and efficiency. Leygonie et. al. [11]

presents a model that support decision for plant anomaly detection without re-

quiring prior knowledge of the anomalies. Using an auxiliary prediction task,

the model analyzes heatmap distributions to identify deviations in new obser-

5



vations. Dong et. al. [12] introduces plant disease anomaly detection by lever-

aging vision-language models and incorporating visual information to improve

fine-grained classification. Traditional concept matching approaches struggle in

this domain, so the proposed method refines prompt tuning to focus on visual

cues. Calonea et. al [13] evaluates ChatGPT-3.5 Turbo and GPT-4 for plant

disease risk forecasting. GPT-4 generates detailed adaptive messages for tech-

nical reports, while GPT 3.5 excels in concise, consistent communication for

routine tasks. Both models require domain-specific training to improve accu-

racy and alignment with Integrated Pest Management principles. Dong jin et.

al. [14] introduces Shuffle-PG, a lightweight model which extract features for

plant disease and pest diagnosis using content-based image retrieval. By integrat-

ing ShuffleNet v2 with pointwise group convolution, Shuffle-PG significantly re-

duces computational costs while maintaining high search performance.The study

also explores deep metric learning with contrastive loss to enhance feature ex-

traction. Future research will address dataset imbalance, optimize deployment

on mobile devices, and explore model compression techniques for improved ef-

ficiency. Tunio et. al. [15] proposes a novel Unsupervised Domain Adaptation

(UDA) framework for plant disease classification, integrating CNNs for local fea-

tures and MViTs for global features to en hance transferability. Using adversarial

learning with Wasser stein distance, the model improves classification accuracy

by 13.67Raghurama and Borah [16] presents a Hybrid Learning Model (HLM)

for disease detection in tomato palnt, Deep Reinforcement Learning integrating

with Transfer Learning (DRL-TL). High-resolution leaf images are preprocessed

using an enhancement algorithm to improve clarity before being analyzed by a

MobileNetV2-based model. Chaia et. al. [17] presents PlantAIM, a hybrid model

combining Vision Trans former (ViT) and CNN for improved disease detection

in plants. By fusing global attention with local feature extraction, it enhances

crop-specific and disease-specific feature learning. Extensive evaluations show su-
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perior performance over state of-the-art models, establishing PlantAIM as a new

benchmark in agricultural disease identification. Mahadevan et. al. [18] inte-

grates image enhancement, segmentation, feature selec tion, and optimization to

improve classification for rice plant disease detectio. Shwetha et. al. [19] presents

LeafSpotNet, a MobileNetV3-based classifier for detecting leaf blight dis ease in

Jasmine plants, achieving 97depthwise convolution, max pooling, CGAN-based

data aug mentation, and Particle Swarm Optimization for enhanced feature ex-

traction and selection. Its lightweight architecture, fast computation (30s) and

small size (10MB), makes it suitable for real-time mobile deployment. Tejaswinia

et. al. [20] explores CNN-based plant disease detection for tomato, potato, and

bell pepper leaves, leveraging a pre-trained deep learning model on the Plant Vil-

lage dataset. Rezaeia et. al. [21] proposes a few-shot learning (FSL) approach for

disease detection in plants using a PMF+FA pipeline with Vision Transformers

(ViT) and ResNet50. It demonstrates high efficiency (ViT: 1.11 ms/image) for

real time applications. Peng et. al. [22] explores predicting Fusar ium Head Blight

(FHB) Epidemics in Wheat Using Boosted Regression Trees (BRTs). BRTs sig-

nificantly enhance classi f ication accuracy, reducing misclassification rates below

0.1, and efficiently handling non-linear relationships in weather related variables.

While BRTs outperform traditional mod els, challenges include data quality de-

pendency, overfitting risks, and interpretability issues. Perumal et. al. [23]

explores FPGA-accelerated Convolutional Neural Networks (CNNs) for identifi-

cation of plant disease in real time, leveraging the PYNQ FPGA platform for

enhanced efficiency. Wang et. al. [24] presents a transformer-based model for

automated plant disease identification, integrating BatchFormerV2, LAMB op

timizer, and CIoU loss for improved accuracy and training sta bility. The model

outperforms CNNs and vision transformers, achieving 56.3 mAP on a large-scale

dataset. Its interpretable attention mechanism enhances transparency, support-

ing effi cient and accurate disease detection for precision agriculture.
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Chapter 3

Proposed Methodology

3.1 Crop Prediction

The proposed methodology uses a hybrid deep learning model that combines

CNN and Bi-LSTM layers. We trained and evaluated the model using a k-fold

stratified cross-validation approach to ensure robust performance across diverse

and unseen data distributions. The key steps in the methodology are detailed

below.

3.1.1 Data Preprocessing and Model Architecture :

Step-1 : Dataset Loading:

The dataset, denoted as D = {X, y}, consists of:

• X: A matrix of dimensions n ×m, where n is the number of samples and

m is the number of features.

• y: A vector of categorical crop labels, where each yi represents the crop

type corresponding to the sample i.

Step-2 : Label Encoding:

Categorical labels y are transformed into numerical labels yenc using a mapping

function f to convert crop categories into integers:

8



yenc = f(y), f : Categories→ Z (3.1)

For example, if crops are {Wheat, Rice,Maize}, they are assigned to {0, 1, 2}.

Step-3 : Normalization:

Feature normalization ensures that input features are scaled to the range [0, 1],

enhancing the stability of the training:

Xnorm =
X −Xmin

Xmax −Xmin

(3.2)

where Xmin and Xmax are the minimum and maximum values of each feature.

Step-4 : Re-shaping:

The normalized feature matrix is reshaped into a 3D tensor for compatibility

with CNN and BiLSTM layers:

Xreshaped = reshape(Xnorm, (n,m, 1)) (3.3)

3.1.2 Model Overview:

Fig. 1 explains about model architecture that how we are designing, coding

and integrating of our model. The model integrates CNN and Bi-LSTM layers

to capture both spatial and temporal dependencies in agricultural data. CNN

extracts spatial characteristics such as soil composition and vegetation indices,

while Bi-LSTM models temporal relationships like historical pesticide use and

weather patterns. Early-stage crops may recover from hazards better than mature

crops, which are more vulnerable. This architecture is designed to support robust

forecasting and mitigate agricultural risks.

Input Layer:

9



The input to the model is a 3D tensor:

X ∈ Rn×m×1 (3.4)

Bi-LSTM Branch:

Each LSTM unit processes sequences bidirectionally, generating forward and

backward hidden states:

−→
ht = LSTM forward(Xt),

←−
ht = LSTM backward(Xt) (3.5)

Concatenation of hidden states:

ht =
−→
ht ⊕

←−
ht (3.6)

Two stacked BiLSTM layers are used: the first with 64 units, the second with

32 units. Dropout regularization with rate p = 0.3 is applied:

hdrop = Dropout(h, p) (3.7)

CNN Branch:

1. First Conv1D layer with 64 filters and kernel size 2:

C1 = Conv1D(Xinput, 64, kernel size = 2) ∈ Rn×(m−1)×64 (3.8)

2. MaxPooling1D with pool size 2:

P1 = MaxPooling1D(C1, pool size = 2) ∈ Rn× (m−1)
2

×64 (3.9)

3. Dropout with rate 0.3 applied.

10



4. Second Conv1D layer with 32 filters:

C2 = Conv1D(P1, 32, kernel size = 2) ∈ Rn×(
(m−1)

2
−1)×32 (3.10)

5. MaxPooling1D with pool size 2:

P2 = MaxPooling1D(C2, pool size = 2) ∈ Rn× (m−3)
4

×32 (3.11)

6. Flattening the output:

F = Flatten(P2) ∈ Rn×(8(m−3)) (3.12)

Concatenation Layer:

Concatenation of Bi-LSTM output and CNN branch output:

hconcat = hBiLSTM ⊕ F (3.13)

Fully Connected Layers:

Concatenated features passed through dense layer:

D = Dense(hconcat, 16, activation = ReLU) (3.14)

Final softmax output layer:

ŷ = Dense(D, k, activation = softmax) (3.15)

Loss Function:

The model is trained using sparse categorical cross-entropy:

11



L = − 1

n

n∑
i=1

logP (yi | Xi) (3.16)

where P (yi | Xi) is the predicted probability for the true label yi given the

input Xi.

Table I elaborates the whole architecture diagram and all hyperparameters

of the proposed Bi-LSTM and CNN ensemble model for precise crop prediction.

The model starts with an Input Layer that processes data in a shape of (n,m,1).

It includes two Bidirectional LSTM (Bi-LSTM) layers, with 64 and 32 units,

respectively, using the ReLU activation function to capture sequential dependen-

cies. Dropout layers are added for regularization. The CNN component consists

of two 1-D convolutional layers (64 and 32 filters), each followed by Max-Pooling

layers to reduce dimensionality. The Flatten layer reshapes the output before

concatenation with Bi-LSTM features.

Table 3.1: Hyperparameter of proposed model

Layer Type Units/Filters Activation Output Shape

Input Layer Input - - (n,m, 1)

Bi-LSTM (1) Bidirectional LSTM 64 ReLU (n,m, 64)

Dropout (1) Dropout - - (n,m, 64)

Bi-LSTM (2) Bidirectional LSTM 32 ReLU (n, 32)

Conv1D (1) Convolutional 1D 64 ReLU (n,m− 1, 64)

MaxPooling (1) MaxPooling 1D - - (n, m−1
2

, 64)

Dropout (2) Dropout - - (n, m−1
2

, 64)

Conv1D (2) Convolutional 1D 32 ReLU (n, m−1
2
− 1, 32)

MaxPooling (2) MaxPooling 1D - - (n, m−1
4

, 32)

Flatten Flatten - - (n, f)

Concatenation Concatenate - - (n, f + 32)

Dense Fully Connected 16 ReLU (n, 16)

Output Fully Connected (softmax) k (categories) softmax (n, k)

12



Figure 3.1: Architecture Diagram
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Table 3.2: Hyperparameter Tuning of Different Models

ML Models Folds Parameters Optimized Values

SVM K-fold cross-validation = 5 Gamma 5

LR Random state 2

max iteration 25

KNN N neighbours 2

DT max depth 5

RF N estimators 2

random state 0

ANN Optimizer Adam

Loss Binary Cross-Entropy

max iteration 25

Bi-LSTM + CNN (Proposed model) Optimizer Adam

Loss Function Binary Cross-Entropy

Learning Rate 0.001

Dropout Rate 0.5

Batch Size 32

Epochs 50

Table II presents the hyperparameter tuning details for different machine

learning models, including the proposed Bi-LSTM + CNN model. A 5-fold cross-

validation technique is applied to ensure robustness and minimize overfitting.

Each model is fine-tuned using specific hyperparameters, such as gamma for SVM,

maximum depth for Decision Trees, and learning rate, dropout rate, and batch

size for Bi-LSTM + CNN. These hyperparameters are optimized to improve the

performance of the model by balancing bias and variance. The proposed ensemble

model takes advantage of both sequential and spatial feature extraction, making

it more effective for precise crop prediction.
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3.2 Disease Prediction

3.2.1 Dataset Preparation

Input

We have taken the Plant village dataset D containing plant leaf images, and Y

be the corresponding disease labels. The dataset consists of:

• Disease symptoms & affected location (captured using ViT).

• Leaf shape & venation pattern (captured using HRNet).

The dataset can be represented as:

D = {(Xi, Yi)}Ni=1 (3.17)

where Xi represents an image, and Yi is the associated label.

3.2.2 Data Preprocessing

To ensure consistent input to both ViT and HRNet, images undergo the following

transformations:

Resizing

Images are re-shaped to 224× 224 pixels.

Normalization

Normalized pixel values using ImageNet mean µ and standard deviation σ:

X ′
i =

Xi − µ

σ
, X ′

i ∈ R3×224×224 (3.18)

15



Data Augmentation

Data augmentation techniques are applied to generalize the model and increase

robustness for training images. These transformations help mitigate overfitting

and improve performance on unseen data. The applied augmentations include:

• Random Rotations (θ): Ensure invariance to leaf orientation by randomly

rotating images.

• Horizontal Flips (Fh): Reduces bias towards a fixed viewpoint by flipping

images horizontally.

• Color Jittering (Cj): Enhances robustness to varying lighting conditions

by modifying brightness, contrast, and saturation.

The final transformed image is obtained as:

X ′′
i = Cj(Fh(Rθ(X

′
i))) (3.19)

where X ′
i is the normalized image, and X ′′

i represents the augmented version.

3.2.3 Model Architecture

Our model integrates the two big deep learning architectures, one is Vision Trans-

former (ViT) and the other one is High-Resolution Network (HRNet) for the

advantage of their complementary strengths for plant disease classification. The

architecture consists of three main components:

Vision Transformer (ViT) Module

ViT is designed to capture global contextual information from images by dividing

them into patches. ViT process them through a transformer-based self-attention

mechanism. The ViT module follows these key steps:
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Figure 3.2: Model Architecture

• Patch Embedding: The input imageX ∈ RH×W×C is divided into patches

that are non-overlapping and linearly projected in an embedding space:

fv patch = PatchEmbed(X) ∈ RNp×d (3.20)

where Np is the number of patches and d is the embedding dimension.

• Self-Attention Mechanism: The patch embeddings are processed through

multiple transformer layers, where each layer applies Multi-Head Self-Attention

(MSA):

Z = MSA(LN(fv patch)) + fv patch (3.21)

where LN denotes Layer Normalization.

• Feature Extraction: The final ViT feature representation is computed

as:

fV iT (X) = WV iTZ + bV iT (3.22)
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High-Resolution Network (HRNet) Module

HRNet is specialized in maintaining high-resolution feature representations. HR-

Net ensures the preservation of structural details such as leaf shape and venation

patterns. The HRNet module operates as follows:

• Multi-Scale Feature Representation: HRNet maintains multiple par-

allel feature streams at different resolutions. Feature maps at different

resolutions are computed as:

H1, H2, H3 = HRNet(X) (3.23)

• Feature Fusion: The high-resolution representation is obtained by con-

catenating multi-resolution features:

fHRNet(X) = WHRNet[H1 ⊕H2 ⊕H3] + bHRNet (3.24)

where ⊕ denotes concatenation.

• Feature Fusion and Classification The features extracted from ViT and

HRNet are concatenated to leverage both global contextual and fine-grained

structural information:

F (X) = fV iT (X)⊕ fHRNet(X) (3.25)

A fully connected classification layer then maps these features to the final

plant disease class:

Ŷ = WfinalF (X) + bfinal (3.26)

where Wfinal and bfinal are the learned parameters.
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3.2.4 Importance of ViT and HRNet in the Model

The combined proposed model (ViT and HRNet) plays a significant role. It inte-

grates both global and local feature representations that enhances plant disease

classification.

• Vision Transformer (ViT): Using self-attention mechanisms ViT excels

in capturing disease-related patterns. When we provide a comprehensive

global view of the leaf it effectively detects symptoms such as discoloration,

lesions, and disease-affected region.

• High-Resolution Network (HRNet): HRNet make sure that structural

details such as leaf shape, venation patterns, and fine texture details are

preserved. These fine-grained details are particularly important for distin-

guishing between different plant diseases that exhibit subtle morphological

differences.

• Hybrid Feature Representation: By combining the outputs of ViT and

HRNet, the model benefits from both detailed structural information and

rich contextual representations, leading to improved classification accuracy.

The integration of ViT and HRNet allows the model to perform robust and

accurate plant disease classification, making it well-suited for real-world agricul-

tural applications.
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Table 3.3: Hyperparameter Settings for Plant Disease Classification Model
Hyperparameter Value
Optimizer Adam
Learning Rate 0.001
Batch Size 16
Number of Epochs 5
Loss Function Cross-Entropy Loss
Image Size 224× 224
Data Augmentation Random Rotation, Horizontal Flip, Color Jitter
Train-Validation Split 80%-20%
Number of Classes (Based on dataset)
ViT Model vit base patch16 224 (Pretrained)
HRNet Model hrnet w18 (Pretrained)
Device CPU
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Chapter 4

Result and Discussion

4.1 Crop Prediction

Figure 4.1: Accuracy comparison of different features

Table III presents the performance comparison of various machine learning
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Figure 4.2: Precision comparison of different features
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Figure 4.3: Recall comparison of different features
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Figure 4.4: F1-score comparison of different features
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Figure 4.5: ROC-AUC score comparison of different features
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and deep learning models based on accuracy, precision, recall, F1-score, and ROC-

AUC score. The SVM model achieves an accuracy of 92.7%, with a high precision

of 95.6% and an ROC-AUC score of 99.8%, indicating a strong classification abil-

ity. Logistic regression performs better, achieving 96.5% precision and a 96.63%

precision rate. The Decision Tree model, with 92.2% accuracy, has the lowest F1

score (91.7%) among the models. Random Forest improves on this with accuracy

94.2% and a better F1 score (94.0%). KNN shows a strong balance with accuracy

96% and equal recall and F1 score. ANN outperforms most traditional models

with 97.2% accuracy. Finally, the Bi-LSTM + CNN model achieves the highest

accuracy (98.2%) and F1 score (97.2%), which proves to be the most effective

technique. Due to its superior performance across all metrics, this method is

proposed as the optimal approach for the given task.

Table 4.1: Performance Comparison of Models

Model Accuracy Precision Recall F1-score ROC-AUC Score

SVM 92.7% 95.6% 93.2% 93.6% 99.8%

Logistic Regression 96.5% 96.63% 96.4% 96.4% 99.8%

KNN 96% 96.1% 96% 96% 99.1%

Decision Tree 92.2% 94.5% 92.2% 91.7% 99.3%

Random Forest 94.2% 94.5% 94.1% 94.0% 99.5%

ANN 97.2% 97.3% 97.2% 94.2% 99.9%

Bi-LSTM + CNN (Proposed model) 98.2% 98.3% 97.9% 97.2% 99.9%

Table IV presents a comparative analysis between the proposed model and

existing techniques based on key performance metrics: accuracy, specificity, pre-

cision, recall, and F1-score. The referenced models exhibit varying performance

levels, with accuracy ranging from 80.06% to 97.1%. Model [44] demonstrates

the lowest accuracy (80.06%) and F1-score (85.37%), indicating suboptimal clas-

sification performance. Model [46] achieves strong results, with 97.1% accuracy

and a perfect specificity score of 100%, demonstrating high reliability. However,
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the proposed model outperforms all prior approaches, achieving the highest accu-

racy (98.2%), specificity (99.3%), precision (97.04%), recall (97.5%), and F1-score

(97.9%). These results suggest that the proposed approach enhances the classi-

fication performance and generalization capability, making it the most effective

technique among the compared methods [44].

Table 4.2: Performance comparison with existing techniques.

References Accuracy Specificity Precision Recall F1-score

[42] 89.7 98.83 94.14 93.24 93.68

[43] 94.43 97.68 92.37 93.64 93.62

[44] 80.06 82.11 82.7 83.19 85.37

[45] 84 94.63 89.11 88.53 88.81

[46] 97.1 100 97.03 97.12 97.09

[Proposed Model] 98.2 99.3 97.04 97.5 97.9

4.2 Disease Prediction

Table 4.3: Performance Comparison of Models

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) ROC-AUC (%)

VGG16 + Inception-v3 97.6 98.0 98.0 97.0 98.2

ViT 98.8 98.8 98.6 98.7 99.2

ACO-CNN 99.2 99.1 99.1 99.0 99.2

CNN + Gradient Boosting 98.03 98.04 98.01 98.02 98.5

ResNet50 + Attention Fusion 98.7 98.53 98.56 98.57 98.8

ViT + HRNet (Proposed Model) 99.82 99.71 99.69 99.72 99.80

Table II presents a comparative analysis of different models which are used

for plant diseases prediction. First one is VGG16 + Inception-v3 which is a 16

layer model and it gives 97% accuracy and after that I used Vision Transformer

(ViT) which gives 98.8% accuracy. After that I take CNN with Ant Colony
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Figure 4.6: Accuracy comparison of different models
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Figure 4.7: Precision comparison of different models
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Figure 4.8: Recall comparison of different models
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Figure 4.9: F1-score comparison of different models
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Figure 4.10: ROC-AUC score comparison of different models
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Optmization(ACO) and Gradient Boosting and it gives a considerable accuracy

which is 99.2% and 98.03% respectively and at last I used Vision Transformer

with High Resolution Network (ViT + HRNet), which is my proposed model and

it gives 99.82% accuracy.

Table III presents a comparative analysis of the proposed Fusion model of ViT

and HRNet framework against several state-of-the-art (SOTA) models. The first

category includes prior studies [25], [26], and [27], where models incorporating

hybrid architectures, combining convolutional layers with attention mechanisms,

were trained from the ground up. The highest accuracy observed in this category

on the Plant Village dataset was 97.28%. The second category consists of ap-

proaches leveraging pretrained deep learning architectures, such as DenseNet121,

MobileNetV2, and Vision Transformer (ViT) (vit base patch16 224). These mod-

els utilize transfer learning techniques, where CNN-based approaches integrate at-

tention layers and ViT-based models incorporate convolutional layers to improve

performance. The highest accuracy attained in this group reached 98.86% on the

Plant Village dataset. Despite their effectiveness, these hierarchical architectures

primarily focus on progressive feature extraction, which may pose challenges when

generalizing across multiple crop species in plant disease classification.

In contrast, the proposed framework enhances feature extraction by integrat-

ing both pretrained ViT and HRNet architectures within a dual-stream process-

ing mechanism. To further refine the extracted features, a novel Generalized

Local Feature Aggregation (GLFA) layer is introduced, ensuring improved fusion

of spatial and contextual information, thereby enhancing adaptability across di-

verse crop-disease combinations. Unlike previous studies that primarily depend

on a single classifier, proposed model incorporates a dual-classifier mechanism

to strengthen plant disease identification. For a rigorous evaluation. Specifi-

cally, ViT + HRNet employs a single classifier, aligning its structure with other

SOTA models in Table II. The final classification result is obtained through a
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post-processing step that consolidates outputs from both classifiers.

Results of proposed model shows that it achieved outstanding performance

attaining a peak accuracy of 99.72% on the Plant Village dataset, surpassing

the highest-performing SOTA model by 0.80%. The combination of ViT + HR-

Net demonstrates superior precision, recall, and F1 score, that tells about its

effectiveness. The improvement is significant in real-world agricultural applica-

tions and highlights the contribution of the GLFA layer to capture and generalize

disease-specific features across multiple crops.

Table 4.4: Performance comparison between State of the models and proposed
model.

Work Approach Accuracy Precision Recall F1 score

[51] Build from scratch 90.13 90.59 89.89 90.24

[53] Build from scratch 97.28 97.49 97.06 97.27

[52] Build from scratch 95.83 96.20 95.60 95.89

[57] Pretrained ViT 98.61 98.24 98.33 98.28

[54] Pretrained CNN 87.94 89.59 86.71 88.07

[55] Pretrained CNN 96.61 97.09 96.11 75.03

[58] Pretrained CNN 98.86 98.90 98.81 98.85

[56] Pretrained CNN 96.68 97.49 95.83 96.64

ViT + HRNet (Proposed Model) Pretrained ViT and
HRNet

99.72 99.71 99.69 99.70
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Chapter 5

Conclusion and Future Work

In this research paper, we introduce a novel hybrid model that enhances the

identification of plant diseases by integrating the power of the Vision Trans-

former (ViT) and the High-Resolution Network (HRNet). The architecture we

propose leverages a specialized feature fusion mechanism that effectively captures

both global and local patterns, improving generalization capability for multi-crop

disease classification.

After running our model, results show that the ViT and HRNet-based model

outperforms state-of-the-art (SOTA) approaches present in the Plant Village

dataset. By optimizing key parameters, we ensure the model’s robustness for

enhanced performance. These findings establish the proposed model as a strong

candidate for advancing automated plant disease detection and classification tech-

niques.

Accurate pre-season crop prediction plays a crucial role in strengthening global

food security by facilitating data-driven decision-making, optimizing resource al-

location, and promoting sustainable agricultural practices. In this paper, we

introduce a hybrid deep learning approach that integrates CNN and Bi-LSTM

networks to overcome the limitations of traditional prediction methods. The

model effectively extracts spatial patterns using CNNs and employs Bi-LSTM

to analyze temporal dependencies. This combination transforms raw agricultural
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data into meaningful spatiotemporal insights, improving its precision and reliabil-

ity in crop forecasts. Additionally, we have used k-fold stratified cross-validation

and dropout-based regularization to enhance the model’s robustness, ensuring its

capability to handle large-scale datasets while minimizing overfitting.

After running the model, metrics show that the CNN-BiLSTM hybrid model

outperforms conventional approaches and achieves higher predictive accuracy

aligned with practical agricultural requirements. This paper serves as a bridge

to fill the gap between theoretical research and real-world farming applications,

offering a scalable solution for pre-season planning. In an era of increasing global

demand and climate change, improving prediction reliability supports sustainable

farming, reduces environmental risks, and contributes to resilient food systems.

For further research, we can explore emerging techniques to continuously up-

date data during the planting season and predict in-season and pre-season crops in

real time for adaptive learning. Transfer learning techniques could also accelerate

model adaptation in underrepresented regions and facilitate broader applicabil-

ity. Additionally, for smallholder farmers, we can develop lightweight versions

of the hybrid architecture. This lightweight design should be explored to ensure

accessibility in resource-limited environments. Advancing these frameworks will

enable a versatile and sustainable tool for global agriculture.
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