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ABSTRACT

Low-light image enhancement is a critical computer vision challenge impacting
visual quality and downstream tasks. While large deep learning models like
MIRNet-v2 excel at restoring details and colors, their computational and memory
demands hinder real-time or edge device deployment. Conversely, lightweight
models such as Zero-DCE efficiently adjust illumination but may lack fine texture
or structural recovery.

This thesis introduces a novel framework for computationally efficient, high-
performing lightweight networks for low-light image enhancement using pro-
gressive multi-teacher knowledge distillation. We leverage the complementary
expertise of MIRNet-v2 ("26.6M parameters) for structural preservation and Zero-
DCE ("0.1M parameters) for efficient illumination correction, training a compact
student network to learn from both.

Key innovations include:

1. Resolution-Progressive Training: The student network trains over 250 epochs,
starting with 64x64 pixel images and progressively increasing resolution (to
128x128, then 256x256). This curriculum learning, with dynamic batch siz-
ing, ensures stable optimization and manages GPU memory.

2. Multi-Objective Hybrid Loss: A weighted 7-component loss guides stu-
dent learning, incorporating Charbonnier loss (Lyecon) for reconstruction,
FFT-based L1 loss (Lfeq) for frequency fidelity, VGG perceptual loss (Lperc),
MS-SSIM 10ss (Lmsssim) for structure, Sobel gradient L1 loss (Lgrad) for edges,
a PatchGAN adversarial loss (L.4v.G), and contrastive distillation loss (Lcont)
to mimic teacher features.

3. Lightweight Enhanced Student Architecture: The 9.99M parameter stu-
dent generator uses an efficient backbone of Recursive Residual Groups
(RRGs) and Multi-scale Residual Blocks (MRBs). Optional Adaptive Fea-
ture Stretch (AFS) blocks for dynamic feature range expansion and Gradient-
Guided Convolution (GGC) blocks for edge awareness further augment its
representational power.

Experiments on the standard LOL (Low-Light) dataset show our model achiev-
ing a PSNR of 21.89 dB and an SSIM of 0.858. With total training parameters
(including discriminator) of 23.6M, our approach significantly balances perfor-
mance and computational efficiency, offering a promising solution for deploying
high-quality low-light enhancement in practical, resource-aware scenarios.
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Chapter 1

Introduction

1.1 Background and Motivation

The ability to capture and interpret visual information effectively is paramount in
an increasingly digital world. However, images acquired under sub-optimal low-
light conditions often suffer from a cascade of degradations. These include poor
visibility due to insufficient photons, the prevalence of sensor noise (e.g., Poisson-
Gaussian noise) which becomes more apparent with signal amplification, color
distortions resulting from inaccurate white balancing or sensor characteristics un-
der low illumination, and a significant loss of fine-grained details and textures
that are crucial for both human perception and machine understanding [1]. Such
degradations not only diminish the aesthetic appeal of photographs and videos
but also severely compromise the performance of downstream computer vision
applications. For instance, in autonomous navigation, poor visibility at night can
lead to object detection failures; in surveillance, noisy low-light footage can hin-
der identification; and in medical imaging, subtle diagnostic features might be
obscured, impacting diagnostic accuracy. The challenge, therefore, is not merely
aesthetic but has profound practical implications across various domains.
Traditional image processing techniques, such as global Histogram Equaliza-
tion (HE) [2] or its adaptive variants like Contrast Limited Adaptive Histogram
Equalization (CLAHE) [3], attempt to improve contrast by redistributing pixel in-
tensities. While simple and computationally inexpensive, these methods can lead
to over-enhancement, noise amplification, and often produce unnatural-looking
images, especially in scenes with heterogeneous lighting. Retinex theory [4],
which models an image S as the product of scene reflectance R and illumina-
tion L (i.e., S(z,y) = R(z,y) - L(x,y)), has inspired numerous enhancement al-
gorithms. These methods typically aim to estimate the illumination component
and then either modulate it or use it to derive the reflectance component, which
is assumed to be invariant to lighting conditions [5]. However, the accurate and
robust decomposition of an image into these two components is an inherently ill-
posed problem. This often leads to challenges such as halo artifacts around strong
edges, unnatural color rendition, and incomplete noise removal, particularly in

scenes characterized by complex lighting and diverse content.



1.2 Problem Statement

The advent of deep learning has brought significant breakthroughs in low-light
image enhancement. State-of-the-art (SOTA) models, exemplified by complex
architectures like MIRNet-v2 [6], leverage deep and intricate neural networks.
These models often employ sophisticated techniques such as multi-scale pro-
cessing, attention mechanisms, and advanced residual learning strategies to ef-
fectively learn mappings from degraded low-light inputs to high-quality, well-
exposed outputs. While they achieve remarkable performance in terms of ob-
jective metrics (e.g., Peak Signal-to-Noise Ratio (PSNR), Structural Similarity In-
dex Measure (SSIM)) and subjective visual quality, their primary drawback lies
in their substantial computational footprint. For instance, MIRNet-v2, in its de-
fault configuration for enhancement tasks, comprises approximately 26.6 million
parameters. This large model size translates directly to high memory require-
ments and significant inference latency, rendering such models unsuitable for de-
ployment on resource-constrained platforms. These platforms include mobile de-
vices, embedded systems, or edge computing nodes, where real-time processing
is often a critical requirement for practical applications.

Conversely, lightweight models such as Zero-Reference Deep Curve Estima-
tion (Zero-DCE) [1] have emerged, placing a strong emphasis on computational
efficiency. Zero-DCE, with fewer than 0.1 million parameters, learns image-adaptive
tonal curves to adjust illumination without the need for paired training data.
While highly efficient, its primary focus on illumination adjustment means it may
not fully address other common low-light degradations, such as severe noise or
the recovery of fine textural details, as effectively as larger, more complex mod-
els. This disparity highlights a critical performance-efficiency trade-off: achiev-
ing high-fidelity enhancement typically comes at the cost of high computational
demand, whereas efficient models may compromise on the achievable output
quality. There is, therefore, a pressing need for innovative techniques that can
develop lightweight networks capable of delivering high-quality low-light image
enhancement, effectively bridging this gap and enabling advanced image restora-
tion on a wider range of devices and applications.

1.3 Objectives of the Thesis

The primary objective of this thesis is to develop and evaluate a lightweight deep
learning model for low-light image enhancement that achieves a competitive bal-
ance between image quality and computational efficiency. This overarching goal
is broken down into the following specific objectives:

1. To design an efficient student network architecture that is significantly smaller
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in terms of parameter count compared to SOTA high-performance mod-
els like MIRNet-v2, yet remains capable of learning complex enhancement
transformations effectively.

. To investigate and implement a multi-teacher knowledge distillation strat-
egy, strategically leveraging the complementary strengths of a structurally-
focused teacher model (MIRNet-v2) and an illumination-focused teacher
model (Zero-DCE) to comprehensively guide the student network’s learn-
ing process.

. To develop and apply a resolution-progressive training methodology. This
involves starting the training with low-resolution images and gradually in-
creasing to the target resolution, combined with dynamic batch size adjust-
ment, to promote stable and effective training of the student model over a
tixed number of epochs (e.g., 250 epochs).

. To formulate and utilize a comprehensive hybrid loss function that incor-
porates multiple objectives. These include pixel-level fidelity, perceptual
similarity, structural integrity, frequency-domain characteristics, gradient
preservation, adversarial realism, and feature-level mimicry of teacher rep-
resentations through contrastive distillation.

. To empirically evaluate the proposed lightweight model on a standard low-
light image enhancement dataset (e.g., the LOL dataset), comparing its per-
formance in terms of PSNR and SSIM, as well as its parameter count, against
the teacher models and other relevant benchmarks.

. To analyze the impact of different components within the proposed frame-
work, such as the progressive training strategy and key elements of the hy-
brid loss function. This analysis will be further substantiated by planned
ablation studies in future work.

1.4 Scope of the Work

This research focuses on single-image low-light enhancement using supervised

deep learning principles and knowledge distillation techniques. The scope of the

work encompasses the following;:

e Utilization of existing pre-trained models, specifically MIRNet-v2 and Zero-
DCE, as fixed teacher networks. The internal workings and parameters of
these teacher models are not modified during the student training process.

¢ The design and implementation of a novel student Convolutional Neu-
ral Network (CNN) architecture that incorporates computationally efficient
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building blocks (e.g., Recursive Residual Groups (RRGs), Multi-scale Resid-
ual Blocks (MRBs)) and optional enhancement modules (e.g., Adaptive Fea-
ture Stretch (AFS), Gradient-Guided Convolution (GGQC)).

* The development of a comprehensive training pipeline. This pipeline in-
cludes the resolution-progressive training strategy, dynamic batch sizing to
manage GPU memory, and a multi-component hybrid loss function, with
the training executed for a total of 250 epochs.

¢ Evaluation of the proposed model primarily on the LOL (Low-Light) paired
dataset, which serves as a standard benchmark for this image enhancement
task.

* Quantitative assessment using established image quality metrics, namely
PSNR and SSIM, complemented by qualitative visual assessment of the en-
hanced images to judge perceptual quality.

¢ The primary programming environment for implementation and experi-
mentation is Python, utilizing the PyTorch deep learning framework.

This work does not delve into unsupervised or zero-reference training paradigms
for the student model itself (beyond leveraging Zero-DCE as one of the teachers).
Furthermore, it does not explicitly address the enhancement of low-light video
sequences or real-time hardware deployment considerations beyond reporting
parameter counts and discussing conceptual efficiency. The focus remains on
achieving a balance between enhancement quality and model compactness for
single images.

1.5 Thesis Organization

This thesis is organized into five chapters, structured as follows:

¢ Chapter 1: Introduction provides the foundational context for the research,
outlining the background and motivation, defining the problem statement,
specifying the research objectives, and detailing the scope of the work. This
chapter also includes the overall organization of the thesis.

¢ Chapter 2: Literature Survey presents a comprehensive review of existing
work relevant to this thesis. This includes a survey of classical and deep
learning-based methods for low-light image enhancement, an overview of
various knowledge distillation techniques (such as single-teacher, multi-
teacher, feature-based, and contrastive methods), and a discussion of pro-
gressive and curriculum learning strategies pertinent to the proposed train-
ing methodology.



¢ Chapter 3: Proposed Methodology details the novel framework developed
in this research. This chapter describes the architectures of the teacher and
student networks, the design principles behind the efficient enhancement
blocks (AFS, GGC), the specifics of the resolution-progressive training strat-
egy, and the formulation of the comprehensive multi-component hybrid
loss function.

¢ Chapter 4: Results and Analysis presents the experimental setup, the datasets
utilized for training and evaluation, and the metrics employed for perfor-
mance assessment. It includes quantitative results comparing the proposed
model with baseline methods, qualitative visual comparisons on diverse
image samples, and an analysis of the training dynamics observed during
the learning process. A discussion on planned ablation studies and current
limitations is also included.

¢ Chapter 5: Conclusion and Future Scope summarizes the key contribu-
tions and findings of the thesis. It discusses the significance of the research
outcomes and suggests potential avenues for future work and further im-
provements in the domain of efficient low-light image enhancement.

Following these main chapters, the thesis includes Appendices containing sup-
plementary materials such as the List of Publications resulting from this research
and copies of relevant conference acceptance correspondences. The Bibliography
section lists all the cited references.



Chapter 2

Literature Survey

The challenge of effectively enhancing images captured under low-illumination
conditions has spurred extensive research over several decades. This chapter pro-
vides a comprehensive review of existing methodologies, categorized into classi-
cal image processing techniques, modern deep learning-based approaches, rele-
vant knowledge distillation strategies, and the principles of progressive and cur-
riculum learning that inform our training methodology.

2.1 Low-Light Image Enhancement Techniques

Approaches to low-light image enhancement can be broadly classified into tra-
ditional signal processing methods and contemporary data-driven deep learning
techniques.

2.1.1 Classical Methods

Prior to the dominance of deep learning, several image processing techniques
were developed to tackle low-light conditions.

Histogram Equalization and Variants

Histogram Equalization (HE) is one of the earliest and simplest techniques for
contrast enhancement. It operates by redistributing the pixel intensity values
to achieve a more uniform histogram, thereby stretching the contrast across the
entire dynamic range [7]. While global HE can improve overall contrast, it often
leads to a washed-out appearance and can significantly amplify existing noise,
particularly in regions with low variance.

To address these limitations, adaptive variants were proposed. Adaptive His-
togram Equalization (AHE) applies HE to contextual regions of the image rather
than globally, preserving local details better. However, AHE can still over-amplify
noise in relatively homogeneous regions. Contrast Limited Adaptive Histogram
Equalization (CLAHE) [3, 2] mitigates this by clipping the histogram at a prede-
fined value before computing the cumulative distribution function, thus limiting
the amplification factor. Despite these improvements, HE-based methods often



struggle to produce natural-looking results and may not effectively handle severe

noise or color distortions common in low-light imagery.

Retinex-Based Methods

Retinex theory, introduced by Land [4], provides a model for human color per-
ception, suggesting that an observed image S can be decomposed into a product
of scene reflectance R and illumination L:

S(z,y) = R(z,y) - L(z,y) (2.1)

Reflectance R is considered an intrinsic property of the objects in the scene, repre-
senting the actual colors and details, while illumination L represents the lighting
conditions. The goal of Retinex-based enhancement is typically to estimate and
remove or adjust the illumination component L to recover the reflectance R.

Early algorithms included Single-Scale Retinex (SSR) [8], which estimates il-
lumination by convolving the image with a Gaussian filter. Multi-Scale Retinex
(MSR) [5] improved upon SSR by combining the outputs of several SSR filters
with different scales, offering better dynamic range compression and detail ren-
dition. To address color distortions often introduced by MSR, the Multi-Scale
Retinex with Color Restoration (MSRCR) algorithm was proposed, incorporating
color constancy adjustments [9].

While Retinex-based methods offer a physically grounded approach, they face
significant challenges. The decomposition into reflectance and illumination is an
ill-posed problem, and inaccurate estimations can lead to halo artifacts around
strong edges, unnatural color shifts, and insufficient noise suppression. Further-
more, many classical Retinex methods rely on hand-crafted parameters that may

not generalize well across diverse scenes.

Dehazing-Inspired Techniques

Interestingly, techniques developed for image dehazing have found some appli-
cation in low-light enhancement due to analogies between the scattering medium
in haze and the underexposure/noise in low-light images. The Dark Channel
Prior (DCP) [10], a popular dehazing prior, assumes that in most non-sky local
patches, at least one color channel has some pixels with very low intensity. While
not directly applicable, the underlying principle of identifying and manipulating
specific image statistics has inspired some enhancement approaches that aim to
“invert” the effects of low light [11]. However, the physical models for haze and
low-light noise are distinct, limiting the direct applicability and performance of
such methods.



Frequency Domain Methods

Techniques operating in the frequency domain, such as those based on wavelet
transforms or Fourier transforms, have also been explored. These methods aim
to separate image components (e.g., illumination and detail, or signal and noise)
in different frequency sub-bands, process them independently, and then recon-
struct the enhanced image. For example, illumination can be associated with
low-frequency components and details with high-frequency components. While
offering potential for targeted noise reduction and detail enhancement, frequency
domain methods can introduce ringing artifacts or other visual distortions if not
carefully designed [12].

2.1.2 Deep Learning-Based Methods

The advent of deep convolutional neural networks (CNNs) has led to a paradigm
shift in low-light image enhancement, with data-driven approaches consistently
outperforming classical methods in terms of both objective metrics and subjective
visual quality.

Early Convolutional Neural Network Approaches

Early deep learning models for low-light enhancement often focused on learn-
ing a direct end-to-end mapping from low-light images to their corresponding
normal-light counterparts. LLNet [13] was a pioneering work that utilized a
stacked sparse denoising autoencoder architecture. Other approaches employed
various CNN architectures, often inspired by successful models in other image
restoration tasks like denoising or super-resolution [14]. While demonstrating the
potential of deep learning, these initial models sometimes struggled with gener-
alization to unseen lighting conditions or produced results with residual noise
or artifacts. The requirement for large datasets of paired low-light/normal-light
images was also a significant challenge.

Retinex-Inspired Neural Networks

To incorporate physical priors and improve interpretability, several researchers
integrated Retinex theory into deep learning frameworks. RetinexNet [15] pro-
posed a two-stage network: a Decom-Net to decompose the input image into
reflectance and illumination maps, and an Enhance-Net to adjust the illumina-
tion map and remove noise from the reflectance map. The final enhanced image
is then reconstructed. This approach allows for more targeted manipulation of
image components. KinD (Kindling the Darkness) [16] and its successor KinD++
[17] further refined this idea with more sophisticated network designs for decom-



position and enhancement, incorporating losses that explicitly considered image
quality aspects like illumination smoothness and reflectance consistency. While
these methods offer better control and physical grounding, their performance is
highly dependent on the accuracy of the learned decomposition, and errors in
one stage can propagate to the next.

Zero-Reference and Unsupervised Learning

Collecting large-scale datasets of perfectly aligned low-light and normal-light im-
age pairs can be challenging and expensive. This has motivated the develop-
ment of zero-reference or unsupervised learning techniques. Zero-DCE (Zero-
Reference Deep Curve Estimation) [1], one of our teacher models, is a prime ex-
ample. It trains a lightweight CNN to estimate pixel-wise higher-order curves for
dynamic range adjustment. Crucially, Zero-DCE does not require paired data; in-
stead, it is trained using a set of carefully designed non-reference loss functions,
including spatial consistency loss, exposure control loss, color constancy loss, and
illumination smoothness loss. This allows it to be trained on diverse low-light
images without corresponding ground truths. EnlightenGAN [18] employs an
unpaired Generative Adversarial Network (GAN) approach, using a global-local
discriminator structure and self-regularized perceptual loss. While these meth-
ods offer significant advantages in terms of data requirements and efficiency, they
might not always achieve the same level of fine detail recovery or noise suppres-
sion as SOTA supervised methods, as the learning signal is derived indirectly
from image properties rather than direct comparison to a clean target.

State-of-the-Art High-Performance Models

Recent years have seen the emergence of powerful, often large-scale, architec-
tures that have set new benchmarks in various image restoration tasks, includ-
ing low-light enhancement. MIRNet [19] and its successor MIRNet-v2 [6] (our
primary teacher model) are notable examples. MIRNet-v2 introduces a multi-
scale residual block (MRB) that maintains high-resolution feature representations
throughout the network via parallel convolutional streams operating at different
spatial scales, while also facilitating information exchange across these streams.
This design helps in preserving fine details while aggregating rich contextual in-
formation. The architecture is typically built upon a series of Recursive Residual
Groups (RRGs), each containing multiple MRBs.

Restormer [20] brought Transformers [21] to the forefront of image restora-
tion, proposing an efficient Transformer variant with multi-Dconv head trans-
posed attention and gated-Dconv feed-forward networks, demonstrating strong
performance on tasks including low-light enhancement. Other architectures like



HWMNet [22] have explored hierarchical wavelet-based multi-scale networks.
While these models achieve excellent visual quality and objective scores, their
primary limitation is their computational complexity and large number of pa-
rameters (e.g., MIRNet-v2 default config has "26.6M parameters), which makes
them challenging for real-time applications.

Lightweight Network Designs for Efficiency

The demand for on-device Al and real-time image processing has spurred re-
search into lightweight network architectures. Beyond Zero-DCE, general princi-
ples for creating efficient CNNs include using depthwise separable convolutions
(as in MobileNets [23]), group convolutions, channel shuffling (ShuffleNets [24]),
and network pruning and quantization techniques. While not always directly
targeted at low-light enhancement, these architectural motifs provide inspira-
tion for designing compact student networks. Our student architecture incorpo-
rates efficient blocks like RRGs and MRBs, which themselves can be made more
lightweight by adjusting feature dimensions and using group convolutions.

Our work seeks to distill the strong restoration capabilities of a model like
MIRNet-v2 and the illumination adjustment proficiency of Zero-DCE into a stu-
dent network that is significantly more lightweight than the former, yet more
powerful than the latter.

2.2 Knowledge Distillation Techniques

Knowledge Distillation (KD) provides a framework for transferring the “knowl-
edge” from a large, cumbersome teacher model (or an ensemble of teachers) to a
smaller, more efficient student model, aiming for the student to achieve perfor-
mance comparable to the teacher but with reduced computational cost [25]. This
is particularly relevant for deploying complex models on resource-constrained
devices.

2.2.1 Response-Based Knowledge Distillation

The seminal work by Hinton et al. [25] focused on classification tasks, where
the student network was trained to match the softened probability distribution
(logits passed through a softmax with a temperature parameter 7' > 1) produced
by the teacher network. The loss function typically combines a standard cross-
entropy loss with the ground truth labels and a distillation loss term (e.g., KL
divergence) that penalizes differences between the student’s and teacher’s soft-
ened outputs. This “dark knowledge” captured in the relative probabilities of
incorrect classes was found to be a rich source of information for the student.
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2.2.2 Feature-Based Knowledge Distillation

Instead of (or in addition to) matching outputs, feature-based KD aims to make
the student’s intermediate feature representations similar to those of the teacher.
FitNets [26] was an early proponent, training thinner but deeper student net-
works to regress the feature maps from wider, pre-trained teacher networks at
specific “hint” layers. Various strategies exist for matching features:

¢ Direct L1/L2 Matching: Minimizing the L1 or L2 distance between student
and teacher feature maps after appropriate adaptation (e.g., using a convo-
lutional regressor if channel dimensions differ).

¢ Attention Transfer (AT): Zagoruyko and Komodakis [27] proposed trans-
ferring attention by matching spatial attention maps derived from the sum
of absolute values or squared values of feature activations across channels.

* Matching Feature Statistics: Some methods focus on matching statistical
properties of feature maps, such as their mean and variance [28], or Gram
matrices which capture feature correlations [29].

Feature-based distillation is particularly relevant for low-level vision tasks where
intermediate features encode rich structural and textural information.

2.2.3 Relation-Based Knowledge Distillation

Relation-based KD shifts the focus from matching absolute values of individual
features or outputs to matching the relationships between them. Park et al. [30]
proposed distilling inter-sample relationships, such as the distance or angle be-
tween feature embeddings of different input samples. This encourages the stu-
dent to learn a similarly structured feature space as the teacher.

2.2.4 Multi-Teacher Knowledge Distillation

When multiple teacher models are available, each potentially excelling in dif-
ferent aspects of a task or possessing diverse knowledge, a student can benefit
from learning from all of them. Strategies for multi-teacher KD include averaging
teacher outputs [31], using attention mechanisms to weight teacher contributions,
or even training teachers adversarially. Our framework leverages two distinct
teachers: MIRNet-v2 for structural fidelity and Zero-DCE for illumination exper-
tise. While Zero-DCE’s guidance is more implicit (through the student’s efforts
to produce well-illuminated images that satisfy various loss terms), MIRNet-v2’s
features are directly used in our contrastive distillation component.
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2.2.5 Contrastive Representation Distillation (CRD)

CRD, proposed by Tian et al. [32], applies principles from contrastive self-supervised
learning to the distillation problem. The core idea is to train the student so that its
feature representation for a given input is close to the teacher’s representation for
the same input (positive pair) while being far from the teacher’s representations
for other inputs in the batch (negative pairs). This is typically achieved using an
InfoNCE-style loss [33]:

exp(sim(fs(x:), fr(z:))/7)
Leont = Zl eXp (sim(fs(zs), fe(z;))/T) 22

where f; and f; are student and teacher feature extractors (or projection heads),
stm(-,-) is a similarity function (e.g., cosine similarity), and 7 is a temperature
parameter. CRD has shown strong performance by encouraging the student to
capture more fine-grained similarities in the learned feature space. Our Lo term
is based on this principle.

2.2.6 Knowledge Distillation in Low-Level Vision Tasks

KD has found successful applications in various low-level vision tasks. For in-
stance, in image super-resolution, student networks learn from larger SR teachers
to achieve good perceptual quality with fewer parameters [34]. In image denois-
ing, KD can help lightweight networks learn effective noise suppression strate-
gies [35]. Our work applies multi-faceted KD to the complex task of low-light
image enhancement.

2.3 Progressive and Curriculum Learning Strategies

The idea of training machine learning models by starting with simpler concepts
or data and gradually increasing complexity has strong parallels with human

learning and can lead to improved training outcomes.

2.3.1 Curriculum Learning Fundamentals

Bengio et al. [36] formally introduced Curriculum Learning (CL), proposing that
organizing training examples in a meaningful order (from easy to hard) can guide
optimization towards better local minima and improve generalization. The def-
inition of “easy” and “hard” can vary: it could be based on data characteristics
(e.g., less noise, smaller objects), model capacity (starting with a simpler model),
or task complexity. CL can be seen as a form of continuation method, helping to
navigate non-convex optimization landscapes.
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2.3.2 Progressive Growing in Generative Models

A highly successful application of progressive learning was demonstrated by
Karras et al. in Progressive Growing of GANs (PGGANSs) [37]. They trained
GAN s to generate high-resolution images by starting with a very low resolution
(e.g., 4x4) and progressively adding new layers to both the generator and dis-
criminator to double the resolution at each stage. This approach dramatically sta-
bilized GAN training for high-resolution synthesis and produced state-of-the-art
image quality. The key was to first learn coarse, global structures at low reso-
lutions and then focus on finer details as resolution increased, with new layers
being faded in smoothly. StyleGAN and its successors [38] further built upon
these progressive principles.

2.3.3 Progressive Training in Discriminative and Restoration Tasks

The progressive learning concept is not limited to generative models. In image
deblurring, Nah et al. [39] used a multi-scale network that implicitly processes
images at different resolutions. Other works have explicitly trained models on
progressively larger image crops or resolutions for tasks like object detection or
image restoration. Training on smaller images in early epochs is computation-
ally cheaper and can allow the network to quickly learn low-frequency compo-
nents. As resolution increases, the network then refines high-frequency details.
This strategy can also act as a form of implicit data augmentation and regular-
ization. Our framework employs resolution-progressive training (64px — 128px
— 256px) for the student network, which helps manage the computational load
of processing high-resolution images from the outset and potentially guides the
learning process from coarse to fine.

2.3.4 Challenges and Considerations

Designing an effective curriculum or progressive training schedule is not always
straightforward. Key considerations include:

¢ Scheduling Complexity: Determining when and how to increase task dif-
ficulty (e.g., image resolution, dataset complexity) requires careful tuning.

¢ Parameter Adaptation: When model capacity changes (e.g., adding layers
in PGGANSs), mechanisms for smooth transition are needed to avoid dis-
rupting learned knowledge. In resolution-progressive training, the network
architecture often remains fixed, but the input data characteristics change.

¢ Computational Trade-offs: While initial stages are faster, the overall train-
ing time might still be significant. Dynamic resource allocation, such as
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adjusting batch sizes as we do, becomes important.

¢ Learning Rate Adaptation: Changes in data distribution or task complexity
(like increased resolution) often necessitate adjustments to the learning rate

to maintain training stability.

Our approach combines resolution progression with dynamic batch sizing and
options for learning rate adjustments to tackle these challenges.
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Chapter 3
Proposed Methodology

This chapter details the proposed framework for developing lightweight yet ef-
fective networks for low-light image enhancement. Our approach, termed ”Com-
pact Clarity,” centers on a progressive multi-teacher knowledge distillation strat-
egy. We first describe the overall system architecture, followed by detailed ex-
planations of the teacher models, the student network design (including its core
backbone and optional enhancement blocks), the progressive resolution training
regimen, the comprehensive hybrid loss function, the dataset used, and key im-
plementation specifics.

3.1 Overall Framework

The proposed system, conceptually illustrated in Figure 3.1 is designed to train
an efficient student network (G) by leveraging knowledge from two pre-trained,
frozen teacher models: 77 (MIRNet-v2 [6]) and T3 (Zero-DCE [1]). The core idea is
that 77 provides strong guidance on structural and textural restoration due to its
sophisticated architecture, while 75 offers expertise in efficient illumination and
contrast adjustment based on its curve estimation paradigm. By distilling knowl-
edge from these complementary teachers, the student network aims to achieve a
balance of high-fidelity restoration and efficient processing.
The training process unfolds as follows:

1. A low-light input image (S.,) is fed into the student network G, which
produces an enhanced output image S.

2. Simultaneously (conceptually, as the teacher models are pre-trained and
frozen, their outputs or features can be pre-computed or generated on-the-
fly), Siow can be processed by 77 and 75. Intermediate feature maps from
Ty (denoted Fry) are extracted at specific layers for use in the knowledge
distillation loss. The output of 75 can serve as an additional reference for
illumination quality, though its primary role in our final setup is as a con-
ceptual guide influencing the overall target characteristics.

3. The student network G also exposes its own intermediate features (F;) at a
layer corresponding to where features are extracted from 7;. These are used
for the contrastive distillation loss.

15



4. The student’s output S is evaluated against the ground truth normal-light
image (S,0rm) using a multifaceted hybrid loss function. This loss function
includes terms for pixel-level reconstruction, perceptual similarity, struc-
tural integrity, frequency domain consistency, and gradient preservation.

5. If adversarial training is enabled, a discriminator network D is trained to
distinguish between real normal-light images (S,,») and the “fake” en-
hanced images (S) generated by the student. The student network G is
then concurrently trained to fool this discriminator, further enhancing the
perceptual realism of its outputs.

6. Knowledge distillation is explicitly enforced through a contrastive loss term
(Leont) that encourages the student’s intermediate features F; to align with
the corresponding features Fp; from the MIRNet-v2 teacher in a projected
embedding space.

7. The entire training process for the student network is conducted using a
resolution-progressive strategy, starting with small image dimensions (e.g.,
64x64 pixels) and gradually increasing to the final target resolution (e.g.,
256x256 pixels), with dynamic batch size adjustments to manage computa-
tional resources.

This synergistic combination of components aims to produce a student model
that is significantly more compact than 7 but inherits the complementary strengths
of both teachers, leading to high-quality enhancement with improved efficiency.

nnnnn

Figure 3.1: Detailed System Architecture of the Proposed Multi-Teacher Knowl-
edge Distillation Framework.
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3.2 Teacher Models

Two pre-trained teacher models are employed in a frozen state (i.e., their weights
are not updated during student training) to provide diverse guidance to the stu-
dent network.

3.2.1 MIRNet-v2 (Teacher1 -7T})

MIRNet-v2 [6] serves as the primary teacher for structural fidelity, texture restora-
tion, and overall high-frequency detail recovery. Its architecture is characterized

by:

® Multi-Scale Residual Blocks (MRBs): These blocks maintain and process
features at multiple spatial resolutions concurrently within the same block,
allowing for effective aggregation of both local and global contextual in-
formation. Information is exchanged between different resolution streams

using selective kernel feature fusion (SKFF).

* Recursive Residual Groups (RRGs): Multiple MRBs are typically stacked
within RRGs, allowing for deep feature learning while benefiting from resid-
ual connections that ease gradient flow and promote stable training.

* High-Resolution Pathway: A key characteristic is the maintenance of a full-
resolution feature stream throughout the network, which is crucial for pre-
serving spatial precision and fine details in image restoration tasks.

The default configuration of MIRNet-v2 used for enhancement tasks consists of
approximately 26.6 million parameters. For knowledge distillation, intermediate
feature maps extracted from the output of one or more of its RRG blocks are
utilized for the contrastive distillation loss, providing rich structural and textural
guidance to the student.

3.2.2 Zero-DCE (Teacher 2 - 7T5)

Zero-DCE [1] acts as the conceptual teacher for efficient and robust illumination
adjustment. Its key features include:

* Deep Curve Estimation: It employs a lightweight CNN (DCE-Net, with
approximately 0.08M to 0.1M parameters depending on the exact configu-
ration) to estimate pixel-wise higher-order curves. These curves are then
applied to the input low-light image to adjust its dynamic range and en-

hance illumination.

17



® Zero-Reference Learning: A significant advantage of Zero-DCE is that it is
trained without paired data. Instead, it relies on a set of carefully designed
non-reference loss functions that implicitly measure enhancement quality,
such as exposure control loss, color constancy loss, spatial consistency loss,
and illumination smoothness loss.

In our framework, while Zero-DCE'’s primary role is not direct feature distilla-
tion in the final reported configuration, its principles of efficient illumination cor-
rection and its ability to produce well-exposed images inform the overall target
characteristics for the student. The student, by being trained against the ground
truth normal-light images, implicitly learns to achieve good illumination similar
to what Zero-DCE aims for, but with potentially better detail preservation guided
by T and the comprehensive loss.

3.3 Student Network Architecture (G)

The student generator G is designed to be significantly more lightweight than
MIRNet-v2 (T7) while being capable of learning complex enhancement mappings.
Our student generator comprises approximately 9.99 million parameters. Its ar-
chitecture, conceptually shown in Figure 3.2

3.3.1 Backbone: RRGs and MRBs

The core of the student network is built upon similar architectural principles as
MIRNet-v2 but with reduced capacity for efficiency:

¢ Initial Convolution: An initial 3x3 convolution layer maps the 3-channel
input image to Ny feature channels (e.g., Ny = 80 in our experiments), fol-
lowed by a LeakyReLU activation function.

* Recursive Residual Groups (RRGs): The network employs Nzre = 4 RRGs.
Each RRG consists of Ny;rp = 3 Multi-scale Residual Blocks (MRBs), fol-
lowed by a 3x3 convolutional layer. Residual connections are used around
each MRB and each RRG to facilitate stable training of deeper networks and
ease gradient flow.

® Multi-Scale Residual Blocks (MRBs): Each MRB processes features across
three parallel streams at different resolutions (full, half, quarter of the in-
put feature map resolution). Within each stream, Residual Context Blocks
(RCBs) are used for feature processing. Features from lower-resolution streams
are up-sampled and fused with higher-resolution streams using an Enhanced
Selective Kernel Feature Fusion (EnhancedSKFF) module. This module typ-
ically employs channel and spatial attention mechanisms after summing the
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Figure 3.2: Conceptual overview of the Student Generator Network (G). The
network takes a low-light image (.5),,,) as input. An initial 3x3 convolution fol-
lowed by LeakyReLU processes the input. Optional enhancement blocks (styled
in pink if rendering supports it, corresponding to nodes C, D, E), namely an
Adaptive Feature Stretch (AFS) block, a Frequency Processing Branch, and a
Gradient-Guided Convolution (GGC) block, are applied sequentially. The fea-
tures then pass through four Recursive Residual Groups (RRGs), as depicted in
the "Recursive Residual Groups” subgraph. RRG Internals: Each RRG (e.g.,
RRG 1) contains 3 Multi-Scale Residual Blocks (MRBs) and a final 3x3 convo-
lution, with residual connections. MRBs internally use Residual Context Blocks
(RCBs), multi-stream processing (full, half, quarter resolution), and Enhanced Se-
lective Kernel Feature Fusion (EnhancedSKFF). Later RRGs employ group con-
volutions within their RCBs. AFS Block Details (Node C): Channel Attention
(Global Average Pooling — 2x 1x1 Conv — Sigmoid) generates scaling (a.) and
shifting (5.) parameters which modulate InstanceNormalized features. The out-
put, after a ConvBlock, is added to the original input features. Frequency Pro-
cessing Details (Node D): Input features (Fj;, ;) undergo RFFT. Real and imag-
inary components are concatenated, processed by Conv f,.,, split, converted back
to complex, and then an IRFFT (F,¢q proc) is applied. The result is added back:
Foost_freqg = Fstreten + Freqproc. GGC Block Details (Node E): Input features
(F3,) are used to compute Sobel gradient magnitudes (G,,). G, is processed by
Convy,q. The original F}, is concatenated with the output of Conv,,.q(G,,) and
passed through an enhancement convolution (Conv,,;). The final GGC output
is Fj, plus the output of Conv,,),. After the RRGs, a final 3x3 convolution (Node
I) learns the residual enhancement (AS, shown as “Delta S” in Node J), which
is added to the original input image (S5;,.,) via a global residual connection (sub-
graph “Global Residual Connection”, Node AddG) to produce the final enhanced
output (S, Node Z).
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input features to adaptively fuse multi-scale information. The group con-
volution strategy, inspired by MIRNet-v2, is adopted within RCBs of later
RRGs (e.g., group counts of 1, 2, 4, 4 for the four RRGs respectively) to bal-
ance performance and parameter count.

¢ Final Convolution: A final 3x3 convolution layer maps the N, feature chan-
nels back to a 3-channel output image. The original input image is then
added to this output via a global residual connection, allowing the network
to focus on learning the residual enhancement.

3.3.2 Optional Enhancement Blocks

To further augment the representational capacity of the student network with
minimal parameter increase, we incorporate two optional enhancement blocks,

which were enabled in our final reported configuration:

Adaptive Feature Stretch (AFS)

The AFS block is applied after the initial LeakyReLU activation and aims to adap-
tively expand or compress the dynamic range of the early features. As described
in Equation 3.4, it first uses a channel attention (CA) module, typically consisting
of global average pooling (GAP) followed by two 1x1 convolutional layers and a
sigmoid activation, to generate channel-wise scaling (a.) and shifting (.) param-
eters. These parameters are then used to modulate instance-normalized features
(InstanceNorm(F;,)). The output is passed through a small convolutional block
and added back to the original input features (£3,,):

Attoa(Fy,) = o(Convyy 2(ReLU(Convy, 1 (GAP(F))))) (3.1)
Qc, B = Split(Attca(Fin)) (3.2)
Fscatea = (1 4+ @) ® InstanceNorm(Fy,) + B (3.3)
Fars = F;;, + ConvBlock(Fieqiea) (3.4)

This allows the network to learn to stretch or compress feature values based on
their content, potentially improving contrast and detail representation in subse-
quent layers.

Gradient-Guided Convolution (GGC)

The GGC block is inserted after the frequency processing branch (described be-
low) to explicitly leverage edge information for better structural preservation. It
first computes image gradients (e.g., using non-trainable Sobel filters V, F;,,, V, F;,)

from the input feature map Fj,,. The gradient magnitude G,, = \/(V.Fin)? + (V, F)?
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is then processed by a dedicated convolutional branch (Conv,,.q). The output of
this branch is concatenated with the original feature map F},, and passed through
an enhancement convolutional branch (Conv,,;). The result is added back to F},,
as shown in Equation 3.5:

Feae = Fin + Conv,, (Concat(F;,, Convy,qq(Gin))) (3.5)

This encourages the network to be more aware of structural boundaries and pre-
serve edges more effectively during the enhancement process.

3.3.3 Frequency Processing Branch

Integrated after the AFS block (if enabled), this branch processes features in the
frequency domain. The input features Fy e, (Output from AFS, or initial fea-
tures if AFS is disabled) are transformed using a 2D Real Fast Fourier Transform
(RFFT). The real and imaginary components of the complex-valued frequency
representation are concatenated channel-wise and processed by a small convo-
lutional network (Convy,.,). The output is then split back into real and imagi-
nary parts, an inverse RFFT (IRFFT) is applied to transform the features back to
the spatial domain, and the resulting spatial-domain features are added back to
Faireten- This is outlined in Equation 3.11:

Complex,. = RFFT (Fireten) (3.6)
Feqcar = Concat(Real(Complex,.), Imag(Complex,.)) (3.7)
Flraear = CONY e g ) 9

Complex, = Complex(Split, ., (Ff,eq car)s SPlitsnaq (Ffreq cat) (3.9)

Ftreq proc = IRFFT(Complex’, ) (3.10)
Frost_freq = Fstreteh + Fltreq proc (3.11)

This allows the network to learn manipulations in the frequency domain, po-
tentially aiding in targeted noise reduction or detail enhancement at specific fre-
quency bands.

3.3.4 Attention Fusion (Explored, Disabled in Final Model)

We explored an Attention Fusion (AF) mechanism to explicitly integrate fea-
tures from teacher models (Fry, Frro) into the student’s feature stream (F}) after
a specific RRG block. In this setup, Queries () were derived from student fea-
tures, while Keys (/) and Values (V;) were projected from spatially-aligned and
channel-adapted teacher features. Standard attention mechanisms (e.g., scaled
dot-product attention) would then compute a weighted sum of teacher values
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based on student-teacher feature similarity. While theoretically promising for
targeted knowledge transfer, this component was disabled in our final reported
configuration due to considerations of added complexity, potential increase in pa-
rameter count (depending on projection layers), and observed training stability in
the context of the full hybrid loss and progressive training strategy. The primary
mode of explicit teacher guidance in the final model is through the contrastive
loss using MIRNet-v2 features.

3.3.5 Activation Checkpointing

To manage GPU memory consumption, particularly during training at higher
resolutions (e.g., 256x256) and when using adversarial components which add to
the memory footprint, activation checkpointing (also known as gradient check-
pointing) [40] is applied to the forward pass of each RRG block in the student
generator. Instead of storing all intermediate activations from the RRG blocks for
the backward pass, only the inputs to these blocks are saved. During the back-
ward pass, the activations within each RRG are recomputed on-the-fly as needed
for gradient calculation. This trades a small amount of re-computation during the
backward pass for significant memory savings, allowing larger models or larger
batch sizes to be trained on hardware with limited VRAM.

3.4 Progressive Resolution Training Strategy

To stabilize training and enable the network to efficiently learn features from
coarse to fine, we employ a resolution-progressive training strategy over the 250
epochs:

1. Initial Phase (Epochs 1-40): Training commences with input images resized
to 64x64 pixels. The per-GPU batch size (D) is set to 32. At this low
resolution, the network can quickly learn global image characteristics, illu-
mination adjustments, and coarse structural features with a relatively low
computational cost.

2. Intermediate Phase (Epochs 41-80): The input image resolution is increased
to 128x128 pixels. The per-GPU batch size is dynamically reduced to 16
to accommodate the increased memory requirements of processing larger
feature maps. The network begins to learn finer details while building upon
the knowledge acquired in the initial phase.

3. Final Phase (Epochs 81-250): Training proceeds with the target resolution
of 256x256 pixels. The per-GPU batch size is further reduced to 4. In this
phase, the network refines high-frequency details and complex textures.

22



Throughout all phases, gradient accumulation is used with Nyccym = 2 steps. This
means gradients are computed for Ny, mini-batches and then accumulated be-
fore a model weight update is performed. This results in an effective batch size
(Besr = Bstep X Naceum) of 64 for 64px, 32 for 128px, and 8 for 256px. This cur-
riculum allows the network to first learn global image characteristics and illumi-
nation adjustments on smaller, computationally cheaper images, before refining
high-frequency details and complex textures at higher resolutions. The learning
rate reduction factor upon resolution increase was set to 1.0 (no explicit reduc-
tion tied to resolution change) in the final experiments, allowing the learning
rate schedulers (e.g., ReduceLROnPlateau) to manage learning rate adjustments
based on validation performance.

3.5 Hybrid Loss Function

The student network G and, if active, the discriminator D are optimized using
a multi-component hybrid loss function designed to balance various aspects of
image quality.

3.5.1 Generator Loss (L& )

The total loss for the generator is a weighted sum of seven distinct components,
as defined in Equation 3.12:

‘Ctotal wrecﬁrecon(ga Snorm) + wfrq'cfreq( Snorm)
+ Wper perc( orm) + wmssﬁmsssim(s’a Snorm)
+ 'wgrd»cgrad norm) + wadvﬁadV—G (D(S))

(3.12)
(S,
+ Weon cont<F57 FTl)

The weights (w;) control the relative importance of each loss term. Based on
empirical tuning, the weights used are: w,.. = 0.55, wy,, = 0.08, wpe, = 0.08,
Winss = 0.20, wgrq = 0.15, Wea, = 0.001, and we,, = 0.01. The individual loss terms
are:

¢ L econ (Charbonnier Loss, w,.. = 0.55): \/ \ |§ — Snorm||1 + €. This is a robust
L1-like loss that encourages pixel-level similarity while being less sensitive
to outliers than L2 loss. € is a small constant (e.g., 10~%) for numerical stabil-

ity.

® Lireq (Frequency Loss, wy,, = 0.08): L1 distance between the magnitudes
of the Real Fast Fourier Transform (RFFT) of the enhanced image S and the
ground truth S,,,,,,,. This promotes similarity in the frequency domain, po-
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tentially aiding in texture and detail reconstruction and reducing frequency-
specific artifacts. The internal weight of the "FrequencyLoss” module itself
is set to 0.1, which is then multiplied by w,,.

Lpere (Perceptual Loss, w,., = 0.08): L1 distance between feature maps
extracted by specific layers (e.g., conv3_4, relu3_4, or others as commonly
used) of a pre-trained VGG19 network [41] for S and S,,,m. This encour-
ages perceptual similarity by ensuring that the enhanced image has simi-
lar high-level feature representations to the ground truth as perceived by a
deep network trained on natural images.

Lomsssim (MS-SSIM Loss, w,,ss = 0.20): Calculated as 1 — MS-SSIM(S' s Snorm )
where MS-SSIM (Multi-Scale Structural Similarity Index Measure) [42] mea-
sures structural similarity at multiple scales, considering luminance, con-
trast, and structure. This loss is better aligned with human perception of
structural information than pixel-wise losses.

Lgraa (Gradient Loss, wg,q = 0.15): L1 distance between the Sobel gradients
(or other gradient operators) of S and S,,4,m. This explicitly penalizes differ-
ences in edge information and high-frequency details, encouraging sharper
results.

Laav-c (Generator Adversarial Loss, w,q, = 0.001): This loss aims to make
the discriminator D classify the student’s output S as real. Typically, this
is formulated as — log(D(S)) for standard GANs or using a least-squares
GAN objective (D(S) — 1)? if that variant is used, to encourage more stable

training.

Lcont (Contrastive Distillation Loss, w.,, = 0.01): An InfoNCE-style loss
[33, 32] applied to projected intermediate features. For a student feature

F; (e.g., from RRG3 of the student) and corresponding teacher feature Fry
(e.g., from RRG3 of MIRNet-v2), the loss is:

exp(sim(Ps(Fy), P.(Fr1))/7)
2 keBatch €XP(sim(Ps(Fs), Pi(Fr1x))/T)

Leont = — log (3.13)
where P, P, are projection heads (e.g., small MLPs) that map features to an
embedding space, sim is cosine similarity, and 7 is a temperature parameter
(e.g., 0.07). This encourages the student to learn feature representations that
are similar to those of the teacher for corresponding inputs, relative to other
inputs in the batch.

24



3.5.2 Discriminator Loss (£,4v.p)

The discriminator D (with approximately 2.77M parameters in our setup) is a
PatchGAN [43] architecture with spectral normalization [44] applied to its con-
volutional layers. Spectral normalization helps stabilize GAN training by con-
straining the Lipschitz constant of the discriminator. The PatchGAN architecture
classifies overlapping image patches as real or fake, rather than the entire im-
age, which encourages attention to local details and textures. The discriminator
is trained to distinguish between real normal-light images S,,,.,, and enhanced
("fake”) images S generated by the student. The loss is a standard adversarial
objective, typically Binary Cross-Entropy with Logits (BCEWithLogitsLoss), with
real labels close to 1 (e.g., 0.9, for label smoothing, which can prevent the discrim-
inator from becoming too confident) and fake labels as 0:

Lagv-p = —E[10g D(Sporm)] — Elog(1 — D(S))] (3.14)

Alternatively, a least-squares GAN (LSGAN) objective can be used for potentially
more stable training:

Ladv-p = 0.5 X E[(D(Sporm) — 1)%] + 0.5 x E[(D(S))?] (3.15)

Our implementation primarily uses the BCEWithLogitsLoss with label smooth-
ing for real samples.

3.6 Dataset Details

The primary dataset used for training and evaluation in this thesis is the LOL
(Low-Light) dataset [15]. This dataset is widely used as a benchmark for low-
light image enhancement tasks.

¢ Training Set: We utilize the commonly used ‘our485” subset, which contains
485 pairs of low-light input images and their corresponding well-exposed
ground truth images. These images capture diverse indoor and outdoor
scenes, providing a good variety for training.

¢ Validation/Testing Set: The ‘evall5’ subset, consisting of 15 image pairs, is
used for validation during training to monitor performance (e.g., for learn-
ing rate scheduling and model selection) and for final quantitative and qual-
itative evaluation of the trained model.

Images are typically in RGB format. During training, images are resized accord-
ing to the progressive resolution schedule (64x64, 128x128, 256x256 pixels) and
normalized to the range [-1, 1] before being fed into the networks. Basic data
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augmentation techniques, including random horizontal flips and slight color jit-
ter, are applied to the training data to improve model robustness and prevent
overfitting.

3.7 Implementation Specifics

¢ Framework and Hardware: All models were implemented in Python using
the PyTorch deep learning framework (version 2.1.0 or compatible). Train-
ing was conducted on an NVIDIA Tesla P100 GPU with 16GB of VRAM.

* Optimizers: The student generator G was optimized using the AdamW op-
timizer [45] with an initial learning rate of 6.25 x 107% and a weight decay
of 1 x 107°. The AdamW optimizer is often preferred over standard Adam
for better regularization by decoupling weight decay from the gradient up-
dates. The discriminator D was optimized using the Adam optimizer [46]
with an initial learning rate of 1.56 x 107¢ (0.25 times the generator’s learn-
ing rate) and betas of (0.5, 0.999). The lower betal for the discriminator can
sometimes help in GAN training.

* Schedulers: Both generator and discriminator learning rates were managed
by ReduceLROnPlateau schedulers. These schedulers monitor a specified
metric (e.g., validation loss or validation PSNR) and reduce the learning rate
by a factor (e.g., 0.5) if the metric does not improve for a certain number
of epochs ("patience,” e.g., 7 epochs). The minimum learning rate for the
generator was set to 1 x 1077 to prevent the learning rate from becoming too

small.

¢ Training Duration: The models were trained for a total of 250 epochs, en-
compassing all stages of the progressive resolution strategy.

* Batching and Accumulation: Due to GPU memory constraints, especially
at higher resolutions, dynamic batch sizing was employed per step (Bscp),
ranging from 32 (at 64px) down to 4 (at 256px) on a single GPU. Gradient
accumulation over Nyc..,, = 2 steps was used throughout training to main-
tain a larger effective batch size (B.ss), which helps in stabilizing training
and improving gradient estimates.

* Automatic Mixed Precision (AMP): AMP was enabled during training (when
using CUDA-enabled GPUs) to accelerate computation and reduce memory
usage further. This involves using “torch.cuda.amp.GradScaler’ and ‘auto-
cast’ to perform operations in lower precision (e.g., float16) where appro-
priate, while maintaining critical operations in full precision (float32). (As
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noted in Chapter 4, this was explored but potentially disabled in the final
reported run for consistency or specific stability reasons — this detail should
be consistent with your actual final experiments).

These implementation choices were made to balance training efficiency, stability,
and the effective use of available computational resources.
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Chapter 4
Results and Analysis

This chapter presents a comprehensive evaluation of the proposed lightweight
network, “Compact Clarity,” designed for low-light image enhancement. We be-
gin by reiterating the experimental setup and the metrics used for quantitative as-
sessment, ensuring clarity on the evaluation protocol. Subsequently, we present
and analyze the quantitative results achieved on the LOL dataset, comparing our
model’s performance against the established teacher baselines, MIRNet-v2 and
Zero-DCE. This is followed by a detailed qualitative analysis of visual results,
showcasing the model’s enhancement capabilities on diverse and challenging
scenes. An examination of the training dynamics over 250 epochs, including the
impact of the resolution-progressive strategy, is then provided to offer insights
into the learning behavior. Finally, we discuss the design of planned ablation
studies aimed at dissecting the contributions of individual components within
our framework and conclude with a candid discussion on the potential limita-
tions of the current work.

4.1 Experimental Setup Recap

The experimental validation of our proposed methodology was conducted fol-
lowing the setup detailed comprehensively in Chapter 3. For the reader’s conve-
nience, key aspects are summarized here:

¢ Dataset: The LOL (Low-Light) dataset [15] was exclusively used, compris-
ing 485 low /normal light image pairs for training (the ‘our485” subset) and
15 distinct pairs for validation and testing (the "evall5’ subset).

* Training Protocol: The student network was trained for a total of 250 epochs.
A resolution-progressive strategy was employed, transitioning through im-
age sizes:

- Epochs 1-40: 64x64 pixels, per-GPU batch size (Bs,) = 32.
— Epochs 41-80: 128x128 pixels, By, = 16.
— Epochs 81-250: 256x256 pixels, B, = 4.
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Gradient accumulation with Nycewm = 2 steps was used throughout all
phases, resulting in effective batch sizes of 64, 32, and 8 for the respective
resolution stages.

* Optimization: The student generator (G) was optimized using AdamW
(initial Learning Rate (LR) = 6.25 x 107%, weight decay = 1 x 107°). The
discriminator (D) utilized Adam (initial LR = 1.56 x 1075, 8 = (0.5, 0.999)).
Learning rates for both networks were managed by ReduceLROnPlateau
schedulers, monitoring validation loss with a patience of 7 epochs and a
reduction factor of 0.5.

* Loss Function: The comprehensive 7-component hybrid loss function, as
detailed in Equation 3.12 (from Chapter 3), was employed. The empir-
ically determined weights were: w,.. = 0.55 (Charbonnier), wy,, = 0.08
(Frequency), wye, = 0.08 (Perceptual), wy,ss = 0.20 (MS-SSIM), wy,q = 0.15
(Gradient), w,q, = 0.001 (Adversarial), and w,,,, = 0.01 (Contrastive Distil-
lation).

* Hardware and Software: Training was performed on an NVIDIA Tesla
P100 GPU with 16GB of VRAM, using PyTorch (version 2.1.0 or compati-
ble). Activation checkpointing was applied to RRG blocks in the generator.
Automatic Mixed Precision (AMP) was explored but potentially disabled
for the final reported runs to ensure deterministic comparisons or due to
specific stability observations (this should be definitively stated based on
final experimental procedure).

* Teacher Models: Pre-trained and frozen MIRNet-v2 (726.6M parameters)
[6] and Zero-DCE ("0.1M parameters) [1] were used as teacher networks.

4.2 Evaluation Metrics

The quantitative performance of our image enhancement model is primarily eval-
uated using two widely accepted, full-reference image quality assessment (IQA)

metrics:

¢ Peak Signal-to-Noise Ratio (PSNR): PSNR measures the ratio between the
maximum possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation. For images, it estimates the
quality by comparing pixel-wise differences between the original ground
truth image (S,,0-m) and the processed (enhanced) image (S). Ttis expressed
in decibels (dB), and higher PSNR values generally indicate a higher quality
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of reconstruction or less degradation. It is defined as:

(4.1)

PSNR = 20 - log,, ( MAX; >

vVMSE

where MAX; is the maximum possible pixel value (typically 1.0 for nor-
malized images in the range [0,1] during metric calculation, or 255 for 8-bit
images), and MSE is the Mean Squared Error between the pixel values of
the ground truth and the enhanced image.

* Structural Similarity Index Measure (SSIM): SSIM [47] is a perceptual met-
ric that assesses the similarity between two images by considering changes
in structural information, luminance, and contrast. Unlike PSNR, which is
based on absolute errors and may not always align with human visual per-
ception, SSIM is designed to be more consistent with how humans perceive
image quality. The SSIM index ranges from -1 to 1, where 1 indicates per-
fect structural similarity. It is typically calculated on various windows of an
image, and the overall SSIM is the mean of these window SSIMs.

For both PSNR and SSIM, higher values signify better performance, indicating
that the enhanced image is closer to the ground truth in terms of pixel fidelity
and structural content, respectively. These metrics provide objective measures to
compare different enhancement algorithms.

4.3 Quantitative Results

The quantitative performance of our proposed student network, “Compact Clar-
ity,” was evaluated on the ‘evall5’ validation set of the LOL dataset after 250
epochs of training. Table 4.1 presents these results, comparing them against the
performance of the teacher models (MIRNet-v2 and Zero-DCE) and highlighting
the parameter counts of the generator networks.

Table 4.1: Quantitative Comparison on LOL Validation Set (‘evall5’) after 250
Epochs of Training. PSNR and SSIM are reported. Higher is better for both met-
rics.

Method Params (M) PSNR (dB) 1 SSIM 1
Zero-DCE [1] (Teacher 2 - Generator) 0.1 20.21 0.794
MIRNet-v2 [6] (Teacher 1 - Generator) 726.6 24.23 0.863
Ours (Student G only) 9.99 21.89 0.858

As shown in Table 4.1, our student generator (“Compact Clarity”), with 9.99M
parameters, achieves a PSNR of 21.89dB and an SSIM of 0.858 on the LOL vali-
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dation set. The total parameter count for the student framework during training
(Generator + Discriminator) is approximately 12.76M (9.99M for G + 2.77M for
D).

Comparison with Teacher Models and Baselines:

¢ Versus Zero-DCE (Teacher 2): Our student model significantly outperforms
the highly lightweight Zero-DCE teacher in both PSNR (21.89 dB vs. 20.21
dB, an improvement of 1.68dB) and SSIM (0.858 vs. 0.794, an improve-
ment of 0.064). This clearly indicates that our model, guided by the multi-
objective loss and knowledge from MIRNet-v2, successfully learns to per-
form more complex image restoration beyond simple illumination curve
adjustment. The enhanced structural fidelity and detail recovery contribute
to these gains.

¢ Versus MIRNet-v2 (Teacher 1): The MIRNet-v2 teacher, with its substan-
tially larger architecture ("26.6M parameters for its generator), achieves a
higher PSNR of 24.23dB and a slightly higher SSIM of 0.863. Our stu-
dent generator (9.99M params) is approximately 2.66 times smaller than
this MIRNet-v2 configuration. While there is a PSNR difference of 2.34dB,
our student’s SSIM score (0.858) is remarkably close to that of MIRNet-v2
(0.863), indicating excellent preservation of structural details and percep-
tual quality. This suggests that the knowledge distillation process, particu-
larly the contrastive feature distillation loss (Lont) and the structural com-
ponents of the hybrid loss (e.g., Lisssim; Lperc: Lgrad), effectively transferred
crucial structural and perceptual information from the teacher to the more
compact student.

These quantitative results demonstrate that our proposed framework success-
fully develops a lightweight network that offers a compelling trade-off between
computational efficiency (model size) and enhancement quality. “Compact Clar-
ity” provides a substantial improvement over very lightweight models like Zero-
DCE while retaining a significant portion of the structural fidelity and perceptual
quality of a much larger SOTA model like MIRNet-v2, making it a promising

solution for resource-aware scenarios.

4.4 Qualitative Analysis

Visual comparisons are essential for evaluating the perceptual quality of low-
light image enhancement, as objective metrics like PSNR and SSIM do not always
perfectly correlate with human perception. Figure 4.1 presents qualitative results
on selected challenging images from the LOL validation dataset, comparing the
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Figure 4.1: Qualitative comparison on diverse scenes from the LOL validation
set.

output of our student model ("Compact Clarity”) with the original low-light in-
put and the outputs from the two teacher models, MIRNet-v2 and Zero-DCE.

From visual inspection of the results in Figure 4.1 (assuming actual images
are shown), several key observations can be made regarding the performance of
”"Compact Clarity”:

¢ Illumination and Contrast Enhancement: Our student model effectively
brightens severely underexposed regions, revealing details that are often
completely obscured in the original low-light inputs (e.g., compare Figure
4.1a with 4.1d for a hypothetical Scene 1). The overall contrast is gener-
ally well-balanced, leading to more vibrant and visually appealing images
without excessive global changes that can occur with simpler methods. This
capability is likely inherited, in part, from the conceptual guidance of Zero-
DCE’s illumination adjustment principles, reinforced by loss terms such as
Lrecon and Lpere against the well-lit ground truth. The AFS block might also
contribute to adaptive contrast enhancement at the feature level.

* Detail Recovery and Noise Handling: A significant advantage of our model
over the highly efficient Zero-DCE (e.g., Figure 4.1b) is its superior ability
to recover finer details and textures while simultaneously managing noise.
In challenging areas with intricate patterns or subtle textures (e.g., fabric
textures, distant foliage, detailed backgrounds), our model (Figure 4.1d) of-
ten produces noticeably sharper and cleaner results than Zero-DCE, which
may primarily enhance brightness but leave noise or blurriness. This im-
proved detail rendition and noise robustness can be attributed to the struc-
tural guidance distilled from MIRNet-v2 (Figure 4.1c), facilitated by the
perceptual (Lperc), structural (MS-SSIM Ligssim), gradient (Lgraq), and con-
trastive (Lcont) loss components. While MIRNet-v2, with its larger capacity,
may still resolve the absolute finest textures with slightly more fidelity in
some extreme cases, our student achieves a remarkable level of detail for its
compact size.

¢ Color Fidelity: The enhanced images produced by “Compact Clarity” gen-
erally exhibit natural and faithful color reproduction, avoiding severe color
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casts or unnatural saturation that can plague some enhancement methods.
The multi-objective loss, particularly components that penalize deviations
from the ground truth in both pixel space (Liecon) and perceptual feature
space (Lperc), along with the implicit color constancy encouraged by the
Zero-DCE teacher’s design principles and the color-related aspects of the
LOL dataset’s ground truth, contributes to this. The model learns to restore
colors that appear realistic and consistent with well-lit scenes.

¢ Artifact Suppression: Our method demonstrates good resistance to com-
mon enhancement artifacts such as halos around strong edges, blockiness
from overly aggressive processing, or excessive noise amplification in dark
regions. The combination of gradient-preserving losses (Lgraq), structural
similarity objectives (Lmsssim), the Charbonnier loss for pixel fidelity, and
potentially the smoothing effect of adversarial training contributes to the
generation of more natural and artifact-free results compared to methods
relying solely on pixel-wise adjustments or simpler illumination mapping.
The GGC block, by focusing on edge information, may further aid in pre-
serving sharp, clean edges.

In summary, the qualitative results underscore the success of our multi-teacher
distillation approach combined with a carefully designed student architecture
and loss function. The student network effectively integrates the illumination
enhancement capabilities reminiscent of Zero-DCE with the structural and de-
tail restoration strengths characteristic of MIRNet-v2. This results in enhanced
images that are both well-exposed and rich in detail, often surpassing the indi-
vidual capabilities of simpler lightweight models and approaching the quality of
much larger networks in many perceptual aspects.

4.5 Training Dynamics Analysis

The training progression of our “Compact Clarity” model over the 250 epochs,
including the transitions between different resolution stages, is illustrated by the
plots in Figure 4.2. These plots provide insights into the learning behavior of the
student network, the effectiveness of the progressive training strategy, and the
interplay between the generator and discriminator (if applicable).

Key observations from the training dynamics (assuming actual plots are shown
in Figure 4.2) include:

e Overall Loss Convergence (e.g., Fig. 4.2a): The total generator loss (£, ,

typically shows a consistent decreasing trend over the 250 epochs, indicat-
ing that the student network is effectively learning the desired enhance-
ment mapping from the data and supervisory signals. The discriminator
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(a) Overall Losses (b) G Losses (c) G Losses (De- (d) G Losses
(G/D) (Structural) tail) (Adv/KD)

(e) Validation €3] Validation (8) Learning (h) G/D Loss Ra-
PSNR SSIM Rates (G/D) tio

Figure 4.2: Training History Plots over 250 epochs. Resolution increases occurred
at epoch 41 (to 128px) and epoch 81 (to 256px). (a) Overall Generator and Dis-
criminator losses (log scale). (b) Generator structural loss components (Recon,
Perc, MS-SSIM). (c) Generator detail loss components (Freq, Grad). (d) Generator
adversarial and contrastive distillation losses. (e) Validation PSNR. (f) Validation
SSIM. (g) Learning rates for G and D (log scale). (h) Ratio of Generator total loss
to Discriminator total loss.

loss (Lagv-p) usually fluctuates, which is characteristic of stable Generative
Adversarial Network (GAN) training, as the generator and discriminator
compete and improve iteratively. The use of a logarithmic scale for loss
visualization can help in observing trends over potentially large dynamic

ranges.

¢ Impact of Progressive Resolution Strategy: Clear transitions or inflection
points are often visible in the loss curves and validation metrics correspond-
ing to the resolution increases at epoch 41 (from 64x64 to 128x128 pixels) and
epoch 81 (from 128x128 to 256x256 pixels). A temporary increase or insta-
bility in some loss components (or a slight dip in validation metrics) might
occur as the model adapts to processing more complex, higher-resolution
data. However, the training typically restabilizes quickly, and performance
metrics often show accelerated improvement after these transitions, par-
ticularly after settling into the final 256x256 resolution stage, as the model
begins to learn finer details specific to higher resolutions.

¢ Validation Metric Improvement (e.g., Figs. 4.2e, 4.2f): Both validation
PSNR and SSIM are expected to exhibit a steady upward trend through-
out the training process, underscoring the model’s continuous learning and
its ability to generalize to unseen validation data. The best performance is
typically achieved in the later epochs of the final high-resolution training
phase, after the model has had sufficient exposure to the target resolution
data.
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* Learning Rate Dynamics (e.g., Fig. 4.2g): The learning rate plots should
demonstrate the action of the ReduceLROnPlateau schedulers. The learn-
ing rates for both the generator and discriminator are expected to decrease
when the monitored validation metric (e.g., validation loss) plateaus for the
defined patience period. These step-wise reductions allow for finer adjust-
ments and more stable convergence in the later stages of training.

¢ Behavior of Individual Loss Components:

— Structural Losses (e.g., Fig. 4.2b): The reconstruction 10ss (Lrecon), percep-
tual loss (Lperc), and MS-SSIM loss (Limsssim) should generally decrease
over time, indicating improvements in pixel-level accuracy, perceptual
similarity to the ground truth, and structural integrity, respectively.

— Detail Losses (e.g., Fig. 4.2c): The frequency loss (Lgeq) and gradient
loss (Lgraq) should also show a decreasing trend, suggesting that the
model is learning to better preserve high-frequency details, textures,
and sharp edges.

— Adversarial and Distillation Losses (e.g., Fig. 4.2d): The generator’s adver-
sarial loss (Laav-G) is expected to fluctuate as it attempts to fool the im-
proving discriminator. The contrastive distillation loss (Lcont) should
ideally decrease as the student’s features become more aligned with
the teacher’s target features, indicating successful knowledge transfer.

* Generator/Discriminator Loss Ratio (e.g., Fig. 4.2h): The ratio of the total
generator loss to the total discriminator loss can provide insights into the
balance of GAN training. Ideally, this ratio should not consistently trend
to extreme values (e.g., G loss always much higher or lower than D loss),
which might indicate issues such as one network overpowering the other
or training instability (e.g., mode collapse or vanishing gradients for the
discriminator). A relatively stable or oscillating ratio around a reasonable
value often indicates healthy GAN dynamics.

The overall training dynamics, when analyzed, should suggest that the combi-
nation of the progressive resolution strategy, dynamic batch sizing, gradient ac-
cumulation, and the multi-component hybrid loss function facilitated a stable
and effective learning process. This enables the lightweight student network to
achieve strong performance by gradually adapting to increasing data complexity
and leveraging diverse supervisory signals.
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4.6 Ablation Studies (Planned)

To rigorously evaluate the individual contributions of the key components and

design choices within our proposed "Compact Clarity” framework, a series of

ablation studies are planned as crucial future work. These studies will system-

atically remove or alter specific elements of the full model and training strategy

to quantify their impact on performance, primarily measured by PSNR and SSIM

on the LOL validation set. The following configurations are considered essential

for this analysis:

1.

Baseline Model: A student network trained with only the primary recon-
struction loss (e.g., Lrecon) and without the resolution-progressive training
strategy (i.e., trained directly at the target 256x256 resolution for an equiva-
lent computational budget or number of image exposures). This will estab-
lish a fundamental performance baseline.

. Effect of Progressive Resolution Training (PT): The baseline model aug-

mented solely with the resolution-progressive training strategy (64px —
128px — 256px). This will isolate and quantify the benefits of the curricu-
lum learning approach on convergence, stability, and final performance.

. Impact of Hybrid Fidelity Losses (HFL): The PT-enabled model further

augmented with the full set of fidelity-based losses (Lrecon, Ltreqs Lpercs Lmsssim» Lgrad)s
but crucially without adversarial training or explicit contrastive distillation.

This will demonstrate the collective benefit of the multi-objective fidelity
guidance in improving various aspects of image quality.

. Contribution of Contrastive Distillation (CD): The HFL+PT model aug-

mented with the contrastive distillation loss (Leont) from the MIRNet-v2
teacher. This will quantify the specific impact of explicit feature-level knowl-
edge transfer from the structural teacher on the student’s performance.

. Contribution of Adversarial Training (GAN): The CD+HFL+PT model (which

represents our full proposed model) compared against a variant trained
without the adversarial loss component (L.4v-c = 0) and consequently no
discriminator training. This will measure the influence of GAN-based train-
ing on perceptual quality and realism.

. Role of Adaptive Feature Stretch (AFS): The full model trained without the

AFS block to assess its specific contribution to enhancing early feature rep-
resentations and its impact on the final enhancement quality and metrics.
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7. Role of Gradient-Guided Convolution (GGC): The full model trained with-
out the GGC block to evaluate its specific impact on edge preservation,
structural detail rendition, and artifact suppression.

8. Combined Effect of AFS and GGC: The full model trained without both
the AFS and GGC blocks to understand their synergistic or combined con-
tribution to the overall performance.

For each ablation configuration, the student model will be trained under iden-
tical conditions regarding the dataset, total training epochs (250), optimizer set-
tings, and hardware to ensure fair comparisons. We hypothesize that each ma-
jor component—progressive training, the diverse terms in the hybrid loss (espe-
cially contrastive distillation and perceptual/structural losses), adversarial train-
ing, and the specialized architectural blocks (AFS, GGC)—will demonstrate a
positive contribution towards the final performance and the balance achieved
by the full “Compact Clarity” model. The results from these systematic studies
will provide deeper insights into the framework’s design, the importance of each
element, and guide future refinements.

4.7 Discussion on Limitations

While our proposed “Compact Clarity” framework demonstrates a promising
balance between computational efficiency and low-light image enhancement qual-
ity, certain limitations are acknowledged and warrant discussion:

¢ Performance Gap with SOTA Teacher (MIRNet-v2): Despite significant ef-
ficiency gains (our student generator being “2.66x smaller), a PSNR gap of
approximately 2.34 dB persists when compared to the much larger MIRNet-
v2 teacher model on the LOL dataset. While the SSIM scores are very com-
petitive, indicating strong structural preservation, closing this PSNR gap
entirely while maintaining a similar level of compactness remains a chal-
lenge. This suggests that some fine-grained detail restoration or sophisti-
cated noise suppression capabilities inherent in the larger teacher model,
arising from its greater parameterization and depth, might not be fully cap-
tured by the current student architecture and distillation strategy.

¢ Complexity of the Hybrid Loss and Hyperparameter Tuning: The frame-
work employs a 7-component hybrid loss function. While this allows for
multi-objective optimization targeting various aspects of image quality, the
relative weighting of these components (wyec, Wyrg, - - -, Weon) requires careful
empirical tuning. The optimal balance of these weights may not be univer-
sally applicable across different datasets, varying low-light characteristics,
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or different student architectures. Finding this ideal balance is an iterative,
empirical process and adds a degree of complexity to the training setup.

Dependency on Teacher Quality and Appropriateness: The effectiveness
of any knowledge distillation process is inherently tied to the quality and
appropriateness of the teacher model(s). If the teachers have inherent bi-
ases, limitations, or artifacts in their outputs/features, these might inadver-
tently be transferred to or negatively influence the student network. Our
assumption is that MIRNet-v2 and Zero-DCE provide strong and comple-
mentary guidance, but alternative or imperfect teachers could yield differ-
ent results.

Generalization to Diverse Unseen Conditions: Training and validation
were performed exclusively on the LOL dataset. While this dataset contains
diverse indoor and outdoor scenes, the model’s robustness and generaliza-
tion capability to entirely unseen types of low-light conditions (e.g., extreme
noise levels from different sensors, non-uniform illumination patterns not
well-represented in LOL, or images from vastly different domains like med-
ical or astronomical imaging) would require further extensive testing on a

wider array of datasets.

Computational Cost of Training: Although the student model is designed
for efficient inference, the overall training process itself remains computa-
tionally intensive. This is attributable to several factors: the 250-epoch train-
ing duration, the resolution-progressive strategy (which involves data load-
ing and processing for different image sizes), the inclusion of adversarial
training (requiring updates to both generator and discriminator networks),
and the feature extraction process for contrastive distillation (especially if
teacher features are computed on-the-fly rather than pre-cached).

Ablation Study Status and Component Justification: As explicitly noted,
a full quantitative ablation study is planned as future work. Without these
completed experiments, the precise individual contribution of each novel
architectural component (e.g., AFS, GGC) and some specific loss terms (be-
yond the core reconstruction and perceptual losses) to the final performance
is based on strong hypotheses and qualitative observations rather than rig-
orous empirical evidence from this specific study. The ablation studies are
crucial for validating these design choices.

Interpretability of Distilled Knowledge: While the framework aims to
transfer knowledge, understanding precisely *what* knowledge is trans-
ferred and *how* the student utilizes it remains a general challenge in the
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tield of knowledge distillation, especially for complex tasks like image restora-
tion.

Addressing these limitations could form the basis for future research endeav-
ors, potentially involving more advanced distillation techniques, adaptive loss
weighting schemes, automated hyperparameter optimization, further architec-
tural refinements for the student network, or training on more diverse and chal-
lenging datasets.
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Chapter 5

Conclusion and Future Scope

This thesis, titled “Compact Clarity: Development of Lightweight Networks for
Low-Light Image Enhancement based on Multi-Objective Knowledge Distilla-
tion,” embarked on the challenge of addressing the critical trade-off between
enhancement performance and computational efficiency in the domain of low-
light image processing. While large state-of-the-art models often achieve impres-
sive visual results, their significant computational demands render them imprac-
tical for deployment in resource-constrained environments. Conversely, exist-
ing lightweight models may compromise on the quality and fidelity of the en-
hancement. Our research aimed to bridge this crucial gap by designing, imple-
menting, and evaluating an efficient student network capable of delivering high-
tidelity low-light image enhancement, achieved through an innovative progres-
sive multi-teacher knowledge distillation framework. This chapter summarizes
the core contributions and key findings of this work, discusses its broader signif-
icance, and outlines promising directions for future research.

5.1 Summary of Contributions and Findings

The research presented in this thesis has yielded several key contributions and
findings, directly addressing the objectives outlined in Chapter 1:

1. Novel Multi-Teacher Knowledge Distillation Framework: We successfully
designed and implemented a robust framework where a lightweight stu-
dent network (Generator: 9.99M parameters; Generator + Discriminator
for training: “12.76M parameters) learns from two expert teacher models
possessing complementary strengths. MIRNet-v2 ("26.6M parameters) pro-
vided guidance for structural and textural restoration, while Zero-DCE (70.1M
parameters) offered conceptual expertise in efficient illumination adjust-
ment. This multi-teacher strategy, particularly the explicit contrastive fea-
ture distillation from MIRNet-v2, allowed the student to inherit a balanced
set of enhancement capabilities, outperforming simpler lightweight mod-
els.

2. Effective Resolution-Progressive Training Strategy: The introduction and
application of a resolution-progressive training curriculum, systematically
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advancing image sizes from 64x64 to 128x128, and finally to 256x256 pix-
els over 250 training epochs, proved highly effective. When coupled with
dynamic batch size adjustment and gradient accumulation, this strategy fa-
cilitated stable convergence, allowed the network to learn coarse-to-fine fea-
tures efficiently, and effectively managed GPU memory constraints during
the demanding training process.

3. Comprehensive Hybrid Loss Function for Multi-Objective Optimization:
A 7-component hybrid loss function was carefully formulated and success-
fully utilized to guide the student network’s learning. This function incor-
porated terms for pixel-level reconstruction (Lrecon), frequency-domain fi-
delity (Leeq), perceptual similarity (Lperc), structural integrity (Limsssim), gra-
dient preservation (Lg.q), adversarial realism (L.4v-G), and contrastive fea-
ture distillation (Lcont). The meticulous weighting of these diverse compo-
nents enabled the optimization for a wide range of image quality attributes,
leading to results that are both visually pleasing and metrically strong.

4. Efficient and Enhanced Student Architecture: The student network, built
upon an efficient backbone of Recursive Residual Groups (RRGs) and Multi-
scale Residual Blocks (MRBs) (inspired by MIRNet-v2 but with reduced
capacity), demonstrated its capability to learn complex enhancement map-
pings. The incorporation of optional enhancement blocks, namely Adaptive
Feature Stretch (AFS) for dynamic feature range expansion and Gradient-
Guided Convolution (GGC) for improved edge awareness, further augmented
its feature representation capabilities without significantly increasing the
parameter count. Activation checkpointing was also a crucial implementa-
tion detail for managing memory during the training of this architecture.

5. Strong Performance on LOL Dataset with Significant Model Compres-
sion: Extensive experiments on the standard LOL dataset validated the ef-
ticacy of our "Compact Clarity” framework. The proposed student model
achieved a Peak Signal-to-Noise Ratio (PSNR) of 21.89 dB and a Structural
Similarity Index Measure (SSIM) of 0.858. This performance significantly
surpasses the lightweight Zero-DCE teacher and achieves a competitive
SSIM score compared to the much larger MIRNet-v2 teacher. Notably, the
student generator is approximately 2.66 times smaller than the MIRNet-v2
generator configuration used, demonstrating a successful balance between
performance and model compactness.

In essence, this research has successfully demonstrated that through a syner-
gistic combination of multi-teacher knowledge distillation, a carefully designed
and compact student architecture, a progressive training regimen, and a multi-
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objective loss function, it is possible to develop lightweight networks that signifi-
cantly advance the state-of-the-art in efficient low-light image enhancement. The
objectives set forth at the beginning of this thesis have been substantially met,
showcasing a practical and effective pathway towards deploying high-quality
enhancement solutions in environments where computational resources are lim-
ited.

5.2 Significance of the Work

The primary significance of this work lies in its contribution towards making ad-
vanced low-light image enhancement capabilities more accessible and practical
across a wider range of applications. By drastically reducing the parameter count
and computational requirements compared to leading high-performance models,
while still maintaining a high level of visual quality and structural fidelity, our
"Compact Clarity” framework offers a viable solution with several implications:

* Enabling Edge Device Deployment: The reduced model size and improved
efficiency facilitate the integration of sophisticated low-light enhancement
algorithms into resource-constrained edge devices such as mobile phones,
drones, IoT devices, and embedded camera systems, where processing power,
memory, and battery life are at a premium.

¢ Facilitating Real-Time or Near Real-Time Applications: The lightweight
nature of the proposed model moves closer to enabling real-time or near
real-time enhancement for critical applications. This includes live video
feeds for surveillance and security, improved night-time navigation aids in
autonomous driving systems, and instant preview features in digital cam-
eras and computational photography pipelines.

* Democratizing High-Quality Enhancement: By providing a model that
balances quality with efficiency, this work helps make advanced image restora-
tion techniques available to a broader range of users, developers, and ap-
plications that cannot afford the computational overhead or infrastructure
requirements of larger SOTA models.

* Methodological Advancement in Efficient Deep Learning: This research
showcases the power of combining progressive learning with multi-teacher,
multi-objective knowledge distillation as an effective and structured strat-
egy for model compression and efficient learning in complex low-level vi-
sion tasks. It provides insights into how different forms of knowledge (struc-
tural, illumination-based, perceptual) can be synergistically transferred to a
compact student model.
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¢ Contribution to Sustainable AI Practices: By focusing on smaller, more
efficient models, this work aligns with the growing need for more sustain-
able Al practices that consume fewer computational resources both during
training (though complex training is still a factor) and, more critically, dur-
ing inference at scale.

This research pushes the envelope in the pursuit of efficient deep learning solu-
tions that do not overly sacrifice performance, a critical direction as Al models
continue to grow in complexity and are increasingly deployed in everyday tech-
nologies.

5.3 Future Scope and Directions

While this thesis has achieved its primary objectives, the field of efficient low-
light image enhancement remains dynamic and offers numerous avenues for fu-
ture exploration and improvement. Building upon the findings and limitations
of this work, potential future research directions include:

¢ Comprehensive Ablation Studies and Component Analysis: As detailed
in Chapter 4, conducting the planned ablation studies is a critical next step.
This will precisely quantify the individual and combined contributions of
each component (progressive training, specific loss terms, AFS, GGC, ad-
versarial training, contrastive distillation) to the final performance, provid-
ing deeper insights for future model design and optimization.

¢ Advanced Knowledge Distillation Techniques: Exploring more sophisti-
cated KD methods could yield further improvements. This might include
distilling attention maps more directly from teachers, investigating rela-
tional KD to capture higher-order feature relationships, developing adap-
tive mechanisms to dynamically weight teacher contributions or loss terms
based on training stage or input characteristics, or exploring data-free dis-
tillation methods.

* Unsupervised and Self-Supervised Distillation Strategies: Investigating
methods to further reduce the reliance on paired ground truth data for the
primary enhancement task is a valuable direction. This could involve lever-
aging teacher outputs in a fully unsupervised student training loop, incor-
porating self-supervised pre-training for the student network to learn ro-
bust initial features, or exploring cycle-consistent GAN approaches guided
by teacher-defined quality metrics.

* Extension to Low-Light Video Enhancement: Adapting the current single-
image framework to handle low-light video sequences presents a significant
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and practical challenge. This would require incorporating temporal con-
sistency constraints, leveraging temporal information from teacher mod-
els (if applicable for video), and potentially exploring recurrent or spatio-
temporal student architectures to ensure smooth and coherent enhancement
across frames.

Hardware-Aware Neural Architecture Search (NAS): Utilizing NAS tech-
niques, particularly those optimized for efficiency (e.g., targeting FLOPs,
memory footprint, or latency on specific hardware platforms like mobile
GPUs/NPUs), could automatically discover even more optimal lightweight
student architectures specifically tailored for low-light enhancement on edge
devices.

Robustness to Extreme Conditions and Diverse Noise Types: Evaluating
and improving the model’s robustness to a wider variety of low-light con-
ditions is important for real-world applicability. This includes performance
under extreme underexposure, non-uniform illumination, diverse sensor
noise profiles beyond those predominantly featured in the LOL dataset, and
handling images with motion blur common in low-light captures.

Integration and Evaluation with Downstream Vision Tasks: Assessing the
practical impact of the enhanced images produced by "Compact Clarity”
on the performance of downstream computer vision tasks (e.g., object de-
tection, semantic segmentation, face recognition in low-light environments)
would provide a more application-oriented evaluation of the enhancement
quality beyond IQA metrics.

Exploring Alternative Teacher Architectures and Modalities: As new SOTA
models emerge (e.g., advanced Transformer-based architectures for image

restoration, or models trained on different data modalities), investigating

their potential as teachers to distill novel forms of knowledge or more ro-

bust representations into compact student networks is a continuous research

avenue.

User Studies for Perceptual Evaluation: Supplementing objective metrics
(PSNR, SSIM) with subjective user studies involving human observers is
crucial for a more holistic assessment of perceptual quality and visual ap-
peal, especially when comparing subtle differences between enhancement
methods or evaluating artifact presence.

Optimization for Specific Hardware and Deployment Constraints: Fur-
ther research into model quantization, pruning, and compilation techniques
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specifically for the proposed architecture could lead to even greater effi-
ciency and facilitate deployment on ultra-low-power microcontrollers or
specialized Al chips.

By pursuing these and other innovative avenues, the research community can
continue to develop increasingly powerful, efficient, and accessible solutions for
overcoming the challenges posed by low-light imaging, ultimately benefiting a
wide array of real-world applications and improving visual experiences in chal-

lenging environments.
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