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LYNX-RNA: A NEXTFLOW-BASED MODULAR RNA-SEQ AND MACHINE 

LEARNING PIPELINE FOR BIOMARKER DISCOVERY AND LLM-

SUMMARIZED REPORT GENERATION IN IMMUNE 

THROMBOCYTOPENIC PERPURA 

DEVANSHI SHARMA 

ABSTRACT 

The increasing complexity of RNA-seq data requires analysis pipelines that are robust, 

scalable, and interpretable. LYNX-RNA (Language-augmented Yield for Nextflow-

based RNA eXpression analysis) is a modular, Nextflow-based workflow that delivers 

end-to-end RNA-seq analysis—from raw FASTQ files to biological insights—with 

automation and reproducibility. LYNX-RNA integrates standard tools for quality 

control, alignment, quantification, and differential gene expression (DGE), along with 

advanced modules for WGCNA, PPI network modeling, and GO/KEGG enrichment.  

A key feature is its built-in machine learning module (Random Forest and XGBoost) 

for predictive biomarker discovery, and an LLM-powered reporting system that 

generates natural language summaries of results. To identify DEGs, treated ITP patient 

data (GSE112278) was compared against external healthy controls (GSE251778) 

using Welch’s t-test and FDR correction. These DEGs were used to train a classifier 

that achieved a ROC AUC of 0.937, demonstrating high predictive accuracy. Notably, 

top predicted DEGs such as EPB42, TNS1, and HAGH overlapped with WGCNA-

derived hub genes, reinforcing biological relevance. The pipeline supports deployment 

in low-resource environments (≤24 GB RAM), is compatible with Conda, Docker, and 

HPC systems, and includes a Python-based CLI for user accessibility. We applied 

LYNX-RNA to a longitudinal ITP dataset spanning control, pre-treatment, and post-

treatment stages, uncovering dynamic gene signatures and potential immune-

metabolic biomarkers. LYNX-RNA provides a flexible, automation-ready solution for 

transcriptome analysis, well-suited for biomarker discovery and translational 

immunology. 

In summary, LYNX-RNA bridges key gaps in usability, scalability, and interpretability 

in transcriptomic workflows. It serves as a versatile, automation-ready platform for 

both academic research and translational applications in systems immunology, 

precision medicine, and biomarker discovery 

 

Keywords: RNA-seq pipeline, LYNX-RNA, Nextflow, Biomarker discovery, Immune 

Thrombocytopenia (ITP), Machine learning, Random Forest, XGBoost, WGCNA, 

Immune infiltration, Gene expression analysis, Differential expression, Functional 

enrichment, Large Language Model (LLM), Systems biology, Transcriptomics, 

Workflow automation, Natural language reporting, Co-expression network analysis 
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CHAPTER – 1 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

 

The development of high-throughput sequencing technologies has made it possible to 

uncover many organisms’ transcriptional profiles at the whole-genome level. The 

technology of RNA-seq, or messenger RNA (transcriptome) sequencing, has permitted 

researchers to explore gene expression patterns with great precision in hundreds of 

model and non-model organisms. RNA sequencing (RNA-seq) has emerged as a strong 

tool for assessing genome-wide gene expression, revolutionizing various fields of 

biology. Even without a reference genome, a wealth of understanding related to 

processes such as cellular development, gene function, and responses to environmental 

stimuli, among others, has been uncovered . The RNA-seq methodology has often set 

the basis for developing molecular genetic analysis in non-model organisms and has 

become an essential tool. Researchers focused mainly on wet lab and field work 

sometimes struggle to exploit the data available from “next-generation sequencing” 

because they lack experience in bioinformatics, which is perceived to require in-depth 

computational and programming skills[3]. Transcriptome sequencing has become a 

commonplace technique which is employed in many scientific settings. Rna-seq 

analysis has various advantages over microarray[16]. Current next-generation 

sequencing methods yield fastq files that contain the sequencing reads captured from 

the sample. These reads are typically aligned to a specific reference genome. In RNA-

seq, the reads after alignment are quantified on a per gene or per transcript basis to 

discern information regarding the level of gene expression in a population of cells. 

Additional analyses may include technical quality control of the sequencing libraries 

and clustering analysis for experimental quality control. Often, analysis is done to 

compare samples of two conditions against each other, and determine the statistically 

significant differences in the level of transcripts per gene .[2] 

 Further analysis can investigate the pathways associated with these differentially 

expressed genes, perform various read metrics to assess the variability of the data, and 

identify single nucleotide changes or deletions that occur throughout the coding 

regions or the genome. In this contribution we address the problem of creating robust, 

easily adaptable software for the quality control and analysis of RNA-seq data. This is 

a difficult problem because the field is moving very rapidly with new and improved 

algorithms for key tasks being published frequently. Also, novel applications of RNA-

seq are constantly being enabled by new analytic approaches. For example, 

innovations in analysis now permit tools to be developed that aid in the discovery of 
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fusion genes, the identification of viral transcripts and the analysis of immunological 

infiltrate in samples, which enable a deeper understanding of the biological system 

being studied. [2] 

This study is intended to make the approach easier and more understandable. The 

system presented here, LYNX-RNA (Language-augmented Yield for Nextflow-based 

RNA eXpression analysis) , uses a modern computational workflow management 

system, Nextflow , to combine many of the most useful tools currently employed in 

RNA-seq analysis into a single, fast, easy to use pipeline, that includes alignment steps, 

quality control, differential gene expression and pathway analyses. In addition, LYNX-

RNA includes a variety of optional modules for advanced downstream analyses, such 

as co-expression network construction, immune cell infiltration profiling, metabolic 

and immune pathway enrichment, and machine learning–based biomarker 

prioritization. LYNX-RNA was built with following guiding principles.[2] 

(1) LYNX-RNA makes use of the Nextflow framework for a flexible and modular 

architecture, thereby allowing users to easily include alternative current methods or 

new tools. Often absent in outdated pipelines requiring manual updates or changes, 

this flexibility combines the most recent advancements in RNA-seq analysis, including 

immune cell infiltration assessment and viral transcript detection. (2) Automated 

LLM-Driven Summarization: Unlike traditional pipelines that generate complex 

output requiring expert interpretation, LYNX-RNA’s integrated LLM produces clear, 

human-readable summaries of the analysis. This feature allows researchers, clinicians, 

and non-experts to quickly grasp insights without extensive computational expertise, 

bridging the gap. (3)  Enhanced Use and Installation: Many RNA-seq analytical 

pipelines require intricate setups and dependency management, which challenges 

consumers with less bioinformatics knowledge. (4) LYNX-RNA resolves this issue by 

consolidating critical utilities into a single efficient package that can be executed with 

straightforward command-line input. Novices can navigate the pipeline effortlessly, 

but experienced users maintain comprehensive customization options for intricate 

studies.(5) Visual and Organizational Efficiency: LYNX-RNA delivers organized 

visual representations, allowing users to swiftly comprehend and analyze RNA-seq 

data through a “glance and drill-down” methodology. (6) LYNX-RNA supports 

execution in local, HPC, and cloud environments using Conda or Docker/Singularity 

containers. Every analysis step is version-controlled and reproducible, meeting the 

standards required for robust and transparent scientific research. (7) To enable 

predictive modeling, LYNX-RNA includes a dedicated machine learning module that 

supports algorithms such as Random Forest and XGBoost. Users can train classifiers 

on normalized expression data (e.g., TPM or vst-transformed counts) and evaluate 

performance using accuracy, F1-score, ROC-AUC, and cross-validation. The pipeline 

generates ranked feature importance lists and visualizations disease-stage-specific 

biomarkers. This ML component enhances the biological interpretability and 

translational value of the analysis. (8) Extensive Field Compatibility: LYNX-RNA has 

a variety of applications in cancer, virology, immunology, and biomarker 

identification, making it extremely versatile for emerging research avenues. LYNX-
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RNA provides comprehensive tools for variant calling, differential expression 

analysis, pathway enrichment, and additional functions, making it a singular solution 

for many scientific investigations. 

 

 

1.2 MOTIVATION 

 

RNA sequencing (RNA-seq) has become a central tool in modern molecular biology, 

enabling high-resolution characterization of transcriptomes across diverse biological 

systems and conditions. It is widely used in functional genomics, developmental 

biology, immunology, and disease profiling, including complex conditions such as 

cancer and autoimmune disorders. RNA-seq generates read-level data that is 

aggregated into count matrices representing gene or transcript abundance. A primary 

objective in most studies is to identify genes that exhibit differential expression 

between biological groups or timepoints.[14] 

Despite its widespread adoption, RNA-seq analysis remains computationally 

demanding due to the discrete, over dispersed nature of count data and the influence 

of factors such as sequencing depth, batch effects, and biological heterogeneity. 

Traditional statistical approaches used for microarrays are not directly applicable to 

RNA-seq, leading to the development of dedicated tools for normalization, statistical 

testing, and downstream interpretation. However, many of these tools are fragmented 

across different platforms, require manual integration, or lack downstream support for 

biological interpretation, immune profiling, and biomarker discovery. Furthermore, 

existing pipelines often generate complex outputs that require domain expertise to 

interpret, posing a barrier for clinicians and experimental biologists. There is a growing 

need for a comprehensive solution that not only performs robust RNA-seq processing 

but also integrates machine learning for biomarker prioritization, network-based 

analysis, and automated interpretation.[11] 

To address these challenges, we developed LYNX-RNA—a modular, Nextflow-based 

pipeline designed to streamline RNA-seq analysis from raw reads to interpretable 

insights. It integrates state-of-the-art tools for differential expression, functional 

enrichment, co-expression networks, immune deconvolution, and LLM-generated 

summaries, providing a powerful yet accessible framework for transcriptomic analysis 

across biological and clinical domains. 

To illustrate the utility of LYNX-RNA we applied it to a set of ITP patients.  

Early in the twentieth century, Paul Ehrlich realized that the immune system could go 

awry. Instead of reacting only against foreign antigens, it could focus its attack on the 

host. This condition, which he termed autotxicus, can result in a clinical syndrome 

generically referred to as autoimmunity. This inappropriate response of the immune 
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system, directing humoral and or T - lymphocytes mediated immune activity against 

self-components, is the cause of auto immune disease such as Idiopathic 

Thrombocytopenic Purpura (ITP) or Immune Immune thrombocytopenia. ITP is an 

acquired immune-mediated autoimmune disease characterized by low peripheral 

blood platelet counts (<100 × 109/L), which are considered thrombocytopenia, and 

increased risk of bleeding due to peripheral platelet destruction through antibody-

dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T 

lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition 

may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune 

disorders, and systemic diseases. Despite advances in clinical guidelines, the absence 

of definitive diagnostic biomarkers often leads to misdiagnosis and delayed or 

ineffective treatment, with a substantial proportion of patients progressing to chronic 

or refractory ITP. Emerging studies suggest that metabolic reprogramming may play a 

role in autoimmune pathogenesis, including ITP. Metabolomic profiling has revealed 

alterations in phenylalanine, tyrosine, and glyoxylate metabolism in ITP patients, 

indicating potential metabolic biomarkers. However, the link between these metabolic 

changes and underlying gene expression patterns remains poorly understood. To 

address this gap, transcriptomic profiling—particularly RNA sequencing (RNA-

seq)—offers a powerful approach to unravel disease mechanisms and identify 

metabolism-related genes with diagnostic and therapeutic potential. RNA-seq has 

transformed transcriptome analysis by enabling high-resolution, strand-specific 

quantification of gene expression, isoform variation, and novel transcript discovery. 

However, the computational complexity of RNA-seq—ranging from alignment of 

exon-spanning reads to quantification, outlier detection, and result interpretation—

poses significant hurdles for widespread adoption, especially in clinical research 

settings.  

 

1.3 OBJECTIVE 

 

The primary objective of this study is to develop and apply LYNX-RNA (Language-

augmented Yield for Nextflow-based RNA eXpression analysis), a fully modular, 

reproducible, and interpretable RNA-seq analysis pipeline that addresses current 

limitations in transcriptomic workflows. Specifically, the goals of LYNX-RNA are as 

follows: 

 

1. To build a modular and scalable RNA-seq pipeline using the Nextflow framework 

1) Enable flexible integration of widely used tools for preprocessing, alignment, 

quantification, and statistical modeling. 

2) Support local, HPC, and cloud-based execution environments with 

containerized deployment using Conda, Docker, and Singularity. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/systemic-disease
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3) Provide a parameter-driven configuration system that balances ease of use for 

novices with full customization for advanced users. 

 

2. To streamline the complete RNA-seq workflow from raw reads to biological insight 

1) Automate quality control, read trimming, adapter removal, and contaminant 

filtering using tools such as FastQC, fastp, and BBsplit. 

2) Perform alignment with STAR or HISAT2, followed by transcript/gene 

quantification using Salmon or featureCounts. 

3) Implement robust differential gene expression analysis using DESeq2 and 

downstream visualization (PCA, heatmaps, volcano plots). 

 

3. To integrate machine learning models for biomarker discovery and classification 

1) Include supervised learning approaches such as Random Forest and XGBoost 

to classify samples across experimental groups (e.g., control, pre-treatment, 

post-treatment). 

2) Rank genes by predictive importance and visualize classifier performance 

using metrics like ROC-AUC, F1-score, and confusion matrices. 

3) Support stratified cross-validation and test/train splitting for reproducible ML-

based analyses. 

 

4. To perform systems-level analysis through network and module-based exploration 

1) Construct co-expression networks using WGCNA to identify gene modules 

correlated with clinical traits or timepoints. 

2) Build PPI networks using STRING data and identify hub genes using centrality 

measures in Cytoscape. 

3) Integrate gene-level and network-level results to enhance the biological 

relevance of candidate biomarkers. 

 

5. To incorporate immune and pathway activity profiling 

1) Apply GSVA and ssGSEA for single-sample pathway scoring using curated 

gene sets from MSigDB, with a focus on immune and metabolic signatures. 

2) Quantify immune cell infiltration using immune marker gene sets and assess 

correlations with hub gene expression and clinical conditions. 
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3) Visualize enrichment and immune profiles using violin plots, heatmaps, and 

correlation matrices. 

 

6. To enhance accessibility and interpretability using LLM-generated summaries 

1) Integrate a Large Language Model (LLM) interface (e.g., OpenAI GPT) to 

automatically generate natural-language summaries of analysis results. 

2) Provide narrative outputs covering DEGs, functional enrichment, ML 

classifiers, and immune infiltration profiles. 

3) Lower the interpretive barrier for clinicians, experimental biologists, and non-

specialist users. 

 

 

7. To validate the pipeline using a real-world clinical dataset 

1) Demonstrate the application of LYNX-RNA on a longitudinal RNA-seq dataset 

of Immune Thrombocytopenia (ITP) patients, sampled at control, pre-

treatment, 1 week, and 1 month post-treatment. 

2) Identify timepoint-specific gene expression patterns, hub genes, and immune-

metabolic pathways involved in ITP pathogenesis. 

3) Evaluate pipeline outputs for biological plausibility, classifier performance, 

and network-level robustness. 

 

8. To offer a reusable, open-source, and community-friendly solution 

1) Publish the pipeline as an open-source tool, complete with documentation, 

example data, and installation instructions. 

2) Provide support for integration with standard file formats and compliance with 

FAIR and nf-core-inspired best practices. 

3) Enable long-term extensibility for new use cases such as viral transcript 

detection, variant calling, and multi-omics integration. 

 

 

 

 



7 
 

1.4 SCOPE 

 

This thesis encompasses both the development and application of LYNX-RNA, a 

modular, scalable, and interpretable RNA-seq analysis pipeline built using the 

Nextflow framework. The scope includes the technical architecture, tool integration, 

and workflow automation that enable the complete RNA-seq processing pipeline—

from quality control and alignment to differential gene expression analysis, pathway 

enrichment, machine learning–based biomarker discovery, co-expression network 

modeling, immune infiltration profiling, and natural language report generation using 

large language models (LLMs). 

The pipeline is demonstrated on a real-world longitudinal RNA-seq dataset of Immune 

Thrombocytopenia (ITP), comprising multiple clinical stages (control, pre-treatment, 

week 1, and month 1). The objective is to showcase how LYNX-RNA identifies 

differentially expressed genes, extracts timepoint-specific biological signatures, 

uncovers immune and metabolic pathway activity, and highlights predictive 

biomarkers using machine learning classifiers. 
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CHAPTER - 2 

LITERATURE REVIEW 

 

 

 

2.1 RNA-seq Analysis and Challenges 

 

RNA sequencing (RNA-seq) has revolutionized the way scientists study 

transcriptomes, enabling detailed insights into gene expression, regulation, and 

function across different biological conditions. Over the years, various methodologies 

have emerged for RNA-seq analysis, ranging from hybridization-based approaches to 

high-throughput sequencing platforms. For the past decade, microarrays have grown 

in popularity as the primary tool for gene expression analysis. Recently, however, 

‘‘digital gene expression’’ by next-generation sequencing has been introduced as a 

promising, new platform for assessing the copy number of transcripts, thereby 

providing a digital record of the numerical frequency of a sequence in a sample.[10] 

There are various Types of RNA-seq analysis based on technological or 

methodological platforms, such as how microarray and NGS (Next-Generation 

Sequencing) are distinct methods. Over the years, several methods have emerged for 

RNA analysis, including microarray-based profiling, digital gene expression tag 

profiling, and Next-Generation Sequencing (NGS)-based RNA-seq. Microarrays, once 

widely used, depend on hybridization of RNA to pre-designed probes and are limited 

to detecting known transcripts, offering only relative quantification with a constrained 

dynamic range. Digital gene expression (DGE) profiling provides a more cost-

effective alternative but lacks the depth and breadth of full transcriptome coverage. In 

contrast, NGS-based RNA-seq has become the preferred method due to its ability to 

detect both known and novel transcripts, offer absolute quantification, and provide a 

much wider dynamic range. NGS technologies support various formats including bulk 

RNA-seq, single-cell RNA-seq, total RNA-seq, and long-read sequencing, each 

tailored for specific applications like differential gene expression, isoform discovery, 

splicing analysis, and cellular heterogeneity studies. Among these, single-cell RNA-

seq and spatial transcriptomics represent cutting-edge advancements that allow 

transcriptomic analysis at unprecedented resolution.[7] 

 NGS is preferred over microarrays and DGE methods because it is not limited by prior 

knowledge of gene sequences, it offers higher sensitivity and accuracy, and it supports 

a wide array of analytical applications—from basic gene expression profiling to 

complex studies of gene regulation, alternative splicing, and translational dynamics. 

As such, NGS has become the cornerstone of modern transcriptomic research due to 

its scalability, comprehensiveness, and versatility across diverse biological systems. 
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RNA-seq, while powerful and widely adopted, presents several challenges at various 

stages of the analysis pipeline. These challenges arise due to the complexity of 

biological systems, limitations in technology, and computational demands. Below is a 

comprehensive overview of the key challenges in RNA-seq analysis, grouped by 

category: 

1. Experimental and Technical Challenges 

One of the first and most critical challenges in RNA-seq analysis arises at the 

experimental stage. The quality of RNA extracted from biological samples plays a 

crucial role in determining the success of the entire pipeline. Degraded RNA can lead 

to biased or incomplete coverage of transcripts, especially at the 5' end, thereby 

compromising quantification accuracy. Contaminants such as genomic DNA or phenol 

from the extraction process can further interfere with downstream applications like 

library preparation or sequencing. 

Another major issue is the presence of batch effects—systematic differences between 

groups of samples processed at different times or under slightly different laboratory 

conditions. These can introduce false biological signals or obscure real ones. 

Moreover, variations in library preparation methods (such as poly(A) selection versus 

ribosomal RNA depletion) can influence the types and quantities of RNA captured, 

introducing bias that complicates downstream comparative analyses. 

 

2. Computational Challenges 

RNA-seq datasets are inherently large, often consisting of millions to billions of 

sequencing reads per experiment. This scale imposes significant demands on 

computational infrastructure in terms of storage, memory, and processing power. Even 

before analysis begins, researchers need to address issues like raw data storage, file 

conversion, and indexing. 

Aligning sequencing reads to a reference genome or transcriptome poses another major 

computational hurdle. Because eukaryotic genes contain introns that are spliced out in 

the mature transcript, RNA-seq reads often span exon-exon junctions. Splice-aware 

aligners such as STAR and HISAT2 are necessary, but configuring them to balance 

speed, accuracy, and memory use can be difficult. Further complications arise in 

repetitive genomic regions or for genes with high sequence similarity (e.g., paralogs), 

where misalignment may occur. 

In transcriptome assembly, reconstructing full-length transcripts from short reads is 

computationally intensive and error-prone. This is especially true for lowly expressed 

transcripts or genes with multiple isoforms, where read coverage may be sparse or 

ambiguous. 
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3. Statistical and Analytical Challenges 

A central aim of RNA-seq analysis is to identify differentially expressed genes 

between conditions. However, the raw counts generated from read mapping are not 

immediately suitable for comparison. They must be normalized to account for 

differences in sequencing depth and RNA composition. Choosing the appropriate 

normalization method is non-trivial. Common methods include Transcripts Per Million 

(TPM), Trimmed Mean of M-values (TMM), and DESeq2’s size factor normalization. 

Each method has strengths and assumptions that may or may not hold in a given 

dataset. 

Low-abundance genes present another challenge. These genes often exhibit high 

variability and low signal-to-noise ratios, making it difficult to determine whether 

observed differences are biologically meaningful or due to sampling noise. 

Moreover, differential expression testing involves thousands of statistical tests, one for 

each gene. This creates a multiple testing problem that must be addressed using False 

Discovery Rate (FDR) correction. While this reduces false positives, it can also reduce 

statistical power, particularly for datasets with small sample sizes. 

 

4. Interpretation Challenges 

Once differentially expressed genes are identified, interpreting their biological 

significance can be difficult. Functional annotation databases like Gene Ontology 

(GO) and KEGG are commonly used for enrichment analysis, but these databases may 

be incomplete or outdated, especially for non-model organisms. Furthermore, gene 

function is often context-dependent and may not be well captured by generic 

annotations. [8] 

Another layer of complexity arises at the transcript or isoform level. Most RNA-seq 

pipelines aggregate read counts at the gene level, potentially masking significant 

changes in isoform usage or alternative splicing. Tools exist for isoform-level analysis, 

but they are more computationally intensive and require deeper sequencing to ensure 

sufficient coverage. 

In single-cell RNA-seq, additional interpretation challenges emerge. Technical noise, 

dropouts (false zero counts), and cell-to-cell variability make it difficult to distinguish 

technical artifacts from true biological differences.[9] 

 

5. Reproducibility and Standardization 

Despite the maturity of RNA-seq as a technology, reproducibility remains a major 

concern. Different research groups often use different software tools, parameter 

settings, and reference annotations. These discrepancies can lead to substantial 

variation in results. There is also a lack of universally accepted standard pipelines, 
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although initiatives like nf-core and guidelines from the ENCODE consortium aim to 

address this. 

Proper documentation of methods, software versions, and metadata is essential for 

reproducibility, but is frequently overlooked. Inconsistent or incomplete metadata can 

make it impossible to replicate analyses or compare results across studies. 

 

6. Integration and Scalability 

As biological research becomes increasingly multi-omics in nature, RNA-seq data is 

often integrated with other data types, such as proteomics, epigenomics, or 

metabolomics. This integration requires compatible data formats, normalization 

strategies, and statistical models, which can be difficult to harmonize. 

Furthermore, the volume of RNA-seq data continues to grow, especially in population-

scale studies or large single-cell projects. Traditional analysis pipelines may not scale 

well under such loads. Workflow managers like Nextflow and Snakemake enable 

automation and parallelization, but they require advanced computational skills to 

implement and maintain. 

 

7. Validation and Biological Relevance 

A final and often overlooked challenge is experimental validation. While RNA-seq can 

generate hypotheses about gene expression and regulatory mechanisms, these must be 

validated through laboratory experiments such as qRT-PCR, western blotting, or 

functional assays. Without validation, RNA-seq results risk being viewed as 

exploratory rather than definitive. 

Moreover, the translation of RNA-seq findings into clinically actionable insights 

remains a complex process. It involves not only technical validation, but also 

regulatory approvals, standardization across platforms, and demonstration of 

reproducibility and predictive power in independent cohorts. 

 

2.2 Existing Pipelines 

   

Over the past decade, RNA sequencing (RNA-seq) has become central to 

transcriptomic research, powering investigations in disease biology, developmental 

genomics, and biomarker discovery. This widespread use has catalyzed the 

development of several RNA-seq pipelines, each aiming to simplify and standardize 

the complex analytical steps required—from read processing and alignment to 

statistical modeling and biological interpretation. However, existing tools differ 
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significantly in terms of flexibility, downstream depth, user accessibility, and 

integration with emerging technologies such as machine learning and AI-driven 

interpretability. In this landscape, LYNX-RNA offers a comprehensive and modular 

solution that addresses many of the limitations inherent in prior workflows. 

For instance, VIPER[27] is a Snakemake-based pipeline that supports differential 

expression and immune infiltration analysis, and is compliant with nf-core standards. 

However, it lacks support for machine learning–driven biomarker prioritization or 

natural language report generation. Similarly, miARma-Seq [43] focuses on multi-

species compatibility and supports miRNA and circRNA studies, yet it is not designed 

for full-scale transcriptome interpretation or integration with predictive models. The 

TRAPLINE[44] pipeline, while embedded in the Galaxy platform for GUI 

accessibility, suffers from reduced adaptability due to Galaxy’s framework constraints 

and lacks co-expression network support. RNASeqR is a six-step R-based workflow 

that simplifies command-line integration for biologists, but it is limited to basic DEG 

and GO/KEGG analyses and is not modular enough for advanced custom workflows. 

RNAdetector, a GUI-based platform offering cloud and Docker support, excels in 

accessibility but falls short on flexibility, lacking support for co-expression, immune 

profiling, or classification tasks. The nf-core initiative defines a community-curated 

standard for bioinformatics pipelines using Nextflow. Pipelines like nf-core/rnaseq support 

STAR, Salmon, featureCounts, and MultiQC, offering broad compatibility and continuous 

integration for reproducibility. While nf-core/rnaseq excels in standardization, its 

functionality largely ends at quantification and QC. It does not integrate ML, network 

analysis, immune profiling, or interpretive summarization, requiring manual 

downstream scripting for biological insight. LYNX-RNA follows nf-core best 

practices for reproducibility, containerization, and version control, but extends the 

framework with systems biology modules, ML-based biomarker analysis, and natural 

language output, making it more holistic and translationally oriented. In contrast, 

LYNX-RNA is designed to address these shortcomings through a fully containerized, 

Nextflow-based modular pipeline that integrates all core RNA-seq steps with 

extensive downstream analytics. It supports quality control (FastQC, MultiQC), 

alignment (STAR, HISAT2), quantification (Salmon, featureCounts), and differential 

expression (DESeq2), alongside advanced tools for WGCNA-based co-expression 

network construction, PPI-based hub gene analysis via STRING and Cytoscape, and 

immune cell infiltration analysis using ssGSEA and GSVA. Notably, LYNX-RNA also 

incorporates a dedicated machine learning module, offering Random Forest and 

XGBoost classifiers with ROC-AUC, feature importance, and cross-validation 

capabilities, enabling robust biomarker discovery that extends beyond DEG thresholds 

alone. [45], [17] 

What sets LYNX-RNA apart from all previously reported pipelines is its integration 

with a Large Language Model (LLM), which automates the generation of natural-

language summaries of the analytical results. This makes outputs interpretable by non-

bioinformaticians—particularly clinicians or experimentalists—facilitating direct 

translation of data into insight. Moreover, LYNX-RNA is tested on longitudinal RNA-
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seq data from immune thrombocytopenia (ITP) patients across four timepoints 

(control, pre-treatment, 1 week, 1 month post-treatment), demonstrating its strength in 

multi-condition, time-sensitive transcriptomic profiling—an application rarely 

supported by other pipelines, which typically assume simple binary designs. 

Finally, the visual output of LYNX-RNA—ranging from PCA plots and volcano plots 

to heatmaps and ML-based feature rankings—follows a “glance-and-drill-down” 

design philosophy, enabling users to rapidly understand global patterns while retaining 

access to detailed statistical data. The pipeline is deployable on local, HPC, and cloud 

platforms using Conda or Docker, and its modular design ensures full reproducibility 

and extensibility. In sum, LYNX-RNA delivers a next-generation RNA-seq analysis 

platform that not only streamlines the analytical process but also elevates 

interpretation, scalability, and clinical relevance—surpassing many of the design and 

usability barriers that persist in current RNA-seq pipelines. 

RNA sequencing (RNA-seq) data analysis pipelines typically consist of modular 

stages: quality control, alignment, quantification, differential expression, functional 

enrichment, and optionally, network analysis, immune profiling, or machine learning-

based prioritization. This section compares LYNX-RNA’s toolset to other widely used 

alternatives in the field. 

1. Quality Control and Preprocessing 

 

1) FastQC 

One of the most widely used tools for initial read quality assessment. Reports per-base 

quality, adapter content, GC distribution, and overrepresented sequences.[17] 

Limitations: Output is static (HTML-based), and it does not modify reads. 

2) Fastp 

Performs both quality trimming and filtering, as well as read correction, adapter 

removal, and UMI handling. 

Offers detailed JSON/HTML summaries and supports both single- and paired-end 

reads.[17] 

Advantages: Faster and more feature-rich than older tools like Trimmomatic. 

 3) Trimmomatic / Cutadapt 

Trimmomatic is highly customizable but lacks modern reporting features. 

Cutadapt is popular for adapter trimming but does not perform full QC. 

Comparison: fastp (used in LYNX-RNA) is faster than Trimmomatic and more 

comprehensive than Cutadapt, making it suitable for scalable, automated workflows. 
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4) MultiQC 

Aggregates reports from tools like FastQC, STAR, and Salmon into a single HTML 

dashboard.[17] 

Used in LYNX-RNA to provide unified QC visibility across all samples. 

 

2. Read Alignment Tools 

1) STAR 

Ultrafast aligner with high sensitivity for splice junctions; widely used in genome-

wide transcriptomics. 

Limitation: High memory usage (~30–40 GB). 

2) HISAT2 

Memory-efficient and graph-aware aligner. Performs well on large and complex 

genomes. 

Comparison: LYNX-RNA supports both STAR and HISAT2, giving users flexibility 

based on system resources and study type. 

3) TopHat2 

Formerly a standard RNA-seq aligner, now deprecated and replaced by HISAT2. 

Obsolete in modern pipelines due to poor performance and lack of updates.[17] 

 

3. Quantification Tools 

1) Salmon 

Provides fast and accurate transcript-level quantification without full alignment. 

Supports GC-bias correction and bootstrapping. 

Used in LYNX-RNA for fast, bias-aware transcript abundance estimation. 

2) Kallisto 

Similar to Salmon, also uses pseudoalignment. Slightly faster but lacks as many built-

in bias corrections. 

3) featureCounts 

Gene-level read assignment tool from the Subread package. Robust and widely used 

for input into DESeq2 or edgeR. 

4) HTSeq-count 
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Python-based read-counting tool. Slower than featureCounts and less scalable for large 

datasets. 

5) RSEM 

Alignment-based quantifier with support for isoform-level estimation. Used by VIPER 

and nf-core but slower than Salmon/Kallisto.[17] 

 

4. Differential Expression Tools 

1) DESeq2 

Negative binomial model–based method. Performs well in datasets with biological 

replicates. 

Integrates shrinkage estimation for fold changes and dispersion. 

2) edgeR 

Particularly effective with small sample sizes. Supports generalized linear models and 

complex designs. 

3) limma-voom 

Transforms count data to log-counts per million and models them using linear models. 

Less suited for low-count genes but effective for microarray-like designs. 

 Comparison: LYNX-RNA uses DESeq2 as default due to its balance between stability, 

scalability, and community adoption, with optional support for edgeR. 

 

5. Co-expression and Network Analysis 

1) WGCNA 

The gold standard for co-expression module detection. Used to identify biologically 

relevant gene modules correlated with traits or timepoints. 

Integrated in LYNX-RNA to support systems-level discovery. 

 

 

2) CEMiTool 

An alternative to WGCNA with automatic parameter selection and built-in enrichment 

analysis. 

3) STRING + Cytoscape 
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For visualizing protein–protein interaction networks and identifying hub genes based 

on node centrality. 

 Comparison: While most pipelines stop at DEGs, LYNX-RNA incorporates network 

biology modules for hub gene prioritization, enabling deeper biological 

interpretation.[17] 

 

6. Functional Enrichment Tools 

1)clusterProfiler 

Widely used R package for GO and KEGG enrichment. Supports visualizations like 

dotplots, cnetplots, and ridge plots. 

2) g:Profiler 

Web and API-accessible tool for enrichment with excellent multi-organism support 

and compatibility with Ensembl IDs. 

3) DAVID / Enrichr 

Popular web-based platforms. Easy to use but limited in batch automation and 

reproducibility. 

Comparison: LYNX-RNA automates enrichment via clusterProfiler and g:Profiler, 

offering scalable and reproducible outputs with integration into downstream plots. 

 

7. Immune Profiling and Pathway Analysis 

1) ssGSEA / GSVA 

Tools to compute per-sample pathway activity scores from gene sets (e.g., immune cell 

signatures from MSigDB). 

Integrated into LYNX-RNA for immune cell estimation and correlation with hub gene 

expression. 

2) CIBERSORT / xCell 

Web-based or R-based tools to infer immune cell composition. CIBERSORT uses 

support vector regression; xCell applies a spillover correction model. 

 Comparison: LYNX-RNA uses ssGSEA + GSVA for flexible, sample-wise scoring 

and plans to integrate xCell/CIBERSORT in future versions. 
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8. Machine Learning and Automated Interpretation 

1) Random Forest / XGBoost 

Integrated into LYNX-RNA for supervised learning and gene ranking. Users can view 

confusion matrices, ROC-AUC, and feature importance scores. 

2) LLM Integration 

LYNX-RNA is the first RNA-seq pipeline to incorporate GPT-based summarization, 

producing natural-language outputs that describe DEGs, pathways, classifier results, 

and immune profiles. 

Comparison: No existing pipeline (VIPER, nf-core, DEWE, TRAPLINE, RNASeqR) 

offers this level of automated, clinician-friendly interpretation. 

 

2.3 Nextflow as a Workflow Manager 

 

Nextflow is a domain-specific language (DSL) specifically designed for building 

scalable and reproducible data analysis workflows. It is particularly suited for 

bioinformatics applications due to its ability to streamline the integration of 

heterogeneous tools, manage software dependencies, and orchestrate execution across 

various computational platforms—from personal computers to high-performance 

computing (HPC) clusters and cloud environments. 

In the context of LYNX-RNA, Nextflow’s DSL2 framework was utilized to design 

modular and encapsulated workflow components. Each analytical stage—such as 

quality control, quantification, differential expression, co-expression network 

construction, and neoepitope prediction—was implemented as an independent 

module. This modularity promotes reusability, simplifies debugging, and allows 

parallel execution of independent tasks, thereby improving computational efficiency. 

One of Nextflow’s key strengths is its seamless compatibility with software 

environment managers like Conda and container technologies such as Docker and 

Singularity. This ensures that all dependencies are explicitly defined and portable, 

enabling users to reproduce results regardless of their system configurations. 

Furthermore, the channel-based data flow model in Nextflow facilitates intuitive data 

movement and parallelism between workflow steps. This model abstracts away the 

complexity of file handling and intermediate data storage, allowing researchers to 

focus on experimental logic rather than low-level scripting. 

LYNX-RNA leverages these capabilities to deliver a reproducible, flexible, and user-

friendly RNA-seq analysis pipeline that can be deployed both locally and in HPC 

environments. With its scalability and reproducibility, Nextflow serves as the 
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backbone of the LYNX-RNA infrastructure, making it an ideal choice for modern 

bioinformatics pipeline development. 

In Nextflow, a workflow is a function that is specialized for composing processes and 

dataflow logic (i.e. channels and operators). 

 

2.3.1 Workflow construction 

 

 

1.Input and Configuration 

Files Required: 

• Paired-end FASTQ files (*_R1.fastq.gz, *_R2.fastq.gz) 

• Sample sheet (samplesheet.csv) 

• Reference genome (FASTA + GTF) 

• Configuration files (YAML/JSON for paths, environment, and parameters) 

 

 

 

 

 

 

 

 

 

 

params.reads = "data/fastq/*_{R1,R2}.fastq.gz" 

params.genome_fasta = "ref/genome.fa" 

params.annotation_gtf = "ref/annotation.gtf" 

params.outdir = "results/" 
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2. Quality Control (FastQC & MultiQC) 

Tool: FastQC 

 Purpose: Assess raw read quality, GC content, duplication rate. 

Follow-up: MultiQC for consolidated reports. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

process QC { 

  input: 

    file(reads) from file(params.reads) 

  output: 

    file("*.html") into qc_reports 

  script: 

    """ 

    fastqc $reads -o ./qc/ 

    """ 

} 
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3. Trimming (TrimGalore / fastp) 

Purpose: Remove adapters and low-quality bases. 

Tool: TrimGalore or fastp (user configurable) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

process Trimming { 

  input: 

    tuple val(sample_id), file(reads) from read_pairs 

  output: 

    tuple val(sample_id), file("*.fq.gz") into trimmed_reads 

  script: 

    """ 

    trim_galore --paired ${reads[0]} ${reads[1]} -o trimmed/ 

    """ 

} 



21 
 

4. Alignment (STAR / HISAT2) 

• Purpose: Map clean reads to reference genome. 

• Tool: STAR (default), HISAT2 (optional) 

 

 

 

 

 

 

 

 

 

 

 

 

process Alignment { 

  input: 

    tuple val(sample_id), file(reads) from trimmed_reads 

  output: 

    tuple val(sample_id), file("*.bam") into aligned_bams 

  script: 

    """ 

    STAR --genomeDir star_index \ 

         --readFilesIn ${reads[0]} ${reads[1]} \ 

         --readFilesCommand zcat \ 

         --outSAMtype BAM SortedByCoordinate \ 

         --outFileNamePrefix $sample_id. 

    """ 

} 
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5. Gene-level Quantification (featureCounts / Salmon) 

Tool: featureCounts (for BAM), optionally Salmon (quasi-mapping) 

Output: Gene count matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

process Quantification { 

  input: 

    tuple val(sample_id), file(bam) from aligned_bams 

  output: 

    file("counts.txt") into gene_counts 

  script: 

    """ 

    featureCounts -a ${params.annotation_gtf} -o counts.txt -T 4 -p -B $bam 

    """ 

} 
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6. Normalization and Differential Expression (DESeq2) 

Tool: DESeq2 in R 

Output: Normalized counts, DEGs, PCA plot, volcano plot 

 

 

(R script) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dds <- DESeqDataSetFromMatrix(countData = counts, 

                              colData = coldata, 

                              design = ~ condition) 

dds <- DESeq(dds) 

res <- results(dds) 

write.csv(as.data.frame(res), file="DEGs.csv") 
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7. Functional Enrichment (GO/KEGG) 

 

Tool: clusterProfiler / enrichR 

Input: DEGs 

Output: GO and KEGG enrichment tables + plots 

 

 

 

 

 

 

 

 

import gseapy as gp 

import pandas as pd 

 

# Load your DEG list 

degs = pd.read_csv("DEGs.csv") 

genes = degs['gene'].dropna().tolist() 

 

# Perform GO Biological Process enrichment 

enr = gp.enrichr(gene_list=genes, 

                 gene_sets='GO_Biological_Process_2021', 

                 organism='Human', 

                 description='GO_BP', 

                 outdir='go_results', 

                 cutoff=0.05) 

 

# Results 

enriched_df = enr.results 

enriched_df.to_csv("GO_BP_enrichment.csv", index=False) 
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8. Network Construction (WGCNA + Cytoscape) 

Tool: WGCNA for gene co-expression modules   

Export: Network file for Cytoscape 

import pandas as pd 

import numpy as np 

from scipy.cluster.hierarchy import linkage, fcluster, dendrogram 

from sklearn.preprocessing import StandardScaler 

import seaborn as sns 

import matplotlib.pyplot as plt 

# Load normalized expression data (genes as rows) 

datExpr = pd.read_csv("normalized_counts.csv", index_col=0) 

# Optional: transpose if genes are in columns 

datExpr = datExpr.T 

# Standardize data 

scaler = StandardScaler() 

dat_scaled = scaler.fit_transform(datExpr) 

# Compute correlation matrix 

cor_matrix = np.corrcoef(dat_scaled.T) 

# Compute dissimilarity (1 - correlation) 

dissimilarity = 1 - cor_matrix 

# Hierarchical clustering 

linkage_matrix = linkage(dissimilarity, method='average') 

# Plot dendrogram 

plt.figure(figsize=(10, 6)) 

dendrogram(linkage_matrix, labels=datExpr.columns) 

plt.title("Gene Co-expression Dendrogram") 

plt.show() 

# Assign modules (clusters) 

module_labels = fcluster(linkage_matrix, t=1.15, criterion='distance') 

modules = pd.DataFrame({'Gene': datExpr.columns, 'Module': module_labels}) 

modules.to_csv("gene_modules.csv", index=False) 
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9. Visualization and Reporting (MultiQC + Plots) 

 

 

Purpose: Generate integrated HTML report 

Tool: MultiQC + R plots (PCA, volcano, heatmap) 

 

 

 

 

 

2.3.2 Environment Management 

 

 

1.Use Conda or Docker/Singularity to ensure reproducibility: 

 

 

 

 

2. Singularity 

 

 

 

 

multiqc ./ -o results/multiqc/ 

nextflow run lynx-rna.nf -profile conda 

nextflow run lynx-rna.nf -profile singularity 
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2.3.3 Output Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

results/ 

├── qc/ 

├── trimmed/ 

├── alignment/ 

├── counts/ 

├── degs/ 

├── enrichment/ 

├── networks/ 

└── multiqc_report.html 
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2.4 Statistical Foundations from RNA-seq 

The statistical foundations underpinning RNA-seq analysis are essential for 

transforming raw sequence data into biologically meaningful insights. This section 

outlines the end-to-end statistical workflow used in LYNX-RNA, detailing the 

mathematical models, algorithms, and interpretation techniques employed in the 

analysis of longitudinal RNA-seq data from Immune Thrombocytopenia (ITP) patients 

across three treatment stages. 

2.4.1 Quality Assessment and Preprocessing 

RNA-seq analysis begins with raw sequencing reads in FASTQ or FASTQ.GZ format, 

which include both nucleotide sequences and associated Phred quality scores. Each 

base call is assigned a probability PPP of being incorrect, with the corresponding Phred 

score computed as: 

Q = −10log10(P) 

Higher Q values reflect higher confidence in the base call. Tools like FastQC and fastp 

are used to generate summary metrics such as per-base quality, GC content, sequence 

length distribution, and adapter contamination. Statistical assessments at this stage 

may include Chi-square goodness-of-fit tests to evaluate deviations in nucleotide 

distribution from the expected 25% uniform base frequency in un-biased libraries. 

Removal of low-quality bases and adapter sequences is critical to minimize 

downstream alignment errors and improve quantification accuracy. 

 

2.4.2 Alignment and Mapping Quality 

Cleaned reads are aligned to a reference genome (e.g., GRCh38) using splice-aware 

aligners such as STAR or HISAT2, which implement dynamic programming 

algorithms and scoring matrices that reward matches and penalize mismatches, 

insertions, deletions, and splicing junctions. The Mapping Quality Score (MAPQ) is 

used to quantify confidence in the alignment: 

MAPQ = −10log10(P) 

where PPP is the probability that the alignment is incorrect. Aligners may use Bayesian 

probability models or maximum-likelihood estimations to compute these scores. 

Aligned reads are stored in SAM/BAM files and subsequently indexed. Tools like 

Samtools or Qualimap provide statistical summaries of alignment quality, including 

mapping percentage, read depth distribution, and coverage bias. 

 

2.4.3 Transcript Quantification and Normalization 

Once aligned, reads must be assigned to genomic features (genes or transcripts) for 

quantification. Two main approaches exist: 
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• Alignment-based: Tools like featureCounts assign reads to features in GTF 

files based on overlapping coordinates. 

• Alignment-free (pseudoalignment): Tools like Salmon use a k-mer based 

Expectation-Maximization (EM) algorithm for rapid transcript quantification. 

Salmon corrects for GC bias, sequence-specific bias, and positional bias, improving 

transcript-level expression estimation. 

To enable inter-sample comparison, expression values are normalized. A common 

normalization unit is Transcripts Per Million (TPM), calculated as: 

 

 

Where  is the number of reads mapping to transcript i  , and Li is its effective 

length. 

 

2.4.4 Statistical Modelling for Differential Expression 

The central goal of many RNA-seq experiments is to identify genes with statistically 

significant differences in expression between experimental groups. DESeq2 is a 

widely used R package that models raw count data using a negative binomial 

distribution, which captures both mean-variance dependence and biological 

variability: 

 

Wald tests or likelihood ratio tests are used to assess the null hypothesis  

 

Significance is corrected using the Benjamini-Hochberg procedure to control the false 

discovery rate (FDR). 
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2.4.5 Functional Enrichment and Gene Ontology Analysis 

Identified DEGs are functionally annotated using enrichment analysis, which 

determines whether certain biological processes, pathways, or cellular components are 

overrepresented among DEGs. Tools such as clusterProfiler, enrichR, and DAVID 

apply the hypergeometric test: 

 

Pathway enrichment is extended using tools like GSEA (Gene Set Enrichment 

Analysis), which ranks all genes by fold-change and computes an enrichment score 

(ES) for predefined gene sets. The ES is normalized to account for gene set size, 

producing a normalized enrichment score (NES) with significance determined by 

permutation testing. 

 

2.4.6 Network and Module-Based Analysis 

In LYNX-RNA, additional statistical modeling is applied through WGCNA (Weighted 

Gene Co-expression Network Analysis). WGCNA constructs a scale-free network by 

calculating pairwise gene correlations and clustering them into modules based on 

topological overlap. Module eigengenes are correlated with clinical traits using 

Pearson correlation, and hub genes are identified via centrality measures in STRING-

based PPI networks. 

 

2.4.7 Immune Profiling and Sample-Level Scoring 

Using ssGSEA and GSVA, per-sample enrichment scores are calculated for immune 

cell type signatures and metabolic pathways. These tools implement non-parametric, 

rank-based methods to score the degree of enrichment for each gene set in individual 

samples, enabling immune microenvironment inference and immune-metabolic 

correlation with treatment response. 
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2.4.8 Machine Learning for Predictive Feature Ranking 

For biomarker identification, LYNX-RNA integrates machine learning models 

including Random Forest and XGBoost. These models use gene expression matrices 

as input features and sample labels (e.g., Control, Pre, Week, Month) as classification 

targets. [25] 

 

Model performance is evaluated using: 

• Accuracy, Precision, Recall, F1-score 

• ROC-AUC (Receiver Operating Characteristic – Area Under Curve) 

• Cross-validation metrics (e.g., 5-fold stratified CV) 

Feature importance scores are extracted to rank predictive biomarkers, adding a layer 

of statistical prioritization beyond DEG thresholds. 
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CHAPTER – 3 

METHODOLOGY – PIPELINE DESIGN 

 

 

3.1 Development Environment 

3.1.1 Workflow Orchestration with Nextflow 

1. Modularity: Each step in the RNA-seq workflow (e.g., trimming, mapping, 

quantification) is implemented as an independent process, allowing for 

selective re-execution. 

2. Portability: Nextflow pipelines are platform-agnostic and can run seamlessly 

on local machines, cloud services (AWS, GCP), or HPC clusters. 

3. Container Support: Each module runs inside its own isolated container 

(Docker/Singularity), ensuring full reproducibility regardless of the 

underlying OS or library dependencies. 

4. Resource Management: Memory, CPU, and storage requirements can be 

defined per process, enabling efficient resource utilization even in low-RAM 

(≤24GB) environments. 

Profile-based Configuration: Custom execution profiles (local, colab, docker, hpc) 

allow the same codebase to be deployed across environments with no manual edits. 

3.1.2 Programming Environment and Toolchain 

1. LYNX-RNA was implemented using a hybrid programming approach 

leveraging the strengths of Python and R, both of which play critical roles in 

the pipeline. 

2. Python (v3.10) 

3. Python is responsible for: 

4. Preprocessing Automation: Orchestration of trimming, QC, and mapping 

processes using subprocess, os, and pathlib. 

5. Machine Learning Models: 

a. Random Forest and XGBoost classifiers were implemented using 

scikit-learn and xgboost for identifying predictive biomarkers based 

on normalized gene expression. 

b. Cross-validation strategies (e.g., LOOCV, stratified k-fold) were 

integrated to ensure generalizable performance. 
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6. CLI Wrapper: A user-friendly command-line interface was built in Python 

to abstract complex command sequences. It includes: 

a. Automatic detection of file formats and directories 

b. Interactive prompts and parameter validation 

c. Real-time progress tracking and error logging 

 

7. LLM Report Generation: A custom module connects to the OpenAI API, 

using GPT-4 to generate human-readable interpretations of pipeline results. 

This provides domain-agnostic users with clear summaries of key findings, 

charts, and statistical conclusions. 

 

8. R (v4.2.2) 

 

9. R complements Python for the statistical and biological interpretation of 

RNA-seq data: 

Differential Expression Analysis: Conducted using the DESeq2 package 

with support for multi-factor designs, batch correction, and shrinkage 

estimation. 

Network Analysis: The WGCNA package was used to identify gene modules 

and hub genes based on expression co-variation. 

Functional Enrichment: The pipeline supports GO/KEGG enrichment via 

ClusterProfiler, ReactomePA, and enrichplot. For PPI analysis, STRINGdb 

was used to query the STRING database and visualize networks. 

Immune Profiling: GSVA and ssGSEA were used for immune cell signature 

profiling, providing insight into cell-type infiltration and immune modulation. 

Visualization: High-resolution plots were generated using ggplot2, 

EnhancedVolcano, pheatmap, and ComplexHeatmap 
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3.2  Architecture of LYNX-RNA 

 

 

 

Fig 3.1 Workflow of LYNX-RNA rna-seq pipeline 
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LYNX-RNA is organized into five primary stages, each composed of modular 

processes that can be individually configured, reused, or replaced depending on the 

research goal:[22] 

Stage 1: Preprocessing and Quality Control. Raw FASTQ files (single-end or paired-

end) are subjected to initial quality control using FastQC (v0.11.9) and read trimming 

with fastp (v0.23.2) to remove low-quality bases and adapters. UMI-tools (v1.1.2) is 

optionally employed for unique molecular identifier (UMI) extraction in UMI-based 

library protocols. Contaminant filtering and rRNA depletion are handled using 

SortMeRNA and BBsplit. These steps ensure high-quality, deduplicated, and cleaned 

reads for downstream analysis. [23] 

Stage 2: Alignment and Quantification. Reads are aligned to the human reference 

genome (GRCh38) using STAR (v2.7.10a) or HISAT2 (v2.2.1). For quantification, 

transcript-level abundances are estimated using Salmon (v1.10.1) in quasi-alignment 

mode. Optionally, featureCounts (via Subread) is used to produce gene-level count 

matrices for downstream analysis. All aligned BAM files are indexed and sorted using 

SAMtools (v1.15), with optional duplication marking by Picard Tools. [24] 

Stage 3: Differential Expression and Functional Analysis. Gene-level count matrices 

are imported into R (v4.3.1) for statistical analysis using DESeq2 (v1.40.2). 

Differential expression is computed across defined comparisons (e.g., Control vs Pre, 

Control vs 1 Week, Control vs 1 Month). Genes with an adjusted p-value (FDR) < 

0.05 and |log₂ fold change| ≥ 1 are considered significant. Functional enrichment 

analysis is performed using clusterProfiler and g:Profiler to identify overrepresented 

Gene Ontology (GO) terms and KEGG pathways.[25] 

 Stage 4: Co-expression Network and Hub Gene Identification. Weighted Gene Co-

expression Network Analysis (WGCNA) is implemented to identify co-expressed 

gene modules associated with clinical stages. A scale-free network is constructed with 

soft-threshold power β = 5 and scale-free topology fit R² > 0.95. Modules are defined 

by topological overlap and merged if eigengene correlation > 0.75. Module–trait 

relationships are evaluated using Pearson correlation. Genes from significant modules 

are used to build a protein–protein interaction (PPI) network via the STRING database 

API, and Cytoscape is used for visualization. Hub genes are identified based on node 

degree centrality. [26] 

Stage 5: Machine Learning-Based Biomarker Discovery. Normalized expression 

matrices (e.g., TPM or variance-stabilized counts) are exported for supervised machine 

learning in Python (v3.11). Feature selection and classification are performed using 

Random Forest and XGBoost algorithms. The dataset is stratified into training and test 

sets (typically a 70/30 split), and model performance is evaluated using metrics 

including accuracy, F1-score, and ROC-AUC. Genes are ranked based on feature 

importance scores, and top-ranked genes are further analyzed for biological 

relevance.[39]  

Stage 6: Pathway and Immune Enrichment Analysis. Gene Set Enrichment Analysis 

(GSEA) and single-sample GSEA (ssGSEA) are performed using the GSVA R 
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package with curated gene sets (e.g., c2.cp.kegg.v7.5.1 and c7.immunesigdb.v7.5.1 

from MSigDB). Pathway activity scores are calculated for each sample, and 

immune/metabolic enrichment patterns are visualized using violin plots, ridge plots, 

and heatmaps. Correlation analysis is used to link hub gene expression with 

enrichment scores.[40] 

 Stage 7: Immune Cell Infiltration Profiling. To assess immune microenvironment 

dynamics, ssGSEA-based immune infiltration analysis is performed using predefined 

immune gene sets (e.g., LM22). Relative infiltration scores for T cells, NK cells, B 

cells, macrophages, and dendritic cells are calculated. Comparisons are made between 

ITP and control groups, and correlation analysis links hub gene expression to specific 

immune cell types. Outputs include violin plots, bar charts, and correlation 

matrices.[41] 

Stage 8: Large Language Model (LLM)-Driven Report Generation. To enhance 

interpretability, LYNX-RNA integrates a Large Language Model (LLM) interface 

(OpenAI API, GPT-based) that automatically generates structured, natural-language 

summaries of key results. Summaries include DEG highlights, pathway 

interpretations, classifier performance narratives, and conclusions tailored to clinicians 

or non-specialist researchers. This AI-assisted reporting bridges the gap between 

computational outputs and biological insight.[42] 

 Execution and Environment LYNX-RNA is orchestrated using Nextflow (v22.10.1), 

enabling scalable execution across local machines, HPC clusters, and cloud platforms 

(e.g., AWS Batch). All tools are managed via Conda environments or Docker 

containers, ensuring reproducibility. The pipeline accepts configuration through 

YAML files and supports parallelization across multiple samples and processes. 

3.3 Quality Control & Preprocessing 

3.3.1 Check quality with FastQC- 

The main functions of FastQC are- 

1. Import of data from BAM, SAM or FastQ files (any variant) 

2. Providing a quick overview to tell you in which areas there may be problems 

3. Summary graphs and tables to quickly assess your data 

4. Export of results to an HTML based permanent report 

5. Offline operation to allow automated generation of reports without running the 

interactive application. [30] 

Run FastQC to check the raw data quality. 

 

 
 

 

fastqc sample_01.fastq.gz --extract -o /path/to/output_folder 
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The output contains graphs and statistics about the raw quality, including quality scores, GC 

content, adapter percentage, and more. Below are two examples of the output files.[1] 

 

Fig.3.2 Per base sequence quality. Quality scores for each base position in the read are 

represented as box plots. The blue line represents the average quality score. High-

quality data will typically have over 80% of bases with a quality score of 30 or higher 

(i.e., Q30 > 80%). Q30 represents 99.9% accuracy in the base call, or an error rate of 

1 in 1000. A dip in quality is expected towards the end of the read. 
 

 

 

Fig.3.3 Adapter content. Percentage of reads that match the Illumina adapter 

sequence (red) is plotted for each base position. Since standard library preparations 

capture a range of insert sizes, some sequenced fragments will be shorter than the 

read length (<150 bp in this case). 

 
 

3.3.2 Trim reads with Trimmomatic 

Poor-quality regions and adapter sequences should be trimmed from the reads before 

further analysis. Since Trimmomatic has an executable JAR file, you’ll need to use 

Java to execute it rather than doing so directly in the command line.[30] 
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Fig.3.4 Per base sequence quality after trimming. Notice the improvement at the end 

of the read, compared to the raw data above. All box plots are within the high-quality 

(green) zone. 

 

Fig.3.5 Adapter content after trimming. Adapter sequences have been completely 

removed from the reads, as expected 

 

java -jar trimmomatic-0.39.jar PE input_forward.fastq.gz input_reverse.fastq.gz 

output_forward_paired.fastq.gz output_forward_unpaired.fastq.gz 

output_reverse_paired.fastq.gz output_reverse_unpaired.fastq.gz ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 MINLEN:36 
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3.4 Transcript Quantification 

3.4.1 STAR aligner 

 
Basic STAR workflow consists of 2 steps- 

1. Genome Index Generation-Prior to read alignment, STAR requires the 

creation of genome index files, which are derived from user-supplied 

reference genome sequences (FASTA) and corresponding gene 

annotation files (GTF/GFF). These index files serve as an optimized 

reference data structure, enabling rapid alignment of RNA-seq reads in 

subsequent steps.The index generation step is computationally 

intensive and typically needs to be performed only once per genome 

version (e.g., GRCh38/hg38). The resulting index files are stored 

locally and reused across multiple experiments, provided that the 

genome and annotation combination remains the same. 
2. Read Mapping to the Reference Genome—Once the genome index 

is generated, STAR performs the alignment of RNA-seq reads (in 

FASTQ format) to the indexed genome. This mapping process is 

optimized for both speed and sensitivity, particularly for detecting 

splice junctions in eukaryotic transcripts.[31],[13] 

 

 During this phase, STAR accepts the following as inputs: 

1) Indexed genome files from Step 1 

2) Trimmed RNA-seq reads (FASTQ) 

3) Alignment parameters specified by the user or pipeline configuration 

 

STAR outputs a comprehensive set of files, including: 

1) Alignment files in SAM or BAM format 

2) Mapping summary statistics, such as uniquely mapped reads, multi-mapped 

reads, and mismatch rates 

3) Splice junction annotation files (useful for novel transcript discovery) 

4) Unmapped read logs for troubleshooting and downstream analysis 

5) Wiggle (WIG) or BigWig files for signal track visualization in genome 

browsers 
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3.4.2  Generating genome indexes 

 

Before RNA-seq reads can be mapped to a reference genome, STAR requires the 

creation of genome index files. These indexes are pre-computed data structures that 

allow STAR to rapidly align sequencing reads to the genome while preserving high 

sensitivity to spliced alignments.Genome index generation is performed only once for 

each reference genome and annotation combination and should be repeated only when 

updated genome assemblies or gene annotations are introduced. The process uses a set 

of core command-line options described below.[32],[13] 

 

Parameter Descriptions: 

1. --runThreadN 

 Specifies the number of CPU threads to use for index generation. This 

should be set based on the number of cores available on the machine (e.g., 8, 

16, 32). 

 
2. --runMode genomeGenerate 

 Instructs STAR to run in genome indexing mode instead of alignment mode. 

 
3. --genomeDir 

 Indicates the output directory where the generated genome index files will be 

stored. This directory must be created before execution (using mkdir) and 

should have sufficient write permissions. For mammalian genomes, at least 

100 GB of free disk space is recommended. 

 
4. --genomeFastaFiles 

 Specifies one or more reference genome FASTA files. These files must 

contain all chromosomes or scaffolds in the correct format. While it is not 

required, chromosome names can be manually edited in the chrName.txt file 

(generated by STAR) to customize naming conventions across outputs. 

 
5. --sjdbGTFfile 

 Provides the path to a GTF annotation file containing transcript and exon 

STAR --runThreadN 8 \ 

     --runMode genomeGenerate \ 

     --genomeDir /path/to/genomeDir \ 

     --genomeFastaFiles /path/to/genome.fasta \ 

     --sjdbGTFfile /path/to/annotations.gtf \ 

     --sjdbOverhang 99 
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structures. STAR uses this file to extract known splice junctions, which 

enhances alignment accuracy near exon-intron boundaries. Though optional, 

using annotations is strongly recommended. 

 
6. –sjdbOverhang 

 Sets the length of the genomic sequence flanking annotated splice junctions. 

This value should ideally be ReadLength - 1. For example, with 100 bp 

Illumina reads, a typical value is 99. For variable-length reads, the maximum 

read length minus one is a suitable approximation.[13] 

 

3.4.3 Output of Genome Index Generation 

The output files generated by STAR during this process include: 

1. Binary genome files and suffix arrays 

2. Chromosome name and length metadata 

3. Splice junction coordinates 

4. Encoded transcript/gene annotation information 

 

 

These files are stored in STAR’s internal format and are used during the mapping 

phase. It is strongly advised not to manually modify these files, except for optionally 

editing chrName.txt to customize chromosome labels in output SAM/BAM files. 

Once generated, the index files in the genomeDir directory can be reused across 

multiple alignment jobs using the same reference genome and annotations, thus 

avoiding redundancy and improving efficiency. 

First, index the reference genome using STAR to prepare it for alignment. Adding 

gene annotation information to the reference genome will facilitate alignment of RNA-

Seq reads across exon-intron boundaries. This indexing step is only required once; you 

can then use the indexed genome repeatedly in future analysis.[1] 

Check the mapping statistics in the [sample_name]Log.final.out file to ensure the 

BAM file was generated properly and the reads align to the genome correctly. 

Uniquely mapped reads are the most useful for expression analysis, as there is high 

confidence in which loci they represent. In general, >60-70% for the “uniquely mapped 

reads %” metric is considered good; a significantly lower value warrants further 

investigation.[1] 

Lastly, use Samtools to sort and index the BAM files. Organizing the reads by position 

within the BAM file is needed for downstream analysis. 
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3.5 Differential Expression Analysis  

Compare hit counts between groups with DESeq2- 

The DESeq2 package is designed for normalization, visualization, and differential 

analysiss of high-dimensional count data. It makes use of empirical Bayes techniques 

to estimate priors for log fold change and dispersion, and to calculate posterior 

estimates for these quantities 

results tables with log2 fold change, p-values, adjusted p-values, etc. for each gene are 

best generated using the results function. The coef function is designed for advanced 

users who wish to inspect all model coefficients at once.[6] 

The differential expression analysis uses a generalized linear model of the form: 

 
where counts Kij for gene i, sample j are modeled using a Negative Binomial distribution with 

fitted mean µij and a gene-specific dispersion parameter αi . The fitted mean is composed of 

a sample-specific size factor sj and a parameter qij proportional to the expected true 

concentration of fragments for sample j. The coefficients βi give the log2 fold changes for 

gene i for each column of the model matrix X. The sample-specific size factors can be replaced 

by gene-specific normalization factors for each sample using normalization Factors. [5] 

 

3.5.1 Core Workflow 

 

The standard DESeq2 pipeline involves the following steps: 

 

1. Dataset Construction: The DESeqDataSet object is built from raw counts and 

a sample metadata table. Input can be generated directly from tximport, HTSeq, 

or a matrix of counts. 

2. Normalization: Sample-wise differences in sequencing depth are corrected 

using size factors via estimateSizeFactors(), applying a median-of-ratios 

method. 

3. Dispersion Estimation: Gene-wise dispersion estimates are computed and then 

modeled as a function of mean expression using parametric, local, or mean-

based fitting (estimateDispersions()). 

4. Model Fitting and Testing: A generalized linear model (GLM) is fitted per 

gene, and hypothesis testing is performed: 

 

a. Wald test (test = "Wald") for significance of individual coefficients. 

 

 

b. Likelihood Ratio Test (LRT) (test = "LRT") for comparing full and 

reduced models. 

 

 

5. Result Extraction: The results() function provides statistics such as log2 fold 

change (LFC), p-values, and adjusted p-values (Benjamini-Hochberg FDR).[4] 
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3.5.2 Data Transformation and Visualization 

 

 

To facilitate downstream exploratory analysis such as clustering and PCA, DESeq2 

offers: 

 

1. Variance Stabilizing Transformation (VST): vst() quickly transforms count 

data while preserving the mean-variance relationship. 

 

2. Regularized Log Transformation (rlog): rlog() is more robust for datasets with 

varying library sizes but computationally intensive. 

 

3. PCA and Diagnostic Plots: 

 

a. plotPCA() for sample clustering. 

 

 

b. plotMA() to visualize changes in expression. 

 

 

c. plotDispEsts() for assessing dispersion fits.[25] 

 

 

 

3.5.3 Additional Features 

1. Outlier Detection: DESeq2 uses Cook’s distance to identify and optionally 

replace outliers in high-replicate datasets. 

 

2. FPKM/FPM Calculation: Functions like fpkm() and fpm() allow conversion of 

counts into normalized expression values. 

 

3. Integration with Single-Cell Data: DESeq2 supports integration with 

preprocessed scRNA-seq datasets via the integrateWithSingleCell() function. 

 

 

3.5.4 Outputs 

 

1. DESeqResults: Contains log2FoldChange, pvalue, padj, stat, etc. 

 

2. Normalized counts: Via counts(dds, normalized=TRUE) 

 

3. Transformed data: vst(dds), rlog(dds) 

 

4. Dispersion trends: plotDispEsts(dds) 
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5. PCA & MA plots: plotPCA(), plotMA() 

 

 

 

 

 
Fig 3.6. DESeq2 result output layout 

 

 
 

Intreprepation – 

 

 
Fig 3.7.MA-plot generated by the plot MA function in DESeq2. Points will be colored 

red if the adjusted p-value is less than 0.1. Points which fallout of the window are 

 Plotted as open triangles pointing either up or down. 
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Fig 3.8 :Volcano plot.The red points indicate genes-of-interest that display both large-

magnitude fold-changes (x-axis) as well as high statistical signicance ( log10 of p-

value, y-axis).The dashed green-line shows the p-value cuto (pval=0.01) with points 

above the line having p-value <001 and points below the line having p-value > 0.01. 

The vertical dashed blue lines shows 2-fold changes. 
 

3.6 Network Analysis 

 

WGCNA is an R package developed for the systems-level analysis of gene expression 

data. It is primarily used to identify clusters (modules) of highly correlated genes and 

to relate these modules to clinical traits or phenotypes. WGCNA constructs gene co-

expression networks using pairwise correlation coefficients, thereby allowing the 

identification of gene modules with shared biological functions.[20] 

3.6.1. Conceptual Framework 

WGCNA is based on the concept of constructing a scale-free network using soft 

thresholding of gene-gene correlations. The network is undirected and weighted, 

capturing the continuous nature of gene relationships. 

1. Adjacency Matrix: Calculated from pairwise correlations, raised to a power 

β\betaβ (soft-thresholding power) to emphasize strong correlations while 

suppressing weak ones. 

 
2. Topological Overlap Matrix (TOM): Measures network 

interconnectedness, accounting for shared neighbors between genes. 

 
3. Hierarchical Clustering: Applied to TOM to identify gene modules. 

 
4. Module Eigengene: The first principal component of a module’s expression 

matrix; used to summarize module activity and correlate with phenotypic 

traits. 
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3.6.2. Core Workflow 

1. Input Preparation: Expression matrix with genes in columns and samples in 

rows. 

 
2. Soft-thresholding Power Selection: Identify a suitable β\betaβ to 

approximate scale-free topology using pickSoftThreshold(). 

 
3. Adjacency and TOM Calculation: Use adjacency() and 

TOMsimilarityFromExpr() to construct the network. 

 
4. Module Detection: Apply blockwiseModules() to detect modules via 

dynamic tree cutting and module merging. 

 
5. Module-Trait Association: Relate modules to traits using correlation 

between module eigengenes and sample metadata. 

 
6. Hub Gene Identification: Determine intra-modular hub genes using 

connectivity measures.[15] 

 

In LYNX-RNA pipeline, WGCNA is typically integrated like this: 

1. Input: VST-transformed expression matrix from DESeq2. 

Script: 

 
 

Output: Module membership, trait correlation table, hub genes, Cytoscape files. 

 

Execution: Script is called as a process within the Nextflow .nf file and defined in 

main.nf  

 

 

library(WGCNA) 
datExpr <- read.table("vst_transformed_counts.tsv", header=TRUE, row.names=1) 
powers <- c(1:20) 
sft <- pickSoftThreshold(datExpr, powerVector = powers) 
net <- blockwiseModules(datExpr, power = chosenPower, ...) 
exportNetworkToCytoscape(net$TOM) 
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3.7 Functional Enrichment 

Once differentially expressed genes (DEGs) have been identified, understanding their 

biological roles and pathway associations becomes essential for interpreting the 

underlying mechanisms of a condition. Functional enrichment analysis aims to 

determine whether specific biological categories—such as Gene Ontology (GO) 

terms, KEGG pathways, or Reactome modules—are statistically overrepresented in 

the list of DEGs compared to a background set of genes.[40] 

This process helps reveal affected biological processes, cellular components, and 

molecular functions, offering insight into disease pathogenesis, treatment response, or 

cellular phenotypes. In the context of LYNX-RNA, enrichment analysis is 

automatically triggered for each comparison group using well-established R packages 

and databases. 

3.7.1 Gene Ontology and Pathway Databases 

The LYNX-RNA pipeline supports enrichment using the following annotation 

databases: 

1. Gene Ontology (GO): Covers three domains: 

 
a. Biological Process (BP) – e.g., T cell activation, mitotic cell cycle 

 
b. Molecular Function (MF) – e.g., ATP binding, enzyme activity 

 
c. Cellular Component (CC) – e.g., mitochondrion, cytoskeleton 

 
2. KEGG Pathways: Curated maps of molecular interaction and reaction 

networks. 

 
3. Reactome: Hierarchical pathway database providing mechanistic insights. 

 
4. MSigDB (optional): Used for gene set enrichment analysis (GSEA), 

containing curated and computational gene sets. 

 

3.7.2 Statistical Methodology 

Functional enrichment analysis involves over-representation testing, where the 

number of DEGs associated with a given term is compared to the expected count under 

a hypergeometric distribution. The most commonly used statistical model is the 

hypergeometric test (also called Fisher’s exact test), calculated as: 
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Where: 

• N: Total number of genes in the background (e.g., all genes expressed) 

 

• K: Number of genes annotated with the term 

 

• n: Number of DEGs 

 

• k: Number of DEGs annotated with the term 

 

The p-values obtained are adjusted for multiple comparisons using the Benjamini-

Hochberg False Discovery Rate (FDR) method.[26] 

 

3.8 ML Integration 

3.8.1 Goals of Machine Learning in LYNX-RNA 

The objectives of ML integration are threefold: 

1. Classification: Predict the clinical status or condition (e.g., treatment 

timepoint, disease vs. control) of a sample based on its transcriptomic profile. 

 
2. Feature Selection: Identify genes that are most informative for classification, 

serving as potential biomarkers. 

 
3. Interpretability: Enable users to understand the biological relevance of 

selected features using feature importance scores, pathway enrichment, and 

natural language explanations powered by large language models (LLMs). 

 

This extends RNA-seq workflows into the realm of supervised learning and 

translational modeling, with outputs that can support diagnostics, prognostics, or 

therapeutic stratification. 

 

3.8.2. Data Flow and Preprocessing 

1. Input Format 

• The ML module consumes a normalized expression matrix, generated from 

earlier stages of the pipeline. 
• Each row represents a sample, and each column represents a gene or 

transcript. 
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• A separate metadata file provides the class label for each sample (e.g., 

timepoint or treatment group). 

 

 

2 Preprocessing Steps 

To prepare data for training and ensure consistent behavior across models, the 

following steps are applied: 

1. Gene Filtering: 

 

 
a. Low variance genes (genes with little change across samples) are 

removed. 

 

b. Genes with more than 80% zero counts or missing values are 

discarded. 

 

 

2. Normalization: 

 

 
a. Log2 transformation: log2(TPM + 1) or log2(CPM + 1) 

 
b. Z-score normalization: Each gene is standardized to zero mean and 

unit variance. 

 

 

3. Dimensionality Reduction (optional): 

 

 
a. PCA or t-SNE is applied for visualization. 

 

b. In cases of very high feature-to-sample ratios, PCA may be used to 

reduce input to top N components. 

 

 

4. Class Balance Check: 

 

 
a. Class distributions are examined. 

 

b. Synthetic oversampling (SMOTE) or class weighting is used if classes 

are imbalanced. 
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3.8.3. Algorithms Used  

Two robust and interpretable tree-based ensemble models are implemented:[27] 

1. Random Forest Classifier 

1) Type: Bagging ensemble of decision trees. 

 
2) Advantages: 

 

 
a. Handles noisy and high-dimensional data well. 

 

b. Less prone to overfitting compared to single decision trees. 

 

c. Provides feature importance via Gini impurity or permutation 

metrics. 

 

2 XGBoost (Extreme Gradient Boosting) 

1) Type: Boosting-based ensemble of decision trees. 

 

 

 
2) Advantages: 

 

 
a. State-of-the-art model for structured/tabular data. 

 

b. Highly efficient, regularized, and scalable. 

 

c. Supports early stopping, dropout, and custom loss functions. 

 

d. Offers SHAP-based feature attribution for interpretability. 

3.8.4 Model Training and Validation 

A.  Cross-Validation Strategy[39] 

Due to limited sample sizes common in biological datasets, rigorous validation is 

critical. LYNX-RNA supports: 

1.  Stratified k-Fold Cross-Validation (default: k=5): 

   a. Ensures proportional representation of classes in each fold. 
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   b. Provides stable performance estimates.  

2. Leave-One-Out Cross-Validation (LOOCV): 

   a. Used for very small datasets (n < 20). 

   b. Each sample is tested individually using the model trained on the remaining 

samples. 
 

3.8.5 Evaluation Metrics 

The performance of classifiers is assessed using: 

1. Accuracy 

 

2. Precision, Recall, F1-score 

 

3. ROC Curve and AUC (Area Under Curve) 

 

4. Confusion Matrix 

 

5. Classification Reports (via sklearn.metrics) 

 

Evaluation plots and summary tables are automatically generated and stored with the 

output.[39] 

 

 

3.8.6 Feature Importance and Biomarker Identification  

1. Importance Extraction 

a. Random Forest: Gini-based or permutation importance. 

 

 
b. XGBoost: Gain, Cover, Frequency, or SHAP values. 

 

2 Biomarker Selection Workflow 

1. Top N Genes: Genes with the highest importance scores are shortlisted 

(typically top 20–50). 
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a. Annotation & Enrichment: 

 
a. These genes are annotated using biomaRt, Ensembl, or org.Hs.eg.db. 

 

b. They are passed to GO/KEGG enrichment via clusterProfiler to 

identify overrepresented pathways. 

 
2. Validation: 

 
a. If differential expression analysis also flagged these genes, overlap is 

reported. 

 

b. LLM (GPT-4) generates descriptive summaries of their biological 

relevance. 

3.8.7 Interpretability Enhancements 

Interpretability is a core principle in LYNX-RNA. Beyond standard importance 

metrics, the following are included: 

1. SHAP (SHapley Additive exPlanations): For model-agnostic explanation of 

how features contribute to predictions. 

 
2. LLM-Generated Reports: 

 
a. Using the OpenAI GPT API, LYNX-RNA translates complex results 

into natural language. 

 

b. Examples: 

 

i. “Gene X is highly expressed in Week 1 samples and is known 

to regulate immune cell adhesion.” 

“The combination of Gene A, Gene B, and Gene C is predictive of pre-treatment 

status with 91% accuracy.” [42] 

Outputs are saved in structured folders: reports/ml_summary, plots/, 

feature_importance.csv, llm_summary.txt 
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CHAPTER – 4 

DATASET AND EXPERIMENTAL SETUP 

 

 

 

4.1 Dataset Description 

The evaluation of transcriptomic responses to eltrombopag therapy in chronic immune 

thrombocytopenia (ITP) patients was carried out using publicly available RNA-sequencing 

datasets retrieved from the NCBI Sequence Read Archive (SRA). To construct a biologically 

and statistically sound machine learning framework, we selected two high-quality and 

clinically annotated RNA-seq datasets—one representing treatment samples from ITP patients 

undergoing eltrombopag therapy, and the other serving as a matched control group derived 

from healthy individuals. These datasets were processed using the LYNX-RNA pipeline for 

downstream analysis, normalization, and integration into the machine learning and functional 

genomics modules. [21] 

 

4.1.1 Eltrombopag-Treated ITP Dataset (Project ID: PRJNA445461) 

This dataset focuses on the longitudinal transcriptomic response to eltrombopag, a 

thrombopoietin receptor agonist, in patients with chronic immune thrombocytopenia 

(ITP). The study was conducted by Stanford University and is publicly available under 

SRA Project ID PRJNA445461. A total of 46 peripheral blood samples were 

collected from 17 patients who were administered 75 mg/day eltrombopag as 

monotherapy.[38] 

 

Samples were collected at three distinct tim epoints: 

1. Pretreatment (Pre), 

 
2. One week after treatment initiation (1wk), 

 
3. One month post-treatment initiation (1mon). 

 

 

These samples were preserved in PAXgene blood RNA tubes and processed using a 

globin mRNA reduction protocol prior to RNA extraction, which is essential for 

reducing background signal from abundant hemoglobin transcripts. The sequencing 

methodology employed was 3’-end RNA sequencing (3SEQ), which targets 3’ 

untranslated regions (3’UTRs) to ensure quantification accuracy and minimize 
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transcript length bias. Each sequencing library generated 36 bp directional reads using the 

Illumina HiSeq 2000 platform. Reads were mapped to the human transcriptome (hg19), 

and transcript-level quantification was performed. 

4.1.2. Control Dataset (Project ID: PRJNA1055463) 

To establish a robust baseline for comparison, we selected a high-quality control dataset under 

SRA Project ID PRJNA1055463. It includes a sizable cohort of healthy individuals (n = 89) 

who served as the control group. 

For the purposes of our pipeline, we utilized only the RNA-seq profiles of the healthy 

controls, which represent peripheral blood transcriptomes from clinically screened 

individuals. RNA was extracted from whole blood, and libraries were prepared and sequenced 

to provide bulk RNA-seq data. These healthy control samples offered an ideal comparator 

group for ITP patients due to: 

1. Similar tissue type (peripheral blood), 

 

2. Comparable RNA preparation protocols, 

 

3. Lack of drug or disease-induced transcriptomic alterations. 

 

This dataset underwent standard normalization and integration procedures identical to those 

applied to the ITP samples, allowing for a direct, batch-corrected comparison between disease 

(ITP pre-treatment) and healthy control states. 

 

4.2 Data Source 

For this study, we utilized publicly available RNA-seq data from the Gene Expression 

Omnibus (GEO) to investigate transcriptomic changes associated with immune 

thrombocytopenia (ITP). Patient samples were obtained from accession GSE112278, 

comprising 46 peripheral blood samples from 17 chronic ITP patients, collected at 

three clinical time points: pretreatment (Pre), 1 week (1wk), and 1 month (1mon) 

following eltrombopag therapy. Patients were classified on the basis of the timeline of 

the drug administration based on platelet count response criteria. RNA-seq libraries 

were prepared using 3′-end sequencing (3SEQ) after globin mRNA depletion and 

sequenced on the Illumina HiSeq 2000 platform. As a control dataset, we included 

healthy peripheral blood samples from PRJNA1055463 (BioProject), corresponding 

to GEO accession GSE251786, to serve as a baseline for differential gene expression 

and biomarker discovery. These control samples were processed under comparable 

RNA-seq protocols to ensure analytical consistency. The combined dataset enables 

longitudinal profiling of transcriptomic dynamics in ITP across disease progression 

and treatment response.[38] 
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Table 4.1. Clinical Characteristics of ITP Patients and Healthy Donors (control) 

Parameter ITP Responders (n = 8 patients × 3 timepoints 

= 24 samples) 
Healthy Controls (n = X)* 

Age (range) Median 54 (16–84 years) 20–65 years (approx., from 

metadata) 

Sex Female: 23 (58.97%) 

 Male: 16 (41.03%) 
Female: 23 (58.97%) 

 Male: 16 (41.03%) 

Type of ITP Chronic ITP (duration >12 months) Not applicable 

Treatment Eltrombopag (75 mg/day, oral) None 

Blood Sampling 

Timepoints 
Pre-treatment, 1 week, 1 month Single timepoint 

Sample Source Peripheral whole blood (PAXgene tubes) Peripheral whole blood 

RNA-seq Type 3SEQ (3′ end) - Illumina HiSeq 2000 Standard single-end - 

HiSeq/NovaSeq 

Prior ITP Treatments Corticosteroids (79.5%), IVIG (15.4%) Not applicable 

 

 

4.3 Preprocessing & TPM Calculation 

Transcripts Per Million (TPM) is a normalization method used to express 

transcript abundance in a way that accounts for: 

1. Transcript length bias 

2. Sequencing depth variation 

Unlike raw read counts, TPM values allow for cross-sample comparison of gene 

expression. The formula for calculating TPM for a given transcript i is 
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This normalization is implemented natively in Salmon, which outputs TPM, raw 

read counts, and transcript-level abundances in its quant.sf files. 

4.3.1 TPM vs Other Normalization Metrics 

1. TPM is ideal for comparing the expression of different genes within a sample. 
2. For between-sample comparisons, methods such as DESeq2’s size factor 

normalization or TMM (Trimmed Mean of M-values) in edgeR are more 

appropriate for differential expression analysis. 

 

However, TPM is commonly used as input for: 

1. Unsupervised analyses like PCA and clustering 

 

2. Machine learning classification models in LYNX-RNA 

 

3. Heatmap visualization of top expressed genes 

Table 4.1 Comparison of TPM with others 

Metric Normalizatio

n Type 

Use Case Formul

a 

Strengths Limitations 

TPM 

(Transcript

s Per 

Million) 

Length & 

Library Size 

Cross-gene 

& cross-

sample 

comparison

s 

TPM_i 

= (R_i / 

L_i) / 

Σ(R_j / 

L_j) × 

10⁶ 

Interpretable

, consistent 

across 

samples 

Requires 

accurate 

transcript 

lengths 

FPKM 

(Fragments 

Per 

Kilobase 

Million) 

Length & 

Library Size 

Within-

sample 

gene 

comparison

s 

FPKM_

i = (R_i 

/ (L_i / 

1000)) / 

(N / 

10⁶) 

Accounts 

for gene 

length and 

sequencing 

depth 

Not 

comparable 

across 

samples; less 

consistent 

CPM 

(Counts 

Per 

Million) 

Library Size 

only 

Quick view 

of 

expression 

abundance 

CPM_i 

= (R_i / 

N) × 

10⁶ 

Simple, fast 

to compute 

Does not 

correct for 

gene/transcrip

t length 
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4.3.2 Output and Integration in LYNX-RNA 

The final output of the preprocessing and quantification step includes: 

1. Filtered, high-quality FASTQ files 

 

2. Summary QC reports (FastQC and MultiQC) 

 

3. TPM matrices for all genes or transcripts 

 

4. Raw and normalized counts for DE analysis (DESeq2) 

 

5. Metadata for sample tracking and reproducibility 

 

 

These outputs are passed into downstream modules including: 

1. Differential expression analysis 

 

2. Co-expression networks (WGCNA) 

 

3. Biomarker prediction using Random Forest/XGBoost 

 

4. Immune pathway activity scoring via GSVA 

 

4.4 ML Dataset Preparation 

Machine learning (ML) in transcriptomics is highly sensitive to the quality of the input 

data. Unlike traditional differential expression workflows, ML pipelines require 

carefully structured, clean, and statistically balanced datasets to uncover meaningful 

biological patterns and avoid overfitting. In LYNX-RNA, the dataset preparation stage 

transforms the RNA-seq quantification matrix into a machine-readable format that is 

suitable for robust model training and biomarker discovery. This section elaborates on 

the steps taken to generate the ML-ready dataset, supported by real implementation 

screenshots from the Google Colab environment. 

4.4.1 Input Data Overview 

The input for machine learning-based DEG classification was a curated expression 

matrix generated from merged RNA-seq data of treated ITP patients (GSE112278) 

and mapped healthy controls (GSE251778). The final ML-ready dataset includes:: 

1. symbol column: Represents the HGNC gene symbol for each gene (e.g., 

A1BG, EPB42, TNS1). These gene symbols were derived from the control 

dataset using MyGene.info to map Ensembl IDs. 
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2. Expression feature columns: Each of the remaining columns corresponds to 

an individual sample (e.g., GSM3066029, GSM3066042) and contains raw 

gene expression counts. These features are used by the Random Forest model 

to learn gene-specific expression patterns across samples. 

3. DEG label column (is_DEG): A binary classification label (1 for DEG, 0 for 

non-DEG), assigned based on Welch’s t-test results comparing treated ITP 

samples to healthy controls, with FDR-adjusted p-value < 0.05 and |log2 fold 

change| > 1 

 

Colab Implementation: 

Python 

 

 

 

 

 

 

 

 

The dataset is visualized as: 

 

Fig 4.1 layout of trained data 

This confirms the structure is aligned for ML modeling, with rows as samples and 

columns as features. 

 

4.4.2. Feature and Target Extraction 

To build classification models, we separate the features (X) and the target labels (y): 

 Colab Implementation: 

python 

 

 
import pandas as pd 
df = pd.read_csv("/content/drive/MyDrive/LYNX-

RNA_ml/test/ML-

Ready_Merged_Expression_Matrix.csv") 
df.head() 
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• X: A matrix of numerical expression values, where each row corresponds to a 

gene and each column to a sample (e.g., GSM3066029, GSM3066042, etc.). 

These values serve as the input features for training the classifier.. 

 
• y: A binary vector indicating DEG status of each gene. A value of 1 denotes 

that the gene is differentially expressed (DEG), while 0 indicates a non-DEG. 

These labels were derived from statistical comparison using Welch’s t-test 

followed by FDR correction. 

 

 

4.4.3. Train-Test Split with Stratification 

To evaluate models fairly while preserving label distributions, we split the data into 

training and testing sets using stratified sampling: 

Colab Implementation: 

Python 

 

 

 

 

 

 

 

 

1. 70% of samples are used for training. 

 

2. 30% of samples are held out for model evaluation. 

 

3. The parameter stratify=y ensures that both classes (DEG = 1, Not DEG = 0) 

are proportionally represented in the training and test sets. 

 

 

 

. 

X = df_treated_final.drop(columns=["symbol", "log2FoldChange", "pValue", 

"adjPValue", "is_DEG"]) 

y = df_treated_final["is_DEG"] 

 
from sklearn.model_selection import train_test_split 
 
X_train, X_test, y_train, y_test = train_test_split( 
    X, y, test_size=0.3, stratify=y, random_state=42 
) 
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4.4.4. Optional Preprocessing Steps 

Although ensemble models like Random Forest and XGBoost can handle unscaled 

data, further preprocessing may enhance performance and interpretability. 

1. Log Transformation 

To stabilize variance across genes: 

python 

 

log_expr = np.log2(X + 1) 

 

2. Standard Scaling 

To bring all features to the same scale: 

Python 

 

 

 

 

 

 

 

 

 

3. Low-Variance Gene Filtering 

Genes with near-zero variance are removed: 

python 

 

 

 

 

 

 

 

This step reduces noise and speeds up training time. 

 

 

from sklearn.feature_selection import 

VarianceThreshold 

selector = VarianceThreshold(threshold=0.01) 

X_filtered = selector.fit_transform(X_scaled) 
 

from sklearn.preprocessing import 

StandardScaler 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(log_expr) 
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4.4.5. Handling Missing and Zero-Heavy Data 

1. Genes with >80% zero values are removed. 

 

2. Minor missing values are imputed using mean or median. 

 

These steps are automated within the pipeline to reduce user overhead. 

4.4.6. Class Imbalance Solutions 

If class imbalance is detected (e.g., many more pre-treatment than control samples), 

the following strategies may be applied: 

1. Class weighting in models. 

2. SMOTE oversampling using imblearn. 

 
 Fig.4.2 Training snaphot 

4.4.7. Reproducibility and Logging 

1. All transformation steps (filtering, scaling, imputation) are logged and saved. 

 

2. A random_state seed ensures deterministic results. 

 

Intermediate matrices and split datasets are stored in: 

 

 

 

 

 

 

 

4.5 Tools and Platforms Used 

 

outputs/ml_preprocessing/ 

  ├── X_train.csv 

  ├── y_train.csv 

  ├── X_test.csv 

  └── y_test.csv 
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Table 4.3. Pipline stage and respective tools 

Pipeline Stage Tool/Library 

Quality Control FastQC, fastp, MultiQC 

Trimming Trimmomatic 

Genome Mapping STAR, HISAT2 

Transcriptome Mapping Bowtie2, Salmon 

Quantification FeatureCounts, Salmon 

Differential Expression DESeq2 

ML Modeling scikit-learn, xgboost 

Network Analysis WGCNA, STRINGdb, igraph 

Enrichment Analysis ClusterProfiler, ReactomePA, 

KEGGREST 

Immune Profiling GSVA, ssGSEA 

Report Generation OpenAI GPT-4 API, Markdown, 

nbconvert 
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CHAPTER – 5 

RESULTS 

 

5.1 Quality Assurance and sample consistency  

 
Fig 5.1: Bar Chart 

 This bar chart illustrates the number of expressed genes across various samples, 

labeled as BA05, BA14, BA19, etc., with their corresponding identifiers. The y-axis 

represents the count of expressed genes, showing consistent values around 14,000 

across all samples. The x-axis represents different sample IDs, tilted for readability. 
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Fig 5.2: PCA Plot 

This scatter plot represents the results of Principal Component Analysis (PCA) for the 

dataset, displaying sample clustering based on two principal components (PC1 and 

PC2). The x-axis (PC1) explains 72.14 % of the variance, while the y-axis (PC2) 

explains 12.88%. Each point corresponds to a sample, labeled with its identifier. The 

clustering of points indicates similarities or differences in the dataset, with distinct 

samples (e.g., TA12, TA18) positioned separately, suggesting unique characteristics 

compared to others. 
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Fig 5.3: Heat Map  

This heatmap visualizes the hierarchical clustering of samples based on similarity or 

distance metrics. The rows and columns denote individual samples, with color 

intensity reflecting the level of similarity (darker red indicates greater similarity, while 

lighter shades denote lesser similarity). The dendrograms on the top and left depict the 

clustering structure, grouping similar samples together. The matrix layout and 

clustering provide insights into relationships between samples, identifying patterns or 

distinct clusters within the dataset. 
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Fig 5.4: Box Plot  

This box plot depicts the distribution of expression levels for different samples, shown 

along the x-axis (e.g., BA05, BA14, TA12). The y-axis represents the expression value. 

Each box illustrates the interquartile range (IQR), with the median indicated within. 

Whiskers extend to represent variability beyond the upper and lower quartiles, whereas 

outliers may be depicted as points outside the whiskers. The graphic illustrates 

variations in central tendency and dispersion of expression levels among the samples, 

with certain samples (e.g., TA12, TA18) exhibiting comparatively lower medians and 

more restricted ranges. 
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5.2 DEGs Analysis 

DEGs were identified in the single-cell RNA sequencing dataset GSE112278 based on the 

following criteria: P < 0.05; |log2FC|> 0.5. The top 25 upregulated and the top 25 

downregulated genes were selected to construct a heatmap. 

 

Fig 5.5 : Heat Map 

 Differential expression analysis was conducted by using LYNX-RNA using DESeq2, 

identifying 3,114 genes with significant changes in expression. Genes exhibiting the 

most significant differential expression are highlighted as red dots. 
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Fig 5.6: Line Graph 

 This line graph represents gene expression trends across the samples. Here the Y-axis 

represents the gene expression values, and the X-axis denotes multiple samples. This 

illustrates the changing pattern in gene expression level, with each line representing 

each gene. Here some genes show sharp peaks, which are classified as significant 

genes. 

 

Fig 5.7: Box Plot 

 This box plot represents the expression levels of some specific genes displayed on the 

x-axis. The y-axis shows their expression levels. Each box represents the interquartile 

range (IQR) for the expression values of a gene, with the median marked inside. 

Whiskers indicate the range of the data within 1.5 times the IQR, and potential outliers 

are shown as individual points.The plot highlights variations in expression levels 

among genes, with some genes (e.g., TCL1A) showing higher median expression and 

variability compared to others (e.g., BTK). 
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Fig 5.8: Volcano Plot 

This volcano plot visualizes the statistical significance (-log10 p-value) against the 

magnitude of change (log2 fold change) for a dataset. The x-axis denotes the value of 

expression change, and the y-axis denotes statistical significance; the higher the value, 

the more it is. Significant values are denoted by red color; orange represents only p-

value significance, only fold change significance is denoted by purple, and non-

significant is blue. P-value threshold (>0.05) is marked by a horizontal line and fold 

change threshold (±1) by vertical lines. This plot identifies significant genes that are 

upregulated and downregulated. The topmost red dots indicate the most notable 

changes. 

 

Fig 5.9. MA Plot 

 This MA plot denotes the relationship between the log2 mean expression, which is the 

mean of normalized counts represented on the x-axis, and log2 fold change (y-axis, 

log2FC) in a dataset for each gene against its average expression across all samples in 

the two conditions being contrasted. Here each point represents a gene. Red dots 

represent the genes that are either up-regulated or down-regulated, whereas blue dots 

represent the non-significant genes. This trumpet- or funnel-like shape shows the 

pattern of increase in variability with an increase in expression level. 
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5.3 WGCNA results 

 

 

Fig 5.10: Gene Dendrogram Showing Module Assignment by Dynamic Tree Cut. 

This hierarchical clustering dendrogram depicts the grouping of genes based on 

topological overlap. Each branch represents a gene, and clusters of highly co-

expressed genes are grouped into distinct modules indicated by unique colors in the 

bar below the dendrogram. These module colors represent functionally relevant gene 

networks detected using the Dynamic Tree Cut algorithm, which were later used for 

downstream trait correlation and enrichment analyses 

 

Figure 5.11: Gene Co-expression Network of Hub Genes from Key Module. 

This network visualization illustrates the interactions among hub genes identified from 

a significant WGCNA module. Nodes represent individual genes, while edges denote 

strong co-expression relationships based on topological overlap. Central genes such as 

BCL2L1, EPB42, and CDC34 may play pivotal roles in the underlying biological 

processes, suggesting their potential as biomarkers or therapeutic targets in the studied 

condition. 
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Fig 5.12: Scale Independence Plot for Soft Thresholding Power Selection. 

The plot shows the scale-free topology model fit index (y-axis) as a function of the 

soft-thresholding power (x-axis) used in weighted gene co-expression network 

analysis (WGCNA). Higher R² values indicate a stronger approximation to scale-free 

topology. The optimal power is typically chosen where the curve begins to plateau and 

achieves a sufficient R² value (commonly ≥0.8), balancing between network sparsity 

and biological relevance. In this case, the model does not reach the typical threshold, 

indicating a relatively low scale-free fit across tested powers. 
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Fig 5.13: Mean Connectivity Plot Across Soft Thresholding Powers. 

This plot displays the mean connectivity (y-axis) of genes as a function of the soft-

thresholding power (x-axis), a key parameter in weighted gene co-expression network 

analysis (WGCNA). As the power increases, mean connectivity decreases, indicating 

a sparser network. This analysis assists in selecting an optimal power that ensures 

scale-free topology while maintaining sufficient connectivity for downstream module 

detection and biological interpretation. 
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5.4 Enrichment Analysis 

 

 

Fig 5.14: Top 25 Enriched Gene Ontology (GO) Biological Processes. 

The bar plot displays the top 25 significantly enriched GO terms (Biological Processes) 

identified from the differentially expressed genes. The x-axis represents the statistical 

significance in terms of –log10(p-value), while the y-axis lists the enriched GO terms. 

Terms related to transcription regulation, DNA repair, immune response, and cell cycle 

processes were prominently enriched, suggesting their potential involvement in the 

underlying biological condition being studied. 
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Fig 5.15: Semantic Similarity Heatmap of Enriched GO Biological Processes. 

The heatmap illustrates the semantic similarity among enriched Gene Ontology (GO) 

biological process terms based on their functional relatedness. Each square indicates 

the degree of similarity between two GO terms, with darker shades representing higher 

similarity. Hierarchical clustering of GO terms along both axes helps to visualize 

functionally grouped biological processes, revealing co-enriched or interrelated 

pathways such as transcription regulation, immune response, and DNA repair 

mechanisms. 
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Fig 5.16: Comparative Bubble Plot of Enriched GO Biological Processes. 

This bubble chart visualizes the proportion of genes associated with selected Gene 

Ontology (GO) biological processes, comparing their representation in differentially 

expressed genes (DEPercent, blue) versus the annotated genome background 

(AnnotPercent, orange). Each bubble represents a GO term, with the size indicating 

the relative gene set size and the values showing respective percentages. Prominent 

enrichment is observed in transcription-related processes, DNA repair, cell cycle 

regulation, and immune-related functions, suggesting key biological themes altered 

under the studied condition. 

 

 

Fig 5.17: GSEA of genes  
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The plots a and b represent GSEA of genes; here only two are displayed; others can be 

referred to in an additional file. Ranks of genes are sorted on the basis of their 

correlation value with the phenotype presented by the x-axis. The Y-axis shows the 

enrichment score, which is cumulative as genes are traversed. The peak represents the 

maximum enrichment value, and vertical black bars show the position of the genes in 

the rank. The range of enrichment score is denoted by red lines, which are   the 

threshold values. 

5.5 LLM generated Automated Summaries 

 

Fig 5.18 : LLM Report 

Once the data processing is completed, the automated LLM result summarization 

report is generated. The report is divided into three sections: Summary, Observations, 

and Key Takeaways. This approach ensures that the results generated for analysis are 

not only comprehensible but also action-oriented, making the complex data more 

accessible and valuable for scientific research. 
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5.6 ML Performance 

The machine learning module of LYNX-RNA was evaluated using a Random Forest 

classifier trained on expression-level data to predict differentially expressed genes 

(DEGs). The dataset consisted of merged expression profiles from treated samples and 

DEG labels derived through statistical comparison with control samples. 

5.6.1 Dataset Composition 

Total Genes Analyzed: 12,587 

 

Labeling Method: Statistical testing (Welch’s t-test with Benjamini-Hochberg 

correction) 

 

1. DEG Thresholds: Adjusted p-value < 0.05 and |log2FoldChange| > 1 

 

2. Class Balance: Approximately 14% DEGs, 86% non-DEGs 

 

 

5.6.2 Model Performance 

A Random Forest classifier was trained on an 80-20 stratified split of the data. The 

model showed strong performance across multiple evaluation metrics: 

 

Fig 5.19 Model Performance Metrics 
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5.6.3 Confusion Matrix 

To further interpret the classification performance of the Random Forest model, a 

confusion matrix was constructed (Figure X) based on the test set predictions. The 

matrix provides insight into the distribution of true positives, false positives, true 

negatives, and false negatives. 

Table 5.1: Confusion Matrix 
 

Predicted Non-DEG (0) Predicted DEG (1) 

Actual Non-DEG (0) 1327 (True Negatives) 291 (False Positives) 

Actual DEG (1) 189 (False Negatives) 1701 (True Positives) 

 

 

1. True Positives (TP): 1701 genes correctly classified as DEGs 

 

2. True Negatives (TN): 1327 genes correctly classified as non-DEGs 

 

3. False Positives (FP): 291 genes incorrectly predicted as DEGs 

 

4. False Negatives (FN): 189 genes incorrectly predicted as non-DEGs 

 

 
Fig 5.20.  Confusion matrix showing the distribution of actual vs. predicted DEG 

classes. 
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This distribution reflects a strong classification capability, particularly with a low false 

negative rate, which is critical for applications like biomarker discovery. The model 

maintained a high ROC AUC score of 0.937, confirming its excellent discrimination 

ability between DEGs and non-DEGs. The classifier demonstrated high discriminative 

power, correctly identifying DEGs based solely on their expression profiles. 

5.6.4  Bulk DEG Prediction 

The trained model was applied to all genes in the treated dataset 

(raw_gene_counts_matrix.csv). The output included: 

1. predicted_deg_genes.csv: DEG predictions for all genes 

2. predicted_degs_only.csv: Filtered list of genes predicted as DEGs 

5.6.5 Top DEGs Visualization 

The top 100 DEGs (based on average expression across samples) were visualized 

using a horizontal bar chart. These represent highly transcribed, predicted DEGs 

potentially relevant to the ITP disease context. 

 

 

Fig 5.21 Top DEGs 
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CHAPTER – 6 

DISCUSSION 

 

 

 

6.1 Pipeline Performance 

LYNX-RNA was engineered to address key limitations in current RNA-seq pipelines, 

including lack of modularity, limited scalability, and poor support for downstream 

integrative analyses. Its architecture, built on Nextflow, supports dynamic parallelism, 

modular execution, and seamless reproducibility across environments (Conda, Docker, 

HPC). 

Applied to a longitudinal ITP dataset, LYNX-RNA completed full processing—from 

FASTQ to functional interpretation—without manual intervention. Preprocessing and 

alignment modules maintained high mapping rates (>95%) and uniform read quality. 

Differential expression analysis successfully resolved temporal signatures across 

treatment stages, with consistent statistical power (FDR < 0.05) even in imbalanced 

conditions. Pipeline throughput scaled linearly with sample size, validating its 

efficiency for population-scale studies. 

 

6.2 ML interpretability 

The machine learning module introduces supervised DEG prediction using Random 

Forests, enabling inference in the absence of control groups. Trained on statistically 

labeled expression data, the classifier achieved high performance (Precision: 0.79, 

Recall: 0.82, ROC AUC: 0.937 ), demonstrating robustness in classifying DEGs based 

on expression profiles alone. 

1. Model transparency was enhanced through: 

2. Gini-based feature importance, highlighting top predictive genes. 

3. SHAP value decomposition, providing gene-wise contribution scores to 

individual predictions. 

4. LLM-assisted summaries (GPT-4), translating model output into biologically 

interpretable insights. 

5. This interpretability pipeline empowers users not only to detect DEGs, but 

also to understand the rationale behind each prediction—crucial for clinical 

and translational applications. 
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6.3 Benchmarking 

Benchmarking was performed against standard DGE tools (DESeq2, edgeR) and 

manual pipelines (e.g., STAR+HTSeq+clusterProfiler). LYNX-RNA achieved parity 

in gene discovery, while offering several technical advantages: 

1. Runtime Reduction: Parallel execution reduced total processing time by ~40%. 

2. Automation: Single-command orchestration of quality control, quantification, 

DGE, WGCNA, enrichment, and ML. 

3. Adaptability: Configurable profiles and CLI wrappers allowed users to switch 

reference genomes, modify thresholds, or toggle modules without changing 

code. 

4. The ML module further exceeded traditional pipelines in inference speed, 

enabling rapid prediction of DEG status from raw expression matrices, without 

re-computation of p-values or fold changes. This is particularly advantageous 

in high-throughput and low-control experimental designs. 

5. Collectively, LYNX-RNA outperforms existing workflows in modularity, 

extensibility, and depth of analysis, establishing it as a next-generation solution 

for transcriptome-scale biomarker discovery. 

 

6.4 Predicted DEGs and Pipline Validation 

Top predicted DEGs were ranked by average expression levels across ITP samples. 

Genes such as HBA1, HBA2, ACTB, and S100A8 emerged as highly expressed and 

consistently predicted as DEGs. 

To validate these findings, a co-expression network was constructed using WGCNA. 

The resulting network revealed a subset of hub genes, including: 

EPB42, TNS1, HAGH, BCL2L1, RNF10, PINK1, CDC34 

Cross-referencing these with the top 100 predicted DEGs confirmed that EPB42, 

HAGH, and TNS1 are both: 

1. Highly expressed in ITP samples 

2. Machine-learning predicted DEGs 

3. Central nodes (hubs) in the WGCNA co-expression network 

This concordance supports the model's biological relevance, as these genes are not 

only statistically significant but also structurally important in gene networks and 

potentially involved in ITP pathogenesis or response to eltrombopag treatment. 
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CHAPTER – 7 

CONCLUSION AND FUTURE WORK 

 

 

 

7.1 Summary of Findings 

This thesis presented the development and evaluation of LYNX-RNA, an end-to-end 

RNA-seq analysis pipeline that integrates classical statistical approaches with modern 

machine learning and natural language generation. Applied to a longitudinal ITP 

transcriptomic dataset, LYNX-RNA successfully executed every stage of analysis—

from raw FASTQ processing and differential gene expression to biomarker discovery 

and interpretability. 

A Random Forest model trained on statistically labeled DEGs achieved high 

performance (ROC AUC: 0.937, F1-score: 0.80), demonstrating the feasibility of 

predicting differential expression without relying on control samples during inference. 

Additionally, SHAP-based interpretability and GPT-4-generated summaries provided 

transparent, human-readable insights into the model’s biological rationale. 

 

7.2 Advantages of LYNX-RNA 

1. Modular & Scalable: Built with Nextflow, enabling customizable, parallel 

execution across local, cloud, and HPC platforms. 

2. End-to-End Automation: Covers the entire RNA-seq workflow, minimizing 

manual intervention. 

3. Machine Learning Integration: Supports supervised DEG classification 

when traditional control comparisons are unavailable 

4. Interpretability: Uses SHAP values and LLM-driven summaries to make 

ML decisions biologically transparent. 

5. Reproducibility: Supports Conda/Docker environments, ensuring consistent 

deployment and versioning. 

6. Low-Resource Compatibility: Designed to run efficiently on systems with 

≤24GB RAM, enabling broader accessibility. 
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7.3 Limitations 

While LYNX-RNA introduces several innovations, certain limitations persist: 

1. Binary DEG Modeling: Current ML classification supports only binary 

DEG status; subtle gene expression variations may be overlooked. 

 

2. Dependency on Quality of Labels: ML model performance is constrained by 

the accuracy of the statistical DEG annotations used during training. 

 

3. Limited to RNA-seq: Current implementation does not support integration 

with other omics data (e.g., ATAC-seq, proteomics). 

 

 

No GUI Interface: Requires command-line usage, which may present a barrier for 

some life science researchers. 

 

7.5 Future Enhancement  

 

Planned extensions to LYNX-RNA include: 

1. Multiclass & Regression Support: Extend ML module to model disease stage 

or expression gradients. 

2. Deep Learning Models: Incorporate architectures like TabNet or transformers 

for improved prediction in complex datasets. 

3. Web-Based Dashboard: Develop an interactive GUI for ML inference, result 

visualization, and exploratory analysis. 

4. Federated Learning: Enable secure, distributed training across institutions for 

privacy-preserving clinical research. 

5. Multi-Omics Integration: Extend to support simultaneous analysis of RNA, 

proteomic, and epigenomic data. 

 

Advanced LLM Integration: Automate the generation of entire reports or 

publications based on analytical output. 
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