
i

“LYNX-RNA: A NEXTFLOW-BASED

MODULAR RNA-SEQ AND MACHINE

LEARNING PIPELINE FOR BIOMARKER

DISCOVERY WITH LLM-SUMMARIZED

REPORT GENERATION IN IMMUNE

THROMBOCYTOPENIA”

Thesis Submitted

in Partial Fulfillment of the Requirements for the

Degree of

MASTERS OF TECHNOLOGY
in

BIOINFORMATICS

by

DEVANSHI SHARMA
23/BIO/05

Under the Supervision of

Dr. Asmita Das

 Associate Professor

Department of Biotechnology

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

May.2025

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

CANDIDATE’S DECLARATION

I Devanshi Sharma hereby certify that the work which is being presented in the thesis

entitled “LYNX-RNA: A Nextflow-Based Modular RNA-Seq and Machine

Learning Pipeline for Biomarker Discovery and LLM- summarized Report

Generation in Immune Thrombocytopenia” in partial fulfillment of the

requirements for the award of the Degree of Master of Technology, submitted in the

Department of Biotechnology, Delhi Technological University is an authentic record

of my own work carried out during the period from January 2025 to May 2025 under

the supervision of Dr. Amita Das.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiner in the thesis and the statement made by the candidate is correct to the best of

our knowledge.

Signature of Supervisor

iii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

CERTIFICATE BY THE SUPERVISOR

Certified that Devanshi Sharma (23/BIO/05) has carried out their search work

presented in this thesis entitled “LYNX-RNA: A Nextflow-Based Modular RNA-

Seq and Machine Learning Pipeline for Biomarker Discovery and LLM-Powered

summarized Report Generation in Immune Thrombocytopenia” for the award of

Master of Technology from Department of Biotechnology, Delhi Technological

University, Delhi, under my supervision. The thesis embodies results of original work,

and studies are carried out by the student herself and the contents of the thesis do not

form the basis for the award of any other degree to the candidate or to anybody else

from this or any other University/Institution.

Dr. Asmita Das

Supervisor

Department of Biotechnology

Delhi Technological University

Date: 29.05.2025

Prof. Yasha Hasija

Head of Department

Department of Biotechnology

Delhi Technological University

iv

LYNX-RNA: A NEXTFLOW-BASED MODULAR RNA-SEQ AND MACHINE

LEARNING PIPELINE FOR BIOMARKER DISCOVERY AND LLM-

SUMMARIZED REPORT GENERATION IN IMMUNE

THROMBOCYTOPENIC PERPURA

DEVANSHI SHARMA

ABSTRACT

The increasing complexity of RNA-seq data requires analysis pipelines that are robust,

scalable, and interpretable. LYNX-RNA (Language-augmented Yield for Nextflow-

based RNA eXpression analysis) is a modular, Nextflow-based workflow that delivers

end-to-end RNA-seq analysis—from raw FASTQ files to biological insights—with

automation and reproducibility. LYNX-RNA integrates standard tools for quality

control, alignment, quantification, and differential gene expression (DGE), along with

advanced modules for WGCNA, PPI network modeling, and GO/KEGG enrichment.

A key feature is its built-in machine learning module (Random Forest and XGBoost)

for predictive biomarker discovery, and an LLM-powered reporting system that

generates natural language summaries of results. To identify DEGs, treated ITP patient

data (GSE112278) was compared against external healthy controls (GSE251778)

using Welch’s t-test and FDR correction. These DEGs were used to train a classifier

that achieved a ROC AUC of 0.937, demonstrating high predictive accuracy. Notably,

top predicted DEGs such as EPB42, TNS1, and HAGH overlapped with WGCNA-

derived hub genes, reinforcing biological relevance. The pipeline supports deployment

in low-resource environments (≤24 GB RAM), is compatible with Conda, Docker, and

HPC systems, and includes a Python-based CLI for user accessibility. We applied

LYNX-RNA to a longitudinal ITP dataset spanning control, pre-treatment, and post-

treatment stages, uncovering dynamic gene signatures and potential immune-

metabolic biomarkers. LYNX-RNA provides a flexible, automation-ready solution for

transcriptome analysis, well-suited for biomarker discovery and translational

immunology.

In summary, LYNX-RNA bridges key gaps in usability, scalability, and interpretability

in transcriptomic workflows. It serves as a versatile, automation-ready platform for

both academic research and translational applications in systems immunology,

precision medicine, and biomarker discovery

Keywords: RNA-seq pipeline, LYNX-RNA, Nextflow, Biomarker discovery, Immune

Thrombocytopenia (ITP), Machine learning, Random Forest, XGBoost, WGCNA,

Immune infiltration, Gene expression analysis, Differential expression, Functional

enrichment, Large Language Model (LLM), Systems biology, Transcriptomics,

Workflow automation, Natural language reporting, Co-expression network analysis

v

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr.

Asmita Das, for her unwavering support, expert guidance, and continuous

encouragement throughout this research journey. Her insights were instrumental in

shaping the foundation and direction of this thesis.

I am also thankful to my PhD candidates Simran Singh and Yuvraj Sharma for their

collaborative spirit, stimulating discussions, and timely help at every step of pipeline

development and validation.

I extend my heartfelt thanks to the Department of Biotechnology, Delhi Technological

University, for fostering an excellent academic and research environment, and to all

faculty and administrative staff whose support made this journey smoother.

Lastly, I express my gratitude to my family, friends and loved ones whose patience,

motivation, and emotional support have been my anchor throughout this endeavour.

Above all, I thank God for granting me the perseverance, clarity, and grace to complete

this work.

vi

TABLE OF CONTENTS

Title Page no.

Candidate’s Declaration. ii

Certificate. iii

Abstract. iv

Acknowledgement. v

Contents. vi

List of Figures. x

List of Tables. xii

List of Abbreviations. xiii

CHAPTER 1: INTRODUCTION……………………………………………….….1

1.1 Background…………………………….……………...………………………….1

1.2 Motivation…………………………….………………………………………......3

1.3 Objective………………………………….………………………………………4

1.4 Scope……………………………………………………………………………...7

CHAPTER 2: LITERATURE REVIEW...8

2.1 RNA-seq Analysis and Challenges..8

2.2 Existing Pipelines..11

2.3 Nextflow as a Workflow Manager...17

 2.3.1 Workflow Construction..18

 2.3.2 Environment Management...26

 2.3.3 Output Structure...27

2.4 Statistical Foundations From RNA-seq...28

 2.4.1 Quality Assessment and Processing..28

 2.4.2 Alignment and Mapping Quality...28

 2.4.3 Transcript Quantification and Normalization...28

 2.4.4 Statistical Modelling for Differential Expression...29

 2.4.5 Functional Enrichment and Gene Ontology...30

 2.4.6 Network and Module based Analysis..30

vii

 2.4.7 Immune Profiling and Sample level Scoring..30

 2.4.8 Machine learning..31

CHAPTER 3: METHODOLOGY – PIPELINE DESIGN...................................32

3.1 Development Environment..32

 3.1.1 Workflow orchestration with workflow...32

 3.1.2 Programming environment and tool chain...32

3.2 Architecture of LYNX-RNA..34

3.3 Quality Control & Preprocessing...36

 3.3.1 Check Quality with FastQC...36

 3.3.2 Trim reads with Trimmomatric..37

3.4 Transcript Quantification...39

 3.4.1 STAR Aligner..39

 3.4.2 Generating Genome Indexes...39

 3.4.3 Output of Genome Index Generation...41

3.5 Differential Expression Analysis...41

 3.5.1 Core workflow...42

 3.5.2 Data Transformation and Visualization...43

 3.5.3 Additional Features...43

 3.5.4 Outputs..43

3.6 Network Analysis 34...45

 3.6.1 Conceptual Framework...45

 3.6.2 Core workflow...46

3.7 Functional Enrichment..47

 3.7.1 Gene ontology and Pathway Databases...47

 3.7.2 Statistical Methodology...48

3.8 Machine Learning Integration...48

 3.8.1 Goals of machine learning...48

 3.8.2 Data Flow and processing..49

viii

 3.8.3 Algrithm Used...50

 3.8.4 Model Training and validation...50

 3.8.5 Evaluation Metrics..51

 3.8.6 Feature Importance and Biomarker Identification...51

 3.8.7 Interpretability enhancements...52

CHAPTER 4: DATASET AND EXPERIMENTAL SETUP..................................53

4.1 Dataset Description...53

 4.1.1 Eltrombopag-Treated ITP Dataset...53

 4.1.2 Control Dataset..54

4.2 Data Source...54

4.3 Preprocessing & TPM Calculation..55

 4.3.1 TPM vs other normalization metrics..56

 4.3.2 Output and integration in LYNX-RNA..57

4.4 ML Dataset Preparation...57

 4.4.1 Input Data overview...57

 4.4.2 Feature and target extaction...58

 4.4.3 Train and test split with stratification...59

 4.4.4 Output Processing Step..60

4.5 Tools and Platforms Used..61

CHAPTER 5: RESULTS AND DISCUSSION..63

5.1 Quality Assurance and sample consistency..63

5.3 DEG Analysis..67

5.2 WGCNA and Hub Gene Identification..70

5.4 Functional and Pathway Enrichment...73

5.5 Integrated Interpretation with LLM Summarization..76

5.6 ML Performance..77

 5.6.1 Dataset Composition...77

 5.6.2 Model Performance...77

 5.6.3 Confusion Matrix..78

ix

 5.6.4 Bulk DEGs Prediction...79

 5.6.5 Top DEGs Visualisation...79

CHAPTER 6: DISCUSSION..80

6.1 Pipeline Performance..80

6.2 ML interpretability...80

6.3 Benchmarking...81

6.4 Predicted DEGs and pipeline validation...81

CHAPTER 7: CONCLUSION AND FUTURE WORK...82

7.1 Summary of Findings..82

7.2 Advantages of LYNX-RNA...82

7.3 Limitations..83

7.4 Future Enhancement..83

REFERENCES..89

List of Publications and Proofs...90

Plagiarism Verification Certificate..91

Plagiarism Report...92

x

LIST OF FIGURES

FIGURE

NO.

TITLE OF FIGURES PAGE

NO.

Fig 3.1.
Workflow of LYNX-RNA rna-seq pipeline

34

Fig 3.2. Per base sequence quality 37

Fig 3.3. Adapter Content 37

Fig 3.4. Per base quality after trimming 38

Fig 3.5 Adapter content after trimming 38

Fig 3.6 DESeq2 result output layout

44

Fig 3.7 MA-plot generated by the plot MA function in DESeq2. 44

Fig 3.5 Volcano plot by DEGs 45

Fig 4.1
layout of trained data

58

Fig 4.2. Training Snapshot 61

Fig 5.1. Bar Chart 63

Fig 5.2 PCA plot 64

Fig 5.3 Heat Map 65

Fig 5.4 Box Plot 66

Fig 5.5 Heat Map 67

Fig 5.6 Line Graph 68

Fig 5.7 Box Plot 68

Fig 5.8 Volcano Plot 69

Fig 5.9 MA plot 69

Fig 5.10 Gene Dendrogram Showing Module Assignment by

Dynamic Tree Cut.

70

Fig 5.11 Gene Co-expression Network of Hub Genes from Key

Module

70

Fig 5.12 Scale Independence Plot for Soft Thresholding Power

Selection

71

xi

Fig 5.13 Mean Connectivity Plot Across Soft Thresholding

Powers

72

Fig 5.14 Top 25 Enriched Gene Ontology (GO) Biological

Processes

73

Fig 5.15 Semantic Similarity Heatmap of Enriched GO

Biological Processes

74

Fig 5.16 Comparative Bubble Plot of Enriched GO Biological

Processes

75

Fig 5.17 GSEA of genes 76

Fig 5.18 LLM Report 77

Fig 5.19 Model Performance Metrics 78

Fig 5.20 Confusion matrix showing the distribution of actual vs.

predicted DEG classes.

80

Fig 5.21 Top DEGs 81

xii

LIST OF TABLES

TABLE NO. TITLE OF TABLES PAGE NO.

Table 4.1.
Clinical Characteristics of ITP Patients and

Healthy Donors (control)
55

Table 4.2. Comparison of TPM with others 56

Table 4.3. Pipeline stage and respective tools 62

Table 5.1.
Confusion Matrix

79

xiii

LIST OF ABBREVIATIONS

Abbreviation Full Form

ANOVA

Analysis of Variance

AUC Area Under the Curve

BAM Binary Alignment Map

BiocManager Bioconductor Package Manager

Bioconductor Open-source Software Project for Genomic

Data

CPM Counts Per Million

CSV Comma-Separated Values

Cytoscape Cytoscape Network Visualization Tool

DEG Differentially Expressed Gene

DESeq2 Differential Expression Sequencing 2 (R

package)

EdgeR Empirical Analysis of Digital Gene

Expression Data in R

ENA European Nucleotide Archive

Ensembl European Bioinformatics Institute Genome

Database

FASTA FASTA Sequence Format

FASTQ FASTQ File Format (raw sequencing reads)

FDR False Discovery Rate

FPKM Fragments Per Kilobase of transcript per

Million mapped reads

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

gseapy Gene Set Enrichment Analysis in Python

GTF Gene Transfer Format

HISAT2 Hierarchical Indexing for Spliced Alignment

of Transcripts 2

HPC High-Performance Computing

HTSeq High-Throughput Sequencing (counting tool)

KEGG Kyoto Encyclopedia of Genes and Genomes

kNN k-Nearest Neighbors

LFC Log Fold Change

LIME Local Interpretable Model-Agnostic

Explanations

xiv

limma Linear Models for Microarray and RNA-seq

Data

LLM Large Language Model

lncRNA Long Non-coding RNA

ML Machine Learning

mRNA Messenger RNA

ncRNA Non-coding RNA

Nextflow Workflow Management System

nf-core Nextflow Core Community Pipelines

ORF Open Reading Frame

PCA Principal Component Analysis

PPI Protein-Protein Interaction

Python Python Programming Language

QC Quality Control

R R Programming Language

RF Random Forest

RNA-seq RNA Sequencing

ROC Receiver Operating Characteristic

RPKM Reads Per Kilobase of transcript per Million

mapped reads

rRNA Ribosomal RNA

SAM Sequence Alignment/Map

Seurat Single-cell RNA-seq Analysis Toolkit

Shap SHapley Additive exPlanations

snRNA Small Nuclear RNA

SRA Sequence Read Archive

STAR Spliced Transcripts Alignment to a Reference

STRING Search Tool for the Retrieval of Interacting

Genes/Proteins

SVM Support Vector Machine

TMM Trimmed Mean of M-values

TPM Transcripts Per Million

tRNA Transfer RNA

UCSC University of California Santa Cruz

VCF Variant Call Format

WGCNA Weighted Gene Co-expression Network

Analysis

XGBoost Extreme Gradient Boosting

1

CHAPTER – 1

INTRODUCTION

1.1 BACKGROUND

The development of high-throughput sequencing technologies has made it possible to

uncover many organisms’ transcriptional profiles at the whole-genome level. The

technology of RNA-seq, or messenger RNA (transcriptome) sequencing, has permitted

researchers to explore gene expression patterns with great precision in hundreds of

model and non-model organisms. RNA sequencing (RNA-seq) has emerged as a strong

tool for assessing genome-wide gene expression, revolutionizing various fields of

biology. Even without a reference genome, a wealth of understanding related to

processes such as cellular development, gene function, and responses to environmental

stimuli, among others, has been uncovered . The RNA-seq methodology has often set

the basis for developing molecular genetic analysis in non-model organisms and has

become an essential tool. Researchers focused mainly on wet lab and field work

sometimes struggle to exploit the data available from “next-generation sequencing”

because they lack experience in bioinformatics, which is perceived to require in-depth

computational and programming skills[3]. Transcriptome sequencing has become a

commonplace technique which is employed in many scientific settings. Rna-seq

analysis has various advantages over microarray[16]. Current next-generation

sequencing methods yield fastq files that contain the sequencing reads captured from

the sample. These reads are typically aligned to a specific reference genome. In RNA-

seq, the reads after alignment are quantified on a per gene or per transcript basis to

discern information regarding the level of gene expression in a population of cells.

Additional analyses may include technical quality control of the sequencing libraries

and clustering analysis for experimental quality control. Often, analysis is done to

compare samples of two conditions against each other, and determine the statistically

significant differences in the level of transcripts per gene .[2]

 Further analysis can investigate the pathways associated with these differentially

expressed genes, perform various read metrics to assess the variability of the data, and

identify single nucleotide changes or deletions that occur throughout the coding

regions or the genome. In this contribution we address the problem of creating robust,

easily adaptable software for the quality control and analysis of RNA-seq data. This is

a difficult problem because the field is moving very rapidly with new and improved

algorithms for key tasks being published frequently. Also, novel applications of RNA-

seq are constantly being enabled by new analytic approaches. For example,

innovations in analysis now permit tools to be developed that aid in the discovery of

2

fusion genes, the identification of viral transcripts and the analysis of immunological

infiltrate in samples, which enable a deeper understanding of the biological system

being studied. [2]

This study is intended to make the approach easier and more understandable. The

system presented here, LYNX-RNA (Language-augmented Yield for Nextflow-based

RNA eXpression analysis) , uses a modern computational workflow management

system, Nextflow , to combine many of the most useful tools currently employed in

RNA-seq analysis into a single, fast, easy to use pipeline, that includes alignment steps,

quality control, differential gene expression and pathway analyses. In addition, LYNX-

RNA includes a variety of optional modules for advanced downstream analyses, such

as co-expression network construction, immune cell infiltration profiling, metabolic

and immune pathway enrichment, and machine learning–based biomarker

prioritization. LYNX-RNA was built with following guiding principles.[2]

(1) LYNX-RNA makes use of the Nextflow framework for a flexible and modular

architecture, thereby allowing users to easily include alternative current methods or

new tools. Often absent in outdated pipelines requiring manual updates or changes,

this flexibility combines the most recent advancements in RNA-seq analysis, including

immune cell infiltration assessment and viral transcript detection. (2) Automated

LLM-Driven Summarization: Unlike traditional pipelines that generate complex

output requiring expert interpretation, LYNX-RNA’s integrated LLM produces clear,

human-readable summaries of the analysis. This feature allows researchers, clinicians,

and non-experts to quickly grasp insights without extensive computational expertise,

bridging the gap. (3) Enhanced Use and Installation: Many RNA-seq analytical

pipelines require intricate setups and dependency management, which challenges

consumers with less bioinformatics knowledge. (4) LYNX-RNA resolves this issue by

consolidating critical utilities into a single efficient package that can be executed with

straightforward command-line input. Novices can navigate the pipeline effortlessly,

but experienced users maintain comprehensive customization options for intricate

studies.(5) Visual and Organizational Efficiency: LYNX-RNA delivers organized

visual representations, allowing users to swiftly comprehend and analyze RNA-seq

data through a “glance and drill-down” methodology. (6) LYNX-RNA supports

execution in local, HPC, and cloud environments using Conda or Docker/Singularity

containers. Every analysis step is version-controlled and reproducible, meeting the

standards required for robust and transparent scientific research. (7) To enable

predictive modeling, LYNX-RNA includes a dedicated machine learning module that

supports algorithms such as Random Forest and XGBoost. Users can train classifiers

on normalized expression data (e.g., TPM or vst-transformed counts) and evaluate

performance using accuracy, F1-score, ROC-AUC, and cross-validation. The pipeline

generates ranked feature importance lists and visualizations disease-stage-specific

biomarkers. This ML component enhances the biological interpretability and

translational value of the analysis. (8) Extensive Field Compatibility: LYNX-RNA has

a variety of applications in cancer, virology, immunology, and biomarker

identification, making it extremely versatile for emerging research avenues. LYNX-

3

RNA provides comprehensive tools for variant calling, differential expression

analysis, pathway enrichment, and additional functions, making it a singular solution

for many scientific investigations.

1.2 MOTIVATION

RNA sequencing (RNA-seq) has become a central tool in modern molecular biology,

enabling high-resolution characterization of transcriptomes across diverse biological

systems and conditions. It is widely used in functional genomics, developmental

biology, immunology, and disease profiling, including complex conditions such as

cancer and autoimmune disorders. RNA-seq generates read-level data that is

aggregated into count matrices representing gene or transcript abundance. A primary

objective in most studies is to identify genes that exhibit differential expression

between biological groups or timepoints.[14]

Despite its widespread adoption, RNA-seq analysis remains computationally

demanding due to the discrete, over dispersed nature of count data and the influence

of factors such as sequencing depth, batch effects, and biological heterogeneity.

Traditional statistical approaches used for microarrays are not directly applicable to

RNA-seq, leading to the development of dedicated tools for normalization, statistical

testing, and downstream interpretation. However, many of these tools are fragmented

across different platforms, require manual integration, or lack downstream support for

biological interpretation, immune profiling, and biomarker discovery. Furthermore,

existing pipelines often generate complex outputs that require domain expertise to

interpret, posing a barrier for clinicians and experimental biologists. There is a growing

need for a comprehensive solution that not only performs robust RNA-seq processing

but also integrates machine learning for biomarker prioritization, network-based

analysis, and automated interpretation.[11]

To address these challenges, we developed LYNX-RNA—a modular, Nextflow-based

pipeline designed to streamline RNA-seq analysis from raw reads to interpretable

insights. It integrates state-of-the-art tools for differential expression, functional

enrichment, co-expression networks, immune deconvolution, and LLM-generated

summaries, providing a powerful yet accessible framework for transcriptomic analysis

across biological and clinical domains.

To illustrate the utility of LYNX-RNA we applied it to a set of ITP patients.

Early in the twentieth century, Paul Ehrlich realized that the immune system could go

awry. Instead of reacting only against foreign antigens, it could focus its attack on the

host. This condition, which he termed autotxicus, can result in a clinical syndrome

generically referred to as autoimmunity. This inappropriate response of the immune

4

system, directing humoral and or T - lymphocytes mediated immune activity against

self-components, is the cause of auto immune disease such as Idiopathic

Thrombocytopenic Purpura (ITP) or Immune Immune thrombocytopenia. ITP is an

acquired immune-mediated autoimmune disease characterized by low peripheral

blood platelet counts (<100 × 109/L), which are considered thrombocytopenia, and

increased risk of bleeding due to peripheral platelet destruction through antibody-

dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T

lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition

may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune

disorders, and systemic diseases. Despite advances in clinical guidelines, the absence

of definitive diagnostic biomarkers often leads to misdiagnosis and delayed or

ineffective treatment, with a substantial proportion of patients progressing to chronic

or refractory ITP. Emerging studies suggest that metabolic reprogramming may play a

role in autoimmune pathogenesis, including ITP. Metabolomic profiling has revealed

alterations in phenylalanine, tyrosine, and glyoxylate metabolism in ITP patients,

indicating potential metabolic biomarkers. However, the link between these metabolic

changes and underlying gene expression patterns remains poorly understood. To

address this gap, transcriptomic profiling—particularly RNA sequencing (RNA-

seq)—offers a powerful approach to unravel disease mechanisms and identify

metabolism-related genes with diagnostic and therapeutic potential. RNA-seq has

transformed transcriptome analysis by enabling high-resolution, strand-specific

quantification of gene expression, isoform variation, and novel transcript discovery.

However, the computational complexity of RNA-seq—ranging from alignment of

exon-spanning reads to quantification, outlier detection, and result interpretation—

poses significant hurdles for widespread adoption, especially in clinical research

settings.

1.3 OBJECTIVE

The primary objective of this study is to develop and apply LYNX-RNA (Language-

augmented Yield for Nextflow-based RNA eXpression analysis), a fully modular,

reproducible, and interpretable RNA-seq analysis pipeline that addresses current

limitations in transcriptomic workflows. Specifically, the goals of LYNX-RNA are as

follows:

1. To build a modular and scalable RNA-seq pipeline using the Nextflow framework

1) Enable flexible integration of widely used tools for preprocessing, alignment,

quantification, and statistical modeling.

2) Support local, HPC, and cloud-based execution environments with

containerized deployment using Conda, Docker, and Singularity.

https://www.sciencedirect.com/topics/medicine-and-dentistry/systemic-disease

5

3) Provide a parameter-driven configuration system that balances ease of use for

novices with full customization for advanced users.

2. To streamline the complete RNA-seq workflow from raw reads to biological insight

1) Automate quality control, read trimming, adapter removal, and contaminant

filtering using tools such as FastQC, fastp, and BBsplit.

2) Perform alignment with STAR or HISAT2, followed by transcript/gene

quantification using Salmon or featureCounts.

3) Implement robust differential gene expression analysis using DESeq2 and

downstream visualization (PCA, heatmaps, volcano plots).

3. To integrate machine learning models for biomarker discovery and classification

1) Include supervised learning approaches such as Random Forest and XGBoost

to classify samples across experimental groups (e.g., control, pre-treatment,

post-treatment).

2) Rank genes by predictive importance and visualize classifier performance

using metrics like ROC-AUC, F1-score, and confusion matrices.

3) Support stratified cross-validation and test/train splitting for reproducible ML-

based analyses.

4. To perform systems-level analysis through network and module-based exploration

1) Construct co-expression networks using WGCNA to identify gene modules

correlated with clinical traits or timepoints.

2) Build PPI networks using STRING data and identify hub genes using centrality

measures in Cytoscape.

3) Integrate gene-level and network-level results to enhance the biological

relevance of candidate biomarkers.

5. To incorporate immune and pathway activity profiling

1) Apply GSVA and ssGSEA for single-sample pathway scoring using curated

gene sets from MSigDB, with a focus on immune and metabolic signatures.

2) Quantify immune cell infiltration using immune marker gene sets and assess

correlations with hub gene expression and clinical conditions.

6

3) Visualize enrichment and immune profiles using violin plots, heatmaps, and

correlation matrices.

6. To enhance accessibility and interpretability using LLM-generated summaries

1) Integrate a Large Language Model (LLM) interface (e.g., OpenAI GPT) to

automatically generate natural-language summaries of analysis results.

2) Provide narrative outputs covering DEGs, functional enrichment, ML

classifiers, and immune infiltration profiles.

3) Lower the interpretive barrier for clinicians, experimental biologists, and non-

specialist users.

7. To validate the pipeline using a real-world clinical dataset

1) Demonstrate the application of LYNX-RNA on a longitudinal RNA-seq dataset

of Immune Thrombocytopenia (ITP) patients, sampled at control, pre-

treatment, 1 week, and 1 month post-treatment.

2) Identify timepoint-specific gene expression patterns, hub genes, and immune-

metabolic pathways involved in ITP pathogenesis.

3) Evaluate pipeline outputs for biological plausibility, classifier performance,

and network-level robustness.

8. To offer a reusable, open-source, and community-friendly solution

1) Publish the pipeline as an open-source tool, complete with documentation,

example data, and installation instructions.

2) Provide support for integration with standard file formats and compliance with

FAIR and nf-core-inspired best practices.

3) Enable long-term extensibility for new use cases such as viral transcript

detection, variant calling, and multi-omics integration.

7

1.4 SCOPE

This thesis encompasses both the development and application of LYNX-RNA, a

modular, scalable, and interpretable RNA-seq analysis pipeline built using the

Nextflow framework. The scope includes the technical architecture, tool integration,

and workflow automation that enable the complete RNA-seq processing pipeline—

from quality control and alignment to differential gene expression analysis, pathway

enrichment, machine learning–based biomarker discovery, co-expression network

modeling, immune infiltration profiling, and natural language report generation using

large language models (LLMs).

The pipeline is demonstrated on a real-world longitudinal RNA-seq dataset of Immune

Thrombocytopenia (ITP), comprising multiple clinical stages (control, pre-treatment,

week 1, and month 1). The objective is to showcase how LYNX-RNA identifies

differentially expressed genes, extracts timepoint-specific biological signatures,

uncovers immune and metabolic pathway activity, and highlights predictive

biomarkers using machine learning classifiers.

8

CHAPTER - 2

LITERATURE REVIEW

2.1 RNA-seq Analysis and Challenges

RNA sequencing (RNA-seq) has revolutionized the way scientists study

transcriptomes, enabling detailed insights into gene expression, regulation, and

function across different biological conditions. Over the years, various methodologies

have emerged for RNA-seq analysis, ranging from hybridization-based approaches to

high-throughput sequencing platforms. For the past decade, microarrays have grown

in popularity as the primary tool for gene expression analysis. Recently, however,

‘‘digital gene expression’’ by next-generation sequencing has been introduced as a

promising, new platform for assessing the copy number of transcripts, thereby

providing a digital record of the numerical frequency of a sequence in a sample.[10]

There are various Types of RNA-seq analysis based on technological or

methodological platforms, such as how microarray and NGS (Next-Generation

Sequencing) are distinct methods. Over the years, several methods have emerged for

RNA analysis, including microarray-based profiling, digital gene expression tag

profiling, and Next-Generation Sequencing (NGS)-based RNA-seq. Microarrays, once

widely used, depend on hybridization of RNA to pre-designed probes and are limited

to detecting known transcripts, offering only relative quantification with a constrained

dynamic range. Digital gene expression (DGE) profiling provides a more cost-

effective alternative but lacks the depth and breadth of full transcriptome coverage. In

contrast, NGS-based RNA-seq has become the preferred method due to its ability to

detect both known and novel transcripts, offer absolute quantification, and provide a

much wider dynamic range. NGS technologies support various formats including bulk

RNA-seq, single-cell RNA-seq, total RNA-seq, and long-read sequencing, each

tailored for specific applications like differential gene expression, isoform discovery,

splicing analysis, and cellular heterogeneity studies. Among these, single-cell RNA-

seq and spatial transcriptomics represent cutting-edge advancements that allow

transcriptomic analysis at unprecedented resolution.[7]

 NGS is preferred over microarrays and DGE methods because it is not limited by prior

knowledge of gene sequences, it offers higher sensitivity and accuracy, and it supports

a wide array of analytical applications—from basic gene expression profiling to

complex studies of gene regulation, alternative splicing, and translational dynamics.

As such, NGS has become the cornerstone of modern transcriptomic research due to

its scalability, comprehensiveness, and versatility across diverse biological systems.

9

RNA-seq, while powerful and widely adopted, presents several challenges at various

stages of the analysis pipeline. These challenges arise due to the complexity of

biological systems, limitations in technology, and computational demands. Below is a

comprehensive overview of the key challenges in RNA-seq analysis, grouped by

category:

1. Experimental and Technical Challenges

One of the first and most critical challenges in RNA-seq analysis arises at the

experimental stage. The quality of RNA extracted from biological samples plays a

crucial role in determining the success of the entire pipeline. Degraded RNA can lead

to biased or incomplete coverage of transcripts, especially at the 5' end, thereby

compromising quantification accuracy. Contaminants such as genomic DNA or phenol

from the extraction process can further interfere with downstream applications like

library preparation or sequencing.

Another major issue is the presence of batch effects—systematic differences between

groups of samples processed at different times or under slightly different laboratory

conditions. These can introduce false biological signals or obscure real ones.

Moreover, variations in library preparation methods (such as poly(A) selection versus

ribosomal RNA depletion) can influence the types and quantities of RNA captured,

introducing bias that complicates downstream comparative analyses.

2. Computational Challenges

RNA-seq datasets are inherently large, often consisting of millions to billions of

sequencing reads per experiment. This scale imposes significant demands on

computational infrastructure in terms of storage, memory, and processing power. Even

before analysis begins, researchers need to address issues like raw data storage, file

conversion, and indexing.

Aligning sequencing reads to a reference genome or transcriptome poses another major

computational hurdle. Because eukaryotic genes contain introns that are spliced out in

the mature transcript, RNA-seq reads often span exon-exon junctions. Splice-aware

aligners such as STAR and HISAT2 are necessary, but configuring them to balance

speed, accuracy, and memory use can be difficult. Further complications arise in

repetitive genomic regions or for genes with high sequence similarity (e.g., paralogs),

where misalignment may occur.

In transcriptome assembly, reconstructing full-length transcripts from short reads is

computationally intensive and error-prone. This is especially true for lowly expressed

transcripts or genes with multiple isoforms, where read coverage may be sparse or

ambiguous.

10

3. Statistical and Analytical Challenges

A central aim of RNA-seq analysis is to identify differentially expressed genes

between conditions. However, the raw counts generated from read mapping are not

immediately suitable for comparison. They must be normalized to account for

differences in sequencing depth and RNA composition. Choosing the appropriate

normalization method is non-trivial. Common methods include Transcripts Per Million

(TPM), Trimmed Mean of M-values (TMM), and DESeq2’s size factor normalization.

Each method has strengths and assumptions that may or may not hold in a given

dataset.

Low-abundance genes present another challenge. These genes often exhibit high

variability and low signal-to-noise ratios, making it difficult to determine whether

observed differences are biologically meaningful or due to sampling noise.

Moreover, differential expression testing involves thousands of statistical tests, one for

each gene. This creates a multiple testing problem that must be addressed using False

Discovery Rate (FDR) correction. While this reduces false positives, it can also reduce

statistical power, particularly for datasets with small sample sizes.

4. Interpretation Challenges

Once differentially expressed genes are identified, interpreting their biological

significance can be difficult. Functional annotation databases like Gene Ontology

(GO) and KEGG are commonly used for enrichment analysis, but these databases may

be incomplete or outdated, especially for non-model organisms. Furthermore, gene

function is often context-dependent and may not be well captured by generic

annotations. [8]

Another layer of complexity arises at the transcript or isoform level. Most RNA-seq

pipelines aggregate read counts at the gene level, potentially masking significant

changes in isoform usage or alternative splicing. Tools exist for isoform-level analysis,

but they are more computationally intensive and require deeper sequencing to ensure

sufficient coverage.

In single-cell RNA-seq, additional interpretation challenges emerge. Technical noise,

dropouts (false zero counts), and cell-to-cell variability make it difficult to distinguish

technical artifacts from true biological differences.[9]

5. Reproducibility and Standardization

Despite the maturity of RNA-seq as a technology, reproducibility remains a major

concern. Different research groups often use different software tools, parameter

settings, and reference annotations. These discrepancies can lead to substantial

variation in results. There is also a lack of universally accepted standard pipelines,

11

although initiatives like nf-core and guidelines from the ENCODE consortium aim to

address this.

Proper documentation of methods, software versions, and metadata is essential for

reproducibility, but is frequently overlooked. Inconsistent or incomplete metadata can

make it impossible to replicate analyses or compare results across studies.

6. Integration and Scalability

As biological research becomes increasingly multi-omics in nature, RNA-seq data is

often integrated with other data types, such as proteomics, epigenomics, or

metabolomics. This integration requires compatible data formats, normalization

strategies, and statistical models, which can be difficult to harmonize.

Furthermore, the volume of RNA-seq data continues to grow, especially in population-

scale studies or large single-cell projects. Traditional analysis pipelines may not scale

well under such loads. Workflow managers like Nextflow and Snakemake enable

automation and parallelization, but they require advanced computational skills to

implement and maintain.

7. Validation and Biological Relevance

A final and often overlooked challenge is experimental validation. While RNA-seq can

generate hypotheses about gene expression and regulatory mechanisms, these must be

validated through laboratory experiments such as qRT-PCR, western blotting, or

functional assays. Without validation, RNA-seq results risk being viewed as

exploratory rather than definitive.

Moreover, the translation of RNA-seq findings into clinically actionable insights

remains a complex process. It involves not only technical validation, but also

regulatory approvals, standardization across platforms, and demonstration of

reproducibility and predictive power in independent cohorts.

2.2 Existing Pipelines

Over the past decade, RNA sequencing (RNA-seq) has become central to

transcriptomic research, powering investigations in disease biology, developmental

genomics, and biomarker discovery. This widespread use has catalyzed the

development of several RNA-seq pipelines, each aiming to simplify and standardize

the complex analytical steps required—from read processing and alignment to

statistical modeling and biological interpretation. However, existing tools differ

12

significantly in terms of flexibility, downstream depth, user accessibility, and

integration with emerging technologies such as machine learning and AI-driven

interpretability. In this landscape, LYNX-RNA offers a comprehensive and modular

solution that addresses many of the limitations inherent in prior workflows.

For instance, VIPER[27] is a Snakemake-based pipeline that supports differential

expression and immune infiltration analysis, and is compliant with nf-core standards.

However, it lacks support for machine learning–driven biomarker prioritization or

natural language report generation. Similarly, miARma-Seq [43] focuses on multi-

species compatibility and supports miRNA and circRNA studies, yet it is not designed

for full-scale transcriptome interpretation or integration with predictive models. The

TRAPLINE[44] pipeline, while embedded in the Galaxy platform for GUI

accessibility, suffers from reduced adaptability due to Galaxy’s framework constraints

and lacks co-expression network support. RNASeqR is a six-step R-based workflow

that simplifies command-line integration for biologists, but it is limited to basic DEG

and GO/KEGG analyses and is not modular enough for advanced custom workflows.

RNAdetector, a GUI-based platform offering cloud and Docker support, excels in

accessibility but falls short on flexibility, lacking support for co-expression, immune

profiling, or classification tasks. The nf-core initiative defines a community-curated

standard for bioinformatics pipelines using Nextflow. Pipelines like nf-core/rnaseq support

STAR, Salmon, featureCounts, and MultiQC, offering broad compatibility and continuous

integration for reproducibility. While nf-core/rnaseq excels in standardization, its

functionality largely ends at quantification and QC. It does not integrate ML, network

analysis, immune profiling, or interpretive summarization, requiring manual

downstream scripting for biological insight. LYNX-RNA follows nf-core best

practices for reproducibility, containerization, and version control, but extends the

framework with systems biology modules, ML-based biomarker analysis, and natural

language output, making it more holistic and translationally oriented. In contrast,

LYNX-RNA is designed to address these shortcomings through a fully containerized,

Nextflow-based modular pipeline that integrates all core RNA-seq steps with

extensive downstream analytics. It supports quality control (FastQC, MultiQC),

alignment (STAR, HISAT2), quantification (Salmon, featureCounts), and differential

expression (DESeq2), alongside advanced tools for WGCNA-based co-expression

network construction, PPI-based hub gene analysis via STRING and Cytoscape, and

immune cell infiltration analysis using ssGSEA and GSVA. Notably, LYNX-RNA also

incorporates a dedicated machine learning module, offering Random Forest and

XGBoost classifiers with ROC-AUC, feature importance, and cross-validation

capabilities, enabling robust biomarker discovery that extends beyond DEG thresholds

alone. [45], [17]

What sets LYNX-RNA apart from all previously reported pipelines is its integration

with a Large Language Model (LLM), which automates the generation of natural-

language summaries of the analytical results. This makes outputs interpretable by non-

bioinformaticians—particularly clinicians or experimentalists—facilitating direct

translation of data into insight. Moreover, LYNX-RNA is tested on longitudinal RNA-

13

seq data from immune thrombocytopenia (ITP) patients across four timepoints

(control, pre-treatment, 1 week, 1 month post-treatment), demonstrating its strength in

multi-condition, time-sensitive transcriptomic profiling—an application rarely

supported by other pipelines, which typically assume simple binary designs.

Finally, the visual output of LYNX-RNA—ranging from PCA plots and volcano plots

to heatmaps and ML-based feature rankings—follows a “glance-and-drill-down”

design philosophy, enabling users to rapidly understand global patterns while retaining

access to detailed statistical data. The pipeline is deployable on local, HPC, and cloud

platforms using Conda or Docker, and its modular design ensures full reproducibility

and extensibility. In sum, LYNX-RNA delivers a next-generation RNA-seq analysis

platform that not only streamlines the analytical process but also elevates

interpretation, scalability, and clinical relevance—surpassing many of the design and

usability barriers that persist in current RNA-seq pipelines.

RNA sequencing (RNA-seq) data analysis pipelines typically consist of modular

stages: quality control, alignment, quantification, differential expression, functional

enrichment, and optionally, network analysis, immune profiling, or machine learning-

based prioritization. This section compares LYNX-RNA’s toolset to other widely used

alternatives in the field.

1. Quality Control and Preprocessing

1) FastQC

One of the most widely used tools for initial read quality assessment. Reports per-base

quality, adapter content, GC distribution, and overrepresented sequences.[17]

Limitations: Output is static (HTML-based), and it does not modify reads.

2) Fastp

Performs both quality trimming and filtering, as well as read correction, adapter

removal, and UMI handling.

Offers detailed JSON/HTML summaries and supports both single- and paired-end

reads.[17]

Advantages: Faster and more feature-rich than older tools like Trimmomatic.

 3) Trimmomatic / Cutadapt

Trimmomatic is highly customizable but lacks modern reporting features.

Cutadapt is popular for adapter trimming but does not perform full QC.

Comparison: fastp (used in LYNX-RNA) is faster than Trimmomatic and more

comprehensive than Cutadapt, making it suitable for scalable, automated workflows.

14

4) MultiQC

Aggregates reports from tools like FastQC, STAR, and Salmon into a single HTML

dashboard.[17]

Used in LYNX-RNA to provide unified QC visibility across all samples.

2. Read Alignment Tools

1) STAR

Ultrafast aligner with high sensitivity for splice junctions; widely used in genome-

wide transcriptomics.

Limitation: High memory usage (~30–40 GB).

2) HISAT2

Memory-efficient and graph-aware aligner. Performs well on large and complex

genomes.

Comparison: LYNX-RNA supports both STAR and HISAT2, giving users flexibility

based on system resources and study type.

3) TopHat2

Formerly a standard RNA-seq aligner, now deprecated and replaced by HISAT2.

Obsolete in modern pipelines due to poor performance and lack of updates.[17]

3. Quantification Tools

1) Salmon

Provides fast and accurate transcript-level quantification without full alignment.

Supports GC-bias correction and bootstrapping.

Used in LYNX-RNA for fast, bias-aware transcript abundance estimation.

2) Kallisto

Similar to Salmon, also uses pseudoalignment. Slightly faster but lacks as many built-

in bias corrections.

3) featureCounts

Gene-level read assignment tool from the Subread package. Robust and widely used

for input into DESeq2 or edgeR.

4) HTSeq-count

15

Python-based read-counting tool. Slower than featureCounts and less scalable for large

datasets.

5) RSEM

Alignment-based quantifier with support for isoform-level estimation. Used by VIPER

and nf-core but slower than Salmon/Kallisto.[17]

4. Differential Expression Tools

1) DESeq2

Negative binomial model–based method. Performs well in datasets with biological

replicates.

Integrates shrinkage estimation for fold changes and dispersion.

2) edgeR

Particularly effective with small sample sizes. Supports generalized linear models and

complex designs.

3) limma-voom

Transforms count data to log-counts per million and models them using linear models.

Less suited for low-count genes but effective for microarray-like designs.

 Comparison: LYNX-RNA uses DESeq2 as default due to its balance between stability,

scalability, and community adoption, with optional support for edgeR.

5. Co-expression and Network Analysis

1) WGCNA

The gold standard for co-expression module detection. Used to identify biologically

relevant gene modules correlated with traits or timepoints.

Integrated in LYNX-RNA to support systems-level discovery.

2) CEMiTool

An alternative to WGCNA with automatic parameter selection and built-in enrichment

analysis.

3) STRING + Cytoscape

16

For visualizing protein–protein interaction networks and identifying hub genes based

on node centrality.

 Comparison: While most pipelines stop at DEGs, LYNX-RNA incorporates network

biology modules for hub gene prioritization, enabling deeper biological

interpretation.[17]

6. Functional Enrichment Tools

1)clusterProfiler

Widely used R package for GO and KEGG enrichment. Supports visualizations like

dotplots, cnetplots, and ridge plots.

2) g:Profiler

Web and API-accessible tool for enrichment with excellent multi-organism support

and compatibility with Ensembl IDs.

3) DAVID / Enrichr

Popular web-based platforms. Easy to use but limited in batch automation and

reproducibility.

Comparison: LYNX-RNA automates enrichment via clusterProfiler and g:Profiler,

offering scalable and reproducible outputs with integration into downstream plots.

7. Immune Profiling and Pathway Analysis

1) ssGSEA / GSVA

Tools to compute per-sample pathway activity scores from gene sets (e.g., immune cell

signatures from MSigDB).

Integrated into LYNX-RNA for immune cell estimation and correlation with hub gene

expression.

2) CIBERSORT / xCell

Web-based or R-based tools to infer immune cell composition. CIBERSORT uses

support vector regression; xCell applies a spillover correction model.

 Comparison: LYNX-RNA uses ssGSEA + GSVA for flexible, sample-wise scoring

and plans to integrate xCell/CIBERSORT in future versions.

17

8. Machine Learning and Automated Interpretation

1) Random Forest / XGBoost

Integrated into LYNX-RNA for supervised learning and gene ranking. Users can view

confusion matrices, ROC-AUC, and feature importance scores.

2) LLM Integration

LYNX-RNA is the first RNA-seq pipeline to incorporate GPT-based summarization,

producing natural-language outputs that describe DEGs, pathways, classifier results,

and immune profiles.

Comparison: No existing pipeline (VIPER, nf-core, DEWE, TRAPLINE, RNASeqR)

offers this level of automated, clinician-friendly interpretation.

2.3 Nextflow as a Workflow Manager

Nextflow is a domain-specific language (DSL) specifically designed for building

scalable and reproducible data analysis workflows. It is particularly suited for

bioinformatics applications due to its ability to streamline the integration of

heterogeneous tools, manage software dependencies, and orchestrate execution across

various computational platforms—from personal computers to high-performance

computing (HPC) clusters and cloud environments.

In the context of LYNX-RNA, Nextflow’s DSL2 framework was utilized to design

modular and encapsulated workflow components. Each analytical stage—such as

quality control, quantification, differential expression, co-expression network

construction, and neoepitope prediction—was implemented as an independent

module. This modularity promotes reusability, simplifies debugging, and allows

parallel execution of independent tasks, thereby improving computational efficiency.

One of Nextflow’s key strengths is its seamless compatibility with software

environment managers like Conda and container technologies such as Docker and

Singularity. This ensures that all dependencies are explicitly defined and portable,

enabling users to reproduce results regardless of their system configurations.

Furthermore, the channel-based data flow model in Nextflow facilitates intuitive data

movement and parallelism between workflow steps. This model abstracts away the

complexity of file handling and intermediate data storage, allowing researchers to

focus on experimental logic rather than low-level scripting.

LYNX-RNA leverages these capabilities to deliver a reproducible, flexible, and user-

friendly RNA-seq analysis pipeline that can be deployed both locally and in HPC

environments. With its scalability and reproducibility, Nextflow serves as the

18

backbone of the LYNX-RNA infrastructure, making it an ideal choice for modern

bioinformatics pipeline development.

In Nextflow, a workflow is a function that is specialized for composing processes and

dataflow logic (i.e. channels and operators).

2.3.1 Workflow construction

1.Input and Configuration

Files Required:

• Paired-end FASTQ files (*_R1.fastq.gz, *_R2.fastq.gz)

• Sample sheet (samplesheet.csv)

• Reference genome (FASTA + GTF)

• Configuration files (YAML/JSON for paths, environment, and parameters)

params.reads = "data/fastq/*_{R1,R2}.fastq.gz"

params.genome_fasta = "ref/genome.fa"

params.annotation_gtf = "ref/annotation.gtf"

params.outdir = "results/"

19

2. Quality Control (FastQC & MultiQC)

Tool: FastQC

 Purpose: Assess raw read quality, GC content, duplication rate.

Follow-up: MultiQC for consolidated reports.

process QC {

 input:

 file(reads) from file(params.reads)

 output:

 file("*.html") into qc_reports

 script:

 """

 fastqc $reads -o ./qc/

 """

}

20

3. Trimming (TrimGalore / fastp)

Purpose: Remove adapters and low-quality bases.

Tool: TrimGalore or fastp (user configurable)

process Trimming {

 input:

 tuple val(sample_id), file(reads) from read_pairs

 output:

 tuple val(sample_id), file("*.fq.gz") into trimmed_reads

 script:

 """

 trim_galore --paired ${reads[0]} ${reads[1]} -o trimmed/

 """

}

21

4. Alignment (STAR / HISAT2)

• Purpose: Map clean reads to reference genome.

• Tool: STAR (default), HISAT2 (optional)

process Alignment {

 input:

 tuple val(sample_id), file(reads) from trimmed_reads

 output:

 tuple val(sample_id), file("*.bam") into aligned_bams

 script:

 """

 STAR --genomeDir star_index \

 --readFilesIn ${reads[0]} ${reads[1]} \

 --readFilesCommand zcat \

 --outSAMtype BAM SortedByCoordinate \

 --outFileNamePrefix $sample_id.

 """

}

22

5. Gene-level Quantification (featureCounts / Salmon)

Tool: featureCounts (for BAM), optionally Salmon (quasi-mapping)

Output: Gene count matrix

process Quantification {

 input:

 tuple val(sample_id), file(bam) from aligned_bams

 output:

 file("counts.txt") into gene_counts

 script:

 """

 featureCounts -a ${params.annotation_gtf} -o counts.txt -T 4 -p -B $bam

 """

}

23

6. Normalization and Differential Expression (DESeq2)

Tool: DESeq2 in R

Output: Normalized counts, DEGs, PCA plot, volcano plot

(R script)

dds <- DESeqDataSetFromMatrix(countData = counts,

 colData = coldata,

 design = ~ condition)

dds <- DESeq(dds)

res <- results(dds)

write.csv(as.data.frame(res), file="DEGs.csv")

24

7. Functional Enrichment (GO/KEGG)

Tool: clusterProfiler / enrichR

Input: DEGs

Output: GO and KEGG enrichment tables + plots

import gseapy as gp

import pandas as pd

Load your DEG list

degs = pd.read_csv("DEGs.csv")

genes = degs['gene'].dropna().tolist()

Perform GO Biological Process enrichment

enr = gp.enrichr(gene_list=genes,

 gene_sets='GO_Biological_Process_2021',

 organism='Human',

 description='GO_BP',

 outdir='go_results',

 cutoff=0.05)

Results

enriched_df = enr.results

enriched_df.to_csv("GO_BP_enrichment.csv", index=False)

25

8. Network Construction (WGCNA + Cytoscape)

Tool: WGCNA for gene co-expression modules

Export: Network file for Cytoscape

import pandas as pd

import numpy as np

from scipy.cluster.hierarchy import linkage, fcluster, dendrogram

from sklearn.preprocessing import StandardScaler

import seaborn as sns

import matplotlib.pyplot as plt

Load normalized expression data (genes as rows)

datExpr = pd.read_csv("normalized_counts.csv", index_col=0)

Optional: transpose if genes are in columns

datExpr = datExpr.T

Standardize data

scaler = StandardScaler()

dat_scaled = scaler.fit_transform(datExpr)

Compute correlation matrix

cor_matrix = np.corrcoef(dat_scaled.T)

Compute dissimilarity (1 - correlation)

dissimilarity = 1 - cor_matrix

Hierarchical clustering

linkage_matrix = linkage(dissimilarity, method='average')

Plot dendrogram

plt.figure(figsize=(10, 6))

dendrogram(linkage_matrix, labels=datExpr.columns)

plt.title("Gene Co-expression Dendrogram")

plt.show()

Assign modules (clusters)

module_labels = fcluster(linkage_matrix, t=1.15, criterion='distance')

modules = pd.DataFrame({'Gene': datExpr.columns, 'Module': module_labels})

modules.to_csv("gene_modules.csv", index=False)

26

9. Visualization and Reporting (MultiQC + Plots)

Purpose: Generate integrated HTML report

Tool: MultiQC + R plots (PCA, volcano, heatmap)

2.3.2 Environment Management

1.Use Conda or Docker/Singularity to ensure reproducibility:

2. Singularity

multiqc ./ -o results/multiqc/

nextflow run lynx-rna.nf -profile conda

nextflow run lynx-rna.nf -profile singularity

27

2.3.3 Output Structure

results/

├── qc/

├── trimmed/

├── alignment/

├── counts/

├── degs/

├── enrichment/

├── networks/

└── multiqc_report.html

28

2.4 Statistical Foundations from RNA-seq

The statistical foundations underpinning RNA-seq analysis are essential for

transforming raw sequence data into biologically meaningful insights. This section

outlines the end-to-end statistical workflow used in LYNX-RNA, detailing the

mathematical models, algorithms, and interpretation techniques employed in the

analysis of longitudinal RNA-seq data from Immune Thrombocytopenia (ITP) patients

across three treatment stages.

2.4.1 Quality Assessment and Preprocessing

RNA-seq analysis begins with raw sequencing reads in FASTQ or FASTQ.GZ format,

which include both nucleotide sequences and associated Phred quality scores. Each

base call is assigned a probability PPP of being incorrect, with the corresponding Phred

score computed as:

Q = −10log10(P)

Higher Q values reflect higher confidence in the base call. Tools like FastQC and fastp

are used to generate summary metrics such as per-base quality, GC content, sequence

length distribution, and adapter contamination. Statistical assessments at this stage

may include Chi-square goodness-of-fit tests to evaluate deviations in nucleotide

distribution from the expected 25% uniform base frequency in un-biased libraries.

Removal of low-quality bases and adapter sequences is critical to minimize

downstream alignment errors and improve quantification accuracy.

2.4.2 Alignment and Mapping Quality

Cleaned reads are aligned to a reference genome (e.g., GRCh38) using splice-aware

aligners such as STAR or HISAT2, which implement dynamic programming

algorithms and scoring matrices that reward matches and penalize mismatches,

insertions, deletions, and splicing junctions. The Mapping Quality Score (MAPQ) is

used to quantify confidence in the alignment:

MAPQ = −10log10(P)

where PPP is the probability that the alignment is incorrect. Aligners may use Bayesian

probability models or maximum-likelihood estimations to compute these scores.

Aligned reads are stored in SAM/BAM files and subsequently indexed. Tools like

Samtools or Qualimap provide statistical summaries of alignment quality, including

mapping percentage, read depth distribution, and coverage bias.

2.4.3 Transcript Quantification and Normalization

Once aligned, reads must be assigned to genomic features (genes or transcripts) for

quantification. Two main approaches exist:

29

• Alignment-based: Tools like featureCounts assign reads to features in GTF

files based on overlapping coordinates.

• Alignment-free (pseudoalignment): Tools like Salmon use a k-mer based

Expectation-Maximization (EM) algorithm for rapid transcript quantification.

Salmon corrects for GC bias, sequence-specific bias, and positional bias, improving

transcript-level expression estimation.

To enable inter-sample comparison, expression values are normalized. A common

normalization unit is Transcripts Per Million (TPM), calculated as:

Where is the number of reads mapping to transcript i , and Li is its effective

length.

2.4.4 Statistical Modelling for Differential Expression

The central goal of many RNA-seq experiments is to identify genes with statistically

significant differences in expression between experimental groups. DESeq2 is a

widely used R package that models raw count data using a negative binomial

distribution, which captures both mean-variance dependence and biological

variability:

Wald tests or likelihood ratio tests are used to assess the null hypothesis

Significance is corrected using the Benjamini-Hochberg procedure to control the false

discovery rate (FDR).

30

2.4.5 Functional Enrichment and Gene Ontology Analysis

Identified DEGs are functionally annotated using enrichment analysis, which

determines whether certain biological processes, pathways, or cellular components are

overrepresented among DEGs. Tools such as clusterProfiler, enrichR, and DAVID

apply the hypergeometric test:

Pathway enrichment is extended using tools like GSEA (Gene Set Enrichment

Analysis), which ranks all genes by fold-change and computes an enrichment score

(ES) for predefined gene sets. The ES is normalized to account for gene set size,

producing a normalized enrichment score (NES) with significance determined by

permutation testing.

2.4.6 Network and Module-Based Analysis

In LYNX-RNA, additional statistical modeling is applied through WGCNA (Weighted

Gene Co-expression Network Analysis). WGCNA constructs a scale-free network by

calculating pairwise gene correlations and clustering them into modules based on

topological overlap. Module eigengenes are correlated with clinical traits using

Pearson correlation, and hub genes are identified via centrality measures in STRING-

based PPI networks.

2.4.7 Immune Profiling and Sample-Level Scoring

Using ssGSEA and GSVA, per-sample enrichment scores are calculated for immune

cell type signatures and metabolic pathways. These tools implement non-parametric,

rank-based methods to score the degree of enrichment for each gene set in individual

samples, enabling immune microenvironment inference and immune-metabolic

correlation with treatment response.

31

2.4.8 Machine Learning for Predictive Feature Ranking

For biomarker identification, LYNX-RNA integrates machine learning models

including Random Forest and XGBoost. These models use gene expression matrices

as input features and sample labels (e.g., Control, Pre, Week, Month) as classification

targets. [25]

Model performance is evaluated using:

• Accuracy, Precision, Recall, F1-score

• ROC-AUC (Receiver Operating Characteristic – Area Under Curve)

• Cross-validation metrics (e.g., 5-fold stratified CV)

Feature importance scores are extracted to rank predictive biomarkers, adding a layer

of statistical prioritization beyond DEG thresholds.

32

CHAPTER – 3

METHODOLOGY – PIPELINE DESIGN

3.1 Development Environment

3.1.1 Workflow Orchestration with Nextflow

1. Modularity: Each step in the RNA-seq workflow (e.g., trimming, mapping,

quantification) is implemented as an independent process, allowing for

selective re-execution.

2. Portability: Nextflow pipelines are platform-agnostic and can run seamlessly

on local machines, cloud services (AWS, GCP), or HPC clusters.

3. Container Support: Each module runs inside its own isolated container

(Docker/Singularity), ensuring full reproducibility regardless of the

underlying OS or library dependencies.

4. Resource Management: Memory, CPU, and storage requirements can be

defined per process, enabling efficient resource utilization even in low-RAM

(≤24GB) environments.

Profile-based Configuration: Custom execution profiles (local, colab, docker, hpc)

allow the same codebase to be deployed across environments with no manual edits.

3.1.2 Programming Environment and Toolchain

1. LYNX-RNA was implemented using a hybrid programming approach

leveraging the strengths of Python and R, both of which play critical roles in

the pipeline.

2. Python (v3.10)

3. Python is responsible for:

4. Preprocessing Automation: Orchestration of trimming, QC, and mapping

processes using subprocess, os, and pathlib.

5. Machine Learning Models:

a. Random Forest and XGBoost classifiers were implemented using

scikit-learn and xgboost for identifying predictive biomarkers based

on normalized gene expression.

b. Cross-validation strategies (e.g., LOOCV, stratified k-fold) were

integrated to ensure generalizable performance.

33

6. CLI Wrapper: A user-friendly command-line interface was built in Python

to abstract complex command sequences. It includes:

a. Automatic detection of file formats and directories

b. Interactive prompts and parameter validation

c. Real-time progress tracking and error logging

7. LLM Report Generation: A custom module connects to the OpenAI API,

using GPT-4 to generate human-readable interpretations of pipeline results.

This provides domain-agnostic users with clear summaries of key findings,

charts, and statistical conclusions.

8. R (v4.2.2)

9. R complements Python for the statistical and biological interpretation of

RNA-seq data:

Differential Expression Analysis: Conducted using the DESeq2 package

with support for multi-factor designs, batch correction, and shrinkage

estimation.

Network Analysis: The WGCNA package was used to identify gene modules

and hub genes based on expression co-variation.

Functional Enrichment: The pipeline supports GO/KEGG enrichment via

ClusterProfiler, ReactomePA, and enrichplot. For PPI analysis, STRINGdb

was used to query the STRING database and visualize networks.

Immune Profiling: GSVA and ssGSEA were used for immune cell signature

profiling, providing insight into cell-type infiltration and immune modulation.

Visualization: High-resolution plots were generated using ggplot2,

EnhancedVolcano, pheatmap, and ComplexHeatmap

34

3.2 Architecture of LYNX-RNA

Fig 3.1 Workflow of LYNX-RNA rna-seq pipeline

35

LYNX-RNA is organized into five primary stages, each composed of modular

processes that can be individually configured, reused, or replaced depending on the

research goal:[22]

Stage 1: Preprocessing and Quality Control. Raw FASTQ files (single-end or paired-

end) are subjected to initial quality control using FastQC (v0.11.9) and read trimming

with fastp (v0.23.2) to remove low-quality bases and adapters. UMI-tools (v1.1.2) is

optionally employed for unique molecular identifier (UMI) extraction in UMI-based

library protocols. Contaminant filtering and rRNA depletion are handled using

SortMeRNA and BBsplit. These steps ensure high-quality, deduplicated, and cleaned

reads for downstream analysis. [23]

Stage 2: Alignment and Quantification. Reads are aligned to the human reference

genome (GRCh38) using STAR (v2.7.10a) or HISAT2 (v2.2.1). For quantification,

transcript-level abundances are estimated using Salmon (v1.10.1) in quasi-alignment

mode. Optionally, featureCounts (via Subread) is used to produce gene-level count

matrices for downstream analysis. All aligned BAM files are indexed and sorted using

SAMtools (v1.15), with optional duplication marking by Picard Tools. [24]

Stage 3: Differential Expression and Functional Analysis. Gene-level count matrices

are imported into R (v4.3.1) for statistical analysis using DESeq2 (v1.40.2).

Differential expression is computed across defined comparisons (e.g., Control vs Pre,

Control vs 1 Week, Control vs 1 Month). Genes with an adjusted p-value (FDR) <

0.05 and |log₂ fold change| ≥ 1 are considered significant. Functional enrichment

analysis is performed using clusterProfiler and g:Profiler to identify overrepresented

Gene Ontology (GO) terms and KEGG pathways.[25]

 Stage 4: Co-expression Network and Hub Gene Identification. Weighted Gene Co-

expression Network Analysis (WGCNA) is implemented to identify co-expressed

gene modules associated with clinical stages. A scale-free network is constructed with

soft-threshold power β = 5 and scale-free topology fit R² > 0.95. Modules are defined

by topological overlap and merged if eigengene correlation > 0.75. Module–trait

relationships are evaluated using Pearson correlation. Genes from significant modules

are used to build a protein–protein interaction (PPI) network via the STRING database

API, and Cytoscape is used for visualization. Hub genes are identified based on node

degree centrality. [26]

Stage 5: Machine Learning-Based Biomarker Discovery. Normalized expression

matrices (e.g., TPM or variance-stabilized counts) are exported for supervised machine

learning in Python (v3.11). Feature selection and classification are performed using

Random Forest and XGBoost algorithms. The dataset is stratified into training and test

sets (typically a 70/30 split), and model performance is evaluated using metrics

including accuracy, F1-score, and ROC-AUC. Genes are ranked based on feature

importance scores, and top-ranked genes are further analyzed for biological

relevance.[39]

Stage 6: Pathway and Immune Enrichment Analysis. Gene Set Enrichment Analysis

(GSEA) and single-sample GSEA (ssGSEA) are performed using the GSVA R

36

package with curated gene sets (e.g., c2.cp.kegg.v7.5.1 and c7.immunesigdb.v7.5.1

from MSigDB). Pathway activity scores are calculated for each sample, and

immune/metabolic enrichment patterns are visualized using violin plots, ridge plots,

and heatmaps. Correlation analysis is used to link hub gene expression with

enrichment scores.[40]

 Stage 7: Immune Cell Infiltration Profiling. To assess immune microenvironment

dynamics, ssGSEA-based immune infiltration analysis is performed using predefined

immune gene sets (e.g., LM22). Relative infiltration scores for T cells, NK cells, B

cells, macrophages, and dendritic cells are calculated. Comparisons are made between

ITP and control groups, and correlation analysis links hub gene expression to specific

immune cell types. Outputs include violin plots, bar charts, and correlation

matrices.[41]

Stage 8: Large Language Model (LLM)-Driven Report Generation. To enhance

interpretability, LYNX-RNA integrates a Large Language Model (LLM) interface

(OpenAI API, GPT-based) that automatically generates structured, natural-language

summaries of key results. Summaries include DEG highlights, pathway

interpretations, classifier performance narratives, and conclusions tailored to clinicians

or non-specialist researchers. This AI-assisted reporting bridges the gap between

computational outputs and biological insight.[42]

 Execution and Environment LYNX-RNA is orchestrated using Nextflow (v22.10.1),

enabling scalable execution across local machines, HPC clusters, and cloud platforms

(e.g., AWS Batch). All tools are managed via Conda environments or Docker

containers, ensuring reproducibility. The pipeline accepts configuration through

YAML files and supports parallelization across multiple samples and processes.

3.3 Quality Control & Preprocessing

3.3.1 Check quality with FastQC-

The main functions of FastQC are-

1. Import of data from BAM, SAM or FastQ files (any variant)

2. Providing a quick overview to tell you in which areas there may be problems

3. Summary graphs and tables to quickly assess your data

4. Export of results to an HTML based permanent report

5. Offline operation to allow automated generation of reports without running the

interactive application. [30]

Run FastQC to check the raw data quality.

fastqc sample_01.fastq.gz --extract -o /path/to/output_folder

37

The output contains graphs and statistics about the raw quality, including quality scores, GC

content, adapter percentage, and more. Below are two examples of the output files.[1]

Fig.3.2 Per base sequence quality. Quality scores for each base position in the read are

represented as box plots. The blue line represents the average quality score. High-

quality data will typically have over 80% of bases with a quality score of 30 or higher

(i.e., Q30 > 80%). Q30 represents 99.9% accuracy in the base call, or an error rate of

1 in 1000. A dip in quality is expected towards the end of the read.

Fig.3.3 Adapter content. Percentage of reads that match the Illumina adapter

sequence (red) is plotted for each base position. Since standard library preparations

capture a range of insert sizes, some sequenced fragments will be shorter than the

read length (<150 bp in this case).

3.3.2 Trim reads with Trimmomatic

Poor-quality regions and adapter sequences should be trimmed from the reads before

further analysis. Since Trimmomatic has an executable JAR file, you’ll need to use

Java to execute it rather than doing so directly in the command line.[30]

38

Fig.3.4 Per base sequence quality after trimming. Notice the improvement at the end

of the read, compared to the raw data above. All box plots are within the high-quality

(green) zone.

Fig.3.5 Adapter content after trimming. Adapter sequences have been completely

removed from the reads, as expected

java -jar trimmomatic-0.39.jar PE input_forward.fastq.gz input_reverse.fastq.gz

output_forward_paired.fastq.gz output_forward_unpaired.fastq.gz

output_reverse_paired.fastq.gz output_reverse_unpaired.fastq.gz ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 MINLEN:36

39

3.4 Transcript Quantification

3.4.1 STAR aligner

Basic STAR workflow consists of 2 steps-

1. Genome Index Generation-Prior to read alignment, STAR requires the

creation of genome index files, which are derived from user-supplied

reference genome sequences (FASTA) and corresponding gene

annotation files (GTF/GFF). These index files serve as an optimized

reference data structure, enabling rapid alignment of RNA-seq reads in

subsequent steps.The index generation step is computationally

intensive and typically needs to be performed only once per genome

version (e.g., GRCh38/hg38). The resulting index files are stored

locally and reused across multiple experiments, provided that the

genome and annotation combination remains the same.
2. Read Mapping to the Reference Genome—Once the genome index

is generated, STAR performs the alignment of RNA-seq reads (in

FASTQ format) to the indexed genome. This mapping process is

optimized for both speed and sensitivity, particularly for detecting

splice junctions in eukaryotic transcripts.[31],[13]

 During this phase, STAR accepts the following as inputs:

1) Indexed genome files from Step 1

2) Trimmed RNA-seq reads (FASTQ)

3) Alignment parameters specified by the user or pipeline configuration

STAR outputs a comprehensive set of files, including:

1) Alignment files in SAM or BAM format

2) Mapping summary statistics, such as uniquely mapped reads, multi-mapped

reads, and mismatch rates

3) Splice junction annotation files (useful for novel transcript discovery)

4) Unmapped read logs for troubleshooting and downstream analysis

5) Wiggle (WIG) or BigWig files for signal track visualization in genome

browsers

40

3.4.2 Generating genome indexes

Before RNA-seq reads can be mapped to a reference genome, STAR requires the

creation of genome index files. These indexes are pre-computed data structures that

allow STAR to rapidly align sequencing reads to the genome while preserving high

sensitivity to spliced alignments.Genome index generation is performed only once for

each reference genome and annotation combination and should be repeated only when

updated genome assemblies or gene annotations are introduced. The process uses a set

of core command-line options described below.[32],[13]

Parameter Descriptions:

1. --runThreadN

 Specifies the number of CPU threads to use for index generation. This

should be set based on the number of cores available on the machine (e.g., 8,

16, 32).

2. --runMode genomeGenerate

 Instructs STAR to run in genome indexing mode instead of alignment mode.

3. --genomeDir

 Indicates the output directory where the generated genome index files will be

stored. This directory must be created before execution (using mkdir) and

should have sufficient write permissions. For mammalian genomes, at least

100 GB of free disk space is recommended.

4. --genomeFastaFiles

 Specifies one or more reference genome FASTA files. These files must

contain all chromosomes or scaffolds in the correct format. While it is not

required, chromosome names can be manually edited in the chrName.txt file

(generated by STAR) to customize naming conventions across outputs.

5. --sjdbGTFfile

 Provides the path to a GTF annotation file containing transcript and exon

STAR --runThreadN 8 \

 --runMode genomeGenerate \

 --genomeDir /path/to/genomeDir \

 --genomeFastaFiles /path/to/genome.fasta \

 --sjdbGTFfile /path/to/annotations.gtf \

 --sjdbOverhang 99

41

structures. STAR uses this file to extract known splice junctions, which

enhances alignment accuracy near exon-intron boundaries. Though optional,

using annotations is strongly recommended.

6. –sjdbOverhang

 Sets the length of the genomic sequence flanking annotated splice junctions.

This value should ideally be ReadLength - 1. For example, with 100 bp

Illumina reads, a typical value is 99. For variable-length reads, the maximum

read length minus one is a suitable approximation.[13]

3.4.3 Output of Genome Index Generation

The output files generated by STAR during this process include:

1. Binary genome files and suffix arrays

2. Chromosome name and length metadata

3. Splice junction coordinates

4. Encoded transcript/gene annotation information

These files are stored in STAR’s internal format and are used during the mapping

phase. It is strongly advised not to manually modify these files, except for optionally

editing chrName.txt to customize chromosome labels in output SAM/BAM files.

Once generated, the index files in the genomeDir directory can be reused across

multiple alignment jobs using the same reference genome and annotations, thus

avoiding redundancy and improving efficiency.

First, index the reference genome using STAR to prepare it for alignment. Adding

gene annotation information to the reference genome will facilitate alignment of RNA-

Seq reads across exon-intron boundaries. This indexing step is only required once; you

can then use the indexed genome repeatedly in future analysis.[1]

Check the mapping statistics in the [sample_name]Log.final.out file to ensure the

BAM file was generated properly and the reads align to the genome correctly.

Uniquely mapped reads are the most useful for expression analysis, as there is high

confidence in which loci they represent. In general, >60-70% for the “uniquely mapped

reads %” metric is considered good; a significantly lower value warrants further

investigation.[1]

Lastly, use Samtools to sort and index the BAM files. Organizing the reads by position

within the BAM file is needed for downstream analysis.

42

3.5 Differential Expression Analysis

Compare hit counts between groups with DESeq2-

The DESeq2 package is designed for normalization, visualization, and differential

analysiss of high-dimensional count data. It makes use of empirical Bayes techniques

to estimate priors for log fold change and dispersion, and to calculate posterior

estimates for these quantities

results tables with log2 fold change, p-values, adjusted p-values, etc. for each gene are

best generated using the results function. The coef function is designed for advanced

users who wish to inspect all model coefficients at once.[6]

The differential expression analysis uses a generalized linear model of the form:

where counts Kij for gene i, sample j are modeled using a Negative Binomial distribution with

fitted mean µij and a gene-specific dispersion parameter αi . The fitted mean is composed of

a sample-specific size factor sj and a parameter qij proportional to the expected true

concentration of fragments for sample j. The coefficients βi give the log2 fold changes for

gene i for each column of the model matrix X. The sample-specific size factors can be replaced

by gene-specific normalization factors for each sample using normalization Factors. [5]

3.5.1 Core Workflow

The standard DESeq2 pipeline involves the following steps:

1. Dataset Construction: The DESeqDataSet object is built from raw counts and

a sample metadata table. Input can be generated directly from tximport, HTSeq,

or a matrix of counts.

2. Normalization: Sample-wise differences in sequencing depth are corrected

using size factors via estimateSizeFactors(), applying a median-of-ratios

method.

3. Dispersion Estimation: Gene-wise dispersion estimates are computed and then

modeled as a function of mean expression using parametric, local, or mean-

based fitting (estimateDispersions()).

4. Model Fitting and Testing: A generalized linear model (GLM) is fitted per

gene, and hypothesis testing is performed:

a. Wald test (test = "Wald") for significance of individual coefficients.

b. Likelihood Ratio Test (LRT) (test = "LRT") for comparing full and

reduced models.

5. Result Extraction: The results() function provides statistics such as log2 fold

change (LFC), p-values, and adjusted p-values (Benjamini-Hochberg FDR).[4]

43

3.5.2 Data Transformation and Visualization

To facilitate downstream exploratory analysis such as clustering and PCA, DESeq2

offers:

1. Variance Stabilizing Transformation (VST): vst() quickly transforms count

data while preserving the mean-variance relationship.

2. Regularized Log Transformation (rlog): rlog() is more robust for datasets with

varying library sizes but computationally intensive.

3. PCA and Diagnostic Plots:

a. plotPCA() for sample clustering.

b. plotMA() to visualize changes in expression.

c. plotDispEsts() for assessing dispersion fits.[25]

3.5.3 Additional Features

1. Outlier Detection: DESeq2 uses Cook’s distance to identify and optionally

replace outliers in high-replicate datasets.

2. FPKM/FPM Calculation: Functions like fpkm() and fpm() allow conversion of

counts into normalized expression values.

3. Integration with Single-Cell Data: DESeq2 supports integration with

preprocessed scRNA-seq datasets via the integrateWithSingleCell() function.

3.5.4 Outputs

1. DESeqResults: Contains log2FoldChange, pvalue, padj, stat, etc.

2. Normalized counts: Via counts(dds, normalized=TRUE)

3. Transformed data: vst(dds), rlog(dds)

4. Dispersion trends: plotDispEsts(dds)

44

5. PCA & MA plots: plotPCA(), plotMA()

Fig 3.6. DESeq2 result output layout

Intreprepation –

Fig 3.7.MA-plot generated by the plot MA function in DESeq2. Points will be colored

red if the adjusted p-value is less than 0.1. Points which fallout of the window are

 Plotted as open triangles pointing either up or down.

45

Fig 3.8 :Volcano plot.The red points indicate genes-of-interest that display both large-

magnitude fold-changes (x-axis) as well as high statistical signicance (log10 of p-

value, y-axis).The dashed green-line shows the p-value cuto (pval=0.01) with points

above the line having p-value <001 and points below the line having p-value > 0.01.

The vertical dashed blue lines shows 2-fold changes.

3.6 Network Analysis

WGCNA is an R package developed for the systems-level analysis of gene expression

data. It is primarily used to identify clusters (modules) of highly correlated genes and

to relate these modules to clinical traits or phenotypes. WGCNA constructs gene co-

expression networks using pairwise correlation coefficients, thereby allowing the

identification of gene modules with shared biological functions.[20]

3.6.1. Conceptual Framework

WGCNA is based on the concept of constructing a scale-free network using soft

thresholding of gene-gene correlations. The network is undirected and weighted,

capturing the continuous nature of gene relationships.

1. Adjacency Matrix: Calculated from pairwise correlations, raised to a power

β\betaβ (soft-thresholding power) to emphasize strong correlations while

suppressing weak ones.

2. Topological Overlap Matrix (TOM): Measures network

interconnectedness, accounting for shared neighbors between genes.

3. Hierarchical Clustering: Applied to TOM to identify gene modules.

4. Module Eigengene: The first principal component of a module’s expression

matrix; used to summarize module activity and correlate with phenotypic

traits.

46

3.6.2. Core Workflow

1. Input Preparation: Expression matrix with genes in columns and samples in

rows.

2. Soft-thresholding Power Selection: Identify a suitable β\betaβ to

approximate scale-free topology using pickSoftThreshold().

3. Adjacency and TOM Calculation: Use adjacency() and

TOMsimilarityFromExpr() to construct the network.

4. Module Detection: Apply blockwiseModules() to detect modules via

dynamic tree cutting and module merging.

5. Module-Trait Association: Relate modules to traits using correlation

between module eigengenes and sample metadata.

6. Hub Gene Identification: Determine intra-modular hub genes using

connectivity measures.[15]

In LYNX-RNA pipeline, WGCNA is typically integrated like this:

1. Input: VST-transformed expression matrix from DESeq2.

Script:

Output: Module membership, trait correlation table, hub genes, Cytoscape files.

Execution: Script is called as a process within the Nextflow .nf file and defined in

main.nf

library(WGCNA)
datExpr <- read.table("vst_transformed_counts.tsv", header=TRUE, row.names=1)
powers <- c(1:20)
sft <- pickSoftThreshold(datExpr, powerVector = powers)
net <- blockwiseModules(datExpr, power = chosenPower, ...)
exportNetworkToCytoscape(net$TOM)

47

3.7 Functional Enrichment

Once differentially expressed genes (DEGs) have been identified, understanding their

biological roles and pathway associations becomes essential for interpreting the

underlying mechanisms of a condition. Functional enrichment analysis aims to

determine whether specific biological categories—such as Gene Ontology (GO)

terms, KEGG pathways, or Reactome modules—are statistically overrepresented in

the list of DEGs compared to a background set of genes.[40]

This process helps reveal affected biological processes, cellular components, and

molecular functions, offering insight into disease pathogenesis, treatment response, or

cellular phenotypes. In the context of LYNX-RNA, enrichment analysis is

automatically triggered for each comparison group using well-established R packages

and databases.

3.7.1 Gene Ontology and Pathway Databases

The LYNX-RNA pipeline supports enrichment using the following annotation

databases:

1. Gene Ontology (GO): Covers three domains:

a. Biological Process (BP) – e.g., T cell activation, mitotic cell cycle

b. Molecular Function (MF) – e.g., ATP binding, enzyme activity

c. Cellular Component (CC) – e.g., mitochondrion, cytoskeleton

2. KEGG Pathways: Curated maps of molecular interaction and reaction

networks.

3. Reactome: Hierarchical pathway database providing mechanistic insights.

4. MSigDB (optional): Used for gene set enrichment analysis (GSEA),

containing curated and computational gene sets.

3.7.2 Statistical Methodology

Functional enrichment analysis involves over-representation testing, where the

number of DEGs associated with a given term is compared to the expected count under

a hypergeometric distribution. The most commonly used statistical model is the

hypergeometric test (also called Fisher’s exact test), calculated as:

48

Where:

• N: Total number of genes in the background (e.g., all genes expressed)

• K: Number of genes annotated with the term

• n: Number of DEGs

• k: Number of DEGs annotated with the term

The p-values obtained are adjusted for multiple comparisons using the Benjamini-

Hochberg False Discovery Rate (FDR) method.[26]

3.8 ML Integration

3.8.1 Goals of Machine Learning in LYNX-RNA

The objectives of ML integration are threefold:

1. Classification: Predict the clinical status or condition (e.g., treatment

timepoint, disease vs. control) of a sample based on its transcriptomic profile.

2. Feature Selection: Identify genes that are most informative for classification,

serving as potential biomarkers.

3. Interpretability: Enable users to understand the biological relevance of

selected features using feature importance scores, pathway enrichment, and

natural language explanations powered by large language models (LLMs).

This extends RNA-seq workflows into the realm of supervised learning and

translational modeling, with outputs that can support diagnostics, prognostics, or

therapeutic stratification.

3.8.2. Data Flow and Preprocessing

1. Input Format

• The ML module consumes a normalized expression matrix, generated from

earlier stages of the pipeline.
• Each row represents a sample, and each column represents a gene or

transcript.

49

• A separate metadata file provides the class label for each sample (e.g.,

timepoint or treatment group).

2 Preprocessing Steps

To prepare data for training and ensure consistent behavior across models, the

following steps are applied:

1. Gene Filtering:

a. Low variance genes (genes with little change across samples) are

removed.

b. Genes with more than 80% zero counts or missing values are

discarded.

2. Normalization:

a. Log2 transformation: log2(TPM + 1) or log2(CPM + 1)

b. Z-score normalization: Each gene is standardized to zero mean and

unit variance.

3. Dimensionality Reduction (optional):

a. PCA or t-SNE is applied for visualization.

b. In cases of very high feature-to-sample ratios, PCA may be used to

reduce input to top N components.

4. Class Balance Check:

a. Class distributions are examined.

b. Synthetic oversampling (SMOTE) or class weighting is used if classes

are imbalanced.

50

3.8.3. Algorithms Used

Two robust and interpretable tree-based ensemble models are implemented:[27]

1. Random Forest Classifier

1) Type: Bagging ensemble of decision trees.

2) Advantages:

a. Handles noisy and high-dimensional data well.

b. Less prone to overfitting compared to single decision trees.

c. Provides feature importance via Gini impurity or permutation

metrics.

2 XGBoost (Extreme Gradient Boosting)

1) Type: Boosting-based ensemble of decision trees.

2) Advantages:

a. State-of-the-art model for structured/tabular data.

b. Highly efficient, regularized, and scalable.

c. Supports early stopping, dropout, and custom loss functions.

d. Offers SHAP-based feature attribution for interpretability.

3.8.4 Model Training and Validation

A. Cross-Validation Strategy[39]

Due to limited sample sizes common in biological datasets, rigorous validation is

critical. LYNX-RNA supports:

1. Stratified k-Fold Cross-Validation (default: k=5):

 a. Ensures proportional representation of classes in each fold.

51

 b. Provides stable performance estimates.

2. Leave-One-Out Cross-Validation (LOOCV):

 a. Used for very small datasets (n < 20).

 b. Each sample is tested individually using the model trained on the remaining

samples.

3.8.5 Evaluation Metrics

The performance of classifiers is assessed using:

1. Accuracy

2. Precision, Recall, F1-score

3. ROC Curve and AUC (Area Under Curve)

4. Confusion Matrix

5. Classification Reports (via sklearn.metrics)

Evaluation plots and summary tables are automatically generated and stored with the

output.[39]

3.8.6 Feature Importance and Biomarker Identification

1. Importance Extraction

a. Random Forest: Gini-based or permutation importance.

b. XGBoost: Gain, Cover, Frequency, or SHAP values.

2 Biomarker Selection Workflow

1. Top N Genes: Genes with the highest importance scores are shortlisted

(typically top 20–50).

52

a. Annotation & Enrichment:

a. These genes are annotated using biomaRt, Ensembl, or org.Hs.eg.db.

b. They are passed to GO/KEGG enrichment via clusterProfiler to

identify overrepresented pathways.

2. Validation:

a. If differential expression analysis also flagged these genes, overlap is

reported.

b. LLM (GPT-4) generates descriptive summaries of their biological

relevance.

3.8.7 Interpretability Enhancements

Interpretability is a core principle in LYNX-RNA. Beyond standard importance

metrics, the following are included:

1. SHAP (SHapley Additive exPlanations): For model-agnostic explanation of

how features contribute to predictions.

2. LLM-Generated Reports:

a. Using the OpenAI GPT API, LYNX-RNA translates complex results

into natural language.

b. Examples:

i. “Gene X is highly expressed in Week 1 samples and is known

to regulate immune cell adhesion.”

“The combination of Gene A, Gene B, and Gene C is predictive of pre-treatment

status with 91% accuracy.” [42]

Outputs are saved in structured folders: reports/ml_summary, plots/,

feature_importance.csv, llm_summary.txt

53

CHAPTER – 4

DATASET AND EXPERIMENTAL SETUP

4.1 Dataset Description

The evaluation of transcriptomic responses to eltrombopag therapy in chronic immune

thrombocytopenia (ITP) patients was carried out using publicly available RNA-sequencing

datasets retrieved from the NCBI Sequence Read Archive (SRA). To construct a biologically

and statistically sound machine learning framework, we selected two high-quality and

clinically annotated RNA-seq datasets—one representing treatment samples from ITP patients

undergoing eltrombopag therapy, and the other serving as a matched control group derived

from healthy individuals. These datasets were processed using the LYNX-RNA pipeline for

downstream analysis, normalization, and integration into the machine learning and functional

genomics modules. [21]

4.1.1 Eltrombopag-Treated ITP Dataset (Project ID: PRJNA445461)

This dataset focuses on the longitudinal transcriptomic response to eltrombopag, a

thrombopoietin receptor agonist, in patients with chronic immune thrombocytopenia

(ITP). The study was conducted by Stanford University and is publicly available under

SRA Project ID PRJNA445461. A total of 46 peripheral blood samples were

collected from 17 patients who were administered 75 mg/day eltrombopag as

monotherapy.[38]

Samples were collected at three distinct tim epoints:

1. Pretreatment (Pre),

2. One week after treatment initiation (1wk),

3. One month post-treatment initiation (1mon).

These samples were preserved in PAXgene blood RNA tubes and processed using a

globin mRNA reduction protocol prior to RNA extraction, which is essential for

reducing background signal from abundant hemoglobin transcripts. The sequencing

methodology employed was 3’-end RNA sequencing (3SEQ), which targets 3’

untranslated regions (3’UTRs) to ensure quantification accuracy and minimize

54

transcript length bias. Each sequencing library generated 36 bp directional reads using the

Illumina HiSeq 2000 platform. Reads were mapped to the human transcriptome (hg19),

and transcript-level quantification was performed.

4.1.2. Control Dataset (Project ID: PRJNA1055463)

To establish a robust baseline for comparison, we selected a high-quality control dataset under

SRA Project ID PRJNA1055463. It includes a sizable cohort of healthy individuals (n = 89)

who served as the control group.

For the purposes of our pipeline, we utilized only the RNA-seq profiles of the healthy

controls, which represent peripheral blood transcriptomes from clinically screened

individuals. RNA was extracted from whole blood, and libraries were prepared and sequenced

to provide bulk RNA-seq data. These healthy control samples offered an ideal comparator

group for ITP patients due to:

1. Similar tissue type (peripheral blood),

2. Comparable RNA preparation protocols,

3. Lack of drug or disease-induced transcriptomic alterations.

This dataset underwent standard normalization and integration procedures identical to those

applied to the ITP samples, allowing for a direct, batch-corrected comparison between disease

(ITP pre-treatment) and healthy control states.

4.2 Data Source

For this study, we utilized publicly available RNA-seq data from the Gene Expression

Omnibus (GEO) to investigate transcriptomic changes associated with immune

thrombocytopenia (ITP). Patient samples were obtained from accession GSE112278,

comprising 46 peripheral blood samples from 17 chronic ITP patients, collected at

three clinical time points: pretreatment (Pre), 1 week (1wk), and 1 month (1mon)

following eltrombopag therapy. Patients were classified on the basis of the timeline of

the drug administration based on platelet count response criteria. RNA-seq libraries

were prepared using 3′-end sequencing (3SEQ) after globin mRNA depletion and

sequenced on the Illumina HiSeq 2000 platform. As a control dataset, we included

healthy peripheral blood samples from PRJNA1055463 (BioProject), corresponding

to GEO accession GSE251786, to serve as a baseline for differential gene expression

and biomarker discovery. These control samples were processed under comparable

RNA-seq protocols to ensure analytical consistency. The combined dataset enables

longitudinal profiling of transcriptomic dynamics in ITP across disease progression

and treatment response.[38]

55

Table 4.1. Clinical Characteristics of ITP Patients and Healthy Donors (control)

Parameter ITP Responders (n = 8 patients × 3 timepoints

= 24 samples)
Healthy Controls (n = X)*

Age (range) Median 54 (16–84 years) 20–65 years (approx., from

metadata)

Sex Female: 23 (58.97%)

 Male: 16 (41.03%)
Female: 23 (58.97%)

 Male: 16 (41.03%)

Type of ITP Chronic ITP (duration >12 months) Not applicable

Treatment Eltrombopag (75 mg/day, oral) None

Blood Sampling

Timepoints
Pre-treatment, 1 week, 1 month Single timepoint

Sample Source Peripheral whole blood (PAXgene tubes) Peripheral whole blood

RNA-seq Type 3SEQ (3′ end) - Illumina HiSeq 2000 Standard single-end -

HiSeq/NovaSeq

Prior ITP Treatments Corticosteroids (79.5%), IVIG (15.4%) Not applicable

4.3 Preprocessing & TPM Calculation

Transcripts Per Million (TPM) is a normalization method used to express

transcript abundance in a way that accounts for:

1. Transcript length bias

2. Sequencing depth variation

Unlike raw read counts, TPM values allow for cross-sample comparison of gene

expression. The formula for calculating TPM for a given transcript i is

56

This normalization is implemented natively in Salmon, which outputs TPM, raw

read counts, and transcript-level abundances in its quant.sf files.

4.3.1 TPM vs Other Normalization Metrics

1. TPM is ideal for comparing the expression of different genes within a sample.
2. For between-sample comparisons, methods such as DESeq2’s size factor

normalization or TMM (Trimmed Mean of M-values) in edgeR are more

appropriate for differential expression analysis.

However, TPM is commonly used as input for:

1. Unsupervised analyses like PCA and clustering

2. Machine learning classification models in LYNX-RNA

3. Heatmap visualization of top expressed genes

Table 4.1 Comparison of TPM with others

Metric Normalizatio

n Type

Use Case Formul

a

Strengths Limitations

TPM

(Transcript

s Per

Million)

Length &

Library Size

Cross-gene

& cross-

sample

comparison

s

TPM_i

= (R_i /

L_i) /

Σ(R_j /

L_j) ×

10⁶

Interpretable

, consistent

across

samples

Requires

accurate

transcript

lengths

FPKM

(Fragments

Per

Kilobase

Million)

Length &

Library Size

Within-

sample

gene

comparison

s

FPKM_

i = (R_i

/ (L_i /

1000)) /

(N /

10⁶)

Accounts

for gene

length and

sequencing

depth

Not

comparable

across

samples; less

consistent

CPM

(Counts

Per

Million)

Library Size

only

Quick view

of

expression

abundance

CPM_i

= (R_i /

N) ×

10⁶

Simple, fast

to compute

Does not

correct for

gene/transcrip

t length

57

4.3.2 Output and Integration in LYNX-RNA

The final output of the preprocessing and quantification step includes:

1. Filtered, high-quality FASTQ files

2. Summary QC reports (FastQC and MultiQC)

3. TPM matrices for all genes or transcripts

4. Raw and normalized counts for DE analysis (DESeq2)

5. Metadata for sample tracking and reproducibility

These outputs are passed into downstream modules including:

1. Differential expression analysis

2. Co-expression networks (WGCNA)

3. Biomarker prediction using Random Forest/XGBoost

4. Immune pathway activity scoring via GSVA

4.4 ML Dataset Preparation

Machine learning (ML) in transcriptomics is highly sensitive to the quality of the input

data. Unlike traditional differential expression workflows, ML pipelines require

carefully structured, clean, and statistically balanced datasets to uncover meaningful

biological patterns and avoid overfitting. In LYNX-RNA, the dataset preparation stage

transforms the RNA-seq quantification matrix into a machine-readable format that is

suitable for robust model training and biomarker discovery. This section elaborates on

the steps taken to generate the ML-ready dataset, supported by real implementation

screenshots from the Google Colab environment.

4.4.1 Input Data Overview

The input for machine learning-based DEG classification was a curated expression

matrix generated from merged RNA-seq data of treated ITP patients (GSE112278)

and mapped healthy controls (GSE251778). The final ML-ready dataset includes::

1. symbol column: Represents the HGNC gene symbol for each gene (e.g.,

A1BG, EPB42, TNS1). These gene symbols were derived from the control

dataset using MyGene.info to map Ensembl IDs.

58

2. Expression feature columns: Each of the remaining columns corresponds to

an individual sample (e.g., GSM3066029, GSM3066042) and contains raw

gene expression counts. These features are used by the Random Forest model

to learn gene-specific expression patterns across samples.

3. DEG label column (is_DEG): A binary classification label (1 for DEG, 0 for

non-DEG), assigned based on Welch’s t-test results comparing treated ITP

samples to healthy controls, with FDR-adjusted p-value < 0.05 and |log2 fold

change| > 1

Colab Implementation:

Python

The dataset is visualized as:

Fig 4.1 layout of trained data

This confirms the structure is aligned for ML modeling, with rows as samples and

columns as features.

4.4.2. Feature and Target Extraction

To build classification models, we separate the features (X) and the target labels (y):

 Colab Implementation:

python

import pandas as pd
df = pd.read_csv("/content/drive/MyDrive/LYNX-

RNA_ml/test/ML-

Ready_Merged_Expression_Matrix.csv")
df.head()

59

• X: A matrix of numerical expression values, where each row corresponds to a

gene and each column to a sample (e.g., GSM3066029, GSM3066042, etc.).

These values serve as the input features for training the classifier..

• y: A binary vector indicating DEG status of each gene. A value of 1 denotes

that the gene is differentially expressed (DEG), while 0 indicates a non-DEG.

These labels were derived from statistical comparison using Welch’s t-test

followed by FDR correction.

4.4.3. Train-Test Split with Stratification

To evaluate models fairly while preserving label distributions, we split the data into

training and testing sets using stratified sampling:

Colab Implementation:

Python

1. 70% of samples are used for training.

2. 30% of samples are held out for model evaluation.

3. The parameter stratify=y ensures that both classes (DEG = 1, Not DEG = 0)

are proportionally represented in the training and test sets.

.

X = df_treated_final.drop(columns=["symbol", "log2FoldChange", "pValue",

"adjPValue", "is_DEG"])

y = df_treated_final["is_DEG"]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.3, stratify=y, random_state=42
)

60

4.4.4. Optional Preprocessing Steps

Although ensemble models like Random Forest and XGBoost can handle unscaled

data, further preprocessing may enhance performance and interpretability.

1. Log Transformation

To stabilize variance across genes:

python

log_expr = np.log2(X + 1)

2. Standard Scaling

To bring all features to the same scale:

Python

3. Low-Variance Gene Filtering

Genes with near-zero variance are removed:

python

This step reduces noise and speeds up training time.

from sklearn.feature_selection import

VarianceThreshold

selector = VarianceThreshold(threshold=0.01)

X_filtered = selector.fit_transform(X_scaled)

from sklearn.preprocessing import

StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(log_expr)

61

4.4.5. Handling Missing and Zero-Heavy Data

1. Genes with >80% zero values are removed.

2. Minor missing values are imputed using mean or median.

These steps are automated within the pipeline to reduce user overhead.

4.4.6. Class Imbalance Solutions

If class imbalance is detected (e.g., many more pre-treatment than control samples),

the following strategies may be applied:

1. Class weighting in models.

2. SMOTE oversampling using imblearn.

 Fig.4.2 Training snaphot

4.4.7. Reproducibility and Logging

1. All transformation steps (filtering, scaling, imputation) are logged and saved.

2. A random_state seed ensures deterministic results.

Intermediate matrices and split datasets are stored in:

4.5 Tools and Platforms Used

outputs/ml_preprocessing/

 ├── X_train.csv

 ├── y_train.csv

 ├── X_test.csv

 └── y_test.csv

62

Table 4.3. Pipline stage and respective tools

Pipeline Stage Tool/Library

Quality Control FastQC, fastp, MultiQC

Trimming Trimmomatic

Genome Mapping STAR, HISAT2

Transcriptome Mapping Bowtie2, Salmon

Quantification FeatureCounts, Salmon

Differential Expression DESeq2

ML Modeling scikit-learn, xgboost

Network Analysis WGCNA, STRINGdb, igraph

Enrichment Analysis ClusterProfiler, ReactomePA,

KEGGREST

Immune Profiling GSVA, ssGSEA

Report Generation OpenAI GPT-4 API, Markdown,

nbconvert

63

CHAPTER – 5

RESULTS

5.1 Quality Assurance and sample consistency

Fig 5.1: Bar Chart

 This bar chart illustrates the number of expressed genes across various samples,

labeled as BA05, BA14, BA19, etc., with their corresponding identifiers. The y-axis

represents the count of expressed genes, showing consistent values around 14,000

across all samples. The x-axis represents different sample IDs, tilted for readability.

64

Fig 5.2: PCA Plot

This scatter plot represents the results of Principal Component Analysis (PCA) for the

dataset, displaying sample clustering based on two principal components (PC1 and

PC2). The x-axis (PC1) explains 72.14 % of the variance, while the y-axis (PC2)

explains 12.88%. Each point corresponds to a sample, labeled with its identifier. The

clustering of points indicates similarities or differences in the dataset, with distinct

samples (e.g., TA12, TA18) positioned separately, suggesting unique characteristics

compared to others.

65

Fig 5.3: Heat Map

This heatmap visualizes the hierarchical clustering of samples based on similarity or

distance metrics. The rows and columns denote individual samples, with color

intensity reflecting the level of similarity (darker red indicates greater similarity, while

lighter shades denote lesser similarity). The dendrograms on the top and left depict the

clustering structure, grouping similar samples together. The matrix layout and

clustering provide insights into relationships between samples, identifying patterns or

distinct clusters within the dataset.

66

Fig 5.4: Box Plot

This box plot depicts the distribution of expression levels for different samples, shown

along the x-axis (e.g., BA05, BA14, TA12). The y-axis represents the expression value.

Each box illustrates the interquartile range (IQR), with the median indicated within.

Whiskers extend to represent variability beyond the upper and lower quartiles, whereas

outliers may be depicted as points outside the whiskers. The graphic illustrates

variations in central tendency and dispersion of expression levels among the samples,

with certain samples (e.g., TA12, TA18) exhibiting comparatively lower medians and

more restricted ranges.

67

5.2 DEGs Analysis

DEGs were identified in the single-cell RNA sequencing dataset GSE112278 based on the

following criteria: P < 0.05; |log2FC|> 0.5. The top 25 upregulated and the top 25

downregulated genes were selected to construct a heatmap.

Fig 5.5 : Heat Map

 Differential expression analysis was conducted by using LYNX-RNA using DESeq2,

identifying 3,114 genes with significant changes in expression. Genes exhibiting the

most significant differential expression are highlighted as red dots.

68

Fig 5.6: Line Graph

 This line graph represents gene expression trends across the samples. Here the Y-axis

represents the gene expression values, and the X-axis denotes multiple samples. This

illustrates the changing pattern in gene expression level, with each line representing

each gene. Here some genes show sharp peaks, which are classified as significant

genes.

Fig 5.7: Box Plot

 This box plot represents the expression levels of some specific genes displayed on the

x-axis. The y-axis shows their expression levels. Each box represents the interquartile

range (IQR) for the expression values of a gene, with the median marked inside.

Whiskers indicate the range of the data within 1.5 times the IQR, and potential outliers

are shown as individual points.The plot highlights variations in expression levels

among genes, with some genes (e.g., TCL1A) showing higher median expression and

variability compared to others (e.g., BTK).

69

Fig 5.8: Volcano Plot

This volcano plot visualizes the statistical significance (-log10 p-value) against the

magnitude of change (log2 fold change) for a dataset. The x-axis denotes the value of

expression change, and the y-axis denotes statistical significance; the higher the value,

the more it is. Significant values are denoted by red color; orange represents only p-

value significance, only fold change significance is denoted by purple, and non-

significant is blue. P-value threshold (>0.05) is marked by a horizontal line and fold

change threshold (±1) by vertical lines. This plot identifies significant genes that are

upregulated and downregulated. The topmost red dots indicate the most notable

changes.

Fig 5.9. MA Plot

 This MA plot denotes the relationship between the log2 mean expression, which is the

mean of normalized counts represented on the x-axis, and log2 fold change (y-axis,

log2FC) in a dataset for each gene against its average expression across all samples in

the two conditions being contrasted. Here each point represents a gene. Red dots

represent the genes that are either up-regulated or down-regulated, whereas blue dots

represent the non-significant genes. This trumpet- or funnel-like shape shows the

pattern of increase in variability with an increase in expression level.

70

5.3 WGCNA results

Fig 5.10: Gene Dendrogram Showing Module Assignment by Dynamic Tree Cut.

This hierarchical clustering dendrogram depicts the grouping of genes based on

topological overlap. Each branch represents a gene, and clusters of highly co-

expressed genes are grouped into distinct modules indicated by unique colors in the

bar below the dendrogram. These module colors represent functionally relevant gene

networks detected using the Dynamic Tree Cut algorithm, which were later used for

downstream trait correlation and enrichment analyses

Figure 5.11: Gene Co-expression Network of Hub Genes from Key Module.

This network visualization illustrates the interactions among hub genes identified from

a significant WGCNA module. Nodes represent individual genes, while edges denote

strong co-expression relationships based on topological overlap. Central genes such as

BCL2L1, EPB42, and CDC34 may play pivotal roles in the underlying biological

processes, suggesting their potential as biomarkers or therapeutic targets in the studied

condition.

71

Fig 5.12: Scale Independence Plot for Soft Thresholding Power Selection.

The plot shows the scale-free topology model fit index (y-axis) as a function of the

soft-thresholding power (x-axis) used in weighted gene co-expression network

analysis (WGCNA). Higher R² values indicate a stronger approximation to scale-free

topology. The optimal power is typically chosen where the curve begins to plateau and

achieves a sufficient R² value (commonly ≥0.8), balancing between network sparsity

and biological relevance. In this case, the model does not reach the typical threshold,

indicating a relatively low scale-free fit across tested powers.

72

Fig 5.13: Mean Connectivity Plot Across Soft Thresholding Powers.

This plot displays the mean connectivity (y-axis) of genes as a function of the soft-

thresholding power (x-axis), a key parameter in weighted gene co-expression network

analysis (WGCNA). As the power increases, mean connectivity decreases, indicating

a sparser network. This analysis assists in selecting an optimal power that ensures

scale-free topology while maintaining sufficient connectivity for downstream module

detection and biological interpretation.

73

5.4 Enrichment Analysis

Fig 5.14: Top 25 Enriched Gene Ontology (GO) Biological Processes.

The bar plot displays the top 25 significantly enriched GO terms (Biological Processes)

identified from the differentially expressed genes. The x-axis represents the statistical

significance in terms of –log10(p-value), while the y-axis lists the enriched GO terms.

Terms related to transcription regulation, DNA repair, immune response, and cell cycle

processes were prominently enriched, suggesting their potential involvement in the

underlying biological condition being studied.

74

Fig 5.15: Semantic Similarity Heatmap of Enriched GO Biological Processes.

The heatmap illustrates the semantic similarity among enriched Gene Ontology (GO)

biological process terms based on their functional relatedness. Each square indicates

the degree of similarity between two GO terms, with darker shades representing higher

similarity. Hierarchical clustering of GO terms along both axes helps to visualize

functionally grouped biological processes, revealing co-enriched or interrelated

pathways such as transcription regulation, immune response, and DNA repair

mechanisms.

75

Fig 5.16: Comparative Bubble Plot of Enriched GO Biological Processes.

This bubble chart visualizes the proportion of genes associated with selected Gene

Ontology (GO) biological processes, comparing their representation in differentially

expressed genes (DEPercent, blue) versus the annotated genome background

(AnnotPercent, orange). Each bubble represents a GO term, with the size indicating

the relative gene set size and the values showing respective percentages. Prominent

enrichment is observed in transcription-related processes, DNA repair, cell cycle

regulation, and immune-related functions, suggesting key biological themes altered

under the studied condition.

Fig 5.17: GSEA of genes

76

The plots a and b represent GSEA of genes; here only two are displayed; others can be

referred to in an additional file. Ranks of genes are sorted on the basis of their

correlation value with the phenotype presented by the x-axis. The Y-axis shows the

enrichment score, which is cumulative as genes are traversed. The peak represents the

maximum enrichment value, and vertical black bars show the position of the genes in

the rank. The range of enrichment score is denoted by red lines, which are the

threshold values.

5.5 LLM generated Automated Summaries

Fig 5.18 : LLM Report

Once the data processing is completed, the automated LLM result summarization

report is generated. The report is divided into three sections: Summary, Observations,

and Key Takeaways. This approach ensures that the results generated for analysis are

not only comprehensible but also action-oriented, making the complex data more

accessible and valuable for scientific research.

77

5.6 ML Performance

The machine learning module of LYNX-RNA was evaluated using a Random Forest

classifier trained on expression-level data to predict differentially expressed genes

(DEGs). The dataset consisted of merged expression profiles from treated samples and

DEG labels derived through statistical comparison with control samples.

5.6.1 Dataset Composition

Total Genes Analyzed: 12,587

Labeling Method: Statistical testing (Welch’s t-test with Benjamini-Hochberg

correction)

1. DEG Thresholds: Adjusted p-value < 0.05 and |log2FoldChange| > 1

2. Class Balance: Approximately 14% DEGs, 86% non-DEGs

5.6.2 Model Performance

A Random Forest classifier was trained on an 80-20 stratified split of the data. The

model showed strong performance across multiple evaluation metrics:

Fig 5.19 Model Performance Metrics

78

5.6.3 Confusion Matrix

To further interpret the classification performance of the Random Forest model, a

confusion matrix was constructed (Figure X) based on the test set predictions. The

matrix provides insight into the distribution of true positives, false positives, true

negatives, and false negatives.

Table 5.1: Confusion Matrix

Predicted Non-DEG (0) Predicted DEG (1)

Actual Non-DEG (0) 1327 (True Negatives) 291 (False Positives)

Actual DEG (1) 189 (False Negatives) 1701 (True Positives)

1. True Positives (TP): 1701 genes correctly classified as DEGs

2. True Negatives (TN): 1327 genes correctly classified as non-DEGs

3. False Positives (FP): 291 genes incorrectly predicted as DEGs

4. False Negatives (FN): 189 genes incorrectly predicted as non-DEGs

Fig 5.20. Confusion matrix showing the distribution of actual vs. predicted DEG

classes.

79

This distribution reflects a strong classification capability, particularly with a low false

negative rate, which is critical for applications like biomarker discovery. The model

maintained a high ROC AUC score of 0.937, confirming its excellent discrimination

ability between DEGs and non-DEGs. The classifier demonstrated high discriminative

power, correctly identifying DEGs based solely on their expression profiles.

5.6.4 Bulk DEG Prediction

The trained model was applied to all genes in the treated dataset

(raw_gene_counts_matrix.csv). The output included:

1. predicted_deg_genes.csv: DEG predictions for all genes

2. predicted_degs_only.csv: Filtered list of genes predicted as DEGs

5.6.5 Top DEGs Visualization

The top 100 DEGs (based on average expression across samples) were visualized

using a horizontal bar chart. These represent highly transcribed, predicted DEGs

potentially relevant to the ITP disease context.

Fig 5.21 Top DEGs

80

CHAPTER – 6

DISCUSSION

6.1 Pipeline Performance

LYNX-RNA was engineered to address key limitations in current RNA-seq pipelines,

including lack of modularity, limited scalability, and poor support for downstream

integrative analyses. Its architecture, built on Nextflow, supports dynamic parallelism,

modular execution, and seamless reproducibility across environments (Conda, Docker,

HPC).

Applied to a longitudinal ITP dataset, LYNX-RNA completed full processing—from

FASTQ to functional interpretation—without manual intervention. Preprocessing and

alignment modules maintained high mapping rates (>95%) and uniform read quality.

Differential expression analysis successfully resolved temporal signatures across

treatment stages, with consistent statistical power (FDR < 0.05) even in imbalanced

conditions. Pipeline throughput scaled linearly with sample size, validating its

efficiency for population-scale studies.

6.2 ML interpretability

The machine learning module introduces supervised DEG prediction using Random

Forests, enabling inference in the absence of control groups. Trained on statistically

labeled expression data, the classifier achieved high performance (Precision: 0.79,

Recall: 0.82, ROC AUC: 0.937), demonstrating robustness in classifying DEGs based

on expression profiles alone.

1. Model transparency was enhanced through:

2. Gini-based feature importance, highlighting top predictive genes.

3. SHAP value decomposition, providing gene-wise contribution scores to

individual predictions.

4. LLM-assisted summaries (GPT-4), translating model output into biologically

interpretable insights.

5. This interpretability pipeline empowers users not only to detect DEGs, but

also to understand the rationale behind each prediction—crucial for clinical

and translational applications.

81

6.3 Benchmarking

Benchmarking was performed against standard DGE tools (DESeq2, edgeR) and

manual pipelines (e.g., STAR+HTSeq+clusterProfiler). LYNX-RNA achieved parity

in gene discovery, while offering several technical advantages:

1. Runtime Reduction: Parallel execution reduced total processing time by ~40%.

2. Automation: Single-command orchestration of quality control, quantification,

DGE, WGCNA, enrichment, and ML.

3. Adaptability: Configurable profiles and CLI wrappers allowed users to switch

reference genomes, modify thresholds, or toggle modules without changing

code.

4. The ML module further exceeded traditional pipelines in inference speed,

enabling rapid prediction of DEG status from raw expression matrices, without

re-computation of p-values or fold changes. This is particularly advantageous

in high-throughput and low-control experimental designs.

5. Collectively, LYNX-RNA outperforms existing workflows in modularity,

extensibility, and depth of analysis, establishing it as a next-generation solution

for transcriptome-scale biomarker discovery.

6.4 Predicted DEGs and Pipline Validation

Top predicted DEGs were ranked by average expression levels across ITP samples.

Genes such as HBA1, HBA2, ACTB, and S100A8 emerged as highly expressed and

consistently predicted as DEGs.

To validate these findings, a co-expression network was constructed using WGCNA.

The resulting network revealed a subset of hub genes, including:

EPB42, TNS1, HAGH, BCL2L1, RNF10, PINK1, CDC34

Cross-referencing these with the top 100 predicted DEGs confirmed that EPB42,

HAGH, and TNS1 are both:

1. Highly expressed in ITP samples

2. Machine-learning predicted DEGs

3. Central nodes (hubs) in the WGCNA co-expression network

This concordance supports the model's biological relevance, as these genes are not

only statistically significant but also structurally important in gene networks and

potentially involved in ITP pathogenesis or response to eltrombopag treatment.

82

CHAPTER – 7

CONCLUSION AND FUTURE WORK

7.1 Summary of Findings

This thesis presented the development and evaluation of LYNX-RNA, an end-to-end

RNA-seq analysis pipeline that integrates classical statistical approaches with modern

machine learning and natural language generation. Applied to a longitudinal ITP

transcriptomic dataset, LYNX-RNA successfully executed every stage of analysis—

from raw FASTQ processing and differential gene expression to biomarker discovery

and interpretability.

A Random Forest model trained on statistically labeled DEGs achieved high

performance (ROC AUC: 0.937, F1-score: 0.80), demonstrating the feasibility of

predicting differential expression without relying on control samples during inference.

Additionally, SHAP-based interpretability and GPT-4-generated summaries provided

transparent, human-readable insights into the model’s biological rationale.

7.2 Advantages of LYNX-RNA

1. Modular & Scalable: Built with Nextflow, enabling customizable, parallel

execution across local, cloud, and HPC platforms.

2. End-to-End Automation: Covers the entire RNA-seq workflow, minimizing

manual intervention.

3. Machine Learning Integration: Supports supervised DEG classification

when traditional control comparisons are unavailable

4. Interpretability: Uses SHAP values and LLM-driven summaries to make

ML decisions biologically transparent.

5. Reproducibility: Supports Conda/Docker environments, ensuring consistent

deployment and versioning.

6. Low-Resource Compatibility: Designed to run efficiently on systems with

≤24GB RAM, enabling broader accessibility.

83

7.3 Limitations

While LYNX-RNA introduces several innovations, certain limitations persist:

1. Binary DEG Modeling: Current ML classification supports only binary

DEG status; subtle gene expression variations may be overlooked.

2. Dependency on Quality of Labels: ML model performance is constrained by

the accuracy of the statistical DEG annotations used during training.

3. Limited to RNA-seq: Current implementation does not support integration

with other omics data (e.g., ATAC-seq, proteomics).

No GUI Interface: Requires command-line usage, which may present a barrier for

some life science researchers.

7.5 Future Enhancement

Planned extensions to LYNX-RNA include:

1. Multiclass & Regression Support: Extend ML module to model disease stage

or expression gradients.

2. Deep Learning Models: Incorporate architectures like TabNet or transformers

for improved prediction in complex datasets.

3. Web-Based Dashboard: Develop an interactive GUI for ML inference, result

visualization, and exploratory analysis.

4. Federated Learning: Enable secure, distributed training across institutions for

privacy-preserving clinical research.

5. Multi-Omics Integration: Extend to support simultaneous analysis of RNA,

proteomic, and epigenomic data.

Advanced LLM Integration: Automate the generation of entire reports or

publications based on analytical output.

84

CHAPTER – 8

REFERENCES

1. Koch, C. M., Chiu, S. F., Akbarpour, M., Bharat, A., Ridge, K. M., Bartom, E.

T., & Winter, D. R. (2018). A Beginner’s Guide to analysis of RNA sequencing

data. American Journal of Respiratory Cell and Molecular Biology, 59(2), 145–

157. https://doi.org/10.1165/rcmb.2017-0430TR

2. Cornwell, M., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, H.,

Li, T., Zhang, J., Qiu, X., Pun, M., Jeselsohn, R., Brown, M., Liu, X. S., &

Long, H. W. (2018). VIPER: Visualization Pipeline for RNA-seq, a Snakemake

workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics,

19(1). https://doi.org/10.1186/s12859-018-2139-9

3. Pola‐Sánchez, E., Hernández‐Martínez, K. M., Pérez‐Estrada, R., Sélem‐

Mójica, N., Simpson, J., Abraham‐Juárez, M. J., Herrera‐Estrella, A., &

Villalobos‐Escobedo, J. M. (2024). RNA‐Seq Data Analysis: A Practical Guide

for Model and Non‐Model Organisms. Current Protocols, 4(5).

https://doi.org/10.1002/cpz1.1054

4. Li, D. (2019). Statistical methods for RNA sequencing data analysis. In

Computational Biology (pp. 85–99).

https://doi.org/10.15586/computationalbiology.2019.ch6

5. Wan, C., & Li, Y. (2019). Integrative analysis of mRNA-miRNA-TFs reveals

the key regulatory connections involved in basal cell carcinoma. Archives of

Dermatological Research, 312(2), 133–143. https://doi.org/10.1007/s00403-

019-02002-y

6. DESeq2 (development version). (n.d.). Bioconductor. Retrieved from

https://bioconductor.org/packages/devel/bioc/html/DESeq2.html

7. Punt, J., Stranford, S., Jones, P., & Owen, J. (2018). Kuby Immunology.

Macmillan Higher Education.

85

8. Willenbrock, H., Salomon, J., Søkilde, R., Barken, K. B., Hansen, T. N.,

Nielsen, F. C., Møller, S., & Litman, T. (2009). Quantitative miRNA expression

analysis: Comparing microarrays with next-generation sequencing. RNA,

15(11), 2028–2034. https://doi.org/10.1261/rna.1699809

9. Moulinet, T., Moussu, A., Pierson, L., & Pagliuca, S. (2023). The many facets

of immune-mediated thrombocytopenia: Principles of immunobiology and

immunotherapy. Blood Reviews, 63, 101141.

https://doi.org/10.1016/j.blre.2023.101141

10. Xu, X., Zhang, J., Xing, H., Han, L., Li, X., Wu, P., Tang, J., Jing, L., Luo, J.,

Luo, J., & Liu, L. (2024). Identification of metabolism-related key genes as

potential biomarkers for pathogenesis of immune thrombocytopenia. Scientific

Reports, 14(1). https://doi.org/10.1038/s41598-024-59493-7

11. WilsonSayresLab. (n.d.).

Useful_code/AligningFilteringVariantCalling_DifferentialGeneExpression_A

lleleSpecificExpression_workflow. GitHub. Retrieved from

https://github.com/WilsonSayresLab/Useful_code/blob/master/AligningFilter

ingVariantCalling_DifferentialGeneExpression_AlleleSpecificExpression_wo

rkflow

12. Ye, Q.-D., et al. (n.d.). Identification and Validation of Gene Expression Pattern

and Signature in Patients with Immune Thrombocytopenia. SLAS Discovery,

22(2), 187–195.

13. PML-Book Overview, Examples, Pros and Cons in 2025. (n.d.). Retrieved

from https://best-of-web.builder.io/library/probml/pml-book

14. Zhao, S., Xi, L., Quan, J., Xi, H., Zhang, Y., Von Schack, D., Vincent, M., &

Zhang, B. (2016). QuickRNASeq lifts large-scale RNA-seq data analyses to

the next level of automation and interactive visualization. BMC Genomics,

17(1). https://doi.org/10.1186/s12864-015-2356-9

15. Balasubramanian, K., Devi, K. G., & Ramya, K. (2023). Classification of white

blood cells based on modified U‐Net and SVM. Concurrency and

Computation: Practice and Experience, 35(28).

https://doi.org/10.1002/cpe.7862

https://doi.org/10.1038/s41598-024-59493-7

86

16. Shi, Q., Liu, M., Wang, S., Ding, P., & Wang, Y. (2023). A novel pyroptosis-

related model for prognostic prediction in esophageal squamous cell

carcinoma: a bioinformatics analysis. Journal of Thoracic Disease, 15(3),

1387–1397. https://doi.org/10.21037/jtd-23-206

17. Ewels, P.A., Peltzer, A., Fillinger, S. et al. The nf-core framework for

community-curated bioinformatics pipelines. Nat Biotechnol 38, 276–278

(2020). https://doi.org/10.1038/s41587-020-0439-x

18. Huang, H., Zhu, L., Huang, C., Dong, Y., Fan, L., Tao, L., Peng, Z., & Xiang,

R. (2021). Identification of HUB genes associated with clear cell renal cell

carcinoma by integrated bioinformatics analysis. Frontiers in Oncology, 11.

https://doi.org/10.3389/fonc.2021.726655

19. Wagh, S. K., Andhale, A. A., Wagh, K. S., Pansare, J. R., Ambadekar, S. P., &

Gawande, S. H. (2024). Customer churn prediction in telecom sector using

machine learning techniques. Results in Control and Optimization, 14, 100342.

https://doi.org/10.1016/j.rico.2023.100342

20. Yang, S., Gao, W., Wang, H., Zhang, X., Mi, Y., Ding, Y., Geng, C., & Li, S.

(2021). The role of PAX2 in Breast Cancer: A study based on bioinformatics

analysis and in vitro validation. Research Square.

https://doi.org/10.21203/rs.3.rs-738037/v1

21. Auer, Paul L. and R. W. Doerge (June 2010). “Statistical Design and Analysis

of RNA Sequencing Data”. In: Genetics 185.2, pp. 405–416. issn: 1943-2631.

doi: 10.1534/genetics.110.114983. url: http://dx.doi.org/10.

1534/genetics.110.114983.

22. Fang, Zhide and Xiangqin Cui (May 2011). “Design and validation issues in

RNA-seq experiments”. In: Briefings in Bioinformatics 12.3, pp. 280–287.

issn: 1477-4054. doi: 10.1093/bib/bbr004. url: http://dx.doi.org/

10.1093/bib/bbr004

23. Robles, Jose et al. (Sept. 2012). “Efficient experimental design and analysis

strategies for the detection of differential expression using RNA-Sequencing”.

In: BMC Genomics 13.1, pp. 484+. issn: 1471-2164. doi: 10.1186/1471- 2164-

13-484. url: http://dx.doi.org/10.1186/1471-2164-13-484

https://doi.org/10.21037/jtd-23-206
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1016/j.rico.2023.100342
http://dx.doi.org/10.%201534/genetics.110.114983
http://dx.doi.org/10.%201534/genetics.110.114983
http://dx.doi.org/10.1186/1471-2164-13-484

87

24. Brooks, Angela N. et al. (Feb. 2011). “Conservation of an RNA regulatory map

between Drosophila and mammals”. In: Genome Research 21.2, pp. 193–202.

issn: 1549-5469. doi: 10.1101/gr.108662.110. url: http://dx.

doi.org/10.1101/gr.108662.110

25. Bottomly, Daniel et al. (Mar. 2011). “Evaluating Gene Expression in C57BL/6J

and DBA/2J Mouse Striatum Using RNA-Seq and Microarrays”. In: PLoS

ONE 6.3, e17820+. issn: 1932-6203. doi: 10.1371/journal.pone. 0017820. url:

http://dx.doi.org/10.1371/journal.pone.0017820.

26. Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth (Jan. 2010).

“edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data.” In: Bioinformatics (Oxford, England) 26.1, pp. 139–

140. issn: 1367-4811. doi: 10 . 1093 / bioinfor

27. Cornwell, M., Vangala, M., Taing, L., Herbert, Z., Köster, J., Li, B., Sun, H.,

Li, T., Zhang, J., Qiu, X., Pun, M., Jeselsohn, R., Brown, M., Liu, X. S., &

Long, H. W. (2018b). VIPER: Visualization Pipeline for RNA-seq, a

Snakemake workflow for efficient and complete RNA-seq analysis. BMC

Bioinformatics, 19(1). https://doi.org/10.1186/s12859-018-2139-9

28. Sultan, Marc et al. (Aug. 2008). “A global view of gene activity and alternative

splicing by deep sequencing of the human transcriptome.” In: Science (New

York, N.Y.) 321.5891, pp. 956–960. issn: 1095-9203. doi: 10.1126/

science.1160342. url: http://dx.doi.org/10.1126/science.1160342.

29. Bullard, James et al. (Feb. 2010). “Evaluation of statistical methods for

normalization and differential expression in mRNA-Seq experiments”. In:

BMC Bioinformatics 11.1, pp. 94+. issn: 1471-2105. doi: 10.1186/1471-2105-

11-94. url: http://dx.doi.org/10.1186/1471-2105-11-94.

30. Oshlack, Alicia and Matthew J. Wakefield (Dec. 2009). “Transcript length bias

in RNA-seq data confounds systems biology”. In: Biology Direct 4.1, pp. 14–

10. issn: 1745-6150. doi: 10.1186/1745- 6150- 4- 14. url: http:

//dx.doi.org/10.1186/1745-6150-4-14

http://dx.doi.org/10.1371/journal.pone.0017820
https://doi.org/10.1186/s12859-018-2139-9
http://dx.doi.org/10.1126/science.1160342
http://dx.doi.org/10.1186/1471-2105-11-94

88

31. Anders, Simon and Wolfgang Huber (Oct. 2010). “Differential expression

analysis for sequence count data”. In: Genome Biology 11.10, R106+. issn:

1465-6906. doi: 10.1186/gb- 2010- 11- 10- r106. url: http://dx.

doi.org/10.1186/gb-2010-11-10-r106.

32. Bullard, James et al. (Feb. 2010). “Evaluation of statistical methods for

normalization and differential expression in mRNA-Seq experiments”. In:

BMC Bioinformatics 11.1, pp. 94+. issn: 1471-2105. doi: 10.1186/1471-2105-

11-94. url: http://dx.doi.org/10.1186/1471-2105-11-94.

33. Robinson, Mark and Alicia Oshlack (Mar. 2010). “A scaling normalization

method for differential expression analysis of RNA-seq data”. In: Genome

Biology 11.3, R25+. issn: 1465-6906. doi: 10.1186/gb-2010-11-3-r25. url:

http://dx.doi.org/10.1186/gb-2010-11-3-r25

34. Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth (Jan. 2010).

“edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data.” In: Bioinformatics (Oxford, England) 26.1, pp. 139–

140. issn: 1367-4811. doi: 10 . 1093 / bioinformatics / btp616. url: http : / / dx

. doi . org / 10 . 1093 / bioinformatics/btp616.

35. McCarthy, Davis J., Yunshun Chen, and Gordon K. Smyth (May 2012).

“Differential expression analysis of multifactor RNA-Seq experiments with

respect to biological variation”. In: Nucleic Acids Research 40.10, pp. 4288–

4297. issn: 1362-4962. doi: 10.1093/nar/gks042. url:

http://dx.doi.org/10.1093/nar/gks042.

36. Robinson, Mark D. and Gordon K. Smyth (Nov. 2007). “Moderated statistical

tests for assessing differences in tag abundance.” In: Bioinformatics (Oxford,

England) 23.21, pp. 2881–2887. issn: 1367-4811. doi: 10.1093/

bioinformatics/btm453. url: http://dx.doi.org/10.1093/bioinformatics/btm453.

— (Apr. 2008). “Small-sample estimation of negative binomial dispersion,

with applications to SAGE data.” In: Biostatistics (Oxford, England)

9.2, pp. 321–332. issn: 1465-4644. doi: 10.1093/biostatistics/kxm030.

url: http://dx.doi.org/10.1093/biostatistics/kxm030.

37. Winkelmann, Rainer (2008). Econometric analysis of count data. url: http : / /

www . worldcat . org / isbn / 9783540783893.

http://dx.doi.org/10.1186/1471-2105-11-94
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/bioinformatics/btm453
http://dx.doi.org/10.1093/biostatistics/kxm030

89

38. Zhang, H., Zhang, B. M., Guo, X., Xu, L., You, X., West, R. B., Bussel, J. B.,

& Zehnder, J. L. (2019). Blood transcriptome and clonal T-cell correlates of

response and non-response to eltrombopag therapy in a cohort of patients with

chronic immune thrombocytopenia. Haematologica, 105(3), e129–e132.

https://doi.org/10.3324/haematol.2019.226688

39. Wang, L., Xi, Y., Sung, S., & Qiao, H. (2018). RNA-seq assistant: machine

learning based methods to identify more transcriptional regulated genes. BMC

Genomics, 19(1). https://doi.org/10.1186/s12864-018-4932-2.

40. Sergushichev, Alexey. 2016. “An algorithm for fast preranked gene set

enrichment analysis using cumulative statistic calculation.” bioRxiv, 060012.

https://doi.org/10.1101/060012.

41. Young, Matthew D, Matthew J Wakefield, and Gordon K Smyth. 2010. “goseq

: Gene Ontology testing for RNA-seq datasets Reading data.” Gene, 1–21.

http://cobra20.fhcrc.org/packages/release/bioc/vignettes/

goseq/inst/doc/goseq.pdf.

42. Oluwafemi A. Sarumi, Dominik Heider,Large language models and their

applications in bioinformatics,Computational and Structural Biotechnology

Journal,Volume 23,2024,Pages 3498-3505,ISSN 2001-

0370,https://doi.org/10.1016/j.csbj.2024.09.031.

(https://www.sciencedirect.com/science/article/pii/S2001037024003209)

43. Andrés-León, E., Núñez-Torres, R., & Rojas, A. M. (2016). miARma-Seq: a

comprehensive tool for miRNA, mRNA and circRNA analysis. Scientific

Reports, 6(1). https://doi.org/10.1038/srep25749

44. Wolfien, M., Rimmbach, C., Schmitz, U., Jung, J. J., Krebs, S., Steinhoff, G.,

David, R., & Wolkenhauer, O. (2016). TRAPLINE: a standardized and

automated pipeline for RNA sequencing data analysis, evaluation and

annotation. BMC Bioinformatics, 17(1). https://doi.org/10.1186/s12859-015-

0873-9

45. Orjuela, S., Huang, R., Hembach, K. M., Robinson, M. D., & Soneson, C.

(2019). ARMOR: an automated reproducible MOdular workflow for

preprocessing and differential analysis of RNA-SEQ data. G3 Genes Genomes

Genetics, 9(7), 2089–2096. https://doi.org/10.1534/g3.119.400185

https://doi.org/10.3324/haematol.2019.226688
https://doi.org/10.1186/s12864-018-4932-2
https://doi.org/10.1101/060012
https://www.sciencedirect.com/science/article/pii/S2001037024003209
https://doi.org/10.1038/srep25749
https://doi.org/10.1186/s12859-015-0873-9
https://doi.org/10.1186/s12859-015-0873-9
https://doi.org/10.1534/g3.119.400185

90

LIST OF PUBLICATIONS

1. LYNX-RNA: A Scalable Nextflow Workflow for RNA-Seq Analysis with

Integrated Large Language Models for Comprehensive Result Interpretation. Accepted

in IEEE 2025 3rd International Conference on Communication, Security, and Artificial

Intelligence.

91

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

PLAGIARISM VERIFICATION

Title of the Thesis: LYNX-RNA: A Nextflow-Based Modular RNA-Seq and

Machine Learning Pipeline for Biomarker Discovery and LLM- summarized

Report Generation in Immune Thrombocytopenia.

Total Pages: 103

Name of the Student: Devanshi Sharma

Supervisor: Dr. Asmita Das

Department of Biotechnology, Delhi Technological University, Delhi - 110042

This is to report that the above thesis was scanned for similarity detection. Process

and outcome is given below:

Software used: Turnitin, Similarity Index: 9%, Total Word Count: 17,725 Words

Date: 29.05.2025

Candidate’s Signature Signature of Supervisor

92

