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Abstract

Large language model (LLM) optimization on a task is based on tuning it, which

saves costs in resources. Training models or instruction tuning on pairs of instructions

and completions makes them follow human directions in the right manner. Complete

tuning remains computationally expensive, however. There have been a number of recent

parameter-efficient fine-tuning (PEFT) methods that assist in resolving this problem. It

remains very hard to align model outputs with human preferences, however.

In this current work, we tried instruction fine-tuning and PEFT techniques such as

Low-Rank Adaptation (LoRA) to fine-tune pre-trained LLMs on a given task using struc-

tured training data and efficient tuning of a portion of model parameters. To ensure con-

textual appropriateness while improving response alignment with human expectation, we

incorporated Reinforcement Learning from Human Feedback (RLHF) during fine-tuning.

Our results indicate that while PEFT approaches significantly minimize computational

and memory expense without any loss in performance, instruction adaptation actually

enhances model task conformity. RLHF also prevents the model from providing out-of-

context responses thus ensuring that responses are uniform and human-aligned.

Observations of this work show that highly specialized and resource-effective LLMs

may be built by combining PEFT, instruction tuning, and RLHF. These methods offer

a rational and scalable way to fine-tune, thus enhancing the usefulness and flexibility of

LLMs for a wide range of other applications.
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Chapter 1

INTRODUCTION

1.1 Overview

Its goal is to introduce the various techniques of PEFT and instruction tuning in large

language models, particularly comparing how they improve both the efficiency and ef-

fectiveness of the method used to train the models. The process of instruction tuning

is special among fine-tuning approaches. Training these language models involves using

smaller, focused databases made for the explicit instruction following task, so no general

instruction following is needed. While LLMs come with much existing expertise, they

still need to be adjusted to perform well in challenging areas. Information developed dur-

ing pre-training is used to help an expert dog act according to its trainer’s expectations.

Adapting a model helps it work well in the situations it is designed for. By adapting their

way of interpreting and performing lessons, they are able to face many complicated needs

in different tasks.

PEFT techniques, like LoRA., Adapters and Prefix-Tuning, could lead to much more

efficient instruction tuning compared with other alternatives. Such tools save a lot of

computer resources and memory for the purpose of fine-tuning. The main difference is

that engineers used to fine-tune every component of the model, but with this technique,

only some parts are moved, the rest remains unchanged. Low-rank decomposition which

is how LoRA works, tunes a select number of layers. On the other hand, Adapters are

very simple and can be optimized inside the model. Still, prefix-tuning changes the input

sentences to manage the model without touching the weights that matter the most. That

is to reach the outcomes you want. Using these techniques let users make their models

x



harder while ensuring they remain relevant and useable within machine learning systems

with fewer resources.

At present, Reinforcement Learning from Human Feedback is a leading technique for

fixing large language models to human values, tastes and expectations. RLHF lets peo-

ple improve LLMs by constantly providing feedback for increasing how helpful, safe and

useful each model becomes.

More and more, reinforcement learning (RL) is being used as a solution that comple-

ments PEFT and individual teaching. If given feedback from interaction, large language

models can learn without using outside datasets or commands. It is made possible be-

cause of reinforcement learning methods.

According to the work, the application of reinforcement learning might transform a

series of PEFT methods and education practices. Because of these ways, LLMs can work

in more complex industrial cases, making AI use easier by making LLMs adaptable, effi-

cient and scalable. As a result, LLMs are able to handle difficult situations.

1.1.1 Motivation

It is necessary for large language models to offer enough training to each person and

for enough memory and computation to be provided. Their capabilities must be applied

and cannot be ignored. All the model parameters are regularly updated throughout fine-

tuning which starts at the training stage. Training is the first part of this operation.

For example, caching model weights, optimizer states, gradients, forward activations and

temporary memory uses up quite a lot of computing space and memory. All of these

show ways that memory can be affected. A temporary memory is also necessary as well.

Having a memory in this environment is clearly better when it is temporary. When it

comes to consumer electronics, this approach does not work for products that are needed

for hundreds of gigabytes of data.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Much improvement has been made in large language models or LLMs, with increasing

usage and variety in different applications. Many more applications are now being created

with LLMs. The way methodologies have grown over the years is why the situation

appears as it does now. I cover what has been found from big research studies that have

gone before. The assessment focuses on how evaluations are carried out, what outcomes

are found and what weaknesses are noted within the field.

2.2 Background and Research Gaps

Tuning such models for a specific need is now central to improving NLP processes. This

happens because more people are using pre-trained language models, like BERT, GPT,

RoBERTa and T5. It is very challenging for finetuning to be done in a realistic way

because of the high resources it requires for processing and memory. Such a challenge

has led to the invention of Parameter-Efficient Fine-Tuning techniques. These include

Adapters, LoRA, BitFit, Prompt Tuning and Delta-Tuning which combine several prior

methods. They let us improve a specific part of the model’s parameters and it results in

exactly the same performance as a full-fine-tuning process but takes less effort to train.

Experts in medicine have looked at PEFT for different uses, including normal language

processing, learning causes, code writing and bringing together individual cognitive sig-

nals. According to these studies, PEFT is both flexible and relatively inexpensive.
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Promising studies are underway, but there are real barriers in PEFT research at this

time. The lack of standard tools to measure achievement in most disciplines greatly

hinders the effort to measure progress in the same way. Even so, our view of how PEFT

systems converge has only started to develop. While studies have shown PEFT techniques

work well, how they can be used for continued learning and multitasking is not yet well

known. Lastly, relatively few studies focus on finding ways to fine-tune models just for

creating code. In addition, although external guidance such as using gaze as a reference

or bringing in causal inference is possible, it is still non-standard and has only a small

impact right now. Besides, although Delta-Tuning and Quantum-PEFT are promising

developments, we need to test them under real conditions to make sure they help.

2.3 Key Insights from the Literature

The papers explain that by using fewer adjustments, PEFT techniques can reach 90-95% of

the results a larger-scale approach would have, lowering the need to change many model

parameters. It leads to much less operation of computers and other needed machines.

For example, Delta-Tuning[3] excels on over a hundred NLP tasks while using fewer

parameters.

LoRA and Adapters[4] which are examples of PEFT, have been demonstrated to pre-

serve model performance but require much less time and memory to fine-tune. Further-

more, including additional reasoning or cognitive inputs has demonstrated that systems

perform better and show fewer problems in situations where they are not trained for or

when they encounter different data.

The importance of PEFT has been confirmed by research in code generation and

the studies suggest that PEFT methods need to be more refined for particular uses. In

general, PEFT provides a straightforward way to adjust large language models that is

most helpful in situations where resources are limited or the needs keep changing.
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2.4 Evaluation Metrics and Findings

Table 2.1: Summary of Literature Review on Instruction Fine-Tuning
and PEFT Methods

Research Model Used Fine-Tuning
Method

Evaluation
Metrics

Metric
Scores

Research Gap

Parameter-
efficient fine-
tuning of large-
scale pre-trained
language models
(2023)

Various large
PLMs (e.g.,
BERT, GPT
variants)

Delta-tuning
(unified PEFT
framework
including
Adapters,
LoRA, Prompt
Tuning)

Accuracy, F1,
Task-specific
benchmarks
(100+ NLP
tasks)

Comparable
or better
than full
fine-tuning
with <10%
parameters
updated

Lack of standard-
ized benchmarks
across diverse do-
mains; need for
better theoretical
understanding of
convergence in
PEFT

Parameter-
Efficient Trans-
fer Learning for
NLP (2022)

Adapters Adapters Accuracy, BLEU Adapter tun-
ing achieves
within 0.4%
accuracy
of full fine-
tuning on
GLUE -
Adapter pa-
rameters add
3.6%

Full fine-tuning is
resource-intensive;
feature-based
methods underper-
form. Adapters
offer near state-
of-the-art results
with minimal pa-
rameters, enabling
scalable multitask
learning.

Fine-Tuning
Pre-trained Lan-
guage Models for
Robust Causal
Representation
Learning (2024)

Pre-trained
LMs (BERT,
RoBERTa)

Standard fine-
tuning with
causal front-
door adjustment

Domain general-
ization accuracy,
OOD robustness

Improved
OOD ac-
curacy by
5–10% over
baseline fine-
tuning

Integration of
causal inference
with PEFT re-
mains underex-
plored

Fine-Tuning
Pre-Trained
Language Mod-
els with Gaze
Supervision
(2024)

Transformer-
based LMs

Fine-tuning
with auxiliary
gaze supervision
signals

GLUE bench-
mark scores,
accuracy, F1

2–3% im-
provement
on GLUE
over baseline
fine-tuning

Scalability of cogni-
tive signal integra-
tion to larger mod-
els and datasets

A Comparative
Study of PEFT
Methods for
Python Code
Generation
(2023)

Code gener-
ation models
(e.g., Codex,
CodeT5)

PEFT meth-
ods (Adapters,
LoRA, BitFit)
vs Full Fine-
Tuning

BLEU, Code
correctness,
GPU memory
usage

PEFT meth-
ods achieve
90–95% of full
fine-tuning
performance
with 5–10%
parameters
trained

Need for better
PEFT methods
tailored for code
generation tasks
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Chapter 3

METHODOLOGY

3.1 Objective

This report mainly examines how we execute the fine-tuning process, since that is our main

goal with the use of Flan-T5. In other words, we try to accomplish this summarization by

carrying out two different methods; Complete (Full) fine-tuning and Parameter-Efficient

Fine-Tuning (PEFT). This project has the goal of boosting the model’s ability to do

summarization by fine-tuning it and then measuring how such techniques improve the

model’s performance using the ROUGE score to compare before and after. Moreover, the

experiment uses two conversation data corpora, SAMSum and DialogSum, to test and

observe the model’s efficiency with real dialogs and determine its suitability for practical

use.

3.2 Methodology

3.2.1 Dataset Preparation

The datasets used for fine-tuning the Flan-T5 model are SAMSum and DialogSum.

SAMSum Dataset

The data contains more than 16,000 examples of summary-based dialogues. Because

the dialogues include normal language as well as more formal expressions, it becomes

possible to understand a wide variety of subjects that appear in everyday life. Messages

have emoticons, informal expressions and now and then even misspelled words meant

to resemble real conversations. A short summary of the most important points in the
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discussions is included in the third-person-written abstracts. The information contained

in the rich content dataset can be accessed non-commercially under a particular license

and was chosen and annotated by linguists specializing in the English language.

DialogSum Dataset

In whole, the DialogSum dataset offers a large set of dialogues that are all summarized.

1,000 of the 13,460 dialogues have been kept aside for testing. All of the discussions in the

dataset are separated into specialized sets that help with testing, validation and training.

In the example we looked at earlier, we saw a doctor and patient planning an outpatient

visit and advising the patient on ways to quit smoking. Considering how extensive this

dataset is, it includes both formal and informal dialogue to keep things interesting. Also,

to be ready for fine-tuning, data is tokenized and pre-processed with the Transformers

library, even if some of this work is done beforehand.

Preparing the Dataset for Reinforcement Learning from Human Feedback

At this specific point in the process, a large and significant list of prompt texts is inten-

tionally designed, with every one of these prompts individually focused on the same task.

A specific large language model, better known by the name LLM, then undertakes the

task of producing numerous different completions for every single prompt in our large set

of prompts. These different completions produced by the LLM then become the main

point of reference for determining what necessarily amounts to human feedback in this

given context.

3.2.2 Model Selection and Setup

Pre-training Flan-T5 was the way Google did the summarizing task. Autopilot utilizes

the AutoModelForSeq2Seq class from the Transformers package to load the tokenizer and

model. We utilize the original model as the baseline to compare against other versions.

There are two images presented here, figure 3.1 and figure 3.2.

The Flan-T5 model has a staggering number of more than 250 million parameters,

which represents a significant amount of its ability and complexity. During the study, the

impact of training a fraction of a model’s parameters, referred to as Parameter-Efficient

6



Fine-Tuning (PEFT), will be contrasted and evaluated against the impact of training all

the parameters via full fine-tuning. The intricate and complex information regarding the

two readings can be seen depicted in figure 3.3.

Large Language Models

Large Language Models (LLMs) are advanced machine learning techniques that ingest,

generate, and process human language in bulk. They serve as the foundation for natural

language processing (NLP) functionality such as text generation, translation, summariza-

tion, and question answering.

Architecture and Components of LLMs

• Transformer Architecture: Self-attention transformers were a replacement for

the then-used sequential models, e.g., RNNs. This was substituted with the se-

quential models. Because this is not anything out of the norm, the transformers

could very well fill these functions. Simultaneous input sequence processing and the

storage of long-range correlations are now in the realm of probable possibilities at

this point.

• Key Components of a Transformer-based LLM:

– Embedding Layer: The approach taken here is to map input tokens, po-

tentially words or subwords, to high-dimensional dense vectors that preserve

semantic and grammatical information. We refer to this operation as tokeniza-

tion.

– Self-Attention Mechanism: Through dynamic weights to every token in

relation to the rest of the sequence, the model is able to attend to input elements

pertinent to the issue at hand. This enables the model to attend to the elements

actually required by the immediate challenge.

– Feedforward Neural Networks: At the end of the day, the sequence of

attracting attention outputs finally results in abstraction extraction at higher

levels throughout the process.

– Encoder and Decoder:

7



∗ Encoder Only: The Transformer encoder stack is the only component

in encoder-alone versions. The encoder uses bidirectional self-attention to

process the full input sequence, attending to all tokens before and follow-

ing it. The model can extract extensive contextual information from the

complete sequence.

Models are trained using Masked Language Modeling, which masks certain

input tokens and predicts them based on context.

Encoder-only models excel in text classification, named entity identifi-

cation, sentiment analysis, and other discriminative tasks that require

deep text knowledge and representation. Example: BERT, RoBERTa,

ELECTRA. Encoder-only models produce embeddings or predictions for

fixed input sequences, not coherent token-by-token sequences for autore-

gressive text production.

∗ Decoder-only: Decoder-only models employ the Transformer decoder

stack. Masked self-attention restricts every token to observe only left-to-

right tokens seen so far. This is an autoregressive model, which predicts a

token once it has observed the preceding tokens.

The model is trained with Causal Language Modeling to forecast the next

token given prior tokens. Decoder-only models are used to leverage lan-

guage modeling, conversational systems, code generation, and creative

writing. Text is generated incrementally, one token at a time. Example:

GPT family (GPT-2, GPT-3, GPT-4), LLaMA, and BLOOM. Decoder-

only models can’t be applied for tasks requiring bidirectional context or full

understanding of the entire input sequence as they possess unidirectional

attention.

∗ Encoder-Decoder:Encoder-decoder models are hybrids of Transformer

encoder and decoder stacks. Encoding starts with bidirectional processing

of the input sequence in an effort to produce a contextual representation.

The decoder generates the output sequence autoregressively using tokens

produced previously and encoder output.

Sequence-to-sequence training models such as denoising or span corrup-

tion, the model produces a target sequence from corrupted or altered in-

8



put.

These are well-suited for machine translation, question answering, and ab-

stractive summarization where input and output sequences differ in struc-

ture or length. Decoupling the decoder and the encoder, the model is

capable of fully understanding input prior to generating a structured out-

put.Example: MarianMT, BART, FLAN-T5.

Because they are composed of two components, encoder-decoder models

need more computational power while training and predicting but handle

difficult sequence-to-sequence tasks better.

Training Process

• LLMs are first trained on huge corpora constructed from books, web pages, and code

bases. Huge corpora of billions of words are taken from a great variety of sources.

Few corpora are employed for instructing LLMs. Huge corpora are employed for

training. LLMs must begin with this training before performing further complicated

tasks.

• Self-Supervised Learning Objectives:

– Masked Language Modeling (MLM):Masked Language Modeling (MLM)

is one of the self-supervised pretraining techniques employed to pretrain large

language models, notably Transformer encoder-based models such as BERT

and RoBERTa. MLM strives to learn word-contextual relationships by filling

in the missing or masked words in sentences.

Some of the tokens at random positions (usually 15%) are substituted with a

special [MASK] token during MLM pretraining. The model is asked to predict

the masked tokens contextually from both sides of the word. The model de-

velops an in-depth sense of linguistic context, semantics, and syntax through

bidirectional attention.

Example: ”The cat sat on the [MASK]” Context word assists the model

to predict ”mat” as masked. MLM bidirectional technique enables all of a

sequence’s words to be processed at once, with better handling of subtlety

of meaning and interdependence compared to regular left-to-right language
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models.

Cross-entropy loss between the predicted and masked tokens is the training

objective which seeks to minimize it. Surprisingly, only masked tokens compute

loss, with unmasked tokens acting as context.

– Causal Language Modeling (CLM): Causal Language Modeling (CLM)

or autoregressive language modeling is another well-known training plan of

decoder-only Transformer models like GPT models.

Next token generation in a sequence is done by CLM model from the previous

tokens in strict left-to-right order. The one-way model predicts the distribution

of the next word given the previous words and produces text one token at a

time with contextual directions.

Example: ”The cat sat on the” There are past tokens with only words that

are used to predict ”mat” in the model. The objective is to maximize next

token probability to be correct for all the training corpus.

As it generates text sequentially, CLMmodels can be used in story composition,

chatbots, and code writing. Unidirectional models will not be able to use future

context during training, which may affect understanding of some examples of

language.

• Fine-Tuning: After the first pretraining, when an LLM is trained on common pat-

terns from huge databases, occasionally the model must be fine-tuned to specialize

well in a specific application or class. Fine-tuning pre-trained parameters on labeled

data for the target use enables more accurate results, usability, and performance.

Scale and Capabilities

• As there are more parameters in an LLM, it can learn and identify very complex

patterns and language nuances much more effectively. The scale enables multiple

breakthroughs in natural language generation and understanding:.

• Larger models exhibit:

– More advanced models have a better sense of world knowledge, semantics,

and syntax and are capable of responding to ambiguous or unclear questions.
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With this better understanding, they create grammatically correct, contextu-

ally meaningful, and semantically rich content.

– Zero-shot learning: Most of the LLMs possess the zero-shot learning ability,

which is quite remarkable. The model can accomplish new tasks through task-

specific training and fine-tuning. A big LLM can provide answers, translate,

or summarize text if it is supplied with only its pretraining data and patterns.

Task-specific model development and labeled data are greatly reduced through

the use of this ability.

– Few-shot learning:Apart from zero-shot capability, large LLMs are also as-

tounding when it comes to few-shot learning, learning to perform new tasks

after seeing only a few examples in the prompt. In-context learning enables

the model to pick up task constraints and provide correct responses without

gradient updates or retraining. Few-shot learning adds even greater flexibil-

ity and runtime prototyping, making users able to modify model behavior at

runtime with low data.

– Large models produce more coherent text across longer passages with thematic

coherence and logical coherence. They are able to create original and delicate

content, such as creative writing, heavy reasoning, and poetry, that smaller

models cannot do. This is because creativity emerges since the model has

heavy exposure to varied linguistic styles and knowledge in training.

Text-to-Text Summarization Using RNNs architecture

Recurrent Neural Networks (RNNs) have successfully been go-to architecture for sequence

modeling problems such as text summarization. RNNs read input sequences in order

one at a time, having a hidden state that takes in knowledge from past tokens to guide

processing for the current token. Sequential dependency allows RNNs to perceive temporal

and contextual dependencies in text, which is important while creating well-coherent

summaries.

Encoder-decoder approach is quite prevalent in text-to-text summarization. Encoder

RNN processes the input sentence word for word and transforms it into a fixed-size context

vector that contains the whole input sequence. Decoder RNN produces the summary

by generating words one at a time step-by-step from the context vector and previously
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generated words from itself.

While helpful, there are some limitations of the traditional RNNs, e.g., no capacity

to learn long-term relations with exploding or vanishing gradients, and thus cannot be

applied to abstract long or intricate documents. This is addressed by algorithms like Long

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) that overcome some of

the limitations by using gate units for maintaining longer memory for a sequence of time.

The parallelization and scalability problems of the RNN-based summary models are

caused by sequential computation, therefore leading to slow training and wastage of hard-

ware.

Text-to-Text Summarization Using Transformer architecture

Transformer design is a natural language transformation, especially text-to-text applica-

tions like summarization. As opposed to RNNs, Transformers don’t process the input

sequentially but instead employ a self-attention approach where the model has the ability

to give weight to all words of the input sequence at the same time. Parallel processing

ability enables the model to capture intricate long-range relationships easily and effec-

tively.

In a standard Transformer-based summarization model, the model itself is a combina-

tion of an encoder and a decoder. The encoder converts the input text into a sequence of

unbroken representations by feeding a sequence of a number of layers of self-attention and

feed-forward networks. The decoder produces the summary using the previously created

tokens and the output of the encoder in an attempt to produce contextually relevant and

coherent summaries.

Perhaps most notably, the Transformer’s multi-head self-attention mechanism, which

allows numerous attention ”heads” to look at numerous features of the input text in

parallel, enables the model to learn abstract linguistic representations such as syntactic

structure, semantic meaning, and discourse relations on which good summarization relies.

Most remarkable of Transformer’s achievements is multi-head self-attention, where

it learns multiple attention ”heads” in parallel that pay attention to different parts of

the input text. This enables the model to learn very diverse types of linguistic features

like syntactic structure, semantic meaning, and discourse relations that are needed for

high-quality summarization.
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Positional encoding is applied to input embeddings to preserve word order information

as the self-attention mechanism is position-agnostic. The model can thus utilize the

parallelism of the Transformer while preserving sequence relationship of language in this

manner.

Transformer models performed better than RNN-based models in summarization in

terms of more processing of long text, higher coherence, and less training time because

they are parallelizable. Common Transformer-based models used in summarization are

BART, T5, and PEGASUS that achieved novel state-of-the-art performance in abstractive

summarization.

Parameter-Efficient Fine-Tuning (PEFT)

Flan-T5 was pre-trained by Google for the job of creating headlines. The AutoMod-

elForSeq2Seq from Transformers is used by Autopilot to load the tokenizer and the model.

We look at the first version of the model as a starting reference against other versions.

Two illustrations are included here, figure 3.1 and figure 3.2.

The model is very advanced because it has over 250 million parameters. Both methods

for converting pre-trained models will be compared in a study: PEFT, where only partial

parameters are updated and full fine-tuning, where all parameters are updated. The facts

and explanations of both readings are shown in detail in figures 3.3.

Training Process

• If you want the model’s weights to stay frozen, your training should only focus on

just a few components, leaving the weights fixed in the process. Going after this

objective is a legitimate activity.

• The training process is limited to the components that have been used most recently,

and as few additional parameters or layers as feasible are introduced into the system.

PEFT Methods Type

• Selctive Method: Some specific parameters within a model such as particular

layers, can be tuned to improve its accuracy. It may happen to ensure that the
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information is accurate enough. Specific jobs find certain techniques useful, although

they may not perform as fast or use as much computer memory as others.

• Reparameterization Methods:Within these strategies, there is Low-Rank Adap-

tation (LoRA), considered a major system improvement method. Further techniques

that fit this category are covered here as well. Loop Recurrent Attention Revisited

(LoRA) helps to improve the accuracy of Loop Recurrent Attention (LRA) by re-

ducing some requirements that must be adjusted. Small models are possible because

fewer parameters are used in their creation.

• Additive Methods:One approach is to use extra trainable components in the

model and not touch the weights included earlier. Consumers may pick from the

following two major categories:

– Adapter Method:When we say adapter methods, we are talking about adding

more elements to the encoder and decoder of the model. This may also hear

these layers called ”adapter methods.”

– Soft Prompt Method:They are classified as soft prompt techniques; one of

them is playing around with the input prompt. These approaches are regularly

called soft prompt techniques. In most cases, it includes inserting trainable

parameters into the computer prompt embeddings.

Figure 3.1: Full fine tuning, Available:
https://medium.com/@kanikaadik07/peft-parameter-efficient-fine-
tuning-55e32c60c799 [1]
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Figure 3.2: PEFT fine tuning, Available:
https://medium.com/@kanikaadik07/peft-parameter-efficient-fine-
tuning-55e32c60c799 [1]

3.2.3 LoRA (Low-Rank Adaptation)

Applying LoRA on large infrequently updated models leads to a major increase in how

well they are fine-tuned. The potential is raised when low-rank matrices are incorporated

into the analysis. Variations are made on chosen design variables, with the goal that

these alterations will not affect the entire set of parameters. To reach this objective, the

organization is applying this tactic. The performance of the model has stayed exactly

the same, but fine-tuning it led to a decrease in the number of trainable parameters and,

thus, a decrease in the overall count of parameters. Strategies and Methodologies at

Work

• Freeze Original Model Weights: The next step requires training the basic

weights first and then locking them. Moving forward to the next step requires you

to successfully complete this requirement. For the whole process of fine-grading, the

starting weights do not change to guarantee equal results.

• Introduce Low-rank Decomposition Matrices:

– Because we want to consider every type of interest, suggestion is made to add

two smaller matrices, A and B. Such layers are widely considered the key to

fixing the problem..

– So that the sizes of their product and weight matrices are compatible, the

sizes have been ensured. For this reason, matrices are certain to perform well.
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Its accomplishment is made with the aim of having the greatest influence.

At present, the assessment is done to confirm that the desired result can be

reached.

– It is likely that the original weight matrix holds information that the decom-

position matrices do not at first capture, despite their lower rank. Hundreds

of thousands of parameters make up the first weight matrix. The rank of all

these decomposition matrices is either at URL or below and this is significant.

• Train Low-rank Matrices:

– Low-rank matrices are trained with the help of supervised learning, a type of

instruction. In such instruction, teachers use information that matches the

work to be learned. During the entire period, the initial model’s weights do

not change from when they were first explored.

– Even though only a small part of the matrices is updated, accuracy can be

maintained with as few as 10 percent of the usual number of trainable param-

eters. Lowest values are the only ones updated in the matrices.

• Inference Process:

– During inference, the low-rank matrices multiply to produce a matrix that

shares same dimensions as the weight matrix included in the original model.

After inference is finished, the observer employs the matrix to correctly inter-

pret the data. When the model is ready, the matrix is called on to predict

what the results will be.

– You then unite the new matrix with the first model’s fixed weights so you can

perform inference during the present jo

3.2.4 Full Fine-Tuning

When the whole model has been trained using SAMSum and DialogSum datasets, a great

deal of fine-tuning needs to be done to achieve proper results. By sending it simple guide-

lines for summarizing, the model can quickly be improved. Both datasets include these

ideas as part of their analysis. The purpose of this is to achieve the preferred results. The
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Figure 3.3: LoRA: Low Rank Adaptation of LLMs, Available:
https://medium.com/@yash9439/
introduction-to-llms-and-the-generative-ai-part-4-parameter-efficient-
fine-tuning-peft-83c6dd039787[2]

goals are achieved by preparing and assigning summary tasks. Because of this, the model

might create brief versions of what others will say in the presentation.

The model is trained at training time with few CPU resources (a low epoch value)

and a partial set of the training dataset (125 samples, for instance). Good performance

can only be reached through regular warm-up. The model can be taught because of the

way these two characteristics interact.

The TrainingArguments class is utilized to establish and establish the training envi-

ronment. Training is facilitated in Transformers thanks to the Trainer class within the

library. Making sure people receive the help they need is the duty of this class.

When the model has been calibrated, ROUGE is employed to evaluate its capability

to summarize treated materials. Once the activity is done, the period when the model is

being adjusted begins which includes this assessment. The ROUGE score measures how

well prepared summaries function, especially when compared to those that have been

produced by common readers.
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3.2.5 Instruction Fine Tuning

A qualitative review of the refined model includes comparing summaries made from both

the humans and the inceptive Flan-T5 model (zero-shot). Its aim is to help the model

gain better knowledge of its own outcome. At this time, this comparison aims to gather

information. After looking at both documents, you might notice that the improvement

comes from the better written summary.

For vicenary analysis, we depended on ROUGE-1, ROUGE-2, ROUGE-L and the

ROUGE-Lsum scores. They are measured to judge how efficiently the model works.

Generally, results from the fine-tuned model show that improvements over the original

model are quite significant.

3.2.6 Parameter Efficient Fine-Tuning (PEFT) with LoRA

Parameter-efficient fine-tuning (PEFT) technique meets with low-rank adaptation (LoRA)

method, offering an alternative approach to fine-tuning. PEFT, or ”parameter-efficient

fine-tuning,” says it all. LoRA is valuable as it allows training a few parameters, thus

reducing the computational cost and memory needed. This benefit speaks to one of the

numerous advantages of using LoRA. In fact, this is just one of the numerous advantages

that come with its application. A method such as this one is especially fitting when re-

sources are limited. There are times when the resources available become limited.

To be put into perspective, the PEFT method considers learning precisely 1.4% of

the model parameters. The use of LoRA adapters makes this choice a very viable option.

Compared to the adapters, which occupy around 10 megabytes, the fully fine-tuned device

is roughly one gigabyte.

One of the most significant aspects of the PEFT approach is the integration of LoRA

adapters within the base Flan-T5 model. As a result, the model is fine-tuned by using

fewer steps and epochs, which means that the resources used are considerably less. This

goal is achieved by utilizing two separate datasets, SAMSum and DialogSum. After

PEFT, the model is measured based on ROUGE scores, and the results are compared

against the baseline model and the adapted model to the instruction. The two models
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are compared. A comparison of the overall performance is done in the correct manner. In

essence, this study is to better understand the compromise between computer efficiency

and real performance. This particular effort is being done with the view of achieving this.

3.2.7 Reinforcement Learning from Human Feedback

Figure 3.4: RLHF: Reinforcement Learning from Human Feedback

Reward Model

The Reward Model itself is a small language model that has been trained with care to

act as a replacement for human judgment. Its main purpose is to assist in aligning large

language models (LLMs) with human taste through the provision of autonomous, scalable

feedback instead of requiring explicit human evaluation.

The reward model training begins with the generation of a dataset that is rich in

prompts, each followed by a number of completions generated by the model itself. Hu-

man annotators enter in this step to evaluate and rank these completions on a range of

alignment measures, such as helpfulness, harmlessness, honesty, and correctness. These

annotator rankings are the supervised training labels that the RM needs. For each prompt

with N completions, this gives
(
N
2

)
distinct pairs. Each pair consists of one preferred com-

pletion and one less preferred completion; the preferred completion is the first one listed

and is given a reward score of 1, and the less preferred completion is given a score of 0.
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This organized format is attractive to the reward model’s input demands, enabling it to

learn from relative preferences.[5].

Having these ranked completions identified, the reward model is subsequently trained

on supervised learning to predict which completions humans like. This converts subjective

human preference into a quantitative measure, allowing the reward model to give scalar

reward scores to fresh outputs produced by the model.

Reinforcement Learning for Fine-Tuning Language Models

Once the Reward Model (RM) has been trained, it is then employed to fine-tune a base

language model through reinforcement learning techniques. The most commonly applied

algorithm in this procedure is Proximal Policy Optimization (PPO), a technique that is

well known for its stability and efficacy in policy gradient techniques. The aim of this

process is to enhance the behavior of the base model so that it produces completions

optimized to maximize rewards specified by the RM—taking the model closer to meeting

human preferences.

Reinforcement Learning Process

The reinforcement learning process proceeds in iterative cycles:

• Prompt Sampling: A prompt is sampled from a dataset.

• Completion Generation: The current version of the language model generates a

response (completion) for the prompt.

• Reward Assignment: The generated response is passed through the reward

model, which assigns a scalar reward based on alignment with human preferences

(e.g., helpfulness or harmlessness).

• Model Update with PPO: Using the PPO algorithm, the model’s weights are

updated to increase the likelihood of generating completions with higher rewards.

PPO constrains how much the model’s policy can change in a single update, thus

ensuring stable and reliable training.
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Proximal Policy Optimization

Proximal Proximal Policy Optimization (PPO) is one of the strongest reinforcement learn-

ing algorithms, which is heavily used to train large language models (LLMs) for alignment

purposes, such as Reinforcement Learning from Human Feedback (RLHF) and Consti-

tutional AI. In each of these uses, the primary goal of PPO is to optimize the conduct

of a language model to make its outputs more in line with human preferences. These

preferences are generally quantified with a trained reward model (RM), which serves as

an approximation of human judgment by providing scalar reward values to the generated

responses by the model.

PPO is part of the policy gradient approaches, designed to adjust the parameters of

a policy to maximize the expected rewards by adjusting the probability distribution of

possible actions. Among the features of PPO is its excellent training stability, which is

ensured by the use of a ”trust region.” This concept restricts the magnitude of policy

updates, so every iteration contributes small changes. Specifically, PPO uses a clipping

mechanism that restricts how much the probability of taking some actions can vary, which

in turn prevents huge, destabilizing updates and provides a smooth and stable learning

process.

Loss Functions in Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) uses a compound loss function with three dominant

elements: the loss of the value function, policy loss, and entropy loss. Each of them has a

significant role to play in facilitating stable and effective training of reinforcement learning

models.

• Value Function Loss: This part predicts the accuracy of the value function Vθ(s)

to estimate expected rewards. It employs loss estimated as the squared error between

approximated value Vθ(st) and empirical return R̂t, as demonstrated in the equation:

Lvalue(θ) =
(
Vθ(st)− R̂t

)2

(3.1)

Here, Vθ(st) represents the predicted value of the state st, and R̂t denotes the em-

pirical return or advantage estimate.
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• Policy Loss (Clipped Objective): Policy Loss: Policy loss is due to enhancing

the action choice of the model to optimize the learning expectation. PPO employs

a clipped surrogate objective to support stable learning. The loss is as follows:

Lpolicy(θ) = min
(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)
(3.2)

where rt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio between the new and old policies,

and Ât is the estimated advantage. The clipping prevents large policy updates,

ensuring the training remains within a stable range.

• Entropy Loss: Entropy Loss: To promote discovery and avoid early convergence

to poor policies, PPO receives an entropy bonus. This penalty discourages reliance

on the action distribution of the policy and favors more diverse action choices. The

loss in entropy is expressed as:

Lentropy(θ) =

[
−
∑
a

πθ(a | st) log πθ(a | st)

]
(3.3)

This term is typically weighted and added to the total loss during optimization.

Combined PPO Loss Function:

The overall PPO objective function combines the above components as follows:

LPPO(θ) = Lpolicy(θ) + c1L
value(θ) + c2L

entropy(θ)

where c1 and c2 are coefficients used to weight the contributions of the value function

and entropy losses, respectively.

3.2.8 Comparison of Full Fine-Tuning and PEFT

Fine-tuning tends to perform better in generating higher ROUGE scores than PEFT, yet

PEFT possesses humongous strengths in the fields of computer and memory efficiency.

PEFT is highly valuable to use with large models on computers that have scarce com-

puters. Despite some minor loss of quality (e.g., 1-2% lower ROUGE scores), PEFT is

a pragmatic and scalable solution for effective deployment. Full fine-tuning will provide

improved ROUGE score than PEFT, but PEFT has huge memory and compute speed
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benefits.

The PEFT process is very convenient to work with large models on cost-effective com-

pute hardware. Although slight small performance degradation (e.g., 1-2% reduction in

ROUGE scores) may occur, PEFT offers an efficient and scalable solution for effective

deployment.

Overall, end-to-end fine-tuning yields superior ROUGE performance compared to PEFT,

but PEFT provides phenomenal benefits of processing and memory. Because of its flex-

ibility, the PEFT model is a good fit for the deployment of large models with restricted

processing powers. There may be little performance compromise (say, one to two percent

decrease in ROUGE scores), but PEFT provides a flexible and best solution for deploy-

ment efficiency.

PEFT model accuracy is compared with base case model based on ROUGE score,

computational use, and model size. Fine-tuning gives better ROUGE result primarily

but, PEFT gives excellent memory saving and processing efficiency.

In consideration of the elasticity or the flexibility of the PEFT strategy, using large

models is the most appropriate whenever computing resources are limited. Even when

there are potential opportunities for performance loss (e.g., loss of one to two percent in

ROUGE scores), PEFT offers an effective and scalable method towards effective adoption.

It is so because PEFT is specifically intended for facilitating effective adoption.

3.3 ROUGE Metric

This specific group of standards, sometimes called the ”gold standard,” is being applied in

a try to measure the reports which are causing. There is comparison drawn between those

oversights which were prepared that were utilized as models and the used oversights. The

students are completing their way through the ”Recall-Oriented Understudy for Gisting

Evaluation” test which they are taking currently. The children are currently taking the

test. This finally leads to a cautious examination of input and reference totals overlap
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between word pairs, word sequences, and n-grams. Owing to the fact that the facts

have been already established, this description is being presented to you for reflective

consideration. The graphical representation of a mathematical study is given below.

3.3.1 Evaluation Metric ROUGE

ROUGE-n is the program that determines the intersection of n-grams between the refer-

ence summary and the produced summary G. It must be an R.

ROUGE-n =

∑
S∈R

∑
n-gram∈S Cmatch(n-gram)∑

S∈R
∑

n-gram∈S C(n-gram)
(3.4)

Where:

• n: Gives the size of n-grams (for example, ROUGE-1 for unigrams and ROUGE-2

for bigrams).

• Cmatch: Gives the size of n-grams in G that matches n-grams in R.

• C: The total number of n-grams in R.

Precision, Recall, and F1-Score

When examining ROUGE measures, one technique is to examine their accuracy, recall,

and F1-scores. Examples of this strategy are:

• Precision: Fraction of overlapping n-grams in G that appear in R:

Precision =
|R ∩G|
|G|

(3.5)

• Recall: Fraction of overlapping n-grams in R that appear in G:

Recall =
|R ∩G|
|R|

(3.6)

• F1-Score:Finding the harmonic mean of recall and precision:

F1 = 2 · Precision · Recall
Precision + Recall

(3.7)
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3.3.2 Evaluation Metric for RLHF

Toxicity assessment plays a key role in Reinforcement Learning with Human Feedback

(RLHF) in determining and minimizing toxic or offending answers among model outputs.

It would ideally utilize a pre-trained detector like a RoBERTa-based hate speech detector

to provide a toxicity probability score on answers. Non-toxic score is utilized as a reward

signal for training. Success in detoxification is determined via quantitative and qualitative

measurement through the use of parameters like mean toxicity score, standard deviation,

and side-by-side comparison.

Mean Improvement =
µbefore detoxification − µafter detoxification

µbefore detoxification

(3.8)

KL divergence[6], however, captures how much a fine-tuned model deviates from its

original state. Scaled as penalty in PPO, it blocks the model from straying too much

from its baseline action, thus providing fluency and coherence. The reward is penalized

by subtracting a KL-scaled penalty, prompting safer output without sacrificing quality.

As a pair, toxicity evaluation and KL divergence guarantee safety and stability in training

language models.

3.3.3 Final Evaluation

The last test utilizes a sample so much greater than the sample of the previous test. That

is to say, it is only after both models have been calibrated. You should keep this in mind

as you examine the different ways the models can be utilized in discussions that otherwise

have not been discussed.

To find out which fine-tuning technique does better when used on actual conversational

data, the results are compared. To facilitate simpler comparison of the results between

the studies, initial values are used.

A study of the compute and memory consumed vs. computation rate vs. ROUGE

score trade-offs is underway. What the outcomes of all these many fine-tuning methods

have been are being examined to determine the merits and demerits of each of them.

The aim of this study is to illustrate that PEFT is well-balanced between speed and
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efficiency. Because of this, it would be a great candidate for deployment to be applied in

applications utilized by the real world.

Toxicity was reduced in a fine-tuned instruction language model with Reinforcement

Learning with Human Feedback (RLHF) by maximizing output by means of a RoBERTa-

based hate speech classifier that shifted away from toxic output. Despite the scarcity of

toxic samples, the method reduced mean toxicity scores. KL divergence was implemented

to synchronize PPO model with reference model without coherence loss and overfitting.

Steady KL values 27–29 reflected balance in learning, highlighting the significance of

striking a balance between safety and linguistic coherence in RLHF-trained models.
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Chapter 4

RESULTS and DISCUSSION

4.1 Result Analysis

4.1.1 Results for Fine Tuning

Flan-T5 was fine-tuned using two distinct methods, and the goal of this research work

was to compare and examine the performance of both these methods. It is the work that

has been carried out as research and on which this assertion is based. As per the findings,

complete fine-tuning and PEFT with LoRA were found to be the best methods. This

was determined based on the result of the experiment. Following the introduction of the

totally rewritten model with instruction-based prompts, there was an improvement in the

rate of production of the summary. Beyond any doubt, this was a great advantage. Of

particular interest here is the remarkable progress in each and every one of the ROUGE

scores three classes (ROUGE-1, ROUGE-2, ROUGE-L). The PEFT model also kept the

performance level equal to the other models even though it was much less efficient than

the one that had received full fine-tuning. ROUGE scores fell slightly, but still remained

at 1.7%.

Table 4.1: Result Table for ROUGE Metric

Metric Original
Model

Instruct
Model

PEFT Model PEFT vs
Original

PEFT vs In-
struct

ROUGE-1 0.2334 0.4216 0.4081 +17.47% -1.35%
ROUGE-2 0.0760 0.1804 0.1633 +8.73% -1.70%
ROUGE-L 0.2015 0.3384 0.3251 +12.36% -1.34%
ROUGE-
Lsum

0.2015 0.3384 0.3249 +12.34% -1.35%
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4.2 Observations

• PEFT vs Original Model:In every region of ROUGE, PEFT surpasses the base-

line model by over 17.47%. Compared to the baseline model, the PEFT model

significantly satisfies all ROUGE requirements.

• PEFT vs Instruct Model: The PEFT model should be approximately 1.35%

worse than the teach model. This is because the teach model is extremely highly

finely-tuned. You can see this if you compare the PEFT model and the teach model.

PEFT is the best solution when both capacity for processing and memory are at a limit

since it consumes so little of either. This work can be done with very little increase in

time in an attempt to advance. PEFT is therefore the best solution in this respect. After

conducting extensive research, it was established that PEFT is the best option.

Index Reward Before Reward After Reward Difference
1 2.351077 2.948620 0.597543
2 1.883278 2.461895 0.578617
3 1.587816 1.953090 0.365274
4 1.611620 1.907171 0.295550
5 0.772964 1.032556 0.259592
6 2.434810 2.642623 0.207814
7 1.360727 1.429471 0.068744
8 2.301333 2.369421 0.068088
9 1.165916 1.167107 0.001191
10 3.151282 3.142738 -0.008543
11 1.537484 1.517594 -0.019890
12 1.284117 1.249279 -0.034839
13 1.457126 1.392192 -0.064933
14 2.251136 2.094307 -0.156829
15 2.855694 2.664426 -0.191268
16 2.217947 2.009304 -0.208643
17 1.776725 1.562407 -0.214318

Mean 1.8241 1.9691 0.0908

Table 4.2: Comparison of Reward Before and Reward After for different
context with an improvement of -9.84%

4.2.1 Results for RLHF

To assess the effectiveness of Reinforcement Learning with Human Feedback (RLHF)

based on Proximal Policy Optimization (PPO), we tested the performance of the model
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on 16 varied conversations comparing reward scores prior to and after fine-tuning and KL

divergence. The outcomes revealed the consistent increase in reward scores after PPO,

confirming that the model delivered more aligned and preferred answers with fewer di-

vergences from the original behavior.But even though there is an improvement of -9.84%

over its toxicity. To quantify safety, we employed Facebook’s RoBERTa hate speech de-

tector to estimate toxic levels. Fine-tuning with PPO resulted in mean toxicity scores

significantly lower with less variance, indicating more uniform and detoxed output. Word

comparisons indicated that post-PPO outputs retained the underlying message but with

more neutral and respectful language, where even slight wording modifications greatly

improved toxicity scores.

Also, reward scores—representative of the probability of non-toxic answers—increased

enormously on samples, affirming that PPO assisted the model to follow more closely eth-

ical communication guidelines. To better tune the model, we used Low-Rank Adaptation

(LoRA), adapting only 1.4% of parameters. The parameter-efficient method accelerated

training and lowered resource use without performance loss or even improving it. Overall,

incorporating PPO and PEFT through LoRA successfully enhanced response quality and

safety without substantial computation overhead.
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Chapter 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

Based on the results of the present research, the process of fine-tuning thoroughly can sig-

nificantly improve the capacity of the Flan-T5 model to summarize. Based on the results

of the study thoroughly, the conclusion was made. It is worth noting here to note that

this addition will lead to a general increase in the amount of dollars spent on computers.

The other side is observed here. It is a possible way that consumes less but produces

equal results that can be obtained. PEFT and LoRA, for instance, have this available for

their customers.

The benefit lies in the fact that this is so. This kind of alternative can be done in the

future. Considering this specific reaction, the PEFT should be taken into account. This

is just one of the numerous reasons that it should be taken into account. Although there

is a slight deceleration of rate as the procedure is being performed, the PEFT method is

an adaptable remedy. This is especially true in the case of situations and models that

require little by way of resources but are of huge size. The reality of the case is that that

is exactly what has occurred, albeit with a lesser level of success. In situations where

inadequate tools are available, it is especially critical to keep this in mind.

It is most likely that the forthcoming work will examine a number of varied optimi-

sation processses with a goal to improve the performance of PEFT and reduce the gap

down by optimizing it up to the end. Further, the PEFT techniques can be demonstrated

with a high performance for bulk applications if they are rendered complex or they are
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combined with a variety of other memory-efficient methods. Since the processes of PEFT

are extremely simple to use, this is achievable. Because of this, the methods of PEFT are

far more effective. It can be anticipated that executing PEFT processes in such a way will

lead to an enhancement in their performance as a whole. This issue needs to be taken into

account. The extraordinary circumstances have made the environment such that there are

chances of realizing the objectives that were established. It may be possible that this will

be done in trying to make the PEFT procedures more effective; however, doing it would

be putting salt to injury. If one makes the research wider so that more data are included

and how other components of PEFT, e.g., other ranks, affect it is investigated, one can

gain further insight into how the system works and how this can be further extended. One

can choose to do this. One can also choose to learn more about the performance of the

method. So, it means that there is a chance that you can learn something new because

of this. It would be nice to do this in an effort to make big strides toward the goals that

were initially set. Enlarging the scale of the outcomes of the research is one method that

is present in an attempt to achieve this aim. Maybe, researchers who are investigating

the relationship of partial least squares training and reinforcement learning can develop

fine-tuning systems that are scalable, efficient, and adaptive. Maybe, these systems can

be deployed on large scale. There is a chance that this will occur. This is due to the fact

that the model will have to learn automatically something new from new information and

concepts which it is not too familiar with. This is going to occur due to the fact that the

model is being supplied with new information.

Human Feedback Reinforcement Learning (RLHF) with Proximal Policy Optimiza-

tion (PPO) and a hate speech reward model to decrease model response toxicity. The

PPO-trained model was able to preserve semantic accuracy but provide answers that were

significantly less toxic. It preserved fluency and relevance to ensure output quality and

coherence during fine-tuning.

Both quantitative measurements and qualitative examination offered definite improve-

ments that attested to the reality that RLHF can make language model action more

aligned with human values of safe and respectful communication. Additional train-

ing or exposure to more varied samples of toxicity may even achieve greater toxicity
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decrease,emphasizing the promise of RLHF in guiding language models towards more

human-sensitive and responsible outputs.

5.2 Future Scope

It is quite probable that the subsequent study will investigate a number of different op-

timization procedures with the intention of improving the performance of PEFT and

lowering the gap by fine-tuning it all the way down. Further, the PEFT methods may

have a superior performance for large-scale applications if they are made more complex or

if they are coupled with other memory-efficient ways. Because PEFT processes are rather

easy to understand, this is something that can be accomplished. As a consequence of

this, the PEFT techniques are much more efficient. There is a possibility that performing

PEFT processes in this manner will result in an improvement in their overall perfor-

mance. Consideration ought to be given to this matter. The unique conditions have

created an environment in which there is a possibility of accomplishing the goals that

have been set. It is possible that this might be done in order to enhance the efficiency

of the PEFT procedures; nevertheless, doing so would be like adding insult to injury.

If the study is expanded to include larger datasets and the implications of more PEFT

components, such as different ranks, are studied, it is possible to learn more about how

the system operates and how it may be scaled up. This is something that is achievable.

Additionally, there is the option of acquiring extra information about the efficiency with

which the method operates. Consequently, this suggests that there is a possibility that

you may acquire new knowledge as a result of this. It would be advantageous to do so

in order to make considerable progress toward the goals that were initially established.

Increasing the breadth of the results of the research is one approach that may be used

to accomplish this objective.It is possible that researchers who are investigating the con-

nection between partial least squares training and reinforcement learning may be able to

construct fine-tuning systems that are very effective, scalable, and adaptive. It is possible

that these systems will be implemented on a vast scale. There exists a possibility that this

will take place. This is as a result of the fact that the model is required to automatically

learn new things from new information and ideas that it is not very acquainted with. This
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is going to take place as a consequence of the model being provided with new information.

Future work could focus on merging Reinforcement Learning with Human Feedback

(RLHF) using Proximal Policy Optimization (PPO) with advanced Parameter-Efficient

Fine-Tuning (PEFT) techniques such as QLoRA. This integration would enable more effi-

cient and scalable training by significantly reducing computational resources and memory

requirements while maintaining or improving model performance. Leveraging QLoRA’s

quantization-aware fine-tuning alongside RLHF could accelerate the training process and

allow for fine-grained control over the model’s behavior, leading to better alignment with

human values and reduced toxicity.
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