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ABSTRACT 

 
 

Glioblastoma is a belligerent heterogeneous type of brain tumor, inherently difficult to 

treat with a dismal prognosis. Conventional therapies are rendered ineffectual by 

various limitations associated with the blood-brain barrier (BBB), tumor 

microenvironment, and adaptability manifested by the tumors. This study developed 

an interpretable machine learning framework to predict drug sensitivity in GBM and 

identify potential new therapeutic candidates. An XGBoost regression model was 

trained on a curated dataset integrating drug response data (from GDSC with baseline 

transcriptomic profiles Drug features included 1024-bit Morgan fingerprints and 9 key 

physicochemical/ADME properties, while cell line features comprised 100 gene 

expression markers selected via Recursive Feature Elimination. The final model 

demonstrated strong predictive performance, achieving a mean R² ~ 0.833 and a mean 

RMSE ~ 1.060 across five repeated train-test splits. SHAP analysis provided crucial 

insights into model predictions, identifying key drivers of model learning and the 

expression levels of GBM-relevant genes like ZEB2 and ABCB6. The model was 

subsequently used to screen a filtered subset of the COCONUT natural product 

database, identifying several compounds predicted to exhibit high potency. 

CNP0152293.3 was the top identified compound. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Glioblastoma Multiforme (GBM) or Glioblastoma is a belligerent brain neoplasm that 

exhibits malignant nature [1]. It originates from astrocytes, which are star-like glial 

cells of the central nervous system. [2]. WHO categorizes Glioblastoma as Grade IV, 

reflecting its tendency to progress swiftly and invasively in brain or spinal cord [3]. 

Glioblastoma primarily develop in cerebral hemispheres, that are responsible for 

multiple functions including reasoning, sensory processing and motor functions [4]. 

Occurrence of tumor in brain stem or spinal cord is relatively rare. 

This malignancy can occur in anyone regardless of age but it is commonly reported in 

adults of age 45-75 years, with the median age of 64. It exhibits a marginally higher 

prevalence among men [5]. Glioblastoma can also occur in children; however, the 

pediatric cases present with different biological characteristics. Primary glioblastomas 

originate independently in ageing adults, secondary glioblastomas stem from lower-

grade diffuse astrocytoma that have undergone malignant progression [6]. 

Glioblastoma is heterogenous and aggressive, with an inherent tendency of resistance 

to treatment and recur [7]. Standard treatments include surgical resection, 

radiotherapy, and chemotherapy, with average survival period about 12-15 months 
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post-diagnosis [8]. One-year survival rate is about 40% but this dwindles down to less 

than 10% as five-year survival rate. The blood brain barrier (BBB), the tumor 

microenvironment and intrinsic resistance mechanisms pose limits and impede 

effective therapy with conventional treatments [9]. Tumor heterogeneity is a likely a 

malefactor to developing chemo-resistance, particularly after extended exposure to 

conventional chemotherapeutics. Variability in cellular subpopulations, genetic 

mutations and signaling pathways also contribute to the differential drug responses, 

rendering the standard care of treatments ineffective over time. The dynamic nature of 

Glioblastoma requires development of adaptable and scalable approaches. This 

complexity necessitates the use of data-driven strategies such as in-silico modeling and 

machine learning to accelerate drug discovery and prioritize compounds for laboratory 

screening.  

Computational frameworks offer the unique ability to integrate data from various 

sources, including high-throughput drug screening, transcriptome profiles of patient-

derived or established cell lines and molecular descriptors such as chemical 

fingerprints and pharmacokinetic properties. Machine Learning (ML) algorithms excel 

at recognizing non-linear associations that drive the drug response across cancer cells 

[10]. ML models have been shown to enable identification of novel compounds with 

high therapeutic potential, including those that have not yet been tested in specific 

disease conditions [11]. They have also been shown to identify existing drugs as 

repurposing candidates [12]. ML-based approaches are in the unique position to screen 

the enormous chemical space and reduce the dependency on empirical methods. 

Moreover, incorporation of interpretability allows for predictions that are biologically 

meaningful, such as determine and rank significant pharmacophore scaffolds, or 

molecular descriptors that contribute to the likelihood of model prediction [13]. Such 

insights facilitate a deeper understanding of drug-disease association, by highlighting 

pathways and mechanisms of resistance. Biologically interpretable results inspire 

confidence in drug development efforts and streamline the preclinical validation.  
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1.2 Literature Review 

 

Glioblastoma is aggressive and highly heterogeneous, with multiples mechanisms 

contributing to its malignancy and resistance to treatment [7]. Molecularly, 

Glioblastoma has a complex landscape of genetic and epigenetic alterations. Based on 

such information, The Cancer Genome Atlas (TCGA) categorizes glioblastoma in 4 

molecular subgroups [14]. Classical glioblastoma has chromosome 7 amplified with 

loss of chromosome 10; EGFR amplification or EGFRvIII mutation and exclusive 

disruption of RB pathway via deletion of the tumor suppressor gene CDKN2A while 

strong expression of Notch and Sonic hedgehog signaling [14]. Mesenchymal subtype 

correlates with the deletion of NF1 tumor suppressor located on chromosome 17, 

expression of CHI3L1 and MET, and enrichment of genes of TNF superfamily and 

NF-kB signaling like TRADD, RELB, and TNFRS1A [14]. Genes typically expressed 

in neurons NEFL, GABRA1, SYT1 and SLC12A5 are strongly upregulated in Neuronal 

glioblastoma, the least understood with limited studies [14]. Modifications in 

PDGFRA and mutations in IDH1, TP53 are commonly observed in the Proneural 

subtype, and interestingly, mutations in the PIK3CA have also been reported mutually 

exclusive of PDGFRA abnormalities [14]. Among the identified subtypes – 

mesenchymal is the most aggressive and invasive and has been found to exhibit 

resistance to multiple therapies, leading to worse prognosis [15].  

 

1.2.1 Genetic and Epigenetic Disruptions in Glioblastoma 

Disruptions in several signaling pathways through various combinations of mutations, 

copy number variations and gene fusions drive glioblastoma development and 

progression. Key genetic disruptions include EGFR amplification, reported in 40-50% 

of primary glioblastoma, often accompanied by EGFRvIII mutation, PDGFRA 

amplification (13%) and MET receptor (4%) [16]. Mutations or deletions in the PTEN 

tumor suppressor gene (30-40%) result in unchecked activation of the PI3K-AKT 

cascade [17]. Mutated TP53 is roughly reported in one-third glioblastoma cases, 



16 

 

prevalent in IDH-mutant or proneural subtypes [18]. Aberrations like +7/-10, related 

with the classical subtype is a characteristic of primary glioblastoma [19]. Point 

mutations present upstream of TERT occur in nearly 83% of primary glioblastoma 

cases, enabling the expression of catalytic subunit of telomerase [20].  Alteration of 

the RB pathway occurs directly by mutations, deletions, or epigenetic changes at the 

RB locus, and gene amplifications of CDK4, CDK6 and CCND2 have been reported 

[21]. Multi-faceted dysregulation of major pathways drives glioblastoma 

pathogenesis. 

Epigenetic dysregulation also contributes to disease pathogenesis. IDH1 mutation 

results in intracellular buildup of the oncometabolite 2-HG, causing a global 

hypermethylation phenotype of G-CIMP (Glioma CpG Island Methylator) that 

silences several genes like RBP1 and G0S2 [22]. MGMT promoter methylation occurs 

in  ∼45% of adult patients, suppressing DNA repair enzyme O6-methylgaunine-DNA 

methyltransferase and leads to increased sensitivity to Temozolomide [23]. In 

quiescent Glioblastoma Stem Cells (GSCs), H3K4me3 and H3K27me3 keep the genes 

in a transcriptionally poised state to rapidly reactivate proliferation and differentiation 

pathways upon receiving right signals [24]. KDM5B and KDM6A/B are overexpressed 

in quiescent GSCs, regulating the transition from quiescent to proliferative state by 

demethylation of H3K4 and H2K27, respectively [25]. KDM4C, demethylase for 

H3K9, induces c-Myc expression and inhibits apoptogenic tendencies of p53 [26]. 

UBE2V2 that regulates HK16 acetylation is also highly expressed in GBM marks 

similarity between GSCs and embryonic progenitor cells [27]. BPTF recognizes 

H3K4me3 and H6K16ac marks, supports GSC maintenance and self-renewal [28].  

Chromatin remodeling enables GSCs to adopt a therapy-resistant phenotype by 

dynamic modification of histone marks. Tumor suppressor miRNAs like miR-7, miR-

34a, miR-128 and OncomiRs miR-10B, miR-21, miR-93 regulate cell survival, 

proliferation and migration, apoptosis, invasion, angiogenesis, stemness, 

radioresistance and chemoresistance in glioblastoma [29]. lncRNAs CASC7/9, 

AGAP2-AS1, NEAT1, LINC1426, LINC01446, PART1, MNX1-AS1, DCST1-AS1, 

AC016045.3, HOTAIRM1, lnc-TALC, MALAT1 promote tumorigenesis, 

proliferation, invasion, angiogenesis and TMZ resistance in glioblastoma cell lines and 
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tissues [30]. The genetic alterations drive tumor growth while the epigenetic changes 

reinforce malignant gene expression.  

 

1.2.2 Key Signaling Pathways in Glioblastoma Progression 

Despite the complex nature of mutations in glioblastoma, it has been noted that three 

signaling pathways are dysregulated in majority of glioblastoma cases. Amplifications 

in EGFR, PDGFRA and MET constitutively activate RTK/PI3K/AKT/mTOR cascade, 

ensuing cellular proliferation, growth and survival [31]. Downstream of RTKs, 

mutational events in PI3KC or loss of PTEN activity further establish that the PI3K 

pathway is highly active in glioblastoma, enhancing cell motility and invasiveness 

[31]. The p53 tumor suppressor pathway is silent in glioblastoma.  Mutations and 

deletions in the TP53 gene, and amplified MDM2, MDM4 genes that code of p53 

degrading proteins ensure that DNA damage response, apoptosis and cellular 

senescence is compromised in glioblastoma [32]. Deletion of CDKN2A encoding 

MDM2 inhibitor, ARF, also blunts the p53 mediated cell-cycle arrest [33]. The Rb 

tumor suppressor pathway regulates the G1-S checkpoint in cell cycle [34]. In 

glioblastoma, CDKN2A deletion allows for overexpression of the CDK4 and CDK6 

[35]. Disease pathogenesis requires a combination of proliferative signaling and loss 

of two tumor suppressor genes. Other pathways also contribute to glioblastoma 

development. Aberrant activation of developmental pathways like Notch, Wnt/β-

catenin and Hedgehog occurs in glioblastoma cells and GSCs [36]. VEGF is also 

commonly upregulated and angiogenesis pathways contribute to tumor development 

[37]. The mesenchymal transformation correlates with the activation of NF-kB and 

STAT3 signaling, arising from NF1 or PTEN loss [38]. Multiple oncogenic activations 

with epigenetic dysregulation synergistically contribute to disease progression through 

dynamic reprogramming of gene expression.  



18 

 

 
Fig 1.1 Dysregulated pathways in glioblastoma contributing to cancer 

hallmarks. 

 

1.2.3 Glioblastoma Cell Lines and Their Characteristics 

Preclinical research on glioblastoma relies heavily on in vitro cell line models. A 

number of human glioblastoma cell lines have been established from patient tumors, 

propagated long-term in culture to recapitulate specific genetic, epigenetic and 

phenotypic tumor characteristics. Most frequently used cell lines for in vitro studies 

include U87, U251, LN-229, A172 and T98G. A literature survey revealed that three 

most used cell lines were U-87 (60%), U-251(41%), followed by T98G (26%) [39]. 

These cell lines are a popular choice for investigative studies due to their robust 

proliferative ability and the extensive baseline information available for them. The 

U87 (Uppsala 87 Malignant Glioma),  established in 1968 in University of Uppsala, 

Sweden, forms large vascularized tumors [40], expressing mutant PTEN, PI3K and 

Akt and deletions in CDKN2A and ARF [41]. U251 cell line, established in 1973 at the 

same university displays high infiltrative and invasive growth pattern, mutant PTEN, 

upregulated PI3K and Akt, non-functional p53 and aberrantly expressed cell-cycle 

control proteins, retaining astrocytic lineage markers such as GFAP, S100β [40], [41]. 

T98G is the polyploid variant of T98, is anchorage-independent tumor line on account 

of the highly expressed ACTA2 gene which contributes to cell motility, mutant TP53 
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and PTEN [42], [43]. The LN-229 cells possess a methylated MGMT promoter, 

mutated TP53, homozygous deletions in the p16 and p14ARF, and undergo apoptosis 

induced by the Fas ligand [44].  

Use of cell lines offers a convenient and reproducible platform for in-vitro analyses. 

Indefinite culturing under controlled conditions allows for high-throughput screening 

of drug candidates and genetic alterations. Due to human origin of these cell lines, 

findings can be often translated to human tumor biology. Cell lines have been 

instrumental in developing standard treatments, for e.g. TMZ [45]. However, cell lines 

do not fully express the heterogeneity and microenvironment of disease in vivo. Cell 

culture also lacks the three-dimensional architecture, hypoxic gradients, and 

interactions with immune cells, vasculature and stroma present in tumors. This may 

lead to discrepancies in studying drug response because the tumor microenvironment 

is known to induce protective stress response, or prevents the drug from reaching 

tumor cells [46]. Researchers often employ patient-derived xenografts and GSC 

neurospheres that likely preserve tumor phenotype [47]. Nevertheless, traditional cell 

lines like U87 and U251 remain standard in glioblastoma research — often used as 

stepping stone for generating hypothesis before moving into complex models. 

 

1.2.4 Standard Care of Treatment and Therapeutic Challenges  

Currently, standard care regimens particularly for the IDH-wildtype Grade IV tumors 

follows the Stupp protocol, which consists of extensive surgical removal of the tumor, 

radiation therapy and concurrent TMZ administration [48].  Surgical resection aims to 

reduce tumor burden and is facilitated by techniques such as 5-ALA fluorescence 

guidance and intraoperative mapping, which helps preserve neurological function [49]. 

Radiotherapy typically involves fractionated dosing of 60 Gy over six weeks, while 

chemotherapy with TMZ is administered daily during radiotherapy and followed by 

six adjuvant cycles [48]. TMZ efficacy is closely associated with the methylation of 

the MGMT promoter, with methylated tumors demonstrating better therapeutics 

responses [50]. Additional therapies, namely Tumor Treating Fields (TTFs), have 

shown modest improvements in survival when combines with standard therapy but 
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remain limited by high cost and logistical challenges [51].  Despite the aggressive 

nature of treatment regimens, the prognosis of glioblastoma remains dismal, with 

average survival around 15 months and 7% rate of survival past 5 years. This 

depressing outlook is driven by several challenges — the high invasive nature of 

tumor, intra-tumor heterogeneity, and the presence of therapy-resistant GSCs.  

Furthermore, BBB constitutes significant challenge to effective drug delivery, severely 

restricting therapy agents. BBB is a specialized endothelial barrier in cerebral 

capillaries that strictly regulates entry of molecules into the brain parenchyma [52]. 

Tight junctions between endothelial cells, along with pericytes and astrocytes, exclude 

nearly 98% of small molecule drugs from the brain under normal conditions [52]. In 

disease state, the BBB is partially disrupted; glioblastoma induced angiogenesis 

produces leaky, abnormal vessels and expression levels of transport and junction 

proteins are altered tumor vasculature [53]. BBB disruption in glioblastoma is highly 

heterogenous and often incomplete. Studies report that all glioblastoma patients harbor 

significant regions where the BBB remains intact [54]. BBB thus contributes to 

treatment resistance by limiting drug delivery. Most chemotherapeutic agents and 

targeted kinase inhibitors have poor BBB penetration [55]. TMZ, which is BBB-

permeable, may not reach all tumor cells uniformly due to regional blood flow 

differences. Methods of circumventing BBB are currently being explored —osmotic 

or ultrasound-mediated BBB disruption can transiently open tight junctions, and 

design of BBB-penetrant drug analogues and nanoparticles [56], [57], [58]. Some 

early-phase trials such as focused ultrasound to open the BBB for chemotherapy have 

shown that repeated safe BBB modulation is feasible [59]. BBB’s role in glioblastoma 

is two-fold. It contributes to glioblastoma progression by fostering a protective niche 

for tumor cells, and promoting selection of invasive cells that migrate into healthy 

brain, as well as acting as a central factor in therapy resistance by preventing uniform 

drug delivery. 

Additionally, the tumor microenvironment also presents another therapeutic hindrance 

due to its complex and immunosuppressive nature, comprising of GSCs, microglia, 

macrophages, neutrophils, lymphocytes, and neuronal cells, interacting dynamically 

to promote tumor growth, progression, and resistance to therapy [60]. GSCs contribute 
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to therapeutic resistance by secreting chemokines and factors promoting angiogenesis, 

that facilitate endothelial cell growth and attract macrophages, leading to 

immunosuppressive milieu [61]. These immunosuppressive characteristics hinder the 

efficacy of immune-based treatments, as glioblastoma’s unique brain profiles and 

cellular heterogeneity limit the benefit of such therapies [62]. Interactions between the 

glioblastoma cells and tumor microenvironment can induce resistance to both 

chemotherapy and radiotherapy [63]. The astrocytes within the microenvironment 

assist in cell survival, promoting drug resistance and forming physical barriers that 

prevent therapeutic agents from reaching tumor cells [64]. Recurrence is nearly 

universal, and treatment options in the recurrent setting remain palliative, with no 

universally accepted standard of care. These barriers necessitate the urgent need for 

more targeted, penetrant, and adaptive therapeutic strategies that can address both the 

molecular complexity of glioblastoma and its protective microenvironment. 

 

1.2.5 Machine Learning in Cancer Research 

Computational models and machine learning are increasingly being investigated as 

powerful tools to decode tumor complexities, predict therapeutic response, and 

accelerate the discovery of more effective interventions, in oncology and in 

glioblastoma. This shift in paradigm of research comes from availability of biomedical 

data such as genomics, transcriptome profiles, methylation status, imaging of tumor 

sizes etc. from patient cohorts, as well as in vitro preclinical studies.  

Artificial Intelligence (AI) is mainly an avenue devoted to studying and development 

of algorithms and systems that enforce machines to execute tasks that necessitate 

human-like intelligence [65]. AI is a computer science discipline rooted in 

mathematical theorems and statistical techniques to make predictions after learning 

from training dataset and evaluating on test data set. AI is used in automation of 

functions such as reasoning, problem-solving, decision-making, perception such as 

learning from data [66]. Machine Learning (ML) is an AI subset that concentrates on 

developing models and devising algorithms to explore and scrutinize data without 

being explicitly programmed [67].  
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Supervised Learning uses class labels to learn and predict those outcomes for new data 

and is broadly utilized for classification and regression endeavors in biomedical 

research such as oncology [68]. A supervised ML model might be trained to classify 

tumor biopsy samples as benign or malignant based on labeled training images, or to 

predict a patient’s survival time from past patient data. Methods such as support vector 

machines and neural networks have accurately mapped inputs to outputs in tasks like 

tumor type classification and gene expression-based drug sensitivity prediction [69]. 

The success of success of supervised learning in cancer is evident in studies where 

classifiers learned to distinguish cancer subtypes of leukemia or predict treatment 

response with high accuracy [70]. Supervised methods require datasets with class 

labels to facilitate model learning [71]. Unsupervised Learning pursues patterns in data 

without class labels. Clustering and dimensionality reduction techniques can discover 

hidden patterns without pre-defined labels. In oncology, unsupervised learning 

approaches have been employed to describe novel patient subgroups and tumor 

subtypes [14]. Principal Component Analysis (PCA) and hierarchical clustering have 

also helped visualize highly dimensional genomic data and uncover features that 

differentiate patient subpopulations [72]. These methods generate hypotheses and 

insights that supervised methods might miss, though linking clusters back to clinical 

outcomes requires rigorous analysis.  

 
Fig 1.2 Types of Machine learning algorithms  
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Supervised ML uses many algorithms, as per the problem requirement. These include 

linear regression, logistic regression, decision trees, SVMs, k-nearest neighbors, naïve 

Bayes, random forest [71].  

Linear regression is used to predict a continuous dependent variable outcome based on 

one or more input features that are independent [73]. A linear relationship is presumed 

between response and predictor variables, and the outcome is modeled as a weighted 

sum of the input features and a bias term. The optimal coefficients are determined by 

minimizing the cost function, which is typically the mean squared error (MSE) — so 

that there is best fit for the observed data. It is widely used in biomedical research to 

model dose-response relationships and prognostic score estimation [74], [75].  

Logistic regression is a classification algorithm that models the probabilities of a 

binary or multi-class categorical outcome as a function of input features. Sigmoid 

function is applied to map prediction to [0,1], representing class probabilities, and 

maximum likelihood function is used to train the model [76]. It finds use in clinical 

outcome prediction, biomarker-based disease classification, and epidemiological 

modeling due to its interpretability and statistical robustness [77], [78].  

SVMs served tasks of both classification and regression by identifying an optimal 

hyperplane that maximizes the margins between different classes in a high-

dimensional space [79]. Kernel functions such as polynomial, radial, are used to model 

complex non-linear relationships due to their ability to handle sparse data and 

robustness to overfitting [80]. They are particularly convenient for high-dimensional 

datasets like gene expression profiles [81].  

The k-nearest neighbor algorithm is a non-parametric, instance-based learning method 

that classifies or regresses a data point based on the label of its k closest neighbor [82]. 

Euclidean distance is the metric for measuring distance and this algorithm does not 

require a training phase — decisions are made at the time of inference, which can be 

computationally intensive. It has bene used in cancer subtype classification and 

phenotype clustering, but it is sensitive to data scaling and irrelevant features [83], 

[84].  
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Naïve Bayes is a probabilistic classifier based on Bayes’ Theorem and it assumes 

independence between input features [85]. It estimates the posterior ability of each 

class and selects the one with the highest probability. It is speedy, simple and effective 

in multi-class classification problems such as tumor-type predictions and microbiome-

based disease classification [86], [87].  

A decision tree is a non-parametric supervised learning algorithm that partitions the 

feature space into a hierarchy of decision rules based on input features [88]. Each 

internal node represents a decision based on a feature threshold, and each leaf node 

represents an output label or value [89]. Tree construction occurs through recursive 

binary splitting to minimize impurity measures e.g., Gini index for classification and 

MSE for regression. Decision Trees offer the advantage of being interpretable, can 

suitably model non-linear associations, making them valuable for transparent decision 

making required in clinical settings [90]. 

Ensemble learning methods combine multiple models to produce a robust predictor. 

Outputs of diverse learners are aggregated to achieve higher accuracy and 

generalization [91]. Ensemble models have been applied to tasks like gene expression-

bases prognosis, prediction and radiomic image analysis, frequently outperforming 

large models. An ensemble allows for integration of predictions from separate models, 

such analyzing imaging and genomics to improve the overall accuracy in predicting a 

patient’s outcome [92], [93]. Common methods include random forests and gradient 

boosting machines. Random Forest is an ensemble learning algorithm that constructs 

a large number of decision tress during training and outputs the mode or mean for 

classification and regression, respectively [94]. Each tree is trained on a bootstrapped 

subgroup of the features when nodes are split, that enhances model diversity and 

reduce overfitting [94]. Random forests are highly robust and interpretable to an extent 

owing to feature importance, and are widely used in biomarker discovery, clinical 

prognosis, and treatment response modeling [95], [96], [97]. In a recent review of ML 

models for glioblastoma survival, random forest was the single most popular algorithm 

among researchers [98]. Gradient Boosting builds a strong predictor by combining 

multiple weak learners, typically decision tress, in a sequential manner [99]. Unlike 

bagging techniques used in random forest, which trains trees independently on 
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bootstrapped datasets, gradient boosting fits each new model to the residual errors of 

the combined ensemble so far [100]. At each iteration, a specific loss function is 

minimized using gradient descent approach. This iterative correction of residuals leads 

to high model accuracy and flexibility, making gradient boosting well suited for 

genomics and clinical prediction tasks. Gradient boosting supports custom loss 

functions and regularization techniques, for e.g., learning rate, tree depth limits, 

shrinkage, which enhance its robustness and prevent overfitting. It can be implemented 

using multiple algorithms. Gradient Boosting Machine (GBM) is the classical 

implementation, introduced by Friedman, where each tree is added in a stage-wise 

manner to correct the errors of the ensemble so far [101]. LightGBM is developed by 

Microsoft and improves training efficiency and memory usage by utilizing histogram-

based binning and leaf-wise growth strategy, allowing handling of large and highly 

dimensional datasets [102]. CatBoost, developed by Yandex, handles categorical 

features natively without preprocessing and uses symmetric trees for better 

generalization [103]. XGBoost or Extreme Gradient Boosting is actually an optimized 

version of GBM that includes regularization, sparsity awareness, and parallelized tree 

construction [104]. It is widely used in biomedical ML tasks due to its speed, 

scalability and superior performance.  

 
Fig 1.3 Structure of XGBoost algorithm 
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Reinforcement Learning revolves around rewarding and penalizing actions in an 

environment and adjusting behavior accordingly, to improve decision making over 

time and maximize cumulative reward. In oncology, it has been applied to treatment 

pathway optimization [105], adaptive dosing of anti-cancer drugs [106], and adaptive 

radiotherapy for better clinical decision support [107]. 

As the clinical space grows exponentially, application of ML is poised to become a 

regular feature before undertaking any preclinical or animal model studies. For trust 

and confidence in predictions made by the ML models, it is necessary that these 

models inspire confidence in their outcomes and are interpretable. An interpretable 

ML model is one whose predictions are readily understood by humans, the simplest 

example of which is the decision trees, with their clear if-then rule-based logic. Unlike 

black-box neural networks, interpretable models provide transparency, which is 

important for acceptance in clinical settings due to safety concerns. Absence of 

explainability can introduce safety concerns and erode trust in ML recommendations.  

To address this, researchers either design inherently interpretable models or apply 

explainability techniques to complex models. Explainable AI (XAI) studies such 

approaches that enable model working to human comprehension and reasoning [108]. 

It contributes to meaningful deployment of framework that base their decisions on 

relevant and justifiable features. SHAP, abbreviated for Shapley Additive 

exPlanations, attributes model predictions to individual features by computing Shapley 

values, that represent the average impact on model predictability [109]. Permutation-

based feature importance assesses the feature significance by computing performance 

loss upon feature randomization [110]. LIME, or Local Interpretable Model-agnostic 

Explanations, give a local justification by considering a subset of data when 

approximating explanations for model inputs and outputs [111]. Grad-CAM is a local 

method use for explain convolutional neural networks commonly used for image 

classification, by producing heatmaps highlighting the image regions most important 

for model prediction [112]. The interest in XAI methods in oncology is on the rise. A 

recent study predicting glioblastoma patient outcomes chose a simple classification 

tree over a more complex model specifically for its high interpretability, noting that 

tree’s decision path could be readily understood and validated [113]. This is a growing 
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area of research where interpretable or explainable ML allows for data-driven insights 

to be translated into practice with transparency and accountability.  

 

1.2.6 ML Approaches in Glioblastoma 

ML has become a focal apparatus in oncology, enabling the discovery of hidden 

pattern in biomedical data to improve cancer diagnosis, prognosis and treatment 

selection. Methods like ANNs and decision trees were applied to cancer diagnosis as 

early as in the 1980s [114]. Over the past decades, increasing computing power and 

the explosion of genomic and imaging data has propelled ML into widespread use. 

Now ML techniques are used across all facets of oncology, from risk assessment and 

early detection to outcome prediction and therapy planning [115]. Well-designed ML 

models can outperform traditional approaches; one AI system achieved 99% accuracy 

in recognizing breast cancer metastases in pathology images in contrast to 81% by 

pathologists [116]. Such examples illustrate the potential of ML to assist in clinical 

decision making with improved speed and accuracy.  

Medical image analysis is a very prominent field where ML models are deployed. 

Deep Learning, although a black-box model, can analyze radiological images and 

digitized histopathological slides to detect tumors and classify malignancies with great 

accuracy [117], [118]. CNNs have been shown to outperform multiple human 

pathologists in classifying tumor histology, highlighting the value of ML in 

diagnostics [119]. A landmark study by the TCGA employed unsupervised learning to 

cluster glioblastoma tumors into molecular subtypes using gene expression data [14]. 

This discovery has deepened biological understanding and suggested tailored 

treatment strategies. ML models have also been used for predictive oncology, by 

integrating multi-omics data to predict the likelihood of recurrence or survival, helping 

to stratify patients by risk in breast cancer.  

In glioblastoma specifically, researchers are exploring ML models in multiple ways to 

manage the disease. In a study using the deep-feedforward ANNs, survival in 

glioblastoma was predicted with 90% accuracy using multimodal neuroimaging data 

[120]. Multivariate decision tree models were built to develop image-based 
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biomarkers, owing to regional genetic diversity in tumor segments leading to 

associations between copy number variations (CNV) and localized imaging features 

[121]. Many models have been built to predict IDH1 mutations using MR-based 

radiomics data through algorithms like random forest [122] and gradient tree boosting 

[123]. SVM-based model have been applied to delineate regions of necrotic tissue in 

patients being treated with radiation and chemotherapy [124]. PTEN mutation status 

could be predicted using deep learning radiomics [125] and SVM [126]. The tool 

GBMDriver is built using three different algorithms Adaboost, SVM and XGBoost for 

classifying glioblastoma mutations as disease-driving or neutral [127]. An integrated 

model, developed using the tumor infiltrating lncRNAs, identified patients that would 

benefit the most from immunotherapy [128]. Multiple predictive models for 

glioblastoma patients survival exist [129], [130], [131], [132], [133]. Predictions of 

MGMT methylation through genetic algorithms [134] and deep learning-based 

approaches [135] have elaborated the much-needed spotlight on epigenetic features 

governing disease progression. However, in the scope of novel compounds or drug 

discovery, fewer ML models exist that either target singular proteins like FAK [136] 

or target single cellular type like C6, U251 and U87 without interpretability [137].  

While these studies are promising, glioblastoma has relatively fewer cell lines and 

patient-derived cultures. This leads to overfitting or low confidence in the model. 

Transfer learning and multi-cancer datasets have been used to mitigate this issue but 

the assumption that other cancer data can inform glioblastoma predictions persists 

[138]. Multiple models with high accuracies are black-boxes and hence do not readily 

explain the reason behind a prediction made. This clashes with the clinical context 

where biological rationale is imperative to consider the prediction worthwhile. The 

integration of SHAP in ML models for oncology is limited to risk assessment [139], 

diagnosis [140], survival prediction [141], treatment recommendation [142], and to 

some extent classification [143].  

Currently no models exist that integrate drug discovery efforts with explainable 

modules of ML. There remains a notable lack of ML models that integrate chemical 

features of drugs with molecular profiles of glioblastoma cell lines in an interpretable 

framework. There are no published studies that provide explainable drug sensitivity 
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prediction models that allow researchers to trace back predictions to actionable 

biological or chemical features. Moreover, explainable ML techniques such as SHAP 

or LIME have not been systematically applied to jointly analyze drug descriptors and 

genomic features in the context of glioblastoma therapeutic efforts. This gap severely 

limits the translation of in silico predictions into experimental designs, hindering 

efforts to prioritize candidate compounds. Addressing this shortcoming could provide 

a scalable, cost-effective framework for rational drug discovery using natural or 

understudied compounds. 

 

1.3 Objective 

To develop an interpretable ML framework capable of predicting drug sensitivity in 

glioblastoma cell lines, measured as the half-maximal inhibitory concentration IC50, 

validate the predictive performance using statistical metrics, propose putative targets 

and map the predicted targets to appropriate pathways using pathway enrichment 

analysis. 
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CHAPTER 2 

 

METHODS 

 

 

 

2.1 Dataset Selection 

A comprehensive drug sensitivity dataset was curated by integrating pharmacological 

response data from both the GDSC1 and GDSC2 releases of the Genomics of Drug 

Sensitivity in Cancer (GDSC) database employing a 29 glioblastoma cell line panel 

[144]. GDSC1 was initially considered for its broader compound coverage. However, 

to enhance data quality and precision, overlapping drug-cell line measurements from 

GDSC2 were preferentially used to replace corresponding entries from GDSC1. 

GDSC2 implements improved experimental protocols, including acoustic compound 

dispensing (Echo555) for greater accuracy and CellTiter-Glo luminescence-based 

viability assays for enhanced sensitivity.  

Both GDSC1 and GSDC2 datasets utilize a consistent computational pipeline for IC50 

calculation. It involves fitting a sigmoidal dose-response model via non-linear 

regression using the gdscIC50 R package and subsequently log-transformation of IC50 

values in µM [145]. This standardized downstream processing allows for direct 

replacement of GDSC1 IC50 values with more precise and reproducible value for 

identical drug-cell line pairs, allowing for a harmonized dataset.  

Transcriptome profiles were generated by processing the raw Affymetric Human 

Genome U219 array data, ArrayExpress accession E-MTAB-3610 for these cell lines 

using the Robust Multi-array Average (RMA) normalization procedure using the 
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Bioconductor R package. Cell line identity between pharmacological and genomic 

features was confirmed using cell line metadata from COSMIC. These integrated 

features were used to develop the ML matrices for drug-sensitivity model. 

 

2.2 Feature Generation and Selection 

To prepare the data for ML, distinct feature sets were generated for both drugs and the 

cell lines. Subsequently, a feature selection strategy was employed to identify the most 

predictive molecular features. 

2.2.1 Drug Feature Generation 

Canonical SMILES strings for each compound were programmatically retrieved using 

their names via the PubChem database (using the pubchempy Python library) [146]. 

Compounds which were returned with no SMILES were manually checked in other 

databases like LINCS data portal [147] and Therapeutic Target Database [148]. 

Compounds for which SMILES could not be obtained were excluded from further 

analysis. A total of 435 unique compounds were used for further investigation.  

For each compound, Morgan fingerprints were generated using the RDKit 

cheminformatics toolkit [149]. These fingerprints were calculated with a radius of 2 

and hashed into a 1024-bit vector. Each bit in this vector reflects the inclusion or 

absence of a particular circular chemical substructures within the molecule. 

The SwissADME web server (http://www.swissadme.ch/index.php) was utilized to 

compute a total of 9 physicochemical and ADME (Absorption, Distribution, 

Metabolism, Elimination) related properties were calculated [150]. These included 

Molecular Weight (MW), number of rotatable bonds, number of H-bond donors, 

number of H-bond acceptors, Topological Polar Surface Area (TPSA), Consensus Log 

P i.e. lipophilicity, ESOL Log S i.e. predicted aqueous solubility, BBB-permeability 

predicted as Yes/No, encoded as 1/0, and the number of Lipinski rule violations [151].  

2.2.2 Cell Line Feature Generation 

Baseline gene expression data for 29 glioblastoma cell lines, derived from RMA-

normalized Affymetrix Human Genome U219 arrays was used as cell line features. 
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Probeset IDs from the microarray data were systematically converted to official 

HUGO Gene Nomenclature Committee (HGNC) gene symbols using the hgu219.db 

Bioconductor annotation package in R. In instances where multiple probes were 

mapped to singular gene symbol, the median expression value was taken as the 

representative expression level for that gene in each cell line. This resulted in an initial 

expression matrix of approximately 19,434 unique genes. 

 

2.3 Assembly of Paired Feature Matrix (X) and Target Vector (Y) 

The drug features and cell line gene expression features were combined with the log-

transformed IC50 values to create the final dataset. Each row in the dataset 

corresponded to a specific drug-cell line experiment. The feature vector (X) for each 

row was constructed by concatenating the drug’s feature vector (Morgan fingerprints 

with physicochemical and ADME properties) with the complete baseline gene 

expression profile of the corresponding cell line. The target variable in each row was 

the experimental log(IC50) value for the given drug-cell line pair. This assembly 

created a dataset of samples, each distributed by features. 

 

2.4 Gene Feature Selection using RFECV 

Given the high dimensionality of the transcriptome, Recursive Feature Elimination 

with Cross Validation (RFECV) was utilized to select an optimal subset of the most 

predictive gene features, while retaining aa drug-derived features. An XGBoost 

Regressor model was used as the estimator within the RFECV framework, configured 

with GPU acceleration. Key parameter for this estimator included n_eestimator=100, 

learning_rate=0.1, and max_depth=6. RFECV iteratively assessed the feature 

importances, and removed the least important gene features in steps of 1000 genes. 

This process was guided by 5-fold cross validation, optimizing for the negative MSE. 

An optimal subset of 100 gene expression features that maximized cross-validated 

predictive performance was identified. These 100 selected genes, along with all drug 

features, were used for training the final predictive model. 
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2.5 Model Training and Evaluation 

A definitive predictive model was trained utilizing the optimized feature set. The full 

dataset, comprising 11,588 drug-cell line pair samples was utilized. The feature vector 

for each sample consisted for the 33 drug-derived features combined with the 100 gene 

expression features selected by RFECV, resulting in a total of 1133 features per 

sample. An XGBoost regressor algorithm was employed for this final model, 

configured for GPU acceleration with key hyperparameters.  

To robustly assess performance and generalizability, a repeated train-test split strategy 

was implemented. The data was randomly partitioned into training (80%) and testing 

(20%) set five independent times, each with a different random seed. The model was 

trained on each training fold and its predictions evaluated against the corresponding 

unseen fold test. Performance was quantified using Root Mean Squared Error (RMSE), 

R-squared (R2), Pearson correlation coefficient, Spearman rank correlation, and Mean 

Absolute Error (MAE), with the final reported metrics being the mean and standard 

deviation across these five repeats.  

 

2.6 Model Interpretation using SHAP Analysis 

To obtain insights of the trained XGBoost model and identify key feature 

contributions, SHAP analysis was conducted. The shap.TreeExplainer, specifically 

designed for tree-based ensemble models, was applied to the final XGBoost model 

trained in the last repeat of the evaluation phase. SHAP values were computed for a 

representative subset of samples from the corresponding test set to determine the effect 

of each feature on individual predictions. Global feature importance was assessed by 

calculating the mean SHAP value for every feature across all explained samples, 

visualized using summary bar plots and beeswarm plots. The beeswarm plots 

additionally illustrated the distribution and direction of feature effects relative to their 

actual values. To further understand the association between specific feature values 

and their influence on the predicted log(IC50), SHAP dependence plots were generated 

for the top-ranking features, also revealing potential interaction effects between 
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features by coloring points based on a second, automatically selected interacting 

feature.  

 

2.7 Drug Group Analysis for Key Fingerprint Bits 

To elucidate the potential chemical or mechanism-based significance of the most 

influential drug fingerprint bits identified through SHAP analysis, a group-based 

pathway analysis was performed. For each high-impact fingerprint, all drugs from the 

initial training set of 435 compounds were identified. These drug lists were then cross-

referenced with their own primary targets and targeted pathway available in GDSC1 

and GDSC2 datasets. The frequency of target pathways within each drug group was 

then tabulated to identify commonly targeted pathways, thereby allowing inference of 

the likely chemical class represented by the important fingerprint bit. 

 

2.8 In Silico Screening of COCONUT Compound Library 

To identify potentially novel anti-glioblastoma compounds, the trained XGBoost 

model was used to screen the COCONUT (Collection of Open Natural Products) 

database [152].  

Compounds were extracted from the COCONUT database. For each compound, the 

canonical SMILES string was obtained. A multi-step filtering process was applied to 

refine this initial library. Only those compounds annotated at level 5 were considered. 

Other filters on drug features were applied after studying their feature contributions to 

the model learning through SHAP analysis, such as MW < 800, TPSA between 100 

and 200 Å2, H-bond donors 3-5, H-bond acceptors < 10, Rotatable bonds < 10. This 

filtering resulted in 290 compounds whose pharmacokinetic properties were obtained 

through the Swiss-ADME web browser. Morgan fingerprints of the selected 

compounds were generated using RDKit. A representative glioblastoma gene 

expression profile was created by averaging the RMA-normalized gene expression of 

selected 100 genes across all 29 cell lines in the training dataset. A single vector 

representing the average glioblastoma transcriptomic profile was thus generated. 
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For each COCONUT compound, the feature vector was concatenated with the fixed 

average gene expression vector, and this combined feature vector was fed into the 

trained XGBoost model to obtain a predicted log(IC50) value. The screened compounds 

were subsequently ranked based on their predicted values, with the lower values 

indicating higher predicted potency. Putative targets of the top 10 compounds were 

predicted through the SuperPred web server [153]. The 14 unique putative target genes 

were then subject to enrichment analysis through the ShinyGO v0.82 PANTHER as 

the pathway database and FDR cutoff of 0.05 using Uniprot IDs [154], [155]. 

 

 
Fig 2.1. Methodology  
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CHAPTER 3 

 

RESULTS 

 

 

 

3.1 Predictive model based on XGBoost demonstrates robust performance in 

glioblastoma drug sensitivity prediction 

An XGBoost regression model was developed to predict drug sensitivity i.e. log(IC50) 

in glioblastoma cell lines using integrated drug chemical features and cell line 

transcriptome data. RFECV identified an optimal subset of 100 gene expression 

features that when combined with all 1033 drug features, yielded the best performance. 

The model performance was rigorously evaluated with 5 repeats of an 80/20 split. 

Across these repeats, the model demonstrated strong predictive accuracy and 

robustness, as noted in Table 1.  

 

Table 1. Model Evaluation Metrics 

Evaluation Metric Value 

RMSE 1.0600 ± 0.0225 

R2 0.8332 ± 0.0083 

Pearson Correlation Coefficient 0.9133 ± 0.0047 

Spearman Rank Correlation 0.8766 ± 0.0063 

MAE 0.8101 ± 0.0155 
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RMSE indicates that the model’s predicted log(IC50) typically deviates by a factor of 

1.0600 ± 0.0225 from the experimental values. The variance in drug sensitivity is 

around 0.8332 ± 0.0083. Furthermore, a high degree of correlation was observed 

between predicted and actual sensitivities, as shown by the Pearson correlation 

coefficient of 0.9133 ± 0.0047 0063 (p < 0.001 for all repeats) and Spearman rank 

correlation of 0.8766 ± 0.0063 (p < 0.001 for all repeats). The Mean Absolute Error 

was 0.8101 ± 0.0155.  These metrics indicate that the model can accurately predict 

log(IC50) and explain over 83% of the variance in drug sensitivity.  

 

Fig 3.1 Scatter Plot for predicted vs experimental log(IC50) values for (A) overall 

dataset. (B) test set from single repeat 

 

Scatter plots were generated to visualize the predictive performance. Evaluation of the 

model’s fit for the entire dataset used for developing the train/test split, comprising the 

11,588 drug-cell lines, is seen in Fig 3.1(A). The plot demonstrates an excellent fit 

overall, with data points tightly distributed along the y=x line. The performance 

metrics calculated were R2 of 0.9149, RMSE of 0.7168 and Pearson’s correlation 

coefficient of 0.9577. These metrics are likely influenced by the inclusion of training 

data points, and they confirm the model’s capacity to learn the underlying 

relationships. The model’s ability to generalize unseen data was visualized using a 

representative test set, comprising 20% of the data randomly selected from one of the 

five evaluation repeats in Fig 3.1(B). The data points cluster closely around the y=x 

A. 

 

B. 
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line and the model achieved an R2 value of 0.8259, RMSE od 1.0780 and Pearson’s 

correlation coefficient of 0.9091, further delineating the strong linear agreement 

between the predicted and observed sensitivities on unseen data. These values are also 

close to the final metrics of the 5-fold validated model. 

Combined, these scatter plots illustrate the model’s strong predictive capabilities, both 

in terms of fit to the overall data and its ability to generalize effectively to test samples. 
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3.2 SHAP analysis unveils key determinants of predicted drug sensitivity 

Global SHAP analysis revealed that drug physicochemical properties, distinct 

chemical substructures and specific gene expression levels were all significant 

contributors.  

 

Fig 3.2(A). SHAP summary plot of top 30 features contributing to model. (B) 

SHAP beeswarm plot of top 30 features. 

 

Molecular weight is the most impactful feature, followed by the drug fingerprint 

fp_130, ESOL Log S (solubility), H-bond donors, drug fingerprint fp_233, TPSA, 

gene ZEB2, Consensus Log P (lipophilicity), H-bond acceptors and Rotatable Bonds. 

SHAP dependence plots elucidated the manner in influence of these top features.  

 

A. 

 
B. 
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Fig 3.3 SHAP dependence plot for Molecular Weight 

 

For MW, there is a clear downward trend in SHAP values as molecular weight 

increases, particularly up to 700 Da. Low MW, less than 400 Da is associated with 

positive SHAP values, strongly pushing the model to predict higher log(IC50). These 

molecules tend to be less flexible. Medium MW (400-600 Da) cluster around zero and 

show less influence on model predictability. Higher MW is associated with negative 

SHAP values, pushing the model to predict lower log(IC50). These molecules are 

predominantly the ones with higher number of rotatable bonds. The model likely 

associates higher MW with better intracellular engagement or target interaction 

properties in glioblastoma cell lines. Low MW are likely to non-specific or susceptible 

to efflux. 
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Fig 3.4(A). SHAP dependence plot for fingerprint fp_130 

 

SHAP analysis highlighted fingerprint fp_130 as a potent predictor of drug sensitivity. 

Its presence (fp_130 =1) in Fig 3.4(A) is associated with strongly negative SHAP 

values, guiding the model to predict low log(IC50) values or sensitivity. This effect is 

further amplified when fingerprint fp_1017 is also present, indicating a synergistic 

effect between chemical features.  

 
Fig 3.4(B). Pathway Distribution for drugs containing fingerprint bit fp_130 
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A group analysis was conducted to identify the drugs containing this fingerprint. 49 

drugs and their targeted pathways (Fig 3.4(B)) reveals a striking enrichment for 

compounds targeting the PI3K/mTOR signaling pathway. Other represented pathways 

include Mitosis, DNA replication, RTK signaling, ERK/MAPK signaling. The model 

has strongly learned that drugs possessing this feature are highly effective likely due 

to their impact on PI3K/mTOR survival pathway or cell division process. 

 

 

 
Fig 3.5. SHAP dependence plot for ESOL Log S (solubility) 

 

 

ESOL Log S stands for Estimated Solubility on logarithmic scale. Low solubility i.e. 

ESOL Log S < -3, the SHAP values are aggregated around or slightly below zero 

indicating poor aqueous solubility has minimal effect on predicted log(IC50). Moderate 

to high solubility shows an upward trend toward SHAP values, reaching +2, indicating 

that higher solubility is associated with higher prediction of log(IC50). The model 

associates higher predicted aqueous solubility with increased predicted resistance. 

This effect is more pronounced in compounds lacking the fp_1 substructure. Poorly 

soluble drugs show neutral or slightly-sensitive associated SHAP contributions. It may 

be so that high solubility compounds may be more prone to efflux-mediated clearance, 

leading to apparent resistance, due to high transporter expression. 
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Fig 3.6 SHAP dependence plot for H-bond donors 

 

 

There is a non-linear trend for H-bond donors. Low donors (0-2) are associated with 

SHAP values clustering around zero or slightly positive, generally predicting a slight 

resistance or minimal impact. Moderate donors (3-5_ show most strongly negative 

SHAP values down to -0.8. But as the number of donors increases beyond 5, the SHAP 

values tend to move back towards zero or less negative. While fp_130 itself is a strong 

predictor of sensitivity, its interaction with H-bond donors is most pronounced when 

fp_130 is absent. It could possibly mean that there is a need for an optimal number of 

H-bond donors is more necessary in drugs where this substructure is not present. The 

model has learned a specific optimal range for H-bond donors (4-5) that predicts drug 

sensitivity. This is in line with Lipinski’s rule of 5. 

 

 
Fig 3.7(A). SHAP dependence plot for fingerprint fp_233 
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SHAP analysis in Fig. 3.7(A) highlighted fingerprint fp_233 as another strong 

predictor of drug sensitivity. Its presence (fp_233 =1) is associated with strongly 

negative SHAP values, guiding the model to predict low log(IC50) values or sensitivity. 

This effect might be amplified when is further amplified when fingerprint fp_314 is 

also present, but on its own fp_233 remains a strong drug sensitivity predictor. 

 

 
Fig 3.7(B). Pathway Distribution for drugs containing fingerprint bit fp_233 

 

 

A group analysis was conducted to identify the drugs containing this fingerprint. 80 

drugs and their targeted pathways in Fig. 3.7(B) reveals a striking enrichment for 

compounds targeting the DNA replication, PI3K/mTOR signaling pathway, 

ERK/MAPK signaling, cell cycle, apoptosis regulation and RTK signaling. Other 

represented pathways include chromatin histone acetylation and methylation, mitosis, 

metabolism, WNT signaling, JNK and p38 signaling, and EGFR signaling.  The model 
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has strongly learned that drugs possessing this feature are highly effective likely due 

to their impact on DNA replication or PI3K/mTOR pathway. 

 

Fig 3.8. SHAP dependence plots for (A) TPSA (B) ZEB2 (C) Consensus Log P 

(D) H-bond acceptor 

 

TPSA is another strong feature contributing to model learning and prediction 

capabilities as shown in Fig 3.8(A). Higher TPSA, greater 100 Å2 is a significant 

predictor of drug sensitivity i.e. lower log(IC50), potentiated by the presence of 

molecular flexibility as shown through interaction with higher number of rotatable H-

bonds. The plot of ZEB2 in Fig 3.8(B) shows that lower gene expression is contributes 

to predicted sensitivity, while a higher gene expression contributes to predicted 

resistance. ZEB2 is a transcriptional repressor involved in epithelial-mesenchymal 

transition and stemness [156]. So, it aligns with the notion that high expression predicts 

for resistance. Lipophilicity in Fig 3.8(C) shows that high hydrophilicity (Log P < 0) 

is strongly associated with predicted sensitivity, potentially modulated by the presence 

A. 

 

B. 
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of the drug fingerprint fp_656. There is a strong inverse relationship between the H-

bond acceptors and the SHAP values as illustrated in Fig 3.8(D). Moderate number of 

H-bond acceptors (5-10) exhibit negative SHAP values, pointing to higher sensitivity. 

This effect is partially influenced by the presence of the bit fp_583. 

 

Fig 3.9. SHAP dependence plots for (A) Rotatable Bonds (B) drug fingerprint 

fp_314 (C) Pathway Distribution for drugs containing fingerprint bit fp_314. 
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The contribution of Rotatable Bonds to model prediction is significant as illustrated in 

Fig 3.9(A). Less than 10 rotatable bonds point to drug sensitivity, or lower log(IC50) 

values. Presence of fp_817 does not have a huge impact on this contribution. Presence 

of the substructure fp_314 strongly contributes to negative SHAP values, and drug 

sensitivity as shown in Fig 3.9(B). This effect works synergistically with the 

fingerprint fp_233 discussed earlier in the text. Drug group analysis identified 131 

drugs with this fingerprint in Fig 3.9(C), enriched for targeting pathways like 

PI3K/mTOR signaling, cell cycle, genome integrity, RTK signaling, apoptosis 

regulation among many other.  
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3.3 In silico screening of COCONUT database identifies novel natural product 

candidates with high predicted potency 

The XGBoost model was used to perform an in-silico screen against the COCONUT 

natural product database. The library was filtered for compounds with the highest 

annotation level 5. Additional filters such as MW < 800, TPSA between 100 and 200 

Å2, H-bond donors 3-5, H-bond acceptors < 10, Rotatable bonds < 10, Log P < 2 were 

applied to further reduce the chemical space for search. A total of 290 compounds were 

finally filtered. The solubility and BBB-permeability were retrieved through the Swiss 

ADME web browser, since these parameters are not provided in the COCONUT 

database. The predicted log(IC50) values of the top 10 compounds from the trained 

model are noted in Table 2, along with their highest probability( > 90%) predicted 

targets from SuperPred. 
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Table 2. Top 10 COCONUT compounds screened using trained model and their 

predicted sensitivity 

Compound Predicted 

Log(IC50) 

Predicted IC50 

(in nM) 

Predicted Targets 

CNP0152293.3 -4.019322395 17.96513407 CTSD, COX-1, TIF1-α, 

MAOA 

CNP0347714.1 -3.898481131 20.27267963 CTSD, COX-1, TIF-α, 

MAOA, APE1, ADAM10 

CNP0347714.2 -3.898481131 20.27267963 CTSD, COX-1, TIF-α, 

MAOA, APE1, ADAM10 

CNP0353870.1 -3.831660509 21.67359653 APE1, CTSD, NTRK3, 

TIF1-α 

CNP0196054.2 -3.698587179 24.75848107 TDP1, COX-1, CTSD, 

MAOA, TIF1- α, APE1 

CNP0324164.1 -3.432158709 32.31710221 HSP90β, STAT3 

CNP0142637.2 -3.103508234 44.89143615 CTSD, COX-1, TDP1, 

APE1, TIF1- α 

CNP0343540.1 -3.031371355 48.24942564 APE1, HIF1-α, CTSD, 

LSD1, PDGFRA 

CNP0091821.1 -2.884468317 55.88449447 CTSD, APE1, ADAM10, 

CK2 

CNP0223869.2 -2.832907915 58.84149856 ERK2, APE1, HIF1- α, 

TDP1, CTSD, TIF1- α 
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The pathway enrichment analysis of the 14 unique putative targets through ShinyGO 

with the PANTHER database revealed significant enrichment for pathways highly 

relevant to glioblastoma in Fig. 3.10. 

 

 
Fig 3.10 Pathway enrichment plot for predicted targets of the top 10 

COCONUT compounds 

  

 

Angiogenesis was the top hit with a fold enrichment of 31.4 and -log10(FDR) of 2.4. 

The presence of 3 genes from predicted targets highlights the importance of these 

findings. Angiogenesis is essential for glioblastoma growth and vascularity, so it is 

likely that several of the top predicted compounds may exert their anti-cancer activity 

by inhibiting formation of new blood vessels. The PDGF signaling pathway also 

showed significant fold enrichment 26.1 and statistical significance ( -log10(FDR) of 

nearly 2.0-2.2. The involvement of 2 targets could be a novel avenue of potentially 

new anti-glioblastoma drugs through the disruption of the PDGFR signaling axis, that 

is well established driver of glioblastoma proliferation. The enrichment of the 

inflammation mediated by chemokine and cytokine signaling pathway points towards 

the model identifying compounds that may modulate tumor microenvironment or 

inflammatory responses generated by microglia and macrophages. 16-fold enrichment 

and possibly two target genes allude towards a possible therapeutic avenue. Pathways 
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such as JAK/STAT signaling, Hypoxia response via HIF activation, 5-

Hydroxytryptamine degradation, Adrenaline and noradrenaline biosynthesis also 

demonstrated high fold enrichment and statistically significant FDR vales. It is 

possible that the top drug candidates may also affect cellular signaling required for 

proliferation and survival, stress responses common in the tumor milieu and 

neurotransmitter pathways that may influence glioblastoma cells. Notch signaling 

pathway had a lower statistical significance, but a high fold enrichment of 40.8, and is 

highly evidenced in glioblastoma stemness and resistance. This analysis suggests that 

the top 10 compounds are likely to interfere with key biological processes essential for 

glioblastoma progression.  

 

TABLE 3. Pathway Enrichment Analysis of Predicted Targets 

Pathway 
Pathway 

Genes 

Fold 

Enrichment 
FDR Genes 

JAK/STAT 

signaling pathway 
15 108.9571 0.032881 1 STAT3 

5-

Hydroxytryptamine 

degredation 

18 90.79762 0.032881 1 MAOA 

Hypoxia response 

via HIF activation 
26 62.85989 0.03514 1 HIF1A 

Adrenaline and 

noradrenaline 

biosynthesis 

27 60.53175 0.03514 1 MAOA 

Notch signaling 

pathway 
40 40.85893 0.045385 1 ADAM10 

Angiogenesis 156 31.42995 0.001606 3 

STAT3, 

HIF1A, 

PDGFRA 

PDGF signaling 

pathway 
125 26.14971 0.019357 2 

STAT3, 

PDGFRA 

Inflammation 

mediated by 

chemokine and 

cytokine signaling 

pathway 

198 16.50866 0.031657 2 
STAT3, 

PTGS1 
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CHAPTER 4 

 

DISCUSSION 

 

 

 

The efforts to propose novel compounds as potential drug candidates, or repurpose 

existing drugs to altogether different indications are often narrowed to single targets 

and fail to consider the gene expression context. Many of them also restrict themselves 

to classification tasks such as predicting whether a compound will be sensitive or 

resistant, accompanied by a lack of interpretability when the pipeline assumes a 

machine learning framework, be it neural networks or deep learning strategies. Feature 

selection plays an essential and deterministic role for model performance. 

In this work, I have incorporated gene expression features, along with drug Morgan 

fingerprints, and drug features like MW, lipophilicity, H-bond donors, H-bond 

acceptors, rotatable bonds, solubility, and BBB-permeability along with Lipinski’s 

violations. The model trained on XGBoost regressor had a strong performance, 

rigorously evaluated using 5-fold validation, with RMSE of 1.0600 ± 0.0225 and R2 

of 0.8332 ± 0.0083, with a strong correlation between experimental and predicted 

values of log(IC50). SHAP analysis revealed that MW had the most significant 

contribution to model learning, followed by the drug fingerprint fp_130, solubility, H-

bond donor, TPSA and so on. Multiple drug fingerprints that contributed to model 

associations were enriched in drug targeting pathways like PI3K/mTOR, DNA 

replication, cell cycle, MAPK signaling, apoptosis regulation and WNT signaling 

majorly. Few drugs targeted the chromatin histone acetylation and methylation, 
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genome integrity, EGFR signaling, IGF1R signaling, metabolism and even the 

nucleoside metabolic inhibitors.  

Two genes of interest were also highlighted in the SHAP summary plot. ZEB2 is Zinc 

finger E-box Binding homeobox 2, overexpressed in glioblastoma, and knockout of 

which inhibits cell and tumorigenesis [157]. Suppression of ZEB2 induces apoptosis 

in glioblastoma cell lines, indicating that overexpression of this gene has oncogenic 

role [158]. The other gene of interest, though not as strongly contributing to the model 

learning is ABCB6, ATP binding cassette subfamily B member 6 that functions as 

transport protein for porphyrin transport, drug resistance and protection against stress 

[159]. ABCB6 expression is also strongly correlated with histological tumor grade, 

with significant upregulation in glioblastoma cell lines [160]. This may contribute to 

drug efflux leading to higher resistance.  

Out of the proposed novel compounds, CNP0152293.3 or 10-Dehydrobaccatin V 

ranked the highest. It belongs to the diterpenoids super class and its predicted targets 

include CTSD, COX-1, TIF1-α, MAOA. The top 5 compounds belong to the super 

class diterpenoids and alkaloids (CNP0353870.1). Diterpenoids like Triptolide, 

Crocetin and Phytol is well established, from inducing senescence phenotype in cancer 

cells to inhibition of cancer survival genes [161]. Alkaloids like Vincristine, 

Vinblastine, Campothecin, Paclitaxel and Docetaxel have a long history of 

investigation as anti-cancer agents in multiple malignancies [162]. The COCONUT 

compounds have been predicted to target multiple proteins. Cathepsin D (CTSD) is 

closely associated with clinical malignancy and is overexpressed in radioresistant cells 

[163]. Cyclooxygenase-1 (COX-1) also known as PTGS1, is constitutively expressed 

in brain tissue and overexpressed in glioblastoma cells, inhibition of which abrogates 

tumor cell migration [164]. Transcription intermediary factor 1-α (TIF1-α), also 

known as TRIM24, is an oncogenic coactivator of STAT3 in glioblastoma and enhances 

EGFR-driven tumorigenesis [165]. Monoamine oxidase A (MAOA) oxidizes 

monoamine neurotransmitter, leading to reactive oxygen species that drive cancer 

[166]. Inhibition of these in TMZ-resistant cells can reduce tumor progression. APE1 

or APEX1 is the major apurinic/apyrimidinic endonuclease of the base excision repair 
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pathway to mitigate DNA damage, that guides drug tolerance in glioblastoma, if 

suppressed [167]. It is also correlated with glioblastoma recurrence and increased 

immunosuppressive tumor microenvironment [168]. The metalloproteinase ADAM10 

is highly expressed in GSCs, and inhibition can lead to phenotypes that are more 

amenable to therapy [169]. NTRK3 fusions have been reported in glioblastomas that 

potentially drive the tumor, along with NTRK1/2 fusions [170]. Tyrosyl-DNA 

phosphodiesterase 1 (TDP1) is a potential biomarker along with topoisomerase 1 in 

glioblastoma for irinotecan treatment [171]. STAT3 , part of major JAK-STAT 

signaling pathway, is overexpressed in glioblastoma tissues and is required for 

proliferation and potency of GSCs [172]. HSP90 is upregulated, influences stemness, 

drives up glucose consumption in glioblastoma cells [173]. ERK2 is a protein kinase 

of the MAPK pathway. It has been reported that ERK suppression is correlated with 

autophagy activation and tumor suppression [174]. Lysine specific demethylase 1 

(LSD1) can cooperate with histone deacetylase inhibitors to regulate cell death in 

glioblastoma cell lines [175]. Inhibition of LSD1 also induces senescence in 

glioblastoma cells [176]. Hypoxia-inducible factor-1α (HIF-1α) mediates maintenance 

of GSCs under hypoxic conditions through Notch signaling[177]. Platelet-derived 

growth factor receptor alpha (PDGFRA) amplification is a poor prognostic marker for 

IDH wild-type glioblastoma [177]. The enrichment of targets within pathways like 

angiogenesis and PDGF signaling aligns with known glioblastoma progression 

mechanisms and provides further rationale for the potential efficacy of these 

compounds. This analysis of predicted targets for the top computationally screened 

compounds further supports the biological relevance of the patterns learned by the 

model. 

It should be noted that this model provides a stepping stone, a preliminary step towards 

robust drug discovery paradigms. Further in silico studies such as molecular docking, 

simulations followed by in vitro assays to elucidate their mechanism of action would 

propel greater impact on the community researching glioblastoma.  
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CHAPTER 5 

 

CONCLUSIONS, FUTURE SCOPE AND SOCIAL IMPACT 

 

 

 

5.1 Conclusions 

This study successfully developed and validated a robust ML framework, centered on 

an XGBoost model, for predicting drug sensitivity in a panel of 29 glioblastoma cell 

lines. By integrating log transformed IC50 values for 435 unique compounds with 

transcriptomic profiles derived from RMA-normalized ArrayExpress E-MTAB-3610 

data, a high-performance model was trained. This model utilized a carefully selected 

feature set, comprising 100 key gene expression markers identified through RFECV, 

alongside drug specific chemical and physicochemical features. 5-fold evaluation 

demonstrated stable predictive power, achieving average R2 of approximately 0.833 

and an RMSE of approximately 1.060, indicating that the model effectively captured 

key determinants of drug response in glioblastoma context.  

A significant contribution of this work is the deep model interpretability achieved 

through SHAP analysis, that enable identification of specific genes (ZEB2, ABCB6), 

drug physicochemical properties and distinct chemical substructures most strongly 

associated with predicted sensitivity or resistance. High ZEB2 expression consistently 

predicted resistance, aligning with its role in epithelial-mesenchymal transition, while 

specific fingerprint bits were linked through group pathway analysis to drugs targeting 

critical oncogenic pathways like PI3K/mTOR signaling and DNA replication. This 
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also lent a biological relevance of the learned feature-response relationship The utility 

of this work was further illustrated by screening a filtered subset of the COCONUT 

natural product database, identifying several novel compounds with highly potent 

predicted IC50 values against an average glioblastoma cell line, warranting further 

investigation as potential anti-cancer therapeutics. 

 

5.2 Future Scope 

In the future, it may become necessary to incorporate additional omic layers such as 

somatic mutation profiles, copy number variations, DNA methylation patterns, or even 

proteomics data to provide a more comprehensive portrait of molecular mechanisms 

in glioblastoma. There are many glioblastoma cohort datasets available on the TCGA 

and GDC Data Portal hosted on the National Cancer Institute. Availability of cohort 

histopathological data and imaging could lend a new angle to the study. Of course, 

integration of more sophisticated drug representations through graph neural networks 

or convolutional neural networks may be explored to understand chemical 

determinants of drugs and make the pipeline multi-layered. Molecular docking, 

simulation and experimental approaches form the next rung of the ladder in combatting 

glioblastoma. Experimental validation of the top-ranked natural products would 

involve in vitro testing in glioblastoma cell lines, to investigate their anti-cancer 

activity and determine experimental IC50 values.  

 

5.3 Social Impact 

Glioblastoma remains the most devastating brain cancer with multiple barriers to 

successful treatments and a grim prognosis. The immense cost and high attrition rates 

accompanying traditional drug development necessitate innovative approaches. The 

ML framework developed in this study offers a computationally efficient and scalable 

strategy to navigate the vast chemical space of natural products and prioritize candidate 

compounds for glioblastoma. These models can accelerate the early stages of 

discovering novel therapeutics.  
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Natural products have historically been a rich source of anti-cancer compounds, yet 

their systematic exploration is often hampered by their structural complexity and the 

challenge of isolating and testing them at scale. This work demonstrates a path to 

rationally identify promising natural product candidates, potentially uncovering novel 

scaffolds and mechanism against glioblastoma. The emphasis on model 

interpretability through SHAP analysis promotes transparency and allows for deeper 

biological understanding of predicted drug responses. Explainability is crucial for 

building trust in AI-driven decision-making within biomedical research and can guide 

experimental work for new potential leads. This research commits to the broader field 

of precision oncology, aiming to tailor therapeutic strategies to specific molecular 

characteristics. While focused on preclinical models, the principals and potential lead 

compounds identified here could contribute to the development of new therapies that 

ultimately improve clinical outcomes and enhance the overall well-being of 

individuals diagnosed with this disease. 
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