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INTEGRATIVE COMPUTATIONAL APPROACHES FOR RECEPTOR-

BASED DRUG DISCOVERY AND BIOMARKER IDENTIFICATION IN 

NDDs  

RISHI MRINAL 

ABSTRACT 

 

Neurodegenerative disorders (NDDs) represent a significant global health burden, 

with overlapping clinical and molecular features that often complicate early diagnosis 

and treatment. This thesis presents an integrative computational approach to address 

key challenges in the therapeutic and diagnostic landscape of NDDs by bridging 

receptor-based drug discovery and gene expression-driven biomarker identification. 

The first objective focuses on targeting the GABRA2 receptor, a subunit of the GABA-

A complex implicated in both anxiety and neurodegeneration. Using homology 

modelling, ligand-based virtual screening, molecular docking, and ADME profiling, 

the study identifies novel FDA-approved compounds with improved binding affinity 

and pharmacokinetic properties over the benchmark drug Diazepam. Zolmitriptan 

emerged as a promising candidate with high BBB permeability, favourable 

bioavailability, and minimized toxicity. The second objective employs machine 

learning models on high-throughput transcriptomic data (GSE140830) to classify 

dementia subtypes and identify key biomarkers. Random Forest, Support Vector 

Classifier, and other models achieved robust classification performance, while feature 

importance and pathway enrichment analyses revealed subtype-specific gene 

signatures linked to neuroinflammatory and synaptic pathways. By unifying molecular 

pharmacology with ML-driven omics analytics, this study provides a dual-framework 

for stratified therapeutic targeting and early diagnosis in NDDs, offering translational 

value for precision medicine. 

 

Keywords: NDDs, Anxiety and Dementia, GABRA2, Molecular Docking, ADME 

Profiling, Virtual Screening, ML, Gene Expression Analysis. Subtype Classification, 

Biomarker Identification, Homology Modeling, Precision Medicine 
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CHAPTER – 1 

INTRODUCTION 

 

 

 

Neurodegenerative disorders (NDDs) are considered as the prominent class of 

progressive and debilitating neurological conditions leading to the gradual loss of 

neuronal function i.e., cognitive, motor, and/or sensory functions in the specific region 

of brain and spinal cord [1]. With the increasing breakthroughs in genetic, behavioural, 

and neurobiological conditions, NDDs are the global health concern including 

prominent examples like Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS), each disease 

contributing significantly to mortality and morbidity worldwide. According to the 

WHO factsheets, as the global burden of these disorders are rising dramatically 

affecting 55 million people, understanding the exact cause is far more crucial for the 

improvement of more effective diagnostic tools, prevention, treatment and therapeutic 

strategies [2] [3].  

There are several representative spectrums of NDDs including Frontotemporal 

Dementia (FTD), Progressive Supranuclear Palsy (PSP), Corticobasal Syndrome 

(CBS), Primary Progressive Aphasia (PSA), Anxiety, Depression, Epilepsy and more, 

placing increased pressure on healthcare systems worldwide. By 2050, dementia alone 

is predicted to affect more than 150 million people globally, emphasizing the need for 

innovative therapeutic strategies [4]. Central to the pathology of many NDDs, is the 

dysfunction and dysregulation of neurotransmitter signalling and synaptic loss of 

neuronal receptors and aberrant gene regulation [5]. Receptors such as, Nicotinic 

Acetylcholine Receptors (nAChRs), Gamma-amino Butyric Acid type A receptor 

(GABA-A), and Dopamine Receptors have been implicated in mechanism of diseases, 

influencing neuroplasticity, synaptic transmissions, and cognitive functions [6] [7]. 

Among these, the α-2 subunit of GABA-A, GABRA2 acts as a dual- action therapeutic 

target which addresses both the symptoms of anxiety and neurodegenerative processes, 

playing a central role in the inhibitory signalling within the brain. Alterations in 

GABAergic neurotransmission have been implicated in early-stage cognitive deficits, 

making GABRA2 a compelling target [8] [9]. Simultaneously, alterations in the gene 

expression within affected regions of brain provides molecular signatures aiding in 

early diagnosis and therapeutic target identification. At the molecular level, NDDs 

commonly exhibit the accumulation of misfolded proteins, mitochondrial dysfunction, 

oxidative stress, impaired axonal transport, and neuroinflammation. Genetic factors 

significantly contribute to the pathogenesis of several NDDs, either through genetic 

susceptibility loci identified in Genome-wide Asociation studies (GWAS) or through 

inherited mutations [10] [11] [12].   
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Recent advancements in computational biology, combined with Machine Learning 

(ML) approaches, have revolutionized new approaches to drug discovery, biomarker 

identification, and receptor targeting for different NDDs to develop more targeted, 

effective, and personalized therapeutic strategies. In silico techniques such as, 

Homology Modeling, Virtual Screening, Molecular Docking, Molecular Docking 

Simulations (MDS), and ML-integration with the gene expression analyses enables 

rapid identification of, high-affinity compounds, promising drug candidates with 

higher accuracy, classification of disease subtypes with remarkable precision, novel 

disease-specific biomarkers and stratify subtypes. The integration of omics with ML 

techniques provides a framework for uncovering molecular and gene-regulatory 

pathways involved in NDDs [13]. Simultaneously, advancements in MD are enhancing 

the accuracy of binding predictions (affinity), and validating receptor-ligand, ligand-

receptor, receptor-receptor interactions, supported by molecular dynamic simulation 

(MDS) tools, GROMACS [14].   

Early diagnoses of NDDs are critical for improving the patient outcomes based on the 

global reliability, facilitating the development of disease-modifying therapies. 

However, traditional methods have a large concern on clinical evaluations, 

neuroimaging and neuropsychological testing, often detect disease only after 

significant neuropathological changes have occurred. Current therapeutics combined 

with sophisticated computational methods, accelerates to identify biomarkers in the 

clinical management of NDDs [15] [16] [17]. They can aid in differential diagnosis, 

stratify patient populations for clinical trials, and serve as surrogate endpoints for the 

therapeutic efficacies [18]. Early diagnosis through biomarker identification improves 

patient care, accelerating the development of targeted therapies [19]. Current 

methodologies not only accelerate drug discovery but also offer insights into structural 

biology, binding energetics, and target specificity [20]. 

This thesis aims to explore an integrative computational approach combining receptor-

based drug discovery and ML-driven biomarker identification to address the 

challenges in the management of NDDs. The thesis specifically targets two major 

objectives: 

 

Objective 1 

Receptor-based drug discovery: Modelling the GABRA2 receptor using Homology 

modelling, identifying the novel inhibitors through ligand-based Virtual screening, 

Molecular docking, followed by ADME profiling contextualising anxiety. 

Objective 2 

Gene expression-based biomarker discovery: Classification of dementia subtypes 

using ML-models applied to high-throughput gene expression datasets and identifying 

key biomarkers and the biological relevance through feature importance, pathway 

enrichment analysis. 
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CHAPTER -2 

LITERATURE REVIEW 

 

 

 

2.1. Introduction to NDDs 

NDDs encompasses a group of chronic neurological conditions which are marked by 

the integral degeneration of both functional and structural components of the Central 

Nervous System (CNS). It is considered as an “umbrella” term for neurological 

diseases like AD, PD, HD, which ultimately have dominated much of the research 

landscape. Meanwhile, the significant attention is shifting towards non-AD dementias 

including bvFTD, PSP, CBS and PPA, relying under a group of Frontotemporal lobar 

degeneration (FTLD), with overlapping symptoms that complicate early and accurate 

diagnosis [21] [22]. 

Concurrently, non-cognitive symptoms such as anxiety disorders highlights another 

major feature of neurodegeneration, characterized by hyperarousal, excessive worry, 

and behavioural changes. Although, anxiety usually considered as a neuropsychiatric 

disorder rather than neurodegenerative, it has been increasingly recognised as both a 

prodromal symptom as well as a comorbidity in multiple NDDs [23]. These affective 

changes are often under-recognized but may reflect underlying neurochemical 

disruptions, including GABAergic dysfunction, which could offer novel molecular 

targets for intervention. In many patients, anxiety symptoms appear years before 

cognitive decline becomes clinically detectable, suggesting a possible shared 

neurobiological substrate. Furthermore, persistent anxiety in patients with dementia 

has been associated with faster cognitive deterioration, greater caregiver burden, and 

reduced treatment efficacy [24]. 

 

2.2. Anxiety and Its Intersection with Neurodegeneration 

Anxiety disorders traditionally represent itself as a neuropsychiatric disorder, but is 

increasingly recognised for its neurobiological underpinnings and its complex 

interplay with neurodegeneration [25]. Recently, it has emerged not just as a co-

occurring condition but as a potential prodromal indicator of several NDDs. The 

overlapping of anxiety and NDDs is evident both at the clinical level, where anxiety 

often forgoes cognitive symptoms, at the molecular level, particularly within the 

GABAergic system [26]. This section pinpoints anxiety from two perspectives, a 

neurobiological condition with specific molecular targets, and as a comorbid or early-

stage feature of dementia-related disorders such as bvFTD, PSP, CBS, and PPA. 

Understanding this dual role is essential for developing integrative therapeutic 
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strategies that address both behavioural and molecular aspects of neurodegeneration 

[27] [28]. 

 

2.2.1. Anxiety and Its Types 

Anxiety is the most occasional mental disorder with a feeling of fear that occurs when 

one’s facing a stressful or in a threatening situation [29]. It is quite a normal response 

when confronted with danger, continuous fear, unrealistic worry about something to 

happen, and/or even unpleasant feelings of imminent death [30]. They are most 

prevalent neuropsychiatric conditions, affecting nearly about 301 million people and 

is to be expected affecting 500 Million people by 2050 worldwide. The life-time 

prevalence rate of anxiety disorder for adolescents aged between 13-17 is 7.7%, while 

it is 6.6% in adults aged between 18-64 years [31] [32]. Women are more prevalent to 

develop anxiety disorders and approximately twice as high as in male. The prevalence 

of anxiety disorders is as follows: 10.3% for specific phobias, 6.0% for panic disorder, 

2.7% - Social Anxiety Disorder (phobia), and 2.2% - Generalized Anxiety Disorder 

(GAD) [33] [34].  

Anxiety disorders are often accompanied by neuromuscular tension, restlessness, 

fatigue, and concentration deficit, resulting in significantly interfere with daily 

activities. Moreover, scientific evidence suggests that prolonged anxiety result in the 

development of more serious and detrimental health consequence, which lowered 

overall life expectancy of the individual [35]. From a neurobiological view, anxiety is 

in close proximity to dysfunction in various neurotransmitter systems, significantly 

GABA, serotonin, and norepinephrine that are modulated by the brain regions such as, 

amygdala, prefrontal cortex, and hippocampus [36] [37]. 

 

 

 

 

 

 

 

 

 

Fig 2.1. Classification of Anxiety disorder 
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2.2.2. Anxiety as a comorbidity and prodromal symptom in dementia 

Anxiety is acknowledged as both the comorbid, a co-existing neuropsychiatric 

condition and prodromal (before full onset) symptom in several subjects of dementia. 

In conditions such as, bvFTD, PSP, PPA, and CBS, anxiety is often observed as a 

common predictive factor of the acceleration of the disease [38]. In the case of bvFTD, 

it is observed that anxiety often emerges during early transitional stages reflecting 

degeneration in prefrontal-limbic circuits that mediate emotional control where 

behavioural disinhibition and emotional blunting are the main hallmark of the disease 

[39] [40]. Consequently, in the case of PSP and CBS, often mistaken as a PD, expresses 

frequent anxiety-related symptoms connected to subcortical and brainstem atrophy. 

Meanwhile, in PPA, anxiety may result from social withdrawal and the impairment of 

communicating with other individual, magnifying cognitive decline and emotional 

distress [41]. Researchers suggest that the presence of anxiety usually correlates with 

rapid cognitive deterioration, poor quality of life, and higher caregiver burden. 

Addressing the symptoms of anxiety, it may provide for early interventions and modify 

the progression of dementia [42]. 

 

2.2.3. Impact of anxiety in disease progression and quality of life 

The presence of anxiety in people with NDDs notably worsen the disease adversely 

affecting to the progression of the disease, response to the treatment, and the quality 

of life. It leads to significantly reduced cognitive performance, increment of the 

caregiver burden, also the heightened disabilities and more [43] [44]. Researchers 

highlight how these symptoms like anxiety are manifested earlier in prodromal stages 

of NDDs and can disrupt multiple domains of functioning in CNS [45]. The distress 

caused by anxiety often paves to misdiagnosis, not performing accurate identification 

of the condition, limiting the effectiveness of cognition abilities. Understanding the 

interdependence of the neurodegeneration and anxiety imparts a new way for strategic 

outcomes that would combine GABAergic modulations, cognitive therapy, and 

pharmacological management in the long-term effects [46]. 

 

2.3. Bridging Dementia Subtypes with Neurodegenerative Mechanisms  

To understand dementia as a clinical syndrome caused by various NDD mechanisms 

is important for the treatment, diagnosis and the biomarker development. Dementia is 

not a single disease but it is a collection or say, cluster of symptoms arising from 

several underlying pathologies. Researchers, nowadays have increasedly focused on 

bridging the gaps between dementia subtypes and their cellular and molecular 

underpinnings.  

 

2.3.1. Dementia and Its Subtypes 
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Dementia, also called a complex neurological disorder is characterized by a decline in 

cognitive functions such as memory, reasoning, and communication [47]. It primarily 

affects the parts of the brain associated with memory and thinking, including the 

hippocampal region and cerebral cortex [48]. According to WHO, currently over 50 

million individuals live with dementia, with numbers expected to near double by 2050 

due to the ageing populations [4]. Early identification and accurate diagnosis of the 

cause of dementia is important for a number of reasons, including personalized 

therapeutic interventions and to improve patient outcomes [49]. 

Among the diverse dementia subtypes, frontotemporal dementia (FTD) comprises of 

a significant clinical category characterized by progressive changes, like decrease in 

size in frontal and temporal lobes [50]. A prominent variant of neurodegenerative 

condition, bvFTD is marked by rapidly progressing behavioural, emotional and 

personality changes often underdiagnosed due to the overlapping symptoms of the 

psychiatric conditions [51]. PSP, is another subtype of neurodegenerative disease, 

commonly observed with postural inability, or motor dysfunction say, movement 

disorder, linked to tau protein aggregation [52]. CBS, presents asymmetrically with 

motor symptoms and cognitive impairments, complicating its differentiation from 

other neurological conditions [53]. PPA affecting the language capabilities, often 

referring as difficulty in ‘word finding’, highlights the heterogeneity within dementia 

subtypes necessitating different diagnostic approaches [54]. 

 

2.3.2. Dementia Subtypes and Its integration with Neurodegeneration 

Each dementia subtype reflects a specific neurodegenerative process defined by unique 

proteinopathies, brain region involvement, and molecular pathways [55]. In 

proteinopathies, taupathies are central to all the four dementia subtypes and AD, 

though tau isoform composition and topography differentiates across the subtypes 

[56]. The inclusion of TDP-43 is quite common in bvFTD, and some PPA variants. 

Meanwhile, α-synuclein aggregates are typically observed in Lewy body dementia but 

may show overlapping symptoms in other syndromes as well [57]. 

 

 

 

 

 

 

 

Fig 2.2. Four different subtypes of dementia 
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Transcriptomic analyses have revealed different molecular patterns across dementia 

subtypes [56]. For instance, bvFTD is enriched for immune response genes, while AD 

shows prominent synaptic and metabolic dysfunction. Misdiagnosis is quite common 

due top shared behavioural and cognitive symptoms [58]. For example, CBS can be 

misconnected with PD, bvFTD may be misclassified as later-stage symptoms for AD 

[59]. Recognizing these pathways improves the diagnosis precision and identifying 

biomarkers [60]. These insights are critical when studying comorbidities like anxiety, 

which may stem from shared or divergent neurobiological mechanisms depending on 

the subtype [61]. 

 

2.4. Risk Factors and Symptoms of NDDs 

A complex spectrum of genetic, environmental, and lifestyle-related factors 

contributes to the influence of the onset of the disease [62]. These factors not only 

affect symptoms to the severity, also affects the progression rate and their therapeutic 

outcomes [63]. Among which, a wide range of genetic and environmental factors, such 

as, age, sex, genetic susceptibility, lifestyle are the most prominent unmodified risk 

factors acting as a central role in NDDs [64]. In FTD, mutations in genes, like MAPT 

(microtubule-associated tau protein), GRN (progranulin), and C9orf72 show a strong 

implication because of the genetic susceptibilities [65]. As these mutations are well-

explained, C9orf72 have not only been linked to FTD, but also making an effect in 

ALS, stating the genetic overlap between NDDs. PSP and CBS are sporadic, associated 

with MAPT haplotypes.  

Environmental and lifestyle factors, including the exposure to inflammation and 

chronic psychological stress, heavy metals, pesticides, head trauma, poor 

cardiovascular health, low cognition, physical inactivity are linked to the accelerated 

neurodegeneration and synaptic loss. Accordingly, anxiety and chronic psychologic 

stress may act as both neurodegeneration and independent risk factor promoting 

oxidative damage or by the disruption of the BBB [65]. Moreover, environmental 

factors, such as, age and sex is the most significant non modified risk factors, 

associated with reduced synaptic plasticity, genomic instability and mitochondrial 

dysfunction that usually predispose neurons to degeneration [66] [67]. 

NDDs presents a wide range of cognitive, behavioural, motor, and language deficits 

depending on the regions of the brain affected. For instance, patients with bvFTD, 

often exhibits impaired personality, difficulty with decision-making, emotional 

blunting, in despite of the preserved memory in early stages. PPA presents with 

progressive deterioration in language comprehension (language difficulty), including 

word-finding issues, grammatical errors and relatively preserved memory and 

cognition. CBS and PSP involve in slow processing, characterised by axial rigidity, 

postural instability, and supranuclear gaze palsy, asymmetric limb rigidity, dystonia, 

apraxia, and cortical sensory loss [68].  
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Fig 2.3. Risk factors including, age, genetic mutations, environmental exposures, and 

lifestyle-related elements. 

 

2.5. GABAergic Signalling and the Role of GABRA2 

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the 

adult mammalian CNS, acting primarily through GABA-A receptors. In the context of 

NDDs, alterations in GABAergic signalling contribute to the disruption of the 

excitatory-inhibitory balance in neural circuits [69]. In AD and FTD, a reduction in 

GABAergic interneurons and alterations in GABA-A receptor subunit composition 

have been observed, potentially contributing to network hyperexcitability. This 

hyperexcitability may exacerbate Aβ production and tau phosphorylation, further 

driving disease progression [70]. In HD, the preferential loss of GABAergic medium 

spiny neurons in the striatum leads to a profound disruption of basal ganglia circuitry. 

This loss of inhibitory control contributes to the characteristic motor symptoms [71]. 

Additionally, alterations in GABA-A receptor subunit expression have been observed 

in various brain regions in NDD models, suggesting a more widespread dysregulation 

of inhibitory signalling [72] [73]. PD also involves alterations in GABAergic 

transmission, particularly within the basal ganglia circuitry [74]. The loss of 
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dopaminergic input to the striatum leads to changes in the activity of GABAergic 

projection neurons, contributing to the motor symptoms of PD [75]. 

 

2.5.1. Structure and Physiological Function of the GABA-A Receptor 

The GABA-A receptor is essential for maintaining neuronal excitability and 

preventing excessive neural activity that could lead to disorders such as epilepsy, 

anxiety, and insomnia [76]. These receptors are pentameric ligand-gated Cl- channels 

(LGICs) composed of various combinations of α, β, γ, δ, ε, θ, and π subunits, with the 

most common subtype being α1: β2: γ2 [77]. Belonging to the Cys-loop receptor 

family, GABA-A receptors are structurally and functionally homologous to other 

LGICs such as nicotinic acetylcholine receptors (nAChRs), glycine receptors, and 

serotonin type-3 (5-HT₃) receptors [78]. This group of receptors is unified by a 

signature extracellular disulfide-bonded loop formed by a conserved pair of cysteine 

residues, which plays a critical role in ligand recognition and gating mechanisms. 

Binding of GABA to these receptors allows chloride influx into the neuron, 

hyperpolarizing the membrane and thereby reducing neuronal excitability [79].  

The subunit composition of GABA-A receptors further underlines their complexity 

and versatility. Subunits are diversified by a set of genes, and their differential 

expression contributes to the functional heterogeneity observed across different brain 

regions and developmental stages. This heterogeneity is essential for tuning the 

pharmacological and biophysical properties of the receptor in response to various 

physiological conditions. These receptors are distributed widely across brain regions, 

including the hippocampus, amygdala, and prefrontal cortex central to emotion 

regulation, memory, and executive functioning [80] [81]. Specific subunits confer 

distinct pharmacological properties; for instance, α1 is associated with sedative effects, 

α2 and α3 with anxiolytic effects, and α5 with cognitive modulation [82]. 

 

2.5.2. Role of GABRA2  

GABRA2 encodes alpha-2 (α2) subunit of the GABA-A receptor, which functions as 

a ligand-gated ion channel is a promising therapeutic target for the central nervous 

system that inhibits neurotransmitters. Diazepam, a widely prescribed benzodiazepine, 

works by modulating the GABAergic system especially GABRA2 where the 

therapeutic actions mediate through its binding to the binding site of the receptor. The 

GABRA2 is underexplored largely compared to other subunits. It plays a key role in 

cognition and anxiety, and its selective targeting could minimize sedative effect [83]. 

Studies have shown that GABRA2 mediate the anxiolytic effects of Benzodiazepines 

without causing significant sedation, a distinction from α1-containing receptors. This 

subunit is also involved in the modulation of working memory and decision-making, 

as observed in prefrontal cortical circuits. Genetic variation within the GABRA2 gene, 

particularly the single nucleotide polymorphism (SNP) rs27985 has been linked to a 
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height-end susceptibility to anxiety related traits, which is an elevated risk of 

developing alcohol dependence, also an amplified physiological response to stress 

[84]. These associations not only underscores the critical contribution of GABRA2 

polymorphisms to individual differences in neuropsychiatric vulnerability but 

emotional regulation.  

 

 

Fig 2.4. Displaying the GABA domains of GABA-A Receptor, representing spatial 

arrangement of α-helices, ꞵ-sheets, and loop regions, emphasizing the 

conformational folding critical to its function. 

 

The evidence of GABRA2 Dysfunction in NDDs and Anxiety Disorders emerge as 

linked GABAergic dysfunction, including alterations in GABRA2 expression, to the 

pathophysiology of several NDDs and anxiety-related conditions. Postmortem studies 

have revealed altered expression of GABA-A receptor subunits in the hippocampus 

and temporal cortex, with decreased α-2 subunit levels correlating with cognitive 

decline and anxiety symptoms [85]. Reductions in GABRA2 mRNA and receptor 
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density have been observed in the frontal cortex of FTD patients, potentially 

underlying behavioural dysregulation and apathy. In generalized anxiety disorder 

(GAD) and panic disorder, neuroimaging studies show reduced GABA concentration 

in key brain areas, with altered GABRA2 expression linked to hyperactivity of the 

amygdala and prefrontal regions. Animal models of PD and HD also demonstrate 

compensatory changes in GABRA2 expression, likely due to loss of dopaminergic and 

glutamatergic input [86]. 

 

2.5.3. Therapeutic Potential of GABRA2 

GABRA2 expense a dual role in anxiolytics and cognitive function, representing a 

promising target for selective GABAergic therapies. Unlike classical BDZs, which 

uniformly modulate all GABA-A receptor subtypes, α2-selective positive allosteric 

modulators (PAMs) represent a novel approach to treat anxiety and cognitive 

symptoms with fewer sedative and addictive liabilities. Compounds such as TPA023 

and L-838417 have shown efficacy in preclinical models of anxiety by selectively 

enhancing α2 and α3 receptor activity. Genetic screening for GABRA2 variants may 

guide the development of personalized therapeutic interventions, especially for 

individuals with neuropsychiatric symptoms in NDDs. GABRA-2 targeting agents 

modulates the efficacy of current treatments when used in conjunction with anti-tau 

therapy [87] [88].  

One intriguing therapeutic approach for reducing the detrimental aftereffects of NDDs 

is the combinatorial therapies of GABRA2, which enhances the efficiency of current 

treatments controlling neurotoxic proteins. As predicted, BDZs, has minimal 

significance in targeting neurological diseases due to its weak BBB permeability. It 

has also been demonstrated that GABRA2 can be pharmacologically inhibited by 

BDZs, like Diazepam and others, which can hinder the ability of different tumour types 

to proliferate, differentiate, and invade. GABRA2 is now a desirable therapeutic target 

for neurological illnesses as a result of these findings. However, a critical unmet need 

remains in the development of GABRA2 inhibitors with more BBB permeability than 

Diazepam. With the ultimate goal of determining their efficacy as medications to 

relieve the corresponding pathogenic cascades and decelerate the advancement of the 

disease, the synthesis of these ligands may make it possible to investigate GABRA2 

inhibition as a novel therapeutic approach for neurological disorders [89] [90] . 

 

2.6.  Receptor-Based Drug Discovery in NDDs 

With the use of computer-aided drug design (CADD) methodologies, the drug 

development process has become efficacious and economical. Through the prudent 

guidance of experimental endeavours toward viable molecular candidates. CADD 

approach has made it possible to lessen the cost and temporal constraints that come 

with traditional drug development pipelines. Receptor modelling enables the 
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prediction of 3-dimensional conformations with experimental structures which are 

unavailable. This allows experimenters to model different subunits, that is crucial for 

the anxiolytic designing that create a sedation. Notably, in the field of CADD, virtual 

screening (VS) and molecular docking techniques have become indispensable 

auxiliary methods to the labour- and resource-intensive high-throughput screening 

(HTS) experimental procedure [91]. By prioritizing the best compounds for further 

experimental validation, these computational methods provide a supplementary 

approach that streamlines the entire drug discovery process. Highly specific subsets 

have been successfully identified using computational screening of large compound 

libraries, depending on either complementarity to target structures (structure-based) or 

similarity to existing inhibitors (ligand-based). After that, the activity of these 

subgroups can be experimentally verified [92]. 

 

2.6.1. Homology modelling of GABRA2: Rationale and methods 

The GABRA2 is unexplored largely due to unavailability of experimentally validated 

3-D structure. It is aim to predict the 3D structure of the GABRA2 protein using 

homology modelling and further investigate the binding interactions between various 

compounds and GABRA2 receptor using Molecular docking to identify a lead 

compound that will potentially inhibit GABRA2 with a great efficiency. The GABRA2 

is associated in regulating the major inhibition of neurotransmitter impulses. Although, 

according to some researchers Serotonin transporter gene (SLC6A4) is also associated 

with major inhibitory neuro-transmission in adult brain, leading to anxiety [93]. The 

genetic variations influence neuro transmission regulation, alterations in neural 

circuits, stress mediated pathways and many. The rationale of Homology modelling is 

to understand the ligand-binding pocket geometry and gate-channel mechanisms for 

the recent research in computational drug discovery that has demonstrated significant 

advancements in VS and MD methodologies, allowing for more precise identification 

of potential drug candidates. The methods typically involve the selection of the 

template, followed by the sequence alignment, then to generate models and evaluate 

energy minimization, also to validate the results using Ramachandran plots. Such 

pioneering efforts emphasize the potential of computational tools in drug repurposing 

and the discovery of safer therapeutic alternatives [94] [95]. 

 

2.6.2. Molecular Docking and ADME profiling 

MD, a popular computational technique in SBDD has been extensively employed in 

drug discovery. By identifying possible binding modes and evaluating binding affinity, 

MD aims to evaluate and determine molecular recognition at both a geometric and 

thermodynamic level. Initially, the interactions between target molecules were the 

main focus of MD. However, in the past 10 years, nucleic acid-ligand docking, protein-

protein docking, and nucleic-acid protein-ligand docking have all received more 

attention. Two interconnected steps make up docking: first, analysing various ligand 
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shapes inside the protein’s active region; second, assessing these forms using a scoring 

system [96] .  

A scoring formula and a search technique make up docking protocols. However, 

because the search space is so large, a comprehensive search is computationally 

infeasible. To minimize the problem’s dimensionality and navigate such large search 

areas with efficiency, limitations, limits, and approximations, are utilized. A scoring 

function is required for a broad range of binding modes to result from protein-ligand 

interactions. It should be able to discriminate between all other modes that the search 

algorithm has examined and experimental binding modes. Currently, available docking 

methods use two types of scoring functions: A two-step grading function technique 

that ranks the resulting structures using a stricter scoring function after a reduced 

function directs the search approach, and Complete scoring functions score a protein-

ligand conformation [97] [98]. 

Absorption, Distribution, Metabolism, Excretion, and Toxicity studies, or ADMET 

studies for short, assess a drug’s pharmacokinetics. This is a critical step in drug 

development since it entails forecasting the behavior and effects of the medication in 

the body, including the amount absorbed orally and in the GI system. Neurotoxicity 

and Nephrotoxicity may result from poor absorption, which can also have a 

detrimental effect on distribution and metabolism. A novel medication must bind to its 

therapeutic target efficiently, but it also has to be able to get to the target site at high 

enough concentrations to safely provide the intended physiological impact [99].  

Because ADMET features are taken now into account early in the drug development 

process, the no. of compounds that fail in clinical trials owing to inadequate ADMET 

profiles has dramatically decreased. Simply put, ADMET research enables us to 

comprehend the internal processing of drug molecules in living things. In light of this, 

ADMET is essential to CADD. Even those who are not familiar with CADD may 

submit data and analyze findings with ease using the user-friendly interface of the free 

SwissADME online application. When it comes to sophisticated techniques like 

iLOGP and the BOILED-Egg model, SwissADME offers a distinct advantage over 

other free web-based ADME and pharmacokinetics programs like pk-CSM and 

admetSAR [100] [101]. 

 

2.6.3. BBB Permeability and Drug-Repurposing 

The BBB is a selectively permeable membrane, which is achieved by the combined 

actions of astrocytes, pericytes, and endothelial cells. Maintaining brain homeostasis, 

the barrier shields the brain from diseases and poisons by preventing them from 

entering the brain’s circulation. The barrier is formed mostly by endothelial cells, and 

its activity is regulated by astrocytes and pericytes via several signaling pathways. A 

restricted set of solutes can pass through the BBB without the aid of facilitators. Only 

gases, like CO2 and O2, and tiny, lipid-soluble compounds, like Ethanol and 

antidepressants, with a MW of less than 400 Da or fewer than eight H-bonds, can 
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passively permeate over the blood-brain barrier. A crucial measure for assessing the 

BBB integrity is the barrier’s permeability, which shows the degree of paracellular and 

transcellular movement. Administering medications to the CNS efficiently is still an 

enormous challenge in the therapy of NDs, even with great advancements in our 

knowledge of the cellular and molecular mechanisms that govern underlying illnesses 

and their medicines [102].   

As a built-in defence mechanism, the BBB constitutes one of the CNS most important 

barriers. To protect the CNS from neurotoxic substances and to provide necessary 

nutrients and oxygen, the BBB must operate properly. The BBB has a variety of cell 

surface sensors and carriers that allow drugs to flow across and fulfil the high energy 

needs of the brain. Furthermore, lipophilic compounds have an easy time diffusing into 

the parenchyma of the brain. Therapeutics that can cross the blood-brain barrier can 

be created using these physiological traits [102] .  

Drug repurposing, which usually includes phrases like ‘drug repositioning’, ‘re-

profiling’, ‘therapeutic converting’, ‘re-direction’, ‘re-tasking’, ‘rescue’, ‘recycling’, 

is the process of finding novel uses for currently approved pharmaceuticals. Finding 

novel pharmacological uses for medications that are FDA-approved, marketed, 

experimental, failing, or already in the process of discovery is part of this process. This 

strategy gives medications that have been authorized, halted, left on hold, and in the 

experimental stage a second chance at treating various illnesses. The term ‘in silico 

drug repurposing’ is frequently used to describe the computer method. Drug 

repositioning has been increasingly popular in recent years; now, one-third of newly 

approved pharmaceuticals are repurposed medications. These repurposed drugs 

currently make up around a quarter of the Pharma industry’s annual income [103] 

[104]. 

The eminent approaches to drug-repurposing are: on-target and off-target strategies. A 

drug’s known effects are used for a new purpose in on-target repurposing, resulting in 

diverse therapeutic outcomes while targeting the same biological target. Conversely, 

off-target repurposing involves using medications or drug candidates on novel targets 

for alternative therapeutic purposes, thereby introducing new indications and 

objectives. Activity-based repositioning is another name for the empirical strategy, 

which employs empirical testing to determine whether current medications have any 

novel applications. This approach involves conducting experiments on illnesses to 

analyze proteins, without requiring prior knowledge of the target proteins’ structure. 

Among the empirical-based repositioning methods accessible are target testing, model 

organisms, cell assessments, and trials in patients. Nevertheless, in silico repositioning 

makes use of Computational biology and Bioinformatics techniques to virtually 

examine sizable public databases including medical and chemical information. The 

chemical interactions between therapeutic compounds and protein targets are 

examined in this method to identify putative bioactive substances. It’s critical to 

expand our knowledge using a mix of computational and experimental techniques to 
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increase medication repositioning success rates. Repositioning medications to be more 

effective will be made possible by combining these strategies [105] [106]. 

 

2.7. Machine Learning in NDD Diagnosis and Biomarker Discovery 

Advancements in high-throughput transcriptomic technologies have significantly 

revolutionised the advent of the research in NDDs. These advance approaches 

modulate explosive molecular data, in understanding the pathology of the disease. 

When ML is combined with the high-throughput analyses, it enhances the discovery 

of potential biomarkers and also helps to improve the classification of disease 

subtypes. Leveraging deeper with ML algorithms, meaningful patterns are identified 

from complex datasets, improving into early diagnosis and personalized treatment 

strategies. 

 

2.7.1. High-throughput Transcriptomics in Dementia 

High-throughput transcriptomic, especially RNA sequencing (RNA-seq), enables gene 

expression profiling in regions of the brain affected by the related disorder. Basically, 

it is a powerful technique which enables precise quantification of gene expression level 

in NDDs. Unlike traditional microarray techniques, RNA-seq provides a broad and 

dynamic range which can detect novel isoforms, transcripts, and low-abundance 

RNAs. It plays a crucial role in identifying differentially expressed genes (DEGs) in 

dementia subtypes. With increasing availability of multi-omics data, researchers are 

expanding RNA-seq applications by integrating it with proteomics, metabolomics, and 

epigenomics to uncover systemic disease mechanisms. Moreover, applying ML 

techniques to transcriptomic data enhances the accuracy of classification models, 

distinguishing between dementia subtypes based on gene expression patterns [107] 

[108]. 

 

2.7.2. ML Models for Subtype Classification 

The complexity of NDDs, particularly dementia, necessitates computational models 

which are capable of distinguishing subtle and complex transcriptomic patterns with 

high accuracy. In recent studies, including the work by Spooner et al., a comparative 

analysis of multiple supervised learning algorithms has been explored to classify 

dementia subtypes using gene expression data. These ML models, Support Vector 

Classifier (SVC), Logistic Regression (LR), Multi-Layer Perceptron (MLP), Naive 

Bayes (NB), and Random Forest (RF), have offers varied yet distinct advantages in 

handling high-dimensional biomedical datasets [109].  

SVC is a kernel-based learning algorithm, particularly recognized for high-

dimensional biological data due to its ability to manage an optimal space, that separates 
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classes within gene expression datasets, particularly separates dementia subtypes with 

limited sample size but larger feature space. SVC enhances its ability in modelling 

non-linear relationships with smaller datasets, also excels in differentiating the 

molecular variations by leveraging kernel functions such as, Radial Basis Function 

(RBF) or Polynomial Kernels (PK) [110]. 

Traditionally, LR is used to solve the binary classification problems, it remains 

relevant in the multi-class NDD classification. Despite its simple and traditional 

methods, LR remains a fundamental tool in disease classification tasks. It offers 

interpretability in predictive modeling by providing coefficients that directly indicate 

gene expression impact on dementia subtypes. However, LR assumes linear 

relationships within the dataset, which may limit its effectiveness in capturing complex 

gene expression interactions [111]. 

MLP, a type of feedforward artificial neural network, incorporates multiple layers of 

interconnected nodes to model complex feature interactions. In the context of dementia 

research, MLP has shown enhancements in capturing intricate transcriptomic 

signatures that may be overlooked by linear classifiers. The non-linear activation 

functions within MLP layers enable the model to detect higher-order relationships 

between gene sets and disease states, aligning well with the multifactorial and 

multifaceted nature of neurodegenerative processes. While MLP exhibits strong 

predictive power, it often requires large-scale training datasets and computational 

resources to prevent overfitting [112].  

NB algorithm, grounded in Bayes' theorem is a probabilistic classifier operating in the 

assumption of feature independence. Despite this simplifying assumption, NB offers 

high-dimensional gene expression data efficiently, making it a lightweight yet effective 

choice for subtype differentiation. In the analysis of dementia-related gene expression 

data, NB has demonstrated robust baseline performance, particularly in identifying 

features that independently contribute to classification outcomes. Its probabilistic 

framework also facilitates transparency in prediction reasoning, which is advantageous 

in clinical translation [113]. 

RF, an ensemble learning technique has proven as to be one of the most reliable models 

in dementia research due to its ensemble approach, constructing multiple decision trees 

and aggregating their outputs for robust classification. Beyond prediction accuracy, RF 

ranks gene importance, enabling biomarker identification, reduces variance and 

enhances generalization alongside disease classification. Its ability to handle complex, 

nonlinear relationships and mitigate overfitting makes it particularly valuable for high-

dimensional datasets. RF has consistently performed well in dementia classification 

tasks, demonstrating resilience against noise and overfitting, which are common 

challenges in omics datasets [114]. 

 

2.7.3. Feature Selection and Model Interpretability 
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In NDDs, high-dimensional transcriptomic datasets necessitate identifying a precise 

set of discriminative features to optimize model performance, minimize computational 

overhead, and clarify interpretability. This process is pivotal in classification tasks 

involving thousands of gene expression variables, as noise from non-informative 

features can obscure biologically meaningful signals. Researchers employ diverse 

strategies to pinpoint genes linked to dementia subtypes, including filter methods, as 

in statistical metrics like ANOVA, wrapper methods, like recursive feature elimination, 

and embedded techniques like feature importance scores from tree-based models. 

However, standalone applications of these methods often struggle with feature 

stability-the inconsistency of selected biomarkers across data partitions or 

experimental setups. To enhance reliability, ensemble-driven feature selection has 

gained traction. These approaches synthesize results from multiple algorithms or 

iterative workflows to prioritize robust biomarkers. For example, clustering-guided 

ensemble frameworks group correlated genes before selection, minimizing 

redundancy from collinear variables and aligning with the modular nature of biological 

pathways [115] [116].  

In a 2022 study, a consensus-driven framework combining RF, SVM, and LASSO 

classifiers identified APOE4-independent gene signatures for Alzheimer’s disease 

subtyping, with cross-dataset validation confirming stability. Such methods mitigate 

algorithmic bias and yield reproducible biomarkers amenable to functional analysis. 

Model interpretability remains equally critical for clinical adoption. While linear 

models like LR offer intrinsic transparency, complex architectures like deep neural 

networks rely on post hoc explanation tools. Techniques such as SHAP values quantify 

feature contributions globally and locally, while LIME generates instance-specific 

explanations. For instance, SHAP analysis in a 2023 AD study revealed that elevated 

GFAP expression and suppressed SYT1 levels drove classifier predictions, implicating 

astrogliosis and synaptic dysfunction in early pathology [117] [118]. 

 

2.7.4. Pathway Enrichment and Functional Relevance of Biomarkers 

Pathway enrichment analysis of ML-based gene signatures establishes biological 

relevance by linking computational predictions to dysregulated processes in NDDs. 

This approach not only frames biomarkers mechanistically but also uncover potential 

therapeutic targets through systematic mapping of genes to perturbed cellular 

functions. In dementia-related disorders, enriched pathways frequently 

involve neuroinflammatory cascades, such as NF-κB activation in AD, interleukin 

signaling, and cytokine-cytokine receptor interactions, which underlie chronic 

inflammation and neuronal damage in different subtypes. For instance, microglial NF-

κB pathway genes show elevated expression in early AD, correlating with synaptic 

pruning and cognitive deficits-a finding validated across multiple transcriptomic 

cohorts [119] [120] [121]. 
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The ubiquitin-proteasome system (UPS) emerges as another critical pathway, with ML 

models consistently identifying UPS genes like UBE3A and PSMC4 in AD/PD 

biomarker panels. Impairments in this system promote pathological aggregation of tau 

and α-synuclein, as demonstrated by proteomic-pathway cross-validation in a study. 

The enriched pathways such as axon guidance and neuroactive ligand-receptor 

interaction suggest impaired neuronal connectivity, particularly relevant to bvFTD and 

PPA, while protein processing and ubiquitin mediated proteolysis indicate disrupted 

protein clearance, a hallmark of CBS and PSP. Additionally, pathways linked to 

oxidative stress (HIF-1 signalling, apoptosis) and metabolic dysfunction (TGF-ꞵ 

signalling, central carbon metabolism) suggest systemic contributions to 

neurodegeneration. These findings reinforce the hypothesis that dementia subtypes 

share overlapping yet distinct molecular signatures, providing potential targets for 

biomarker validation and therapeutic interventions. By bridging ML outputs with 

pathway biology, researchers can accelerate translational applications, from stratified 

diagnostics to mechanism-driven drug discovery [122] [123]. 

 

2.8. Integration of Computational Drug Design and Biomarker Discovery 

The emergence of NDD research is crucial to unify molecular biomarker discovery 

with receptor-targeted therapeutic development. While transcriptomic studies and 

structural pharmacology have traditionally operated in isolation, advances in ML and 

multi-omics integration now enable synergistic frameworks that bridge these domains, 

accelerating translational outcomes. Gene-level approaches, including transcriptomic 

and epigenomic profiling, prioritize biomarker identification and disease subtyping 

through ML-driven analysis of gene expression patterns. These studies often lack 

direct therapeutic relevance, as identified biomarkers may not correspond to druggable 

protein targets. Conversely, receptor-level strategies focus on ligand-receptor docking, 

QSAR modeling, and binding affinity simulations using AutoDock Vina or 

GROMACS to discover compounds, frequently analyzing upstream regulatory 

mechanisms influencing drug efficacy.  

Modern computational pipelines merge multi-omics and in silico pharmacology to 

prioritize targets and validate compounds within functional pathways. For instance, He 

et al. combined ML-based clustering with molecular docking to validate NPAS4 as a 

dual biomarker and therapeutic target for cognitive impairment. Similarly, Sharma & 

Bhatia et al. developed a Deep Learning (DL) model connecting dementia-associated 

gene networks to ligand-receptor binding profiles, enabling concurrent biomarker and 

drug candidate validation. Integrated approaches are particularly impactful for 

conditions like AD with comorbid anxiety, where genes such as GABRA2 and CRHR1 

influence both synaptic plasticity and mood regulation. Molecular dynamics 

simulations revealed docosahexaenoic acid (DHA) binds RORα with high affinity, 

modulating circadian rhythms and anxiety pathways. While integrative models show 

promise, key challenges persist, like Standardizing multi-omics datasets across 
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cohorts, Balancing model complexity with clinical transparency, Translating in-silico 

predictions to in-vivo efficacy [124]. 
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CHAPTER – 3 

METHODOLOY 

 

 

 

3.1. Computational Resources and Outline 

This thesis aims to explore a dual-methodological approach bridging two 

complementary yet distinctive domains within NDD research: Receptor-based drug 

discovery and gene expression-based biomarker identification, as Objectives 1 and 2.  

 

Databases Utilized: 

Google Scholar (https://scholar.google.com/): It is employed as a comprehensive 

academic search engine to identify peer-reviewed literature, including journal articles, 

theses, conference papers, and books gathering full-text information. 

PubMed (https://pubmed.ncbi.nlm.nih.gov/): Few medical sources like Medline, 

scientific publications, and digital books are cited extensively in PubMed. The 

references contain full-text information and abstracts accessed via PubMed Central as 

well as links to the author’s site. 

Protein Data Bank (https://www.rcsb.org/): It is a collection of 3-D structural 

information for important biological molecules including proteins, genetic material, 

and RNA, and has the RCSB PDB (RCSB.org) as its US data center. Undertaking 

research and offering instruction in the domains of biological sciences, wellness, 

power, and biotechnology are the main goals of the RCSB PDB [125]. 

UniProtKB (https://www.uniprot.org/help/uniprotkb): The UniProt 

Knowledgebase serves as a central platform for the collection of detailed, reliable and 

consistent annotations of protein functions. 

ChEMBL (https://www.ebi.ac.uk/chembl/): ChEMBL is a repository on bioactive 

compounds exhibiting drug-like characteristics. It integrates chemical, bioactivity and 

genomic data altogether to support the translation of genomic information into 

effective new drugs [126]. 

DrugBank (https://go.drugbank.com/): It is an indispensable tool for any 

biopharmaceutical research because of its comprehensive and trustworthy drug data, 

which is arranged for easy access or software integration [127]. 

PubChem (https://pubchem.ncbi.nlm.nih.gov/): It is an open-access chemistry 

database that is run by the National Institute of Health (NIH) that allows people to 

submit and share scientific data. Hundreds of informational entries have been regularly 

https://scholar.google.com/
https://pubmed.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.uniprot.org/help/uniprotkb
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
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given by PubChem periodically since its founding, solidifying its position as an 

indispensable tool for scholars and the general public [128]. 

SwissSimilarity (https://www.swisssimilarity.ch/): This website allows to perform 

ligand-based virtual screening of several libraries of small molecules using different 

approaches. More promising lead compounds are being discovered using this 

technique than with the traditional ones falling into an adequate ADMET 

characteristics [129]. 

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/): Source of 

publicly available functional genomics data repository supporting MIAME-compliant 

data submissions [130].  

KEGG pathway (https://www.genome.jp/kegg/pathway.html): This database 

contains curated biological pathways, helping researchers understand molecular 

interactions within diseases [131]. 

 

Tools Utilized: 

SWISS-MODEL (https://swissmodel.expasy.org/):  SWISS-MODEL is a web-

based integrated service dedicated to protein structure homology modelling. It guides 

the user in building protein homology models at different levels of complexity [132]. 

Swiss ADME (https://www.swissadme.ch/): During the drug development process, 

this online web interface helps users to predict ADME variables pharmacokinetic 

profiles, drug-likeliness, and medicinal chemistry compatibility for one or more small 

molecules [133]. 

Geoparse tool (https://pypi.org/project/GEOparse/): A tool used for extracting 

gene expression datasets from GEO, ensuring efficient molecular data retrieval [134]. 

NetworkAnalyst 3.0 (https://www.networkanalyst.ca/): An online tool designed for 

pathway enrichment analysis and functional genomics research [135]. 

Synthetic Minority Oversampling Technique (SMOTE): A machine learning tool 

that generates synthetic data points to address class imbalances [136]. 

 

Software Utilized: 

PyMol: In many scientific domains, such as computational chemistry and structural 

biology, molecular visualization software has grown to be a highly useful tool. A 

degree of detail and customization that would be unattainable in a laboratory setting is 

made possible by them when it comes to the visualization and analysis of the structures 

of molecules like proteins, nucleic acids, and tiny chemical compounds [137]. 

https://www.swisssimilarity.ch/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genome.jp/kegg/pathway.html
https://swissmodel.expasy.org/
https://www.swissadme.ch/
https://pypi.org/project/GEOparse/
https://www.networkanalyst.ca/
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Open Babel: Used for format conversion and energy minimization of ligand structures 

before virtual screening [138]. 

AutoDock Vina: It is an open-source docking engines, a turnkey computational 

docking program that is based on a simple scoring function and rapid gradient-

optimization conformational search. It was originally designed and implemented by 

Dr. Oleg Trott in the Molecular Graphics Lab, and it is now being maintained and 

develop by the Forli Lab at The Scripps Research Institute [139]. 

LigPlot+: The program automatically generates schematic 2-D representations of 

protein-ligand complexes from standard Protein Data Bank file input. It was designed 

to facilitate the innovative biotherapeutics and small molecule medications that are 

stable, optimized, and have attractive safety profiles [140]. 

Scikit-learn: A widely used ML library in Python, employed for implementing 

classification models on gene expression data [141]. 

StandardScaler: A feature scaling technique from Scikit-learn that ensures uniformity 

across gene expression values for accurate ML analysis [142]. 

 

3.2. Objective 1: Receptor-based Drug Discovery 

 

3.2.1. Data Extraction 

From the RCSB Protein Data Bank, the 3-D structural coordinates of the protein were 

identified. Since, the 3-D structure of the protein coded by the gene GABRA2 was not 

or readily available, we use the amino acid sequence associated with this gene which 

was available on UniProtkb [125]. In order to curate a dataset of the ligands having a 

comparable size and structure as the current anxiolytic drug Diazepam, we performed 

ligand based virtual screening using the smiles of Diazepam as reference on the 

SwissSimilarity web interface which calculates similarity scores between small 

molecules based upon 2D and 3D molecular fingerprints [129]. We selected Combined 

methods for virtual screening which combines linear path – based molecular 

fingerprints (FP2) and non – superpositional 3D fingerprints (Electroshape) methods 

to provide us with a similar molecule as the reference. PubChem and ChEMBL was 

used to download the screened ligand files in 3-D sdf format [126]. 

 

3.2.2. Homology Modeling 

Homology modeling is a method to accurately predict 3-dimensional structure from 

amino acid sequence for protein whose 3-D models aren’t yet determined 

experimentally. As the 3D structure of the protein encoded by the GABRA2 gene was 

not readily accessible, the corresponding amino acid sequence obtained from 
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UniProtKB was utilized for subsequent analysis. This sequence was then provided to 

SWISS-MODEL web tool which then perform sequence alignment to identify several 

templates for modelling [132]. The best template with high sequence similarity and 

identity index is selected and the 3D model is generated. The 3-D structure was then 

downloaded in pdb format for further assessment. 

 

3.2.3. Target Receptor Preparation 

The GABRA2 structures were created with the help of Autodock Vina. After loading 

the target receptor into AutoDock tools, the missing residues were fixed, water 

molecules were eliminated, polar hydrogen atoms were added, and Kolmann charges 

were added. Additionally, the PDBQT format was used to store the receptor structure. 

The receptor’s visualisation and editing were also validated using PyMOL [137]. 

Subsequently, the optimization of the protein receptor’s energy was also conducted 

using the Swiss-PDB Viewer software tool. This procedure entailed the repetitive 

application of molecular mechanics force fields alongside optimization methods. The 

primary aim was to attain a thermodynamically stable conformation, thereby 

augmenting the overall stability of the protein structure. 

 

3.2.4. Ligand Molecules Preparation 

To facilitate the repurposing of FDA-approved drugs against Diazepam, a collection 

of 520 drugs was sourced from PubChem and ChEMBL. The 3-dimensional structures 

of these ligands were initially generated in SDF (Structure Data File) format via 

PubChem. Subsequently, using OpenBabel tool, the ligand molecule was then 

converted from sdf to pdqt format while introducing torsion root and adding Gasteiger 

charges. Furthermore, configuration files for docking were prepared [138].  

 

3.2.5. Molecular Docking Studies 

An essential method for determining the ideal alignment and affinity for attachment of 

small molecules to proteins that serve as receptors is molecular docking. Molecular 

docking studies are conducted to predict binding potential of two compounds, be it 

protein-ligand, protein-protein or protein-nucleic acid. It is a computational study of 

understanding how two molecular structures bind in silico. After the preparation of 

ligand and receptor, screening of potential drug candidates, docking process was 

initialized with the help of AutoDock Tools [139]. Followed by defining the binding 

site, the grid box is prepared around the binding site of the receptor such that 

inappropriate docking is surpassed. Actual docking was performed using AutoDock 

vina 4, which is a command line-based application. Upon execution, Vina returns us 

with different binding poses each with a corresponding docking score reflecting the 

predicted binding affinity. When docking was finished, the findings were 
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methodologically retrieved in.csv format, revealing the binding affinities of every 

ligand to the receptor protein (GABRA2). The distinct output file for every docked 

ligand was carefully maintained, offering a thorough account of interactions and H-

bond forms between the ligand and the protein. For a future 2D interaction study, every 

docked ligand’s distinct output file was carefully saved. An in-depth description of the 

associations and formation of H-bonds between the binding component and the 

receptor was provided in this file. To examine and assess these interactions, LigPlot+ 

was utilized. Substances exhibiting binding energies below than control, Diazepam 

were chosen for more in-depth examination [140]. 

 

3.2.6. ADME Analysis 

ADME is commonly known as Absorption, Distribution, Metabolism, and Excretion. 

SwissADME web tool was used to profile each drug on the basis of drug’s 

physiochemical properties, water solubility, lipophilicity, potential and the 

pharmacokinetics studies. The ligand chemical structure is loaded in the SMILES 

format, representing the molecular structure in linear text form. Next, SwissADME 

evaluates whether the given compound has the potential to be a drug or not by checking 

if it follows Lipinski’s Rule of Five. Moreover, it also gives insights and alert for any 

PAINS or structural warnings. The results are snapped in a reported excel sheet, to 

assess the potential efficacy, drug-likeliness, and safety of the ligand for further drug 

development. The objective of this screening was basically to find chemicals with both 

drug-like properties and advantageous ADMET profiles that were BBB permeable. 

Since it lowers expenses and lessens the chance that novel medications won’t work out 

in clinical studies, assessing ADMET characteristics is essential [133]. 

 

3.2.7. Analysis and Visualisation 

The top five complexes with the highest binding affinity to bind with the GABRA2 

receptor were then visualised using PyMol 3.0.4. and in order to find out about the 

specific interactions between ligands and the receptor, LigPlot+ was used and map of 

ligands and their interacting residues was noted and saved. 

 

3.2.8. Prediction of Biological Activity for Substances (PASS Analysis) 

The PASS website was employed to forecast the pharmacological characteristics of 

certain compounds. In order to produce forecasts, this program evaluates compounds 

according to their structure-activity connections and compares them to known 

molecules. The Pa:Pi ratio indicates the probability that a molecule possesses specific 

biological characteristics. Drug development relies heavily on the ability to predict 

biological action. 
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3.3. Objective 2: Gene-expression based Biomarker Discovery 

 

3.3.1. Data Acquisition 

The gene expression dataset was accessed from the GEO database, which was 

thoroughly examined to discover studies that included gene expression data from 

patients suffering from different types of dementia and healthy patients. Using the 

Geoparse tool, GSE140830 dataset was extracted [134]. This was uniquely identified 

using GSM IDs, while the columns contained information corresponding to the 

expression levels of multiple genes across all samples. Moreover, class labels that 

clarify to the specific conditions or groups were integrated into the expression data 

from the metadata. This data was further rearranged into a structured format, where 

rows represented individual samples (GSM IDs), and columns, gene expression levels 

along with a final column referring another class label. This format allowed efficient 

preprocessing, statistical analysis, and ML implementation.  

                 

3.3.2. Data Preprocessing 

The gene expression data was pre-processed and prepared for ML analysis. Such 

handling of missing values within the dataset, ensured its reliability for subsequent 

steps. Gene expression values were normalized using quantile normalization to correct 

variability across the samples. By doing so, we got values that maintained a normal 

distribution, limiting the effect of outliers. Following normalization, features were 

scaled using a StandardScaler that standardizes features by removing the mean and 

scaling to unit variance. This was a crucial step because it allowed scaling the input 

data to optimize the performance of the ML models since many algorithms can be 

sensitive to this. Additionally, class imbalance in the dataset was also handled using 

the Synthetic Minority Oversampling Technique (SMOTE) [136]. This oversampling 

approach produces modeled samples of the minority classes, ultimately presenting a 

balanced dataset. 

 

3.3.3. Feature Engineering and Dimensionality Reduction Methods 

Given the high-dimensional nature of gene expression datasets, feature engineering 

was performed to extract biologically meaningful signals. RF feature importance 

rankings identified the most predictive genes, contributing to refined biomarker 

selection. Further dimensionality reduction techniques, such as Principal Component 

Analysis (PCA), were explored to visualize gene clusters while retaining variance. 

Additionally, t-SNE was investigated as a nonlinear method to differentiate dementia 

subtypes based on gene expression patterns, enhancing interpretability in the 

classification framework. 
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3.3.4. Machine Learning and Model Training 

Datasets, after its preprocessing, were separated into two subsets: 80% for training set 

and remaining 20% for testing set. A range of ML models was implemented, to classify 

the data, which include, Support Vector Classifier (SVC) with a linear kernel, Naïve 

Bayes, Logistic Regression, Multilayer Perceptron (MLP) Classifier, and Random 

Forest (RF) Classifier. Every model proved suitable for sustained prediction 

performance and high-dimensional gene expression data [143]. The RF classifier was 

emphasized because of its capacity to manage high-dimensional data efficiently and 

produce comprehensible feature importance rankings which is a crucial component in 

the identification of important biomarkers. 

 

3.3.5. Hyperparameter Tuning and Model Optimisation 

Hyperparameter tuning was applied to refine model architectures and maximize 

classification accuracy as ML models requires careful tuning to achieve optimal 

performance.  Grid and random search methods, were explored to systematically 

optimize key parameters such as regularization strength in SVC, tree depth RF, and 

learning rate in MLP. Stratified cross-validation was used to ensure generalizability, 

minimizing overfitting while preserving predictive integrity. Ultimately, 

hyperparameter selection was guided by performance metrics, ensuring optimal 

balance between bias and variance. 

 

3.3.6. Model Evaluation and Cross-validation Strategy 

We performed cross-validation and tested on the reserved test set for model evaluation. 

A Stratified K-Fold cross-validation with 5 splits was performed to make sure that our 

model evaluation was robust. This approach evaluated the model’s multiple times on 

different training data subsets with the average accuracy and standard deviation 

calculated as a measure to see how consistently each model performed. For each 

model, standard classification measures such as accuracy, precision, recall, and F1-

score were calculated.  

Accuracy = true positives + true negatives / 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  

Precision = t𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

Recall = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  

F1-Score = 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙 / 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

These measures provided an in-depth evaluation of each model's ability to classify the 

gene expression data correctly. This was then followed by a comparative analysis of 
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the performance of the models, to identify which classifier performed best on the given 

dataset. 

 

3.3.7. Biomarker Identification 

Using the RF classifier, we performed biomarker identification, specifically 

highlighting the highest-ranking genes that contributed to prediction. The feature 

importance values were trained, and a bar plot was used to visualize the top 20 most 

significant features These key features outline potential biomarkers that could be 

crucial in distinguishing between different classes within the dataset. To delve deeper 

into class-specific insights, a separate analysis was performed to identify unique 

biomarkers of each target class. To this end, binary classification was performed for 

each class using the RF model. This allowed the identification of the top 20 features 

most relevant to each class. These features were saved as potential biomarkers, and a 

comprehensive file compiling all class-specific biomarkers was created to offer 

valuable biological insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2. Pipeline of the methodology 
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3.3.8. Pathway Analysis Integration 

To validate the biological relevance of the 20 top biomarkers identified through ML-

based feature importance analysis, pathway enrichment analysis was performed on 

their target genes. It was performed using NetworkAnalyst 3.0, a web-based tool for 

comprehensive functional analysis. The target genes were analysed across databases, 

including KEGG pathway enrichment analysis to identify significantly enriched 

pathways. Pathways were ranked based on adjusted p-values (< 0.05), emphasizing 

biological relevance. Results were visualized using bar chart highlighting the top 

ranked pathways, ensuring clear communication of the findings. 
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CHAPTER – 4 

RESULTS AND DISCUSSION 

(Objective: 1) 

 

 

 

4.1. Homology Modeling of GABRA2 gene 

The modeling query submit for the gene sequence of GABRA2 returned 48 templates 

based upon the sequence alignment and we chose the Q5RCC5.1. A template because 

it showed highest identity (99.78%) to the reference sequence. The resulting protein 

had 451 amino-acids; the three-dimensional structure was further validated by 

additional quality parameters such as GMQE score which was 0.84 confirming the 

accuracy of the model. Also, we validated our model using RMSD and Ramachandran 

plot to ensure structural accuracy before docking, which confirmed that over 90% of 

the residues were in the most favoured regions, indicating good stereochemical quality. 

The structure and validations are shown in the below Fig 4.1. 

 

 

 

 

Fig 4.1.1. 3-D model retrieved for GABRA2 by Homology Modeling 
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Fig. 4.1.2. Per-residue local QMEAN score plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1.3. Global QMEAN Z-

score comparison with PDB 

reference structures. 

Fig 4.1.4. Ramachandran 

Plot showing 91.98% with 

favoured regions 
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4.2. Ligand-based Virtual Screening 

To find possible drugs against predetermined biological targets, a computational 

strategy called virtual screening is used. It has become a crucial approach, in order to 

minimize empirical effort and to save time. Using SwissSimilarity, a ligand-based 

virtual screening approach to reduce the amount of in vitro work required, it returned 

us with 400 molecules that had structural resemblance with Diazepam (control). The 

reference medication, Diazepam has a binding energy of -7 kcal/mol, but of the 

screened compounds, 42 of the 400 FDA-approved medications showed a binding 

energy of -8 kcal/mol or lower, satisfying the requirement of having an enhanced 

binding affinity as shown in Table 4.1.  The screened compounds were then searched 

on ligand structural databases such as, DrugBank and Pubchem for retrieving their 3D 

structure, only a 157 of the screened compounds had a 3D Structure available. These 

157 files were then further processed. The Molecular Docked complex of GABRA2 

with ligands with top binding 3 binding affinity is shown in Fig 4.2. 

 

Table 4.1. Binding Affinity of Top 15 Ligands in accordance of the Reference Drug 

S.No

. 
Chembl ID Drugs Structure 

Binding 

affinity 

(kcal/mo

l) 

01. CHEMBL12 
Diazepam 

(Control) 

 
 

-7 

02. CHEMBL1185 Zolmitriptan 

 
 

-7.7 

03. CHEMBL744 Riluzole 

 
 

-7.6 

04. 
CHEMBL12141

24 
Perampanel 

 
 

-7.5 
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Table 4.1 (Continued) 

05. CHEMBL22097 Lormetazepam 

 
 

-7.5 

06. 
CHEMBL39898

43 

Tranylcypromi

ne 

 
 

-7.5 

07. 
CHEMBL12017

54 
Rufinamide 

 
 

-7.5 

08. CHEMBL83 Tamoxifen 

 
 

-7.4 

09. CHEMBL76 Chloroquine 

 
 

-7.4 

10. CHEMBL1771 Clopidogrel 

 
 

-7.3 

11. CHEMBL12713 Sertindole 

 
 

-7.3 

Continued on next page 
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Table 4.1 (Continued) 

12. CHEMBL53 Apomorphine 

 
 

-7.3 

13. CHEMBL1059 
Lyrica 

(Pregabalin) 

 
 

-7.3 

14. CHEMBL636 Rivastigmine 

 
 

-7.2 

15. CHEMBL48361 Dabigatran 
 

 

-7.2 

16. CHEMBL905 Rizatriptan 

 
 

-7.2 

 

 

 



34 
 

 

Fig 4.2.1. Molecular Docked Complex of GABRA2-Diazepam (Control) 

 

 

Fig 4.2.2. Molecular Docked Complex of GABRA2-Zolmitriptan 
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Fig 4.2.3. Molecular Docked Complex of GABRA2-Riluzole 

 

 

Fig 4.2.4. Molecular Docked Complex of GABRA2-Perampanel 
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4.3. Interaction Analysis 

A thorough identification and documentation of the different intermolecular 

interactions between the ligands and the receptor were done after the interaction 

analysis of the top 20 ligands. To analyze the interaction between the GABRA2 

receptor and the ligands, molecular docking studies were carried out using the 400 

drugs that were retrieved after ligand based virtual screening. Out of the 400 drugs, 20 

drugs exhibited a higher affinity to bind with the GABRA2 receptor, i.e., < -7 kcal/mol. 

These drugs also meet the evident cutoff of less than 1 Å RMSD (Root Mean Square 

Deviation) value. Of these 20 drugs, Zolmitriptan had the most negative binding 

affinity (-7.7 kcal/mol), suggesting it may form a stronger bond with the receptor 

compared to that of Diazepam. Table 4.2. provides an extensive analysis of these 

interactions, which include π-π stacking, hydrophobic interactions, electrostatic 

interactions, and H-bonds. The comprehensive explanation offers a significant 

understanding of the binding affinities and particular interaction processes that support 

the general stability and effectiveness of the ligand-receptor complexes.  

 

Table 4.2. Interaction Networks of GABRA2 and Drugs 

S.No. Chembl ID Drugs 
Interacting 

Residues 

01. CHEMBL12 Diazepam (Control) 

Pro59, Lys98, 

Thr153, Glu67, 

Thr66 

02. CHEMBL1185 Zolmitriptan 
Tyr187, Leu160, 

Phe127, Phe128 

03. CHEMBL744 Riluzole 

Thr153, Lys98, 

Phe69, Thr66, 

ILE65, GLU67 

04. CHEMBL1214124 Perampanel 
GLU100, GLU67, 

PHE69, LYS98 

05. CHEMBL22097 Lormetazepam 
LYS98, GLU67, 

PHE69 

06. CHEMBL3989843 Tranylcypromine 

THR153, PHE69, 

GLU100, LYS98, 

LYS96, PHE69, 

07. CHEMBL1201754 Rufinamide 

GLU100, LYS98, 

PHE69, GLU67, 

ILE65, SER64 

08. CHEMBL83 Tamoxifen 

GLU100, THR153, 

LYS98, LYS96, 

THR66, GLU67, 

PHE69 

Continued on next page 
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Table 4.2 (Continued) 

09. CHEMBL76 Chloroquine 

THR153, LYS98, 

PHE69, GLU67, 

SER64 

10. CHEMBL1771 Clopidogrel 
LYS98, PRO59, 

GLU67, ILE65 

11. CHEMBL12713 Sertindole 

LYS98, PRO59, 

GLU67, THR66, 

PHE69 

12. CHEMBL53 Apomorphine 

THR153, LYS98, 

LYS96, PRO59, 

GLU67, PHE69 

13. CHEMBL1059 Lyrica (Pregabalin) 

THR153, LYS98, 

GLU67, SER64, 

PHE69 

14. CHEMBL636 Rivastigmine 

GLU100, THR153, 

LYS98, GLU67, 

PHE69 

15. CHEMBL48361 Dabigatran 

LEU160, PHE93, 

PHE128, PHE127, 

LYS132, LYS133 

16. CHEMBL905 Rizatriptan 

PRO59, LYS98, 

GLU67, THR153, 

LYS96, PHE69 

17. CHEMBL13280 Flunitrazepam 

PRO59, LYS98, 

GLU67, THR153, 

LYS96, PHE69, 

SER64 

18. CHEMBL1070 Nabumetone 

LYS96, LYS98, 

ARG58, PRO59, 

THR66, GLU67, 

ILE65 

19. CHEMBL452 Clonazepam 

LEU160, PHE128, 

SER134, PHE128, 

TYR187 

20. CHEMBL939 Gefitinib 

ASN114, MET141, 

LEU145, LYS144, 

ASN143, ARG159, 

PHE92 

21. CHEMBL4297446 Triptan 

GLU100, THR153, 

LYS98, PHE69, 

ILE65, THR66 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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Fig 4.3. 2-D structural representation of GABRA2 residues interacting to the (a) 

Diazepam, a reference drug (b) Zolmitriptan (c) Riluzole (d) Perampanel (e) 

Lormetazepam (f) Tranylcypromine 

 

 

4.4. Pharmacokinetic (ADMET) Profiling 

The strongest affinity ligands were subjected to pharmacokinetic study and evaluation 

of blood-brain barrier (BBB) permeability in order to find possible targets for Anxiety. 

The ligands’ BBB permeability and pharmacokinetic characteristics were assessed 

using software program like SwissADME. As shown in the Table 2, all the ligands 

were abiding to the Lipinski’s rule which had a high Gastrointestinal absorption (GI), 

it is studied to check the oral bioavailability of the drug. According to the rule, the 

ligand must meet other molecular properties, such as molecular weight (MW), 

molecular refractivity (MR), and lipophilicity (log Kp). In this study, MW < 500 Da, 

MR < 200 and log Kp < 5 were considered. These properties indicates that Riluzole 

and Tranylcypromine showed a few lead likeliness violations which makes them unfit 

to be taken as a drug. Besides Riluzole and Tranylcypromine, all other compounds 

showed an equivalent or better ADME assay than the control.  

Following a thorough examination of a variety of pharmacokinetic and 

pharmacodynamic parameters, such as BBB permeability, solubility, GI absorption, 

adherence to drug-likeliness criteria (as outlined by Lipinski, Ghose, and Muegge), 

adherence to lead-likeliness criteria, hepatotoxicity, and AMES toxicity, for the top 5 

ligands, it was determined that only Zolmitriptan displayed notably high binding 

affinity while adhering to drug-likeliness and lead-likeliness criteria. Additionally, 

Zolmitriptan exhibited no signs of toxicity. However, top five ligands have been shown 

in the given table.   

 

 

Table 4.4. Physiochemical Properties of the top-five ligand molecules with highest 

binding affinity 

Property 
Zolmitri

ptan 

Riluz

ole 

Peram

panel 

Lormetaz

epam 

Tranylcyp

romine 

Diazepam 

(Control) 

MW (g/mol) 287.36 234.2 349.38 335.18 133.19 284.74 

MR 86.25 50.71 105.42 94.12 41.62 87.95 

TPSA (Å²) 57.36 76.38 58.68 52.9 26.02 32.67 

Ilogp 2.38 2.04 3.15 2.36 1.85 2.68 
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Table 4.4 (Continued) 

GI absorption High High High High High High 

BBB 

permeability 
Yes Yes Yes Yes Yes Yes 

Log Kp (cm/s) -6.51 -5.17 -5.99 -6.61 -6.05 -5.91 

Lipinski Yes Yes Yes Yes Yes Yes 

Bioavailability 

score 
0.55 0.55 0.55 0.55 0.55 0.55 

Leadlikeliness No Yes No N Yes No 
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DISCUSSION  

 

 

Anxiety, a neuropsychiatric disorder has been living undercover among the society and 

affecting almost all of us. Since, the symptoms of this disorder are not severe, this 

disorder is not considered of that much importance and is disregarded often times but 

it is a matter of concern as it affects the neurochemical systems of our brain. Anxiety 

is said to induce a state of heightened arousal and vigilance in brain circuits. Currently 

a widely used anxiolytic drug “Diazepam” is used to target a subunit of GABA/alpha-

2 receptor (GABRA2) to inhibit the neuronal excitability in the brain but this drug is 

reported to have several side-effects ranging from common to severe to long term. 

 The adverse effects of diazepam commonly include drowsiness, confusion and 

problems in co-ordination while severe effects include hallucinations, delusions, 

sedative effects and unusual mood swings. On a longer diazepam can also cause 

withdrawal symptoms. Hence it is worth mentioning that the current cure to anxiety 

isn’t as safe as it seems and there is a need to identify new alternatives to diazepam 

that can efficiently inhibit the GABRA2 receptor while having minimal side effects.  

In this study we followed an intricate and efficient computational workflow to identify 

alternatives to diazepam. Ligand based virtual screening provided us with 400 

compounds that have a similar structure to that of Diazepam. Following that we 

retrieved the 3D structures of GABRA2 receptor and the screened drugs. The final 

ligand and protein files were saved in pdbqt format after all heteroatoms were removed 

from the structure and polar hydrogens and Kollman/Gasteiger charges were added. 

These steps were done using Autodock tools to prepare the data for molecular docking. 

Molecular docking analysis revealed that 20 drugs exhibited a higher binding affinity 

to bind with the GABRA2 receptor than Diazepam. We further screened the ligand to 

top 5 on the basis of most negative binding affinities. Among those top 5 compounds, 

each passed Lipinski rule of five and exhibited high gastro-intestinal absorption, while 

Riluzole and Tranylcypromine showed violations of possible lead likeliness.  

The interaction between the GABRA2 receptor and Diazepam has not been explored 

in previous studies, making this research a novel contribution to the field. As a 

preliminary investigation, the identification of novel GABRA2 inhibitors through 

virtual screening opens new avenues for therapeutic development in anxiety 

management. While the computational findings presented in this study are promising, 

experimental validation remains essential to confirm the efficacy of the identified 

compounds. Additionally, advancements in machine learning could further refine in 

silico screening for GABRA2 and related targets. 
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RESULTS AND DISCUSSION 

(Objective: 2) 

 

4.5. Data Collection 

The microarray data that was selected for the study was obtained from GEO datasets 

via NCBI. The GSE140380 data set had six classes namely Control (281 samples), 

bvFTD (80 samples), PSP (54 samples), nfvPPA (47 samples), svPPA (44 samples) 

and CBS (36 samples). Notably, as shown in the Fig. 5.1., bvFTD accounts for the 

highest proportion (50–70%), while PSP and CBS each represent around 25%, 

highlighting the heterogeneity within NDDs. This figure illustrates the primary 

subtypes of dementia, including bvFTD, PPA, PSP, and CBS, each varying in 

prevalence and symptom expression. 

 

4.6. Data Preprocessing 

The gene expression data underwent quantile normalization to standardize expression 

levels across all samples, ensuring uniformity and facilitating comparability between 

them. This step was crucial for mitigating batch effects and reducing technical 

variability inherent in high-throughput experiments. Following normalization, a 

density map was generated to visually depict the distribution of expression levels 

across samples, providing a comprehensive view of the variation in the dataset. The 

analysis also revealed a class imbalance due to unequal sample sizes in different 

categories, which could have introduced bias in downstream analysis. To address this 

SMOTE was applied, which effectively balanced the dataset by generating synthetic 

samples for the underrepresented classes, thus ensuring that the classification models 

were not biased toward the majority class and maintained robust performance across 

all categories. 

 

4.7. ML Implementation and Model Evaluation 

The ML implementation and model evaluation elucidated varying levels of 

performance across the models tested in the gene expression dataset. Stratified K-Fold 

cross-validation, alongside test set evaluation was employed to ensure robust and 

unbiased results. For each model, key performance measures, including accuracy, 

precision, recall, and F1-score, were computed, while their performance was also 

analyzed using confusion matrices and classification reports. 

Logistic Regression performed moderately, achieving a cross-validation accuracy of 

86% (±0.00) and a test accuracy of 85%, indicating a consistent performance. While 

effective for linearly separable problems, its limitations to capture non-linear 

relationships in high-dimensional data may have constrained its performance. The 
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SVC with a linear kernel demonstrated exceptional performance, with a cross-

validation accuracy of 98% (±0.00) and a test accuracy of 99%. This model effectively 

leveraged the linear separability of the dataset, achieving the highest accuracy of 

among the models tested. Naive Bayes achieved a cross-validation accuracy of 63% 

(±0.04) and test accuracy of 67%, despite its independency assumption. Its relatively 

weak performance indicates its limitations in handling the complex interdependencies 

inherent in high-dimensional gene expression data.  

 

 

Fig 5.2. Comparison of data distributions before and after quantile normalization. 

 

MLP Classifier achieved good performance with a cross-validation accuracy of 91% 

(±0.01) and a test accuracy of 93%. The ability to model complex, it effectively 

captured non-linear relationships thus the model demonstrated consistent and reliable 

performance across both training and testing. The RF Classifier also yielded 

appreciable results, achieving a cross-validation accuracy of 93% (±0.01) and a test 

accuracy of 94%. Notably, RF excelled in feature selection by providing interpretable 

feature importance rankings, crucial for identifying key biomarkers within the dataset. 

Meanwhile, the RF classifier offered valuable insights into feature importance, making 

it a promising choice for identifying potential biomarkers.  

These findings in Table I and Fig 3. highlights the effectiveness of ML approaches in 

analyzing gene expression data and demonstrates the importance of model selection 

based on dataset’s characteristics and objectives of the analysis. 
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Fig 5.3. Comparative analysis of confusion matrices across 5 different machine 

learning classifiers: Logistic Regression, SVC (Linear Kernel), Naive Bayes, MLP 

Classifier, and Random Forest. Each matrix displays the classification performance 

across five classes (CES, Control, PSP, bvFTD, nfvPPA). 
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Table 5.1. Classification Performance of Machine Learning Models 

Model Accuracy Precision Recall F1-score 

SVC (Linear 

Kernel) 

 

0.99 0.99 0.99 0.99 

Logistic 

Regression 

 

0.85 0.87 0.85 0.80 

MLP Classifier 

 
0.93 0.93 0.93 0.93 

Naïve Bayes 

 
0.67 0.70 0.67 0.67 

Random Forest 

 
0.94 0.94 0.94 0.94 

SGD Classifier 

 
0.92 0.92 0.92 0.92 

 

 

4.8. Biomarker Identification Analysis 

The analysis successfully identified the top 20 influential genes exerting impact on 

classification outcomes using the RF classifier. These obtained features were ranked 

based on their importance scores and visualized in the bar plot. MOBP emerged as the 

most critical biomarker, followed by PDIA5 and RAB43.2. The importance scores for 

these genes suggest their significant role in distinguishing between the target classes.  

To gain more granular insights, a binary classification approach was adopted for each 

target class. This allowed the identification of class-specific biomarkers, highlighting 

unique features most relevant to each class. The identified biomarkers were 

systematically compiled into a comprehensive file to provide a holistic view of 

potential biological indicators. In Fig 5.4. it is shown that how these results highlight 

key genetic features that could play a vital role in the studied classification task and 

offer valuable biological insights for future research and validation studies. 
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Fig 5.4. Top 20 feature importance scores derived from ML analysis 

 

 

4.9. Pathway Enrichment Analysis of Identified Biomarkers 

From Fig. 5.5., we can see that the enriched pathways such as axon guidance and 

neuroactive ligand-receptor interaction suggest impaired neuronal connectivity, 

particularly relevant to bvFTD and PPA, while protein processing and ubiquitin 

mediated proteolysis indicate disrupted protein clearance, a hallmark of CBS and PSP. 

Additionally, pathways linked to oxidative stress (HIF-1 signalling, apoptosis) and 

metabolic dysfunction (TGF-ꞵ signalling, central carbon metabolism) suggest 

systemic contributions to neurodegeneration. These findings reinforce the hypothesis 
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that dementia subtypes share overlapping yet distinct molecular signatures, providing 

potential targets for biomarker validation and therapeutic interventions. 

 

  

 

Fig 5.5. KEGG Pathway Enrichment Analysis showing significantly enriched 

biological pathways ranked by adjusted p-values 
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DISCUSSION 

 

The present study highlights the pivotal role of gene expression analysis with ML 

methodologies in advancing the understanding and differentiation of dementia 

subtypes. Using GEO database data, biomarkers with diagnostic and therapeutic 

potential were identified across six categories: bvFTD, PSP, CBS, nfvPPA, svPPA, and 

controls. Through quantile normalization, the preprocessing steps ensured data 

integrity and unbiased analysis, while SMOTE handled the class imbalance along with 

technical variability. 

Among the tested ML models, the highest accuracy was achieved by the SVC with a 

linear kernel, reaching 99%, followed by the RF classifier at 94%. These findings are 

consistent with recent advancements in deploying ML algorithms against intricate 

genomic datasets, with SVC recognized for its prediction accuracy in classification 

tasks and RF distinguished for its ability to identify feature importance. SVC 

outperformed other classifiers, while RF excelled in biomarker identification, 

highlighting its value in gene expression studies for predictive accuracy. 

The identified biomarkers, including MOBP, PDIA5, and RAB43.2, align with 

merging research on molecular markers in neurodegenerative diseases. MOBP is 

linked to myelin-associated processes central to these conditions. Pathway enrichment 

analysis highlights axon guidance and neuroactive ligand-receptor interaction in 

bvFTD and PPA, while disrupted protein processing pathways distinguish CBS and 

PSP. These findings emphasize both shared and distinct molecular mechanisms across 

dementia subtypes.  

Recent advancements underscore the transformative role of ML in precision medicine, 

particularly in subtype-specific diagnostics and targeted therapies. Predictive 

analytics, for example, can now accurately differentiate bvFTD from AD, paving the 

way for personalized treatment strategies. Future research should emphasize on 

validation using independent cohorts and preferably multi-omics datasets to contribute 

to a comprehensive understanding of dementia pathophysiology. Furthermore, 

enhancing the interpretability of ML models is crucial for clinical implementation, in 

which explainability of ML model is vital for informed decision-making. The 

combination of ML approaches and gene expression analysis has proved to be a 

promising pathway for advancing dementia research, both in the context of 

deciphering the molecular underpinnings of the disease and for predicting its clinical 

course. This establishes a framework toward growth in precision medicine for 

neurodegenerative disorders through discovery of robust biomarkers and delineation 

of molecular mechanisms. The findings mark an important advance for improved 

diagnostics and targeted interventions in dementia care. 
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CHAPTER – 5 

CONCLUSION, FUTURE PERSPECTIVES AND SOCIAL IMPACT 

 

 

 

NDDs presents an increasingly critical and global epidemic and require intensive 

research to improve effective curative interventions. The present study aimed to 

address this challenge through a dual-computational strategy: virtual screening and 

gene expression analysis, and have been independently explored in NDDs. This thesis 

is one of the first to present a converged in silico strategy, enhancing our understanding 

of both therapeutic targeting and disease subtype classification. 

The first objective led to the identification of several drug-like compounds with higher 

binding affinities toward GABRA2, along with favorable pharmacokinetic properties 

where this study aims to suggest alternatives to Diazepam for anxiety treatment by 

targeting the GABRA2 receptor which concludes that Zolmitriptan, along with others 

compounds are identified to exhibit stronger binding affinities than Diazepam to bind 

with the GABRA2 receptor, indicating their potential as alternatives treatments for 

anxiety. Using advanced computational methods such as homology modelling, virtual 

screening and molecular docking, we successfully identified safer drug candidates that 

could reduce side effects associated with Diazepam. While these findings are 

promising, there is need for further experimental validation to confirm the therapeutic 

potential. Overall, this study lays a thorough groundwork for developing more 

effective and safer therapies for anxiety by targeting the GABRA2 receptor. 

The second objective successfully demonstrated the use of ML models (SVC, RF) in 

achieving high classification accuracy (up to 99%) for dementia subtypes, and 

uncovered biologically relevant genes (e.g., MOBP, PDIA5, RAB43) linked to key 

molecular pathways where this study demonstrates the combination of gene expression 

analysis with ML to classify different subtypes of dementia and discover biomarkers 

with diagnostic and therapeutic relevance. By leveraging the GEO database and 

applying a rigorous data preprocessing approach, we fortified the data to ensure it was 

free from biasness. The SVC out of all the assessed models achieved the best accuracy 

(99%) while the RF classifier was helpful for biomarker selection. Biomarker(s) 

identified i.e. MOBP, PDIA5 and RAB43.2, complement emerging studies in 

neurodegenerative disorders, bringing attention to both common and distinct 

pathophysiological pathways among dementia subtypes.  

These results show the ML's potential to revolutionize precision medicine, increasing 

diagnostic accuracy and refining treatment strategies. Future studies should aim to 
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validate these biomarkers in independent cohorts and may adopt a multi-omics 

approach to construct a more extensive picture of dementia pathophysiology. In 

addition, to enable clinical translation, improving the interpretability of ML models 

will also be key, ensuring their applicability to real world decision-making. By 

advancing computational and molecular insights, this study builds the foundation for 

precision medicine in dementia research, paving the way for improved and novel 

potential diagnostics and personalized interventions.  

Integrating these complementary findings, this work presents a novel and cohesive 

computational workflow for addressing critical gaps in the understanding of NDDs. 

Together, these findings offer both therapeutic and diagnostic insights into NDDs. 
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