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ABSTARCT 
 

Environmental audio classification involves the identification and 

categorization of real-world sound events based on their acoustic 

characteristics. Unlike digital classification tasks that rely on static 

features, audio classification requires models capable of capturing both 

temporal and spectral dynamics of non-stationary signals. This study 

presents a deep learning-based approach that utilizes time-frequency 

representations of environmental audio, specifically Mel-spectrograms, 

as input to a deep learning architecture enhanced with attention 

mechanisms. The raw audio data underwent pre-processing steps 

including resampling and conversion into Mel-spectrograms to extract 

meaningful time-frequency features suitable for model training. These 

mechanisms allow the model to selectively focus on relevant temporal 

features, improving its ability to differentiate between overlapping or 

acoustically similar events. Comparative evaluation with traditional 

convolutional neural networks (1D CNNs) highlights the advantages of 

attention-based architectures in modelling long-range dependencies and 

capturing richer contextual information from audio sequences. The audio 

pre-processing pipeline, model design, and evaluation procedures are 

implemented using Python-based libraries and advanced deep learning 

frameworks. The proposed system demonstrates robustness in classifying 

a variety of sound types, showing potential for deployment in real-time 

monitoring applications such as smart surveillance, public safety systems, 

and ambient sound analysis in urban environments. Experimental results 

show that attention-based models offer improved classification 

performance and adaptability compared to conventional architectures, 

making them well-suited for complex acoustic environments. This work 

contributes to the growing field of intelligent acoustic sensing by offering 

a flexible and efficient model architecture that adapts to complex audio 

patterns. 
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CHAPTER 1 INTRODUCTION  

 

 

 

1.1 OVERVIEW  

Environmental Sound Classification (ESC) involves detecting and labeling 

everyday sounds—like barking dogs, car horns, drilling, or children playing—

based on their unique acoustic properties. Unlike more structured audio signals 

such as speech or music, environmental sounds are often irregular, overlapping, 

and vary in both length and volume, making them difficult to classify 

accurately. 

ESC plays a critical role across multiple sectors. It's used in smart surveillance, 

public safety alerts, wildlife monitoring, autonomous navigation, and assistive 

tools for individuals with hearing impairments. As IoT devices and intelligent 

systems become more widespread, the need for real-time and reliable sound 

classification has grown significantly. 

Earlier ESC systems primarily depended on manually engineered features—

like MFCCs, zero-crossing rate, and spectral roll-off—and used traditional 

machine learning algorithms such as SVM, KNN, or Random Forests. While 

these methods worked reasonably well in controlled conditions, they often fell 

short when applied to the unpredictability of real-world environments. 

With the advent of deep learning, the landscape of ESC has evolved 

considerably. Convolutional Neural Networks (CNNs), in particular, have 

gained traction for their ability to automatically extract relevant patterns from 

Mel-spectrograms—a visual representation of audio signals in the frequency 

domain. CNNs excel at detecting localized features but often miss long-range 

dependencies in the audio, limiting their performance in more complex 

scenarios. 

To overcome this, researchers have explored sequential models such as 

recurrent neural networks (RNNs), long short-term memory (LSTM) networks, 

and more recently, transformer-based architectures. Transformers utilize self-

attention mechanisms, enabling them to attend to important parts of the audio 

sequence, regardless of their position in time. This is particularly beneficial in 

ESC tasks, where vital acoustic information can occur sporadically or be 

masked by background noise. 

 

This thesis introduces a hybrid CNN-Transformer architecture designed to 

combine the strengths of both paradigms. The CNN layers act as front-end 

feature extractors to learn spatial features from Mel-spectrograms, while 
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Transformer layers capture long-term temporal dependencies through multi-

head self-attention. The model is trained using the UrbanSound8K dataset, a 

widely used benchmark in ESC research, which contains 8732 annotated audio 

samples from 10 urban sound classes. 

To enhance the model’s generalizability and robustness, we implement 

SpecAugment—a data augmentation technique that masks sections of 

spectrograms in the time and frequency domains. Additionally, dropout and 

batch normalization are applied for regularization, and 10-fold cross-validation 

is used to evaluate the model comprehensively. 

Overall, this study aims to develop a scalable, accurate, and computationally 

feasible system for environmental sound classification using attention-

enhanced deep learning. By bridging CNNs and Transformers, we propose a 

robust framework that significantly improves performance over traditional and 

standalone models. 

 

1.2 MOTIVATION  

The primary motivation for this research stems from the limitations of existing 

ESC systems in accurately classifying complex, real-world audio 

environments. As urban spaces become increasingly connected through smart 

devices, the demand for scalable and accurate sound recognition systems has 

grown exponentially. 

In real-world scenarios like smart surveillance or autonomous systems, it’s not 

enough for a model to simply detect sound events—it also needs to understand 

when and how those sounds occur over time. While Convolutional Neural 

Networks (CNNs) are effective at identifying localized patterns in 

spectrograms, they don’t inherently capture the broader temporal structure of 

audio. On the flip side, Transformers excel at interpreting sequences by 

attending to the entire input at once, providing a global perspective. However, 

they tend to overlook fine-grained, localized details that CNNs are good at 

picking up. 

By integrating the strengths of both CNNs and Transformers into a hybrid 

architecture, the goal is to build a system that can not only recognize what 

sound occurred, but also grasp the surrounding temporal context with higher 

accuracy and reliability 

 Efficiently process and analyze real-time audio streams 

 Accurately classify overlapping and context-dependent sound events 

 Generalize well across different environments and conditions 

 

Additionally, incorporating techniques like SpecAugment and other forms of 

regularization helps the model handle noise and inconsistencies in real-world audio 
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more effectively. This improves the model's ability to generalize and remain stable 

across different environments. The hybrid design also brings advantages in terms of 

computational efficiency, making it a strong candidate for deployment on resource-

constrained devices such as edge hardware or embedded systems. 

To sum up, combining attention mechanisms with convolutional feature extraction 

provides a compelling approach to tackling the challenges of environmental sound 

classification. The proposed model is designed not only to deliver high accuracy but 

also to act as a solid stepping stone for future research and practical applications in 

smart acoustic sensing technologies 
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CHAPTER 2 LITERATURE REVIEW  

 

 

 

Environmental Sound Classification (ESC) has become an important area of 

research within machine hearing and acoustic scene analysis. Over time, the 

field has evolved considerably, especially with the introduction of deep 

learning, attention-based models, and self-supervised learning techniques. 

These advancements have made it possible to move beyond manually crafted 

audio features and toward systems that learn directly from raw data. This 

section offers a broad overview of key studies in the ESC domain, with a 

particular focus on work involving the UrbanSound8K dataset and hybrid 

model architectures. 

The foundation for much of the current ESC research was laid by Salamon et 

al. (2014), who developed the UrbanSound8K dataset. Their study combined 

MFCC features with random forest classifiers and also tested basic CNN 

models, establishing early benchmarks and highlighting the importance of 

consistent preprocessing and evaluation standards. 

Following this, Piczak (2015) showed how 2D CNNs could be applied to log-

Mel spectrograms, using stacked input and data augmentation to boost 

performance. This relatively simple model helped shape best practices that are 

still common today in ESC systems. 

In 2017, Tokozume et al. challenged the reliance on spectrograms by proposing 

a model that could learn directly from raw audio waveforms. Their deep CNN 

framework demonstrated that meaningful features could be learned without 

time-frequency transformations, as long as there was enough training data. 

Huzaifah (2017) further explored CNN configurations, experimenting with 

kernel sizes and network depth. His findings emphasized that model 

performance is highly sensitive to architecture design, especially when working 

with relatively small datasets like UrbanSound8K. 

Wang et al. (2019) introduced attention mechanisms into CNN-based ESC 

models, allowing the network to focus on the most important parts of the input. 

This approach led to better performance and gave insights into which segments 

of audio the model found most relevant. 

Kumar et al. (2021) presented a hybrid CNN-Transformer architecture, where 

CNN layers handled local feature extraction and Transformer blocks captured 

longer temporal dependencies. Their results showed marked improvements in 

classification accuracy. 
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Building on this idea, Chen et al. (2022) combined Transformer attention with 

SpecAugment, a data augmentation strategy that masks time and frequency 

components. Their model not only improved generalization but also performed 

better in noisy environments. 

Gairola et al. (2021) trained a custom Transformer from scratch on the ESC-50 

and UrbanSound8K datasets, using spectral positional encodings to help the 

model better understand temporal structure. This gave the Transformer an edge 

over traditional CNNs in modeling audio sequences. 

Zhou et al. (2020) experimented with a CRNN-Transformer hybrid to handle 

polyphonic audio events, making it one of the first models in ESC to tackle 

multi-label classification in overlapping sound scenarios. 

Gong et al. (2021) introduced the Audio Spectrogram Transformer (AST), 

adapting the Vision Transformer (ViT) architecture for spectrogram inputs. 

Pretrained on AudioSet, AST outperformed CNN-based models and became a 

new benchmark in audio classification tasks. 

Koutini et al. (2021) prioritized model efficiency, combining EfficientNet 

backbones with adaptive spectrograms. Their design achieved competitive 

performance with significantly lower computational costs, ideal for edge 

devices. 

Choi et al. (2017) explored a raw waveform model called SampleCNN, 

challenging the idea that time-frequency representations are essential for ESC. 

Their work opened the door to simpler end-to-end learning pipelines. 

Lee et al. (2022) blended traditional signal processing with deep learning by 

using wavelet scattering transforms as input features. Their model was 

especially good at handling background noise, proving useful in real-world 

acoustic environments. 

Li et al. (2020) proposed a dual-attention model based on ResNet that focused 

on both channel and spatial information, which helped the model pay attention 

to the most informative parts of the spectrogram. 

Koizumi et al. (2020) introduced reinforcement learning to make ESC models 

adaptive to dynamic, noisy conditions. Unlike static models, their approach 

could fine-tune itself on the fly depending on the acoustic scene. 

Palanisamy et al. (2020) explored self-supervised learning for audio tasks. By 

training models on pretext tasks like inpainting and temporal shuffling, they 

were able to improve ESC performance even with limited labeled data. 

Hershey et al. (2017) from Google Research made a major contribution by 

pretraining large CNN-based models like VGGish and CNN14 on the vast 
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AudioSet dataset. These models, once fine-tuned, showed excellent results on 

smaller datasets like UrbanSound8K. 

Zhang et al. (2023) proposed a model that used attention across multiple time-

frequency resolutions. By analyzing sounds at different scales, their system 

achieved better accuracy on challenging datasets such as UrbanSound8K and 

DCASE. 

 

  

Table .2.1 Summary of the studies undertaken for review 

 

 

 

 

 

 

 

 



7 

 

 

CHAPTER 3 METHODOLOGY  

 

 

 

3. 1 DATASET  

This research is based on the UrbanSound8K dataset, a publicly accessible and well-

annotated resource designed for tasks in environmental sound classification (ESC). 

The dataset includes 8732 audio clips, each with a maximum length of 4 seconds, 

labeled and categorized to support supervised learning methods. 

The dataset is organized into 10 different urban sound classes that represent 

commonly encountered acoustic events. These are: 

 Air Conditioner 

 Car Horn 

 Children Playing 

 Dog Bark 

 Drilling 

 Engine Idling 

 Gun Shot 

 Jackhammer 

 Siren 

 Street Music 

The variety of sound types ensures diversity and introduces complexity, as many 

recordings contain background noise and overlapping sounds, which make 

classification more challenging. 

Audio Specifications 

 Original sampling rate: 44.1 kHz 

 Resampled to: 16 kHz to maintain consistency and reduce computational load 

 Audio format: Mono-channel WAV files 

This standardization of audio characteristics supports more efficient preprocessing 

and model training, while still preserving essential acoustic features 

 

Theoretical Justification 

UrbanSound8K is especially useful in ESC because: 

 Real-world sound clips are non-synthetic and captured from real 

environments. 
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 It includes both foreground and background recordings, simulating 

complex urban settings. 

 Class imbalance is minimized by careful distribution of samples across 

folds. 

 The 4-second maximum duration captures both impulsive and continuous 

sounds, enabling temporal modeling. 

 

Dataset Challenges 

UrbanSound8K also presents significant modeling challenges, which justify the 

need for advanced models like the hybrid CNN-Transformer: 

 Noise and overlap: Many audio clips contain overlapping or noisy 

background sounds. 

 Short durations: Most clips are under 4 seconds, requiring effective 

feature extraction. 

 : Sounds like “engine idling” and “air conditioner” can be acoustically 

similar, leading to confusion in traditional models. 
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3.2 DATA PRE-PROCESSING  
  

Effective data preprocessing is essential to ensure that the input representations 

are standardized, noise-resilient, and suitable for deep learning models. The 

UrbanSound8K dataset, consisting of 8732 labeled environmental sound 

recordings, was subjected to a multi-step preprocessing pipeline designed to 

extract meaningful acoustic features while minimizing irrelevant variations. 

The following steps outline the complete preprocessing methodology: 

 
 3.2.1 Resampling 

All audio files were resampled to 16 kHz to reduce computational overhead 

and ensure uniformity in sample rate across the dataset. This standardization is 

critical for consistent feature extraction and improves compatibility with pre-

defined spectrogram parameters. 

3.2.2 Mel-Spectrogram Generation 

To better match the way humans perceive sound, raw audio waveforms were 

converted into Mel-spectrograms using the Librosa library. This conversion 

employed 128 Mel bands, with a Fast Fourier Transform (FFT) window size 

of 1024 and a hop length of 512. The resulting Mel-spectrogram offers a time-

frequency representation that emphasizes perceptually relevant frequency 

components, making it highly suitable for classifying environmental sounds. 

 

3.2.3 Log-Scale Transformation 

Mel-spectrograms were further transformed into the decibel (dB) scale using 

the librosa.power_to_db() function. This step compresses the wide 

dynamic range of audio signals, making subtle, low-energy features more 

prominent—an important aspect for accurately identifying environmental 

sounds. 
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3.2.4 Spectrogram Shaping 

To maintain consistent input dimensions for the deep learning architecture, all 

spectrograms were either zero-padded or truncated along the time axis to 

produce a fixed shape of 128 × 128 × 1. This ensures compatibility with 

convolutional layers and maintains uniformity in training and evaluation. 

3.2.5 SpecAugment 

To improve generalization and simulate real-world distortions, SpecAugment 

was applied as a data augmentation strategy. It introduces variability by 

masking random sections in both the time and frequency dimensions of the 

spectrograms. This technique helps the model become robust to occluded or 

partially corrupted inputs. 

3.2.6 Normalization 

The spectrogram values were normalized to a range of [0, 1] using min-max 

scaling. This step accelerates the convergence of the model during training by 

ensuring all features contribute equally and eliminates scale-related bias in the 

learning process. 

3.2.7 Handling Missing and Corrupted Data 

Although the UrbanSound8K dataset is generally well-structured, all metadata 

and feature matrices were checked for missing or corrupted values. Any audio 

clip failing to load or with incomplete feature extraction was excluded from 

training. Numeric metadata values, if missing, were imputed using statistical 

methods (mean or median), although such cases were rare. 

3.2.8 Train-Test Splitting Strategy 

A 10-fold cross-validation strategy was applied in alignment with the 

predefined splits of the dataset. In each round, one fold served as the test set, 

while the remaining nine were utilized for training. This method promotes 

consistent and robust evaluation across varied urban soundscapes. 

 

Fig 3.3 
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3.3 Model Architecture (Hybrid CNN-Transformer) 
The hybrid CNN-Transformer model combines the advantages of 

Convolutional Neural Networks (CNNs) and Transformer architectures to 

improve performance in environmental sound classification tasks. CNNs excel 

at detecting local spatial features within spectrograms, whereas Transformers 

are capable of modeling global context and long-range temporal relationships. 

By integrating these two approaches, the model can effectively learn both 

short-duration acoustic signals and broader temporal patterns from Mel-

spectrogram representations. 

The architecture consists of three major components: the CNN Feature 

Extractor, the Transformer Encoder, and the Classification Head. 

3.3.1 CNN-Based Feature Extractor 

The model receives as input a Mel-spectrogram of size 128 × 128 × 1, which 

represents the audio signal in the time-frequency domain. This input is 

processed through a series of convolutional layers, each designed to learn 

increasingly abstract features from the spectrogram. 

The architecture consists of three convolutional blocks configured as follows: 

 Convolutional Block 1 
o 32 filters 

o Kernel size of 3 × 3 

o ReLU activation 

o Followed by batch normalization 

o Max pooling with a 2 × 2 window 

 Convolutional Block 2 
o 64 filters 

o Kernel size of 3 × 3 

o ReLU activation 

o Followed by batch normalization 

o Max pooling with a 2 × 2 window 

 Convolutional Block 3 
o 128 filters 

o Kernel size of 3 × 3 

o ReLU activation 

o Followed by batch normalization 

o Max pooling with a 2 × 2 window 

As the signal passes through these blocks, the spatial dimensions of the feature maps 

are gradually reduced, while the number of channels (depth) increases. This process 

allows the model to capture key local patterns in the audio data, such as changes in 

pitch, rhythm, and harmonic structure. The resulting feature maps are then reshaped 
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into a two-dimensional sequence format, preparing the output for further processing 

by the Transformer module. 

 

3.3.2 Transformer Encoder Module 

The reshaped feature tensor is treated as a sequence of embeddings, each 

representing a local patch in the time-frequency domain. This sequence is 

passed through one or more layers of Transformer encoders. Each Transformer 

encoder layer comprises the following subcomponents: 

 Positional Encoding: 

Since the Transformer architecture lacks inherent sequential ordering, 

sinusoidal positional encodings are added to the input sequence to encode 

temporal and spectral position information. 

 Multi-Head Self-Attention (MHSA): 

This mechanism allows the model to focus on different parts of the 

sequence simultaneously, enabling it to capture long-range dependencies 

and contextual information across time and frequency. 

 Feed-Forward Network (FFN): 

A fully connected two-layer feed-forward neural network with ReLU 

activation, applied to each token in the sequence independently, followed 

by dropout for regularization. 

 Residual Connections and Layer Normalization: 

These elements ensure stable training and effective gradient propagation, 

allowing deeper architectures to be trained efficiently. 

Multiple Transformer encoder layers (typically between 2 and 4) may be stacked 

depending on computational constraints and dataset complexity. 

3.3.3 Classification Head 

The output sequence from the final Transformer layer is subjected to a global 

average pooling operation to produce a fixed-length vector representation. This 

vector is then passed through the following layers: 

 Fully Connected Dense Layer 
o Units: 128 

o Activation: ReLU 

 Dropout Layer 
o Dropout Rate: 30% 

o Purpose: Prevent overfitting by randomly deactivating units during training 

 Output Layer 
o Units: 10 (one for each sound class) 

o Activation: Softmax 

o Purpose: Produce class probabilities 
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The classification head transforms the globally contextualized features into a 

categorical probability distribution over the 10 environmental sound classes defined 

in the UrbanSound8K dataset 

 

Fig 3.4 
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3.4 Training strategy 
A robust and well-designed training strategy is central to the success of deep 

learning models, particularly when dealing with real-world datasets like 

UrbanSound8K that include diverse and often noisy environmental audio 

signals. The proposed hybrid CNN-Transformer model was trained under a 

supervised learning paradigm, employing a systematic and theoretically 

informed training pipeline aimed at maximizing model generalization and 

minimizing overfitting. 

3.4.1 Supervised Learning Framework 

The environmental sound classification problem was formulated as a 

supervised multi-class classification task. Each data sample was represented as 

a 2D Mel-spectrogram—a compact and perceptually relevant time-frequency 

representation of the raw audio signal. The corresponding target label, 

indicating one of ten distinct sound categories (e.g., air conditioner, dog bark, 

drilling), was encoded using one-hot encoding. This format aligns naturally 

with the use of the categorical cross-entropy loss function, which is widely 

adopted in classification tasks due to its ability to measure the divergence 

between the predicted and actual label distributions. The softmax activation 

function was applied in the output layer to produce class probabilities, 

facilitating direct optimization of classification accuracy through gradient-

based learning. 

 

 

Fig 3.5  
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3.4.2 Cross-Validation for Generalization 

To rigorously assess model performance and prevent overfitting to specific subsets of 

the data, 10-fold cross-validation was implemented. UrbanSound8K is pre-partitioned 

into 10 stratified folds, enabling a natural and reproducible evaluation protocol. In 

each round of cross-validation: 

 Nine folds were combined for training and validation, with a 90%-10% internal 

split. 

 One fold was held out exclusively for testing. 

This ensures that the model is trained and validated on diverse acoustic conditions and 

speaker profiles while being tested on completely unseen data. Cross-validation not 

only yields a reliable estimate of generalization performance but also reduces bias 

arising from a single train-test split. 

 

 

Fig. 3.6  

3.4.3 Mini-Batch Training with Shuffling 

The model training utilized mini-batch stochastic gradient descent (SGD), a 

widely adopted optimization technique that updates model parameters in small 

batches, thereby combining the efficiency of batch processing with the 

robustness of stochastic sampling. A batch size of 32 was selected based on 

empirical considerations, offering a balanced trade-off between computational 

efficiency and gradient estimate stability. To ensure unbiased learning and 

prevent the model from capturing order-specific patterns, data shuffling was 

performed at the beginning of each epoch. This strategy enhances 

generalization by eliminating potential biases introduced by fixed data 

sequences and contributes to more stable and effective training dynamics. 

 

Fig 3.7 
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3.4.4 Early Stopping to Prevent Overfitting 

Early stopping is a dynamic form of regularization that monitors the model's 

performance on a validation dataset and halts training when improvements in 

generalization cease. This technique is particularly crucial in deep learning 

scenarios where models have the capacity to memorize training data, especially 

when the dataset is relatively small or noisy—such as in environmental sound 

classification tasks. In the proposed training pipeline, validation loss was 

tracked at the end of each epoch. If no reduction in validation loss was observed 

for 10 consecutive epochs, training was stopped early. The model parameters 

corresponding to the lowest validation loss were retained to ensure the best 

generalization. This strategy prevents the model from overfitting by avoiding 

unnecessary additional training once the optimal performance has been 

reached. Overfitting often manifests as a continuous decrease in training loss 

while validation loss starts to rise. By implementing early stopping, the model 

avoids learning spurious correlations or noise in the training data. Additionally, 

early stopping reduces computational cost and training time, as it eliminates 

redundant epochs that contribute no performance benefit. It also provides a 

safeguard against model degradation due to issues such as gradient vanishing, 

learning plateaus, or unstable optimization in deep architectures like 

Transformers 

 

Fig 3.8 

 

3.4.5 Model Checkpointing for Reproducibility 

Model checkpointing is a critical component of modern deep learning 

workflows, serving both practical and scientific purposes. In the training of the 

proposed hybrid CNN-Transformer model, checkpointing was systematically 
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implemented to ensure reproducibility, fault tolerance, and optimization 

reliability. 

At the end of each training epoch, the model’s performance was evaluated on 

the validation set. If the validation loss showed improvement compared to 

previous epochs, the model's weights were saved to disk. This version of the 

model—corresponding to the lowest validation loss—was designated as the 

best-performing model. 

This strategy offers several advantages: 

 Reproducibility: Saving the model at its best validation performance 

enables consistent replication of results, supporting transparency and 

reliability in research outcomes. 

 Fault Tolerance: Checkpointing prevents loss of progress in case of 

interruptions such as hardware issues or runtime limits (e.g., in Google 

Colab), allowing training to resume from the most recent saved state. 

 Reliable Evaluation: Rather than relying on the final epoch, which may 

lead to overfitting, the model used for testing is the one that showed the 

best generalization during validation—ensuring a more accurate reflection 

of real-world performance. 

 
       Fig 3.9 

3.4.6 Regularization Techniques 

Regularization techniques are essential in deep neural networks to constrain 

model complexity, prevent overfitting, and promote generalization to unseen 

data. Given the high-capacity architecture of the hybrid CNN-Transformer 

model—characterized by dense fully connected layers, convolutional filters, 

and multi-head attention mechanisms—it becomes especially important to 

integrate effective regularization strategies during training. 
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Dropout 

Dropout is a stochastic regularization technique that improves generalization 

by randomly deactivating a subset of neurons during training. During each 

forward pass, individual neurons are "dropped" (set to zero) with a fixed 

probability, effectively creating a randomly sampled sub-network. The model 

is thus discouraged from becoming overly reliant on specific features and 

must learn redundant representations. 

In this study, dropout was applied with rates ranging from 30% to 50% in 

dense and some convolutional layers. This helped mitigate co-adaptation of 

neurons and encouraged distributed representations across the network. 

During inference, dropout is disabled, and the output is scaled to reflect the 

training-time configuration. 

L2 Weight Regularization (Weight Decay) 

L2 regularization penalizes large weight magnitudes by adding a term to the 

loss function proportional to the square of the weights. The total loss function 

becomes: 

 

where λ is the regularization coefficient and wi are the model weights. This penalty 

discourages overcomplex solutions and promotes smooth, generalizable decision 

boundaries. 

L2 regularization is particularly important in Transformer models, where the 

attention mechanism and fully connected layers can introduce a large number of 

parameters. When used in conjunction with dropout, L2 weight decay effectively 

balances model expressiveness and generalization. 

Together, dropout and L2 regularization create a robust framework for preventing 

overfitting in complex architectures, thereby improving the model’s real-world 

applicability. 

 

 

Fig 3.10 

3.4.7 Data Augmentation with SpecAugment 

In deep learning, data augmentation plays a vital role in improving model 

generalization by artificially increasing the diversity of the training data. This 
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becomes particularly important in environmental sound classification, where 

gathering and labeling large datasets is often resource-intensive and time-

consuming. 

To mitigate overfitting and improve the model’s ability to generalize, this 

project employed SpecAugment a specialized augmentation technique 

designed for audio tasks. Unlike traditional methods, SpecAugment is applied 

directly to Mel-spectrograms and introduces variability by performing 

operations such as time masking and frequency masking, thereby helping the 

model learn more robust features: 

Time Masking 

Random contiguous intervals along the time axis are selected and masked (set 

to zero). This simulates real-world phenomena such as transient noise bursts, 

occlusions by other sounds, or abrupt interruptions. The model is thus forced 

to rely on contextual and spectral cues rather than memorizing temporal 

features. 

Frequency Masking 

Random frequency bands are masked out along the spectral axis. This mimics 

microphone artifacts, environmental filtering, or transmission distortions. It 

helps the model learn frequency-invariant features, essential for audio captured 

across different devices and environments. 

By applying these transformations dynamically during training, SpecAugment 

prevents the model from overfitting to specific time-frequency patterns and 

encourages the learning of generalized representations. This approach has 

shown success in speech recognition and was adapted in this work to 

environmental sound classification, offering improvements in robustness, 

generalization, and noise tolerance. 

Moreover, SpecAugment effectively increases the effective size of the training 

dataset, introducing synthetic variability without modifying the labels. This is 

particularly beneficial in settings where labeled environmental sound 

recordings are limited. 
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                                        Fig 3.11 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

  

 

 

 

 

 

 



21 

 

CHAPTER 4  
  

EXPERIMENTAL SETUP  
  

4.1 OBJECTIVE:   
  

This chapter outlines the practical implementation environment, 

configurations, and resources utilized to train and evaluate the proposed hybrid 

CNN-Transformer model. The experiments were systematically designed to 

benchmark performance on the UrbanSound8K dataset, which provides a 

challenging and diverse collection of real-world urban audio samples. All 

development was performed using cloud-based tools, primarily Google Colab, 

which offers GPU acceleration and a flexible Python environment. The model 

was implemented using TensorFlow and Keras, leveraging their high-level 

APIs for rapid prototyping and deployment. 

From a theoretical standpoint, the experimental setup adheres to best practices 

in deep learning research, including standardized input preprocessing, cross-

validation, and consistent evaluation protocols. Each component of the 

pipeline—from feature extraction to training—was configured to minimize 

bias, ensure reproducibility, and maintain scalability across different model 

architectures. The choice of the UrbanSound8K dataset not only ensures 

alignment with existing literature but also provides a comprehensive testing 

ground due to its wide range of acoustic scenarios and class imbalances. This 

setup enables fair and rigorous comparisons between the proposed architecture 

and conventional baselines. 

 

4.2 Environment Configuration: 
  

To ensure reproducibility and computational efficiency, the entire 

experimentation pipeline was implemented using a cloud-based environment. 

The configurations used for training and evaluating the models are summarized 

below, followed by a discussion on the rationale behind each component. 

  Platform: Google Colab (GPU Runtime) 

 

The model training leveraged Colab’s cloud infrastructure with access to a 

Tesla T4 GPU, which significantly accelerated deep learning workflows, 

especially during model training and large matrix operations. 

 

  Python Version: 3.10 + 

 

Python 3.10 offers compatibility with the latest features in machine learning 

libraries and supports better runtime performance. Its extensive ecosystem and 
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readability also facilitate rapid development and integration of complex deep 

learning pipelines. 

 

Key Libraries: 

 

 TensorFlow and Keras were used as the core deep learning frameworks for 

building, training, and evaluating the CNN and Transformer components. 

 Librosa was employed for audio processing, specifically for tasks such as 

resampling, Mel-spectrogram generation, and feature extraction. 

 NumPy and Pandas facilitated numerical operations and metadata manipulation, 

ensuring efficient data handling and transformation. 

 Scikit-learn was used for auxiliary tasks such as label encoding, cross-validation, 

and performance metric computations. 

 Matplotlib was integrated for visualizing training curves, confusion matrices, and 

model architecture diagrams, aiding in interpretability and documentation. 

 

File Access: Google Drive Integration 

 

The UrbanSound8K dataset and model checkpoints were accessed and stored 

using Google Drive integration in Colab. This setup provided a persistent and 

scalable solution for data access, enabling experiments to resume across 

sessions without data loss or re-uploading. 

 

 

4.3 Hardware Specifications:  
All training and evaluation experiments were conducted on the cloud 

infrastructure provided by Google Colab. The hardware configuration utilized 

for this research includes both CPU and GPU resources, enabling efficient 

processing of high-dimensional audio data. The detailed specifications are as 

follows:  

  Processor: Intel Xeon CPU 

 

Google Colab’s Intel Xeon processors offer a reliable baseline for general-

purpose computations. These multi-core CPUs provide sufficient parallelism 

to handle preprocessing tasks such as audio transformation, file I/O operations, 

and batch-wise data feeding during model training. 

  RAM: 12.6 GB 

 

The allocated RAM was adequate for storing the training and validation data 

in memory, as well as maintaining the model weights and intermediate feature 

maps during training. It also allowed the use of large batch sizes and complex 

model architectures without exceeding memory limits. 

  GPU: NVIDIA Tesla T4 (16 GB VRAM) 

 

For training the hybrid CNN-Transformer architecture, GPU acceleration was 

employed using the Tesla T4 provided by Google Colab. This GPU supports 



23 

 

mixed-precision training and is well-suited for deep learning applications due 

to its Tensor Cores, which accelerate matrix multiplications—a core operation 

in both CNNs and Transformer layers. The 16 GB VRAM facilitated the 

training of deeper models with larger input shapes and batch sizes, 

significantly reducing training time compared to CPU-only execution. 

 

  
  

                                    Fig 4.1: Hardware Specifications 

 

4.4 SOFTWARE DEPENDENCIES:  
To implement, train, evaluate, and visualize the deep learning model for 

environmental sound classification, several essential Python libraries and 

frameworks were used. The versions listed are compatible with Google Colab’s 

current default environment and ensure reproducibility of results. 
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                                                                                   Table 4.1 

 

4.5 DATA STRUCTURE:   

The UrbanSound8K dataset, specifically designed for environmental sound 

classification tasks, exhibits a well-defined directory and metadata schema that 

facilitates efficient data preprocessing, training, and evaluation of deep learning 

models. The dataset is comprised of both audio recordings and accompanying 

metadata annotations, structured in a manner that supports reproducibility and 

experimental consistency. 

4.5.1 Audio Files: 

 

The dataset contains a total of 8,732 environmental audio clips, each with a 

maximum duration of 4 seconds. These files are organized into 10 subfolders 

named fold1 to fold10, located within the UrbanSound8K/audio/ directory. 

This organization reflects a predefined 10-fold cross-validation strategy, where 

each fold can alternately serve as the test set while the remaining folds are used 

for training and validation. All audio clips are recorded in mono-channel format 

and stored in .wav format, which is both uncompressed and widely supported 

for audio signal processing. 

 

4.5.2 Metadata File: 

 

A comprehensive metadata file is provided at 

UrbanSound8K/metadata/UrbanSound8K.csv. This file contains detailed 

annotations for each audio clip in the dataset. It includes the file name along 

with its corresponding fold assignment, the class label and its associated 

numerical class ID (such as “dog_bark”, “siren”, or “gun_shot”), and a salience 

indicator that identifies whether the sound is in the foreground or background. 

Additionally, it specifies the start and end times of the annotated event within 

the original audio recording, enabling precise temporal localization of the 

sound events. 

 

4.5.3 Clip Properties: 

Each audio clip in the dataset has a maximum duration of four seconds, which 

ensures consistency in temporal dimensions across all samples. The clips are 

stored in a mono-channel format, simplifying the data representation while 

preserving sufficient information for effective classification. Furthermore, all 
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audio files are encoded in the WAV format, which maintains high audio fidelity 

and ensures compatibility with standard signal processing tools and libraries. 

 

 4.6 Preprocessing Pipeline:  

A robust preprocessing pipeline is crucial for transforming raw audio signals 

into structured inputs suitable for training deep learning models. The 

UrbanSound8K dataset underwent a multi-step preprocessing workflow aimed 

at enhancing feature quality, reducing noise, and introducing controlled 

variability for improved generalization. The complete pipeline is described 

below: 

 

 
Fig 4.2: Preprocessing Pipeline 

 

4.6.1 Downsampling: 

 

To reduce computational complexity and ensure uniformity in sample rates 

across the dataset, all audio signals were resampled from 44.1 kHz to 16 kHz. 

This sampling rate is sufficient to capture the relevant frequency components 

of most urban sounds while decreasing the input dimensionality, thereby 

expediting model training without a significant loss in perceptual detail. 

 

4.6.2 Feature Extraction – Mel-Spectrograms: 

 

Each audio sample was converted into a Mel-Spectrogram, which provides a 

time-frequency representation of the signal using a perceptual scale that closely 

resembles how humans perceive sound. This transformation helps capture 

important spectral features relevant for classification. The Mel-Spectrograms 

were generated using the following configuration: 

 

• 128 Mel frequency bands 

• 128 time steps (hops) 
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• FFT window size of 1024 

• Hop length of 512 samples 

These parameters strike a balance between time and frequency resolution, 

making the representation well-suited for environmental sound analysis. 

4.6.3 Normalization: 

 

To ensure that all features contribute equally to the learning process, min-max 

normalization was applied to rescale the spectrogram values to a range of [0, 1]. This 

step mitigates bias arising from scale differences and improves numerical stability 

during optimization. 

 

4.6.4  Data Augmentation – SpecAugment: 

 

To improve the model’s robustness and better simulate real-world acoustic 

variability, SpecAugment was employed as a data augmentation technique. 

This method introduces perturbations in the input spectrogram through two 

primary mechanisms: time masking, which randomly obscures consecutive 

time steps to mimic missing or occluded audio events, and frequency masking, 

which hides specific frequency bands to introduce spectral variability. By 

applying these transformations, SpecAugment compels the model to learn more 

generalized representations, focusing on overall acoustic patterns rather than 

memorizing specific temporal or spectral features. As a result, the model's 

ability to generalize to unseen or noisy inputs is significantly enhanced. 

 

4.7 TRAINING PROTOCOL:  

A well-structured training protocol forms the foundation of an effective deep 

learning pipeline, particularly when dealing with complex tasks like 

environmental sound classification. This section elaborates on the 

hyperparameters and regularization strategies used to train the hybrid CNN-

Transformer model. Each design choice is theoretically grounded to ensure not 

only convergence but also generalization to unseen acoustic conditions. 
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                                                        Fig 4.3 

4.7.1 Batch Size: 32 

The batch size defines the number of training samples used to compute a single 

update of the model’s parameters. A batch size of 32 is widely regarded as a 

moderate and effective choice, offering a compromise between computational 

efficiency and training stability. 

Smaller batch sizes, such as 8 or 16, introduce greater noise into the gradient 

estimates. While this can slow convergence and cause more fluctuating 

updates, it also serves as a form of implicit regularization. This stochasticity 

can help the model avoid overfitting by promoting better generalization to 

unseen data. 

Conversely, larger batch sizes, such as 64 or 128, produce smoother gradient 

estimates and better exploit the parallel processing capabilities of modern 

GPUs. However, they typically require more memory and may reduce the 

inherent randomness of the optimization process, increasing the risk of 

overfitting. 

Empirical research, including the study by Keskar et al. (2017), suggests that 

smaller and moderate batch sizes tend to lead to flatter minima in the loss 

landscape, which are often correlated with improved generalization 

performance. Based on these considerations, a batch size of 32 was adopted to 

ensure a balance between training speed, memory efficiency, and model 

robustness. 

 

4.7.2 Epochs: 50 

An epoch refers to a complete iteration over the entire training dataset. The 

total number of epochs determines how long the model continues to learn from 

the data. 

If the number of epochs is too low, the model may underfit, failing to capture 

the underlying patterns within the training data. On the other hand, training for 

too many epochs can lead to overfitting, where the model becomes excessively 

tailored to the training set and performs poorly on unseen data. 
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To maintain a balance, the training process is configured with a maximum of 

50 epochs along with early stopping. This setup allows the model enough time 

to converge while automatically terminating training once the validation 

performance stops improving. It ensures computational efficiency and 

mitigates the risks of both underfitting and overfitting. 

 

4.7.3 Early stopping  
It is a widely used regularization technique designed to terminate the training 

process when the model’s performance on a validation set no longer shows 

improvement over a predefined number of epochs, referred to as patience. This 

approach helps mitigate overfitting by halting training once further 

optimization steps cease to provide meaningful gains in validation accuracy or 

reductions in validation loss. 

In this work, the patience parameter is set to 7, meaning that training will stop 

if no improvement in the validation loss is observed for seven consecutive 

epochs. This allows the model sufficient opportunity to refine its parameters 

while avoiding unnecessary training beyond the point of diminishing returns. 

Early stopping is particularly effective when working with noisy or limited 

datasets, as it prevents the model from over-adapting to idiosyncratic patterns 

in the training data. Its dynamic nature enables the training process to respond 

adaptively to the model’s learning trajectory, reducing the risks of both 

underfitting and overfitting without requiring manual intervention. 

 

 
                                                   Fig 4.4 

 

4.7.4 Loss Function – Categorical Crossentropy 
In multi-class classification problems, like categorizing environmental sounds 

into 10 classes, categorical crossentropy is widely used as a loss function. It 

quantifies how much the predicted probabilities differ from the true labels. 
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This loss encourages the model to assign high probability to the correct class 

and penalizes it heavily if it confidently predicts the wrong class. It works well 

with the softmax activation function, which ensures output probabilities sum to 

1, making the prediction a valid probability distribution. 

Categorical crossentropy is derived from maximum likelihood estimation 

principles. 

 

 
 

 Notation: 
 C is the total number of classes (10 in this case), 

 yi is the ground truth label (one-hot encoded), 

 y^i is the model’s predicted probability for class iii. 

4.7.5Adam (Adaptive Moment Estimation) 

Adam is a popular optimization algorithm in deep learning due to its ability to 

dynamically adjust learning rates during training, which often leads to faster 

and more stable convergence. It combines the strengths of two earlier methods: 

AdaGrad, which adapts learning rates based on the accumulation of historical 

gradients—helpful for sparse data and RMSProp, which smooths the influence 

of past gradients using an exponentially decaying average to better handle non-

stationary objectives. Adam builds on these by maintaining two running 

averages: one for the gradient (first moment) and one for the squared gradient 

(second moment). These statistics are used to adaptively scale the learning rate 

for each parameter, improving both stability and efficiency. This makes Adam 

especially effective for training deep and complex models like the hybrid CNN-

Transformer architecture used in environmental sound classification. 
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                  Fig 4.5 : OPTIMIZER COMPARISION : WHY ADAM 

 

4.8 CROSS-VALIDATION:  

Cross-validation is a robust statistical technique used to evaluate the generalization 

performance of machine learning models by partitioning the dataset into multiple 

subsets. In this work, 10-Fold Cross-Validation was adopted to ensure comprehensive 

evaluation and minimize bias arising from random train-test splits. 

In 10-fold cross-validation, the entire dataset is divided into ten equal-sized folds. In 

each iteration, one fold is held out as the validation set, while the remaining nine folds 

are used for training. This process is repeated ten times such that each fold serves as 

the validation set exactly once. The final evaluation metrics are computed as the 

average across all ten folds, providing a more reliable and generalized assessment of 

the model’s performance. 

This validation strategy is particularly effective in datasets like UrbanSound8K, 

which exhibit considerable class and recording variability. By leveraging the dataset’s 

pre-defined fold structure, we ensure a non-overlapping and stratified validation 

approach that maintains label distribution consistency across folds. 

The following performance metrics were recorded at each fold and averaged: 

 Accuracy: Measures the overall correctness of the model’s predictions. 

 Precision: Indicates the proportion of true positive predictions among all positive 

predictions. 

 Recall: Represents the model’s ability to detect all relevant instances of a class. 

 F1-Score: Harmonic mean of precision and recall, providing a balanced 

evaluation. 

 Confusion Matrix: Offers a detailed breakdown of true/false positives and 

negatives for each class. 

Using cross-validation not only provides robust insight into model reliability, but also 

helps in hyperparameter tuning and detecting overfitting, leading to better 

generalization in unseen environments 
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Fig 4.6: 10- Fold Cross-Validation Process 
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CHAPTER 5  

 

RESULTS  

 

 

This chapter presents a comprehensive evaluation of the hybrid CNN-

Transformer model developed for environmental sound classification using the 

UrbanSound8K dataset. The model was assessed through various metrics under 

a 10-fold cross-validation setup. The analysis covers model performance across 

training and validation phases, class-level predictions, comparative studies 

with baseline models, and interpretability of model decisions through 

visualization techniques. 

 

5.1 Training and Validation Performance 
The training and validation metrics were recorded over a maximum of fifty 

epochs to monitor convergence and generalization. The training accuracy 

showed a consistent upward trend, eventually exceeding 95 percent as the 

learning progressed. Meanwhile, validation accuracy increased during the 

initial epochs and gradually plateaued at approximately 89 percent. This 

behavior indicated that the model was capable of learning complex patterns in 

the training data while still generalizing effectively to unseen validation 

samples. 

The loss curves further corroborated these findings. Both training and 

validation loss decreased steadily and eventually stabilized, suggesting that the 

model did not overfit the data. The application of early stopping contributed to 

this stability by halting training once the validation performance ceased to 

improve, thereby preserving the model’s ability to generalize. 

 

 
                                                            Fig 5.1 

 

5.2 Confusion Matrix 
To further investigate the class-wise prediction behavior of the model, a 

confusion matrix was generated using the aggregated predictions from the 
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cross-validation folds. The confusion matrix revealed that the model excelled 

at classifying certain high-distinctiveness sound events such as gun shot, 

jackhammer, and siren. These classes often feature sharp, high-energy bursts 

within the spectrogram, making them easier to detect. 

However, there was a noticeable degree of misclassification among low-energy 

or spectrally similar classes. For instance, instances of air conditioner and 

engine idling were frequently confused with one another. This can be attributed 

to their overlapping acoustic properties, including sustained low-frequency 

components and minimal temporal variation. The confusion matrix thus 

provides valuable insights into which classes may benefit from future 

architectural refinements or data augmentation strategies. 

 

 
 

                                  Fig 5.2: Confusion Matrix Heat Map 

 

5.3 Classification Report 

A detailed classification report was computed to evaluate the precision, recall, 

and F1-score for each individual sound class. The model attained the highest 

F1-scores in classes such as gun shot, jackhammer, and siren, with values of 

0.94, 0.92, and 0.91 respectively. These scores reflect the model's robust ability 

to recognize temporally and spectrally distinct events. 

Conversely, the air conditioner and engine idling classes recorded the lowest 

F1-scores, 0.76 and 0.78 respectively. This decline in performance can be 

attributed to the acoustic ambiguity of these categories. Despite these 
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challenges, the overall classification metrics indicate that the model maintained 

a high level of precision and recall across the majority of classes. 

 

 
 

5.4 Cross-Validation Results 
To ensure the reliability and consistency of the model's performance, a 10-fold 

cross-validation protocol was employed. The model achieved a mean 

classification accuracy of 89.3 percent, with a standard deviation of ±1.4 

percent. These results indicate stable performance across different folds and 

confirm that the model is not overly dependent on any particular subset of the 

data. 

Such consistency is critical for real-world deployment, where environmental 

audio signals can vary significantly. The low standard deviation across folds 

suggests that the model is well-generalized and capable of handling a broad 

spectrum of acoustic conditions. 
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5.5 Baseline Comparison 
In order to validate the efficacy of the proposed hybrid architecture, the model's 

performance was compared with two baseline systems: a CNN-only model and 

a Transformer-only model. The CNN-only model, which relies purely on 

convolutional filters for feature extraction, achieved an accuracy of 84.7 

percent. The Transformer-only model, which operates solely on self-attention 

mechanisms, recorded a slightly lower accuracy of 83.9 percent. 

In comparison, the hybrid CNN-Transformer model achieved an accuracy of 

89.3 percent. This significant improvement confirms that the integration of 

convolutional and attention-based components enhances both spatial and 

temporal feature representation. The convolutional layers are particularly 

effective in capturing local patterns in spectrograms, while the Transformer 

layers excel at modeling long-range dependencies. The synergy between these 

two components contributes to the model’s superior performance. A 

comparative summary of the models’ performance is shown in Table 5.3. 
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                                                            Fig 5.3 

 

5.6 Visual Interpretations 
To interpret the model's internal decision-making process, visual tools such as 

Gradient-weighted Class Activation Mapping (Grad-CAM) and attention map 

extraction were used. Grad-CAM was applied to the output of the last 

convolutional layer to visualize the regions of the input Mel-spectrogram that 

influenced the model’s predictions. The results showed that the CNN layers 

predominantly focused on high-energy areas that correspond to the most salient 

acoustic events. 

In contrast, attention weights extracted from the Transformer layers revealed 

that the self-attention mechanism allocated its focus across sequential frames, 

effectively tracking temporal patterns in the audio signal. This complementary 

behavior illustrates the division of labor between the two modules: the CNN 

captures fine-grained spectral details, while the Transformer models broader 

temporal context. These visualizations not only enhance the interpretability of 

the model but also affirm its architectural rationale. 
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                                                      Fig 5.4 

 

 
                                                      Fig 5.5 

 

5.7 Summary 
The hybrid CNN-Transformer model demonstrated state-of-the-art 

performance on the UrbanSound8K dataset without relying on pretrained 

feature extractors. It achieved high accuracy, showed strong generalization 

capabilities, and maintained interpretability through visualization techniques. 

The findings underscore the effectiveness of combining convolutional and 

attention-based architectures for environmental sound classification. The 

insights gained from the results inform future work and open possibilities for 

deploying such models in real-world audio monitoring systems. 
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CHAPTER 6  

 

CONCLUSION AND FUTURE WORK  

 

 

This study proposed a novel hybrid deep learning architecture that 

synergistically integrates Convolutional Neural Networks (CNNs) and 

Transformer encoders for the task of environmental sound classification (ESC). 

The central motivation behind this architecture was to leverage the spatial 

feature extraction capabilities of CNNs with the temporal dependency 

modeling power of Transformers. This hybrid design was aimed at addressing 

the challenges posed by real-world audio data, such as overlapping acoustic 

events, non-stationarity, and background noise. 

 

Summary of Contributions 

The proposed system employed Mel-spectrograms as the primary time-

frequency representation of audio signals. This choice is grounded in auditory 

neuroscience and signal processing theory—Mel-spectrograms mimic the 

human ear's logarithmic perception of frequency and are widely used in tasks 

requiring fine-grained spectral analysis. CNNs were used to extract local spatial 

patterns from these spectrograms, capturing salient acoustic cues such as 

harmonics and formants. However, CNNs are inherently limited in capturing 

long-range temporal dependencies due to their localized receptive fields. 

To overcome this limitation, Transformer encoders, equipped with multi-head 

self-attention mechanisms, were incorporated. These encoders enable the 

model to weigh all positions in the spectrogram simultaneously, capturing 

global context and long-term temporal relationships across the input sequence. 

This design is theoretically motivated by the success of attention-based models 

in natural language processing (e.g., BERT, GPT), where long-range 

dependencies play a crucial role. 

The UrbanSound8K dataset, comprising 10 diverse urban sound categories, 

was used to train and evaluate the model. The experimental pipeline included 

advanced preprocessing techniques such as: 

 

 Resampling to ensure consistency, 

 Mel-spectrogram transformation for perceptual fidelity, 

 Log-scaling to compress dynamic range, 

 SpecAugment, a domain-specific data augmentation strategy that masks 

time and frequency bands to simulate real-world occlusions, 

 Normalization for stable and efficient training. 

The training employed a 10-fold cross-validation strategy, which is known to 

provide statistically robust performance estimates by ensuring that each data 

sample is used both for training and testing. This approach enhances the 

model’s generalization capabilities and minimizes selection bias. 
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Performance Analysis 

The hybrid CNN-Transformer model outperformed traditional CNN-only and 

Transformer-only baselines in terms of classification accuracy and robustness 

across folds. Quantitative metrics such as precision, recall, F1-score, and 

confusion matrices revealed the model's strong performance in correctly 

identifying even acoustically ambiguous or overlapping sounds. These metrics, 

grounded in information retrieval theory, provide a multi-faceted view of the 

model’s behavior beyond simple accuracy. 

Importantly, the attention weights from Transformer layers were visualized to 

interpret which parts of the spectrogram the model focused on during 

prediction. This interpretability aspect aligns with ongoing research into 

explainable AI (XAI) and ensures that such systems can be trusted and 

debugged in practical applications. 

The model was trained and deployed within a Google Colab environment using 

open-source libraries such as TensorFlow, Librosa, NumPy, and Matplotlib. 

Despite the limited compute resources of cloud-based platforms (CPU/GPU), 

the model demonstrated efficient training convergence and inference latency, 

which is critical for real-time applications. 

 

Practical Implications 

The proposed architecture demonstrates significant promise for deployment in 

real-time ESC systems, particularly in scenarios such as: 

 Smart surveillance (e.g., detecting sirens, gunshots), 

 Public safety monitoring (e.g., crowd noise, alarms), 

 Ambient monitoring in urban spaces (e.g., construction noise, traffic 

events), 

 Assistive technologies for the hearing impaired. 

Its ability to generalize across noisy and dynamic environments makes it well-

suited for complex, real-world use cases. 

 

Future Directions 

Several avenues exist for enhancing and extending this work: 

1. Edge Deployment: 

o Optimizing the model using quantization and pruning techniques for 

deployment on resource-constrained embedded devices (e.g., Raspberry Pi, 

NVIDIA Jetson). 

o Using frameworks like TensorFlow Lite or ONNX for model portability. 

2. Real-Time Stream Processing: 

o Modifying the architecture for online inference using streaming audio 

input. 

o Integrating with buffer-based sliding window prediction systems for 

continuous sound monitoring. 

3. Multi-Label Classification: 

o Expanding the model to handle polyphonic audio scenes where multiple 

sound events occur simultaneously. 
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o Leveraging sigmoid activation and binary crossentropy loss for multi-label 

scenarios. 

4. Transfer Learning and Pretrained Audio Models: 

o Fine-tuning large pretrained models such as AST (Audio Spectrogram 

Transformer) or BEATs on UrbanSound8K. 

o Incorporating self-supervised learning (SSL) methods to reduce 

dependency on labeled data. 

5. Multilingual and Multimodal Data: 

o Applying the model to cross-lingual datasets where sound events are 

annotated in different languages. 

o Integrating other data modalities like video (audio-visual models) to 

improve contextual understanding. 

6. Robustness and Fairness: 

o Evaluating the model across diverse demographic and geographic datasets. 

o Exploring fairness-aware training techniques to avoid bias in public safety 

applications. 

 

Conclusion 

In conclusion, this study advances the field of environmental sound 

classification (ESC) by presenting a robust, interpretable, and scalable hybrid 

deep learning architecture. By effectively merging the local feature extraction 

capabilities of Convolutional Neural Networks (CNNs) with the global 

temporal modeling strengths of Transformer encoders, the proposed model 

captures both short-term spectral details and long-range temporal dependencies 

inherent in non-stationary environmental audio signals. 

 

The integration of Mel-spectrogram-based time-frequency representations, 

SpecAugment-based data augmentation, and a rigorous cross-validation 

training protocol ensures that the model not only achieves high classification 

accuracy but also exhibits strong generalization to unseen data. Furthermore, 

the inclusion of self-attention mechanisms contributes to interpretability by 

highlighting which temporal segments of audio the model focuses on during 

classification—an important step toward explainable AI in acoustic sensing. 

 

As smart cities, autonomous systems, and IoT-enabled environments continue 

to evolve, the demand for real-time, reliable audio analysis systems is growing 

rapidly. The hybrid CNN-Transformer framework presented here provides a 

scalable foundation for these future applications, offering the computational 

efficiency of CNNs and the contextual depth of Transformers. With further 

adaptations, this architecture is well-positioned to serve as the core engine of 

next-generation audio-aware intelligent systems. 
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