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Abstract

Because today’s world is so interconnected and digital, it is now even more crucial

to keep both physical and digital systems secure. With rapid growth and practical uses,

deep learning is becoming very important in facing current security difficulties. Aspects

of system security such as camouflaged object detection and quantum communication

protection, are discussed in this thesis.

Detecting camouflaged objects remains a difficult problem. Many domains rely heavily

on the usefulness of this field. It happens because the object we want to find looks similar

to its background. There are many strategies and datasets being developed to deal with

this issue and this field has emerged as a rapid growth point in image processing. We tested

EfficientDet with SAM on NC4K and compared the results to what some existing models

show. By analysing why the model failed, we have suggested areas for improvement in

future projects. In this part, the thesis compares EfficientDet and SAM to various COD

models and also examines how the new NC4K dataset performs.

This thesis further examines the topic of system security by exploring how deep learn-

ing can support quantum communication. In the second section, we study the use of

neural networks for error correction in QKD. To study five architectures, a new dataset

of 120,000 observations was created, where both noise probabilities and photon transmis-

sion rates varied. From these findings, it is clear that AI can improve exiting quantum

communication protocols.
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Chapter 1

INTRODUCTION

1.1 Overview

Two security-focused areas, Camouflaged Object Detection (COD) and Quantum Key

Distribution (QKD), are analysed in this research for the potential use of Deep Learning.

There are unique issues associated with every domain. The challenge lies in telling what’s

concealed from other items. Errors in quantum transmission need to be fixed as well. Both

works used enhanced AI models to improve detection, while maintaining consistency, in

spite of differences. It becomes easier to find solutions that grow with your enterprise.

There are adaptable solutions included within security systems as well. With this double

domain method, we analyse how smart systems can detect security risks. They protect

areas from danger in real life and from digital breaches. By examining concealed object

detection and quantum key distribution at the same time, we recognise how AI can impact

fields beyond its own. It helps people to notice the finer points of things.

Camouflaged Object Detection (COD) is a crucial and essential task in Visual Comput-

ing, specifically Computer Vision (CV) due to the great resemblance between the target

entity and its surrounding environment. The traditional object detection techniques fail

for this task due to the great resemblance between the targeted entity and its surrounding

environment. Hence, image segmentation plays an important role in COS to overcome

this challenge.
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After that, we turn them into a form that is simpler to learn about. Each part of

a mixture is called out by its own characteristic label. It helps when you are trying to

distinguish the camouflaged object from its surroundings.

QKD proved to be an impressive addition to cryptologic protocols because it uses

quantum physical rules to achieve exceptional security [1] [2]. Traditional encryption

depends on uncertain methods, while QKD relies on quantum entanglement and the

principle that you can’t copy a quantum state [3] [4]. QKD is expected to be stable,

yet it experiences many difficulties, mainly because error correction is influenced greatly

by noise, lost photons and possible eavesdropping. Abnormal losses, unwanted noise and

device imperfections during quantum sharing can result in bits being out of order in the

key given to Alice and Bob. If the issue is ignored, the security of the key will suffer and

the protocol will not be as efficient. For this reason, fixing errors is vital in QKD since it

decides if the key that was exchanged is safe to use.

The Cascade Protocol fixes these errors by running many parity cheques on the data

sent [5]. Although this algorithm is efficient, too much computational and communica-

tion workload can block its ability to work in real time and scale smoothly. Using the

newest innovations in optical communication along with QKD equipment allows for quick

transfers of data and a higher number of photons to travel, so this method is practical

where distance is high or signals can be muddled, as found in satellite connexions. Still,

these situations makes it easier to recognise where the system is not working as efficiently

as possible [6], [7]. In these conditions, delays and not enough resources can stand in

the way of main reconciliation processes [8]. If QKD is to be used effectively in today’s

high-volume networks, cloud networks and IoT, it needs to include good and adjustable

error correction methods.

Fig. 1.1 shows the overall working of the autoencoder model on both Alice’s and Bob’s

sides, with a focus on predicting the QBER and integrating it with the Cascade protocol

for error correction [9].

The journey begins with everything Alice does. She obtains a series of shifted data XA

which is the raw key bits that result from the key reconciliation with Bob. Autoencoder
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extracts the transformed data from here on. It is important to have this latent represen-

tation so a meaningful Quantum Bit Error Rate (QBER) can be derived. QBER serves

as a required measure to support the beginning of error correction. Following encoding,

Alice sends her latent data as a message to Bob over a quantum channel.

When working with Bob, he assumes the data is sifted, so he sees it as XB. Eve

has the same data as Alice does. When Bob has the obtained latent vector, he uses the

decoder function from the autoencoder. It reconstructs and strengthens the first main

idea. Cascade utilises Alice’s QBER prediction while setting up its protocols.

They then proceed to use error correction and finish the process by making the final

secret key. To cheque that their keys are identical and safely generated, they use a

randomly picked hash function.

Figure 1.1: Distribution of data points in the generated dataset

As Artificial Intelligence (AI) and Machine Learning (ML) advance, their importance

in improving complex networks and cryptography is now more obvious. Some of the

Deep Learning models mentioned such as RNNs, CNNs and Autoencoders, allow for

streamlining error correction and making a QKD system more secure.

3



1.2 Problem Statement

As Artificial Intelligence (AI) and Machine Learning (ML) advance, their importance

in improving complex networks and cryptography is now more obvious. Some of the

Deep Learning models mentioned such as RNNs, CNNs and Autoencoders, allow for

streamlining error correction and making a QKD system more secure.

Without filling this gap, COD research moves more slowly. There are many excellent

algorithms that reach good results on the NC4K dataset, but they must be tested. For

the first time, we apply EfficientDet and SAM on the NC4K dataset to try and make a

difference. Let’s apply EfficientDet and SAM on NC4K to support the future study of

corrupted objects and learn valuable things. The analysis will show how accurately the

model detects different forms of camouflage and suggest ways to make it better.

While COD helps identify hidden elements in natural pictures, QKD resolves the issues

and misalignment caused by noise in transmission using quantum technology. Still, each

problem needs the ability to understand patterns that are usually hidden from regular

algorithms. While QKD ensures great security, the error correction step remains a major

issue because scalability, security threats and computational problems get in the way.

Cascade Protocol mainly uses rounds of exchanging information that cause more time

and excess computation power to be spent, compared to other methods [5], [10]. When

photons are sent faster, the possibility of error goes up as well. Secure key exchange in

telecommunications over high photon rates calls for an even faster and shiftable correction

system. The difficulties can be improved by applying Neural Networks to forecast and

enhance the optimization of error correction services in QKD. The use of AI models in this

paper lets us reduce computational efforts, fix errors more easily and secure the Cascade

Protocol which makes QKD better fit for practical use. Thanks to NNs being good at

pattern recognition, our technique deals with bad bits in a quicker and easier way, helping

to reach higher throughput.
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1.3 Dataset

1.3.1 NC4K

A significant and extensive dataset is needed for successful Camouflaged Object Detection

(COD). For years, a range of datasets have been created to solve the issue which leads to

significant progress in research on COD and COS.

A well-known dataset for building COD models is CAMO which was first released in

2017 [11]. This information is oriented toward Camouflaged Object Segmentation (COS),

an issue where the goal is to separate the object from its environment. The data includes

1250 photographs split into two data sets, one for training and one for testing, with

examples of both camouflaged animals and camouflaged man-made objects. The ground

truth information was provided in COCO JSON which did not include a great deal of

detail. Then, the CAMO++ dataset [12] appeared in 2021 and it is most likely bigger

than CAMO and offers detailed pixel segmentation annotations.

In particular, the COD10K team [13] developed an important dataset called COD10K

in 2020 which has continued to be used and updated and is often used to measure the

performance of COD algorithms. The dataset includes 10,000 images and the subjects

covered include land animals, aquatic life and objects that mask their appearance in

nature, made by humans. Each image in the dataset has Bounding Boxes, Categories and

Attributes, labels for Objects and Instances and annotation of Edges.

We have used the NC4K dataset [14] for this paper. This dataset is comparatively

new and has nearly 4,000 images. The images vary across various fields, from naturally

camouflaged objects to artificially camouflaged objects. Its ground truth is similar to the

CAMO++’s ground truth. As this is a new dataset there is relatively less work done on

this dataset. Some instances of the NC4K dataset can be seen in Fig. 1.2.

As the NC4K dataset tests segmentation models with camouflage from real cameras,

making quantum datasets of your own will require learning algorithms to handle errors

in quantum communication. Due to progress in QKD, there is little data available which

means researchers must generate new datasets to encourage further study in quantum
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Figure 1.2: Image segmentation of camouflaged animals

communication. While datasets are available, they mainly highlight certain QKD topics

such as taking measurements of amplitude in thermal state QKD [15], reviewing QBER

values across many signal losses [16] and showing plans for space-to-ground QKD [17].

While these datasets are useful for many QKD areas, they miss the main focus of this

study which is to optimise error correction in the Cascade Protocol using neural networks.

1.3.2 Qiskit Generated Dataset

Using Qiskit, a free and open quantum computing framework developed by IBM, we

engineered a dataset to help us study this research gap [18]. People in quantum research

use Qiskit for both improving quantum circuit designs and reducing errors. We have

organised a dataset that was created to support AI error correction in quantum key

distribution. The data includes 120,000 records and each record covers transmission rates

from 1,000 to 12,000 kbps along with noise probabilities between 0.01 and 0.15. For

a reliable comparison of different neural networks in QKD error correction, we chose

attributes such as QBER, Sifted Key Length, SNR and Final Key Length. A plot of the

data can be found in Fig. 1.3.

This dataset is made to give AI models reliable and realistic experience of working in

QKD systems, making the study useful for the real world. Unlike current datasets, this

one provides an entire assessment setup for ML in QKD error correction. Access to these

datasets is needed to advance research in AI-based cryptography and improve how QKD

6



Figure 1.3: Distribution of data points in the generated dataset

protocols are used in practise.

Running the model on over 120,000 examples of data with different transmission con-

ditions increases its potential for general use. Because of this, the model works well in

simulated situations with different noisy conditions. Thanks to simulation, we can easily

adjust and increase experiments which is practical given how challenging and costly it is

to operate physical QKD setups.

1.4 Research Objective and Contribution

For COD, we utilised the EfficientDet algorithm. EfficientDet is a model that is recognised

for achieving a good balance of results and power efficiency. In 2020, Google Research first

introduced this model. It distinguishes itself by having successful object detection with

less energy consumption than current best models. Once this is done, it tends to fit well

on devices with few computer resources. The essential features Strengthening Networks

and BiFPN are important parts of its design.

The Segment Anything Model (SAM), created by Meta AI, has been another tool we’ve

worked with [19]. Through this model, objects can be parted in images, even though those

objects had not been observed before during training. Thanks to Zero-shot Segmentation,
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it identification objects and separate them into regions without needing extra training

data for them. The architecture contains an Image Encoder, Prompt Encoder and Mask

Decoder.

In our experiments with QKD, we have studied how ML can be used in QKD error

correction by training and comparing different neural network architectures. Our main

objective is to use deep learning models to make it easier, scale up the error correction

process and increase its security. We address error patterns, choose better QKD settings

and refine key reconciliation by using Autoencoders, CNN, GRU, LSTM and MLP.

In this article, the performance of several neural network designs is compared in QKD

error correction using a newly introduced dataset. LSTMs and GRUs help catch connex-

ions between elements in a series, whereas Autoencoders reduce the number of dimensions

to allow more accurate and efficient correction methods using data. By looking at these

models, the research tries to find the best design for minimising QBER and producing the

longest final keys. By making AI use more efficient and secure, we hope to create QKD

systems that are easily used in today’s cryptography. Our goal with optimising Cascade

is to make latency less, increase accuracy and lower the amount of information that must

be exchanged using classical methods. In turn, this style produces scalable AI-supported

QKD that might be used for real-time, high-speed routines in environments with limited

resources.
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Chapter 2

RELATED WORK

In this section, we have discussed about the related work done in the field of Camouflaged

Object Detection as well as Quantum Key Distribution.

2.1 Camouflaged Object Detection

2.1.1 Classical Models and Benchmarks

These days, there are big advancements in COD, mainly because of developments in image

segmentation, machine learning and computer vision. Many approaches and techniques

have been put into practise to solve this problem. The literature on COD is summarised

in the text below. We paid close attention to major techniques, datasets and methods.

Additionally, we examine research connected to SAM and zero-shot learning. After exam-

ining the research, we have found where there are opportunities to make further progress

in COD.

Among the first models proposed for object detection in camouflaged settings are

BASNet [20] and EGNet [21]. They were each added in the 2019 update. BASNet designed

a new refine architecture meant for detecting salient objects and that pays attention to

boundaries. Residual refinement and densely supervised Encoder-Decoder play key roles

in its process. As a result, salient object detection’s boundary quality improved thanks to

this development. The network guides its learning of image conversion using IoU, BCE
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and SSIM as part of a combined loss function at various levels of image hierarchy.

EGNet was introduced by Wang et al. [21] to address the challenge of coarse object

boundaries in salient object detection by upgrading the relationship between prominent

entity information and salient edge information that is complementary. To continually

describe these two types of complementing information in a single network, the model

included an edge guidance network (EGNet).

The models SiNet [22] and PraNet [23] made their appearance in 2020. They brought

about important improvements in the fields of COD and medical image segmentation.

This approach uses a straightforward system to address the problem of COD. Wang et

al. built a Search Identification Network (SINET) that performed well on all tested COD

tasks. This model relies on the newly released dataset COD10K which features 10,000

densely labelled images.

2.1.2 Advances in Dataset Creation

There are times when objects are so well hidden by their surroundings that they are

hard to differentiate, so SINet-V2 was created to handle this. The authors presented

the COD10K dataset which contains images of 10,000 camouflaged objects that appear

in different real-world views. All together, there are 78 different categories in the guide,

from animals to man-made objects. The information in the dataset covers object types,

edges, difficult points and particular instances, making it the most annotated dataset on

COD as of now. SINet-V2 shows improved results on every dataset used for testing. As

a result, SINet-V2 outlined what is next for the area of COD.

In 2021, Le et al. [24] put forward a new COD task known as camouflaged instance

segmentation that seeks to disassemble camouflaged objects in images into understandable

elements. To support their investigation, the authors enlarged the CAMO dataset and

added CAMO++ which contains more and varied images with labels for every pixel

grouped by importance. Applying CAMO++ data, the study evaluated recent instance

segmentation methods and set a benchmark for disguised instance segmentation. Even

better performance was achieved using a Camouflaged Fusion Learning (CFL) framework.
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The method is available for anyone to access on the project page and helps with research

on camouflaged instance segmentation.

Improvements in camouflaged object detection and foreground segmentation have been

made with EVPv2 [25], ZoomNeXT [26] and BiRefNet [27]. In 2023, EVPv2 became

available and acts as a joint solution for many foreground segmentation tasks, e.g., SOD,

Defocus Blur Detection and COD. In this work, a new model, Explicit Visual Prompting

(EVP), was proposed and it improved the techniques used in pre-training and prompt-

tuning that come from NLP. Compared to other parameter-efficient fine-tuning solutions

working on many datasets, EVP showed better results by fine-tuning parameters that

focus on what is unique in each image’s visual part. The results of BiRefNet are shown

in Fig. 2.1.

Figure 2.1: Performance of BiRefNet

2.1.3 Recent Advancements

ZoomNeXT [26] was also introduced in 2023 and addresses the complexity of camou-

flaged object detection by proposing an effective unified collaborative pyramid network.

The model works by zooming strategy to learn discriminative mixed-scale semantics and

explores subtle clues between targeted objects and background surroundings. Addition-
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ally, ZoomNeXT introduces a simple yet effective regularisation called uncertainty aware-

ness loss to support predictions with higher confidence in candidate regions. Its task-

friendly framework surpassed the existing state-of-the-art methods in image and video-

camouflaged object detection benchmarks.

In 2024, BiRefNet [27] appeared and offers a new way to improve DIS by using bi-

lateral reference images. Two modules, called the Localization Module (LM) and the

Reconstruction Module (RM) with Bilateral Reference (BiRef) are used alongside each

other to assist in object localization by making use of global semantic information as well

as for rebuilding objects. A new method was added to help the model pay more attention

to details. BiRefNet manages to surpass task-specific methods on all the benchmarks

tested. All their performance results are displayed in Fig. 2.2.

Figure 2.2: Performance of various models on the CAMO dataset

2.2 Quantum Key Distribution

2.2.1 Early Work

The basis of QKD lies in the first steps taken in quantum cryptography research and

practise. A short while later, in 1997, Ekert designed the E91 protocol that used quantum

entanglement and Bell’s theorem to detect anyone listening in and developed a further
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important method for quantum cryptography [28]. Under these rules, Bennett created and

introduced the B92 protocol in 1992. Different from BB84 protocol, where four orthogonal

quantum states are involved, B93 relies only on two similar quantum states, so the setup

is easier, but the process is more vulnerable to interference. It created a simple yet

clever method of quantum key distribution to show that quantum ideas play a big role in

cryptography. In parallel, a toolkit was built to model real-life QKD systems so that they

could address common experiments and highlight how these implementations might be

tested in practise [29]. A QKD model was created by SeQureNet which included photon

loss, imperfect detectors and key effects as limitations [30]. Using models made it easier

for researchers to create working protocols. The improvement in QKD led researchers to

review its issues and find that its ineffective error correction, scaling challenges and low

data rate are the main things keeping QKD from being widely used [31].

Next, a major innovation in error reconciliation made it possible for Alice and Bob

to minimise the information shared with Eve while fixing errors in their key. Initially,

the Cascade protocol was the main technique for handling errors in coding, but Low

Density Parity Cheque (LDPC) codes were introduced later and now provide very good

performance in high noise conditions [32]. Earlier ways of resolving these tasks could only

deal with noisy channels, whereas these new protocols solve them much more efficiently

and on noiseless channels [33]. In these experiments, China and the US have demonstrated

that QKD is reliable over longer ranges and in free space which establishes its secure use

in such areas.

Recent progress in QKD is possible thanks to ML techniques that have solved many

difficulties in quantum communication [34], [35]. A variety of ML models are now used

to predict how much noise will occur in long-distance QKD systems [36]. Among these

models are ones such as Support Vector Machines (SVMs), Linear Regression and others.

Each type of deep learning model is designed to address specific prediction activities, in-

cluding changes in trends, variations in hardware noise and effects due to environmental

instability. In addition, many additional approaches have been developed to fine-tune

methods for estimating key rates and to improve how errors are corrected. Unlike tradi-
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tional methods, ML models quickly respond to new quantum channel conditions and cut

down the number of keys discarded during QKD communication.

In QKD, the Quantum Bit Error Rate (QBER) explains how well the quantum chan-

nel works and if anyone might be listening to the data. ML is being applied in several

studies to improve error correction and the prediction of QBER in QKD [37], [38]. With

the use of different ML techniques, QBER has been roughly calculated and the key recon-

ciliation processes have been smoothened, leading to faster implementations of QKD [39].

Using neural networks trained on simulation and experiment results, QBER prediction

is accurate for different channel and system scenarios. Seeking to improve the Cascade

Protocol, an autoencoder approach is presented along with high training accuracy of 99%

[9].

2.2.2 Machine Learning’s Involvement in QKD

Several times, researchers have shown that faster and more efficient processing is possible

with ML added to QKD systems compared to older methods [40]. In detail, one approach

made convergence 40% faster and required up to 30% fewer computations. We observe

that both convergence time and computational complexity are greatly decreased [41]. It is

clear from the data that machine learning can improve QKD by fixing some challenges and

creating more adaptable networks. By employing several neural networks, we calculated

the key lenght in QKD and we created a fresh dataset to teach the models used in QKD

research. In this collection, more than 10,000 data points have been collected, covering

channel states, numbers of photons and the key lengths that can help create later QKD

prediction models.

ML is now recognised for its growing impact on security and efficiency in QKD, thanks

to these practise experiments. Uniting ML models and QKD technology significantly

speeds up error fixing, sharpens security defences and makes moving keys more efficient.

ML can detect possible spying or device tampering due to oddity finding and still remain

truthful when different threats occur.
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Chapter 3

METHODOLOGY

This work examines two technologies that may differ in their implementations but still

follow the same scientific methods: Camouflaged Object Detection (COD) and Quan-

tum Key Distribution (QKD). Whereas COD works on improving visual perception with

object detection and segmentation in places with low visibility, QKD adds to quantum

cryptography by making secure key exchanges more accurate. However, both Computer

Vision and Medical Imaging use advanced statistics, loose neural structures and measure

effectiveness using metrics that target accuracy. Because we share the same principles, our

larger objective is to use machine learning advances to help make accuracy and reliability

better in areas where traditional systems struggle.

For this first stage, EfficientDet and SAM are applied to the NC4K dataset to improve

the location and outline of camouflaged objects in high definition images. In the second

part, we perform real QKD experiments with Qiskit and gather a range of results which

we then analyse with various neural networks to find ways to minimise the QBER. Both

methods combine deep learning with the unique challenges in visual and quantum areas

so as to provide practical and advanced solutions that meet higher accuracy, security and

efficiency levels.
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3.1 Proposed Methodology for COD

3.1.1 Our Novel Approach

We use the NC4K dataset as the base for our approach. All of the 4,121 high resolu-

tion pictures contain pre-labelled segmented images which accurately highlight where the

hidden camouflaged objects are. By having prepared ground truth, we didn’t need to go

through every image ourselves and mark out objects for training.

Our work relies on the D5 version of the EfficientDet model that provides an optimal

level of accuracy and efficiency. Before being used, the D5 model examines a large set of

images to help with feature extraction. EfficientDet gets the NC4K dataset to train itself

on recognising camouflaged objects from their ordinary surroundings.

To know how EfficientDet works we first have to draw light on Feature Pyramid

Network (FPN). It works on the standard idea of executing the algorithm on numerous

resolutions of the same image in the hope of catching both small and large scale phenom-

ena. Iqbal et al. presented Fig. 3.1 in their paper [42] that in FPN they use feature

maps on different resolutions instead of the different resolution images. In Fig. 7, the

traditional backbone of CNN is represented by the bottom up and the feature fusion at

different scales is represented by the top down. The concept after the lateral connections

was to join low resolution feature maps that are rich in features with less meaningful

feature maps with high resolution.

Figure 3.1: Feature Pyramid Network architecture

According to Fig. 3.2 presented by Niu et al. [43] in their paper, the BiFPN acts as
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the feature network, that continuously applies bottom up and top down bi feature fusion.

These mixed features are given to a box network and class to generate bounding box

predictions and object class. They are shared at all levels of features equally.

Figure 3.2: Network architecture of EfficientDet

3.1.2 Existing Results

We detected objects using EfficientDet, but also used SAM to enhance the segmentation

of concealed items. SAM’s zero shot segmentation model benefits from both the images

and the known ground truth masks of the NC4K dataset. Working together, SAM and

EfficientDet helped SAM find a way to connect image features and object borders, possibly

leading to improved accuracy of those segmentation masks produced by EfficientDet.

For these tasks, IoU and Dice coefficient are commonly accepted evaluation metrics,

so we used them. IoU shows what parts of the predicted mask and the ground truth

match and Dice coefficient cheques how similar their union and intersection are.

We aim to achieve an accurate and robust system for camouflaged object detection

in diverse natural environments by implementing the combined strengths of EfficientDet

and SAM. Some comparative results on the NC4K dataset are presented in Table 3.1.

Table 3.1: Performance of different models on the NC4K dataset
Model S Measure Weighted MAE Year

F Measure
BiRefNet 0.915 0.890 0.0023 2024

ZoomNeXt PVTv2 B5 0.903 0.863 0.028 2023
ZoomNeXt PVTv2 B4 0.900 0.865 0.028 2023
ZoomNeXt ResNet 50 0.874 0.816 0.037 2023
SINetV2 Res2Net 50 0.847 0.770 0.048 2021
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3.2 Proposed Methodology for QKD

This section is divided into four subsections: QBER Significance, Data Generation, Model

Selection, and Performance Evaluation.

3.2.1 QBER Significance

QBER tells us the amount of bits in the quantum key that were not correct. It is important

to understand QBER if you want to detect and correct errors. Also, when the error

number rises, it may suggest someone is listening in. There are a variety of sources that

create errors in QKD. Such threats consist of disturbances from channels, changes in

the environment, faults with detectors and unlawful eavesdropping. Signal loss and a

broadened wavelength are both causes of channel noise. Environmental change focuses

on upheavals due to temperature swings and vibrations. Dark counts and problems with

timing precision are present in detector problems. The disturbances in eavesdropping are

intentional. All of this adds more mistakes to the process. When QBER is high, the

safety and convenience of sharing the key call for stronger error correction approaches to

secure the final key that’s used. For example, when the QBER in BB84 is above 11%,

we should expect that the protocol is compromised and key distillation cannot proceed

safely.

QBER =
Nerror

Ntotal

(3.1)

where Nerror is the number of incorrect bits detected in the sifted key and Ntotal is the

total number of transmitted key bits.

The Cascade Protocol is widely used in quantum key distribution because it corrects

errors with successful and repetitive parity cheques [44]. Even though Cascade is effective,

newer methods such as LDPC codes are faster and more flexible which becomes apparent

in high speed scenarios. As a result, traditional methods for reconciliation like Cascade

are not practical for fast quantum communication, since they require many calculations

[45]. With Neural Networks, it is possible to make good estimates of QBER and enhance
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error correction, not requiring several repetitions. If deep neural networks, especially

feedforward or convolutional types, are used, the model can detect complex patterns in

bit error records, so it can provide real time estimates and determine suitable solutions

for correcting errors.

3.2.2 Data Generation

Since we couldn’t find any openly available quantum key distribution data, we built our

own dataset using Qiskit, an open source framework provided by IBM. The reason for

scarcity is that quantum communication systems are easily influenced and collecting data

in experiments is very complicated. This means simulations are a useful way to get many

different, replicable training cases without disturbing the real world. With Qiskit, we can

act on quantum-based privacy schemes and test circuits which helps us obtain a dataset

that matches our needs. Running the BB84 protocol through Qiskit’s circuits made it

possible to see a basic but useful version of how qubits are transmitted and measured

in a noisy environment. We examined quantum key distribution using 120,000 samples,

varying both the transmission rates and the noise probabilities within the ranges pointed

out above. We have 7 different attributes in this dataset. A heatmap was also produced

to visualise relations between inputs which confirmed that Noise Probability and Final

Key Length have a strong negative association, supporting the focus of our model on

these factors. You can see this in Fig. 3.3

These attributes are Trial Number to uniquely identify a QKD simulation instance,

Photon Transmission Rate (in kbps) to represent the data transmission speed in quantum

communication, Noise Probability to define the likelihood of an error occurring in the

quantum channel, Quantum Bit Error Rate (QBER) is the primary error metric used for

modelling training, Shifted Key Length is the number of key nits remaining after basis

reconciliation, SNR represents the quality of the received quantum signal, defined as:

SNR =
Psignal

Pnoise

(3.2)
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Figure 3.3: Correlation Heatmap

where Psignal is the power of the transmitted quantum signal, Pnoise is the noise power in

the channel, and Final Key Length is the length of the corrected key after error correction.

By generating a wide range of QKD conditions the dataset enables the training of ML

models that can generalise well across different quantum communication cases.

3.2.3 Model Selection

We examined and compared several neural network models, including MLP, LSTM, GRU,

CNN and Autoencoders, to improve QKD error correction. The models were programmed

to recognise patterns in QBER variations and boost the precision of crucial reconciliation.

It was decided to use neural networks since they display a higher ability to deal with

complex and non linear information in high-dimensional quantum key distribution data

and are able to successfully generalise in a wide variety of test cases.

A Multi Layer Perceptron (MLP) is a feed forward Neural Network that consists of

multiple layers of neurons applying an activation function to its weighted inputs before
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passing the output to the next layer [46]. The transformation is defined as:

y = f(Wx+ b) (3.3)

where W is the weight matrix, x is the input vector, b is the bias term, and f is the

activation function.

These networks work well on patterns of data in order, so they are useful for looking

at QBER trends over several experiments [47]. Runs of QKD simulation involved at least

100 sequential trials, so the QBER results depended on previous observations. Therefore,

models such as LSTM which are designed to work with time sequences, fitted the task

perfectly.

ft = σ(Wf · [ht1, xt] + bf ) (3.4)

it = σ(Wi · [ht1, xt] + bi) (3.5)

ot = σ(Wo · [ht1, xt] + bo) (3.6)

where ft, it, ot are the forget, input, and output gate activations, σ represents the sigmoid

activation function, ht1 is the hidden state from the previous time step, and xt is the input

at time step t [47].

GRUs were designed to fix the vanishing gradient problem that plagues standard re-

current neural networks and even though they are simpler than LSTMs, they still capture

long-term features in data and use less computation than LSTMs [48].

GRUs make use of two gates, an update gate and a reset gate. The update gate chooses

the amount of data from the previous timestep that will be used in the next step and

the reset gate helps choose the amount that should be forgotten [48]. Take a look at how

mathematical operations work for a GRU cell:

zt = σ(Wz · [ht1, xt]) (3.7)
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rt = σ(Wr · [ht1, xt]) (3.8)

h̃t = tanh(W · [rt ∗ ht1, xt]) (3.9)

ht = (1zt) ∗ ht1 + zt ∗ h̃t (3.10)

Here, zt and rt are the update and reset gates respectively, ht is the hidden state at

time t, and xt is the input at time t. The σ function denotes the sigmoid activation, and

tanh is the hyperbolic tangent function.

Our investigation found that the GRU worked fairly well with handling time-oriented

information, but did not perform as well as CNN and Autoencoder models. This can be

explained by our dataset having limited complexity, so advanced temporal models were

not required.

Spatial features are found in QKD data using CNN [49]. The features from the QKD

input were restructured to fit the CNN, so it could learn about the connexions among

noise, SNR and photon rate at different points in space. They philtre input data with

convolution, making use of kernels.

y =
n∑

i=1

xiwi + b (3.11)

where xi represents the input values, wi are the convolutional kernel weights, and b is the

bias term.

Autocoders help reduce the size of QKD data so that corrections can be made more

easily [50]. The reduced dimensions and cleaned high variance aspect in the encoder’s

latent space helped the decoder to provide important information for later classification

and regression.

h = f(Wx+ b) (3.12)

and the reconstruction process is:

x̂ = g(W ′h+ b′) (3.13)
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In this case, h is the latent representation, both f and g are activation functions and

W,W ′, b, and b′ are weight and bias matrices. A full assessment of the error correction

abilities of the architectures was made by calculating MAE, RMSE, RMSLE and Final

Key Accuracy, using them as key metrics.

3.2.4 Performance Evaluation

We evaluated all our models by looking at a set of performance metrics such as: The

Mean Absolute Error measures on average the gap between the predicted value and the

actual measure. The error in a time series prediction is often measured by it. It has the

form:

MAE =
1

n

n∑
i=1

|yiŷi| (3.14)

where yi is the actual value and ŷi is the predicted value. MAE provides a direct inter-

pretation of the average magnitude of error, making it especially useful for understanding

real world deviations.

RMS Error, abbreviated as RMSE, measures the daily variation between regression

results and actual data. As RMSE responds to outliers, it performs well where important

mistakes should not occur such as in safe quantum communication. When you notice

a major change in the length of the secret code or its QBER, it might be sign of a

weakness. Our results indicated that smaller MSE implied the model predictions were

almost identical to the true figures, with few extreme outliers. It was evident that in

general, the data was free of big common mistakes. It is shown as :

RMSE =

√√√√ 1

n

n∑
i=1

(yiŷi)2 (3.15)

Root Mean Squared Logarithmic Error (RMSLE) is an evaluation metric commonly

used in regression problems, particularly when the target variable has a wide range of
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values. It is given as:

RMSLE =

√√√√ 1

n

n∑
i=1

(log(1 + yi) log(1 + ŷi))2 (3.16)

RMSLE penalises relative differences by taking their logarithms, different to the

harsher treatment of large differences seen in RMSE. As a result, when math is used

for variables that can have either a tiny or enormous value, percentages are given a higher

priority than absolute errors.

When used in QKD key prediction, RMSLE shows how precisely the model tracks

changes in key length as they become either small or vary over various ranges. Our

results suggest that the accuracy of all models was high and sustained over different sizes

of sample data.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100 (3.17)

In the way we used it, even though accuracy is usually for classification, we used it to

see how many times the model predicted the exact Final Key Length within a specified

acceptable margin. A high accuracy of 99.897% in our CNN model proves that it can

often make accurate predictions and is suited for real world QKD activities.
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Chapter 4

EXPERIMENTAL SETUP

4.1 NC4K

COD researchers consider the Natural Camouflaged 4K dataset, also called NC4K dataset,

a valuable resource. A large variety of 4,121 high-resolution images taken from the internet

make up this new dataset. Many of these pictures present several natural locales like

forests, open pasture, the sea, mountains and deserts, each with numerous well-hidden

animals, sea animals, insects and man-made objects. A simple example appears in Fig.

4.1. This is shown in Fig. 4.2.

In order to support further research and development on COD, the images in this

dataset are grouped into three categories: camouflaged objects, backgrounds and non-

camouflaged objects. The camouflage objects are clearly labelled in each image on the

website. The annotation set also provides segmented masks for all images.

Figure 4.1: A picture of a fish from the NC4K dataset
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Figure 4.2: Image of an instance of a fish from the NC4K dataset

4.2 EfficientDet

EfficientDet is a model developed by Google Research for object detection. It is one of

the most efficient models, as it prioritizes a balance between achieving high accuracy in

object detection and maintaining computational efficiency. Hence, this model is suitable

for deployment on platforms that offer limited resources.

EfficientDet is separate from its original version, EfficientNet [51]. To make CNNs

more effective at larger scales, EfficientNet proposed compound scaling that scales the

resolution, depth and width together. EfficientDet is mainly recognised for two key as-

pects, compound scaling and BiFPN. All components of the model’s architecture such as

resolution, depth and width, are increased step by step in proportion to the dataset as

the model is trained. This helps every model part impact the model’s end performance

in an effective way. BiFPN which stands for Bi-Directional Feature Pyramid Network,

is a new part of the model that assists with better feature extraction. It supports the

exchange of messages in both from top to bottom and from bottom to top within the

network. As a result, EfficientDet can recognise a larger range of features that matter for

accurate object detection. Multi-scale features are traditionally gathered by the FPN in

a process starting from top and moving to the bottom.

P out
7 = Conv(P in

7 ) (4.1)

P out
6 = Conv(P in

6 +Resize(P out
7 ))... (4.2)
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P out
3 = Conv(P in

3 +Resize(P out
4 )) (4.3)

The equation (1), (2), and (3) were presented by Tan et al. in their paper [?].

4.3 SAM

Segment Anything Model or SAM is designed to find and group objects in pictures. Meta

AI brought it out in 2023. The usual approach to segmentation required lots of data for

every object, but SAM does not need any data for what it is segmenting. SAM is most

valuable due to this feature. In this way, SAM recognises objects in an image without

first needing to learn about them. This means that tasks dealing with hidden or low

occurrence categories are much easier. See Fig. 4.3 to see it.

Thanks to SAM, we have the option to train segmentation using our own prompts and

language. As a result, this feature enables users to adjust the segmentation process more

manually.

Those are the main components found in SAM: the image encoder, prompt encoder

and mask decoder. The image encoder explores the input image and obtains different

features. It uses a pre-programmed Vision Transformer (ViT) to accomplish this. ViTs

can recognise and represent the complex connexions present in images. Prompt Encoder

processes different prompt types including text descriptions, bounding boxes and segmen-

tation masks to learn what segmentation is desired. Based on information gathered from

the image features and prompts, Mask Decoder produces a segmentation mask for each

item shown in the picture.

4.4 Qisbit

QNu Labs built Qisbit, a quantum key distribution simulator, so that users can use it

easily to simulate QKD protocols. Since users can change noisy levels, approaches to

matching the basics, error correction and privacy amplification, the simulator gives a

good platform for learning about real-world problems in QKD. This paper benefited from

27



Figure 4.3: SAM being used for masking an image

Qisbit-generated data that simulated what QKD operations would be like in practise.

Key elements of the datasets included raw input keys, how many errors were found and

secure key length which allowed for training and validation of deep learning in QKD error

correction.

Using Qisbit’s tools, we were able to simulate the kinds of situations often seen in real

QKD systems. Because of this, the model had access to a broad variety of error samples

and encryption results which enhanced its adaptability in various conditions. This work

benefited greatly from Qisbit, as it made it practical to move between lab theories and

real engineered QKD systems.

4.5 Google Colab

Both the Camouflaged Object Detection (COD) and Quantum Key Distribution (QKD)

error prediction research use Google Colab as their main tool for experimenting. Since we

integrated GPU and TPU, training and inference of deep learning models have become

much faster and easier. Thanks to Colab’s shared environment and cloud storage, we

could make quick changes, follow different versions of models and test multiple kinds of

models.

Researchers used Colab to handle the data generated with Qisbit, train the neural

networks and deep learning models and cheque how well the system worked. Just like

in YCB-video, Colab delivered the computation required to adjust the EfficientDet and
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SAM model, run tests on NC4K and view the results. Because it works with Python

libraries such as TensorFlow, PyTorch, OpenCV and scikit learn, developers found it easy

to finish end to end work for both projects.
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Chapter 5

RESULTS AND DISCUSSION

In this chapter we analyse the experimental outcomes obtained from the two main part

of our studies that are Camouflaged Object Detection (COD) and Quantum Key Distri-

bution (QKD) error correction. We compared the performance of the proposed models

using standard metrics and discuss the importance of the results in relation to existing

approaches. For each component both quantitative and qualitative analyses are included

to provide a better view of the model behavior, strengths, and limitations.

We have analysed the results using accuracy, error distribution, inference efficiency

and how adaptable the models were. Next, we examined what limits there are and how

further work might progress. The purpose of this study is to explain the model selection

and suggest areas where results could be improved in practise.

5.1 Overall Outcome for NC4K Dataset

The approach we use reached promising performance when detecting camouflaged items

in the NC4K data. By using the dice coefficient to compare the predicted masks to the

actual ones, we measured an average of 87.87% similarity between them. The strong result

shows that our method separates camouflaged objects from the background successfully.

On the other hand, IoU which cheques how much predicted and ground truth masks have

in common relative to their whole, provided an average score of 81.18%. Even though

this shows effective segmentation, it also points out a chance to improve detecting the
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edges of hidden objects. The findings are shown in Fig. 5.1. An elevated Dice coefficient

reflects the model’s successful manner of segmenting different objects. The low IoU shows

that working on the model will help it better determine the delicate edges of camouflaged

things.

Figure 5.1: Results of EfficientDet with SAM on NC4K

5.2 Overall Outcome for Quantum Key Prediction

5.2.1 Different Measurement Metrics

Five different deep-learning models were used to cheque which one provides the most

effective error correction in QKD: Autoencoders, CNN, GRU, LSTM and MLP. The

results for each model on the test dataset are shown in Table 3.1.

Table 5.1: Performance comparison of models over different evaluation metrics
Model MAE RMSE RMSLE Accuracy
MLP 23.236 28.594 0.014 29.812%
LSTM 5.735 7.580 0.012 85.137%
GRU 28.661 38.454 0.019 26.616%
CNN 1.571 2.111 0.002 99.897%

Autoencoder 3.309 4.066 0.002 99.334%

The CNN model done best, with an accuracy of 99.897%. It could be because CNN

has the skill to notice local variations in the data and their connexions across space,

just like the arrangement of errors in QKD devices. The model also performed very well,

reaching 99.334% accuracy and only having a small low value for MAE (3.309) and RSME
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(4.066). The model compresses input data and then reconstructs the original data from

its compressed version. This ability allows the system to remove irrelevant noise from

useful signals. It works well when a QKD system is surrounded by noise. The LSTM

model was able to predict data accurately. It showed accuracy of 85.137%. It further

shows that LSTM is able to learn how events are connected over different time frames.

These systems let us use their main advantage, as errors will keep changing over time

during their operations. The combination of RNN models did not do as well as expected;

MLP came in second with 29.812 and the worst result came from GRU at 29.616, showing

that these models were challenged by the complexity of QKD errors.

Such stability means they can be used in QKD systems, as consistent behaviour is

essential in applications that use them promptly. LSTM training showed that the valida-

tion loss sometimes fluctuated around a normal figure which suggests it was only mildly

affected by hyperparameters and learned steadily most of the time. Convergence was an

issue for both MLP and GRU because their high validation loss hampered them.

5.2.2 Error Distribution

We have generated graphs that visualise the error in key length for all the working models.

The Error Distribution for MPL is given in Fig. 5.2, while Fig. 5.3 displays it for

LSTM. When measured against other models, GRU showed the least success and its

Error Distribution is seen in Fig. 5.4. In this case, CNN and Autoencoders worked well

and the distribution of their errors is displayed in Fig. 5.5 and Fig. 5.6. The errors of

CNN and Autoencoder are mainly around the middle or zero which means both models

are accurate. It seems that performance of the LSTM model varies slightly due to the

wider error spread. Having so few erroneous keys makes the model’s behaviour consistent

which is significant for the security of QKD processing pipelines. Because both models

have a high number of large and scattered errors, MAE and RMSE are noticeably higher

for them. We found that our plot of predicted and actual key length revealed the same

outcomes.

To decide if these models can be used in real-time QKD systems, we looked at how fast
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Figure 5.2: Error Distribution chart of MLP

Figure 5.3: Error Distribution chart of LSTM

Figure 5.4: Error Distribution chart of GRU

33



Figure 5.5: Error Distribution chart of CNN

Figure 5.6: Error Distribution chart of Autoencoders

34



they trained and how quickly they made calculations. Due to how fast inference happens

in CNN and Autoencoder, they are an appealing choice for quantum communication using

limited resources. The computational efficiency for every architecture is listed in Table

5.2.

Table 5.2: Computational performance of models
Model Training Time (min) Inference Speed (ms/sample)
MLP 5.4 0.09
LSTM 12.7 0.15
GRU 10.5 0.12
CNN 8.1 0.08

Autoencoder 9.3 0.11

This model ran the fastest and was the most accurate out of all the other models tested.

This approach showed excellent performance, succeeding in attaining both accuracy and

a reasonable amount of computation. Because of their larger architecture, LSTM models

usually take the longest time to train among the models examined.

5.3 Limitation

Both studies have their separate limitations and we have discussed them in this section.

This section shows the limitations of the research setup and knowledge in the presented

domain.

The approach we suggested produced good outcomes, yet there are still challenges

that should be addressed. Originally, the biggest concern was the huge size of the NC4K

dataset. Even if the NC4K dataset is large, there are other, even larger datasets available.

There are other datasets such as COD10K, that exceed the size of the NC4K dataset.

Furthermore, the performance of the model may be connected to how diverse the objects

in the NC4K data are and how high the image resolutions are. We should point out that

the findings from this study do not fully apply to using deep learning on videos or live

material. If these issues are overcome in future research, COD systems will become both

more powerful and better able to adapt.

Even though the results are very good, we must recognise several limitations. Instead
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of using QKD hardware to obtain the data, we generated our dataset using Qiskit sim-

ulations. Still, simulations act as a first phase for prototyping, helping you practise and

test models before putting them into operation. This type of dataset gives an optimised

space for testing simulations, but it still leaves out details like poor hardware, outside

disturbances or attacks from ill-wishers. In optical QKD, problems such as phase drift

and misalignment of polarisation can have a strong effect on how fast keys are produced.

In the future, the models should be tested on actual QKD systems to cheque how robust

they are in this type of experiment. Even so, it is not clear how well these models adapt

in real time to new and changing levels of quantum noise in the circuit. In future, exper-

iments might use online learning methods or adjustable philtres to account for changing

levels of noise in the environment.

Due to the nature of training LSTMs and GRUs, our experiments have become more

time-consuming which also involves higher computational costs than using CNNs and Au-

toencoders. Despite this, if precision of the predictions is more important than how fast

results are delivered such models could work well. We can make further improvements us-

ing pruning or quantization techniques to ensure our quantum model runs well on devices

with limited resources and lowers the time needed for inferences. Furthermore, although

forecasting Final Key Length and QBER were the main research points, key research

topics such as channel stability, identifying eavesdroppers and managing the process of

key reconciliation were not considered. If multi-objective learning is used, models can

maximise performance in security and communication metrics together. Reinforcement

learning does this by setting proactive protocol parameters quickly, whereas adversarial

training helps models spot or resist when an attack happens.
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Chapter 6

CONCLUSION AND FUTURE

SCOPE

This chapter wraps up by describing the main points and findings developed in the two

main research paths discussed in this work: studying Camouflaged Object Detection

(COD) with deep learning and QKD error correction through machine learning. They

have different uses, but they share the same purpose of overcoming big, important issues

with AI methods such as spotting objects or hackproofing quantum communication. Using

specialised datasets, matching models and strict evaluation tools, this research has shown

that deep learning is useful for handling real-world problems.

By collaborating across disciplines, we have looked into how EfficientDet, SAM, CNNs

and Autoencoders can be adjusted and used to perform well in particular cases. We have

found that, when combined with specific requirements, AI can truly drive important

changes. In the following portions, we describe essential findings from both COD and

QKD optimisation works and suggest valuable ideas for upcoming AI projects in practical

settings.

6.1 Overall Conclusion

For our COD method, we explained why EfficientDet and SAM perform well and together

outperform other models. By using this technique, the team obtained notable outcomes
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on the NC4K dataset and proved that it detects camouflaged objects effectively. The

Dice metric proved segmentation accuracy; however, IoU suggests the model could im-

prove with boundaries of objects. Work on the model will next address fine margins and

investigate additional approaches like better data augmentation and new type of model

structures. Therefore, we plan to push the limits of camouflaged object detection by

looking into the suggested methods and comparing ourselves to current best practises.

Our study in the second paper shows that deep learning greatly reduces the error rate

of QKD by precisely estimating the Final Key Length and increasing the QBER. As a

result, errors are managed more efficiently and the secure key is preserved which is crucial

for stable quantum communication. The model achieved almost perfect accuracy and had

few prediction errors. Because it is both computationally inexpensive and fast to use, this

approach is suitable for live use in QKD protocols. The Autoencoder architecture showed

excellent results, so it became a good candidate for optimising QKD errors. Thanks

to its unsupervised learning, it is able to learn complex QKD error behaviours, even

in fast-changing environments without needing labelled inputs. Of these models, LSTM

performed the best and was not far from average accuracy. LSTM offer an average level of

accuracy, but we can apply them when the data or channel depends on time or sequence.

MLP and GRU models are less compatible for this case as they were not able to

generalize QKD error patterns. There is a scope of improving these models by doing

architectural tuning or hybrid models. These results shows the potential of AI driven

solution in the field of QKD efficiency, reducing computational overhead, and improving

real life scalability. For future work we could check reinforcement learning or hybrid

quantum classical models to further improve adaptability and performance in evolving

QKD systems.

As a result, we can use part of this research in fields such as computer vision and

quantum cryptography to obtain results and guide our future work. The COD task indi-

cated that designing the architecture to cover various visual features improved detecting

ambiguous scenes. According to the QKD work, neural networks are good at identifying

patterns found in encryption errors and using them to create secure keys. Both approaches
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highlight that data-driven methods are flexible and successful in handling difficult and

precise challenges. Investigating AI in these ways increases research on AI as well as helps

promote interdisciplinary approaches to current technological problems.

6.2 Future Scope

We have achieved excellent results with the method we propose in the first paper, but there

is still more that can be improved and worked on in the future. It’s important to improve

how well the IoU evaluates results. As a result, we could enhance the model structure

or set the best hyperparameter values to boost the quality of detecting boundaries. A

range of experiments and specially created architectures may help improve performance

further. We aim to promote progress in COD and update detection tools applied in

practical situations by studying these future topics.

Our schedule now includes validating the trained models on real QKD hardware to see

their performance in real-time uses. Partnering with places that have QKD testbeds such

as quantum labs or institutions, could help reduce the gap between what is simulated and

what is actually performed. Extra optimization of CNN and Autoencoder architectures is

needed to make our work suitable for use in real-time quantum communication systems.

The integration of reinforcement learning can allow QKD protocols to modify their set-

tings on the fly to suit changes in the environment’s noise level which improves how QKD

protocols adapt. Tweaking the basis reconciliation threshold or privacy amplification ratio

in real time could greatly improve the amount of secure keys generated.

In addition, I will examine aspects of security by introducing attack aware ML models

to consider adversarial attacks and eavesdropping detection. Adversarial training and

techniques using Generative Adversarial Networks (GANs) are part of this effort. In

order to enhance AI driven QKD optimisation techniques, we can increase the size of

our dataset to cover different conditions found in quantum networks such as QKD with

satellites and fibre optics. The use of these setups created new obstructive factors such as

high delays and issues caused by nearby weather. This makes it necessary for ML models

to figure out ways to cope with these problems.
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For future, an approach that can draw insights across both studies could open new

research directions. For instance, techniques which were used to improve boundaries

precision in COD such as attention mechanisms or transformer based models may en-

hance QKD model understandability or robustness under noisy conditions. The success

of lightweights models and unsupervised architectures in QKD optimisation could in-

spire more efficient COD pipelines. There is also scope for exploring hybrid applications

where quantum-secured communication supports AI based surveillance or remote detec-

tion tasks. Linking such cross domain applications represents a promising perimeters for

future related research.
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