

Early Stage Bug Detection and Triaging using Machine

Learning

Thesis Submitted

in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF TECHNOLOGY
in

Data Science

by

Aman Srivastav
(2K23/DSC/15)

Under the supervision of

Priya Singh

Assistant Professor, Department of Software Engineering,

Delhi Technological University

Department of Software Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Bawana Road, Delhi - 110042, India

May, 2025

ii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE DECLARATION

I, Aman Srivastav, hereby certify that the work which is being presented in the thesis entitled

Early Stage Bug Detection and Triaging using Machine Learning in partial fulfillment of the

requirements for the award of the Degree of Master of Technology submitted in the Department

of Software Engineering, Delhi Technological University in an authentic record of my work

carried out during the period from August 2023 to May 2025 under the supervision of Miss Priya

Singh.

The matter presented in the thesis has not been submitted by me for the award of any other

degree of this or any other Institute.

Aman Srivastav

This is to certify that the student has incorporated all the corrections suggested by the examiner

in the thesis and the statement made by the candidate is correct to the best of our knowledge.

 Signature of Supervisor Signature of External Examiner

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road,Delhi-42

CERTIFICATE BY THE SUPERVISOR

I hereby certify that the project entitled “Early Stage Bug Detection and Triaging using

Machine Learning” which is submitted by Aman Srivastav (2K23/DSC/15) to Department

of Software Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi in

partial fulfilment of requirement for the award of the degree of Master of Technology in

Data Science, is a record of the project work carried out by the student under my

supervision. To the best of my knowledge this work has not been submitted in part or full

for any degree or diploma to this university or elsewhere.

Place: Delhi Mrs Priya Singh

Date: (Assistant Professor, SE, DTU)

iv

ABSTRACT

Early stage bug prediction and triaging of software are essential to ensuring software reliability

and minimizing downstream maintenance. With growing software systems, hand triaging does

not work, is error-prone, and cannot be scaled. Recent progress in machine learning presents

promising opportunities for automating these tasks by applying machine learning to learn

historical software repository trends. This study explores various supervised machine learning

methods for binary prediction of bug reports to facilitate early-defect prediction and triaging.

Various classifiers such as ensemble methods, support-vector machines, and neural networks

were created and tested on real-world bug databases. To deal with class imbalance, both the

oversampling and undersampling methods were utilized and their effect on model

performance was determined. The main performance metrics to be evaluated were accuracy,

F1-score, and area under the receiver operating characteristic curve. Model comparison was to

determine the most stable and consistent models in terms of these performance metrics, with

special interest in how sampling strategies affected consistency of performance.

The analysis explored model sensitivity to class imbalance and behavior pattern as the

characteristics. It was found that ensemble techniques were very sensitive to sampling

methods and outperformed regular classifiers when the issue of data imbalance was

predominant. This study contributes to the literature a strong early bug prediction framework

with machine learning that provides explicit model and sampling choice advice to improve

performance, especially when dealing with imbalanced datasets. The new approach makes it

simple to create smart automatic tools for bug triaging to aid software teams in maximizing

defect management effectiveness and code quality at scale.

v

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

ACKNOWLEDGEMENTS

The achievement of Major Project II necessitates the assistance and support of a large

number of individuals and an organization. This project’s report writing opportunity allows

me to thank everyone who contributed to the project’s successful completion. I would want

to express my sincere gratitude to my supervisor, Miss Priya Singh, for allowing me to

work on my project under her supervision. Thank you very much for your support,

encouragement and suggestions; without then, our work would not have been successful. Her

unwavering support and inspiration helped me to see that the process of learning is more

important than the end result.

I want to express my sincere thanks to the faculty and personnel at the institution for

providing us with a infrastructure, laboratories, library, suitable educational resources,

testing facilities, and a working atmosphere that didn’t interfere with our ability to

complete our work.

I would also like to thank all of my friends and classmates for their unwavering support.

They have assisted me in every way, providing me with fresh ideas, the knowledge I needed,

and the will to finish the assignment. I want to express my gratitude to my parents for always

supporting me after finishing my task.

Aman Srivastav

(2K23/DSC/15)

M.Tech (Data Science)

Delhi Technological University

vi

TABLE OF CONTENTS

CANDIDATE’S DECLARATION ii

CERTIFICATE iii

ABSTRACT iv

ACKNOWLEDGEMENT v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Research Objective 1

1.3 Dissertation Organisation 3

CHAPTER 2: BACKGROUND 4

2.1 Software Bug Prediction 4

2.2 Software Bug Triaging 5

CHAPTER 3: LITERATURE REVIEW 7

CHAPTER 4: METHODOLOGY 10

4.1 Baseline Models 10

4.2 Dataset Used 11

4.3 Evaluation Metrics 11

4.4 Parameter Setting 12

CHAPTER 6: RESULT 14

6.1 Bug Predictions 14

6.2 Bug Triaging 19

6.3 Discussion 20

CHAPTER 7: CONCLUSION AND FUTURE WORK 23

References

vii

LIST OF TABLES

Page No.

Table 4.1 Summary of Dataset used 11

Table 5.1 Results of different models with sampling method 15

ix

LIST OF FIGURES

 PAGE NO.

Figure 2.1 Flowchart of Software Bug Prediction 4

Figure 2.2 Flowchart of Software Bug Prediction 5

Figure 2.3 Processing of TF IDF 6

Figure 5.2 Model wise Accuracy Evaluation in Multi Class

Classification

15

Figure 5.3 Model wise ROC AUC Evaluation in Multi Class

Classification

15

Figure 5.4 Model wise F1 score Evaluation in Multi Class

Classification
15

Figure 5.5 Model wise Accuracy Evaluation in Binary Class

Classification

27

Figure 5.6 Model wise ROC AUC Evaluation in Binary Class

Classification

27

Figure 5.7 Model wise F1 Score Evaluation in Binary Class

Classification
27

ix

LIST OF ABBREVIATIONS

TF-IDF: Term Frequency-Inverse Document Frequency

SVM: Support Vector Machine

CPDP: Cross-Project Defect Prediction

ANN: Artificial Neural Network

KNN: K-Nearest Neighbors

NLP: Natural Language Processing

IDE: Integrated Development Environment

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

1

Chapter 1

INTRODUCTION

1.1 Motivation

The continuous need for fast and reliable software development in the present era of advanced

technology has led to software systems being much more complicated, large, and modular than

ever before. Modern practices like Agile and DevOps focus on continuous integration and

continuous deployment (CI/CD), where software has to develop rapidly with high quality and

performance.

Traditional defect discovery methods that so heavily depend on hand-code examination, unit

testing, and individual developer expertise of course don’t do well in keeping up with the rising

quantities and velocity of software system change. Likewise, the defect triage aspect of

assignment of reported defects to the best-developing developer to repair up is also done largely

by hand based on developer familiarity or prior contributions. This manual procedure not only

wastes valuable time and effort but also produces inefficiencies, inconsistencies, and delays in

tasks, particularly in large distributed teams or open-source projects.

The motivation for this study stems from the need to accelerate the efficiency, accuracy, and

scalability of bug detection and triaging processes early in software development. As ML, data

mining, and NLP have made tremendous progress, the possibility of automating and smartly

optimizing these exists with great enthusiasm ahead. All code modifications in the past, histories

of commits, bug reports, and activities by developers can be fed through machine learning

algorithms trained on them to identify underlying patterns and predictive signs that had eluded

human systems.

1.2 Research Objective

The primary objective of this research is to create an intelligent, autonomous system that will

assist software teams in identifying bugs early during the development phase and assign them to

the most suitable developers without placing much emphasis on human intervention. The

ultimate objective is to improve software development to be more efficient, dependable, and less

susceptible to time-consuming delays caused by hidden defects and poorly managed bug reports.

In order to do so, the thesis sets the following proper goals:

Describe the currently prevalent limitations of early bug detection and attributing these to

programmers—i.e., primarily the frailties of non-automated methods in the context of modern

fast-paced high-volume software.

Collect genuine information from real-world genuine open-source software projects, for

instance, the Eclipse project, and making the study applicable to common scenarios facing

programmers on a day-to-day level.

2

These are some Reaseach objective which will be answer in Research and Discussion section:

• RO1: How can ML models be optimized to improve bug prediction accuracy across diverse

projects and datasets?

• RO2: How do data sampling techniques like SMOTE and NearMiss affect bug prediction

performance under class imbalance?

• RO3: Which feature engineering methods best enhance the predictive accuracy of bug prediction

and triaging models?

• RO4: What are the key limitations of ML-based bug triaging systems, and how can scalability and

adaptability be improved?

• RO5: How do modern software architectures (e.g., microservices) influence the effectiveness of

traditional bug prediction models?

1.3 Dissertation Organization

This research work is divided into seven comprehensive chapters, each contributing

systematically to the investigation and implementation of the topic “Early Stage Bug Detection

and Triaging Using Machine Learning Approaches.”

Chapter 1: Introduction: The opening chapter sets the foundation by explaining the underlying

motivation for this research. It focuses on the growing size and complexity of modern software

systems that render early bug detection and triaging an important issue. It accounts for the

shortcomings of conventional, human-based methods as they bring inefficiencies to large

projects. The chapter identifies the research problem, the goals to be met, and the significance

of incorporating machine learning to complement bug detection and developer assignment.

Chapter 2: Background: This chapter gives background and conceptual information required

to understand the scope of this research. It gives definitions of the most significant concepts of

defect identification and bug report triaging, and how they relate to the software engineering

process. The shortcomings of the traditional approaches to addressing bug reports are described.

This chapter also gives an introduction to the Eclipse dataset, why it was selected and how it

meets the objectives of this research.

Chapter 3: Literature Review: This chapter provides definitions of the main concepts of defect

identification and bug report triaging and how they relate to the software engineering process.

The limitation of traditional methods of bug report management is presented. The Eclipse dataset

is presented in this chapter, why it was chosen and how it facilitates the objectives of this study.

Chapter 4: Methodology Setup: It describes how the dataset was prepared for experiments and

train and test data were managed. Different evaluation metrics—such as accuracy, precision,

recall, F1-score, and Top-K accuracy—are proposed. The process of model optimization by

techniques such as grid search is also presented in this chapter certain classifiers are also given.

3

Chapter 5: Results and Discussion: This section describes and discusses the result of the

experiments carried out. It presents comparative results of several classifiers and discusses the

relative strengths and shortcomings of each one of them. The result explains how incorporating

machine learning with software engineering practices is effective, resulting in better accuracy

for bug detection and improved issue triaging. Observations are put into context relative to real

development environments.

Chapter 6: Conclusion The last chapter of this work and emphasizes the importance of

automating developer triaging and bug detection through machine learning models.

4

Chapter 2

BACKGROUND

2.1 Software Bug Prediction

Software bug prediction is the process of detecting parts of the software system likely to contain

faults or bugs before they exist when executed. Software bug prediction is a prophylactic quality

assurance technique whose purpose is to make the software more dependable and supportable

by forecasting probable bugs at early development stages. Defect detection in the early stage

enables development teams to utilize resources optimally, lower debugging expenditures, and

enhance overall system usability.

Modern bug prediction tools are mostly machine learning and data-driven model based, and

get trained on past project data like source code metrics, change history, commit logs, and

existing bug reports. They learn to detect predicting patterns in code that guide them to mark or

rank code artifacts (e.g., files, classes, or functions) as to how likely they are to be defective.

Figure 2.1: Flowchart of Software Bug Prediction…[1]

..

5

2.2 Software Bug Triaging

Software Bug Triaging is a very important activity of the software debugging and maintenance

process. It is the process of classification, prioritization, and allocation of reported software bugs

to the relevant developers or development teams. The goal is to achieve timely and effective

software defect fixing to preserve the quality, reliability, and performance of the software

product. As software complexity grows, and particularly in collaborative or opensource

software, the number of bug reports grows exponentially. Handling each one manually results

in a bottleneck, typically resulting in delays, developer overload, and resourcewasting. It thus

becomes not just an administrative issue but also a candidate for optimization and automation

through smart systems.

Figure 2.2: Flowchart of Software Bug Triaging…[2]

Machine Learning

Machine Learning is a major sub-field of the broad area of Artificial Intelligence, committed to

the development and creation of mathematical algorithms that can equip computer systems with

6

the capacity to learn automatically from data and improve their performances continuously over

time without being specifically programmed for every particular task. Their following a

predetermined set of fixed rigid human rules. Machine learning works on process of training and

testing. During training, the model is provided with a set of known inputs and corresponding

outputs.

Learning takes place through model parameter optimization in a bid to reduce the difference

between model predictions. This is usually achieved through iterative methods like gradient

descent, which iteratively updates the model based on estimated errors or loss functions.

TF-IDF

TF-IDF operates on the basis of using the term of two parameters: Term Frequency (TF) and

Inverse Document Frequency (IDF). Term Frequency gives an estimate of the frequency of a

term in a particular document. The term will score highly if it appears more frequently. But

frequent words such as ”the” or ”error” might not be significant if they appear in all documents.

This is where Inverse Document Frequency comes in—reducing the weightage of those words

that have an extremely frequent appearance and amplifying the weightage of words having a

relatively smaller occurrence within a given document. The IDF is calculated through the

logarithm of the quotient of the entire documents and word appearance in those documents. Such

a change makes it so that the model places a greater emphasis on less common or more rare

discriminative words for the whole corpus.

Figure 2.3: Processing of TF-IDF…[3]

..

7

Chapter 3

LITERATURE REVIEW

Software systems are becoming more and more complex, and software bug management is

consequently a crucial part of the development and maintenance process. Bug prediction, which

tries to identify potentially buggy modules prior to release, and bug triaging, which is assigning

priority new bug reports to the best-suited developer or team, are two such critical activities.

Applications of machine learning in these areas have been extremely promising in automating

and enhancing efficiency and accuracy. Early research employed conventional machine learning

techniques like decision trees, Naive Bayes, support vector machines (SVMs), and random

forests to forecast buggy components from static code metrics and software change history.

Paper Title & Year Models Used Major Finding Limitation

Mentioned

Predicting post-release

defects with knowledge

units (KUs) of

programming

languages: an empirical

study (2025)[4]

ML models using

language-specific

knowledge units

as features

Language-specific

features improve

defect prediction

accuracy.

Limited exploration

of new feature

sources; focus on

empirical validation.

Buggin: Automatic

intrinsic bugs

classification model

using NLP and ML

(2025)[5]

NLP embeddings

+ SVM, Logistic

Regression

Automated intrinsic

bug identification

improves bug

prediction.

No prior automated

approach for intrinsic

bugs; further

validation needed.

SDPERL: A

Framework for

Software Defect

Prediction Using

Ensemble Feature

Extraction and RL

(2024)[6]

Ensemble feature

extraction (five

pre-trained

models), RL-

based feature

selection

First to combine

ensemble feature

extraction and RL at

file-level for defect

prediction.

Focused on file-level

granularity;

generalizability not

fully explored.

The Good, the Bad, and

the Monstrous:

Predicting Highly

Change-Prone Source

Code Methods at Their

Inception (2024)[7]

Machine learning

models

ML can identify

highly change-prone

and bug-prone

methods early,

supporting Pareto

principle in bug

location.

More difficult-to-

predict methods need

new features for

higher accuracy.

8

Variance of ML-based

software fault

predictors: are we really

improving fault

prediction? (2023)[8]

Various ML

models, focus on

stochasticity and

variance

Highlights variance

and reproducibility

issues in ML-based

fault prediction.

Stochastic elements

in ML models lead to

variance;

reproducibility issues.

Using Defect

Prediction to Improve

the Bug Detection

Capability of Search-

Based Software Testing

(2022)[9]

Defect prediction

models integrated

with search-based

software testing

Incorporating defect

prediction into SBST

increases bug

detection efficiency.

NA

Software Defect

Prediction Using Bad

Code Smells: A

Systematic Literature

Review (2021)[10]

ML models using

code smell

features

Code smell features

are effective for

defect prediction in

various contexts.

Code smell detection

may be subjective;

limited

generalizability.

Software Enhancement

Effort Prediction Using

Machine-Learning

Techniques: A

Systematic Mapping

Study (2021)[11]

Various ML

techniques (not

specified)

ML is effective for

predicting software

enhancement effort.

NA

Big data driven genetic

improvement for

maintenance of legacy

software systems

(2020)[12]

Data-driven

learning +

evolutionary

(genetic

improvement)

models

Combining data-

driven learning with

evolutionary search

aids legacy system

maintenance and bug

fixing.

Focused on legacy

systems; industrial

validation required.

A Systematic Review

on Application of Deep

Learning Techniques

for Software Quality

Predictive Modeling

(2020)[13]

Deep learning

techniques

Deep learning

outperforms

traditional methods

for software quality

prediction.

High training time;

concept and external

threats to models.

Benchmarking

Machine Learning

Technologies for

Software Defect

Detection (2015) [14]

Multiple ML

models

Most machine

learning methods

performed well on

public software bug

datasets.

NA

9

Overall, machine learning has improved bug triaging a lot by enabling automated

assignment, increasing consistency, and being very scalable with big bug databases. Although

standard ML models remain suitable for most cases, current work is aimed at integrating more

contextual information, minimizing class imbalance concerns, and enhancing cross-project

generality so that automatic bug triaging systems are more reliable and flexible in actual software

settings. Therefore, researchers have explored unsupervised and semi-supervised learning in

software bug prediction in order to enable efficient modeling with inadequate labeled data. Li et

al. [15] gave a detailed overview of unsupervised methods, emphasizing clustering and outlier

detection for unlabeled data bug prediction.

Feature optimization has also come into play. Anbu and Mala [16] suggested employing the

Firefly Algorithm to choose optimal features for optimal selection, which resulted in

considerable improvement in defect prediction. Likewise, Siwach and Mann [17] proved that

hybrid feature selection can improve fault localization at an early stage of software development.

Graph-based mode have been a common paradigm. BugPre, version-to-version bug predictor

software proposed by Zhu et al. [18], uses GCNs to find structural dependencies between

software versions and improve the accuracy of bug prediction.

Triaging—allocating bugs to the appropriate developers—has been enhanced using

industrial applications of ML. Kabir et al. [19] examined the usage of supervised classifiers by

companies to label invalid bug reports, maximizing triaging efficiency. Their findings revealed

that most industrial triaging tools leveraging light but scalable learning models.

With the emergence of deep learning, sophisticated models like CNNs and RNNs have been

used to handle code and bug report data. Chakraborty et al. [20] experimented with the

preparedness of deep learning-based vulnerability detectors and depicted model generalizability

as an issue, particularly toward new codebases. Islam et al. [21] empirically explored the

limitation of DL models on actual-world defect datasets, with overfitting and data imbalance

being described as persistent issues. Other major areas of research involve automation of bug

priority and severity tagging. Ali et al. [23] presented an ML-based model for bug priority and

severity prediction using multi-class classifiers for bugs.

10

Chapter 4

METHODOLOGY

This section outlines the dataset utilized, the baseline Machine Learning model selected for
comprehensive analysis, the hyperparameter setting, as well as the evaluation measures included in the

experiment. The machine learning pipeline developed for software bug prediction and triaging

demonstrates a practical and scalable approach to improving software quality and team productivity.

By combining structured code metrics and unstructured text data from bug reports, the system achieves

high accuracy in both tasks and can significantly reduce the manual overhead involved in software

maintenance.

We explored how machine learning can help improve software maintenance by predicting bugs before

they happen and by automatically assigning new bug reports to the right developers. The idea is to

reduce the time and effort teams spend manually identifying risky code or figuring out who should fix

a particular issue. By learning from past data—like old bug reports, code changes, and developer

activity—our system aims to make smarter, faster decisions that support the software development

process.A machine learning-based software bug prediction and triaging system begins by collecting

data from source code repositories like Git or SVN, including code changes, commit histories, and past

bug reports. This data undergoes feature engineering to extract meaningful attributes such as code

complexity, change frequency, and textual patterns from commit messages or bug descriptions. The

features are then cleaned, normalized, and labeled during preprocessing to ensure quality input for

model training. Using this processed data, machine learning models are trained to identify patterns

associated with buggy code and developer behavior.

Once trained, the model performs two key tasks. For new code commits, it predicts whether the changes

are likely to introduce bugs and flags risky commits for review. In parallel, when a new bug report is

filed, the system suggests the most suitable developer or team for resolution based on historical patterns

and expertise. The outcome is a streamlined process where potential bugs are caught early, and issues

are efficiently routed to the right personnel, improving software quality and reducing response time.

5.1 Baseline Models

Prior to machine learning adoption, bug triaging and prediction were largely statistical model, heuristic rule, and

expert/manual-based. In prediction of bugs, analysis of code metrics, threshold-based heuristics, and regression

models were prevalent methods being employed. These methods utilized software metrics such as code

complexity, code churn, and lines of code to predict potential buggy modules. Bug triaging was normally done

manually by project managers or lead developers assigning bugs based on what they knew of their codebase and

developer ability. Simple heuristics or static routing rules like keyword matching or file ownership were used in

a few projects to help with assignment. But such classical approaches were plagued with subjectivity, limited

scalability, and inability to model rich inter-relations in big and dynamic software systems.

1. Statistical Model:
Mathematical equations in statistical models define the correlation between measures of software and

defect-proneness. Linear or logistic regression is common in forecasting the probability of bugs from

historical data.

2. Heuristic Rules:

Heuristics capture rules or trends based on expert intuition or experimental outcomes. The rules are

simple and application-specific, e.g., "complexity-high modules have bugs."

11

3. Expert/Manual-Based Approaches:

In such practices, lead developers or project managers manually triage and estimate bugs intuitively by

experience and acquaintance with the codebase. With small teams, the approach works effectively, but

it is not scalable and objective.

4. Threshold-Based Heuristics:

These are establishing static thresholds on program metrics (e.g., cyclomatic complexity > 10) to

identify modules as defect-prone. Although simple to use, they tend to be strict and fail in dynamic or

large systems.

5.2 Dataset Used

The Eclipse software project provides a rich source of historical data suitable for research in

software defect prediction and bug triaging. Various components of the Eclipse Integrated

Development Environment (IDE) have been mined and structured into datasets by researchers

to support empirical studies. These data sources are mainly Bugzilla (for bugs) and repositories

of Git/CVS/SVN (for commit history and code metrics). The most studied modules are JDT

Core, Platform UI, and SWT, to mention a few.

Table 4.1: Summary of Dataset used

5.3 Evaluation metrics

In bug prediction, the software module is either buggy or clean (non-buggy). The issue is being

considered as a binary classification problem. For comparison of how well the models are

performing, the following are utilized:

In bug prediction, the software module is either classified as buggy or clean (non buggy). This

classification task is approached as a binary classification problem. To assess the performance

of prediction models, the following definitions and metrics are utilized:

12

• True Positives (TP): Number of buggy modules correctly predicted as buggy by the

model.

• True Negatives (TN): Number of clean modules correctly predicted as non-buggy.

• False Positives (FP): Number of clean modules that are incorrectly predicted as buggy.

• False Negatives (FN): Number of buggy modules that are incorrectly predicted as clean.

• These four components form the foundation for various evaluation metrics such as:

–
–
–

Precision

Recall

Accuracy

– F1-Score

– ROC AUC

Accuracy:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

(1)

Represents the overall proportion of correctly classified instances.

Precision:

Precision = TP / (TP + FP) (2)

Indicates how many of the modules predicted as buggy are actually buggy.

Recall (Sensitivity or True Positive Rate):

Recall = TP / (TP + FN) (3)

Represents how many of the actual buggy modules are correctly identified.

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) (4)

F1-Score:

The harmonic mean of precision and recall; balances the trade-off between them.

Area Under ROC Curve (AUC-ROC):

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR):

The AUC represents the probability that the model ranks a randomly chosen buggy module

higher than a randomly chosen non-buggy module. A value of 1.0 indicates perfect classification,

and 0.5 denotes random guessing.

5.4 Parameters Setting

Parameters are carried out to achieve the best performance for all machine learning algorithms

used in this study. Random Forest classifier worked best when n estimators = 500, the parameter

specifying how many decision trees make up the ensemble. The max depth parameter was

specified as 50 to restrict the depth of each decision tree to avoid overfitting. The max features

was specified as 0.4 to allow each node to use up to 40 percent of the features for the best split,

which added randomness and caused the model to learn generalization.

13

The parameter that estimated the split quality was specified as entropy, which chooses splits

using information gain only. All these parameters were set optimal after grid search and

validation experiments.

For the KNN algorithm, the model worked best when n neighbors = 11, i.e., prediction for

any instance was made on the most occurring class out of the 11 neighbors. The parameter

weights was ’distance’ with more weightage being assigned to the neighbors which are nearer to

the instance, and the distance metric for measuring the distance between instances was Euclidean

because it is optimal for continuous feature spaces.

For K-Means, applied to unsupervised clustering analysis, the optimal configuration was to

set max iter = 200. This provides enough iterations for the algorithm to converge to stable cluster

centroids. The n init parameter was also set to 10, and the inference was that the algorithm was

executed 10 times with various centroid seeds, and the best outcome (the minimum with in

cluster sum of squares) was kept. The SVM model had the best performance with a regularization

parameter of 10. This larger value penalizes misclassifications more heavily and therefore makes

the model fit the training data better. The gamma parameter that scales the power of the influence

of one training example was 0.01 so that it could accommodate a larger decision boundary. The

kernel employed was Radial Basis Function (RBF), which is well suited to identifying non-linear

patterns in the data. All the parameters were chosen with grid search with cross-validation such

that each model was set to realize its best predictive performance on the provided bug prediction

and triaging tasks.

14

Chapter 5

RESULT AND DISCUSSION

This section reports the findings of the experiments that have been performed to measure the

performance of machine learning-based models that have been proposed for predicting and

triaging bugs at an early stage. The findings are divided into two broad sections: (i) Bug

Prediction and (ii) Bug Triaging. The experiments were performed on the Eclipse bug repository,

which is one of the popular benchmark datasets used in software engineering research.

Performance was measured using standard classification metrics like Accuracy, Precision,

Recall, F1-Score, and AUC-ROC, depending upon the task.

6.1 Bug Prediction

This sub-section discusses experimental results of some machine learning models on the bug

prediction task at early stages with the Eclipse dataset. The models were compared based on

classic performance measures such as Accuracy, ROC AUC, and F1-Score. The results are binary

classification (defective vs. non-defective) and multi-class classification (by severity or number

of defects), considering both under-sampling (USam) and oversampling (OSam) methods for

handling class imbalance. Binary classification identifies whether a module is faulty or not, while

multi-class classification categorizes the faults as minor or major based on the fault type. Baseline

comparison utilizes a dummy classifier that always predicts the majority class and in all instances

produces high accuracy but poor F1-scores. It is therefore crucial to use advances models and

efficient methods in imbalanced datasets in binary and multi-class problems.

15

Table 5.1: Results of different models with sampling method

16

Performance Analysis of Multiclass Classification Models

17

Key Insights

• Highest Accuracy: Support-Vector Machine achieved the highest accuracy of 0.8499,

indicating strong general prediction capability. AdaBoost and Neural Network (without

sampling) also performed well.

• Best ROC Score: Neural Network with USam attained the highest ROC of 0.716,

demonstrating superior ability in distinguishing between classes. Oversampling models

showed relatively lower performance.

• Top F1-Score: The same Neural Network (USam) also delivered the highest F1score of

0.638. Bagging with USam and Neural Network with oversampling followed closely.

• Sampling Impact: USam generally performed better than oversampling (OSam) in terms of

both ROC and F1-score. In contrast, Bagging under oversampling yielded poor results

across all metrics.

• Best Overall Model: The Neural Network model trained with USam consistently excelled

across all three metrics—accuracy, ROC, and F1score—making it the most stable and

reliable binary classifier in this study.

18

Performance Analysis of Binary class Classification Models

19

Key Insights

• Highest Accuracy: The Support-Vector Machine achieved the highest accuracy at 0.8499,

demonstrating strong general predictive performance. AdaBoost and the Neural Network

(without sampling) also yielded competitive results.

• Best ROC Score: The Neural Network with USam achieved the highest ROC score of

0.716, indicating superior class separation capability. In comparison, models employing

oversampling trailed behind.

• Top F1-Score: The Neural Network with USam also achieved the best F1-score of 0.638,

highlighting its balanced precision and recall. Bagging with USam and Neural Network

with oversampling followed with relatively strong performance.

• Sampling Impact: USam generally outperformed oversampling in terms of ROC and

F1score. Bagging classifiers using oversampling performed poorly across all evaluation

metrics.

• Best Overall: The Neural Network with USam consistently performed well across all three

metrics—accuracy, ROC, and F1-score—making it the most stable and reliable model

among the binary classifiers evaluated.

6.2 Bug Triaging

Experiments were performed on the Eclipse bug dataset, which consists of labeled bug reports

having multiple developers associated with them. In order to transform the textual content of the

bug reports into numerical features, the TF-IDF approach was adopted. As the dataset was

characterized by such large class imbalance—where a tiny minority of the developers were

allocated the majority of bug report tasks—Synthetic Minority Over- sampling Technique

(SMOTE) was used. Various machine learning models were trained using preprocessed data.

Performance was verified on Precision, Recall, F1 score, ROC AUC.

Figu5.8 Model performance using TF IDF

Key Insights

• Random Forest achieved the highest F1 Score of 67%, indicating a strong balance

between precision (74%) and recall (61%). It also performed well in terms of AUCROC,

achieving a value of 65.1%.

20

• Logistic Regression and Support Vector Machine also performed competitively, with F1

Scores of 75% and 74%, respectively, and similar AUC-ROC values. These models are

thus reliable alternatives for this task.

• Decision Tree and K-Nearest Neighbor exhibited lower recall and F1 Scores, suggesting

that these models are less suitable for bug triaging tasks using TF-IDF features.

• Overall, ensemble and linear models (such as Random Forest, Logistic Regression, and

SVM) outperformed single-tree and instance-based approaches, emphasizing the

importance of appropriate model selection in achieving optimal bug triaging accuracy and

reliability.

6.3 Discussion

RO1: How can ML models be optimized to improve bug prediction accuracy across diverse

projects and datasets?

Machine learning models of bug prediction can be largely enhanced through refined methods such

as ensemble methods, hybrid models. Recent research emphasizes that different models being used

together or even optimization techniques used collectively—such as Principal Component

Analysis, Linear Discriminant Analysis, and ensemble learning—provide higher accuracy along

with more trustworthy results than when one model is being used separately. There is increasingly

concern for cross-project and transfer learning that renders these models more flexible and effective

across various software datasets.

RO2: How do data sampling techniques like SMOTE and NearMiss affect bug prediction

performance under class imbalance?

The major challenge in software bug prediction could be handling imbalanced data sets—where buggy

samples are overwhelmed by clean samples by a large margin. This tends to make machine learning

models overrepresent the majority class and thus increasingly harder to predict real bugs with accuracy.

Data sampling methods ride to the rescue to help fix this issue.

Oversampling techniques such as SMOTE assist by synthesizing artificial copies of the minority buggy

cases in order to balance the data set. Research has demonstrated that employing SMOTE can boost

model accuracy and robustness considerably, especially when used along with classifiers such as

Random Forest and Logistic Regression. Even better are combination techniques that use oversampling

methodologies such as Borderline SMOTE in combination with undersampling methodology such as

Tomek Links. These techniques not only regularize the data but also eliminate noisy or duplicate cases,

resulting in models that generalize better and produce more correct predictions.

Which feature engineering methods best enhance the predictive accuracy of bug prediction and

triaging models?

Static code metrics like code complexity, code churn, and module ownership offer overall perspectives

of the structural and historical nature of the codebase, which are generally good indicators of defect

proneness. These are most beneficial in use like just-in-time bug prediction and cross-project defect

prediction, where product and process features each contribute significantly to model performance.

Text analysis of bug reports is a very powerful method, more precisely, for bug triaging and severity

prediction. Methods like TF-IDF and topic modeling derive useful features from bug report summaries

and descriptions so that models can learn better about priority and context of the issues reported. Hybrid

models by integrating textual features with static code metrics tend to be even more predictive.

RO3:

21

RO4: What are the key limitations of ML-based bug triaging systems, and how can scalability and

adaptability be improved?

Existing machine learning-based bug triaging systems are plagued with scalability, interpretability, and

adaptability limitations. The primary reason for their lack of scalability is that most of the models are

not effective in processing large-scale data with high-dimensional features in open-source or

commercial projects. Processing data in real time is not usually built into classic models, which creates

performance bottlenecks. Moreover, certain prominent models like deep neural networks and ensemble

models are "black boxes," in which not a lot is explained about how they make decisions.

Another essential challenge is flexibility, since software systems evolve constantly—new pieces get

added in, project structure alters, and bug report structures change with time. Models learned from past

observations fall behind with decreasing predictive performance. In an attempt to overcome these

challenges, researchers are looking into the application of online learning, transfer learning, and active

learning to enable adaptive models.

RO5: How do modern software architectures (e.g., microservices) influence the effectiveness of

traditional bug prediction models?

Emerging software architectures like microservices and containerization made classic bug prediction

and triaging models significantly less accurate. Classic models were usually built and trained for the

monolithic system situation with software components being the center and closely integrated. Fresh

architectures bring more modularity, dynamicity, and distributed elements to the equation, which

makes it harder to represent dependencies, track bugs, and model the software behavior.Unlike the

microservices architecture, services can be independently developed, deployed, and scaled, perhaps

using different languages and frameworks. Having different languages and frameworks complicates

feature extraction and traditional models generalizing over services. Containerization (Docker,

Kubernetes) adds abstraction layers and ephemeral environments, which influence runtime behavior

and logging patterns. Therefore, models that depend only on static code or past defect histories can

potentially miss defects that occur only through dynamic interactions among services.

22

Chapter 7

CONCLUSION AND FUTURE SCOPE

Conclusion and future scope application of machine learning algorithms to early bug detection

and effective triaging of bugs throughout software life cycles. We illustrated, through automated

analysis of past bug reports and source code metrics, that supervised classifiers in the context of

ensemble-based types like Random Forest and Gradient Boosting are capable of accurately

locating defect-prone modules with high precision and recall. In addition, for triaging bugs,

classification models trained on text characteristics of bug reports by NLP methods were found

able to automate assigning bugs to the relevant developers.

The findings confirm that machine learning techniques can undoubtedly enhance both the

accuracy and performance of defect prediction and triaging tasks. Our results also demonstrate

that it is essential to couple domain-specific feature engineering with model optimization in order

to further boost predictive performance. This research forms a good basis for the development

of intelligent tools to assist developers in delivering high quality software.

The future scope of early stage bug prediction and triaging using machine learning models

are huge and generous. Progress in deep learning, especially with the utilization of transformer-

based models and contextual NLP models like BERT, can have a big role on the semantic

comprehension of bug reports for more accurate triaging results. Federated learning and transfer

learning may provide solutions to data sparsity and privacy issues by allowing models to learn

across different projects or decentralized sources without an exchange of data. In addition, the

integration of online and incremental modes of learning would allow systems to continuously

adjust to the constantly evolving software development environment. Integration of explainable

AI methods is another crucial field, as this would enhance trust and transparency among

developers via model decision interpretation. In addition, real-world use in the sense of

integration into bug tracking systems or development environments can establish their

effectiveness and spur adoption in practice. Future work can also aim at solving actual, real world

problems like scheduling multi-label classification, where a single bug would be of concern to

several developers or modules. These directions as a whole provide a good direction for

developing intelligent, scalable, and dynamic software quality assurance systems.

23

Bibliography

[1] N. F. A. Manap, N. A. A. Murad, and N. A. M. Isa, "Machine Learning Techniques for Software

Bug Prediction: A Systematic Review," in Proc. 2020 6th Int. Conf. Comput. Technol. Appl.

(ICCTA), 2020, pp. 1–6.

[2] R. Andrade, C. Teixeira, N. Laranjeiro, and M. Vieira, "An Empirical Study on the Classification

of Bug Reports with Machine Learning," arXiv preprint arXiv:2503.00660, 2025.

[3] A. Bhattacharya, R. Bhattacharya, A. Banerjee, and S. K. Ghosh, "Automatic bug triage using semi-

supervised text classification," Empirical Software Engineering, vol. 17, no. 2, pp. 112–158, 2012.

[4] A. S. Saha, S. Saha, and S. S. Sarwar, "Predicting post-release defects with knowledge units

(KUs) of programming languages: an empirical study," Empirical Software Engineering, vol. 30, no.

2, pp. 1–25, 2025.

[5] S. K. Saha, S. Saha, and S. S. Sarwar, "Buggin: Automatic intrinsic bugs classification model

using NLP and ML," Journal of Systems and Software, vol. 200, p. 110923, 2025.

[6] S. Meena and R. Malhotra, "SDPERL: A Framework for Software Defect Prediction Using

Ensemble Feature Extraction and Reinforcement Learning," Applied Soft Computing, vol. 148, p.

111234, 2024.

[7] S. Wang, T. F. Bissyande, J. Klein, and Y. Le Traon, "The Good, the Bad, and the Monstrous:

Predicting Highly Change-Prone Source Code Methods at Their Inception," IEEE Trans. Softw. Eng.,

vol. 50, no. 2, pp. 123–139, 2024.

[8] J. Nam and S. Kim, "Variance of ML-based software fault predictors: are we really improving

fault prediction?," Empirical Software Engineering, vol. 28, no. 1, pp. 1–27, 2023.

[9] M. Harman, P. McMinn, F. Islam, and S. Yoo, "Using Defect Prediction to Improve the Bug

Detection Capability of Search-Based Software Testing," IEEE Trans. Softw. Eng., vol. 48, no. 9, pp.

3412–3426, 2022.

[10] S. Meena and R. Malhotra, "Software Defect Prediction Using Bad Code Smells: A Systematic

Literature Review," Journal of Systems and Software, vol. 181, p. 111012, 2021.

[11] P. Singh and R. Malhotra, "Software Enhancement Effort Prediction Using Machine-Learning

Techniques: A Systematic Mapping Study," Int. J. Softw. Eng. Knowl. Eng., vol. 31, no. 2, pp. 145–

168, 2021.

[12] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, "Big data driven genetic improvement

for maintenance of legacy software systems," Empirical Software Engineering, vol. 25, no. 2, pp.

1234–1267, 2020.

24

[13] S. Meena and R. Malhotra, "A Systematic Review on Application of Deep Learning Techniques

for Software Quality Predictive Modeling," Arch. Comput. Methods Eng., vol. 27, pp. 1707–1735,

2020.

[14] P. Singh and R. Malhotra, "Benchmarking Machine Learning Technologies for Software Defect

Detection," Indian J. Sci. Technol., vol. 8, no. 34, pp. 1–12, Dec. 2015.

[15] M. Siwach and S. Mann, "A Machine Learning Approach to Predict Software Faults," in

Proc. Int. Conf. Smart Comput. Informatics, Springer, 2022, pp. 541–549.

[16] K. Zhu, N. Zhang, S. Ying, and X. Wang, "BugPre: An Intelligent Software Versionto-

Version Bug Prediction System Using Graph Convolutional Neural Networks," Complex &

Intelligent Systems, vol. 9, 2023.

[17]M. A. Kabir, J. W. Keung, K. E. Bennin, and M. Zhang, "Industrial Adoption of Machine

Learning Techniques for Early Identification of Invalid Bug Reports," Empirical Software

Engineering, vol. 29, no. 1, pp. 1–25, 2024.

[18]S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, "Deep Learning Based

Vulnerability Detection: Are We There Yet?," arXiv preprint arXiv:2009.07235, 2020.

[19] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, "A Comprehensive Study on Deep Learning Bug

Characteristics," arXiv preprint arXiv:1906.01388, 2019.

[20] S. Ali, S. Baseer, I. A. Abbasi, B. Alouffi, W. Alosaimi, and J. Huang, "Machine Learning

Based Predictive Analysis of Software Bug Severity and Priority," Int. J. Intell. Syst. Appl. Eng.,

vol. 12, no. 15s, pp. 249–256, 2024.

[21]R. Siva, S. Kaliraj, B. Hariharan, and N. Premkumar, "Automatic Software Bug Prediction

Using Adaptive Golden Eagle Optimizer with Deep Learning," Multimedia Tools and

Applications, vol. 83, pp. 1261–1281, 2024.

[22] T. Sharma et al., "A Survey on Machine Learning Techniques for Source Code Analysis,"

arXiv preprint arXiv:2110.09610, 2021.

[23]L. Panichella, G. V. S. S. R. A. P. S. Chockalingam, and S. S. G. S. K. Lee, "CODEP:

Combined Defect Prediction via Ensemble Learning," IEEE Trans. Softw. Eng., vol.45, no. 9, pp.

940–951, Sept. 2019.

Delhi Technological University

dsc15_thesis_file.pdf

Aman Srivastav

Document Details

Submission ID

trn:oid:::27535:100342262

Submission Date

Jun 11, 2025, 2:17 PM GMT+5:30

Download Date

Jun 11, 2025, 2:36 PM GMT+5:30

File Name

dsc15_thesis_file.pdf

File Size

1.0 MB

33 Pages

6,627 Words

38,125 Characters

Page 1 of 40 - Cover Page Submission ID trn:oid:::27535:100342262

Page 1 of 40 - Cover Page Submission ID trn:oid:::27535:100342262

12% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Match Groups

55 Not Cited or Quoted 10%
Matches with neither in-text citation nor quotation marks

8 Missing Quotations 2%
Matches that are still very similar to source material

2 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

8% Internet sources

7% Publications

8% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 40 - Integrity Overview Submission ID trn:oid:::27535:100342262

Page 2 of 40 - Integrity Overview Submission ID trn:oid:::27535:100342262

Delhi Technological University

dsc15_thesis_file.pdf

Aman Srivastav

Document Details

Submission ID

trn:oid:::27535:100342262

Submission Date

Jun 11, 2025, 2:17 PM GMT+5:30

Download Date

Jun 11, 2025, 2:36 PM GMT+5:30

File Name

dsc15_thesis_file.pdf

File Size

1.0 MB

33 Pages

6,627 Words

38,125 Characters

Page 1 of 35 - Cover Page Submission ID trn:oid:::27535:100342262

Page 1 of 35 - Cover Page Submission ID trn:oid:::27535:100342262

0% detected as AI
The percentage indicates the combined amount of likely AI-generated text as
well as likely AI-generated text that was also likely AI-paraphrased.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions
about a student’s work. We encourage you to learn more about Turnitin’s AI detection
capabilities before using the tool.

Detection Groups

0 AI-generated only 0%
Likely AI-generated text from a large-language model.

0 AI-generated text that was AI-paraphrased 0%
Likely AI-generated text that was likely revised using an AI-paraphrase tool
or word spinner.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was
likely revised using an AI-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.

AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the
percentage shown.

Page 2 of 35 - AI Writing Overview Submission ID trn:oid:::27535:100342262

Page 2 of 35 - AI Writing Overview Submission ID trn:oid:::27535:100342262

