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ABSTRACT 

 

 
Early stage bug prediction and triaging of software are essential to ensuring software reliability 

and minimizing downstream maintenance. With growing software systems, hand triaging does 

not work, is error-prone, and cannot be scaled. Recent progress in machine learning presents 

promising opportunities for automating these tasks by applying machine learning to learn 

historical software repository trends. This study explores various supervised machine learning 

methods for binary prediction of bug reports to facilitate early-defect prediction and triaging. 

Various classifiers such as ensemble methods, support-vector machines, and neural networks 

were created and tested on real-world bug databases. To deal with class imbalance, both the 

oversampling and undersampling methods were utilized and their effect on model 

performance was determined. The main performance metrics to be evaluated were accuracy, 

F1-score, and area under the receiver operating characteristic curve. Model comparison was to 

determine the most stable and consistent models in terms of these performance metrics, with 

special interest in how sampling strategies affected consistency of performance. 

The analysis explored model sensitivity to class imbalance and behavior pattern as the 

characteristics. It was found that ensemble techniques were very sensitive to sampling 

methods and outperformed regular classifiers when the issue of data imbalance was 

predominant. This study contributes to the literature a strong early bug prediction framework 

with machine learning that provides explicit model and sampling choice advice to improve 

performance, especially when dealing with imbalanced datasets. The new approach makes it 

simple to create smart automatic tools for bug triaging to aid software teams in maximizing 

defect management effectiveness and code quality at scale. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

 

The continuous need for fast and reliable software development in the present era of advanced 

technology has led to software systems being much more complicated, large, and modular than 

ever before. Modern practices like Agile and DevOps focus on continuous integration and 

continuous deployment (CI/CD), where software has to develop rapidly with high quality and 

performance. 

Traditional defect discovery methods that so heavily depend on hand-code examination, unit 

testing, and individual developer expertise of course don’t do well in keeping up with the rising 

quantities and velocity of software system change. Likewise, the defect triage aspect of 

assignment of reported defects to the best-developing developer to repair up is also done largely 

by hand based on developer familiarity or prior contributions. This manual procedure not only 

wastes valuable time and effort but also produces inefficiencies, inconsistencies, and delays in 

tasks, particularly in large distributed teams or open-source projects. 

The motivation for this study stems from the need to accelerate the efficiency, accuracy, and 

scalability of bug detection and triaging processes early in software development. As ML, data 

mining, and NLP have made tremendous progress, the possibility of automating and smartly 

optimizing these exists with great enthusiasm ahead. All code modifications in the past, histories 

of commits, bug reports, and activities by developers can be fed through machine learning 

algorithms trained on them to identify underlying patterns and predictive signs that had eluded 

human systems. 

 

1.2 Research Objective 

 

The primary objective of this research is to create an intelligent, autonomous system that will 

assist software teams in identifying bugs early during the development phase and assign them to 

the most suitable developers without placing much emphasis on human intervention. The 

ultimate objective is to improve software development to be more efficient, dependable, and less 

susceptible to time-consuming delays caused by hidden defects and poorly managed bug reports. 

In order to do so, the thesis sets the following proper goals: 

Describe the currently prevalent limitations of early bug detection and attributing these to 

programmers—i.e., primarily the frailties of non-automated methods in the context of modern 

fast-paced high-volume software. 

Collect genuine information from real-world genuine open-source software projects, for 

instance, the Eclipse project, and making the study applicable to common scenarios facing 

programmers on a day-to-day level. 
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These are some Reaseach objective which will be answer in Research and Discussion section: 

 

• RO1: How can ML models be optimized to improve bug prediction accuracy across diverse 

projects and datasets? 

 

• RO2: How do data sampling techniques like SMOTE and NearMiss affect bug prediction 

performance under class imbalance? 

 

• RO3: Which feature engineering methods best enhance the predictive accuracy of bug prediction 

and triaging models? 

 

• RO4: What are the key limitations of ML-based bug triaging systems, and how can scalability and 

adaptability be improved? 

 

• RO5: How do modern software architectures (e.g., microservices) influence the effectiveness of 

traditional bug prediction models? 

 

1.3 Dissertation Organization 

 

This research work is divided into seven comprehensive chapters, each contributing 

systematically to the investigation and implementation of the topic “Early Stage Bug Detection 

and Triaging Using Machine Learning Approaches.” 

Chapter 1: Introduction: The opening chapter sets the foundation by explaining the underlying 

motivation for this research. It focuses on the growing size and complexity of modern software 

systems that render early bug detection and triaging an important issue. It accounts for the 

shortcomings of conventional, human-based methods as they bring inefficiencies to large 

projects. The chapter identifies the research problem, the goals to be met, and the significance 

of incorporating machine learning to complement bug detection and developer assignment. 

Chapter 2: Background: This chapter gives background and conceptual information required 

to understand the scope of this research. It gives definitions of the most significant concepts of 

defect identification and bug report triaging, and how they relate to the software engineering 

process. The shortcomings of the traditional approaches to addressing bug reports are described. 

This chapter also gives an introduction to the Eclipse dataset, why it was selected and how it 

meets the objectives of this research. 

Chapter 3: Literature Review: This chapter provides definitions of the main concepts of defect 

identification and bug report triaging and how they relate to the software engineering process. 

The limitation of traditional methods of bug report management is presented. The Eclipse dataset 

is presented in this chapter, why it was chosen and how it facilitates the objectives of this study. 

Chapter 4: Methodology Setup: It describes how the dataset was prepared for experiments and 

train and test data were managed. Different evaluation metrics—such as accuracy, precision, 

recall, F1-score, and Top-K accuracy—are proposed. The process of model optimization by 

techniques such as grid search is also presented in this chapter certain classifiers are also given. 
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Chapter 5: Results and Discussion: This section describes and discusses the result of the 

experiments carried out. It presents comparative results of several classifiers and discusses the 

relative strengths and shortcomings of each one of them. The result explains how incorporating 

machine learning with software engineering practices is effective, resulting in better accuracy 

for bug detection and improved issue triaging. Observations are put into context relative to real 

development environments. 

Chapter 6: Conclusion The last chapter of this work and emphasizes the importance of 

automating developer triaging and bug detection through machine learning models. 
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Chapter 2 

BACKGROUND 

2.1 Software Bug Prediction 

 

Software bug prediction is the process of detecting parts of the software system likely to contain 

faults or bugs before they exist when executed. Software bug prediction is a prophylactic quality 

assurance technique whose purpose is to make the software more dependable and supportable 

by forecasting probable bugs at early development stages. Defect detection in the early stage 

enables development teams to utilize resources optimally, lower debugging expenditures, and 

enhance overall system usability. 

Modern bug prediction tools are mostly machine learning and data-driven model based, and 

get trained on past project data like source code metrics, change history, commit logs, and 

existing bug reports. They learn to detect predicting patterns in code that guide them to mark or 

rank code artifacts (e.g., files, classes, or functions) as to how likely they are to be defective. 

 

 

 

 

Figure 2.1: Flowchart of Software Bug Prediction…[1] 

.. 
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2.2 Software Bug Triaging 

 

Software Bug Triaging is a very important activity of the software debugging and maintenance 

process. It is the process of classification, prioritization, and allocation of reported software bugs 

to the relevant developers or development teams. The goal is to achieve timely and effective 

software defect fixing to preserve the quality, reliability, and performance of the software 

product. As software complexity grows, and particularly in collaborative or opensource 

software, the number of bug reports grows exponentially. Handling each one manually results 

in a bottleneck, typically resulting in delays, developer overload, and resourcewasting. It thus 

becomes not just an administrative issue but also a candidate for optimization and automation 

through smart systems. 

 

 

 

 

 

Figure 2.2: Flowchart of Software Bug Triaging…[2] 

 

 

 

Machine Learning 

 

Machine Learning is a major sub-field of the broad area of Artificial Intelligence, committed to 

the development and creation of mathematical algorithms that can equip computer systems with 
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the capacity to learn automatically from data and improve their performances continuously over 

time without being specifically programmed for every particular task. Their following a 

predetermined set of fixed rigid human rules. Machine learning works on process of training and 

testing. During training, the model is provided with a set of known inputs and corresponding 

outputs. 

Learning takes place through model parameter optimization in a bid to reduce the difference 

between model predictions. This is usually achieved through iterative methods like gradient 

descent, which iteratively updates the model based on estimated errors or loss functions. 

 

TF-IDF 

 

TF-IDF operates on the basis of using the term of two parameters: Term Frequency (TF) and 

Inverse Document Frequency (IDF). Term Frequency gives an estimate of the frequency of a 

term in a particular document. The term will score highly if it appears more frequently. But 

frequent words such as ”the” or ”error” might not be significant if they appear in all documents. 

This is where Inverse Document Frequency comes in—reducing the weightage of those words 

that have an extremely frequent appearance and amplifying the weightage of words having a 

relatively smaller occurrence within a given document. The IDF is calculated through the 

logarithm of the quotient of the entire documents and word appearance in those documents. Such 

a change makes it so that the model places a greater emphasis on less common or more rare 

discriminative words for the whole corpus. 

 

Figure 2.3: Processing of TF-IDF…[3] 

.. 
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Chapter 3 

 

LITERATURE REVIEW 

Software systems are becoming more and more complex, and software bug management is 

consequently a crucial part of the development and maintenance process. Bug prediction, which 

tries to identify potentially buggy modules prior to release, and bug triaging, which is assigning 

priority new bug reports to the best-suited developer or team, are two such critical activities. 

Applications of machine learning in these areas have been extremely promising in automating 

and enhancing efficiency and accuracy. Early research employed conventional machine learning 

techniques like decision trees, Naive Bayes, support vector machines (SVMs), and random 

forests to forecast buggy components from static code metrics and software change history. 

Paper Title & Year Models Used Major Finding Limitation 

Mentioned 

Predicting post-release 

defects with knowledge 

units (KUs) of 

programming 

languages: an empirical 

study (2025)[4] 

ML models using 

language-specific 

knowledge units 

as features 

Language-specific 

features improve 

defect prediction 

accuracy. 

Limited exploration 

of new feature 

sources; focus on 

empirical validation. 

Buggin:   Automatic 

intrinsic bugs 

classification model 

using NLP and ML 

(2025)[5] 

NLP embeddings 

+ SVM, Logistic 

Regression 

Automated intrinsic 

bug identification 

improves bug 

prediction. 

No prior automated 

approach for intrinsic 

bugs; further 

validation needed. 

SDPERL: A 

Framework  for 

Software Defect 

Prediction Using 

Ensemble Feature 

Extraction and RL 

(2024)[6] 

Ensemble feature 

extraction  (five 

pre-trained 

models),   RL- 

based feature 

selection 

First to combine 

ensemble feature 

extraction and RL at 

file-level for defect 

prediction. 

Focused on file-level 

granularity; 

generalizability not 

fully explored. 

The Good, the Bad, and 

the Monstrous: 

Predicting  Highly 

Change-Prone Source 

Code Methods at Their 

Inception (2024)[7] 

Machine learning 

models 

ML can identify 

highly change-prone 

and bug-prone 

methods  early, 

supporting Pareto 

principle in bug 

location. 

More difficult-to- 

predict methods need 

new features for 

higher accuracy. 
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Variance of ML-based 

software fault 

predictors: are we really 

improving fault 

prediction? (2023)[8] 

Various ML 

models, focus on 

stochasticity and 

variance 

Highlights variance 

and reproducibility 

issues in ML-based 

fault prediction. 

Stochastic elements 

in ML models lead to 

variance; 

reproducibility issues. 

Using Defect 

Prediction to Improve 

the Bug Detection 

Capability of Search- 

Based Software Testing 

(2022)[9] 

Defect prediction 

models integrated 

with search-based 

software testing 

Incorporating defect 

prediction into SBST 

increases bug 

detection efficiency. 

NA 

Software Defect 

Prediction Using Bad 

Code Smells: A 

Systematic Literature 

Review (2021)[10] 

ML models using 

code smell 

features 

Code smell features 

are effective for 

defect prediction in 

various contexts. 

Code smell detection 

may be subjective; 

limited 

generalizability. 

Software Enhancement 

Effort Prediction Using 

Machine-Learning 

Techniques:  A 

Systematic Mapping 

Study (2021)[11] 

Various ML 

techniques (not 

specified) 

ML is effective for 

predicting software 

enhancement effort. 

NA 

Big data driven genetic 

improvement  for 

maintenance of legacy 

software systems 

(2020)[12] 

Data-driven 

learning + 

evolutionary 

(genetic 

improvement) 

models 

Combining data- 

driven learning with 

evolutionary search 

aids legacy system 

maintenance and bug 

fixing. 

Focused on legacy 

systems; industrial 

validation required. 

A Systematic Review 

on Application of Deep 

Learning Techniques 

for Software Quality 

Predictive Modeling 

(2020)[13] 

Deep learning 

techniques 

Deep  learning 

outperforms 

traditional methods 

for software quality 

prediction. 

High training time; 

concept and external 

threats to models. 

Benchmarking 

Machine Learning 

Technologies   for 

Software  Defect 

Detection (2015) [14] 

Multiple ML 

models 

Most machine 

learning methods 

performed well on 

public software bug 

datasets. 

NA 
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Overall, machine learning has improved bug triaging a lot by enabling automated 

assignment, increasing consistency, and being very scalable with big bug databases. Although 

standard ML models remain suitable for most cases, current work is aimed at integrating more 

contextual information, minimizing class imbalance concerns, and enhancing cross-project 

generality so that automatic bug triaging systems are more reliable and flexible in actual software 

settings. Therefore, researchers have explored unsupervised and semi-supervised learning in 

software bug prediction in order to enable efficient modeling with inadequate labeled data. Li et 

al. [15] gave a detailed overview of unsupervised methods, emphasizing clustering and outlier 

detection for unlabeled data bug prediction. 

 

Feature optimization has also come into play. Anbu and Mala [16] suggested employing the 

Firefly Algorithm to choose optimal features for optimal selection, which resulted in 

considerable improvement in defect prediction. Likewise, Siwach and Mann [17] proved that 

hybrid feature selection can improve fault localization at an early stage of software development. 

Graph-based mode have been a common paradigm. BugPre, version-to-version bug predictor 

software proposed by Zhu et al. [18], uses GCNs to find structural dependencies between 

software versions and improve the accuracy of bug prediction. 

 

Triaging—allocating bugs to the appropriate developers—has been enhanced using 

industrial applications of ML. Kabir et al. [19] examined the usage of supervised classifiers by 

companies to label invalid bug reports, maximizing triaging efficiency. Their findings revealed 

that most industrial triaging tools leveraging light but scalable learning models. 

 

With the emergence of deep learning, sophisticated models like CNNs and RNNs have been 

used to handle code and bug report data. Chakraborty et al. [20] experimented with the 

preparedness of deep learning-based vulnerability detectors and depicted model generalizability 

as an issue, particularly toward new codebases. Islam et al. [21] empirically explored the 

limitation of DL models on actual-world defect datasets, with overfitting and data imbalance 

being described as persistent issues. Other major areas of research involve automation of bug 

priority and severity tagging. Ali et al. [23] presented an ML-based model for bug priority and 

severity prediction using multi-class classifiers for bugs. 
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Chapter 4 

METHODOLOGY 

This section outlines the dataset utilized, the baseline Machine Learning model selected for 
comprehensive analysis, the hyperparameter setting, as well as the evaluation measures included in the 

experiment. The machine learning pipeline developed for software bug prediction and triaging 

demonstrates a practical and scalable approach to improving software quality and team productivity. 

By combining structured code metrics and unstructured text data from bug reports, the system achieves 

high accuracy in both tasks and can significantly reduce the manual overhead involved in software 

maintenance. 

We explored how machine learning can help improve software maintenance by predicting bugs before 

they happen and by automatically assigning new bug reports to the right developers. The idea is to 

reduce the time and effort teams spend manually identifying risky code or figuring out who should fix 

a particular issue. By learning from past data—like old bug reports, code changes, and developer 

activity—our system aims to make smarter, faster decisions that support the software development 

process.A machine learning-based software bug prediction and triaging system begins by collecting 

data from source code repositories like Git or SVN, including code changes, commit histories, and past 

bug reports. This data undergoes feature engineering to extract meaningful attributes such as code 

complexity, change frequency, and textual patterns from commit messages or bug descriptions. The 

features are then cleaned, normalized, and labeled during preprocessing to ensure quality input for 

model training. Using this processed data, machine learning models are trained to identify patterns 

associated with buggy code and developer behavior. 

 

Once trained, the model performs two key tasks. For new code commits, it predicts whether the changes 

are likely to introduce bugs and flags risky commits for review. In parallel, when a new bug report is 

filed, the system suggests the most suitable developer or team for resolution based on historical patterns 

and expertise. The outcome is a streamlined process where potential bugs are caught early, and issues 

are efficiently routed to the right personnel, improving software quality and reducing response time. 

 

5.1 Baseline Models 

Prior to machine learning adoption, bug triaging and prediction were largely statistical model, heuristic rule, and 

expert/manual-based. In prediction of bugs, analysis of code metrics, threshold-based heuristics, and regression 

models were prevalent methods being employed. These methods utilized software metrics such as code 

complexity, code churn, and lines of code to predict potential buggy modules. Bug triaging was normally done 

manually by project managers or lead developers assigning bugs based on what they knew of their codebase and 

developer ability. Simple heuristics or static routing rules like keyword matching or file ownership were used in 

a few projects to help with assignment. But such classical approaches were plagued with subjectivity, limited 

scalability, and inability to model rich inter-relations in big and dynamic software systems. 

 

1. Statistical Model: 
Mathematical equations in statistical models define the correlation between measures of software and 

defect-proneness. Linear or logistic regression is common in forecasting the probability of bugs from 

historical data. 

2. Heuristic Rules: 

Heuristics capture rules or trends based on expert intuition or experimental outcomes. The rules are 

simple and application-specific, e.g., "complexity-high modules have bugs." 
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3. Expert/Manual-Based Approaches: 

In such practices, lead developers or project managers manually triage and estimate bugs intuitively by 

experience and acquaintance with the codebase. With small teams, the approach works effectively, but 

it is not scalable and objective. 

 

4. Threshold-Based Heuristics: 

These are establishing static thresholds on program metrics (e.g., cyclomatic complexity > 10) to 

identify modules as defect-prone. Although simple to use, they tend to be strict and fail in dynamic or 

large systems. 

 

5.2 Dataset Used 

 

The Eclipse software project provides a rich source of historical data suitable for research in 

software defect prediction and bug triaging. Various components of the Eclipse Integrated 

Development Environment (IDE) have been mined and structured into datasets by researchers 

to support empirical studies. These data sources are mainly Bugzilla (for bugs) and repositories 

of Git/CVS/SVN (for commit history and code metrics). The most studied modules are JDT 

Core, Platform UI, and SWT, to mention a few. 

 

 

 

 

 

Table 4.1: Summary of Dataset used 

 

 

5.3 Evaluation metrics 

 

In bug prediction, the software module is either buggy or clean (non-buggy). The issue is being 

considered as a binary classification problem. For comparison of how well the models are 

performing, the following are utilized: 

In bug prediction, the software module is either classified as buggy or clean (non buggy). This 

classification task is approached as a binary classification problem. To assess the performance 

of prediction models, the following definitions and metrics are utilized: 
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• True Positives (TP): Number of buggy modules correctly predicted as buggy by the 

model. 

• True Negatives (TN): Number of clean modules correctly predicted as non-buggy. 

• False Positives (FP): Number of clean modules that are incorrectly predicted as buggy. 

• False Negatives (FN): Number of buggy modules that are incorrectly predicted as clean. 

• These four components form the foundation for various evaluation metrics such as: 

 

– 
– 
– 

Precision 

Recall 

Accuracy 

 

– F1-Score   

– ROC AUC   

Accuracy: 
 

 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 
(1) 

 

Represents the overall proportion of correctly classified instances. 

Precision: 

Precision = TP / (TP + FP) (2) 

 

Indicates how many of the modules predicted as buggy are actually buggy. 

Recall (Sensitivity or True Positive Rate): 

Recall = TP / (TP + FN) (3) 

Represents how many of the actual buggy modules are correctly identified. 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) (4) 

 

F1-Score: 

The harmonic mean of precision and recall; balances the trade-off between them. 

 

Area Under ROC Curve (AUC-ROC): 

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR): 

The AUC represents the probability that the model ranks a randomly chosen buggy module 

higher than a randomly chosen non-buggy module. A value of 1.0 indicates perfect classification, 

and 0.5 denotes random guessing. 

 

5.4 Parameters Setting 

 

Parameters are carried out to achieve the best performance for all machine learning algorithms 

used in this study. Random Forest classifier worked best when n estimators = 500, the parameter 

specifying how many decision trees make up the ensemble. The max depth parameter was 

specified as 50 to restrict the depth of each decision tree to avoid overfitting. The max features 

was specified as 0.4 to allow each node to use up to 40 percent of the features for the best split, 

which added randomness and caused the model to learn generalization. 
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The parameter that estimated the split quality was specified as entropy, which chooses splits 

using information gain only. All these parameters were set optimal after grid search and 

validation experiments. 

For the KNN algorithm, the model worked best when n neighbors = 11, i.e., prediction for 

any instance was made on the most occurring class out of the 11 neighbors. The parameter 

weights was ’distance’ with more weightage being assigned to the neighbors which are nearer to 

the instance, and the distance metric for measuring the distance between instances was Euclidean 

because it is optimal for continuous feature spaces. 

For K-Means, applied to unsupervised clustering analysis, the optimal configuration was to 

set max iter = 200. This provides enough iterations for the algorithm to converge to stable cluster 

centroids. The n init parameter was also set to 10, and the inference was that the algorithm was 

executed 10 times with various centroid seeds, and the best outcome (the minimum with in 

cluster sum of squares) was kept. The SVM model had the best performance with a regularization 

parameter of 10. This larger value penalizes misclassifications more heavily and therefore makes 

the model fit the training data better. The gamma parameter that scales the power of the influence 

of one training example was 0.01 so that it could accommodate a larger decision boundary. The 

kernel employed was Radial Basis Function (RBF), which is well suited to identifying non-linear 

patterns in the data. All the parameters were chosen with grid search with cross-validation such 

that each model was set to realize its best predictive performance on the provided bug prediction 

and triaging tasks. 
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Chapter 5 

 

RESULT AND DISCUSSION 

This section reports the findings of the experiments that have been performed to measure the 

performance of machine learning-based models that have been proposed for predicting and 

triaging bugs at an early stage. The findings are divided into two broad sections: (i) Bug 

Prediction and (ii) Bug Triaging. The experiments were performed on the Eclipse bug repository, 

which is one of the popular benchmark datasets used in software engineering research. 

Performance was measured using standard classification metrics like Accuracy, Precision, 

Recall, F1-Score, and AUC-ROC, depending upon the task. 

 

 

6.1 Bug Prediction 

 

This sub-section discusses experimental results of some machine learning models on the bug 

prediction task at early stages with the Eclipse dataset. The models were compared based on 

classic performance measures such as Accuracy, ROC AUC, and F1-Score. The results are binary 

classification (defective vs. non-defective) and multi-class classification (by severity or number 

of defects), considering both under-sampling (USam) and oversampling (OSam) methods for 

handling class imbalance. Binary classification identifies whether a module is faulty or not, while 

multi-class classification categorizes the faults as minor or major based on the fault type. Baseline 

comparison utilizes a dummy classifier that always predicts the majority class and in all instances 

produces high accuracy but poor F1-scores. It is therefore crucial to use advances models and 

efficient methods in imbalanced datasets in binary and multi-class problems. 
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Table 5.1: Results of different models with sampling method 
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Performance Analysis of Multiclass Classification Models 
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Key Insights 

 

 

• Highest Accuracy: Support-Vector Machine achieved the highest accuracy of 0.8499, 

indicating strong general prediction capability. AdaBoost and Neural Network (without 

sampling) also performed well. 

• Best ROC Score: Neural Network with USam attained the highest ROC of 0.716, 

demonstrating superior ability in distinguishing between classes. Oversampling models 

showed relatively lower performance. 

• Top F1-Score: The same Neural Network (USam) also delivered the highest F1score of 

0.638. Bagging with USam and Neural Network with oversampling followed closely. 

• Sampling Impact: USam generally performed better than oversampling (OSam) in terms of 

both ROC and F1-score. In contrast, Bagging under oversampling yielded poor results 

across all metrics. 

• Best Overall Model: The Neural Network model trained with USam consistently excelled 

across all three metrics—accuracy, ROC, and F1score—making it the most stable and 

reliable binary classifier in this study. 
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Performance Analysis of Binary class Classification Models 
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Key Insights 

• Highest Accuracy: The Support-Vector Machine achieved the highest accuracy at 0.8499, 

demonstrating strong general predictive performance. AdaBoost and the Neural Network 

(without sampling) also yielded competitive results. 

• Best ROC Score: The Neural Network with USam achieved the highest ROC score of 

0.716, indicating superior class separation capability. In comparison, models employing 

oversampling trailed behind. 

• Top F1-Score: The Neural Network with USam also achieved the best F1-score of 0.638, 

highlighting its balanced precision and recall. Bagging with USam and Neural Network 

with oversampling followed with relatively strong performance. 

• Sampling Impact: USam generally outperformed oversampling in terms of ROC and 

F1score. Bagging classifiers using oversampling performed poorly across all evaluation 

metrics. 

• Best Overall: The Neural Network with USam consistently performed well across all three 

metrics—accuracy, ROC, and F1-score—making it the most stable and reliable model 

among the binary classifiers evaluated. 

 

6.2 Bug Triaging 

Experiments were performed on the Eclipse bug dataset, which consists of labeled bug reports 

having multiple developers associated with them. In order to transform the textual content of the 

bug reports into numerical features, the TF-IDF approach was adopted. As the dataset was 

characterized by such large class imbalance—where a tiny minority of the developers were 

allocated the majority of bug report tasks—Synthetic Minority Over- sampling Technique 

(SMOTE) was used. Various machine learning models were trained using preprocessed data. 

Performance was verified on Precision, Recall, F1 score, ROC AUC. 

 

 

Figu5.8 Model performance using TF IDF 

Key Insights 

 

• Random Forest achieved the highest F1 Score of 67%, indicating a strong balance 

between precision (74%) and recall (61%). It also performed well in terms of AUCROC, 

achieving a value of 65.1%. 
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• Logistic Regression and Support Vector Machine also performed competitively, with F1 

Scores of 75% and 74%, respectively, and similar AUC-ROC values. These models are 

thus reliable alternatives for this task. 

• Decision Tree and K-Nearest Neighbor exhibited lower recall and F1 Scores, suggesting 

that these models are less suitable for bug triaging tasks using TF-IDF features. 

• Overall, ensemble and linear models (such as Random Forest, Logistic Regression, and 

SVM) outperformed single-tree and instance-based approaches, emphasizing the 

importance of appropriate model selection in achieving optimal bug triaging accuracy and 

reliability. 

 

6.3 Discussion 

 

RO1: How can ML models be optimized to improve bug prediction accuracy across diverse 

projects and datasets? 

Machine learning models of bug prediction can be largely enhanced through refined methods such 

as ensemble methods, hybrid models. Recent research emphasizes that different models being used 

together or even optimization techniques used collectively—such as Principal Component 

Analysis, Linear Discriminant Analysis, and ensemble learning—provide higher accuracy along 

with more trustworthy results than when one model is being used separately. There is increasingly 

concern for cross-project and transfer learning that renders these models more flexible and effective 

across various software datasets. 

 

RO2: How do data sampling techniques like SMOTE and NearMiss affect bug prediction 

performance under class imbalance? 

 

The major challenge in software bug prediction could be handling imbalanced data sets—where buggy 

samples are overwhelmed by clean samples by a large margin. This tends to make machine learning 

models overrepresent the majority class and thus increasingly harder to predict real bugs with accuracy. 

Data sampling methods ride to the rescue to help fix this issue.  

 

Oversampling techniques such as SMOTE assist by synthesizing artificial copies of the minority buggy 

cases in order to balance the data set. Research has demonstrated that employing SMOTE can boost 

model accuracy and robustness considerably, especially when used along with classifiers such as 

Random Forest and Logistic Regression. Even better are combination techniques that use oversampling 

methodologies such as Borderline SMOTE in combination with undersampling methodology such as 

Tomek Links. These techniques not only regularize the data but also eliminate noisy or duplicate cases, 

resulting in models that generalize better and produce more correct predictions.  

 

Which feature engineering methods best enhance the predictive accuracy of bug prediction and 

triaging models? 

 

Static code metrics like code complexity, code churn, and module ownership offer overall perspectives 

of the structural and historical nature of the codebase, which are generally good indicators of defect 

proneness. These are most beneficial in use like just-in-time bug prediction and cross-project defect 

prediction, where product and process features each contribute significantly to model performance. 

 

Text analysis of bug reports is a very powerful method, more precisely, for bug triaging and severity 

prediction. Methods like TF-IDF and topic modeling derive useful features from bug report summaries 

and descriptions so that models can learn better about priority and context of the issues reported. Hybrid 

models by integrating textual features with static code metrics tend to be even more predictive. 

RO3: 
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RO4: What are the key limitations of ML-based bug triaging systems, and how can scalability and 

adaptability be improved? 

 

Existing machine learning-based bug triaging systems are plagued with scalability, interpretability, and 

adaptability limitations. The primary reason for their lack of scalability is that most of the models are 

not effective in processing large-scale data with high-dimensional features in open-source or 

commercial projects. Processing data in real time is not usually built into classic models, which creates 

performance bottlenecks. Moreover, certain prominent models like deep neural networks and ensemble 

models are "black boxes," in which not a lot is explained about how they make decisions. 

 

Another essential challenge is flexibility, since software systems evolve constantly—new pieces get 

added in, project structure alters, and bug report structures change with time. Models learned from past 

observations fall behind with decreasing predictive performance. In an attempt to overcome these 

challenges, researchers are looking into the application of online learning, transfer learning, and active 

learning to enable adaptive models. 

 

RO5: How do modern software architectures (e.g., microservices) influence the effectiveness of 

traditional bug prediction models? 

 

Emerging software architectures like microservices and containerization made classic bug prediction 

and triaging models significantly less accurate. Classic models were usually built and trained for the 

monolithic system situation with software components being the center and closely integrated. Fresh 

architectures bring more modularity, dynamicity, and distributed elements to the equation, which 

makes it harder to represent dependencies, track bugs, and model the software behavior.Unlike the 

microservices architecture, services can be independently developed, deployed, and scaled, perhaps 

using different languages and frameworks. Having different languages and frameworks complicates 

feature extraction and traditional models generalizing over services. Containerization (Docker, 

Kubernetes) adds abstraction layers and ephemeral environments, which influence runtime behavior 

and logging patterns. Therefore, models that depend only on static code or past defect histories can 

potentially miss defects that occur only through dynamic interactions among services. 
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Chapter 7 

 

CONCLUSION AND FUTURE SCOPE 

Conclusion and future scope application of machine learning algorithms to early bug detection 

and effective triaging of bugs throughout software life cycles. We illustrated, through automated 

analysis of past bug reports and source code metrics, that supervised classifiers in the context of 

ensemble-based types like Random Forest and Gradient Boosting are capable of accurately 

locating defect-prone modules with high precision and recall. In addition, for triaging bugs, 

classification models trained on text characteristics of bug reports by NLP methods were found 

able to automate assigning bugs to the relevant developers. 

The findings confirm that machine learning techniques can undoubtedly enhance both the 

accuracy and performance of defect prediction and triaging tasks. Our results also demonstrate 

that it is essential to couple domain-specific feature engineering with model optimization in order 

to further boost predictive performance. This research forms a good basis for the development 

of intelligent tools to assist developers in delivering high quality software. 

 

The future scope of early stage bug prediction and triaging using machine learning models 

are huge and generous. Progress in deep learning, especially with the utilization of transformer- 

based models and contextual NLP models like BERT, can have a big role on the semantic 

comprehension of bug reports for more accurate triaging results. Federated learning and transfer 

learning may provide solutions to data sparsity and privacy issues by allowing models to learn 

across different projects or decentralized sources without an exchange of data. In addition, the 

integration of online and incremental modes of learning would allow systems to continuously 

adjust to the constantly evolving software development environment. Integration of explainable 

AI methods is another crucial field, as this would enhance trust and transparency among 

developers via model decision interpretation. In addition, real-world use in the sense of 

integration into bug tracking systems or development environments can establish their 

effectiveness and spur adoption in practice. Future work can also aim at solving actual, real world 

problems like scheduling multi-label classification, where a single bug would be of concern to 

several developers or modules. These directions as a whole provide a good direction for 

developing intelligent, scalable, and dynamic software quality assurance systems. 
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