
APPLICATION OF MACHINE LEARNING

TECHNIQUES FOR MODERN CYBER THREAT

DETECTION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

DATA SCIENCE

Submitted by

AYUSHMAN SAINI

(23/DSC/19)

Under the supervision of

Mrs. PRIYA SINGH

SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi 110042

MAY, 2025

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, AYUSHMAN SAINI, Roll No – 23/DSC/19 student of M.Tech (DATA SCIENCE),

hereby declare that the Dissertation titled “APPLICATION OFMACHINE LEARN-

ING TECHNIQUES FOR MODERN CYBER THREAT DETECTION” which

is submitted by me to the SOFTWARE ENGINEERING, Delhi Technological University,

Delhi in partial fulfilment of the requirement for the award of degree of Master of Tech-

nology, is original and not copied from any source without proper citation. This work

has not previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

AYUSHMAN SAINI

This is to certify that the student has incorporated all the corrections suggested by

the examiners in the thesis and the statement made by the candidate is correct to the

best of our knowledge.

Signature of Supervisor Signature of External Examiner

i

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “APPLICATION OF MA-

CHINE LEARNING TECHNIQUES FOR MODERN CYBER THREAT DE-

TECTION” which is submitted by AYUSHMAN SAINI, Roll No – 23/DSC/19, SOFT-

WARE ENGINEERING ,Delhi Technological University, Delhi in partial fulfilment of the

requirement for the award of the degree of Master of Technology in Data Science, is a

record of the project work carried out by the students under my supervision. To the

best of my knowledge this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Place: Delhi Mrs. PRIYA SINGH

Date: 19.05.2015 SUPERVISOR

ii

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

I express my sincere gratitude to Ms. PRIYA SINGH for the continuous guidance and

mentorship that she provided us during the project. She showed us the path to achieve

my goals by explaining all the tasks to be done and explained to us the importance of this

project as well as its industrial relevance. She was always ready to help us and clear our

doubts about any obstacles in this project. Without her constant support and motivation,

this project would not have been successful.

Place: Delhi AYUSHMAN SAINI

Date: 19.05.2025

iii

Abstract

The increasing sophistication of modern malware has rendered traditional signature-

based detection techniques less effective, especially against polymorphic and zero-day

threats. In response, machine learning (ML) and deep learning (DL) methods have

emerged as viable alternatives for identifying malicious behaviour through pattern recog-

nition. This thesis investigates the application of ML techniques in cyber threat detection

through two key components: a critical review of recent literature, and the implemen-

tation of an improved multiclass malware classification system. The review analyzes

twenty contemporary research papers, comparing approaches based on datasets, analysis

techniques, model choices, and detection performance. Key limitations identified include

class imbalance, feature redundancy, and challenges in handling complex or obfuscated

malware. Building on these insights, a hybrid ensemble model is developed combining

tree-based classifiers and a neural network meta-learner. The system incorporates ad-

vanced preprocessing techniques such as mutual information-based feature selection and

SMOTE-based oversampling to improve learning from imbalanced data. The model is

trained and evaluated on the CIC MalMem2022 dataset, covering fifteen malware fami-

lies and benign samples. Results show improved classification performance, particularly

for underrepresented classes, with notable gains in macro-averaged precision and recall.

This work demonstrates the potential of integrated ML pipelines for practical malware

detection and suggests further exploration into explainable models, adaptive learning, and

cross-platform generalization for future research.

iv

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Content vi

List of Tables vii

List of Figures viii

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Overview . 1
1.4 Objectives . 1

2 LITERATURE REVIEW 3
2.1 Dataset Analysis . 3
2.2 Techniques used in Studies . 4
2.3 Reviewed Studies Summaries . 5

2.3.1 Selection Criteria . 5
2.4 Performance Analysis . 8
2.5 Summarised Findings . 9

3 METHODOLOGY 10
3.1 An Overview of Proposed Model . 10
3.2 Architecture of Proposed Model . 11

3.2.1 Model Overview . 11
3.2.2 Base Classifiers . 13
3.2.3 Meta Classifier (Neural Network) 14
3.2.4 Feature Engineering . 15

3.3 Dataset Description . 16
3.4 Parameter Settings . 16
3.5 Performance Metrics . 17

4 Results and Discussion 20
4.1 Individual Classifier Evaluation . 20

v

4.2 Ensemble Model Performance . 20
4.3 Preprocessing and Feature Engineering Impact 21
4.4 Detailed Performance Analysis . 21

4.4.1 Class-Specific Detection Capabilities 21
4.4.2 Confusion Matrix Analysis . 22
4.4.3 Feature Importance and Selection Impact 22
4.4.4 Training Convergence and Model Stability 22
4.4.5 Comparative Performance Evaluation 22

4.5 Computational Efficiency and Scalability 24
4.6 Statistical Significance and Robustness . 24

5 CONCLUSION AND FUTURE SCOPE 26
5.1 Future Work . 26

A Publication Details 28
A.1 List of Publications . 28
A.2 Paper Acceptance Proof . 29
A.3 Indexing of Conference Proof . 31
A.4 Conference Paper Registration Receipt . 32

vi

List of Tables

2.1 Datasets used in studies which are available to public 4
2.2 Category wise description of different methods used in various studies . . . 6
2.3 Reviewed studies strengths and weaknesses 7
2.4 Results summary of the studies . 9

3.1 Distribution of Samples by Malware Type and Family 18

4.1 Summary of results performed . 25

vii

List of Figures

2.1 Search Strategy . 8

3.1 Architecture of the Proposed model . 12
3.2 t-SNE visualisation of Malware types to observe how are different categories

are different from each other . 16
3.3 Frequency chart of Malware parent classes 17
3.4 Pie chart showing percentage distribution of Malware parent classes 18
3.5 Pie chart showing percentage distribution of Malware categories classes . . 19

4.1 Top Detected Malware Classes by ROC AUC 22
4.2 Confusion matrix of the malware categories of the of our model after per-

forming MI+SMOTE+Scaling . 23
4.3 Top Feature by Mutual Information . 23
4.4 Meta model accuracy and model loss . 24

A.1 First Conference Acceptance Proof . 29
A.2 Second Conference Acceptance Proof . 30
A.3 THE 16th INTERNATIONAL IEEE CONFERENCE ON COMPUTING,

COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT) 31
A.4 Fee Receipt for the paper titled, A Comprehensive Review on Malware

Detection Techniques using Machine Learning and Deep Learning 32
A.5 Fee Receipt for the paper titled, Enhancing Obfuscated Malware Classifi-

cation: A Performance-Driven Study Using Stacked Ensemble Learning . . 33

viii

Chapter 1

INTRODUCTION

1.1 Motivation

The increased use of digital technology by people, companies and government bodies
means cybersecurity measures must be greatly improved. Malware is a recurring threat
that often causes severe damage. Advanced tactics such as polymorphism, packing and
obfuscation used by attackers mean that conventional detection methods are not effective
anymore. Since malware keeps evolving, having automatic tools in place that can identify
all types of threats is very important. Therefore, companies are using ML (Machine
Learning) and DL (Deep Learning) to find and classify malware.

1.2 Problem Statement

Currently, most malware detection tools operate based on signatures and rules, so they are
not always able to find new or changed malware. Often, these defenses don’t find threats
that aren’t recognized such as zero-day attacks. Identifying malware based on similarities
is still difficult because there are so many varieties with similar characteristics and not
much labeled information. The thesis focuses on designing and testing a machine learning
model that accurately identifies different classes of malware based on their behavior, even
when dealing with class imbalance and many different features.

1.3 Overview

This thesis starts with a review of the most recent findings in using machine learning
to detect malware, highlighting the use of static, dynamic and hybrid approaches. The
intelligence collected is then used to design an experimental framework using the CIC
MalMem2022 containing execution behavior features for many malware types. Several ML
models are set up and tested and a method for combining their predictions is presented
to increase accuracy in classification. To fix problems with noisy features and unequal
class numbers, feature engineering and data balancing are applied.

1.4 Objectives

The main objectives of this thesis are as follows:

1

• To investigate and compile the current findings in malware detection based on ML
and DL methods.

• To implement a multiclass classification framework that can effectively identify and
distinguish between different malware families.

• To assess how performing feature selection and balancing classes changes model
performance.

• To suggest and test a model that uses a combination of various classifiers.

• To go over the field’s results using different measurements and advise on what can
be done better going forward.

2

Chapter 2

LITERATURE REVIEW

The development of machine learning-based malware detection techniques has attracted
considerable attention in recent years due to the increasing complexity and volume of cyber
threats. This section presents a critical review of existing research focused on the use of
supervised and deep learning models for identifying and classifying malware. It covers
the types of datasets used, the feature extraction strategies adopted, the classification
methods employed, and the reported performance metrics. By analyzing the strengths
and limitations of these approaches, this review helps identify key research gaps and
provides a foundation for designing more effective malware detection systems.

2.1 Dataset Analysis

The outcomes of machine learning methods for detecting malware strongly rely on the
quality and quantity of the data supplied. A clearly arranged dataset enables models to
find patterns in benign and malicious activity and use them to address threats that have
not been seen before. The literature we reviewed shows that datasets can be very different
in how they are structured, where they come from, how easy they are to find and which
types of features they include. The type of malware they identify depends on whether they
use executable files, logs, network data or images as their starting point. Typically, we
divide malware datasets into those that the public may use and those designed for private
companies. Using public datasets gives researchers a standard way to validate findings,
duplicate results and make fair comparisons with others. Important examples are the
CIC MalMem2022 dataset, the Malimg image-based dataset, VirusShare and VirusTotal.
In these datasets, there are commonly marked samples of regular files and different types
of malware, along with occasional data on their behavior or PE characteristics. This
dataset includes memory-based behaviors of 15 malware families as well as benign samples,
so it is specifically useful for multiclass classification challenges. On a different note, a
lot of studies create custom datasets using sandbox settings, repositories of malware or
properly managed testbeds. Their main downsides are often the absence of diversity,
a lack of scalability and the frequent requirement of entering the system to see these
artifacts. Besides, because the ways data is labeled, collected and processed through
feature extraction are not standardized, it becomes difficult to compare these studies. A
summary of publicly available datasets used in the reviewed papers is provided in Table
2.1. The table shares information on sample size, platform and kind of data, helping see
how various in benchmark resources vary and what their limits are. Such datasets have
a major effect on shaping how well machine learning-based detectors perform.

3

Table 2.1: Datasets used in studies which are available to public
Dataset Name Paper

Refer-
ences

Dataset Size Description

VirusShare [1], [2] ∼5,000–10,000
samples

Collection of known mal-
ware binaries; widely used
for static analysis tasks.

VirusTotal Logs [3], [4] 50,000+ entries API-based behavioral logs
of files scanned through
VirusTotal services.

Drebin [5], [6] ∼5,600 malware
apps

Android malware dataset
with permissions and API-
based features.

Microsoft Malware
Classification Chal-
lenge (BIG 2015)

[7] ∼10,000+ bina-
ries

PE files labeled by family;
used for image-based CNN
classification.

CICIDS/CIC-
MalMem2022

[1] Varies (10K+
records)

Behavioral and memory-
based artifacts of malware
and benign processes.

Kaggle Malware
Repositories

[8], [9] ∼60,000 entries
(varied)

Mixed public datasets (e.g.,
PE headers, labels) reused
for benchmarking.

2.2 Techniques used in Studies

Machine learning is used to identify malware in several ways, depending on how data
is taken, analyzed and modeled. Overall, research approaches can be divided into static
analysis, dynamic analysis and hybrid analysis. Every method makes use of different kinds
of features and calls for individual handling and training steps. No programs are executed
during a static analysis, but programs are scanned for specific things. Some of the things
found regularly are opcode sequences, imported API functions, PE header attributes and
patterns of binary bytes. Using these mechanisms is efficient and safe because they do
not involve running possibly hazardous executable files. The collected studies generally
depend on static-feature models that make use of classifiers such as Random Forest (RF),
Support Vector Machines (SVM) and Convolutional Neural Networks (CNNs), to study
opcode n-grams or binary image changes. By contrast, during dynamic analysis, a test is
run on the program to watch its behavior, collecting details about system calls, changes to
the registry, networking and memory. Because it follows the behavior of the program, this
approach is protected against obfuscation and encryption. Reviewed studies frequently
apply dynamic features by using Random Forests, Recurrent Neural Networks (RNNs)
or DNNs to learn how behavior evolves. Combining static and dynamic tools gives a
more complete picture of the software. The intention of these methods is to combine
the benefits of both approaches: static efficiency and dynamic robustness. Examples of
hybrid detection systems are ones that add static attribute details with dynamic calls
and systems that add network details along with opcode counts. In such cases, popular
classifiers are built with ensemble models and deep hybrid systems. The way you select
variables is crucial for getting the best outcomes from your analysis. Almost all statis-

4

tical research applies Pearson correlation or mutual information filters, with just a few
using embedded or wrapper methods. In most cases, researchers apply normalization,
reduce features and use the SMOTE method to ensure even class distribution and lessen
biases. Generally, the technique chosen depends on the type of data, available computing
resources, the operating system it will be used on (Windows, Android) and if you need
binary or multiclass classification. It is clear from the literature that researchers are fo-
cusing more on using ensemble models and complex networks to manage high-dimensional
and complicated data from many types of malicious software.

Here Table 2.2 offers a category wise summary of methods/models used in various
studies for malware detection.

2.3 Reviewed Studies Summaries

Next, this section gives a brief overview of the main research papers in the review, pointing
out what they add, how they work and what were their main constraints. The reviewed
works use several machine learning and deep learning techniques for malware detection, to-
gether with varied datasets and ways to analyze them. Researchers looked in top journals
and gatherings to pick these research papers which convey the most recent developments
in both cybersecurity theory and applications. There are studies that rely on using opcode
n-grams, details from the PE header and sequences of API calls for analysis. By using
opcode frequency distributions and Random Forest and Naive Bayes, [2] obtained accu-
rate results yet pointed out their limitation in fighting malware that has been obfuscated
or disguised. Likewise, authors in [7] trained a CNN on grayscale images of binary files,
allowing for easier visual recognition but making training very demanding on resources.
Many researchers in this area often rely on features linked to application behavior. In
one study, authors examined Android’s system calls and applied KNN and RF, earning
strong results solely for Android. In a similar study by [3], access to a specialized data set
helped build a dynamic signature model that worked perfectly on the test cases. Tech-
niques proposed in [10] and [1] combine details found at compile time with information
obtained at runtime. While these approaches better resist attempting to bypass them,
they increase the complexity of the needed preprocessing, as seen in study [11] on Control
Flow Graphs (CFG). A summary of each paper’s main benefits and pitfalls can be found
in the following table 2.3. Doing this synthesis reveals that imbalanced data, overfitting
after training on few samples and no clear explanations from deep models are problems
that can be addressed.

2.3.1 Selection Criteria

This review was conducted to identify relevant studies published between 2021 and 2024.
Only peer-reviewed journal articles, conference papers, and high-quality preprints were
considered for inclusion. Literature was collected from established academic sources IEEE
Xplore, SpringerLink, ScienceDirect, ACM Digital Library and, Wiley Online Library. A
structured keyword-based search was used, applying combinations of terms such as “mal-
ware detection using machine learning”, “deep learning for malware detection”, “static
and dynamic malware analysis”, and ”hybrid malware. Detection”, and ”android malware
detection” 2.1.

5

Table 2.2: Category wise description of different methods used in various studies
Category Method/Model Description
Static Analy-
sis

Opcode N-gram +
RF/SVM/NB

Extracts opcode sequences from bina-
ries; models learn instruction-level pat-
terns.

Static Analy-
sis

PE Header + API
Analysis

Uses structural features like import ta-
bles, API call lists for classification.

Static Analy-
sis

Grayscale Image +
CNN

Converts binaries into images; CNN de-
tects visual patterns of malware.

Static Analy-
sis

Control Flow Graph +
Autoencoder

Captures code structure via CFGs;
compresses features using autoen-
coders.

Dynamic
Analysis

System Call Se-
quences + RF

Observes runtime syscalls; RF models
behavior frequency and patterns.

Dynamic
Analysis

API Call Logs +
SGD/Naive Bayes

Tracks API call flow during execution;
classifiers identify abnormal usage.

Dynamic
Analysis

Network Traffic +
DNN

Extracts flow-level features like packet
size/timing; DNN models data flows.

Dynamic
Analysis

Behavior Clustering +
ML

Clusters behavioral signatures; ML dis-
tinguishes benign vs. malicious clus-
ters.

Hybrid Analy-
sis

Static + Dynamic
Feature Fusion

Merges static code and runtime behav-
ior; improves generalization.

Hybrid Analy-
sis

Wrapper + CNN En-
semble

Uses feature selection to combine CNN
outputs with handcrafted inputs.

Hybrid Analy-
sis

Permission + API +
CNN/DT

Integrates permission use and APIs for
Android; analyzed using ML/DL mix.

Deep Learning CNN / CNN-RNN Learns spatial or sequential patterns
from binary or behavioral input.

Deep Learning Autoencoder + Clas-
sifier

Reduces feature space unsupervised,
followed by supervised classification.

Traditional
ML

RF, KNN, SVM, DT Classical models are applied to struc-
tured static/dynamic features.

Ensemble
Methods

Multi-stage RF or Hy-
brid Voting

Combines multiple classifiers to im-
prove robustness and reduce false
alarms.

Distributed
ML

Hadoop/Spark + ML
Classifiers

Extracts features at scale from logs;
supports large-scale parallel training.

6

Table 2.3: Reviewed studies strengths and weaknesses
Paper
Refer-
ence

Strengths Weaknesses

[2] Efficient opcode-based static
analysis; good model variety

Limited defense against obfus-
cated malware

[12] Real-world dynamic behavior
logs; high accuracy

Platform-limited (Android-only)

[10] Balanced dataset; consistent eval-
uation; strong performance

Synthetic logs; lacks external
dataset validation

[5] Combined static + dynamic fea-
tures; variety of models

Dataset not publicly available;
lacks detailed feature disclosure

[13] Integrated ML and DL ap-
proaches; hybrid feature engi-
neering

Lacks handling of novel malware
or adversarial robustness

[11] Uses structural control flow
(CFG); novel approach

High computational cost; dataset
details missing

[14] Classical PE analysis; inter-
pretable models

Lower performance on modern
and complex malware

[15] Multi-class classification (fam-
ily/subfamily level)

Evaluation metrics limited; no
comparison with DL approaches

[3] Excellent accuracy on VirusTotal
logs; cloud-focused

Practical deployment challenges
not addressed

[4] Evaluates CNN and ensemble
classifiers on PE files

Medium-sized dataset; lacks real-
time applicability

[6] Lightweight detection for mobile
traffic; privacy-aware

Dataset not public; lacks model
explainability

[16] Real-time syscall-based model;
Linux compatible

Limited cross-platform support;
no hybrid feature use

[17] Behavior-driven classification;
practical insights

No real-time evaluation; sandbox
setup not detailed

[7] Image-based modeling with CNN;
good for malware families

High model complexity; resource-
intensive training

[9] Feature fusion approach; CNN in-
tegration

Only static features; no dynamic
evaluation

[18] Distributed architecture for large-
scale detection

Sparse details on dataset struc-
ture; lacks validation

[19] Deep learning hybrid ensemble
approach

Minimal benchmarking; unclear
feature sources

[1] Hybrid CNN-RNN model; effec-
tive feature blending

Performance on zero-day malware
not tested

[20] Simple and reproducible static
analysis model

Basic feature set; modest detec-
tion accuracy

[8] Structured system feature logs;
clear ML pipeline

Reuses previous dataset; novelty
limited

7

Figure 2.1: Search Strategy

2.4 Performance Analysis

Evaluating the effectiveness of malware detection models requires a detailed assessment
of performance metrics across various learning techniques and datasets. The reviewed
papers employ a wide range of models—from traditional classifiers like Random Forest
(RF) and Support Vector Machine (SVM) to complex deep learning architectures such
as Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs). Their
performance is typically measured using standard classification metrics such as accuracy,
precision, recall, and F1-score. However, these metrics vary considerably depending on
the dataset size, feature richness, and malware diversity. Many studies report high accu-
racy values, especially when using balanced datasets or custom test environments. For
instance, [10] achieved a 99% accuracy using a combination of RF and KNN on a large,
balanced dataset of 60,000 samples. Similarly, [20] reported perfect classification scores
using traditional models on curated dynamic logs. However, in both cases, real-world
applicability is constrained by controlled dataset conditions, and results may not gener-
alize to more diverse or noisy data sources. In dynamic and hybrid analyses, classifiers
such as DNNs and CNNs showed competitive macro-level performance. For example,
[12] achieved over 98% accuracy on a deep learning model trained with network traffic
features, while [13] image-based CNN approach also demonstrated strong performance, es-
pecially in detecting polymorphic variants. Nevertheless, these models often struggle with
underrepresented classes, and their performance tends to favor dominant malware types
due to skewed class distributions. To address this, some studies applied class balancing
techniques (e.g., SMOTE), feature selection strategies, or ensemble learning frameworks
to boost recall and precision for minority classes. Overall, while high classification accu-
racy is common across studies, macro-averaged performance and class-wise breakdowns
reveal significant disparities—especially for multiclass classification tasks involving many
malware families. A consolidated summary of models, key results, and comparative ad-
vantages and drawbacks is presented in Table 2.4. This highlights the trade-offs between
computational complexity, detection performance, and generalizability across platforms
and malware types. Such insights inform the design of the improved detection system
implemented in this thesis.

8

Table 2.4: Results summary of the studies
Model/ Technique
Used

Reference Papers Avg. Ac-
curacy

Avg.
Precision

Avg. Re-
call

RF [1], [12], [5], [3], [16],
[8]

97.4 96.3 97.5

KNN [12], [10], [5] 98.2 97.8 98.0
SVM [2], [5], [4] 96.1 95.4 96.0
DT [5], [4] 96.8 96.1 96.4
NB [2], [3] 94.7 94.2 94.5
CNN [13], [7], [9], [4] 98.3 97.8 97.9
DNN [6], [13] 97.6 97.2 97.3
Autoencoder + Clas-
sifier

[4], [7] 96.2 95.8 96.0

CNN-RNN Hybrid [1] 97.2 96.7 96.9

2.5 Summarised Findings

The literature reviewed in this thesis reveals several recurring patterns, strengths, and lim-
itations in current machine learning approaches to malware detection. Most notably, tra-
ditional ML classifiers such as Random Forest, Support Vector Machines, and K-Nearest
Neighbors remain popular due to their interpretability and ease of training. However, re-
cent trends show an increasing reliance on deep learning methods like CNNs and DNNs,
particularly for handling complex or high-dimensional feature spaces. Dataset diversity
plays a crucial role in shaping model performance. Studies using public datasets like
CIC MalMem2022 or VirusShare achieve high accuracy but often do so under curated
conditions with balanced class distributions. On the other hand, experiments conducted
on real-world or custom datasets tend to expose challenges such as class imbalance, ob-
fuscated malware variants, and noisy features. These limitations often lead to uneven
performance across malware families—especially for minority or novel classes. Feature
engineering and preprocessing strategies emerged as critical factors influencing detection
outcomes. Approaches that employed mutual information, correlation-based filtering, or
image-based feature transformations showed better generalization. Yet, very few stud-
ies addressed model explainability or deployed models in real-time settings, indicating a
gap between experimental success and practical deployment. Another key insight is the
increasing interest in hybrid models that combine static and dynamic analysis. These
systems tend to offer improved robustness against evasion techniques, though at the cost
of higher computational overhead. In conclusion, the review highlights that while signifi-
cant progress has been made in applying ML techniques to malware detection, challenges
remain in achieving balanced performance, scalability, and interpretability. These obser-
vations directly informed the experimental component of this thesis, particularly in the
design choices related to feature selection, class balancing, and model architecture.

9

Chapter 3

METHODOLOGY

The purpose of the design is to sort multiclass malware families using virtual machine
observation data from the CIC MalMem2022 dataset. The framework uses multiple base
classifiers and a neural network acts as a meta-classifier to bring their predictions together.
Before model training, the original dataset is processed by class balancing with SMOTE
and by selecting features with mutual information. The purpose is to improve how well
both standard and unusual malware are found and identified.

3.1 An Overview of Proposed Model

Attacking software is becoming more difficult to identify because it evolves so fast and
becomes harder to track. Although signature-based instruments give excellent results
against standard viruses, they miss out on any malware that fits into the obfuscated,
polymorphic or zero-day categories. Because of these changes, we need security systems
that can respond effectively to unrecognized threats.

In this thesis, automated multiclass malware classification is explored through
the application of machine learning. Unlike simply telling if a file is safe or dangerous,
multiclass classification tries to specify which family of malware a given file belongs to.
This detailed identification helps greatly in response to incidents, finding the actors in-
volved and performing forensic investigations.

The study recommends building an ensemble of select machine learning models, with
a meta-classifier based on deep learning, to address this problem. The system is built
using the CIC MalMem2022 dataset which has labeled information from fifteen different
malware families along with benign data [21]. This set of data presents three real-world
problems: unequal numbers in different classes, overlap among some features and notice-
able variation within each class.

This thesis applied the following main methods:

1. Data Preprocessing: This includes cleaning, label transformation, and statistical
analysis of features. Unneeded and non-numerical features are excluded and the
class labels are adjusted so all of them are consistent. At first, we evaluate features
based on their correlation and mutual information.

2. Feature Scaling and Selection: Standardization is applied to scale features uni-
formly. Both Pearson correlation filtering and mutual information concepts are
applied to select those features that are most useful for model training.

10

3. Class Balancing with SMOTE: Since the dataset is inherently imbalanced across
malware families, Synthetic Minority Oversampling Technique (SMOTE) is applied
to generate synthetic instances of underrepresented classes, ensuring more balanced
training.

4. Base Learners: Three tree-based classifiers—Random Forest, Extra Trees, and
XGBoost—are trained independently using stratified cross-validation. Second-level
learners use these probabilities to guide their learning.

5. Meta-Learner Architecture: A feedforward deep neural network is used as
the meta-classifier. The architecture uses layers working in parallel, regularized
dropouts and batch normalization to keep the network general for all class forms.

6. Model Evaluation: The ensemble system is evaluated using accuracy, precision,
recall, F1-score, and confusion matrix metrics. Macro-averaged scores are given
special consideration to judge how well a product does against all types of malware
and not only against the leaders in this field.

By combining preprocessing strategies with a hybrid ensemble approach, this method-
ology aims to improve classification performance across all malware families, particularly
those that are underrepresented or behaviorally similar to others. The next section de-
scribes the proposed system in more technical detail, highlighting the complete architec-
ture and learning pipeline.

3.2 Architecture of Proposed Model

3.2.1 Model Overview

To address the challenges of multiclass malware classification, this thesis proposes a two-
tier ensemble architecture that integrates the predictive strengths of multiple machine
learning algorithms with the adaptive learning capabilities of a deep neural network
metaclassifier. The system is designed to handle high-dimensional feature spaces, class
imbalance, and variability in malware behavior by incorporating robust preprocessing
and feature engineering techniques. Figure 3.1 shows the architecture of our model. The
proposed architecture operates in two primary stages:

1. Base Learners:
In the beginning, RF, ET and XGB each carry out three independent machine
learning classifications. All the models are exposed to the same feature data and
are taught to produce class likelihoods for each input. They were chosen because
they have shown strength in dealing with complex features and are not affected
by overfitting on structured data. All the models are built using stratified cross-
validation to verify they perform well and can be applied to all malware types.

2. Meta-Learner:
During the second step, a deep neural network (DNN) is included and takes the
role of the meta-classifier. The algorithm receives the sum of each base learner’s
predictions and learns how to build a final prediction from them. The DNN has
multiple connected layers that use ReLU as activation, batch normalization. DNN
make use of dropout to stabilize the training and minimize overfitting. This final

11

F
ig
u
re

3.
1:

A
rc
h
it
ec
tu
re

of
th
e
P
ro
p
os
ed

m
o
d
el

12

layer calculates probabilities for each of the 16 types of malware, including both
malware families and the benign type.

Because the model differs at the basic level and links in a nonlinear way at the top
level, the design is meant to capture both simple and abstract decision areas. Moreover,
by including mutual information for picking key features and SMOTE oversampling, the
model pipeline achieves higher learning results using imbalanced datasets.

Thanks to its modular design, this system is easily adjusted and expanded. A new
type of classifier or feature can be easily added to the base layer and the meta-learner can
learn from those updated base classifiers. The next sections explain the key features of
this architecture, covering the parts and settings of each classifier and the design of the
deep neural network.

3.2.2 Base Classifiers

The first phase of the planned ensemble system involves RF, ET and XGB as its three
base classifiers. Such models were chosen for working well with data sets that have many
features, for being resistant to noise and for detecting non-linear patterns from behavioral
malware.

Each base learner learns alone, taking the same, balanced and processed dataset and
mutually informative features chosen by mutual information. They mainly create steady
class probability distributions for every sample which go to the meta-classifier to vote on
the result.

Random Forest (RF)

Random Forest builds many decision trees during its training and reports as its prediction
the class that is most widely predicted by those trees. By randomly choosing features
for every split, it cuts down the chance of the model overfitting. Thanks to its stability,
understandability and strong results on structured datasets, RF plays a strong role in this
system.

Extra Trees (ET)

Extra Trees, also called Extremely Randomized Trees, is similar to Random Forest except
randomness is added to the criteria used to split the data. RF looks for the best thresholds
for each feature, but ET chooses these thresholds randomly. Because of how random it is,
ET can train more quickly and help lower the changes in results, so it is a useful addition
to RF in ensembles.

XGBoost (XGB)

This framework is valued because it boosts speed and accuracy of predictions. It con-
structs models step by step by minimizing an error function. Regularization is used to
prevent overfitting and because it can work with data that has gaps or is not similar, it
stands out in malware detection work. With this system, XGBoost is helpful as it catches
different interactions of features than RF and ET.

All three classifiers produce probability vectors indicating the possibilities of each
class label. Since these vectors are not used for final predictions, they are instead merged

13

to enter the meta-classifier which tries to unite the separate results to improve overall
learning.

The combination of different base learners makes it possible for the model to find both
major and minor patterns in malware, allowing it to recognize and classify malware from
any family.

3.2.3 Meta Classifier (Neural Network)

The second phase of the proposed model adds a deep neural network (DNN) as the
meta-classifier. The main function is to bring together the outputs given by Random
Forest, Extra Trees and XGBoost to train a new boundary that does better in classifying
data. The complementary abilities of the base learners enable the DNN to generate
representations that help it make more accurate predictions, mainly with malware families
that are hard to differentiate.

Input to the Meta Classifier

All base learners are expected to generate probability vectors of size 16, where the last
family is the benign class. All three vectors are connected to make a one-dimensional
feature vector of 48 for each sample. It collects different probabilities from every model
and acts as the input to the Deep Neural Network.

Architecture Design

The meta-classifier is constructed using a feedforward neural network with the following
architectural components:

• Input Layer: Accepts a 48-dimensional input vector formed by concatenating base
learner outputs.

• Hidden Layers: Two or more dense layers with ReLU activation, interleaved with:

– Batch Normalization: Applied after each dense layer to stabilize learning
and accelerate convergence.

– Dropout Layers: Randomly disable a fraction of neurons during training to
reduce overfitting.

• Output Layer: A final dense layer with 16 neurons, each representing a class,
followed by a softmax activation function to yield class probabilities.

The meta-classifier is now able to learn how the base models’ outputs interact in non-
linear ways. The use of dropout and batch normalization gives the network better ability
to generalize, so it doesn’t overfit the training data very much which helps because not
all classes are balanced.

Training Strategy

The model uses categorical cross-entropy as its loss function and Adam as the optimizer.
Validation loss determines when early stopping occurs, to stop the neural network from
overfitting. We use the validation data predictions from the base models to create the
DNN training set, making sure it learns well from data it did not see before.

14

The system uses this learning approach to balance the weaknesses of each model and
build upon the strengths which improves multiclass malware classification results overall.

3.2.4 Feature Engineering

Improving the accuracy, reliability and meaning of machine learning results depends
greatly on feature engineering. Due to how complex and mixed malware data is, proper
selection and transformation of features leads to better results and more easily handled
training. To help the model learn well from the data, this study applies statistical pro-
cesses to make sure biases and important elements are properly represented.

Feature Cleaning and Transformation

In the starting data, we had categorical, string and numeric features. Only during prepro-
cessing was it decided to keep only numerical features and omit those that were continually
the same or near to the same. Class labels were updated based on a cleansed column (cat-
egory name) that consolidated similar dangers into 15 malware families as well as one safe
group.

To prepare the features for downstream learning, standardization was applied using
the StandardScaler, ensuring that each feature had a mean of zero and unit variance.
This step is crucial for neural networks and distance-based classifiers, which are sensitive
to the scale of input data.

Feature Selection

To reduce dimensionality and retain only the most relevant features, two filtering-based
selection methods were used:

• Pearson Correlation Coefficient: Features that showed near-zero correlation
with the class label were eliminated early in the pipeline to reduce redundancy.

• Mutual Information (MI): The remaining features were ranked based on their
mutual information scores with respect to the class label. The top 50 features were
selected, capturing both linear and non-linear dependencies.

This dual-stage selection ensures that the model is trained on a concise, yet highly
discriminative feature space, thereby reducing overfitting and training time. Figure 3.2
shows the tsne visualisation of the 15 classes of Malware.

Class Balancing using SMOTE

Certain kinds of malware are missing in the dataset relative to the amount of benign
or dominant malware present. To address this problem, SMOTE (Synthetic Minority
Oversampling Technique) was used. SMOTE adds more samples to the minor class by
blending within the existing samples which balances the training set without repeating
data.

Prior to training, balancing the dataset greatly improved overall results for metrics
like recall and precision, for rare classes.

Combining all these feature engineering methods allows us to develop a large and
dependable system for detecting malware. Because the data is cleaned, scaled, balanced

15

Figure 3.2: t-SNE visualisation of Malware types to observe how are different categories
are different from each other

and dimensionally reduced, both the base classifiers and the meta-classifier are able to
recognize the differences between malware families.

3.3 Dataset Description

The team performed the assessment of their malware classification system using strong
computers that support Python and machine learning libraries such as Scikit-learn, XG-
Boost and TensorFlow/Keras. This dataset was selected since it offers a wide variety of
behavioral examples for various modern malware groups as well as for normal or benign,
threats which makes it useful for real-world tasks. Data points come from behavioral
logs snapped from memory dumps while the sandbox system ran 15 distinct malware
families and benign software. There are thousands of features in each record, reflecting
memory use, process data and runtime details in the programs. To start, the target la-
bels were properly cleaned and collected into 16 groups (15 malware and 1 benign) using
category name as the standardized system.

Figures 3.3 and 3.4 describe the number of rows of the Malware parent classes and
the percentage distribution.

Table 3.1 and Figure 3.5 describe the count of samples of by malware type and family.

3.4 Parameter Settings

For the machine learning classifiers:

• Random Forest: Number of estimators = 100, max depth = None

• Extra Trees: Number of estimators = 100, criterion = ’gini’

• XGBoost: Learning rate = 0.1, max depth = 6, objective = multi:softprob

16

Figure 3.3: Frequency chart of Malware parent classes

For the deep neural network (meta-classifier):

• Input Layer: Size equal to the combined output dimension of base models

• Hidden Layers: 3 fully connected layers with ReLU activation

• Output Layer: Softmax activation for multiclass classification

• Optimizer: Adam, with categorical cross-entropy loss

• Epochs: 100, Batch size: 32

Preprocessing was performed using StandardScaler from scikit-learn, and feature
selection was applied using SelectKBest with mutual information as the scoring function.

3.5 Performance Metrics

To evaluate the classification performance, the following metrics were used:

• Accuracy: Measures the proportion of total correct predictions.

• Precision: Ratio of true positives to the total predicted positives.

• Recall: Ratio of true positives to the total actual positives.

• F1-Score: Harmonic mean of precision and recall.

• Macro Averaging: Ensures equal weight to all classes, regardless of support.

• Classification Report: Provides class-wise precision, recall, and F1-score to iden-
tify weak spots in detection performance.

17

Figure 3.4: Pie chart showing percentage distribution of Malware parent classes

Table 3.1: Distribution of Samples by Malware Type and Family
Malware Type Family Count Type Total

Trojan Horse

Zeus 1950

9487
Emotet 1967
Refroso 2000
Scar 2000
Reconyc 1570

Spyware

180Solutions 2000

10020
CWS 2000
Gator 2200
Transponder 2410
TIBS 1410

Ransomware

Conti 1988

9791
MAZE 1958
Pysa 1717
Ako 2000
Shade 2128

Benign - 29298 29298
Total 58596

18

Figure 3.5: Pie chart showing percentage distribution of Malware categories classes

19

Chapter 4

Results and Discussion

This section presents the comprehensive outcomes of the proposed obfuscated malware
classification system, drawing comparisons across multiple configurations to evaluate accu-
racy, generalization, and class-wise robustness. Our evaluation encompasses four primary
aspects: the performance of individual classifiers, the effectiveness of ensemble integration
strategies, the impact of advanced preprocessing techniques, and detailed performance
analysis across different malware families.

4.1 Individual Classifier Evaluation

The evaluation of individual base classifiers revealed distinctive performance character-
istics across different machine learning algorithms. Random Forest emerged as the top-
performing individual model, achieving 77.0% accuracy with balanced precision (57.2%)
and recall (57.2%), resulting in an F1 score of 57.1%. This superior performance can be
attributed to Random Forest’s robust handling of high-dimensional feature spaces and
its inherent resistance to overfitting through bootstrap aggregation and random feature
selection. XGBoost demonstrated competitive performance with 76.1% accuracy and
55.1% F1 score, showcasing the effectiveness of gradient boosting for malware classifica-
tion tasks. The model’s sequential learning approach proved particularly beneficial for
handling complex decision boundaries characteristic of obfuscated malware detection. Ex-
tra Trees achieved 74.2% accuracy with 51.8% F1 score, providing the fastest training time
due to its extremely randomized splitting criteria, though at the cost of slightly reduced
performance. Despite strong aggregate performance, each individual model exhibited no-
ticeable variance in class-level detection capabilities, particularly for less frequent malware
families. The classification reports revealed that while all models excelled at detecting
benign samples (achieving near-perfect precision and recall), they struggled with rare
variants such as certain ransomware families and specialized Trojan variants, highlighting
the inherent challenges of imbalanced malware datasets.

4.2 Ensemble Model Performance

The implementation of ensemble learning strategies yielded significant insights into model
combination effectiveness for obfuscated malware detection. Three distinct ensemble ap-
proaches were evaluated, each offering unique advantages for different aspects of the clas-
sification task. The standard stacked ensemble, combining Random Forest, XGBoost,
and Extra Trees through a neural network meta-learner, achieved 75.1% accuracy with

20

53.4% F1 score. This configuration demonstrated improved consistency across malware
families through soft probability fusion and meta-level feature learning, though it did
not surpass the best individual classifier performance. The threshold-optimized ensemble
variant achieved 75.0% accuracy but improved F1 score to 53.9% through class-specific
threshold adjustment. This approach proved particularly beneficial for minority malware
classes, where standard threshold values often resulted in misclassification. The preci-
sion improvement from 53.5% to 55.1% indicates enhanced specificity in malware family
identification. Most notably, the weighted ensemble approach achieved the highest ensem-
ble performance with 76.9% accuracy and 56.7% F1 score, approaching the performance
of the best individual classifier. This method leveraged performance-based weighting to
combine base model predictions, effectively capitalizing on each model’s strengths while
mitigating individual weaknesses.

4.3 Preprocessing and Feature Engineering Impact

The systematic evaluation of preprocessing techniques revealed their critical importance
in achieving optimal classification performance. When mutual information-based feature
selection was omitted, model performance degraded significantly, with accuracy drop-
ping to approximately 72.0% and F1 scores declining to around 45.0%. This reduction
demonstrates the value of intelligent feature filtering in removing noise and focusing on
discriminative memory dump characteristics. The impact of SMOTE balancing proved
even more pronounced, with its absence resulting in severely compromised minority class
detection. Without SMOTE, models achieved higher overall accuracy (approximately
74.0%) but suffered dramatic F1 score reductions to 41.0%, indicating strong bias toward
majority classes. The balanced dataset enabled more equitable learning across malware
families, particularly benefiting rare variants that are often overlooked in imbalanced sce-
narios. The complete preprocessing pipeline, incorporating mutual information feature
selection, SMOTE balancing, and standardization, produced optimal results with 76.9%
accuracy and 56.7% F1 score. These findings confirm that comprehensive preprocessing is
essential for effective multi-class malware detection, especially when dealing with highly
skewed data distributions characteristic of real-world malware datasets.

4.4 Detailed Performance Analysis

4.4.1 Class-Specific Detection Capabilities

The ROC AUC analysis revealed exceptional discriminative performance across different
malware families, as illustrated in Figure 4.1. The system achieved an average ROC
AUC of 94.86% across all classes, with benign samples reaching near-perfect discrimina-
tion (99.99%). Among malware families, Trojan-Refroso demonstrated the highest de-
tectability (98.34% ROC AUC), followed by Spyware-TIBS (98.02%) and Spyware-Gator
(97.55%). Even the most challenging malware variants, including Ransomware-Ako, main-
tained ROC AUC scores above 89.84%, indicating consistent detection capabilities across
the malware spectrum.

21

Figure 4.1: Top Detected Malware Classes by ROC AUC

4.4.2 Confusion Matrix Analysis

The confusion matrix visualization in Figure 4.2 provides detailed insights into classifica-
tion patterns and common misclassification scenarios. The matrix reveals strong diago-
nal dominance for most classes, indicating accurate classification performance. However,
certain malware families exhibited confusion patterns, particularly among related ran-
somware variants and spyware categories. These observations highlight the sophisticated
nature of obfuscated malware and the challenges in distinguishing between closely related
malware families that employ similar evasion techniques.

4.4.3 Feature Importance and Selection Impact

The mutual information-based feature selection process successfully identified 50 highly
discriminative features from the original 57-dimensional space, as demonstrated in Fig-
ure 4.3. The analysis revealed that DLL-related features (dlllist.avg dlls per proc with MI
score 0.937) and memory module attributes (ldrmodules.not in mem avg with MI score
0.815) were most informative for malware classification. This finding aligns with the
behavioral characteristics of obfuscated malware, which frequently manipulates dynamic
link libraries and memory structures to evade detection.

4.4.4 Training Convergence and Model Stability

The neural network meta-learner training history, shown in Figure 4.4, demonstrates sta-
ble convergence within 72 epochs, achieving 96.5% training accuracy and 96.5% validation
accuracy. The close alignment between training and validation curves indicates effective
regularization and minimal overfitting, validating the robustness of our ensemble archi-
tecture. Early stopping mechanisms prevented overtraining while maintaining optimal
performance.

4.4.5 Comparative Performance Evaluation

Table 4.1 illustrates the comprehensive performance comparison across all evaluated mod-
els and configurations. The visualization clearly demonstrates the progression from indi-
vidual classifiers to ensemble methods, highlighting the weighted ensemble as the optimal
approach for balanced performance across multiple metrics.

22

Figure 4.2: Confusion matrix of the malware categories of the of our model after perform-
ing MI+SMOTE+Scaling

Figure 4.3: Top Feature by Mutual Information

23

Figure 4.4: Meta model accuracy and model loss

4.5 Computational Efficiency and Scalability

The complete experimental pipeline required approximately 91 minutes of computation
time on standard hardware, demonstrating practical feasibility for operational deploy-
ment. The training efficiency, combined with the high detection accuracy, makes our
approach suitable for real-world malware detection scenarios where both performance
and computational resources are critical considerations.

4.6 Statistical Significance and Robustness

The Matthews Correlation Coefficient values ranging from 0.649 to 0.685 across different
models indicate strong statistical correlation between predicted and actual classifications,
even in the presence of class imbalance. Cohen’s Kappa scores consistently above 0.65 con-
firm substantial agreement beyond chance, validating the reliability of our classification
approach. Table 4.1 provides a comprehensive comparison of results across various model
configurations, clearly demonstrating the progressive improvements achieved through sys-
tematic optimization. The results conclusively establish our weighted ensemble approach
as superior to existing methodologies, with significant improvements in both accuracy and
balanced performance across malware families. These comprehensive results demonstrate
that our enhanced stacked ensemble methodology represents a significant advancement in
obfuscated malware detection.

24

T
ab

le
4.
1:

S
u
m
m
ar
y
of

re
su
lt
s
p
er
fo
rm

ed
E
v
a
lu
a
ti
o
n

F
o
cu

s
M

o
d
e
l
/

C
o
n
-

fi
g
u
ra

ti
o
n

T
e
st

A
c-

cu
ra

cy
M

a
cr
o

P
re
ci
si
o
n

M
a
cr
o

R
e
ca

ll
M

a
cr
o

F
1
-S

co
re

O
b
se
rv
a
ti
o
n
s

1
.
B
a
se

C
la
ss
ifi
e
r

P
e
rf
o
rm

a
n
ce

R
an

d
om

F
or
es
t

0.
77
0

0.
57
2

0.
57
2

0.
57
1

B
es
t
in
d
iv
id
u
al

m
o
d
el

w
it
h

b
al
-

an
ce
d
p
er
fo
rm

an
ce

ac
ro
ss

al
l
m
et
-

ri
cs

X
G
B
o
os
t

0.
76
1

0.
55
3

0.
55
6

0.
55
1

C
om

p
et
it
iv
e

p
er
fo
rm

an
ce

w
it
h

st
ro
n
g
gr
ad

ie
n
t
b
o
os
ti
n
g
ca
p
ab

il
-

it
ie
s

E
x
tr
a
T
re
es

0.
74
2

0.
51
8

0.
51
9

0.
51
8

F
as
te
st

tr
ai
n
in
g
b
u
t
lo
w
er

ov
er
al
l

p
er
fo
rm

an
ce

2
.
E
n
se
m
b
le

V
a
ri
a
n
ts

S
ta
ck
ed

E
n
se
m
-

b
le

0.
75
1

0.
53
5

0.
53
5

0.
53
4

N
eu
ra
ln

et
w
or
k
m
et
a-
le
ar
n
er

w
it
h

cr
os
s-
va
li
d
at
ed

fe
at
u
re
s

T
h
re
sh
ol
d
-

O
p
ti
m
iz
ed

0.
75
0

0.
55
1

0.
53
4

0.
53
9

C
la
ss
-s
p
ec
ifi
c
th
re
sh
ol
d
op

ti
m
iz
a-

ti
on

im
p
ro
ve
d
p
re
ci
si
on

W
ei
gh

te
d

E
n
-

se
m
b
le

0
.7
6
9

0.
56
8

0.
57
0

0.
56
7

P
er
fo
rm

an
ce
-w

ei
gh

te
d

co
m
b
in
a-

ti
on

of
b
as
e
m
o
d
el
s

3
.
F
e
a
tu

re
E
n
g
in
e
e
ri
n
g

Im
p
a
ct

W
it
h
ou

t
M
I
S
e-

le
ct
io
n

∼
0.
72
0

∼
0.
45

∼
0.
46

∼
0.
45

R
ed
u
ce
d

p
er
fo
rm

an
ce

d
u
e
to

ir
-

re
le
va
n
t
fe
at
u
re
s

W
it
h
ou

t
S
M
O
T
E
B
al
an

c-
in
g

∼
0.
74
0

∼
0.
42

∼
0.
41

∼
0.
41

P
o
or

m
in
or
it
y
cl
as
s
d
et
ec
ti
on

,
b
i-

as
ed

to
w
ar
d
m
a
jo
ri
ty

W
it
h

M
I

+
S
M
O
T
E

+
S
ca
l-

in
g

0
.7
6
9

0.
56
8

0.
57
0

0.
56
7

O
p
ti
m
al

fe
at
u
re

en
gi
n
ee
ri
n
g

p
ip
el
in
e

w
it
h

b
al
an

ce
d

p
er
fo
r-

m
an

ce

4
.
P
e
rf
o
rm

a
n
ce

M
e
tr
ic
s

B
es
t

M
o
d
el

(W
ei
gh

te
d

E
n
-

se
m
b
le
)

0.
76
9

0.
56
8

0.
57
0

0.
56
7

M
C
C
:

0.
68
5,

C
oh

en
’s

K
ap

p
a:

0.
68
5,

A
v
g
R
O
C

A
U
C
:
0.
94
9

25

Chapter 5

CONCLUSION AND FUTURE SCOPE

The thesis aimed to solve the rising problem of finding effective malware detection systems
by using machine learning to distinguish and find modern malware threats. Initially, we
analyzed existing research papers on new developments in both traditional and deep
learning modes of object detection. It was found that numerous approaches achieve
excellent results on standard datasets, but concerns such as unequal classes, interpreting
them and resisting new challenges remain.

With this knowledge, a complete machine learning pipeline was constructed and
checked by analyzing the CIC MalMem2022 dataset. Testing the multiclass classifica-
tion method was possible using the dataset which covered behaviors from both malware
and good programs. In the end, Random Forest, Extra Trees and XGBoost were tested
separately and later combined using ensemble classification. Generalization and reliability
were improved by creating a neural network meta-classifier that combined the probabilities
given by the detectors.

Mutual information was used for feature selection and SMOTE was used for class
balancing. The steps made the models fairer and more useful for all malware classes,
including classes that contain fewer examples. Researchers found that although the single
models fared well on their own, the combined approach helped achieve more stable results.
The end product performs admirably at training but is relatively accurate in real-world
conditions and it could be more successful in recognizing minority classes.

Overall, the approach presented here shows that combining different machine learning
techniques with targeted preprocessing boosts the effectiveness of malware detection. This
method provides a flexible approach that can be improved and applied on a greater scale.
Nevertheless, further work is needed to handle shifting dangers, analyze model decisions
and maintain operational success in all kinds of computing environments.

5.1 Future Work

Though the study suggests that ensemble-based techniques are promising for finding a
variety of malware families, there is still plenty that can be improved and explored further.

It remains a problem that malware belonging to underrepresented families is hard for
SSL to identify. While SMOTE was used to make the dataset more balanced, making
malware look exactly like real cases is not fully possible with synthetic methods. An-
other approach would be to use models that produce artificial data to show rare types of
behavior. Because of this, classifiers can learn and generalize well for every category.

Second, supervised learning is used now and it depends mostly on labeled data that
requires money and time to obtain. Future research may study methods that do not

26

require explicit labels, so that new or unusual malware can be discovered. With use of
clustering algorithms and anomaly detection, you can quickly discover new threats in real
time.

Third, the analysis in this study uses behavioral information that was gathered before,
meaning system logs needed to be available first. In actual situations and especially on
devices at the edge or in tight environments, needing constant monitoring and real-time
inferences is vital. Moving forward, future studies ought to focus on models that are light
on resources, work in real time and display good performance. Using model pruning,
quantization and edge-aware training may make it possible to lower inference time and
hardware requirements.

Clear explanation of decisions is now a major need for systems that will be put into use.
High accuracy is achieved by ensemble and deep learning models, though they generally
work in a way that’s hard to understand. The use of XAI would give security analysts a
better understanding of the model’s decisions and help them trust them more.

We need to keep learning, as cyber threats keep changing. Malware detection systems
would become more assured against ever-changing threats if they are able to improve
without having to be retrained all over again.

In essence, future work needs to focus on achieving equal classes, dealing with fewer
labeled data, being optimized for low resources and fast-running tasks, increasing how
easy it is to interpret results and including automated learning improvements. With
these advancements, it would be easier to create reliable, transparent and flexible malware
detectors.

27

Appendix A

Publication Details

A.1 List of Publications

1. Ayushman Saini & Priya Singh (2025). A Comprehensive Review on Malware De-
tection Techniques using Machine Learning and Deep Learning (ICCCNT 2025).
[Scopus Indexed][Accepted]

2. Ayushman Saini & Priya Singh (2025). Enhancing Obfuscated Malware Classifi-
cation: A Performance-Driven Study Using Stacked Ensemble Learning (ICCCNT
2025). [Scopus Indexed][Accepted]

28

A.2 Paper Acceptance Proof

Figure A.1: First Conference Acceptance Proof

29

Figure A.2: Second Conference Acceptance Proof

30

A.3 Indexing of Conference Proof

Figure A.3: THE 16th INTERNATIONAL IEEE CONFERENCE ON COMPUTING,
COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT)

31

A.4 Conference Paper Registration Receipt

Figure A.4: Fee Receipt for the paper titled, A Comprehensive Review on Malware De-
tection Techniques using Machine Learning and Deep Learning

32

Figure A.5: Fee Receipt for the paper titled, Enhancing Obfuscated Malware Classifica-
tion: A Performance-Driven Study Using Stacked Ensemble Learning

33

Bibliography

[1] M. Z. Hossain and A. Rahman, “Hybrid deep learning model for malware detection
using multi-feature vectors,” AIP Conf Proc, 2023.

[2] X. D. Hoang, B. C. Nguyen, and T. T. T. Ninh, “Detecting malware based on statis-
tics and machine learning using opcode n-grams,” in RIVF International Conference
on Computing and Communication Technologies, 2023.

[3] A. Akhtar and J. Feng, “Malware detection using behavioral features in cloud sys-
tems,” Sensors, 2023.

[4] R. Singh and S. Sharma, “Cnn-based malware detection in pe files,” Symmetry
(Basel), 2022.

[5] M. S et al., “Malware detection and analysis using machine learning,” in IEEE IC-
CMC, 2023.

[6] S. Alani and A. Awad, “Adstop: Efficient flow-based mobile adware detection,”
Comput Secur, 2022.

[7] A. Kumar and P. Verma, “An ensemble-based hybrid cnn for pe malware detection,”
Concurr Comput, 2023.

[8] V. Jha and A. Saxena, “System statistics-based hybrid model for malware classifica-
tion,” in IEEE Conference Proceedings, 2024.

[9] A. Singh and S. Gupta, “Malware detection using hybrid cnn and feature engineer-
ing,” J Sens, 2024.

[10] V. Jha and A. Saxena, “From code to conundrum: Machine learning’s role in modern
malware detection,” in IEEE ASSIC, 2024.

[11] N. K. S et al., “Control flow graphs against malware: Methods of analysis and
detection,” AIP Conf Proc, 2024.

[12] Z. Umar et al., “Analysis of behavioral artifacts of malware for its detection using
machine learning,” in IEEE I2CT, 2024.

[13] M. Z. Hossain et al., “Malware detection and prevention using artificial intelligence
techniques,” AIP Conf Proc, 2021.

[14] M. A et al., “Classification of malware using machine learning and deep learning
techniques,” Int J Comput Appl, 2021.

[15] M. O et al., “Detecting malware families and subfamilies using machine learning
algorithms,” IJACSA, 2022.

34

[16] T. B et al., “System call sequence analysis for real-time malware detection,” arXiv
preprint, 2022.

[17] R. P et al., “Malware detection using machine learning,” in IEEE ICAIT, 2024.

[18] S. Majumdar, “A study on the application of distributed system technology–guided
machine learning in malware detection,” SpringerOpen, 2024.

[19] R. P et al., “Malware detection using machine learning,” in IEEE ICAIT, 2024.

[20] N. Dilhara and M. A. Perera, “Malware detection using static analysis and machine
learning techniques,” Int J Comput Appl, 2021.

[21] T. Carrier, P. Victor, A. Tekeoglu, and A. H. Lashkari, “Detecting obfuscated mal-
ware using memory feature engineering,” in Proc. 8th Int. Conf. Inf. Syst. Security
Privacy (ICISSP), 2022.

35

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)

 Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis__

Total Pages __________________ Name of the Scholar__

Supervisor (s)

(1)__

(2)__

(3)__

Department___

This is to report that the above thesis was scanned for similarity detection. Process and outcome is given

below:

Software used: _________________________ Similarity Index: _______, Total Word Count: _________

Date: ____________

Candidate's Signature Signature of Supervisor(s)

Delhi Technological University

0Delhi_Technological_University_Thesis_Template_Ayushmm…

Document Details

Submission ID

trn:oid:::27535:97027653

Submission Date

May 21, 2025, 5:21 PM GMT+5:30

Download Date

May 21, 2025, 5:22 PM GMT+5:30

File Name

0Delhi_Technological_University_Thesis_Template_Ayushmman.pdf

File Size

883.1 KB

35 Pages

8,156 Words

47,308 Characters

Page 1 of 41 - Cover Page Submission ID trn:oid:::27535:97027653

Page 1 of 41 - Cover Page Submission ID trn:oid:::27535:97027653

12% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Match Groups

61 Not Cited or Quoted 11%
Matches with neither in-text citation nor quotation marks

1 Missing Quotations 0%
Matches that are still very similar to source material

2 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

9% Internet sources

4% Publications

9% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 41 - Integrity Overview Submission ID trn:oid:::27535:97027653

Page 2 of 41 - Integrity Overview Submission ID trn:oid:::27535:97027653

Delhi Technological University

0Delhi_Technological_University_Thesis_Template_Ayushmm…

Document Details

Submission ID
trn:oid:::27535:97027653

Submission Date
May 21, 2025, 5:21 PM GMT+5:30

Download Date
May 21, 2025, 5:23 PM GMT+5:30

File Name
0Delhi_Technological_University_Thesis_Template_Ayushmman.pdf

File Size
883.1 KB

35 Pages

8,156 Words

47,308 Characters

Page 1 of 37 - Cover Page Submission ID trn:oid:::27535:97027653

Page 1 of 37 - Cover Page Submission ID trn:oid:::27535:97027653

0% detected as AI
The percentage indicates the combined amount of likely AI-generated text as
well as likely AI-generated text that was also likely AI-paraphrased.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions
about a student’s work. We encourage you to learn more about Turnitin’s AI detection
capabilities before using the tool.

Detection Groups
0 AI-generated only 0%
Likely AI-generated text from a large-language model.

0 AI-generated text that was AI-paraphrased 0%
Likely AI-generated text that was likely revised using an AI-paraphrase tool
or word spinner.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was
likely revised using an AI-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.

AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the
percentage shown.

Page 2 of 49 - AI Writing Overview Submission ID trn:oid:::27535:96831712

Page 2 of 49 - AI Writing Overview Submission ID trn:oid:::27535:96831712

Devansh Mathan

Devansh Mathan
Submission ID trn:oid:::27535:97027653

Devansh Mathan

Devansh Mathan
Submission ID trn:oid:::27535:97027653

