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Abstract

Image captioning relates to the automatic generation of natural language descriptions

for visual content, and It has seen major progress through the acceptance of deep learning

methods.. This thesis critically explores the transformation of image captioning methods,

with a particular focus on the transformative impact of Vision Transformers (ViTs) .

While common methods employing CNNs and RNNs had provided initial advancements

their basis, they are generally poor at understanding global context and relationships

within the entire image. Vision Transformers overcome this deficit by employing self-

attention and allowing thorough understanding of fine detail as much as overall context

of the image.This study compares ViT-based models with traditional techniques across

a variety of architectures and benchmark datasets, particularly MS COCO. The findings

indicate that ViT-based approaches significantly outperform conventional models in gen-

erating semantically rich and contextually accurate captions. Additionally, this thesis

introduces a novel image captioning framework ViBERT, which merges advantages of

both Vision transformer and Bidirectional Encoder Representations from Transformers

in an encoder-decoder architecture.Sometimes traditional models often fail in capturing

the long range semantic dependencies and global visual setting, ViBERT effectively lever-

ages ViT’s visual attention and BERT’s deep contextual understanding to generate more

strong and semantic correct description. The performance of the proposed model is cal-

culate using standard performance measures.
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Chapter 1

INTRODUCTION

1.1 Motivation

In today’s digital world, images are everywhere on social media, news articles, educational
platforms, and enabling machines to interpret and describe images using natural language
continues to be a difficult challenge. Image captioning is in the intersection of computer
vision and NLP(Natural Language Processing), can provide additional access to content
and enable automatic content creation.Old methods involving CNNs (Convolutional Neu-
ral Networks) and RNNs (Recurrent Neural Networks) were good background work, but
tend to falter while detecting global context of an image or context relevance in longer
sentences. Transformer models changed everything. Vision Transformers (ViTs) can see
the whole image by taking the picture as a patch sequence, and BERT (Bidirectional
Encoder Representations from Transformers) understands language more effectively by
infusing global context of the sentence. The motivation for this project is that uniting the
best of ViT and BERT in one architecture has the ability to produce more fluent and ac-
curate captions. Through this fusion, the goal is to create a model that surpasses current
boundaries and produces captions that not only can be understood but are human.

1.2 Problem Statement

Traditional models, with the overall approach of combing CNNs for visual feature extrac-
tion and RNNs or LSTMs (Long Short Term Memorys) for sequence generation, have
performed well enough but are beset with several shortcomings. These include failure
to capture long-range dependencies, restricted global image context comprehension, and
generation of generic or shallowness in semantics in captions. Moreover, the sequential
nature of RNNs makes training less efficient and harder to parallelize. With recent ad-
vances in transformer-based models, ViTs have appear as a powerful choice to CNNs by
enabling global attention across image patches, while BERT has proven highly effective in
capturing rich, bidirectional context in language modeling.Despite both of them having
individual success, the integration of ViT and BERT for captioning images is relatively
underdeveloped. The aim of this work is to fill this gap by introducing an cross functional
unified transformer called as ViBERT that leverages the strength of ViT in understanding
vision and uses BERT for generating fluent, coherent, and contextually relevant captions
to overcome the limitations of existing CNN-RNN models.
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1.3 Overview

The capacity to create descriptive text based on visual material, more often referred to
as image captioning, is a complex and difficult challenge. This type of interdisciplinary
problem demands a system to properly comprehend the semantic meaning of an current
picture and tell it in native, glib language. Currently image captioning getting more signif-
icant over the last few years in real world applications. Conventionally, image captioning
models have been developed on top of encoder-decoder architectures, in which CNNs are
used to mine visual features from the image and RNNs, including sophisticated variants
like LSTM networks and GRUs, are utilized to produce textual descriptions step by step.
While these architectures have facilitated tremendous progress in this domain, they suf-
fer from a number of the most important limitations. One of them is their inability to
realize long-range relationship and preserve a contextual global context of the image. It
especially when the scene includes more than one interacting object or intricate visual re-
lationships.The sequential nature of RNNs is also restrictive in parallelization at the time
of training, rendering them computationally expensive for large-scale use.The discovery of
transformer architectures has introduced a revolution in computer vision as well as NLP,
providing a more efficient and scalable solution. ViTs are introduced as a replacement for
CNNs. It have demonstrated a strong ability to model global dependencies by dividing
pictures into certain fixed size patches and the method of using attention mechanisms.
This enable model to learn intricate spatial relationships across the entire image without
relying on hierarchical feature extraction. Instead of analyzing images using convolutional
layers like CNNs. ViT treat an image as a arrangement of patches just like a sequential
data made up of words. To begin with, the image is fragmented into small, fixed-size
patches for instance. These pieces of pictures are then changed into a vector and taken
through a linear layer to create patch embeddings. A special classification token is put
into the sequence, position embeddings are included so the model can understand the or-
der and position of each patch.Once the patches have been prepared, the entire sequence
is put into a encoder, which employs attention in order to enable each patch to talk to
every other patch in the image. This is what makes ViTs have a significant edge—ViTs
are able to find out relationships between far-apart parts of the image, which CNNs, which
are primarily concerned with local features, are not able to. The self-attention process
assists the model in determining what components of the picture are applicable for the
task in question, whether classifying an object or detecting text. After a number of layers
of this feedforward and self-attention processing, the output of the classification token
is generally utilized for prediction. On certain tasks, the full output sequence may be
employed to take more sophisticated decisions, like producing a caption or dividing out
portions of the image.
In parallel, BERT has revolutionized the field of NLP by introducing deep bidirectional
learning of textual context. In contrast to earlier language models, BERT handles left
and right word context together, enabling richer and more accurate meaning represen-
tation. In combination, ViTs and BERT represent an unprecedented chance to develop
multimodal systems able to comprehend visual input and produce highly coherent and
semantically correct textual output.
In this thesis, we provide an extensive investigation of transformer-based image caption-
ing, specifically the incorporation of Vision Transformers and BERT into a single encoder-
decoder model, called ViBERT. The overarching goal of this work is to overcome the in-
built restrictions of traditional CNN-RNN models by exploiting ViT’s capacity to encode
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global visual context and BERT’s better performance in modeling deep semantic relations
in words. The new ViBERT model is stringently tested on standard benchmark data, like
Flickr8K, that offers a rich variety of images and human-created captions. In order to
measure the model’s performance and efficiency, we utilize commonly accepted metrics
such as BLEU (Bilingual Evaluation Understudy), CIDEr (Consensus-based Image De-
scription Evaluation), ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation),
and SPICE (Semantic Propositional Image Caption Evaluation). In experiment, the re-
sult show that ViBERT perform superior to many baseline models, generating captions
that are not just grammatically correct but also contextually pertinent and semantically
dense. This research highlights the increasing importance of transformer-based multi-
modal architectures and presents a foundation for future research into automated visual
comprehension and language translation.

1.4 Objectives

This thesis seeks to make a valuable contribution to the area of image captioning by
investigating the effect of different techniques on image captioning tasks. In particular,
this thesis seeks to accomplish the following aims:

• To compare Traditional image captioning models and ViT-based image captioning
models.

• To investigate the performance of ViTs-based image captioning methods and the
traditional image captioning method on various performance metrics.

• To determine the limitation of the traditional and ViTs-based approach.

• To develop an image captioning model by the name of ViBERT which incorporates
ViT for image understanding and BERT for caption generation.

• To train and fine-tune ViBERT on Flickr8K dataset.

• To test ViBERT on BLEU, ROUGE-L, CIDEr, and SPICE.
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Chapter 2

LITERATURE REVIEW

In recent years, image captioning is emerging as a significant research area, integrating
computer vision and natural language. Early approaches predominantly utilized CNNs
in combination with RNNs, particularly LSTM networks, to extract visual features and
generate captions in sequence. Early methods mostly made use of CNNs together with
RNNs, especially LSTM networks, to learn visual features and produce captions sequen-
tially. Vinyals et al. [2] were the first to innovate the ”Show and Tell” model that made
use of a standard model for extracting image features and an LSTM for producing textual
descriptions. Xu et al. present the ”Show, Attend, and Tell” model in which it includes
an attention mechanism to guide it towards the relevant areas of the image while gener-
ating the captions [3].Although CNN-based methods have achieved success, they usually
struggle to capture the overall meaning of an picture.It lead them to the creation of in-
correct captions for sophisticated images. The current attention mechanism is present by
Vaswani et al. for machine text generation that transformed the area of image captioning
[4]. Transformers support the modeling of long range dependencies without sequential
processing, which makes them suitable for task requiring a deep understanding of global
context. Following this premise, Dosovitskiy et al. [1] present the ViT that show that
a transformer model without using convolutions will perform well on image classification
task. Zhu et al. [5] developed this further for image captioning by embedding ViTs into
a transformer-based language model, proving that ViTs were able to outperform Tradi-
tional image captioning methods in caption quality, especially for images with complex
compositions.

2.1 Image Feature Extraction

In image captioning, feature extraction plays very important role in helping the model
understand what’s in the image. It starts by using deep learning techniques, most often
CNNs such as ResNet or VGG, to pick out key visual elements such as objects, textures,
and shapes. These models convert unprocessed image data into semantic vectors that
capture the essence of the image. Some state-of-the-art systems take it one step ahead by
employing object detectors such as Faster R-CNN to locate specific regions in the image,
providing the model with more nuanced input to work with. More recently, ViTs have
also been utilized to divide the image into tiny patches and study the interrelationship
between them so that subtle detail and wider context can be understood. The better the
features are extracted, the more accurate and detailed the resulting captions are likely to
be.

4



2.1.1 Convolutional Neural Network

Visual feature extraction within image captioning has always been dependent largely on
CNN, which has been found to be highly effective at learning image patterns. To achieve
rich picture information, previous architectures such as VGG16 and VGG19 utilized deep
convolutional layers. These models use small convolutional filters to analyze hierarchical
characteristics, but struggle with complex spatial relationships. To overcome these dif-
ficulties, more sophisticated CNN architectures were developed, such as ResNet, which
incorporates residual connections to enable deeper networks without running into issues
with vanishing gradients [6].

Figure 2.1: This diagram shows a CNN architecture,

ResNet models such as ResNet-50 and ResNet-152 have been extensively employed
for image captioning because they can detect deep features of images. Inception also
enhances the performance of the model by employing multi-scale convolutional filters
within a single layer in order to detect different patterns in images [7]. EfficientNet has
emerged as a powerful architecture that combines accuracy with efficiency, making it a
strong fit for applications that require real-time image captioning. CNNs are effective at
visual processing tasks, but their ability to understand broader spatial relationships in an
image is restricted by their attention to localized features. As a result, there has been a
growing shift toward using transformer-based models in computer vision.

2.1.2 Vision Transformer

ViTs are a recent image understanding paradigm that have exhibited robust performance
in applications like image captioning. In contrast to the localized filters used by conven-
tional CNNs, ViTs illustrated in Fig. 2.2 split an image into fixed-sized pieces and flatten
them. Then we feed each piece as a token in an order like sequential data [1].
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Figure 2.2: ViT splits images into patches, processes them with transformers, and outputs
class predictions via MLP [1].

Feeding tokens to the transformer model with self-attention employed for learning
patch relations so that the network can learn global context efficiently. Such global rea-
soning makes ViTs suitable for challenging visual tasks that can be enhanced by under-
standing the scene as a whole, for example, generating well-aware and contextual captions
[5]. Yet they tend to need big sets of data and computation to be trained from scratch.
Dosovitskiy et al. [1] introduced ViTs in a significant departure from how deep learning
models are learning and representing visual features.

2.2 NLP in Image Captioning

NLP is crucial for transforming visual depictions to useful text descriptions. Previous
captioning techniques of images usually employed RNNs, as well as more sophisticated
forms such as LSTMs and GRUs, to produce sequences of texts from visual inputs [8].
LSTM is presented to solve the vanishing gradient problem which is common in standard
RNNs. It mostly uses memory cells and gated units that retain important information
for longer inputs. GRUs minimize this mechanism by integrate the forget gate and input
gate into a single update gate. It minimize the computational expense without loss of
ability to learn temporal patterns.

2.2.1 Recurrent Neural Networks

RNNs are neural networks suited for handling sequential data. While feedforward neural
networks process inputs in isolation. RNNs possess an internal state which is refreshed
step by step [8]. It enable them to store context about past inputs as illustrated in Fig. 2.3.
RNNs are particularly suitable for most tasks like language modeling, speech recognition
and image captioning, where the ordering and dependency of input are significant. As we
know they can handle distant relationship, typical RNNs are plagued by vanishing and
exploding gradients when trained on long sequences, which greatly hinders their usefulness
in practice[9].
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Figure 2.3: A simple feedforward neural network illustrating connections between input,
hidden, and output layers.

As back-propagated gradients go deeper in time, they either shrink to the point of
being close to zero or grow exponentially, rendering learning troublesome. This constrain
has given rise to the construction of better architectures such as LSTM and GRU, which
implement gating mechanisms to control information flow with time[10]. In image cap-
tioning, RNNs find their application in the form of decoders of encoder-decoder models.
A CNN first derives the visual characteristics from the image, and in decoder we use RNN
as it generates a caption by iterating through these features as the initial state and out-
putting one word at a time in order. This was initiated by models such as the ”Show and
Tell” model, which was able to combine CNNs with RNNs to produce natural-sounding
image descriptions [2]. Although RNNs initiated deep learning sequence modeling, ineffi-
ciency in dealing with long-range dependencies and sequential training inefficiency have
caused deep learning to adopt transformer-based models, which are able to achieve greater
parallelism and performance on the majority of natural language processing tasks [8].

2.2.2 Gated Recurrent Units

GRUs are another form of RNN architecture is a simpler, computationally less expensive
version than LSTM networks[9]. Whereas LSTMs use three gates which are input, forget,
and output gate. GRUs use only two gates.

• The update gate specifies how much of the history must be propagated forward to
the future[8].

• The reset gate, determining how much of the history to forget[8].

In Fig.2.4, we can see that GRUs also integrate the cell state and cell state into a
single vector. It keeps it architecture simple but still allowing the network to keep useful
information over long sequences[9]. This simplified design leads to faster training time
with fewer parameters. GRUs make appealing in those applications where computational
resources are not plentiful.
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Figure 2.4: Diagram illustrating the GRU architecture showing the flow between input,
hidden states, update gate, reset gate, and output.

In image captioning, GRUs tend to serve as decoders in encoder-decoder models. The
GRU decoder is given visual feature vectors as input along with a CNN-based encoder
and produces captions one word at a time. Since they have a less complex structure
yet perform similarly, GRUs have proven to be competitive with LSTMs, particularly on
the case of medium-length sequences and low-resource settings[9]. GRUs offer varying
modeling power to LSTMs but fail to deal with extremely long sequences in as good a
manner as desired fine-grained memory control. However, their faster convergence and
lower training cost make them used extensively in real-time systems and light-weight
applications.

2.2.3 Long Short Term Memory

LSTM mark the shortcomings of RNNs, more so the vanishing and exploding gradients
experienced during training on long sequences[9]. As opposed to regular RNNs, which fail
to maintain information over large numbers of time steps, LSTMs are designed specifically
to remember past dependencies over long periods via an advanced internal structure
revealed in Fig. 2.5[8].

Figure 2.5: Illustration of an LSTM cell showing the flow through forget, input, and
output gates for managing distant relationship in consecutive data.

An LSTM unit contains three main gates and they are the input gate, forget gate and
output gate, plus a cell state that functions as a memory buffer[9]. These gates guide the
information in and out of the memory cell:
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• The input gate decide what new information should be saved[9].

• The forget gate decide what information should be forget.

• The output gate decide which cell state component has to be moved to the next
concealed state.

Through this gating mechanism, LSTMs can maintain and update context over ex-
tended sequences and are therefore particularly effective for applications.In image cap-
tioning, in particular, LSTMs are typically employed as decoders within encoder-decoder
architectures. While the encoder draws out visual features with an image, the LSTM
decoder produces the equivalent textual description, one word at a time[10]. Research
has proved that LSTM-based models greatly surpass simple RNNs in generating captions
since they can capture sequential dependencies more vigorously. In spite of their effec-
tiveness, LSTMs come with limitations[10]. They handle sequences sequentially, a factor
that discourages training in parallel and may lead to more time-consuming training. In
addition, although they perform better with moderately long sequences than RNNs, their
performance still deteriorates as sequences become extremely long, and hence the emer-
gence of transformer-based architectures that can better manage long-range dependencies
with self-attention mechanisms.

2.2.4 Bidirectional Encoder Representations from Transformers

BERT revolutionized NLP as we are building deep contextualized word representations,
which enable the models to learn rich word relationships [11]. In contrast to sequential
RNNs, transformers process the whole text sequence simultaneously and produce more
coherent and context-aware captioning.

Figure 2.6: Illustration of a transformer encoder processing input tokens with a masked
token, followed by a classification layer using GELU activation and normalization.

Another popular transformer model, Generative Pre-trained Transformer, demon-
strated robust performance in language generation tasks [11]. Even so, BERT is still
the choice of captioning because it’s bidirectional and will possess more context sense.
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The combination of CNNs for extracting the visual information and transformers that
have been used to generate the text has contributed significant impact in image caption-
ing methods[11].

2.3 Image Caption Generators

Image captioning creates contextually appropriate text for images with the fusion of
language and vision models. The methods where we employ normal methods to obtain
the image features and RNNs to produce the caption. When we employ the attention
mechanisms to direct the model to the significant features of the image [9]. This sort of
model avoids issues with analyzing parts of an image at once. Thus, it’s more suitable to
process heavy and complex visual scenes more accurately and more efficiently. Current
transformer models have used ViT for vision encoding [10]. ViT splits the image into
patches of the same size and processes the patches in parallel fashion [7]. Experiments
have shown that transformer models are particularly worth using while working with
images and text. They have been dominating all the past CNN-RNN models on most of
the benchmarks and still providing reasonable performance. Below Table 2.1 provides a
comparative summary of leading image captioning models, describing their key strengths
and weaknesses as far as accuracy, complexity, and usability are concerned. It gives a
feature-by-feature comparison of six image captioning models and their strengths and
weaknesses.
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Table 2.1: Comparison of different Baseline Models

S.No. Model Name Advantages Disadvantages

1 ResNet50-BERT-
Bahdanau atten-
tion (RBBA) [12]

Highest BLEU-1 (0.5321)
and BLEU-4 (0.1263)
scores, blending a snippet
of ResNet50’s feature ex-
traction ability with BERT’s
language understanding abil-
ity and bahdanau attention
enhances semantic alignment

Highest parameter utilization can
go up to 119M and long training
time of 7488s, thereby drawing in
real-time and It is heavy in re-
source utilization.

2 Guided Context
SelfAttention
based Multi-
modal Medical
Vision Language
Transformer
(GCS-M3VLT)
[13]

Combines the visual feature
and the diagnostic key-
words. Increases focus with
Guided Context Attention.
Lightweight and less training
data intensive

It is not a overall generalizer

3 Entrocap [14] Supports zero-shot caption-
ing without parallel image-
text data Identifies frequent
and rare regions with entropy-
based retrieval

Highly advanced architecture;
strongly dependent on CLIP
embeddings Lacks a dedicated
visual decoder

4 Dual-Adaptive
Interactive Trans-
former (DAIT)
[15]

Employ dual-adaptive mech-
anism and interactive mod-
ules for ultra-interactive multi-
modes Adaptive Interactive
Decoder guarantees contextual
captions

Complex and resource-hungry be-
cause of numerous transformer
modules Based on textual exter-
nal descriptions

5 Encoder-decoder
based on Fourier
Transform [16]

It makes use of Fourier Trans-
form for improved feature rep-
resentation and to capture pe-
riodic and spatial patterns It
is compliant with basic trans-
former architecture

Lower Meteor score compared to
CPTR baseline and fourier com-
plexity influences real-time usage

6 ViBERT (Ours) Combines ViT and BERT for
robust visual and textual com-
prehension and it highly well-
balanced BLEU scores, de-
cent ROUGE-L (0.58), and
SPICE (0.49) and it have
strong structural and semantic
performance

Resource-hungry, long training
time, overfits on small data and
it needs high-end hardware.

11



Chapter 3

METHODOLOGY

This research proposes a novel image captioning framework named ViBERT, in which we
uses ViT as an encoder and in decoder part we uses BERT. The core aim is to address the
limitations of conventional CNN-RNN-based models, particularly in their incapacity to
proficiently seize global visual context and maintain coherent, semantically rich language
during caption generation. This methodology is shaped by a comprehensive review and
experimental validation presented across the referenced literature.

3.1 An Overview of Image Captioning Model

In Fig. 3.1 we show the architecture of an image captioning model with a CNN and a
transformer-based decoder for tasks such as image captioning. The CNN processes the
input to derive picture features, which are input into linear layers and integrated with
positional and output embeddings. The decoder use a masked attention and feedforward
layers with Add and Norm blocks to produce output probabilities via a softmax layer.
CNNs are constructed using convolutional layers designed to extract local spatial features
hierarchically, helping in capturing the patterns such as edges, shapes, and texture of the
images.

Figure 3.1: This model have of two main components: a transformer as the decoder and
a CNN as the encoder.

CNNs make use of kernels to examine particular areas within an image and allow them
to run with immense computing power. Their approach makes them very efficient where
there is a need for smaller receptive fields. Faster R-CNN enhances the regular CNN model
with a region proposal network that efficiently picks out region-of-interest from an image
[9]. It allow Faster R-CNN to excel in object detection and segmentation by enabling
shared features between the region proposal network and downstream classification layers.
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Figure 3.2: This model have of two main components: a ViT as the encoder and a
transformer as the decoder.

It helps improve both computational performance and accuracy.In figure 3.2, inspired
by ViTs, the picture is segmented into minor patches. These patches are further flattened
and transformed into input tokens with positional embeddings. The tokens are refined
by a encoder using self-attention and feedforward layers, while the decoder generates
text outputs through masked self-attention, cross-attention with image embeddings, and
feedforward networks. Contrarily to this, ViTs utilize self-attention mechanisms whereby
images are decomposed into sequentially embedded pieces and processed in parallel. This
architecture captures global dependencies by allowing every image patch to see all other
patches and therefore resulting in a broader contextual understanding. Computational
complexity of ViTs results from the quadratic scaling of their attention mechanism with
the image resolution since as we know it’s a major issue. These developments have
attempted to counter this by using hybrid methods that combine convolutional feature
learning and transformer blocks in order to get the advantages of both methods.

3.2 Architecture of Proposed Model

The ViT encoder processes input images by segmenting them into uniform patches, such as
16×16 pixels, and then flattening them, and feeding the resulting sequences into a stack of
self-attention layers. Unlike CNN architectures such as ResNet and InceptionNet, which
operate hierarchically on localized features, ViT attends to all image patches globally
from the very beginning. This allows it to develop a better spatial feeling for long-range
relations and world context—a critical necessity for good image captioning. ResNet, due
to its residual connections, and InceptionNet, due to its multi-scale filter banks, are good
at feature extraction at different scales but not good at doing something where one needs
to pick up on the semantic overall structure of an image. ViT surpasses these constraints
by enabling us to have cross-patch attention, thus complicated images, especially those
with multiple interactive parts, can be understood.
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Figure 3.3: Proposed image captioning model architecture combines ViT for extract-
ing image features with BERT for generating context-aware captions within an encoder-
decoder setup, optimized using the AdamW algorithm.

In the Fig. 3.3 depicts an image captioning operation utilizing the blend of ViT
and BERT in an encoder decoder model. First, ViT transforms the input image, which
segment the image into patches. The patches undergo positional encoding and linear
transformation before the transformer encoder is processed to obtain information about
the image. These features are then forwarded to the BERT module, which functions as
the decoder. BERT receives a sequence of word tokens (W1, W2, W3, [MASK], W4),
applies embedding, and integrates the visual context to generate outputs (O1 to O5).
These outputs are passed through fully connected layers that use GELU activation and
normalization to refine predictions. An AdamW optimizer is used to optimize loss and
scale the model parameters. A decision block verifies if training has reached the optimal
number of epochs. If not, the loop runs until completion after which the model generates
an image caption.
In the decoder, BERT is used for language modeling. It was designed to be used in
question answering and text analysis. BERT strength is its bidirectional contextual en-
coding of the text using self-attention. In this model, BERT is used as a decoder, where
it takes both visual context embeddings of ViT and partially generated text tokens as in-
put. BERT is repurposed as a decoder by modifying its architecture to accept both visual
embeddings from ViT and partially generated text tokens. BERT’s self-attention layers
evaluate the relationship between all words in a sequence at once, allowing it to generate
fluent, grammatically accurate, and contextually aligned captions. In addition, Tasks are
run on pretrained BERT over large corpora such as Masked Language Modeling, resulting
in it having a rich syntax, semantics, and contextual word usage. This allows the model to
generate semantically and syntactically accurate captions during pretraining. For other
intents of achieving additional integration between textual and visual modalities, visual
features extracted from ViT are merged with word token embeddings before their input
to BERT. The integration enables BERT to realize how visual context affects word choice
and sentence composition. Second, the BERT’s attention weights assist in giving greater
weight to crucial aspects of the image as well as its partially captioned image, and this
results in better sentence construction. The union of BERT and ViT under the ViBERT
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framework is fueled to a great extent by the results in Paper 1, which emphasized how
the ViTs perform better than CNN-based feature extractors traditionally employed in
learning global visual semantics.
The review also highlighted the advantage of transformer-based decoders to produce flu-
ent and detailed captions with minimal use of sequential memory. It also presented the
evidence that ViTs are able to excel in common benchmarks like MS COCO with good
scores on measures like BLEU, METEOR, CIDEr, and SPICE since they can utilize a self
attention mechanism instead of convolutional filter to process image input. This piece
also recognized a couple of inherent limitations of traditional models, including the way
they typically overlook cross-object relations and context dependencies, which are both
directly resolved in the ViBERT design process.

3.3 Baseline Model

The DAIT model efficiently integrates textual and visual contextual information to im-
prove image captioning techniques [15]. DAIT’s two new components: the Adaptive
Interactive Encoder and the Adaptive Interactive Decoder. Encoder uses an Interactive
Fusion Module to discover correlations between image features (obtained through Swin-T)
and text descriptions (from BERT), while a Correlation Aware Module minimizes noise
across modalities. The decoder learns to produce based on multimodal features with an
Adaptive Guidance Module that considers global context from CLIP embeddings. To-
gether, these break throughs allow the model to more closely match visual content with
descriptive text. Large-scale experiments on Flickr30K and MS COCO demonstrate that
DAIT surpasses different models in important metrics [15].
Introduction of a Fourier transform layer subsequent to the encoder’s attention mechanism
gives us the vanilla transformer model [16]. This modification enables the model to look
at the image in the frequency domain, and therefore it’s enhanced to identify borders, tex-
tures, and recurring structures. Transferring pixel information to frequency information,
the model becomes more aware of spatial relationships in images. The encoder-decoder
setup remains intact, with residual connections and layer normalization ensuring stable
training. Evaluation on the Flickr8k dataset showed improvement through out the the
CPTR model, especially in ROUGE and BLEU-1 scores. Despite having the extra Fourier
layer, the model maintained comparable training time. This design demonstrates help us
to understand how deep learning will mix with signal processing in a new way to enhance
picture captioning outcomes [16].
RBBA technique is a strong architecture engineered for image captioning tasks. It com-
bines ResNet50 for visual feature extraction and BERT for text data encoding, forming
a strong multimodal representation. For better alignment between visual features and
produced text, the model uses Bahdanau attention, which enables it to attend to appro-
priate regions of the image when producing each word [12]. The decoder consists of LSTM
layers, which well capture the sequential nature of the caption. The RBBA model, which
was trained with the Flickr8K dataset. It recorded a BLEU-1 measure of 0.532 alongside
a BLEU-4 measure of 0.126, compared to several baselines. These results demonstrate
the approach’s ability to generate detailed and precise image descriptions [12].
The GCS-M3VLT model is a novel approach for retina captioning of images, which effi-
ciently merges text as well as visual information to produce accurate medical descriptions
[13]. It uses a Guided Context Self-Attention mechanism to highlight important spatial
and channel features in retinal images. The model combines diagnostic words via a lan-
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guage encoder and combines them with visual data via a Vision-Language TransFusion
Encoder. By combining them in this way, the model is capable of understanding more
complex clinical environments better. A Transformer-based decoder then generates coher-
ent and accurate captions [13]. GCS-M3VLT, being trained on the DeepEyeNet dataset,
surpasses current models in BLEU, CIDEr, and ROUGE scores. Accuracy and efficiency
are prioritized in its design even with the use of limited annotated data.
The EntroCap model presents a new way of doing zero-shot image captioning through
the integration of GPT-2 and CLIP with custom-designed modules. The hierarchical
projector is employed to extract broad background information using CLIP embedded
data and allow it to comprehend basic and a high-level aspects. Regarding inference, an
Entropy-based Retrieval Strategy assists in retrieving not only salient objects but also
small, informative targets that are easily overlooked by other models [14]. These local
and global signals are equilibrated by a Balancing Gate. This encourages the linguistic
model to produce captions which are more precise and comprehensive. In contrast to
supervised methods, no training on image-text pairs is required for EntroCap. The model
is shown to work really well on several datasets such as Microsoft Common Objects in
Context (MSCOCO), Flickr30k, NoCaps. Therefore, EntroCap is a better and more ro-
bust real-world captioning model [14].

3.4 Dataset Description

3.4.1 Flickr 8k Dataset

Flickr8K is a smaller but well-curated dataset that is often employed for initial explo-
ration and model inspection in image captioning research. The dataset contains 8,000
images, each of which contains five alternative captions created by human annotators.
The images were crawled from Flickr and typically depict easier scenes, often involving
people, animals, and common activities in open or event-driven scenes. Compared to
MS COCO with complex, dense scenes, Flickr8K has clear, clean scenes and is thus a
better model test bed for models with clean, less complex visual data. Although smaller
in scale, the dataset is useful for fine-tuning larger models or training light models and
enables standard evaluation using widely available captioning metrics. For researchers,
the simplicity of the dataset enables easy baseline performance testing before being scaled
up to more complicated datasets such as MS COCO.

3.4.2 MSCOCO dataset

MSCOCO is one of the most popular datasets used in image captioning because it is so
diverse and complex. It contains over 328,000 images with five captions for which a human
has written. It have total of over 1.5 million captions. The images normally have several
objects interacting in a natural setting with an average of 7.7 object instances per image
across 91 groups of items, such as people, animals, cars, and common items. This makes
MS COCO well adapted to training models that must learn not just individual objects but
how they relate to each other and are arranged in space. Because of its richness in visual
and linguistic diversity, MS COCO is a robust benchmark for assessing the contextual
and descriptive strength of image captioning models.
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3.5 Parameter Settings

Training is performed over Flickr8K dataset by resizing the images of size 224X224 and
caption tokens with BERT tokenizer. Training is performed using PyTorch with batch size
32, learning rate of 6e-5, and AdamW (Adam with Weight Decay) optimizer with a num-
ber of epochs as 40.To resolve the issue of incorrect weight decay in Adam, a modification
of the base Adam optimizer has been created, known as the AdamW optimizer. Unlike its
original version that induces bad generalization due to its imposition of L2 regularization,
AdamW decouples weight decay from gradient update. This allows easy regulation of
model complexity and avoids overfitting, especially in large transformer models such as
ViT and BERT. AdamW has the benefit of adaptive learning rates and convergence along
with good regularization and hence is best suited for fine-tuning pre-trained transformer
models. Pre-trained weights for both BERT and ViT are fine-tuned during training to
fit them into image captioning. Training is conducted on an NVIDIA Tesla P100 GPU,
and regularization methods including dropout and early stopping are applied to facilitate
generalization and prevent overfitting.

3.6 Performance Metrics

Performance metrics are crucial for testing how well human-provided captions match those
created by machines. Linguistic and semantic properties are included in these metrics to
give an overall insight into model performance [17]. BLEU score is the most widely used,
estimating the precision of n grams by measuring the coincident between the captions
generated by the model and the references. BLEU-1 to BLEU-4 score unigrams up to 4-
grams, thus capturing both single word accuracy and short phrase consistency. However,
BLEU’s sensitivity to surface matching makes it weaker when detecting semantic equiva-
lence, especially when there are paraphrasing or synonyms involved [18]. In opposition to
this lack, the METEOR score is used, which uses stemming, synonym mapping, and word
order mapping to produce improved correlation with human preference. ROUGE-L also
assists in complementing the scoring by highlighting recall using longest common subse-
quence analysis, an indication of the proportion of key content preserved. The CIDEr
measure provides a collective-oriented view by taking TF-IDF weighting of n-gram over-
lap, encouraging captions to closely match the unified human understanding of an image
and penalizing over-generic outputs [19]. Lastly, SPICE measures captions against scene
graph structures of objects, attributes, and relationships and thus estimates a human-
level semantic content understanding [20]. Together, these measures constitute a strong
evaluation framework that supports a multidimensional assessment of caption quality.
Their use for both papers guarantees uniform benchmarking and allows for an unbiased
comparison of the proposed ViBERT model and standard CNN-RNN-based systems for
captioning.
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Chapter 4

RESULTS and DISCUSSION

Flickr8K dataset was utilized for testing the recently presented ViBERT model. In which
merged BERT into a decoder for natural language synthesis with ViT for visual feature
extraction. The model’s performance was benchmarked using widely accepted metrics in
image captioning. These measures provided a comprehensive evaluation across syntactic
precision, fluency, semantic alignment, and contextual richness.

4.1 Result of Review of ViT Based Image captioning

Technique

4.1.1 Performance Comparison of ViT-based and Conventional
Image Captioning Technique

In this thesis, we are comparing how well image captioning models work with and with-
out ViTs on the MSCOCO datasets. We use different metrics like SPICE, METEOR,
ROUGE-L, CIDEr, and BLEU to judge their performance. BLEU evaluates machine-
generated text in image captioning by comparing n-grams with human-written text.
BLEU-1 places extremely high emphasis on unigram accuracy, whereas BLEU-4, bet-
ter recognized by its common usage, keeps word and phrase matching in equilibrium for
better evaluation[17]. METEOR is a text score measure widely employed in image cap-
tioning, with greater accuracy kept by preserving word order and synonyms. It generates
a longer evaluation, therefore appropriate for operations with more language comprehen-
sion [21].Some of these include the vintage critical performance measure we’re used to,
i.e., ROUGE, used for image captioning text quality estimation. It is recall-based as it is
a metric for how much the generated text mirrors common facts in human sources, em-
ploying n-grams and longest common subsequences[18].SPICE measures caption meaning
by segmenting them into propositions and matching to human-written content. Paying
attention to attributes, objects, and relations, it provides a human-oriented measure-
ment that values meaning over word-to-word similarity[20]. CIDEr measures captions
with n-gram overlap with human captions, applying term frequency-inverse document
frequency weighting in order to highlight significant words and suppress frequent words.
It effectively captures alignment with image context, supporting tasks with diverse valid
captions[19].ViTs are’ multi-head attention methods and capacity to accumulate complex
relationships between picture features have shown an important effect on model perfor-
mance. On the MS COCO dataset, ViTs-based models demonstrate a clear advantage.
DAIT achieves 83.3 on BLEU-1, 41.6 on BLEU-4, 31.2 on METEOR, and 143.6 on CIDEr,
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which is the best in this category. This improvement with transformers is because they
can listen to multiple components of the image simultaneously and process challenging im-
age features. In Table 4.1.1 self-supervised modal optimization transformer (SMOT) also
achieves good performance with 81.4 in BLEU-1, 39.9 in BLEU-4, and 136.2 in CIDEr.
The performance shows how the ViT model achieves better in generating descriptive,
relevant captions that are appropriate to the content of the images, revealing hidden de-
scriptions that are usually hard for traditional methods to compete with.

Table 4.1: ViT-based image captioning techniques On MSCOCO Dataset
MODEL BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE
DAIT [15] 83.3 - - 41.6 31.2 143.6 60.9 24.9
EHAT [22] 81.9 - - 40.1 29.6 133.5 59.4 -
ETFT [16] 0.33 - - - 0.33 - 0.15 -
DCCT [23] 83.2 - - 42.7 30.6 141.7 60.8 24.6
SMOT [24] 81.4 - - 39.9 29.9 136.2 59.5 23.8

Table 4.2: Conventional image captioning techniques On MSCOCO Dataset
MODEL BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE
AST [25] 51.77 - - 14.05 23.98 34.93 30.03 17.64
CATNet [26] 82 66.9 52.3 40.2 29.5 130.4 59.5 -
TDAN [27] 84.6 64.5 52.4 36.2 39.3 133 62.3 -
LLAFN-Generator [28] 73 56.7 43.5 33.7 26.5 105.9 54.5 19.3
RCT [29] 81.3 66.7 52 40 29.5 129.7 59.3 -
SAMT-generator [30] 73.8 57.2 44.1 34.3 27.3 108.7 55.2 20
SG-DLCT [31] 81.8 - - 40 29.5 134.5 59.2 -
TLGG [32] 86.1 66.5 49.1 37.8 39.2 132.9 65.1 -
TCCTN [33] 81.3 - - 39.4 29.2 132.8 58.9 -
DVAT [34] 81.2 - - 39.4 29.3 133.1 59.1 23.9
ETransCap [35] 79.5 67 54.6 38.6 28.3 68.2 54.2 -
PSNet [36] 82 67.1 52.6 40.4 29.8 132.9 59.7 -
XGL-T [37] 81.5 67.1 51.6 39.9 29.8 134 59.9 23.8

4.1.2 Limitation of Conventional and ViTs-based Technique

Firstly, the techniques that we analyzed are primarily evaluated on the MS COCO dataset.
Although widely utilized, reliance on a single dataset restricts the generalization of the
results. By applying these techniques to more diverse datasets could provide deeper insight
into model performance measures across various context. Second problem that arose
is insufficient semantics in both text and image present a major challenge, impacting
the model ability to accurately represent complex relationships, which often results in
incorrect captions. Lastly, the absence of multilingual datasets poses a language barrier.
Variations across language families and insufficient resources for many languages hinder
the development of effective multilingual image captioning systems.
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4.2 Result of Proposed ViBERT Model

4.2.1 Performance Evaluation of ViBERT Compared to Other
Leading Captioning Models

In Table 4.3, the results indicate that ViBERT performs better than traditional models,
such as ResNet50-BERT with Bahdanau attention and GCS-M3VLT. The ViBERT model
shows a good results, with a BLEU-4 score of 0.45, showing high phrase-level correctness
in the produced captions. Comparison of performance shows the strength and weakness
of certain picture captioning models according to ROUGE-L, BLEU, CIDEr, and SPICE
scores. Among them, the one proposed in this paper, ViBERT, shows consistent high
performance in every level of BLEU with 0.49 for BLEU-1, 0.48 for BLEU-2, 0.47 for
BLEU-3, and 0.45 for BLEU-4.This steady progression indicates ViBERT’s capability to
not only match single words but also generate coherent multi-word phrases, which is cru-
cial for natural-sounding captions. In addition, ViBERT achieves the highest ROUGE-L
score (0.58) among all models, reflecting superior fluency and structural alignment with
reference captions. It can generate subtitles that is meaningful as well as important and
closely connected with human-generated descriptions, demonstrated by its CIDEr score
of 1.71 and SPICE score of 0.49. The ResNet50-BERT model with Bahdanau attention,
on the other hand, only obtains BLEU-1 scores of 0.52 in BLEU-2, 0.17 in BLEU-3, and
0.12 in BLEU-4, which are marginally higher than ViBERT in comparison. The reduction
indicates the model has difficulty with phrase-level coherence yet it can identify individual
words. Its ROUGE-L score of 0.49 reflects reasonably good fluency but short of that of
ViBERT. The GCS-M3VLT model scores somewhat good on BLEU-2 and BLEU-3 at
0.34 and 0.31 respectively but is limited by a comparatively low BLEU-4 (0.23) and a
low CIDEr score of 0.55, reflecting lower relevance and specificity in its responses. The
Encoder-decoder with Fourier Transform model provides low BLEU-1 score (0.33333) and
no other metric scores, which means a quite simple or trial-and-error type architecture
that may not have enough depth for good captioning performance.
Entrocap, with semantic attention, has low CIDEr improvement (41.5) and SPICE im-
provement (11.7), but low ROUGE-L (0.15) and very low BLEU-4 (18.3) indicate that
it is producing short or truncated captions of poor structural quality. The DAIT (Dual-
Adaptive Interactive Transformer) model, however, performs well in most of the metrics,
including BLEU-1 of 75.7, CIDEr of 80.1, SPICE of 19.5, and ROUGE-L of 54.3. How-
ever, the absence of higher-order BLEU scores (BLEU-2 to BLEU-4) makes it difficult
to fully assess its phrase-level precision and fluency. While DAIT performs well in terms
of relevance and semantic richness, ViBERT’s balanced performance across all levels of
evaluation—particularly in BLEU-4 and ROUGE-L—demonstrates its ability to produce
more complete, contextually accurate, and linguistically fluent captions. In conclusion,
ViBERT not only competes with but in some areas surpasses existing models by delivering
consistent, high-quality captions that closely resemble human descriptions.

Overall, these findings point to the fact that ViBERT model is on par with baseline
and even behemoth models in terms of reasoning through complex visual relations and
producing naturalistic, coherent captions.

In Fig. 4.1 the reduction in loss is graphed versus 40 training epochs. The loss begins
very high at 6234.02, yet decreases very quickly with further training. The loss drops
below 2500 by epoch 10, representing effective learning. It keeps falling steadily to 283.08
at epoch 39.
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Table 4.3: Comparison of different image captioning models on various performance met-
rics
Model Name BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr SPICE ROUGE-L
ResNet50-BERT-Bahdanau [12] 0.53 0.22 0.17 0.12 - - -
GCS-M3VLT [13] 0.43 0.34 0.31 0.23 0.55 - 0.49
Encoder-decoder framework [16] 0.33333 - - - - - 0.15
Entrocap [14] - - - 18.3 41.5 11.7 -
DAIT [15] 75.7 - - 36.4 80.1 19.5 54.3
ViBERT (Ours) 0.49 0.48 0.47 0.45 1.71 0.49 0.58

Figure 4.1: It shows the training loss for each epoch

4.3 Overall Findings

In comparison with base CNN-RNN models such as ResNet50-LSTM or InceptionNet-
GRU, ViBERT outperforms in all the metrics utilized. While CNN-based models are
adept at mimicking local visual features, it does not capture the spatial relationships
between multiple objects in an image and global context as well.

In comparison with base CNN-RNN models such as ResNet50-LSTM or InceptionNet-
GRU, ViBERT outperforms in all the metrics utilized. While CNN-based models are
adept at mimicking local visual features, it does not capture the spatial relationships be-
tween multiple objects in an image and global context as well.Figures 4.2 and 4.3 display
the captions that the ViBERT model produced for the different images. The model graph
indicates that it is convergent and improving with every iteration, as is established by
the declining trend. ViT’s attention mechanism, nevertheless, allows each token in an
image to see all the rest, improve the model’s comprehension of the whole image. Using
BERT it is pretrained on large corpora and capable of bidirectional context modeling,
enables more fluent and semantically consistent caption generation.The collaboration be-
tween ViT and BERT contributes for ViBERT’s outstanding efficiency. ViT provides a
powerful mechanism to extract dense, globally-aware image representations, while BERT
excels in transforming these representations into fluent, contextually rich language. Un-
like traditional models that may generate generic or repetitive captions, ViBERT can
produce descriptions that closely match human references while still being diverse.
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Figure 4.2: ViBert model-generated caption

Figure 4.3: ViBert model-generated caption
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Chapter 5

CONCLUSION AND FUTURE SCOPE

In this thesis provides an in-depth summary of image captioning to allow the reader to
get a general idea regarding the research work being done on this subject. We discuss
various image captioning methods on various evaluation metrics on widely used bench-
mark datasets. ViTs become the strong rival to standard CNNs because of their ability
to capture global relationship between image regions. This enables the ability to know
what the overall visual content is about in a deeper way, which is necessary for making
more descriptive and meaningful captions. ViTs utilizes attention mechanism that aid
them in identifying the global relationship within the various patches of the image and
improving the quality of generated texts. They handle images with complex structures or
more than one object more effectively because they process the whole image efficiently,
and this gives rise to more comprehensive and coherent captions. Lastly, this review will
enable the practitioner to select the appropriate technique for the image captioning tech-
nique. The research gap or image captioning based on ViTs is highlighted in this review.
We introduce ViBERT, a captioning transformer model with the strength of BERT as
a natural language generation process and ViT as an observable feature extractor. The
shortcomings of conventional CNN-RNN architectures, which frequently fail to capture
the distant dependencies and global implications necessary for producing precise and sig-
nificant image captions, served as the catalyst for our work.
ViBERT overcomes these issues by using ViT’s self-attention mechanism to capture in-
tricate spatial relationships and BERT’s bidirectional language model to generate fluent,
contextually accurate captions. Flickr8K dataset was used for model training and test-
ing according to performance measures. These findings demonstrate the effectiveness of
ViBERT can capture both the grammatical and semantically content of image descrip-
tion, outperforming baseline models with robust results across all measures. Utilizing the
AdamW optimizer also played a major role in stable training and also improved it gen-
eralization. Finally, the increasing significance of transformer-based multimodal systems
in picture captioning is confirmed by this study. ViBERT is an important breakthrough,
providing a scalable and flexible solution for practical uses. It sets the stage for further
advances in terms of multilingual support, computational complexity, and more profound
semantic correspondence between vision and language.
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5.1 Future Work

To show generalization across a wide range of visual environments, the ViBERT model
will be run on large databases such as MS COCO and Flickr30K in future studies. Mul-
tilingual translation can be integrated using the likes of mBERT to support cross-lingual
captioning. Lighter or hybrid models can be studied for use in low-resource scenarios for
better efficiency. Region-based attention or object detection can be integrated into the
model to make the captions more specific. Moreover, cross-modal pretraining will have
better performance on less supervised data. Last but not least, human judgment with
automatic measurement will play a crucial role in measuring caption quality and usability
in real use.
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1. Priya Singh & Aman Rawat (2025). Exploring Vision Transformers for Enhanced
Image Captioning: A Review (ICCCNT 2025).[Scopus Indexed][Accepted]

2. Priya Singh & Aman Rawat (2025). Enhancing Image Captioning with Vision
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Indexed][Accepted]
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Figure A.1: Screenshot
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Figure A.2: Scopus Index Screenshot
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Figure A.3: Paper 1 acceptance Screenshot

Figure A.4: Paper 2 acceptance Screenshot
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