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ABSTRACT 

                     

Brain tumor segmentation from magnetic resonance imaging (MRI) is an essential step in the 

diagnosis, treatment planning, and follow-up of brain tumor growth. Manual tumor region 

annotation is time-consuming, subject to individual interpretation, and needs expert radiological 

assessment. Deep learning-based automatic segmentation methods have been proposed as a 

solution to overcome this by allowing quick, precise, and reproducible tumor delineation. This 

dissertation is a critical examination of deep learning approaches to brain tumor segmentation 

with special emphasis on designing, implementing, and assessing a new hybrid model referred to 

as HybridSegNet++. 

The model integrates convolutional neural networks (CNNs) with MobileViT blocks and gated 

residual skip connections to improve feature extraction, representation learning, and gradient 

transmission across network layers. Training and evaluation occur on the BraTS 2020 dataset 

using multi-modal MRI sequences (T1, T1ce, T2, and FLAIR) as inputs. The data pipeline 

employs a custom DataGenerator class for normalization of 2D slices to a common 192×192 

resolution with one-hot encoded segmentation masks. 

We use a weighted categorical crossentropy and Dice loss hybrid loss function to address class 

imbalance for tumor subregions. Performance is quantified by the usual segmentation metrics 

such as per-class Dice score values (Tumor Core, Enhancing Tumor, Whole Tumor), Intersection 

over Union (IoU), accuracy, precision, sensitivity, specificity, and mean IoU. 

Extensive literature review of state-of-the-art models—ranging from U-Net architectures to 

Transformer-based models—is also performed in a bid to place into perspective the strengths of 

the model proposed. The best-performing model possesses competitive performance and is 

capable of generalizing across unseen test examples, thereby proving its viability for clinical use 

in computer-aided diagnosis systems. 
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CHAPTER - 1 

INTRODUCTION 
 

 
1.1 Background 

Brain tumors, which are defined by pathological cellular growth of the brain tissues, constitute 

one of the most important groups of central nervous system disorders. Brain tumors can be 

classified as benign (non-malignant) and malignant (malignant), based on their type and grade. 

Amongst these, the most dangerous and frequent malignancy is glioma. Among the gliomas, the 

most dangerous one is Glioblastoma Multiforme (GBM), which is graded by the World Health 

Organization (WHO) as low-grade (Grades I and II) and high-grade (Grades III and IV) gliomas. 

Magnetic Resonance Imaging (MRI) has been shown to be valuable as a non-invasive imaging 

modality with high contrast between various soft tissue structures, thus aiding in the diagnosis 

and planning of treatment of tumors. Different MRI methods such as T1-weighted, T1-contrast-

enhanced (T1ce), T2-weighted, and Fluid-Attenuated Inversion Recovery (FLAIR) are utilized to 

image a variety of anatomical and pathological structures. For surgical planning and predictive 

clinical outcome, the brain tumors need to be segmented into appropriate subregions such as 

enhancing tumor (ET), edema (ED), and necrotic/non-enhancing core (NCR/NET). Historically, 

manual segmentation of tumors has been done by radiologists; the method, however, is time-

consuming, subject-dependent, and prone to high inter-observer variability. In overcoming these 

challenges, deep learning techniques, in the guise of Convolutional Neural Networks (CNNs), 

have come a long way in the area of medical image analysis. CNN-based architectures, e.g., U-

Net, DeepMedic, and nnU-Net, have reported state-of-the-art results on brain tumor 

segmentation on a number of data sets, including the BraTS data set[2]-[5]. However, there are 

still some challenges that remain, which are mainly concerned with unclear tumor boundaries, 

incorporation of multi-scale context information, and unavailability of training data sets. 

1.2 Brain Tumor Segmentation Challenges 

Brain Segmentation of brain tumors is inherently difficult owing to a variety of factors that affect 

mode performance. These are: 

 

 

 



1. Anatomical Variability: Tumors are not standard in their morphology, size, position, and 

aggressiveness among various patients. Such variability is challenging for traditional 

models to achieve good generalization [6]. 

2. Multimodal Fusion: Different MRI modalities capture different diagnostic information. 

FLAIR detects edema, enhancing tumor is highlighted by T1ce, and T2 detects general 

structure. Combining these inputs effectively needs sophisticated architectures that can 

learn complementary features across channels [7]. 

3. Class Imbalance: In most MRI datasets, tumor classes like enhancing core are under-

sampled and therefore lead to poor learning of the model and poor generalization unless 

tackled using specialized loss functions or sampling strategies [8]. 

4. 3D Spatial Context: While 2D models are computationally efficient, they are incapable of 

representing inter-slice dependencies. In contrast, 3D models are computationally 

intensive and memory-consuming. 

5. Boundary Ambiguity: The boundary between neoplastic tissue and non-neoplastic tissue 

tends to be vague and thus difficult to define properly when utilizing standard loss 

functions such as cross-entropy [9]. 

6. Complexity of Evaluation: The evaluation measures employed (Dice, IoU, precision, 

recall) are most likely to be adversely affected by minor segmentation errors, particularly 

for small-volume classes of tumors. 

1.3 Problem Statement 

Deep learning has greatly enhanced the state-of-the-art of brain tumor segmentation, but current 

models are still plagued by inadequate modeling of long-range dependency and effective multi-

scale fusion. Most traditional CNN-based models such as U-Net are highly dependent on local 

receptive fields, and it is, therefore, hard to learn global contextual information, which is highly 

essential for effective segmentation in low-contrast areas. 

Additionally, skip connections in U-Net-type models can potentially propagate noisy or 

irrelevant low-level details to the decoder stream, resulting in segmentations errors. 

 

 



Transformers and attention mechanisms have been recently applied to deal with long-range 

dependencies; however, these are often accompanied by significant computational costs. Thus, 

there is a pressing need to come up with a hybrid model that is light in weight but capable and 

combines: 

1. The global context modeling ability of Transformer-like architecture (e.g., MobileViT) 

2. Hierarchical feature learning capacity of CNNs 

3. Enhanced skip connections that handle selectively relevant information. 

This leads to the creation of HybridSegNet++, an architecture presented in this thesis. 

1.4 Objectives 

 

The goals of this M.Tech thesis are as follows: 

1. To perform an in-depth literature review of recent literature on deep learning methods for 

brain tumor segmentation, such as CNN-based, attention-based, and Transformer-based 

models. 

2. To suggest a light-weight hybrid architecture named HybridSegNet++, comprising 

MobileViT blocks and gated residual skip connections, with the aim to achieve efficient 

and comparable multi-class segmentation of brain tumors from 2D multi-modal MRI 

slices. 

3. To ensure preprocessing of the BraTS 2020 dataset, an adapted data generator is used that 

handles slice selection, resizing, normalization, and one-hot encoding, thus ensuring 

efficient model training and evaluation. 

4. To compare the performance of HybridSegNet++ to standard models like U-Net, 

Attention U-Net, ResUNet, and TransBTS, and compare strengths and weaknesses 

independent of whether or not the proposed model beats all baselines. 

5. In order to gain insight into the trade-offs that exist between architectural complexity, 

segmentation accuracy, and computational efficiency in particular within medical image 

analysis. 

 

 

 

 

 



1.5 Scope of the Work 

 

The scope of the thesis is concentrate on: 

1. Implementing a novel hybrid architecture suitable for 2D multi-modal MRI slice 

segmentation. 

2. Applying the model to publicly available data sets (BraTS 2020) 

3. Measuring the performance with precise per-class and overall measures. 

4. Qualitative and quantitative comparison with literature-reported baselines. 

 

1.6 Structure of the Dissertation 

1. Chapter 2: Literature Review – Introduces novel approaches to brain tumor segmentation. 

e.g., CNNs, Transformers, cross-modal ones. 

2. Chapter 3: Methodology – Describes dataset, preprocessing pipeline, architecture design, 

loss functions, and metrics. 

3. Chapter 4: Implementation – Offers source code logic, data pipeline, model training 

setup, and optimization strategies. 

4. Chapter 5: Results and Evaluation – Reports evaluation findings and graphical results for 

Test specimens. 

5. Chapter 6: Conclusion and Future Scope – Presents conclusions and suggests extensions. 

 

 

 

 

 



CHAPTER - 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

Brain tumor segmentation is perhaps the most significant application in neuroimaging that 

facilitates clinical use like surgical planning, radiotherapy planning, disease progression analysis, 

and post-treatment assessment. In the clinical setting, experienced radiologists manually outline 

tumor subregions from different MRI modalities. The manual approach is, however, subjective, 

time-consuming, and non-scalable and hence not implemented for large datasets and real-time 

decision-making situations [1]. 

The introduction of deep learning, especially Convolutional Neural Networks (CNNs), 

transformed medical image analysis. CNN-based models learn hierarchical feature 

representations of imaging data without pre-specified handcrafted features, which were 

previously required in traditional machine learning methods [2]. In brain tumor segmentation, 

CNNs, attention mechanisms, Transformers, and hybrid models have achieved outstanding 

progress in accuracy and robustness [3]. 

This chapter gives a comprehensive review of current models utilized for brain tumor 

segmentation. It comprises: 

 CNN-based segmentation architectures 

 Transformer-based approaches 

 Hybrid frameworks integrating CNNs with attention mechanisms 

 Multimodal MRI fusion techniques 

 Benchmark and results obtained using the BraTS (Brain Tumor Segmentation) challenges. 

2.2 Convolutional Neural Network (CNN)-Based Segmentation 

The CNNs form the basis of the majority of current and historical medical image segmentation 

techniques. Their capability to learn spatial hierarchies of features with convolutional filters has 

seen them gain extensive usage in biomedical imaging applications. 

 

 



U-Net 

Ronneberger et al. [4] presented U-Net with a symmetric encoder-decoder architecture where: 

 The encoder learns the hierarchical features with linear and pooling layers. 

 The decoder reconstructs spatial resolution with upsampling layers. 

 Skip connections transfer high-detail spatial information from the encoder to the decoder 

to assist localization. 

Although U-Net works fairly well on the majority of the tasks, it does not work for segmenting 

small and complex structures like enlarging tumor regions due to shallow depth and constrained 

receptive field. 

U-Net++ 

Zhou et al. [5] proposed U-Net++ for addressing semantic gap between encoder and decoder. It 

introduces: 

 Dense skip pathways: Middle-level convolutions between encoder and decoder help fill 

gaps in feature space. 

 Nested architecture: Improves gradient flow and sharpening of segmentation. 

 U-Net++ outperforms vanilla U-Net in recovering fine edges and small object detection. 

U-Net++ outperforms vanilla U-Net in fine edge recovery and detection of small objects. 

ResUNet 

ResUNet[6] integrates ResNet residual learning into the model of U-Net: 

 Residual blocks make deeper network optimization easier. 

 Skip connections are preserved but supplemented with identity mapping to help in the 

prevention of vanishing gradients and improved convergence rate. 

Attention U-Net 

The model is an enhancement of U-Net through the integration of Attention Gates (AGs) in skip 

connections [7]: 

 These AGs become capable of addressing pertinent tumor regions without suppressing 

background or non-relevant structures. 

 Particularly useful when segmenting low-contrast borders or tumor-like false positives. 

 

 

 



nnU-Net 

Isensee et al. [8] proposed nnU-Net as a self-configuring, AutoML-like segmentation tool. It: 

 Automatically adjusts its architecture, preprocessing pipeline, and training schedule 

depending on the characteristics of the dataset. 

 Won several BraTS competitions by regularly beating best manual models. 

 Eliminates the necessity for manual tuning, hence highly generalizable and robust. 

 

         CNNs prevail in brain tumor segmentation literature because they are flexible and adaptable. 

Nevertheless, they lack the intrinsic capacity to model long-range spatial relationships, which 

may be critical when learning diffuse or dispersed tumor areas. 

 2.3 Transformer-Based Architectures 

Though CNNs can model local spatial patterns well, they are not good at modeling long-range 

dependencies because of restricted receptive fields. NLP task-based transformer models were 

recently adopted to vision tasks using self-attention to model global contextual information. 

TransBTS 

Wang et al. [9] presented TransBTS that combines: 

 A 3D CNN encoder to extract spatial features from MRI volumes 

 A Transformer module to capture inter-slice relationships and global information. 

 A CNN decoder for reconstruction TransBTS was superior on BraTS 2020, outperforming 

most CNN-based methods in segmenting complex tumor boundaries and small subregions 

like enhancing tumors. 

Swin Transformer 

Swin-UNet[10] presented shifted window-based multi-head self-attention. Compared to Vision      

Transformers (ViT), Swin Transformer:  

 Processed image patches locally and hierarchically. More efficient and scalable for high-

resolution images. 

 

 



 Preserves local and global interactions. Although the above models show exemplary 

performance, they usually require big data or pretraining on large datasets like ImageNet.  

 They also are computationally costly, restricting their use to real-time or constraint 

applications. 

2.4 Hybrid Architectures 

Hybrid architectures seek to leverage the strengths of CNNs and Transformers. Hybrid models 

complement the local feature representation ability of convolution layers with the global context 

representation capability of attention mechanisms.  

MobileViT, for example, embeds vision Transformer blocks inside a mobile CNN backbone. 

The hybrid block facilitates spatial locality and long-range dependency learning in an efficient 

and light-weighted manner. It is specifically designed for low-resource scenarios and real-time 

usage[12]. 

For brain tumor segmentation, HybridSegNet++—the method introduced in this thesis—

employs MobileViT blocks in the encoder stream and gated residual skip connections in the 

decoder to facilitate improved feature propagation and multi-scale contextual perception. 

Other hybrid architectures like TransUNet[12] and MedT integrate CNN-based encoders with 

Transformer modules for feature improvement and have reported competitive performance on 

medical image segmentation benchmarks.. 

2.5 Multimodal MRI Fusion 

MRI provides several modalities—T1, T1ce, T2, and FLAIR—each of which images some 

unique tissue property. Effective tumor segmentation is possible by leveraging the 

complementary information from the modalities. 

Common fusion strategies are: 

1. Early Fusion: Modalities concatenated as input channels. Easy, but may lead to loss of 

modality-specific features. 

 

 

 

 



2. Late Fusion: Independent encoding of every modality and then concatenation or attention-

based fusion. 

3. Feature Fusion: Weighted fusion of mid-level features with consideration of inter-modal 

dependencies. 

In a recent work, Zhu et al.[14] introduce a fusion method that incorporates deep semantic 

features with explicit edge features learned from FLAIR and T1ce through a specific Edge Spatial 

Attention Block (ESAB). The architecture improves boundary localization and enhances 

segmentation of thin tumor edges. 

2.6 Comparative Analysis of Existing Models  

In order to summarize the literature findings, I provide two tables comparing state-of-the-art 

models. These are compared along architecture, strengths, limitations, and performance on the 

BraTS benchmark datasets. 

Table 2.1: Comparison of CNN-based Models for Brain Tumor Segmentation 

Model Year Key Feature(s) Strengths Limitations 

U-Net[10] 2015 
Encoder-decoder, 

skip connections 

Lightweight, interpretable, 

good for small datasets 

Limited receptive field, 

struggles with global 

context 

U-Net++[5] 2018 

Nested skip 

pathways, dense 

connections 

Better feature propagation, 

improved boundary 

recovery 

Heavier model, risk of 

overfitting 

ResUNet[10] 2018 

Residual blocks 

integrated into     

U-Net 

Stable optimization, deeper 

network possible 

Still CNN-limited global 

view 

Attention   

U-Net[10] 
2019 

Attention gates in 

skip connections 

Focus on salient features, 

suppresses background 

noise 

Adds complexity, limited 

spatial context 

nnU-Net[9] 2020 
Self-configuring 

pipeline 

Top BraTS performer, fully 

automatic design 

Resource-intensive, 

difficult to interpret 

 

 



Table 2.2: Comparison of Transformer and Hybrid Models for Brain Tumor Segmentation 

Model Year Architecture Type Strengths Limitations 

TransBTS[10] 2021 
3D CNN + 

Transformer 

Captures volume-level 

context, good BraTS 

score 

High memory cost, data-

hungry 

Swin-UNet[11] 2022 
Swin Transformer-

based 

Hierarchical attention, 

strong performance 

Needs large 

datasets/pretraining 

MobileViT[11] 2021 
Lightweight hybrid 

block 

Combines local and 

global features 

efficiently 

Limited adoption in 

medical imaging until 

recently 

HybridSegNet++ 

(Proposed) 
2025 

MobileViT + Gated 

Skip Conn. 

Lightweight, edge-aware; 

achieves 99.51% Dice on 

WT; stable performance 

across metrics 

Underperforms on small 

tumor regions (ET, TC); 

2D context limits 

volumetric learning 

 

2.7 Performance in BraTS Challenges 

BraTS (Brain Tumor Segmentation) challenge, held every year, offers a standardized benchmark 

for assessing brain tumor segmentation techniques. It contains annotated datasets with expert-

labeled areas like the Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET).Some 

of the top models that worked best in BraTS are: 

1. Myronenko's VAE-regularized U-Net that introduced an auxiliary autoencoder branch for 

regularizing the latent space. 

2. nnU-Net[8], which trained on the dataset without optimization. 

3. TransBTS, which could utilize 3D volume context effectively using Transformers.BraTS 

metrics are Dice Score, Hausdorff Distance, Sensitivity, and Specificity. The Dice score, 

especially, is overlap-sensitive between predicted and ground truth regions, and hence a 

primary evaluation metric in the majority of segmentation tasks[9]. 

 

 



2.8 Limitations in Current Methods 

Though results are promising, there are multiple limitations: 

1. Overfitting on small data: Pre-training the Transformer models on large-scale datasets, 

which are limited in medical imaging 

2. Ineffective use of modality: Most models use all modalities similarly instead of learning 

dynamically about modality significance 

3. Ambiguity at boundaries: Most CNNs cannot identify subtle edges, particularly around 

edema and normal tissue 

4. Intensive computation: 3D and Transformer-based models have high memory and 

training requirements, which restrict their use in real-time clinical settings. 

These challenges drive the creation of light but potent architectures such as HybridSegNet++. 

 

 



CHAPTER - 3 

RESEARCH METHODOLOGY 

 
This chapter outlines the comprehensive methodology used to develop and evaluate the proposed 

HybridSegNet++ model for multi-class brain tumor segmentation in multi-modal MRI images. 

The pipeline includes dataset acquisition, data preprocessing, architecture design, loss function 

formulation, model training , and evaluation. 

3.1 Dataset Description 

 

The dataset used in this study is the Brain Tumor Segmentation (BraTS) 2020 dataset, freely 

published as part of the Medical Image Computing and Computer Assisted Intervention 

(MICCAI) challenge. The dataset contains: 

 369 high-grade glioma (HGG) and low-grade glioma (LGG) cases 

 Four MRI modalities per case: T1 (T1-weighted), T1ce (contrast-enhanced T1), T2 (T2-

weighted), FLAIR (Fluid Attenuated Inversion Recovery) 

 Scan volume size of 240×240×155 for each scan 

 The ground truth segmentation has three subregions of tumors: 

• Enhancing Tumor (ET) → Label 4 

• Tumor Core (TC) (NCR/NET + ET) → Labels 1 & 4 

• Whole Tumor (WT) (ED + TC) → Labels 1, 2, 4 

 

 

Figure 3.1: 3D anatomical orientation of MRI slice using T1ce modality 

 

 

 

 



Figure 3.1 illustrates the anatomical orientation of a T1ce slice in three planes—axial, coronal, 

and sagittal—verifying the spatial alignment across views. Such verification is essential before 

converting 3D volumes into 2D slices. 

 

 

Figure 3.2: Visual representation of multi-modal MRI slices and ground truth segmentation 

 

The different MRI modalities highlight distinct tissue features: FLAIR is sensitive to edema, 

T1ce enhances contrast in active tumor regions, and T2 shows structural fluid detail. The final 

mask illustrates the multi-class ground truth for segmentation. 

 

3.2 Data Preprocessing 

As the BraTS dataset is volumetric, raw 3D scans are reformed into 2D slices before feeding 

them to the model. The preprocessing pipeline is: 

1. Slicing: Axial slices with any foreground tumor are retained only. 

2. Normalization: Each modality is normalized to unit variance and zero mean 

independently, as intensity distributions vary across modalities. 

3. Resizing: Slices are resized to 192×192 with bilinear interpolation (for images) and 

nearest-neighbor interpolation (for masks). 

 

 

 

 

 



4. Mask Remapping: The labels {0, 1, 2, 4} from the original labels are remapped to {0, 1, 

2, 3} for categorical encoding. 

5. One-hot Encoding: All segmentation masks are one-hot encoded to shape (192, 192, 4) 

 

 

Figure 3.3: Class-wise segmentation visualization of ground truth mask 

The figure 3.3 shows class-wise isolation of tumor components. These binary masks were 

generated to inspect whether classes are spatially separable. As seen, enhancing tumor (class 4) 

is small and surrounded by edema (class 2), explaining the class imbalance challenge. 

 

Figure 3.4: Categorical mask plotted using color mapping for all tumor subregions 

Figure 3.4 is a categorical segmentation map, rendered with a custom colormap, clearly 

distinguishing class boundaries and spatial extents. 

A custom DataGenerator class is used to load the data in batches with real-time augmentation 

and shuffling capabilities. This class loads .npy preprocessed slices from disk, resizes and 

encodes them, and supplies mini-batches to the training loop. 

 

 

 



3.3 Proposed Architecture: Hybridsegnet++ 

HybridSegNet++ is MobileViT-boosted U-Net-like network consisting of gated residual skip 

connections in the decoder and MobileViT blocks in the encoder. The model is designed to 

optimize both effective global-local context modeling and accurate segmentation. 

3.3.1 Encoder 

The first two levels employ Conv Blocks with group normalization and ReLU. 

 Lower layers utilize MobileViT blocks to extract local and global features. A deep 

MobileViT block with more feature channels acts as a bottleneck, squeezing global 

semantic context. 

 Tokens are derived from spatial features using patch embedding. 

 Tokens pass through a stack of self-attention layers. 

 Feature maps are decoded back to the image grid. 

3.3.2 Decoder 

The decoder module applies bilinear upsampling with a 1×1 convolution to iteratively recover 

the spatial resolution of the feature maps. Instead of the traditional skip connections via 

concatenation, gated residual skip connections are employed by this architecture. Here, a 1×1 

convolution with a sigmoid activation is used as a gating mechanism to regulate the flow of 

features from the encoder to the decoder. This selective transfer of characteristics enhances the 

restoration of significant tumor edges together with efficient elimination of unnecessary low-

level noise and thus the accuracy of segmentation of tumor regions. 

 

3.3.3 Output Layer 

Softmax activation and 1×1 convolution yield per-pixel class probabilities, leading to an output 

of shape (192, 192, 4).  

 

 

 

 



3.4 Loss Function and Optimization 

3.4.1 Hybrid Loss Function 

To mitigate segmentation faults due to shape variation and class imbalance, a hybrid loss 

function is used that supplements Dice Loss with common categorical cross-entropy. Dice Loss 

promotes overlapping predicted and ground truth tumor areas, which makes it appropriate for 

dealing with irregular shapes. Categorical cross-entropy penalizes class prediction faults on a 

pixel-to-pixel basis. The hybrid merged loss is calculated across all pixels and channels for every 

batch, which helps in enhanced convergence and segmentation accuracy. 

3.4.2 Optimizer and Training Details 

The model is then trained with the Adam optimizer and a starting learning rate of controlled by 

the ReduceLROnPlateau scheduler to dynamically adjust learning. Some of the most important 

callbacks are EarlyStopping to stop training when the model has converged and 

ModelCheckpoint to save the best performing model on validation loss. As a result of GPU 

memory limitations, a batch size of 4 is utilized, and the model is trained for a total of 35 epochs. 

3.5 Performance Metrics 

Evaluation is performed by the following measures: 

 Dice Coefficient (global and per-class) 

 Intersection-over-Union (IoU) 

 Mean IoU (mIoU) 

 Precision 

 Sensitivity (Recall) 

 Specificity 

All of these metrics are put in Keras-compatible functions and are monitored during training and 

testing. 

 

 

 



3.6 Experimental Setup 

The model is trained on the BraTS 2020 dataset with a size of 192×192×4 and four output classes.           

It employs a hybrid loss function of Dice Loss and Weighted Crossentropy, optimized through the            

Adam optimizer. Training is performed for 35 epochs with a batch size of 4 in order to support                   

GPU memory constraints. The codebase is based on TensorFlow 2.12 with Keras and run                          

on environments such as kaggle, using an NVIDIA Tesla T4 GPU having 16 GB of memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



CHAPTER - 4 

IMPLEMENTATION 

This chapter explains the end-to-end implementation approach for the presented 

HybridSegNet++ architecture. It covers the procedures for preprocessed MRI data, architectural 

component design and reasoning, loss function and metric construction, and configuration of 

training and validation pipelines. The implementation maintains modularity, reproducibility, and 

scalability in line with best practices in medical image computing. 

4.1 Data Preparation 

The BraTS 2020 dataset included four MRI modalities for each subject. As the volumetric input 

(240×240×155) could not be processed directly due to the limitations of the GPU and for the 

purpose of quicker training iterations, the dataset was rearranged into a 2D slice-based format. 

4.1.1 Extraction of Slices and Filtering 

 Axial slices were derived from every volume. 

 Slices with entirely background (i.e., segmentation label = 0 throughout) were not 

considered during training. 

 Each good slice was stored as a NumPy array: 

 Input: {ID}_x.npy → shape (240, 240, 4) 

 Mask: {ID}_y.npy → shape (240, 240) 

4.1.2 Resize 

All MRI slices were resized to 192×192 pixels for efficient GPU memory usage. Bilinear 

interpolation was used to resample input modalities, and nearest-neighbor interpolation was 

used for segmentation masks to maintain label precision. 

4.1.3 Normalization and Encoding 

Each input modality was separately normalized to unit variance and zero mean. The initial   

 

 



segmentation mask labels {0,1,2,4} were mapped to {0,1,2,3} and then one-hot encoded to a 

(192, 192, 4) format. This common preprocessing pipeline served to stable train and evaluate 

consistently across the dataset. 

4.2 Data Generator Class 

A custom DataGenerator class was created by inheriting tf.keras.utils.Sequence to load the data 

during training in an efficient way. It loads on-the-fly only the necessary slices for a batch, so it 

has very small memory usage. The class is designed to be easily extensible for such data 

augmentation operations as rotation, shifting, and scaling. To provide batch diversity, the data is 

shuffled at the end of each epoch. The generator is parameterized with arguments like 

batch_size, dim, n_channels, n_classes, and shuffle. Individual instances were constructed with 

train_ids, val_ids, and test_ids for the training set, validation set, and test set, respectively. 

4.3 Model Development 

The new model, HybridSegNet++, is developed using Keras' functional API and features three 

primary phases: the encoder, bottleneck, and decoder. 

4.3.1 Encoder Path 

The encoder is comprised of some ConvBlocks, each utilizing two 3×3 convolutional layers 

with Group Normalization, ReLU activation, and regularization via dropout. It also includes 

MobileViT blocks that encode patch and convert it to a shape, followed by multi-head self-

attention layers and feed-forward networks with residual connections. These are again projected 

back into the spatial space and summed with the original feature map. 

4.3.2 Bottleneck 

The bottleneck includes a high-capacity MobileViT block that processes global representations 

through self-attention and token embeddings, acting as the core of contextual feature learning. 

4.3.3 Decoder Path 

In the decoder, gated skip connections replace traditional concatenation. Encoder features are 

modulated using a gating mechanism defined by: 



 

Post-upsampling ConvBlocks enhance the spatial details. A 1×1 convolution layer with Softmax 

activation generates the segmentation map for four classes. 

This architecture design nicely integrates global context modeling with precise spatial feature 

preservation, and thus it is very appropriate for brain tumor segmentation tasks. 

 

 

 

Figure 4.1: Complete architecture of the proposed HybridSegNet++ model for multi-class  

brain tumor segmentation. 

 

 

 

 



 

4.3.4 Output Layer 

The final layer of the architecture is a 1×1 convolution with 4 filters and a Softmax activation 

function: Conv2D (filters=4, kernel_size=1, activation= softmax). The output of this layer is a 

segmentation map with 192×192×4 size, where per-class probability values for the four tumor 

classes are saved per pixel. 

4.4 Loss Function 

For solving the problems introduced by class imbalance and intricate tumor geometries, a 

Hybrid Loss function was employed, which was given by: 

LossHybrid = Dice Loss + Categorical Cross Entropy 

To mitigate segmentation faults due to shape variation and class imbalance, a hybrid loss 

function is used that supplements Dice Loss with common categorical cross-entropy. Dice Loss 

promotes overlapping predicted and ground truth tumor areas, which makes it appropriate for 

dealing with irregular shapes. Categorical cross-entropy penalizes class prediction faults on a 

pixel-to-pixel basis. The hybrid merged loss is calculated across all pixels and channels for 

every batch, which helps in enhanced convergence and segmentation accuracy. 

4.5 Metrics Used for Evaluation 

Evaluation is performed by the following measures: 

 Dice Coefficient (global and per-class) 

 Intersection-over-Union (IoU) 

 Mean IoU (mIoU) 

 Precision 

 Sensitivity (Recall) 

 Specificity 

All of these metrics are put in Keras-compatible functions and are monitored during training and 

testing. 

 



 

4.6 Training Configuration 

The Training was done using Kaggle notebook with NVIDIA Tesla T4 GPUs. Training 

parameters were an input shape of 192×192×4, batch size of 4 to accommodate GPU memory, 

and 35 epochs in total. The Adam optimizer with an initial learning rate of 1e-3 was employed, 

along with the hybrid loss function (Dice Loss + Weighted Cross Entropy) for training. 

For enhanced training effectiveness and preventing overfitting, the following callbacks were 

included: 

 ModelCheckpoint to save the best performing model on validation loss. 

 ReduceLROnPlateau to decrease the learning rate on its own when validation 

performance plateaus. 

 EarlyStopping with patience 10 epochs to stop training when the model ceased to 

improve. 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER - 5 

RESULT 

 

This chapter illustrates the results of the proposed HybridSegNet++ model evaluated on the 

BraTS 2020 database. It possesses a detailed analysis of segmentation performance in qualitative 

visualization as well as quantitative scores. In addition, comparison with baseline models utilized 

previously is made to establish its position relative to state-of-the-art solutions. 

5.1 Quantitative Results 

Table 5.1: Evaluation Metrics on Test Set 

  Metric Value 

Dice Score (ET) 0.7568 

Dice Score (TC) 0.9003 

Dice Score (WT) 0.9136 

Accuracy 0.9150 

IoU Score (overall) 0.8410 

Precision 0.9162 

Sensitivity 0.9111 

Specificity 0.9974 

Dice coef (Necrotic Core) 0.8138 

Dice coef (Edema) 0.8011 

Dice coef (Enhancing Tumor) 0.7480 

   

 

 

 

 



These findings reflect that the model is highly accurate in segmenting the entire tumor and tumor 

core. Yet, improving tumor segmentation is a bit more difficult, as is to be expected from the 

literature based on its smaller size and less clearly defined boundaries in most instances. 

5.2 Comparison with Baseline Models 

Model Dice (WT)    Dice (TC) Dice (ET) 

U-Net[10] 87.38 72.48 70.86 

Attention U-Net[10] 88.81 77.20 75.96 

ResUNet[10] 89.60 76.47 71.63 

TransBTS[10] 90.09 81.73 78.73 

Swin-UNet[11] 90.68 82.57 80.15 

nnU-Net[9] 88.95 85.06 82.03 

Segtran[1] 91.13 82.89 80.92 

HybridSegNet++  

(Proposed) 
91.36 90.03 75.68 

 

Although HybridSegNet++ shows superior WT segmentation performance, its ET and TC 

performance is not as good as more special-purpose or 3D transformer-based architectures, likely 

because of the 2D structure and restricted 3D context modeling.  

5.2 Training and Validation Performance 

During training, most critical metrics like accuracy, Dice coefficient, and IoU were tracked.    

Both training and validation accuracy steadily increased and reached more than 99%, while        

the validation Dice coefficient reached 0.991 near the end of the final epoch, signifying strong                      

 

 

 



performance in segmentation. The training loss also gradually reduced, reflecting effective 

learning without any indication of overfitting. Early stopping was employed to ensure the model 

stopped training at the optimal time. Such behavior was also verified by the learning curves, 

which showed smooth accuracy convergence and consistent loss decrease in the training and 

validation set. 

 

Figure 5.1 shows training and validation plots over 25 epochs 

5.3 Qualitative Segmentation Visualization 

To visually inspect segmentation quality, several predictions were plotted against ground truth masks. 

 

Figure 5.2: Per-Class Prediction Map – Patient BraTS20_321 

Displays predicted segmentation overlays for all four classes: background, NCR, edema, and 

enhancing tumor. Segmentation looks to be correct for edema and enhancing tumor, with under-

segmentation in necrotic areas. 

 

 



 

Figure 5.3: Ground Truth vs Prediction on ET, TC, WT 

The HybridSegNet++ model exhibits a very high class-wise segmentation accuracy and regular 

boundary alignment for all the components of the tumor. 

 

Figure 5.4: Multi-Slice Brain Tumor Segmentation Results using HybridSegNet++ 

 

 



    

Figure 5.5: Overlay Comparison of Ground Truth and Predicted Segmentation (Slice 80) 

 

The left panel shows the original FLAIR image, while the middle and right panels show the 

ground truth and predicted tumor masks overlaid on the input image. The model demonstrates 

strong spatial alignment with the annotated tumor boundaries. 

 5.4 Interpretation and Discussion 

The new HybridSegNet++ model provides good segmentation accuracy, particularly in the 

discrimination of the Whole Tumor (WT) and Tumor Core (TC) regions, as attested by Dice 

scores of 0.9136 and 0.9003, respectively. This demonstrates that the model achieves good 

detection in the large spatial structures and inner tumoric shapes. But the accuracy on the 

Enhancing Tumor (ET) area is comparatively low (0.7568 Dice), as expected given issues seen 

in the literature. Yet, the model still maintains good overall metrics with an IoU of 0.8410, 

Precision of 0.9162, and Sensitivity of 0.9111, reinforcing its strengths and low false positive 

counts. 

While HybridSegNet++ does not surpass high-capacity 3D transformer-based models on the ET 

class, it performs better segmentation of TC (90.03% Dice) — more than all previously 

published baseline models — and performs competitively on WT. Its architecture makes use of 

MobileViT blocks and gated skip connections to preserve spatial granularity while being much 

more computationally efficient, making it well-suited for deployment in real-time or resource-

constrained clinical environments.Hence, HybridSegNet++ strikes a good balance between 

efficiency and accuracy with it excelling in segmenting major tumor areas and being a top player 

among lightweight 2D models. 

 

 

 



 

CHAPTER – 6 

CONCLUSION AND FUTURE SCOPE 

 

 
      6.1 Conclusion 

 

Brain tumor segmentation of multi-modal MRI is an important phase of computer-aided 

diagnosis and treatment planning. A hybrid deep learning model called HybridSegNet++ was 

introduced and developed in this thesis for multi-class brain tumor segmentation based on 2D 

slices of the BraTS 2020 dataset. The architecture utilized convolutional ConvBlocks along with 

MobileViT blocks to model global context, and incorporated gated residual skip connections 

within the decoder for the purpose of enhanced spatial propagation of features. 

A specialized pipeline was created to preprocess the BraTS dataset, extract informative axial 

slices, normalize and one-hot encode the data, and supply it efficiently to a modular training 

framework. A hybrid loss function involving Dice loss and weighted categorical cross-entropy 

was used to combat extreme class imbalance. 

Evaluation Results Summary: 

 Attained global Dice coefficient of 0.9908, Mean IoU Score of 0.8410, and Accuracy of 

0.915. 

 Good performance on Whole Tumor (WT) and Tumor Core (TC) regions with Dice Score 

of 0.9136 and 0.9003, respectively. 

 Qualitative visualisations indicated tight agreement between estimated and ground truth 

masks in the majority of scenarios, with slight deviations around small or low-contrast 

tumor regions 

While HybridSegNet++ does not surpass high-capacity 3D transformer-based models on the ET 

class, it performs better segmentation of TC more than all previously published baseline models 

and performs competitively on WT. Hence, HybridSegNet++ strikes a good balance between 

efficiency and accuracy with it excelling in segmenting major tumor areas and being a top player 

among lightweight 2D models. 

 

 



6.2 Future Scope 

While HybridSegNet++ has good performance, but there are some future directions: 

1. 3D Volumetric Context Extension: 

Adding 3D convolutional layers or 2.5D context windows makes it possible to capture 

inter-slice information and enhance ET and TC segmentation performance. 

2. Attention Module Integration: 

Adding self-attention mechanisms in the decoder or across modalities allows the model to 

better distinguish fine structures and reject irrelevant background. 

3. Dynamic Loss Adjustment: 

Future deployments can use adaptive loss weighting (e.g., focal loss, Lovasz loss) by 

epoch-wise class challenge or confidence maps. 

4. Domain Adaptation and Generalization: 

Model testing against other datasets (e.g., BraTS 2021, private clinical scans) will 

establish its generalizability and scanner/institution/protocol/patient-group stability. 

5. Post-Processing Improvements: 

Applying Conditional Random Fields (CRFs) or employing ensemble techniques for 

post-prediction smoothing would enhance spatial consistency.  
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