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Abstract

Heterogeneous Graph Neural Networks (HGNNs) are smart models that are designed
to work with very complex networks that have many different types of nodes and con-
nections. HGNNs are not like basic graph models, they can understand unstructured
real-world data, like social networks or recommendation engines. The methods track
patterns in connections or focus on important details; they let the system analyze data
quickly. The methods help with tasks such as finding missing links in a network or sorting
data into groups. This applies especially to fields like biology or social media. A Random
Projection Heterogeneous Graph Neural Network (RpHGNN) is a type of HGNN. Devel-
opers built it for large, complex networks that have many node and connection types. The
RpHGNN simplifies data using random math calculations, which speeds up processing -
this happens without much loss of information. The RpHGNN works faster and performs
better than regular HGNNs. By using simpler number formats, such as FP16 and INTS,
to hold data, we lowered its memory use. That change kept 94% accuracy. The upgraded
RpHGNN can now power real-time features and Al tools that work smoothly even on
low-power devices or in large cloud systems.

We evaluate the Graph Neural Tangent Kernel (GNTK), a theoretically grounded,
non-parametric approach to graph learning that eliminates the need for backpropagation.
Our analysis reveals that while RpHGNN compression offers efficiency benefits for deep
learning pipelines, GNTK provides a powerful and scalable alternative, especially for tasks
where interpretability, analytical clarity, and efficient inference are prioritized. By com-
paring these models on multiple datasets, we offer practical insights into their suitability

across varying computational and application scenarios.
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Chapter 1

INTRODUCTION

Heterogeneous graphs are graph structures that contain multiple types of nodes and edges.
Heterogeneous graphs make real-world data, like social networks, knowledge graphs next
to recommendation systems; these graphs allow expressive representations. For example,
a social network has nodes. Nodes can be users, products or topics. Edges show inter-
actions, like follows, purchases or mentions. This variety lets us get richer relations than
homogeneous graphs. HGNNs process these structures by applying type-specific trans-
formations and attention mechanisms. This approach helps in effectively learning the
relationships between different entities, enhancing performance in machine learning tasks
such as node classification, link prediction, and recommendation systems. Their flexibility
and rich structure enable advanced applications in artificial intelligence, particularly in
domains requiring nuanced relationship modelling.

Heterogeneous Graph Neural Networks, or HGNNs, expand on Graph Neural Net-
works; they operate on graphs whose nodes and edges differ in type plus possess distinct
attributes. HGNNs suit applications like social networks, citation graphs, knowledge
graphs along with recommendation systems. By improving the structure of heterogeneous
data, HGNNs allow a more balanced understanding of real world connections. A HGNN
works by gathering and changing node representations - it keeps the graph’s heterogene-
ity. The network uses special methods such as meta paths, type specific transformations,
also relation aware message passing, so it learns useful embeddings - these methods allow

nodes to connect well based on their types and relationships, which improves learning.



HGNNs use attention to weigh the importance of connections. This refines the node
representation. An advanced model is the Heterogeneous Graph Attention Network.

RpHGNNSs are an improved type of HGNNs. They are created to make learning easier
and faster with complex graphs. These graphs have various nodes besides edges. Previous
HGNNs use meta-paths that people must design. This process can take a lot of computer
power and time, especially for big programs. RpHGNN faces these issues. It uses ran-
dom projection methods to change the features. This makes data smaller but keeps
its shape and meaning. It has three major new parts - Random Projection Encoding,
Relation-aware Message Passing and Efficient Training. With Random Projection En-
coding, node embeddings go to a smaller area by using random projection. This happens
instead of using set meta-paths. Relation-aware Message Passing shapes how information
joins together for different node types to make the transfer better. But Efficient Train-
ing makes feature areas less complex. This leads to faster computing without harming
accuracy. RpHGNN enhances this by pre-computing heterogeneous graph information
into regular-shaped tensors, minimizing repetitive message-passing operations. This in-
volves Relation-wise Neighbour Collection, which gathers neighbour information based on
different relations into dedicated vectors; Random Projection Squashing, which applies
dimensionality reduction to compress collected neighbour information and reduce com-
putational load; and an Even-odd Propagation Scheme, which ensures effective and fine-
grained neighbour information aggregation. By pre-computing these tensors, RpHGNN
enables efficient mini-batch training with simple encoders like MLPs, bypassing costly
message passing during each training epoch. This hybrid approach balances computa-
tional efficiency with the ability to capture rich structural information, making RpHGNN
highly effective for large-scale applications such as recommendation systems, knowledge
graphs, and fraud detection.

RpHGNN is used for real life applications like decision making tasks that need large
heterogeneous data. It makes a recommendation system for social media, products, and
movies. It also helps in identifying suspicious transactions in banking and e-commerce.

When doing social media analysis, it helps in detecting influential users, fake accounts and



news, which helps in overall improving the online security and credibility of social media
firms. With the help of these applications, we can say that RpHGNN makes various
industries smarter and more efficient, which improves everyday experiences in various
fields.

We further refine RpHGNN'’s efficiency by building on the memory optimization foun-
dation proposed in Efficient Heterogeneous Graph Learning via Random Projection [1]
by systematically integrating low-precision quantization FP16 and INTS into its archi-
tecture. While this work highlights fine-tuning as a pathway to reduce memory con-
sumption, our approach explicitly targets the model’s largest memory bottlenecks: high-
dimensional node embeddings and dense projection matrices. By replacing FP32 parame-
ters with quantized FP16 for gradients and activations while INTS8 for static embeddings,
we achieved a 67% reduction in memory footprint.

The surge of graph structured data in domains such as social network analysis, bioin-
formatics, chemical molecule classification, and recommendation systems has intensified
the need for learning models that can effectively operate on non-Euclidean data. GNNs
have emerged as powerful tools for learning representations from such data, leveraging
message-passing mechanisms to capture local and global dependencies. Despite their
success, GNNs suffer from significant drawbacks in practice, most notably high computa-
tional cost, memory inefficiency, and training instability, especially when scaled to deep
architectures or large, heterogeneous graphs. These limitations have driven substantial
research interest in improving the efficiency, interpretability, and deployability of GNN
based models.

GNTK is a kernel based alternative to neural networks that retains many of the
representational strengths of GNNs while forgoing their high computational cost. GNTK
introduces a kernel function that analytically represents the infinite width limit of a GNN,
enabling training free learning via a similarity matrix. We aim to provide a comprehen-
sive evaluation of GNTK, placing it in the context of current trends in GNN efficiency
and analyzing its theoretical underpinnings, performance metrics, and practical utility.

Unlike conventional GNNs that rely on gradient based learning and multiple layers of



parameterized transformations, GNTK adopts a kernel based approach that analytically
computes the similarity between graphs based on the infinite width limit of neural net-
works. This transformation turns a deep learning problem into a kernel regression task,
effectively eliminating the need for model training while retaining much of the expressive
power of GNNs.

GNTK extends the Neural Tangent Kernel (NTK) framework to graph structured
inputs, offering both theoretical elegance and practical benefits. It enables deterministic,
training free computation of graph similarity matrices, which can then be used with
classical machine learning models like Support Vector Machines (SVMs). This approach
not only enhances reproducibility and interpretability but also significantly reduces the
computational burden associated with iterative optimization and hyperparameter tuning.
Moreover, GNTK’s fixed computation path avoids the stochasticity and instability typical
in deep GNN training, making it particularly appealing for small to mid scale graph
datasets and environments with limited computational resources.

Through comprehensive experiments and analysis, this paper positions GNTK as a
compelling alternative to traditional GNNs in efficiency critical applications. We system-
atically compare its performance and scalability against a compressed RpHGNN baseline,
highlighting the situations where GNTK’s non-parametric nature offers clear advantages.
In doing so, we aim to contribute to the growing body of research focused on advancing

GNN efficiency through both model compression and novel theoretical frameworks.



Chapter 2

RELATED WORK

The evolution of graph representation learning has been shaped by the need to handle
increasingly complex and large-scale data. GraphSAGE [2] marked a pivotal shift from
transductive to inductive learning, enabling embeddings for unseen nodes through neigh-
bourhood sampling and aggregation. This paved the way for dynamic graph applications
like social networks but had problems with scalability issues when working with dense
graphs. Around the same time in 2017, GCN [3] introduced spectral graph convolutions
for semi-supervised learning, striking a balance between node features and graph struc-
ture. However, its reliance on full-batch training created memory bottlenecks, prompting
innovations like FastGCN [4], which reimagined convolutions as integral transforms. By
using Monte Carlo sampling, FastGCN reduced computational complexity and general-
ized to unseen graphs, achieving orders-of-magnitude speed gains over GraphSAGE while
maintaining accuracy.

The search for optimal performance continued with adaptive layer-wise sampling [5],
which addressed the neighbour explosion problem in GCNs by constructing subgraphs
layer-by-layer and introducing skip connections. This method improved convergence speed
and preserved second-order proximity, but scalability in heterogeneous graphs with diverse
node and edge types that remained unaddressed. R-GCN [6] extended GCNs to model
multi-relational data in knowledge graphs. While effective for tasks like link prediction, its
relation-specific parameters scaled poorly with graph size. This limitation inspired Pin-

Sage [7], a milestone for industrial-scale GNNs. Deployed at Pinterest, PinSage combined



random walks with importance pooling to train on 3B nodes, proving GNNs’ viability in
web-scale recommendation systems.

Heterogeneous graph learning gained momentum with HetGNN [8], which unified
structural and content heterogeneity via typed neighbour aggregation. However, manu-
ally designed meta-paths limited flexibility. RSHN [9] bypassed meta-paths by coarsening
line graphs to model edge relationships implicitly, while HAN [10] introduced hierarchical
attention to prioritizing meta-paths and neighbours dynamically. These works highlighted
the trade-off between expressiveness and computational cost. HetSANN [11] further au-
tomated relation learning with type-aware attention, but scalability on web-scale graphs
remained difficult to achieve.

The rise of transformers revolutionized the field. HGT [12] scaled to the Open Aca-
demic Graph using meta-relation-based attention and heterogeneous sampling, achieving
around 16% accuracy gains. Concurrently, SIGN [13] challenged the need for deep archi-
tectures by precomputing graph filters, achieving state-of-the-art performance on ogbn-
papers100M with a shallow model. This simplicity over depth philosophy resonated in
NARS [14], which showed neighbor-averaged features over relation subgraphs could match
GNN accuracy with minimal computation. Meanwhile, FAME [15] and GraphSAINT [16]
optimized training efficiency. FAME did this via spectral sparsification and GraphSAINT
did this via subgraph sampling—yet heterogeneous graphs demanded specialized memory
optimizations.

Recent works prioritized lightweight architectures. SeHGNN [17] discarded complex
aggregation in favour of precomputed neighbour means and single-layer transformers,
achieving 230% faster training than predecessors. Similarly, HINormer [18] adapted
transformers for heterogeneous graphs via structure and relation encoders, outperforming
GNNs in node classification. These advances culminated in RpHGNN [1], which combined
random projection for dimensionality reduction with the relation-wise neighbour collec-
tion. By minimizing information loss while scaling linearly with graph size, RpHGNN
achieved state-of-the-art accuracy on seven benchmarks. However, its memory footprint

remained a barrier to edge deployment.



This progression underscores a critical gap: while architectural innovations improved
scalability and accuracy, few explored memory reduction via quantization. Our work
bridges this by integrating FP16/INT8 optimization into RpHGNN, reducing its memory
footprint by 67% while retaining almost 94% accuracy. By building on the efficiency
of RbHGNN’s precomputation and the simplicity of SeHGNN’s architecture, we enable
real-time heterogeneous graph learning on resource-constrained devices.

The foundation for GNTKs lies at the intersection of graph theory, kernel methods,
and deep learning each of which has evolved significantly over the past decades. The
journey begins in the late 1990s with efforts to manage graph structured data more
efficiently. Karypis and Kumar [19] introduced a multilevel scheme for graph partitioning,
emphasizing computational efficiency and quality, an early step toward scalable graph
processing. This work laid the groundwork for handling large graph data, a necessary
precondition for modern neural approaches.

In the early 2000s, the focus shifted toward kernel methods in machine learning. Zhu
and Hastie [20] explored support vector machines and kernel logistic regression, highlight-
ing the strength of kernels in handling non-linear data. Around the same time, Hofmann
[21] offered a broad review of kernel based learning, framing them as powerful tools for
representing similarity in high dimensional data spaces. These studies provided a founda-
tional understanding of kernel functions, which are central to the development of NTKs.

As machine learning matured, Bottou [22] contributed significantly with insights into
stochastic gradient descent (SGD), emphasizing its critical role in training deep models.
While not graph specific, the principles of SGD are deeply embedded in training GNNs,
influencing the training mechanics that GNTKSs later bypass via kernel approaches.

In 2013, Shuman [23] formally introduced the field of Graph Signal Processing (GSP).
They extended traditional signal processing to graphs, providing tools for understand-
ing data with non-Euclidean structure, a key turning point that directly informed later
developments in GNNs and graph kernels.

By 2016, the focus had shifted toward deep learning on graphs. Kipf and Welling [24]

introduced the Graph Convolutional Network (GCN), a pivotal model that combined con-



volutional operations with graph structures. This method captured local neighborhood
features and demonstrated state-of-the-art performance on semi-supervised node classifi-
cation tasks. GCNs were a major breakthrough and served as a prototype for subsequent
graph-based learning algorithms.

Around the same time, Jacot [25] introduced the Neural Tangent Kernel (NTK),
showing that infinitely wide neural networks converge to kernel regimes during training.
This theoretical advance bridged the gap between deep learning and kernel methods, and
it became a critical stepping stone toward GNTK.

Building upon these ideas, Du [26] introduced the Graph Neural Tangent Kernel
(GNTK) in 2019. GNTK combines the architectural benefits of GNNs with the ana-
lytical tractability of NTKs. It enables the use of powerful graph representations without
the need for explicit training, offering both strong theoretical guarantees and competitive
empirical performance. GNTK represents a culmination of two decades of progress in
graph algorithms, kernel theory, and neural network analysis.

Following this, You [27] in 2021 proposed the Graph Isomorphism Network (GIN), em-
phasizing expressive power and addressing limitations in distinguishing graph structures,
a concern also tackled by GNTKs later. They pushed the boundaries of graph repre-
sentations by closely linking GNN performance with classical Weisfeiler-Lehman graph
isomorphism tests.

More recent studies have extended GNTKs in various directions, applying them to
specific tasks like molecular property prediction or integrating them with spectral methods
and graph pooling techniques. These efforts have continued to explore the balance between

expressivity and interpretability in graph learning models.



Chapter 3

METHODOLOGY

RpHGNN is designed to overcome the inefficiencies of traditional HGNNs, which suf-
fer from high computational overhead due to repetitive message passing and memory-
intensive operations. At its core, RpHGNN employs two novel mechanisms: Random
Projection Squashing and Relation-wise Neighbor Collection with Even-odd Propagation.
Random Projection Squashing leverages the Johnson-Lindenstrauss lemma to reduce the
dimensionality of node embeddings while preserving pairwise distances. Mathematically,

RNXd

for a node feature matrix X € , a random projection matrix R € R¥* where k < d,

is applied to compute:

X'=XR (3.1)

This reduces the feature dimension from d to k, cutting memory usage from O(Nd) to
O(NEk) without significant information loss. The projection matrix R is fixed during
training, eliminating the need for gradient computations and further reducing overhead.

Relation-wise Neighbor Collection addresses the heterogeneity of nodes and edges by
partitioning the graph into relation-specific subgraphs. For each relation type r, neigh-
bours are aggregated separately, and the Even-odd Propagation Scheme alternates be-

tween two strategies:

e Even Steps: Aggregate features from immediate neighbours using mean pooling.

e Odd Steps: Propagate information through higher-order neighbours like meta-paths,

via attention mechanisms.



This alternating scheme captures both local and global structural patterns, ensuring
fine-grained information retention. By decoupling neighbour aggregation from training,
RpHGNN precomputes these steps, reducing training complexity from O(L?) to O(L),
where L is the number of layers. Compared to traditional HGNNs like HAN or HGT,
RpHGNN achieves a 230% speedup on benchmarks like ogbn-mag while maintaining 94%
accuracy.

J. Hu et. al. [1], identified two critical future directions that are memory reduction
and task expansion. During precomputation, RpbHGNN stores relation-specific neighbour
embeddings, which can occupy significant memory for large graphs. They proposed spar-
sification techniques, such as retaining only top K influential neighbors per node based on
attention scores or leveraging graph partitioning to prune redundant connections. Using
a threshold 7 to discard neighbors with attention weights < 7, the storage complexity
could be reduced from O(N - avg_degree) to O(N - log(avg_degree)).

To further assess RpDHGNN's efficiency and generalization capability, we introduced a
new dataset tailored to real-world heterogeneous graph scenarios. This dataset consists of
10,000 data points and each data point have customer, product, items, age, activity_score,

and rating as attributes. We can see the shape of the dataset in Fig. 3.1 and Fig. 3.2.
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Figure 3.1: Overall distribution of first 100 data points presented as activity score vs age
in the dataset
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Figure 3.2: Overall distribution of products based on their popularity and price

We integrate mixed-precision quantization into RpHGNN to minimize memory usage
without sacrificing accuracy. We adopt NVIDIA’s Automatic Mixed Precision (AMP) to
convert 32-bit FP32 embeddings and weights to 16-bit FP16. This halves memory usage
and accelerates matrix operations via GPU tensor cores. To prevent gradient underflow,
loss scaling is applied during backpropagation. Master weights are maintained in FP32
to preserve precision during updates.

For static embeddings, we apply post-training quantization (PTQ). Features are cali-

brated using percentile clipping to determine the scale S and zero-point Z:

Q(z) = round(Sz + Z) (3.2)

where x is an FP32 tensor. Dynamic quantization is used for attention weights, scaling
them to INT8 during runtime. Quantization-aware training (QAT) fine-tunes the model
for 5-10 epochs with simulated quantization noise, recovering <1% accuracy loss. On the
ogbn-mag dataset, quantization reduces memory usage by 60% using FP16 and 75% using
INTS, with peak VRAM dropping from 12 GB to 4.9 GB. Inference latency decreases by
40% on NVIDIA RTX 3090, enabling real-time deployment in applications.

Experimental results demonstrated that our model achieved 94.67% accuracy, marking

11



a significant improvement over baseline HGNN architectures while maintaining superior
computational efficiency. We presented the relationship of customers and products in Fig.

3.3 and Fig. 3.4.

Heterogeneous Graph Visualization

Node/Edge Types
User
ftem

Category
@ Interacts With
Belongs To

Figure 3.3: A graph showing the relation between User, Items, and Category

GNTK works by computing a kernel matrix K between all pairs of graphs in a dataset.
Each entry in the matrix represents the similarity between two graphs as encoded by the
NTK of a neural network applied to node features and adjacency structures. This ap-
proach eliminates the need for iterative training or parameter tuning. Instead, the kernel
can be used directly in classical machine learning models like Support Vector Machines
(SVM) or kernel ridge regression. The methodology involves defining a GNN architecture,
calculating the corresponding GNTK kernel using recursive equations, and applying the
resulting kernel in downstream tasks. This is particularly powerful for graph classification
problems where interpretability, reproducibility, and analytic tractability are prioritized.

The GNTK framework builds on the NTK, extending it to the domain of graph struc-
tured inputs. The methodology begins with defining a base graph neural architecture,
typically a multi-layer GCN characterized by its depth, activation function, and message
passing mechanism. Instead of training this network, GNTK derives closed form recursive

equations that model the propagation of feature covariances through the layers. These
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Figure 3.4: A graph showing the interconnection between user and item

recursions allow the computation of a kernel matrix K, where each element K(i,j) quanti-
fies the similarity between two graphs G; and G, as if they were passed through a GNN
of infinite width. This matrix inherently captures both topological and feature based
similarities.

After the kernel matrix is computed, it can be used directly in classical machine
learning models such as SVM, kernel ridge regression, or Gaussian Processes to perform
tasks like graph classification or regression. This bypasses the need for backpropagation,
weight initialization, or hyperparameter tuning. The kernel’s analytical nature ensures
reproducibility and interpretability, making GN'TK highly suitable for applications where
robustness and theoretical tractability are critical. Additionally, since the architecture
is fixed, the behavior of the model is fully determined by the data and architecture
parameters, offering a degree of clarity not typically achievable in standard GNNs.

To check GNTK, we studied several well known benchmark datasets including MU-
TAG, PROTEINS, and ENZYMES. Each dataset is processed using consistent splitting
strategies and identical preprocessing pipelines to ensure fair comparison. We checked
with different GNTK architectural configurations like varying the number of layers, nor-
malization methods, and activation functions, to assess how these impact classification

accuracy and kernel expressiveness.
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Chapter 4

EXPERIMENTAL SETUP

In this section, we have discussed all important tools and resources that have been used

in both research papers.

4.1 Google Colab

Google Colab was extensively utilized as the primary platform for development and ex-
perimentation in the RpPHGNN and GNTK research. Its seamless integration with GPU
acceleration significantly accelerated model training and inference, particularly for graph-
based neural architectures that involve complex message passing and kernel computations.
The cloud-based, collaborative nature of Colab facilitated rapid prototyping, version con-
trol, and efficient experimentation with different model variants, aggregation strategies,
and hyperparameter configurations.

For this research, Colab supported the preprocessing and feature engineering of graph
datasets such as MUTAG, ENZYMES, PROTEINS, and the large scale ogbn-papers100M.
It was instrumental in implementing and training RpHGNN models, conducting compar-
ative experiments with GNTK, and performing detailed evaluations across various graph
classification tasks. Its broad support for essential Python libraries like PyTorch Ge-
ometric, DGL, NetworkX, NumPy, and scikit-learn provided a robust environment for

end-to-end development, from data handling to final analysis and visualization.
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4.2 RpHGNN

The RpHGNN ran on the large ogbn-papers100M dataset. This showed its performance
and how it scales in graph learning. The dataset has a varied, complex structure, so it
tests random projection methods - these methods reduce size but keep important graph
information. The tests looked at node classification; they preprocessed much data - this
brought in structural plus semantic features to the graph model. Random projection
matrices changed big node features into small forms. That let messages pass quickly and
reduced overfitting also calculation time.

Developers built the RbHGNN with PyTorch in addition to PyTorch Geometric. They
made special parts for graphs with varied structures and for projection based embeddings.
Hyperparameters such as projection dimensions, learning rate, number of layers, and
aggregation strategies were systematically tuned using a validation set split from the
training data. Training was conducted using mini-batch sampling techniques to handle
the scale of oghn-papers100M, and performance was evaluated using standard metrics
such as classification accuracy and macro-F1 score. Experimental results demonstrate
that RpHGNN achieves competitive accuracy with significantly reduced computational
cost, validating the effectiveness of integrating random projections into the graph learning

pipeline.

4.3 GNTK

To evaluate the effectiveness of the GNTK, experiments were conducted on three well
established graph classification benchmarks: MUTAG, ENZYMES, and PROTEINS.
These datasets represent diverse domains and structural complexities—ranging from small
molecule graphs in MUTAG to protein tertiary structures in ENZYMES and PRO-
TEINS—making them ideal for assessing GNTK’s ability to capture graph-level repre-
sentations. Each dataset was preprocessed to ensure consistency in node labeling and
graph connectivity, and standard 10-fold cross-validation protocols were followed to facil-

itate reliable and comparable performance evaluation.
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The GNTK was implemented using the official open source library, with kernel com-
putations performed over graph pairs to obtain similarity matrices, which were then fed
into a SVM for classification. Key hyperparameters such as the depth of the neural net-
work kernel, the choice of activation functions, and regularization coefficients for the SVM
were optimized through grid search on validation folds. Due to the non-learnable nature
of GNTK’s kernel representation, the method offered high interpretability and robustness,
especially on smaller datasets. Experimental results indicated that GNTK achieves com-
petitive accuracy compared to standard GNNs, particularly excelling in scenarios with

limited training data where kernel methods are less prone to overfitting.

4.4 Python

Python served as the primary programming language for the development and experi-
mentation of both the RpbHGNN and the GNTK. Its extensive ecosystem of scientific
computing libraries, such as NumPy, SciPy, and pandas, facilitated efficient data prepro-
cessing, feature engineering, and manipulation of graph structures. For RobHGNN, Python
enabled the integration of random projection techniques with graph neural network layers,
while libraries like PyTorch and PyTorch Geometric were used to define and train custom
heterogeneous GNN architectures. For GNTK, the official Python-based implementation
was employed, leveraging its kernel computation modules and compatibility with machine
learning tools like scikit-learn.

Python also supported the full experimental pipeline, from dataset loading and model
training to evaluation and result visualization. For graph based datasets such as ogbn-
papers100M, efficient handling of sparse matrices and batched sampling was achieved
using PyTorch utilities. In the case of GNTK, Python’s interoperability with kernel-
based classifiers, including support vector machines (via scikit-learn), streamlined the
classification and evaluation process. Matplotlib and Seaborn were employed for gener-
ating performance plots and visualizing kernel similarities, while automated scripts were
written to run multiple experimental configurations, enabling reproducible and systematic

analysis across different models and datasets.
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4.5 Torch Geometric

PyTorch Geometric (PyG) had a main part in the building and testing of the RpHGNN.
Its parts plus open design allowed easy additions of special layers - these layers put random
projections into the message passing system. PyG worked with graphs that had different
parts and it computed graph changes as they happened. This fit what was needed for
complex graph shapes with many kinds of nodes also edges, such as the ogbn-papers100M
dataset asked for. Parts like HeteroData, MessagePassing along with built-in ways to
change data saw much use. These helped to get the input graph ready, handle facts
about the data, and set up what nodes did inside the RpHGNN setup.

PyTorch Geometric also gave needed tools for good training as well as checking. The
NeighborSampler in addition to Datal.oader parts let mini batch training happen on a
large scale - this helped with memory limits that came from big datasets. Overall, PyG
served as a foundational framework that enabled both flexibility and performance in the

design and execution of the RpHGNN experiments.
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Chapter 5

RESULTS AND DISCUSSION

We trained our optimized RpHGNN model on the newly introduced dataset, leveraging
techniques such as random projection squashing, relation-wise neighbour collection, and
mixed-precision quantization. Our model achieved an impressive 94.67% accuracy, demon-
strating its effectiveness in handling heterogeneous graph structures while significantly
reducing memory consumption and computational overhead. Compared to traditional
HGNN architectures, RpbHGNN not only maintained high accuracy but also exhibited
faster training and inference times, making it a highly efficient solution for large-scale
graph-based applications. The training process can be seen in Fig. 5.1.
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Figure 5.1: Accuracy and Loss over epochs

Our experiments demonstrate that the integration of FP16 (half-precision) and INTS8
(8-bit integer) quantization into RpHGNN achieves remarkable memory optimization

without compromising model accuracy. On the ogbn-mag dataset, which contains 1.7M
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nodes and 21M edges, the baseline RpHGNN (FP32) required 12 GB of VRAM during
training. By transitioning to FP16, we reduced memory usage by 60%, bringing the
VRAM requirement down to 4.9 GB. Further optimization using INT8 quantization for
static embeddings and attention weights resulted in a 67% reduction, with peak VRAM
usage dropping to 3.8 GB.

The memory savings are attributed to the reduced precision of node embeddings,
weights, and intermediate computations. For instance, the node embedding matrix X €
RN*4 where N = 1.7TM and d = 128, originally occupied 1.7M x 128 x 4 bytes = 870 MB
in FP32. With FP16, this was halved to 445 MB, and with INTS, it was further reduced
to 273 MB.

Despite the reduced precision, the model’s accuracy remained within 3% of the base-
line. On the node classification task, the baseline achieved an F1 score of 0.970, while the
quantized model scored 0.946. This minimal accuracy loss is attributed to QAT, which
fine-tuned the model for 10 epochs with simulated quantization noise. Additionally, loss
scaling in FP16 prevented gradient underflow, ensuring stable convergence.

Our methodology not only achieved significant memory savings but also demonstrated
practical benefits in terms of training speed and deployment feasibility. On the ogbn-
papers100M dataset, which contains 111M nodes and 1.6B edges, RbpHGNN required 48
hours to complete training on an NVIDIA RTX 3090 GPU. With FP16 optimization,
training time was reduced to 32 hours, and with INTS, it further dropped to 24 hours.
This 50% speedup is due to faster matrix operations enabled by GPU tensor cores and
reduced data transfer overhead.

The Even-odd Propagation Scheme and Relation-wise Neighbor Collection mecha-
nisms ensured that the quantized model retained the ability to capture fine-grained struc-
tural information. For example, in the link prediction task, the quantized model achieved
an AUC-ROC score of 0.946, compared to the baseline’s 0.990. This minor performance
gap is acceptable given the substantial memory and speed improvements.

Inference latency on this device dropped by 40%, from 120 ms to 72 ms per batch,

making real-time applications like social media recommendations feasible. The results are
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graphically shown in Fig. 5.2, Fig. 5.3, Fig. 5.4, and Fig. 5.5.
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Figure 5.2: Memory Reduction in different datasets

In conclusion, our methodology successfully optimized RpHGNN for memory effi-
ciency while maintaining competitive accuracy. The results highlight the potential of
low-precision quantization in scaling heterogeneous graph learning to larger datasets and
resource-constrained environments.

GNTK, by contrast, demonstrates a very different trade-off profile. Its kernel compu-
tation, while initially expensive especially for large datasets, is a one time operation. Once
the kernel matrix is computed, inference is nearly instantaneous, and the model exhibits
high reproducibility and stability. GNTK performs especially well on small to mid-scale
datasets with limited training samples, where traditional GNNs are prone to overfitting.
The model’s lack of learnable parameters removes the need for hyperparameter tuning
and stochastic training procedures, making it robust and elegant. GNTK’s theoretical
foundation allows for interpretability, which often lacks in deep neural networks.

In classification tasks, GNTK matched or exceeded RpHGNN in accuracy on datasets

such as MUTAG and PROTEINS, where relational structure and node features play a
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Figure 5.5: Training Time Reduction After Quantization

key role. Its performance was slightly inferior on ENZYMES, a dataset with higher node
and edge complexity, suggesting that kernel rigidity can limit expressiveness in certain
tasks. The minimal computational overhead post kernel computation makes GNTK highly
appealing for deployment in low resource settings.

MUTAG Graph ENZYMES Graph PROTEINS Graph

Figure 5.6: Representative Graphs from MUTAG, ENZYMES and PROTEINS dataset

Our comparative evaluation highlights two fundamentally distinct approaches to im-
proving graph neural network efficiency: lightweight neural model compression through
quantization and a kernel based, training free methodology via GNTK. While quanti-
zation of the RpHGNN does yield expected improvements in speed and memory usage
with FP16 and INTS formats significantly reducing computational overhead, the broader

implications and capabilities of GNTK deserve closer scrutiny.
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GNTK offers a radically different model of computation. Instead of relying on iterative
training, parameter optimization, and backpropagation, it analytically computes a graph
level similarity kernel by simulating the behavior of an infinitely wide GNN. Although
the initial computation of the full kernel matrix is time and memory intensive, scaling
quadratically with the number of graphs is a one time cost. Once the kernel is computed,
downstream inference using classical algorithms such as SVM or kernel ridge regression is
extremely fast, stable, and interpretable. This makes GNTK especially suitable for sce-
narios that demand high reproducibility and where training budgets are constrained, such
as in academic research, embedded systems, or environments lacking GPU acceleration.

In our experiments, GNTK consistently exhibited strong classification performance on
datasets like MUTAG and PROTEINS, which involve clear graph structures and mean-
ingful node features. In these cases, GNTK matched or outperformed RpHGNN, even the
quantized versions without requiring any model tuning or re-training. Its robustness to
overfitting was particularly apparent on smaller datasets, where conventional GNNs often
struggle due to insufficient training examples or over-parameterization. Because GNTK’s
architecture is fixed, and its behavior is governed solely by analytical kernel propagation
rules, it exhibits a deterministic and repeatable performance profile, free from random

initialization effects or optimization variance.

Table 5.1: Comparison of MUTAG, ENZYMES, and PROTEINS Dataset Characteristics

Characteristic MUTAG ENZYMES PROTEINS
Domain Bioinformatics Protein Functions | Protein Structures
Number of Graphs 188 600 1113

Avg Nodes/Graph ~17 ~33 ~39

Avg Edges/Graph ~19.8 ~124.8 ~145.6

Node Labels Yes Yes Yes

Edge Labels Yes No No

Task Type Binary Classification Multi-class Binary Classification
Class Balance Balanced Imbalanced Moderately Balanced

On the ENZYMES dataset, which includes larger graphs with higher structural com-
plexity and more intricate biochemical patterns, GNTK’s performance was slightly inferior
compared to the full and compressed RpbHGNN. This suggests that while GNTK captures

high level structural information effectively, it may lack the flexibility of deep, learnable

23



neural networks in modeling intricate hierarchical or domain specific patterns. The fixed
architecture and absence of parameter tuning limit its adaptability in such contexts.
Nonetheless, this limitation is partly offset by GNTK’s theoretical clarity, computational
predictability, and ease of integration into kernel pipelines.

Beyond raw accuracy, GNTK offers several practical advantages. The lack of learn-
able parameters and training epochs eliminates hyperparameter tuning cycles, making
experimental pipelines faster and more reproducible. This also allows researchers and
practitioners to focus on architectural design and data preprocessing without the added
complexity of deep learning optimization. Moreover, GNTK’s connection to the Neural
Tangent Kernel theory offers deeper interpretability, enabling insights into how graph
similarity is computed and how structural features influence predictions.

In summary, our analysis reinforces GNTK as a highly competitive, scalable, and in-
terpretable alternative to traditional GNNs, especially in settings where computational
efficiency, training-free workflows, and theoretical soundness are paramount. While its
utility may be limited on highly complex graphs that benefit from deep learnable rep-
resentations, its strengths in efficiency, robustness, and transparency make it a strong

candidate for low-resource, academic, or prototype applications.
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Chapter 6

CONCLUSION AND FUTURE
SCOPE

6.1 Overall Conclusion

This research successfully addresses the memory inefficiency of HGNNs by integrating
FP16/INT8 quantization into the RpHGNN framework, achieving a balance between
computational efficiency and model accuracy. We introduced a hybrid methodology that
combines low-precision arithmetic with QAT to compress node embeddings, adjacency
matrices, and projection weights. By preserving RpHGNN’s core innovations that is
Random Projection Squashing for dimensionality reduction and Relation-wise Neighbor
Collection for fine-grained structural aggregation, we reduced memory usage by 67% while
limiting accuracy degradation to less than 3%. The optimized model demonstrated prac-
tical utility through 40% faster inference on edge devices and 50% shorter training times
on large-scale datasets like ogbn-papers100M, validating its suitability for real-time ap-
plications such as social media recommendations and Al driven decision systems. Our
work not only advances the scalability of graph learning but also bridges the gap be-
tween theoretical models and industrial deployment, particularly in resource-constrained
environments.

Our investigation into efficient graph learning reveals that while compression tech-
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niques like quantization are valuable for deep GNNs like RpHGNN, alternative paradigms
such as GNTK offer a fundamentally different and in many cases superior approach to
efficient, scalable graph learning. GNTK’s training-free, analytically grounded structure
allows it to bypass the limitations of standard neural architectures, offering interpretabil-
ity, reduced complexity, and high accuracy with minimal resource demands.

While GNTK may not universally outperform deep learning based GNNs, especially on
very large or dynamic graphs, its strengths lie in simplicity, reproducibility, and theoretical
elegance. It is particularly well suited to domains where computation is constrained or
where model behavior must be rigorously understood.

Our investigation into efficient graph learning strategies highlights two distinct paradigms:
model compression via quantization for deep architectures like the RpHGNN, and the
training-free, theoretically grounded methodology of the GNTK. While quantization of-
fers a pragmatic path to improving the performance and deployability of existing GNN
models, GNTK represents a fundamentally different direction, one rooted in the analytical
properties of infinitely wide neural networks and kernel theory.

The core strength of GNTK lies in its ability to capture rich graph structural informa-
tion without the need for parameter learning, backpropagation, or iterative optimization.
By computing a closed-form similarity kernel derived from a hypothetical GNN architec-
ture, GNTK provides robust, interpretable, and reproducible graph level representations.
Our experiments demonstrate that GNTK is particularly effective on small to medium
sized graph datasets where traditional neural models often struggle with overfitting or
require extensive tuning. Its one-time kernel computation though initially resource inten-
sive, results in a highly efficient inference pipeline and enables deployment in environments
where training infrastructure is limited or unavailable.

GNTK’s interpretability, deterministic behavior, and close alignment with theoretical
machine learning principles make it an attractive option for applications in scientific
computing, bioinformatics, and other fields where transparency and explainability are
essential. Unlike conventional GNNs, whose internal representations are often opaque,

GNTK offers a structured, mathematical view of how graph similarities are encoded and
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leveraged for classification or regression tasks.

That said, GNTK is not without limitations. Its fixed architecture and lack of adap-
tive learning capacity can make it less suitable for large, noisy, or highly dynamic graph
domains where task-specific feature extraction is critical. However, its strengths in effi-
ciency, reproducibility, and analytic clarity position it as a valuable tool in the expanding
ecosystem of graph based learning, especially when paired with or considered alongside
compressed neural methods like those applied to RpbHGNN.

In conclusion, GNTK challenges the notion that powerful graph learning requires
complex, deeply trained models. Instead, it offers a compelling alternative that balances
theoretical elegance with practical utility, pushing forward the frontier of scalable and

interpretable graph learning.

6.2 Limitations

While this work achieves significant memory and computational efficiency, it faces limi-
tations due to resource constraints. Our experiments relied on mid-tier GPU (NVIDIA
RTX 3090), restricting the scale of precomputed neighbour information and limiting batch
sizes during training. Additionally, the lack of access to ultra-large heterogeneous datasets
hindered comprehensive testing of the model’s scalability under extreme conditions.

While GNTK provides numerous advantages, it is not without drawbacks. The most
significant limitation is scalability. Because the kernel matrix computation is quadratic in
the number of graphs O(n?), GNTK struggles with large datasets or real-time applications.
Additionally, the rigidity of its architecture means that it lacks the adaptive capacity of
trainable models like GNNs. It also does not naturally accommodate dynamic or evolving
graphs.

RpHGNN, even when compressed, remains dependent on hardware-specific acceler-
ation for maximum gains. Furthermore, aggressive quantization (e.g., INT8) can cause
performance degradation, particularly for tasks involving high feature variability or com-
plex node interactions.

Despite its compelling advantages, the GNTK exhibits several notable limitations that
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constrain its applicability, particularly in large-scale or dynamic environments. The most
fundamental constraint is scalability. GNTK relies on computing a full kernel matrix
that encodes pairwise similarities between all graph samples. This operation has a time
and space complexity of O(n?), where n is the number of graphs in the dataset. As a
result, memory consumption and computation time increase dramatically with dataset
size, making GNTK infeasible for applications involving thousands or millions of graphs
without approximation techniques or parallel kernel construction frameworks.

Another critical limitation lies in GNTK’s architectural rigidity. Unlike trainable
GNNs that learn hierarchical representations through backpropagation and adapt their
weights to the task and data distribution, GNTK operates with a fixed, predefined ar-
chitecture. While this offers the benefit of reproducibility and analytical clarity, it also
restricts the model’s ability to adapt to complex data patterns, especially in cases involv-
ing intricate edge features, noisy inputs, or domain specific interactions that benefit from
task specific fine tuning. This lack of adaptability becomes particularly problematic when
applied to heterogeneous datasets or settings where inductive learning is necessary.

GNTK also struggles with dynamic or evolving graphs, such as those seen in recom-
mendation systems, time varying social networks, or real time traffic systems. Because
the kernel matrix is computed statically from a snapshot of the dataset, any new graph
requires recalculating portions of the kernel, which introduces significant computational
overhead and undermines the model’s utility in streaming or online environments. More-
over, the deterministic nature of the kernel means that incorporating new structural motifs
or learning task relevant features over time is not straightforward without recomputing
the kernel from scratch.

Additionally, GNTK’s expressive capacity is inherently constrained by the specific
GNN architecture it simulates typically shallow convolutional layers with fixed activation
functions and messag -passing rules. This can limit performance on tasks that benefit
from deeper architectures, attention mechanisms, or more sophisticated feature aggre-
gation, all of which are commonplace in state-of-the-art GNN variants. While GNTK is

mathematically elegant, it can underperform in domains requiring such nuanced modeling.
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In contrast, even when quantized, models like RbHGNN can scale better with appro-
priate hardware acceleration and remain flexible due to their learnable nature. However,
they still depend on access to GPU/TPU environments and can suffer from accuracy
degradation when subjected to aggressive quantization like INTS8, particularly in tasks
with high variability in node attributes or complex relational structures.

In summary, while GNTK introduces a refreshing and efficient approach to graph
learning, its limitations in scalability, adaptability, and dynamic graph handling must be
acknowledged. Addressing these issues, perhaps through hybrid models or approximated

kernels, represents a critical direction for future work.

6.3 Future Scope

Future work will focus on addressing constraints discussed above. Collaborations with
institutions offering high-performance computing resources could enable training on larger
datasets like OGB-LSC or proprietary social networks, improving the model’s robustness.
Adopting distributed training frameworks like TensorFlow or PyTorch Lightning would
leverage multi-GPU setups to handle bigger batches and deeper architectures. Integrating
dynamic graph support would extend RpHGNN’s applicability to real-time systems like
fraud detection, where graph structures evolve continuously.

There is ample scope for expanding on this comparative study. One promising direction
is the hybridization of GNTK and GNN approaches using GNTK to precompute similarity
kernels that inform the attention mechanisms in compressed GNNs. Another is exploring
scalable approximations of GNTK, such as low rank decompositions or sampling based
kernel approximations that retain accuracy while reducing computation.

GNTK’s theoretical clarity also positions it well for applications in explainable Al, par-
ticularly in scientific domains like drug discovery or protein interaction modeling. Future
work may also extend to adapting GNTK for dynamic graph data, multi-graph scenarios,
or incorporating domain specific priors into the kernel computation.

The GNTK opens several compelling avenues for future research, especially at the

intersection of theoretical machine learning, scalable systems design, and domain specific
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applications. While GNTK has demonstrated strong potential as a training-free and
interpretable alternative to traditional GNNs, its current form invites enhancements that
can further extend its usability, performance, and applicability.

A particularly promising direction lies in hybrid models that integrate GNTK with
learnable GNNs. For instance, GNTK-derived similarity matrices could serve as priors or
attention guides in compressed neural networks, effectively combining the interpretability
and analytical strength of kernels with the adaptability and scalability of deep learning.
Such fusion architectures may leverage GNTK’s fixed structural insights to initialize or
regularize GNNs, improving convergence rates and generalization, particularly in low
resource or few-shot learning settings.

Scalability remains one of GNTK’s most prominent challenges, and future work may fo-
cus on developing efficient approximations of the full kernel. Techniques such as Nystrom
methods, random feature mappings, block kernel approximations, or graph coarsening and
sampling strategies could allow GNTK to scale to much larger datasets without losing its
core advantages. Combining these approximations with parallel or distributed computing
infrastructures could make GNTK a competitive option even in industrial scale pipelines.

Another area ripe for exploration is the application of GNTK in dynamic and tem-
poral graph settings. Extending GNTK to accommodate evolving structures either by
incrementally updating kernel representations or incorporating temporal dependencies,
could significantly broaden its applicability to areas like social network analysis, real-time
recommendation, or financial graph modeling. Research into online kernel updates or
memory efficient kernel streaming could help close the gap between GNTK’s theoretical
appeal and its practical deployment in real-time systems.

From a theoretical standpoint, GNTK offers fertile ground for advancing explainable
AT (XAI). Its closed-form mathematical representation and deterministic behavior make it
an excellent candidate for frameworks that aim to provide insight into why certain graph
structures lead to specific predictions. This could be particularly impactful in scientific
domains such as chemoinformatics, bioinformatics, or neuroscience, where understand-

ing the contribution of subgraph patterns or node interactions is as important as the
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prediction itself.

Lastly, there is strong potential to extend GNTK toward multi-graph learning, het-
erogeneous graph scenarios, and domain aware kernel design. By incorporating prior
knowledge such as known biochemical pathways, semantic hierarchies, or physical con-
straints into the kernel formulation, researchers can build task specific GNTKs that go
beyond generic structural similarity. This kind of tailored kernel engineering may en-
able superior performance in niche but high-impact domains like drug-target interaction,
molecular property prediction, and cybersecurity network analysis.

In summary, GNTK’s foundational simplicity and theoretical rigor make it a strong
candidate for continued research and innovation. Whether through improved scalability,
integration with deep learning, or domain specific adaptations, GNTK offers a versatile
framework around which future efficient and explainable graph learning systems can be

developed.
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