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ABSTRACT 

 
Kullu district of Himachal Pradesh, India, is highly susceptible to landslides due 

to its rugged terrain, complex geological conditions, and heavy seasonal rainfall. This 

study evaluates and compares three different modeling approaches for landslide 

susceptibility mapping—empirical (Frequency Ratio), statistical (Shannon Entropy), and 

analytical (Analytical Hierarchy Process)—to determine the most effective technique for 

predicting landslide-prone areas. 

A comprehensive landslide inventory comprising 428 landslide events and ten 

Landslide Conditioning Factors (LCFs), including slope, elevation, aspect, lithology, and 

proximity to streams, was used to develop susceptibility maps. The Frequency Ratio (FR) 

model demonstrated the highest predictive accuracy with an AUC value of 0.738, 

followed closely by the Shannon Entropy (SE) model (AUC = 0.735). The AHP model 

(AUC = 0.635) exhibited lower predictive performance, suggesting limitations in its 

weighting scheme for this region. Validation techniques, including AUC-ROC analysis 

and Success-Prediction Rate curves, confirmed the reliability and generalizability of the 

models. 

 

The findings emphasize the effectiveness of statistical and empirical models over 

analytical methods for landslide susceptibility assessment in mountainous terrains. The 

generated susceptibility maps are a valuable tool for disaster risk management, 

infrastructure planning, and sustainable development in the Kullu district. This research 

improves landslide prediction methodologies and supports targeted mitigation strategies 

for high-risk regions. 
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CHAPTER 1 

INTRODUCTION 

The Kullu district of Himachal Pradesh, located in northern India, is renowned for 

its scenic landscapes but is also highly susceptible to landslides due to its steep terrain, 

complex geological formations, heavy monsoon rainfall, and increasing human activities 

such as construction and deforestation. Landslides pose significant threats to life, property, 

infrastructure, and the environment, making accurate susceptibility mapping crucial for 

disaster preparedness, risk reduction, and sustainable development. 

Landslide Susceptibility Mapping (LSM) helps identify high-risk areas by analyzing 

various environmental, topographical, and geological factors. It is a vital tool for disaster 

management, infrastructure planning, and land-use regulation. Researchers have 

employed empirical, statistical, and analytical models to assess landslide-prone regions, 

each offering distinct advantages and limitations. This study evaluates three widely used 

methods: 

 

• Empirical Model (Frequency Ratio - FR): Determines susceptibility based on the 

observed correlation between past landslide occurrences and Landslide 

Conditioning Factors (LCFs). 

• Statistical Model (Shannon Entropy - SE): Measures the contribution of each LCF 

by analyzing its information gain in reducing uncertainty. 

• Analytical Model (Analytical Hierarchy Process - AHP): Uses expert-driven 

pairwise comparisons to assign relative importance to LCFs. 

 

The study area exhibits challenging topographical conditions, with elevations ranging 

from 1,200 m to over 6,000 m, deep valleys, and narrow gorges. Heavy monsoon rainfall, 

snowmelt, and human-induced slope modifications further increase landslide 

susceptibility. The research integrates a landslide inventory of 428 documented events and 
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ten LCFs, including slope, aspect, elevation, lithology, curvature, and distance from 

streams, derived using geospatial tools. 

 

Findings indicate that the Frequency Ratio and Shannon Entropy models outperform 

the AHP model in predictive accuracy, as validated by AUC-ROC analysis. The FR model 

achieved the highest AUC value of 0.738, followed closely by the SE model (AUC = 

0.735), while the AHP model exhibited a lower predictive performance (AUC = 0.635), 

suggesting limitations in its factor weighting. Success Rate and Prediction Rate curves 

further confirmed the reliability of the statistical-based approaches. 

The study underscores the importance of data-driven and statistical models for 

landslide prediction in mountainous regions. The generated susceptibility maps provide 

valuable insights for disaster management, infrastructure development, and environmental 

protection. These findings contribute to enhancing geomorphological hazard assessment 

and support targeted mitigation strategies for landslide-prone areas in Kullu district. 
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CHAPTER 2 

LITERATURE REVIEW 

Badavath, N., Sahoo, S., & Samal, R. (2024). Landslide susceptibility mapping for 

West-Jaintia Hills district, Meghalaya. Sādhanā. Highlights causative factors like rainfall, 

slope, and NDVI with 75% training and 25% testing. 

Chen, W., Guo, C., Lin, F., Zhao, R., & Li, T. (2024). Exploring advanced machine 

learning techniques for landslide susceptibility mapping in Yanchuan County, China. 

Earth Science Informatics. The dataset comprises 311 landslide points with a training-to- 

validation ratio of 7:3. 

Chen, Z., Tang, J., & Song, D. (2024). Modeling landslide susceptibility using 

alternating decision tree and support vector. Terrestrial, Atmospheric and Oceanic 

Sciences. Employs ROC analysis to test ADTree and SVM models. 

Dorji, L., & Sarkar, R. (2024). Hydrological modeling using CN method and satellite 

images in the Barsa River Basin, Bhutan. Springer Nature Singapore. Highlights 

hydrological modeling for ungauged basins. 

Gayen, A., & Haque, S. M. (2024). Gully erosion susceptibility using advanced machine 

learning method in Pathro River Basin, India. Springer Nature Singapore. This study 

evaluates susceptibility using SAGAGIS and ArcGIS tools with training (70%) and testing 

(30%) data splits. 

Ha, H., Bui, Q. D., & Tran, D. T. (2024). Improving forecast performance of landslide 

susceptibility mapping using gradient boosting algorithms. Environment, Development 

and Sustainability. Uses ensemble gradient boosting methods for susceptibility 

forecasting. 

Khatun, S., Saha, A., & Sarkar, R. (2024). Assessment of landslide vulnerability using 

statistical and machine learning methods in Uttarakhand, India. Springer Nature 

Singapore. Uses statistical tools for susceptibility modeling. 
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Lau, R., Seguí, C., Waterman, T., & Veveakis, M. (2024). Quantitative assessment of 

Interferometric Synthetic Aperture Radar (INSAR) for landslide monitoring and 

mitigation. Springer Nature Singapore. Employs RMSE for evaluating INSAR-based 

landslide assessments. 

 

Lv, J., Zhang, R., Shama, A., & Hong, R. (2024). Exploring the spatial patterns of 

landslide susceptibility assessment using interpretable Shapley method. Journal of 

Environmental Management. Conducts assessments using RF, SVM, and XGBoost 

models. 

Pal, S., Saha, A., Gogoi, P., & Saha, S. (2024). An ensemble of J48 decision tree with 

AdaBoost and Bagging for flood susceptibility mapping in the Sundarbans of West 

Bengal, India. Springer Nature Singapore. Investigates flood mapping with validation 

metrics such as AUC and Kappa coefficients. 

Paul, G. C., & Saha, S. (2024). Flood resilience assessment in Mayurakshi River Basin. 

Springer Nature Singapore. Focuses on resilience planning for flood-prone areas. 

Pradhan, B., & Alamri, A. M. (2024). Advanced GIS applications in hazard and risk 

assessment. Springer Nature Singapore. Discusses GIS innovations for risk mapping. 

Reddy, N. D. K., Gupta, A. K., & Sahu, A. K. (2024). Random Forest (RF) and Support 

Vector Machine (SVM) with Cat Swarm Optimization for soil liquefaction prediction. 

Springer Nature Singapore. Implements optimized RF and SVM for liquefaction analysis. 

Roy, B., Gogoi, P., & Saha, S. (2024). Assessment of shifting of River Ganga along 

Malda district of West Bengal using satellite images. Springer Nature Singapore. Uses 

temporal satellite imagery to assess geomorphic changes. 

Saha, A., Saha, S., & Sarkar, R. (2024). Novel ensemble of M5P and deep learning 

neural network for predicting landslide susceptibility: A cross-validation approach. 

Springer Nature Singapore. Focused on hybrid machine learning models with MAE and 

RMSE validation. 
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Saha, S., Saha, A., & Agarwal, A. (2024). Spatial flash flood modeling in the Beas River 

Basin of Himachal Pradesh, India. Springer Nature Singapore. Focuses on GIS-based 

machine learning for flood risk assessment. 

Saha, S., Saha, A., Roy, B., Chaudhary, A., & Sarkar, R. (2024). Artificial neural 

network ensemble with a general linear model for modeling the landslide susceptibility in 

the Mirik region of West Bengal, India. Springer Nature Singapore. The study uses 373 

landslide locations and multiple validation metrics, including ROC and RMSE. 

Saha, S., & Sarkar, R. (2024). Measuring landslide susceptibility in Jakholi region of 

Garhwal Himalaya using Landsat images. Springer Nature Singapore. Combines 

statistical and machine learning ensembles for susceptibility. 

Sameen, M. I., Sarkar, R., Pradhan, B., Drukpa, D., & Alamri, A. M. (2020). 

Landslide spatial modeling using unsupervised factor optimization and regularized greedy 

forests. Computers & Geosciences, 134, 104336. Focuses on spatial modeling with 952 

landslide points using RGF. 

Sarkar, R., & Sujeewon, B. C. (2024). Landslide susceptibility mapping using satellite 

images and GIS-based statistical approaches in part of Kullu district. Springer Nature 

Singapore. Evaluates GIS integration in susceptibility modeling. 

Sarkar, R., Sujeewon, B. C., & Pawar, A. (2024). Landslide susceptibility mapping 

using satellite images in Himachal Pradesh, India. Springer Nature Singapore. Explores 

GIS-based satellite methods for accurate mapping. 

Sharma, A., & Prakash, C. (2023). Impact assessment of road construction on landslide 

susceptibility in mountainous region using GIS-based statistical modeling. Journal of the 

Geological Society of India. Focused on road-induced landslide susceptibility in Mandi 

district. 

Thapa, R., Sarkar, R., & Gupta, S. (2024). Geospatial study of river shifting and 

erosion-deposition in the River Damodar, West Bengal. Springer Nature Singapore. 

Analyzes geomorphological risks using geospatial tools. 
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Wei, Y., Qiu, H., Liu, Z., & Kamp, U. (2024). Refined and dynamic susceptibility 

assessment of landslides using InSAR and machine learning. Geoscience Frontiers. 

Integrates RF, LR, and GBDT for improved susceptibility assessment. 
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CHAPTER 3 

METHODOLOGY 

 

Figure 3. 1: METHODOLOGY 
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CHAPTER 4 

DATA SOURCE 

 

TABLE 4.1: DATA SOURCE 

 

MAP 

DATA SOURCE 

INDIAN MAP https://www.indianremotesensing.com/2017/01/Download-India- 

shapefile-with-kashmir.html 

LANDSLIDE 

POINTS 

https://bhukosh.gsi.gov.in/Bhukosh/Public 

DISTRICT AND 

SUB-DISTRICT 

MAPS 

https://esriindia1.maps.arcgis.com/home/item.html?id=b89de19caf 

b94ea38552a55eb5b2d13d 

SLOPE, ASPECT, 

ROUGHNESS, TWI 

https://opentopography.org/ 

DISTANCE FROM 

DRAINAGE 

https://www.hydrosheds.org/products/hydrorivers#downloads 

LITHOLOGY https://certmapper.cr.usgs.gov/data/apps/world-maps/ 

CURVATURE, 

CONTOUR, 

HILLSHADE, 

ELEVATION 

https://earthexplorer.usgs.gov/ 

https://www.indianremotesensing.com/2017/01/Download-India-shapefile-with-kashmir.html
https://www.indianremotesensing.com/2017/01/Download-India-shapefile-with-kashmir.html
https://bhukosh.gsi.gov.in/Bhukosh/Public
https://esriindia1.maps.arcgis.com/home/item.html?id=b89de19cafb94ea38552a55eb5b2d13d
https://esriindia1.maps.arcgis.com/home/item.html?id=b89de19cafb94ea38552a55eb5b2d13d
https://opentopography.org/
https://www.hydrosheds.org/products/hydrorivers#downloads
https://certmapper.cr.usgs.gov/data/apps/world-maps/
https://earthexplorer.usgs.gov/
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CHAPTER 5 

 

STUDY AREA: KULLU, HIMACHAL PRADESH 

 

 
Kullu district is located in the state of Himachal Pradesh, in northern India. It lies 

between latitudes 31°20' to 32°25' N and longitudes 76°56' to 77°52' E. The district is 

part of the Western Himalayas and covers an area of approximately 5,503 square 

kilometers. 

 

Kullu is characterized by a rugged and mountainous terrain, with altitudes 

ranging from 1,200 meters to over 6,000 meters above sea level. The district is known 

for its steep slopes, deep valleys, and narrow gorges, making it highly susceptible to 

landslides, particularly during the monsoon season. 

 

The district experiences a temperate climate with significant rainfall during the 

monsoon season (July to September). 

 

The region also receives heavy snowfall in higher altitudes during the winter. 

The average annual rainfall ranges from 800 mm to 1,000 mm, which, combined with 

steep terrain, increases the risk of landslides. 

 

 

Figure 5.1: STUDY AREA MAP 
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CHAPTER 6 

LANDSLIDE INVENTORY MAP 

 
This landslide inventory map provides a spatial record of past landslide 

occurrences in the Kullu district. Historical landslide data was acquired in the form of 

polygon shapefiles from the Bhukosh by the Government of India, which is designated 

as one of the nodal agencies responsible for collecting past landslide incidence data in 

India. 

 

A total of 399 landslide locations were obtained for the region. This landslide 

inventory data is critical for developing landslide susceptibility models, serving as a 

foundation for training and validating machine learning algorithms. By correlating the 

historical landslide locations with topographical, geological, and environmental 

variables, the inventory provides a basis for identifying landslide-prone areas. 

 

Figure 6.1: LANDSLIDE INVENTORY MAP 
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CHAPTER 7 

 

LANDSLIDE CONDITIONING FACTORS 

 

 

7.1 SLOPE 

Known to depict the inclination of prevailing slopes in an area, the slope map was 

derived from the DEM in degrees using the spatial analyst surface tool of the GIS software 

and is said to have an impact on surface runoff and contribute to slope instability. The 

resulting map was then categorized into five classes, namely; 0°–15°, 16°–25°, 26°–35°, 

36°–45° and >45°. 

 

 

 
Figure 7.1: SLOPE 
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7.2 ASPECT 

The aspect factor, which describes the spatial distribution of each topographical 

direction, is critical in determining slope stability. Furthermore, the curvature factor 

refects topographical morphology. The aspect map was calculated from the DEM in 

ArcGIS 10.7 software. The aspect map was divided into five groups. 

 

 

 

Figure7.2: ASPECT 
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7.3 DISTANCE FROM STREAM 

Drainage does play an important role in slope instability, due to the action of 

under-cutting and increase in slope saturation. Also, bank erosion caused by high stream 

discharge velocity as well as toe erosion have a consequential impact on the area’s 

landslide activity which is further enhanced by heavy rainfall. 

The hydrology tools of the GIS platform were used to delineate the river networks, 

more specifically, by using the stream order tool. The Euclidean distance tool was then 

employed to create a buffer distance of 100 m intervals from the generated stream 

network. Five distinct classes resulted namely, 500 m, 1000 m, 1500 m, 2000 m and 

>2000m. 

 

 

 

 

 

Figure7.3 : DISTANCE FROM STREAM 
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7.4 CURVATURE 

Curvature, a key factor influencing slope stability, was classified into five 

categories: Highly Concave (high water accumulation and susceptibility), Moderately 

Concave (moderate susceptibility), Flat (neutral influence), Moderately Convex (low 

susceptibility), and Highly Convex (minimal susceptibility). These classes were derived 

using curvature analysis in ArcGIS to support the study of landslide susceptibility. 

 

 

 

Figure 7.4: CURVATURE 
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7.5 ELEVATION 

Elevation plays a significant role in influencing slope stability and landslide 

susceptibility. For this study, the elevation was classified into six categories: <1500 m, 

1500–2500 m, 2500–3500 m, 3500–4500 m, 4500–5500 m, and >5500 m. These classes 

were created using GIS tools to reflect the varying topographical features of the region. 

Lower elevations (<1500 m) are more prone to human intervention and development, 

increasing landslide susceptibility, while higher elevations (>5500 m) generally exhibit 

reduced susceptibility due to limited accessibility and less anthropogenic activity. 

 

 

Figure 7.5 :ELEVATION 
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7.6 LITHOLOGY 

The lithology shapefile, acquired from the USGS, contained four lithological units, 

each having distinct structure, strength, plasticity potential, and composition. The 

influence of each of these lithostratigraphic units on slope instability was therefore 

evaluated for deeper insight into their relationship to previous landslide occurrences. The 

lithology map was finally prepared after a process of extraction, rasterization, and 

resampling into 10 m cell resolution. 

 

 

 

Figure 7.6: LITHOLOGY 
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7.7 HILLSHADE 

Hillshade, an important parameter for terrain analysis, was classified into five 

categories based on illumination intensity: Low Illumination, Moderate Low 

Illumination, Moderate Illumination, High Illumination, and Very High 

Illumination. 

 

These classes represent variations in sunlight exposure, with low illumination 

corresponding to shadowed, north-facing slopes that retain more moisture and may be 

more prone to instability, while high illumination areas are typically well-exposed, drier, 

and more stable. The classification aids in providing critical insights for topographical and 

geomorphological studies. 

 

 

Figure 7.7: HILLSHADE 
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7.8 CONTOUR 

Contours, essential for understanding topographical variation, were classified into 

five elevation categories: 800.00–1600.00 m, 1600.01–2800.00 m, 2800.01–4000.00 m, 

4000.01–4800.00 m, and 4800.01–6400.00 m. These categories represent altitudinal 

differences, with lower elevations often associated with river valleys, agricultural 

activities, and human settlements, while higher elevations correspond to rugged terrain, 

alpine ecosystems, and potential snow-covered regions. 

 

 

 

 

Figure7.8 : CONTOUR 
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7.9 TOPOGRAPHIC WETNESS INDEX (TWI) 

The Topographic Wetness Index (TWI) is a crucial factor in assessing slope 

stability, as it measures the potential for water accumulation in a given area. TWI is 

influenced by both the local slope and upstream contributing areas, representing the 

tendency of soil to become saturated. Higher TWI values indicate areas where water is 

likely to accumulate, which in turn increases the potential for landslides due to reduced 

soil strength. 

 

A classification scheme was applied in the GIS platform, creating several TWI 

categories that represent different levels of soil moisture saturation. These categories help 

in understanding the variation of landslide susceptibility across the region. 

 

Figure 7.9: TWI 



20  

 
7.10 ROUGHNESS 

 
Roughness is a critical topographic factor that influences the stability of slopes and 

the occurrence of landslides. It measures the irregularity and variability of the terrain 

surface, with higher roughness values indicating more rugged and uneven terrain. In 

mountainous regions like Kullu, roughness plays a significant role in determining how 

rainfall, vegetation, and soil interact with the slope surface. 

 

For this study, roughness was calculated using Digital Elevation Model (DEM) 

data within a GIS platform. Areas with higher terrain roughness tend to experience more 

slope instability due to the uneven distribution of surface water runoff and soil mass 

movement. 

 

Figure 7.10: ROUGHNESS 
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CHAPTER 8 

EMPIRICAL TECHNIQUE 

8.1 Introduction 

Frequency Ratio is an empirical technique used to assess the relationship between 

landslide occurrences and conditioning factors. 

 

It calculates the likelihood of landslide occurrence based on the distribution of each 

factor class. 

 

8.2 Formula 

FR = (Landslide Pixels in Factor Class / Total Landslide Pixels) ÷ (Total Pixels 

in Factor Class / Total Pixels in Study Area) 

 

The resulting ratio represents the correlation strength between the factor class and 

landslide occurrence. 

𝐹𝑅 = (
𝑃𝐿

∑ 𝑃𝐿
𝑛
𝑖=1

) ∕ (
𝑃𝐶

∑ 𝑃𝐶
𝑛
𝑖=1

) 
(8.1) 

 

        where 𝑃𝐿 = Landslide pixels contained in a factor class, 𝑃𝐶= Pixels of a factor class. 

 

Categorize landslide conditioning factors (e.g., slope, aspect, elevation) into classes. 

Calculate the FR value for each class of the conditioning factors. Assign weights to the 

classes based on FR values. 

 

8.3 Outcome 

Generates weighted maps for each conditioning factor. Helps in creating a 

combined landslide susceptibility map by summing up weighted factors. 
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8.4 Application 

Due to its data-driven approach, the Frequency Ratio (FR) method is widely used 

in landslide susceptibility mapping. It evaluates the relationship between past 

landslide occurrences and Landslide Conditioning Factors (LCFs) by calculating the 

probability of landslide presence within different factor classes. This method helps 

quantify each factor's contribution and assigns weights accordingly. 

 

FR is commonly applied in geospatial analysis using GIS tools to generate 

landslide susceptibility maps. The method enables accurate zoning of landslide- 

prone areas by integrating historical landslide data with environmental and 

topographical parameters. These susceptibility maps assist in disaster preparedness, 

infrastructure planning, and risk assessment, helping policymakers make informed 

decisions for mitigation strategies. 

 

8.5 Advantages of Frequency Ratio 

One of the key advantages of the Frequency Ratio method is its simplicity and 

efficiency in analyzing landslide susceptibility. Since it is based on historical data, it 

provides objective and quantifiable results without relying on subjective expert 

opinions. Additionally, it is easy to implement using GIS software, making it a 

preferred choice for regional-scale susceptibility assessments. 

 

Another significant advantage is its flexibility, which can be applied to various 

terrains and environmental conditions. The method also allows for comparative 

analysis with other models, helping researchers and planners evaluate the 

effectiveness of different susceptibility assessment techniques. Furthermore, the 

statistical nature of FR improves accuracy, ensuring reliable hazard predictions in 

landslide-prone regions. 
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TABLE 8.1: FREQUENCY RATIO CALCULATION 
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CHAPTER 9 

STATISTICAL TECHNIQUE 

 

9.1 Introduction 

Shannon Entropy is a statistical approach used in landslide susceptibility 

mapping to measure the uncertainty in data distribution. It helps determine the 

significance of Landslide Conditioning Factors (LCFs) by analyzing their probability 

and contribution to landslide occurrences. Factors with higher entropy values indicate 

more randomness, while those with lower entropy strongly influence landslide 

susceptibility. 

 

This method assigns weights to each LCF by calculating entropy and information 

gain, ensuring an objective and data-driven assessment. The weighted factors are then 

combined to generate a landslide susceptibility map, improving the accuracy of hazard 

prediction and reducing biases in factor selection. 

 

9.2 Formula 

Pij = % landslide pixels / % class pix    (9.1) 

 

Where Pij from Eq. (9.1) represents the frequency ratio values, and (Pij) from Eq. (9.2) 

gives the probability density value of each class. 

 

(Pij) = Pij / Σj=1^nj Pij     (9.2) 

 

Hj and Hjmax from Eqs. (3) and (4) denote the entropy values for each class, whereas nj 

is the number of classes in each factor. 

 

Hj = Σi=1^nj (Pij) log2(Pij) (9.3) 

 

Hjmax = log2(nj)   (9.4) 

The information coefficient, Iij, and the final weight index, Wj, were evaluated using 
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Eqs. (5) and (6), respectively. 

Iij = (Hjmax − Hj) / Hjmax  (9.5)  

Wj = Iij × Pj   (9.6) 

 

9.3 Outcome of Shannon Entropy 

The Shannon Entropy method provides a quantitative and objective landslide 

susceptibility assessment by measuring the uncertainty and significance of Landslide 

Conditioning Factors (LCFs). By analyzing the probability distribution of landslide 

occurrences, it assigns weights based on information gain, ensuring an accurate and 

data-driven susceptibility map. 

 

The final landslide susceptibility map categorizes the study area into different 

risk zones, helping identify regions with high landslide potential. This approach 

enhances predictive accuracy, reduces bias in factor selection, and supports effective 

disaster management, risk assessment, and land-use planning. 

 

9.4 Application in Landslide Susceptibility Mapping 

Shannon Entropy plays a crucial role in landslide susceptibility mapping by 

evaluating the importance of each Landslide Conditioning Factor (LCF). By analyzing the 

probability distribution of landslide occurrences, it helps in assigning appropriate weights 

to different factors based on their contribution to landslide susceptibility. 

 

This ensures a more data-driven and objective approach, leading to more accurate 

susceptibility predictions and improved hazard assessment. 

 

9.5 Advantages 

 

One of the main advantages of Shannon Entropy is its objective approach to factor 

weighting, which reduces subjective biases in susceptibility assessment. It also considers 
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the information content of each factor, ensuring that influential factors are appropriately 

weighted. 

 

Additionally, this method can be integrated with other statistical and machine 

learning techniques, further enhancing the accuracy and reliability of landslide 

susceptibility 
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TABLE 9.1: SHANNON ENTROPY CALCULATION 
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Ej 

 

 
1-Ej 

Wj 
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ge) 

        -   

  64747 9.56   1.17 0.16 0.13   

 1 1 8 3680.64 11.261 69 96 07   

        -   

  96495 14.2   1.21 0.17 0.13   

 2 2 60 5663.52 17.328 51 51 25   

        -   

  13019 19.2   1.09 0.15 0.12   

 3 51 40 6894.72 21.094 64 80 66   

        -   

  14172 20.9   0.99 0.14 0.12   

 4 03 44 6804.00 20.817 39 32 09   

        -   

  12520 18.5   0.79 0.11 0.10   

 5 30 03 4821.12 14.750 72 49 80   

        -   

  83996 12.4   0.86 0.12 0.11   

 6 0 13 3499.20 10.706 25 43 25   

        -   

  34316 5.07   0.79 0.11 0.10 0.16  

Slope 7 5 1 1321.92 4.044 75 49 80 1 0.054 

   
67667 

  
32685.1 

  
6.93 

 -   

0.83 

Total 32 2 94 92 

        -   

  88984 13.1 14359.6  3.34 0.55 0.14   

 1 9 24 8 43.916 61 31 22   

        -   

  83768 12.3   0.93 0.15 0.12   

 2 9 55 3784.32 11.574 67 49 54   

Distance        -   

From  81594 12.0   0.72 0.11 0.11 0.43  

Stream 3 2 34 2838.24 8.680 13 92 01 9 0.147 
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        -   
 79846 11.7   0.44 0.07 0.08 

4 3 77 1697.76 5.192 09 29 29 

       - 
 34381 50.7 10018.0  0.60 0.09 0.09 

5 34 09 8 30.638 42 99 99 

   
67800 

  
32698.0 

  
6.04 

 -   

0.56 

Total 77 8 92 06 

        -   

  23661 34.9   0.82 0.11 0.11   

 1 20 67 9447.84 28.917 7 92 01   

        -   

  25940 38.3 13504.3  1.07 0.15 0.12   

 2 22 35 2 41.333 8 54 57   

        -   

  12840 18.9   1.02 0.14 0.12   

 3 51 76 6324.48 19.357 0 71 24   

        -   

  42658 6.30   0.96 0.13 0.11   

Topograp 4 3 4 1982.88 6.069 3 88 90   
        

hic        -   

Wetness   1.41   3.04 0.43 0.15 0.36  

Index 5 95956 8 1412.64 4.324 9 95 69 6 0.122 

        -   
 67667 32672.1 6.93 0.63 

Total 32 6 7 41 

        -   

  12969 19.1   1.11 0.21 0.14   

 1 96 29 6985.44 21.372 7 09 25   

        -   

  20954 30.9 12000.9  1.18 0.22 0.14   

 2 40 06 6 36.717 8 42 56   

        -   

  17641 26.0   0.85 0.16 0.12   

 3 61 20 7270.56 22.244 5 14 78   

        -   

Roughnes  10750 15.8   0.82 0.15 0.12 0.24  

s 4 89 56 4250.88 13.006 0 48 54 2 0.081 



33  

 

        -   
 44711 6.59   0.92 0.17 0.13 

5 0 4 1982.88 6.067 0 36 20 

       - 
 10133 1.49   0.39 0.07 0.08 

6 3 5 194.40 0.595 8 51 44 

   
67801 

  
32685.1 

  
5.29 

 -   

0.75 

Total 29 2 8 79 

        -   

  38619 57.1 19090.0  1.02 0.20 0.14   

 1 05 19 8 58.383 2 73 17   

        -   

  45661 6.75   0.68 0.13 0.11   

 2 0 3 1516.32 4.637 7 93 92   

        -   

  50019 7.39   1.09 0.22 0.14   

 4 7 8 2643.84 8.086 3 17 50   

        -   

  60760 8.98   1.22 0.24 0.15   

 6 1 7 3589.92 10.979 2 78 01   

        -   

  13348 19.7   0.90 0.18 0.13 0.30  

Hillshade 7 49 43 5857.92 17.915 7 40 53 9 0.103 

        -   
 67611 32698.0 4.93 0.69 

Total 62 8 1 13 

        -   

  10637 1.56   0.37 0.03 0.04   

 1 5 9 194.40 0.595 9 00 56   

        -   

  22390 3.30   2.28 0.18 0.13   

 2 4 2 2462.40 7.531 0 02 41   

        -   

  20679 3.05   4.26 0.33 0.15   

 3 7 0 4250.88 13.000 2 69 92   

        -   

  34518 5.09   2.77 0.21 0.14 0.23  

Elevation 4 0 1 4626.72 14.150 9 97 46 1 0.077 
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        -   
 12562 18.5   0.81 0.06 0.07 

5 30 28 4911.84 15.022 1 41 65 

       - 
 13020 19.2   0.55 0.04 0.05 

6 07 03 3499.20 10.702 7 40 97 

       - 
 16676 24.5   0.59 0.04 0.06 

7 51 96 4821.12 14.744 9 74 28 

       - 
 16719 24.6   0.98 0.07 0.08 

8 85 60 7931.52 24.257 4 77 62 

        -   
 67801 32698.0 12.6 0.76 

Total 29 8 52 87 

        -   

  69808 10.3   0.84 0.09 0.09   

 1 0 16 2838.24 8.680 1 31 60   

        -   

  65503 9.68   0.98 0.10 0.10   

 2 1 0 3123.36 9.552 7 91 50   

        -   

  61918 9.15   1.00 0.11 0.10   

 3 3 0 3019.68 9.235 9 16 63   

        -   

  78661 11.6   1.11 0.12 0.11   

 4 3 25 4250.88 13.000 8 37 23   

        -   

  85787 12.6   1.00 0.11 0.10   

 5 1 78 4160.16 12.723 4 10 60   

        -   

  88125 13.0   1.02 0.11 0.10   

 6 1 23 4341.60 13.278 0 28 69   

        -   

  73724 10.8   1.24 0.13 0.11   

 7 1 95 4445.28 13.595 8 80 87   

        -   

  71626 10.5   1.31 0.14 0.12 0.05  

Aspect 8 6 85 4536.00 13.872 1 50 16 75 0.019 
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CHAPTER 10 

ANALYTICAL TECHNIQUE 

10.1 Introduction 

The Analytical Hierarchy Process (AHP) is a multi-criteria decision- 

making method used in landslide susceptibility mapping to assign relative 

weights to Landslide Conditioning Factors (LCFs). It is based on expert judgment 

and pairwise comparisons, ensuring a structured evaluation of factor importance. 

 

AHP calculates weights through a comparison matrix, ranking factors 

based on their influence on landslides. A Consistency Ratio (CR) is used to 

validate the reliability of judgments. This method effectively incorporates expert 

knowledge but may introduce subjectivity compared to data-driven statistical 

approaches. 

 

10.2 Formula 

AHP calculates weights through pairwise comparisons, forming a 

judgment matrix. The weight (W) of each factor is determined using the 

eigenvector method: 

AW = λₘₐₓ W                             (10.1) 

Where: 

A is the pairwise comparison matrix 

W is the weight vector 

λₘₐₓ is the maximum eigenvalue 

The Consistency Ratio (CR) ensures the reliability of judgments and is 

computed as follows: 

CR = CI / RI                 (10.2) 

where: 

CI = (λₘₐₓ − n) / (n − 1) (Consistency Index) 

RI is the Random Index for a given matrix size 
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n is the number of factors 

 

A CR value ≤ 0.1 indicates an acceptable level of consistency. 

 

10.3 Outcome 

 
The Analytical Hierarchy Process (AHP) generates a weighted landslide 

susceptibility map, categorizing areas into different risk zones based on factor 

importance. Incorporating expert judgment ensures a systematic prioritization of 

Landslide Conditioning Factors (LCFs), allowing for a more structured evaluation. 

This method aids in identifying high-risk areas, enabling authorities to implement 

effective landslide mitigation strategies and make informed decisions for disaster 

management. 

 

10.4 Application 

The Analytical Hierarchy Process (AHP) is widely used in landslide 

susceptibility mapping to assign relative importance to Landslide Conditioning 

Factors (LCFs). Using pairwise comparisons and expert judgment, AHP 

systematically ranks factors such as slope, elevation, lithology, and distance from 

streams based on their influence on landslides. 

 

AHP is applied in geospatial analysis using GIS tools to generate weighted 

susceptibility maps. These maps help in risk assessment, infrastructure planning, 

and disaster mitigation by identifying high-risk zones. Additionally, AHP can be 

integrated with other statistical and machine learning models to enhance prediction 

accuracy and improve landslide hazard assessment in complex terrains. 

 

10.5 Advantages 

One of the key advantages of the Frequency Ratio method is its simplicity 

and efficiency in analyzing landslide susceptibility. Since it is based on historical 

data, it provides objective and quantifiable results without relying on subjective 

expert opinions. 
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Another major advantage is its flexibility, which can be applied to various 

terrains and environmental conditions. The method also allows for comparative 

analysis with other models, helping researchers and planners evaluate the 

effectiveness of different susceptibility assessment techniques. 

TABLE 10.1 AHP MATRIX 
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TABLE: 10.2 CI VALUES 
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CHAPTER 11 

RESULTS 

11.1 DISCUSSION 

Landslide Susceptibility Maps were generated using three different methods: 

Frequency Ratio (FR), Shannon Entropy (SE), and Analytical Hierarchy Process (AHP). 

These models help in identifying landslide-prone areas by analyzing environmental 

factors such as slope, elevation, aspect, and lithology. 

 

Each technique applies a unique approach to weigh the contributing factors, 

resulting in different susceptibility classifications. 

 

Frequency Ratio (FR): A data-driven empirical method that calculates landslide 

probability based on historical landslide occurrences within different factor classes. 

Shannon Entropy (SE): A statistical method that measures the randomness of factor 

distribution and assigns weights based on information gain. 

Analytical Hierarchy Process (AHP): A structured decision-making technique that uses 

expert judgment and pairwise comparisons to assign relative importance to conditioning 

factors. 

The results of this study provide a comparative analysis of three landslide 

susceptibility mapping techniques: Frequency Ratio (FR), Shannon Entropy (SE), and 

Analytical Hierarchy Process (AHP). Each model was evaluated based on its predictive 

accuracy and ability to classify landslide-prone areas effectively. The Frequency Ratio 

model achieved the highest accuracy with an AUC value of 0.738, followed closely by the 

Shannon Entropy model (AUC = 0.735). Both models demonstrated strong predictive 

capabilities, highlighting the effectiveness of data-driven and statistical approaches. In 

contrast, the AHP model yielded a lower AUC value of 0.635, indicating limitations in 

factor weighting based on expert judgment. 
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Figure 11.1 Susceptibility map using AHP 
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Figure 11.2 Susceptibility map using Frequency Ratio 
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Figure 11.3 Susceptibility map using Shannon Entropy 
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11.2 VALIDATION 

Validation is a crucial step in assessing the performance and reliability of a 

predictive model. It ensures that the model is effective on training data and performs well 

on unseen data. In landslide susceptibility mapping and other machine learning 

applications, validation helps in determining how accurately the model classifies areas as 

susceptible or non-susceptible. Various validation techniques, such as k-fold cross- 

validation, hold-out validation, and statistical metrics, are used to evaluate model 

effectiveness. 

 

 

Figure 11.4 Success Rate Curve 
 

 

One crucial measure of validation is the success rate curve, which assesses how 

well the model predicts landslide-prone areas based on the training dataset. It is generated 

by plotting the cumulative percentage of correctly predicted landslide areas against the 

total study area. A higher success rate indicates that the model effectively captures patterns 

in the training data and is well-calibrated for mapping susceptibility. 
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Figure 11.5 Prediction Rate Curve 

Similarly, the prediction rate curve evaluates the model’s ability to predict 

landslide occurrences on test data. It is derived from an independent dataset and helps 

determine how well the model generalizes beyond the training dataset. A model with a 

high prediction rate is considered robust and reliable for practical applications, as it 

indicates strong generalization capabilities. 

 

In addition to these curves, true positives and negatives play a critical role in 

validation. True positives (TP) refer to areas correctly identified as landslide-prone, while 

true negatives (TN) indicate non-landslide areas correctly classified by the model. These 

values are crucial for calculating performance metrics such as accuracy, sensitivity, 

specificity, and the area under the curve (AUC). A well-validated model should have a 

high TP rate while maintaining a low false positive and false negative rate to ensure 

accurate susceptibility mapping. 
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CHAPTER 12 

CONCLUSION AND FUTURE FOCUS 

12.1 CONCLUSION 

Landslide susceptibility mapping was conducted in the Kullu District of Himachal 

Pradesh using three techniques: Frequency Ratio (FR), Shannon Entropy (SE), and 

Analytical Hierarchy Process (AHP). The generated susceptibility maps were validated 

using Area Under the Curve (AUC) values, where the FR model achieved the highest 

predictive accuracy (AUC = 0.738), followed closely by the SE model (AUC = 0.735), 

indicating their strong predictive capabilities. In contrast, the AHP model exhibited lower 

accuracy (AUC = 0.635), suggesting limitations in factor weighting through expert 

judgment. To further evaluate model performance, Success Rate and Prediction Rate 

curves were developed, helping to assess both the model fit with training data and its 

predictive capability with testing data. 

 

The results highlight that statistical-based models (FR and SE) outperform AHP in 

predicting landslide-prone areas, making them more reliable for hazard assessment. The 

generated landslide susceptibility maps play a crucial role in disaster risk management, 

infrastructure planning in high-risk zones, and early warning systems, supporting 

sustainable land-use planning. This study provides a scientific foundation for decision- 

making, aiding in reducing landslide-related risks in mountainous regions such as Kullu 

District, Himachal Pradesh. 

 

12.2 FUTURE FOCUS 

The performance comparison of Frequency Ratio (FR), Shannon Entropy (SE), 

and Analytical Hierarchy Process (AHP) has been successfully completed, showing that 

statistical models (FR and SE) outperform AHP in landslide susceptibility mapping. 

Future research can focus on integrating machine learning techniques like Random Forest, 

Support Vector Machines, and Deep Learning to enhance prediction accuracy. 
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Additionally, incorporating environmental factors such as soil moisture, vegetation index, 

and rainfall variability can improve model precision. 

 

Further advancements can include hybrid models combining statistical, analytical, 

and machine learning approaches for more reliable susceptibility mapping. Temporal 

analysis of landslides can help assess changes over time, while field validation will ensure 

models align with real-world conditions. These improvements will lead to more adaptive 

and data-driven models, strengthening disaster preparedness and risk mitigation strategies 

in landslide-prone area.
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