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Abstract

Multi-label satellite image classification presents significant challenges in remote sens-

ing applications, as aerial scenes frequently contain multiple concurrent elements such as

”partly cloudy,” ”agriculture,” and ”roads.” The complexity increases due to ambiguous

training data that often leads to overfitted models in deep learning approaches. Ad-

dressing these challenges, we propose a comprehensive framework that integrates both

convolutional neural networks (CNNs) and transformer-based architectures to achieve op-

timal classification accuracy while enabling efficient deployment on resource-constrained

devices. Our methodology implements a dual-approach strategy, thoroughly evaluating

both paradigms on multi-label remote sensing datasets.

The first component of our framework utilizes the lightweight MobileNetV2 architec-

ture pre-trained on millions of ImageNet images, implementing transfer learning tech-

niques for multi-label classification. We incorporate an effective preprocessing pipeline

featuring haze removal algorithms to enhance image quality prior to classification. Dur-

ing training, we employ one-hot encoding for the multiple class labels associated with each

satellite image, while dynamically adjusting the threshold for posterior class probabilities

at the network output to optimize prediction accuracy. This approach balances compu-

tational efficiency with classification performance, making it suitable for deployment in

environments with limited resources.

Concurrently, we investigate Vision Transformers (ViTs) as an alternative paradigm,

leveraging their unique ability to capture long-range dependencies across image regions.

Unlike CNNs that extract features through convolutional layers, ViTs divide images into

patches and process them as token sequences, similar to language processing techniques.

This fundamental architectural difference enables ViTs to capture broader contextual

information and more detailed features across the entire image-a critical advantage when

dealing with multi-label satellite imagery containing diverse categories, sizes, and spatial

arrangements. We comprehensively evaluate six lightweight ViT variants: ViT-Small,
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ViT-Tiny, ViT-Base, Swin-Tiny, DeiT-Tiny, and DeiT-Base, optimizing each model for

the multi-label classification task.

Our findings demonstrate that carefully optimized lightweight models can achieve

performance comparable to or exceeding more complex architectures while requiring sub-

stantially fewer computational resources. This has important implications for real-time

satellite image analysis, environmental monitoring, agricultural assessment, and disaster

response applications where deployment on edge devices with limited processing capabili-

ties is necessary. The complementary strengths of CNN and transformer-based approaches

suggest that hybrid architectures combining aspects of both paradigms may represent a

promising direction for future research in multi-label satellite image classification.
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Chapter 1

INTRODUCTION

1.1 Environmental Impact of Deforestation

Deforestation and land-use changes have emerged as critical environmental challenges
globally in recent decades. These human-induced activities have resulted in substantial
greenhouse gas emissions and significant alterations to regional climate patterns. Research
indicates that forests currently function as vital carbon sinks, absorbing an estimated 16
billion metric tonnes of carbon dioxide annually and storing approximately 861 gigatonnes
of carbon in their branches, leaves, roots, and soils [21]. When forests are cut down
or damaged, they lose their ability to absorb carbon dioxide from the air and instead
start releasing it, turning from helpful carbon absorbers into major sources of pollution.
Approximately 4.8 billion tons of carbon dioxide are released into the atmosphere annually
as a direct result of deforestation activities, contributing to 11–20% of global greenhouse
gas emissions [9].

Primary drivers of these transformations include agricultural expansion (particularly
for high-value cash crops like soybean and palm oil), livestock production (especially cat-
tle ranching), infrastructure development, mining operations, and urbanization. Mining
activities are particularly detrimental, causing direct habitat destruction at extraction
sites while simultaneously contributing to broader environmental degradation through
pollution and landscape modification. These combined activities contribute to exten-
sive ecological degradation, with research suggesting that land-use changes have already
caused ecological communities to lose an average of 13.6% of species globally [21].

Beyond carbon emissions, deforestation significantly disrupts hydrological cycles. For-
ests regulate atmospheric moisture through transpiration, with trees absorbing ground-
water and releasing it into the atmosphere through their leaves. This process generates
localized humidity and influences precipitation patterns across regions. When forests are
removed, less water evaporates into the atmosphere, causing land to become drier and
less stable, often leading to increased soil erosion, flooding, and in extreme cases, deserti-
fication. The Amazon rainforest exemplifies this vulnerability, having already lost nearly
17% of its original forest cover and approaching an ecological tipping point where the
remaining forest may be insufficient to maintain regional hydrological cycles [9].
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1.2 Significance of Remote Sensing in Environmental

Monitoring

Remote sensing has become a commendable tool in environmental monitoring due to its
ability to provide continuous, large-scale, and multi-temporal observations of the Earth’s
surface. Unlike traditional field-based surveys, which are limited by accessibility, labor
intensity, and high operational costs, remote sensing technologies allow researchers to
observe deforestation, land-use change, urban expansion, and other ecological processes
over vast and often inaccessible areas with high spatial and temporal resolution [20].
Satellite sensors, in particular, offer a consistent and repetitive data acquisition platform,
facilitating long-term environmental monitoring and change detection at both local and
global scales [29]. Understanding how forests change over time is crucial, especially in the

Figure 1.1: Satellite imagery used to monitor deforestation and land-use change.

face of deforestation and shifting land-use patterns. Remote sensing has become a key
tool in monitoring these changes, allowing researchers to map forest cover, detect early
signs of degradation, and measure the pace and scale of forest loss. Satellites like Landsat
[29], Sentinel [7], and MODIS [17] gather spectral, spatial, and temporal data that help
differentiate between primary forests, plantations, and degraded areas.

The ability of these systems to capture multispectral and hyperspectral imagery plays
a big role in identifying different vegetation types, canopy densities, and overall forest
health. When combined with GIS (Geographic Information Systems), this data becomes
even more valuable. It allows scientists and decision-makers to overlay satellite obser-
vations with other important layers—like elevation, soil characteristics, or demographic
data—which improves the depth of environmental assessments and strengthens land-use
planning strategies.

One especially impactful use of remote sensing is in spotting illegal deforestation early.
High-resolution imagery and change detection algorithms can reveal unapproved land
clearing or logging activity in near real-time. This gives authorities and conservation
groups the ability to act quickly and enforce protection laws. Remote sensing also sup-
ports global efforts such as the REDD+ initiative (REDD+, 2021), helping countries ac-
count for carbon emissions tied to forest loss and receive funding for conservation through
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performance-based incentives.
Of course, remote sensing isn’t without its challenges. Optical imagery can be blocked

by clouds, image interpretation can be tricky in complex terrains, and ground-truth data
is often needed to validate findings. Still, continuous advancements in sensor technology,
open-access platforms, and smarter data processing (Lu et al., 2007) are making these
tools more accurate and accessible than ever[20].

Figure 1.2: Multi-label images for monitoring deforestation and land-use changes .

In remote sensing, the classification of satellite imagery is vital for extracting meaning-
ful information about land-use and land-cover (LULC) features. Traditional classification
techniques in remote sensing typically operate under the assumption that each pixel be-
longs exclusively to a single class. While this simplification may be computationally
efficient, it often falls short in representing the complexity of real-world environments. In
many scenarios—especially in heterogeneous regions such as tropical forests, agricultural
mosaics, or peri-urban zones—multiple land-cover types may coexist within the same
image segment. As a result, multi-label classification becomes essential for accurately
capturing and interpreting such diverse spatial compositions.

Unlike single-label classification, the multi-label approach permits assigning more than
one class label to a given image or pixel, thereby offering a more comprehensive view of the
landscape. For example, a satellite image of a tropical area might simultaneously show
patches of dense forest, cleared land, and cultivated fields. In these cases, multi-label
classification helps ensure that each feature is correctly identified, reducing the likelihood
of misclassification and enhancing the usefulness of the data for downstream applications.

The significance of adopting this method extends beyond accuracy. As shown in Fig.
1.2, multi-label classification provides richer insights into land-cover transitions, which
are valuable for environmental monitoring, policy-making, and disaster risk assessment.
Identifying areas with overlapping features—such as degraded forests being overtaken by
agriculture—can guide more targeted conservation efforts and inform land-use planning
decisions.

Moreover, this classification strategy enhances the performance of machine learning
models by aligning with the inherently complex nature of ecological data. Methods like
binary relevance, classifier chains, and neural network-based adaptations allow the model
to learn label dependencies and correlations more effectively, thereby improving robustness
and generalization.

In summary, multi-label classification offers a more realistic and powerful framework
for analyzing remote sensing data, particularly in dynamic and multi-faceted landscapes.
Its use not only advances environmental understanding but also supports more informed
decisions in the domains of sustainability, land management, and resource planning.
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1.3 Advancements in Deep Learning for Image Clas-

sification

Over the past decade, deep learning has dramatically reshaped the landscape of image
classification by enabling models to automatically learn and extract hierarchical features
directly from raw image data. One of the most influential architectures driving this
transformation has been the Convolutional Neural Network (CNN), which has consistently
demonstrated strong performance across a wide spectrum of computer vision tasks. From
basic object recognition and image segmentation to more complex applications like remote
sensing image analysis, CNNs have proven to be highly effective tools [20, 17].

The strength of CNNs lies in their ability to capture local spatial features using convo-
lutional layers that apply filters across the input image. These layers are often followed by
pooling operations, which help in reducing dimensionality while preserving key structural
information. As the network goes deeper, it builds increasingly abstract representations
of the input, allowing it to recognize intricate patterns and textures.

Despite their widespread success, CNNs do have intrinsic limitations. One of the
key challenges is their restricted ability to capture long-range dependencies and global
contextual information. The receptive field of a CNN grows with depth, but this growth
is incremental. As a result, CNNs may fail to effectively model relationships between
distant regions in an image—an important capability when working with large, complex
scenes like those found in satellite imagery [22]. Additionally, the use of fixed-size kernels
may cause the network to overlook fine details or global spatial structures that fall outside
the local receptive area.

To overcome these constraints, a new class of models known as Vision Transformers
(ViTs) has emerged, bringing a paradigm shift in how visual data is processed. Drawing
inspiration from the groundbreaking success of transformer architectures in natural lan-
guage processing, ViTs adapt the attention mechanism to image analysis. They work by
first dividing an image into a sequence of fixed-size patches. Each patch is then flattened
and linearly embedded into a vector, effectively treating image patches as tokens, akin to
words in a sentence. These tokens are passed through multiple transformer layers, where
self-attention mechanisms enable the model to capture relationships and dependencies
across the entire image context [5].

What sets ViTs apart is their inherent ability to model global interactions right from
the initial layers, something CNNs typically struggle with. This attribute allows ViTs to
understand the broader context of an image more effectively, making them well-suited for
analyzing satellite images where objects and features are often distributed across large
spatial extents. Furthermore, ViTs are highly scalable and can adapt to varying data
sizes and structures, which is crucial in remote sensing tasks that often involve massive
and diverse datasets.

Recent studies have shown that, when provided with adequate training data, Vision
Transformers can outperform traditional CNNs on several image classification bench-
marks. Their flexibility, robustness, and improved capability in capturing global image
semantics make them a compelling choice for next-generation image analysis in environ-
mental monitoring, land use classification, and other remote sensing applications [27, 28].
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Chapter 2

LITERATURE REVIEW

As forests continue to vanish across the globe at an alarming pace, understanding the
broader consequences of this loss has become increasingly urgent. Deforestation does
not just remove trees—it disrupts ecosystems, accelerates climate change, and threatens
countless plant and animal species. If land-use patterns and energy consumption practices
remain unchanged, the combined pressures of climate change and large-scale forest loss
could result in widespread biodiversity decline, destabilizing the delicate balance of nature
and directly impacting human well-being.

In response to these growing environmental concerns, Remote Sensing (RS) technolo-
gies have emerged as essential tools in the global effort to monitor and address deforesta-
tion. By capturing and analyzing satellite imagery over time, researchers and policymakers
can gain valuable insights into how forest cover is changing across different regions. This
visual and data-driven perspective allows for more precise tracking of forest degradation,
land-use shifts, and environmental stressors [1, 10, 11].

What makes remote sensing particularly powerful is its ability to provide consistent,
up-to-date, and wide-scale information. This enables governments, conservationists, and
organizations to not only assess the current state of forests but also to forecast future risks
and prioritize areas most in need of protection. In essence, continuous monitoring through
RS supports the development of smarter, more targeted conservation strategies—ones
that can effectively reduce the impact of deforestation and promote sustainable land
management practices.

The rise of satellite technology in the 1970s, classifying remote sensing imagery has
been a key area of research. While the tools have evolved over time, the basic approach
has remained largely the same: gather satellite data, extract important features, apply
classification techniques, and produce thematic maps that show different types of land
cover. [8]. Traditional feature engineering approaches relied predominantly on fundamen-
tal image processing techniques, including image filtering, clustering algorithms, Principal
Component Analysis (PCA), and feature selection methods. However, these conventional
models frequently demonstrated inadequate precision and encountered difficulties in cap-
turing the complex interrelationships inherent in satellite imagery data .

The early 2000s witnessed a paradigmatic shift as remote sensing methodologies be-
gan to integrate with emerging fields such as deep learning and computer vision. This
interdisciplinary convergence catalyzed the development of sophisticated machine learning
techniques specifically tailored for remote sensing image analysis [2]. Concurrent advance-
ments in computational capabilities have rendered deep convolutional neural networks
(CNNs) viable for large-scale processing and interpretation of remote sensing imagery.
These deep learning architectures demonstrate exceptional capacity for comprehending
intricate spatial relationships within satellite images, thereby significantly enhancing clas-
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sification accuracy relative to traditional methodological approaches [31].
Despite significant advances in deep learning, classifying satellite images remains a

challenging task—especially when it comes to multi-label classification, where images of-
ten contain multiple overlapping features or land cover types. Numerous satellite images
simultaneously encompass multiple land cover types and atmospheric conditions—for in-
stance, regions may be characterized as “partly cloudy” while concurrently exhibiting
“agricultural” features and “transportation infrastructure.” The accurate identification
of all applicable scene labels in such complex contexts remains challenging, especially
when certain land cover categories are underrepresented in training datasets [16].

The research community has implemented various pre-trained CNN architectures for
satellite image classification. These implementations typically employ transfer learning
methodologies, wherein pre-trained models are fine-tuned for the specific task of satel-
lite image classification. This approach substantially reduces computational requirements
and training duration compared to developing models from initialization. Among CNN
architectures, MobileNetV2 warrants particular consideration for resource-constrained ap-
plications due to its efficient design (comprising 28 layers and approximately 0.2 million
parameters), which incorporates depthwise separable convolutions and residual bottleneck
layers [3].

Concurrent with CNN advancements, Vision Transformer (ViT) models have emerged
as viable alternatives to conventional CNN-based approaches for processing complex image
datasets. ViTs process images as sequences of patches, employing self-attention mecha-
nisms to capture long-range dependencies and globally relevant information [5, 19]. This
architectural paradigm facilitates more nuanced interpretation and segmentation of com-
plex image features. Chen et al. demonstrated the efficacy of ViT-based models in
segmenting images and capturing fine details across entire scenes , while Yao et al. ex-
tended ViT applications to effective land-cover change mapping utilizing high-resolution
imagery. Furthermore, Kaselimi et al. employed ViT variants for precise deforestation
mapping, surpassing conventional CNN models through the application of self-attention
mechanisms that prioritize the most relevant visual information [18, 30].

Recent developments in artificial intelligence have fostered the creation of lightweight
ViT architectures that maintain effectiveness while enhancing computational efficiency.
These streamlined models incorporate fewer parameters than baseline ViT architectures
and are suitable for deployment in resource-constrained computational environments,
including mobile platforms. The Data-Efficient Transformer (DeiT) exemplifies such
lightweight ViT models and has been successfully implemented for the classification of
horticultural plantations using satellite imagery [25].

In this study, we explore and compare the capabilities of Convolutional Neural Net-
works (CNNs) and Vision Transformers (ViTs) in the context of multi-label classification
of satellite imagery. The analysis focuses on a diverse set of deep learning models, in-
cluding MobileNetV2, ResNet-50, Inception-v3, DenseNet-121, and the standard Vision
Transformer (ViT). Alongside these, we conduct a detailed investigation of six lightweight
ViT variants: ViT-Small, ViT-Tiny, ViT-Base, Swin-Tiny, DeiT-Tiny, and DeiT-Base.

Our experimental framework applies these models to satellite images of the Amazon
rainforest, a region characterized by complex land cover and rich ecological diversity.
Each image may correspond to multiple land-use categories, with the dataset containing
annotations across seventeen distinct labels. This multi-label nature presents a challenging
classification scenario, requiring models to identify and assign multiple relevant tags to
each image.

6



To measure the performance of each model architecture, we employ the F-beta score,
a widely used evaluation metric that balances precision and recall. This enables a com-
prehensive assessment of how effectively each model captures the diverse and overlapping
features present in the satellite imagery, providing insight into the strengths and limita-
tions of different deep learning approaches in remote sensing applications.
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Chapter 3

DEEP LEARNING ARCHITECTURES

3.1 ResNet-50

ResNet-50 is a widely recognized convolutional neural network (CNN) architecture that
has significantly influenced the field of deep learning and computer vision. Developed
by Kaiming at Microsoft Research Asia, ResNet-50 was introduced in 2015 as part of
the Residual Networks (ResNets) family [13]. The architecture consists of 50 layers and
is designed around the concept of residual learning, which enables the training of much
deeper neural networks by addressing the vanishing gradient problem. By incorporating
identity shortcut connections, ResNet-50 allows gradients to flow more effectively through
the network during backpropagation, facilitating improved convergence and overall per-
formance. This innovation has made ResNet-50 a foundational model for a wide range
of visual recognition tasks, including object detection, image classification, and remote
sensing applications. [13]. ResNet-50 addressed a critical issue in training deep neural net-
works: as the network depth increases, performance degrades, not due to overfitting but
because of optimization difficulties such as the vanishing gradient problem. The authors
proposed that deeper models should theoretically perform at least as well as shallower
ones, provided that the added layers could learn identity mappings.

3.1.1 Architectural Innovation: Residual Learning

The core innovation of ResNet-50 lies in its use of residual blocks and skip connections. As
illustrated in Fig. 3.1, residual learning reformulates the layers as learning residual func-
tions with reference to the layer inputs, rather than directly trying to learn unreferenced
functions.

Mathematically, instead of a desired underlying mapping denoted asH(x), the residual
block aims to learn the residual function F (x) = H(x)− x, which leads to the reformula-
tion:

H(x) = F (x) + x (3.1)

Here, x is the input, F (x) is the residual mapping learned by the block (a stack
of convolutional layers), and H(x) is the output. This formulation allows gradients to
be backpropagated more directly, alleviating the vanishing gradient issue and enabling
successful training of very deep networks.

8



3.1.2 Detailed Architecture of ResNet-50

The ResNet-50 architecture begins with a 7×7 convolutional layer with stride 2, followed
by batch normalization, ReLU activation, and a 3×3 max pooling layer. These operations
are designed to capture low-level spatial features in the input image.

Following this, the network is composed of four stages, each containing multiple resid-
ual bottleneck blocks. As shown in Fig. 3.2, each bottleneck block implements three
convolutional layers:

1. A 1× 1 convolution for reducing dimensionality

2. A 3× 3 convolution for processing features

3. A 1× 1 convolution for restoring dimensionality

Figure 3.1: ResNet-50 architecture overview adapted from [13].

Each of these is followed by batch normalization and ReLU activation (except the final
convolution). The identity (skip) connection adds the input x directly to the output of
the block:

Output = F (x, {Wi}) + x (3.2)

where {Wi} represents the weights of the layers in the residual function F (x).

Figure 3.2: Skip connections enable identity mapping and improve gradient flow.

To adjust dimensions when needed (such as during downsampling or channel mis-
match), a projection shortcut using a 1 × 1 convolution is applied to x, replacing the
identity shortcut:

9



Output = F (x, {Wi}) +Wsx (3.3)

where Ws denotes the projection weights.
After the four stages of residual blocks, ResNet-50 ends with a global average pooling

layer that reduces each feature map to a single value, followed by a fully connected layer
with softmax activation for classification tasks.

3.2 MobileNetV2

MobileNetV2 is a lightweight convolutional neural network architecture tailored for ap-
plications where computational resources are limited, such as mobile devices and embed-
ded systems. It builds on the original MobileNet design by introducing two key innova-
tions—inverted residuals and linear bottlenecks—which together enable a drastic reduction
in parameters and multiply–accumulate operations without sacrificing accuracy [23].

Figure 3.3: MobileNetV2 architecture adapted from [23] .

The core innovation in MobileNetV2 lies in how each block is structured to opti-
mize both efficiency and representational capacity. Each block consists of three major
stages—expansion, depthwise convolution, and projection—which can be mathematically
represented to better understand how features are processed.

In the expansion phase, a 1× 1 convolution is applied to expand the dimensionality
of the input feature map X ∈ RH×W×Cin into a higher-dimensional space:

Xexp = σ(We ∗X) (3.4)

where We is the weight tensor for the expansion layer and σ is the non-linear activation
function (ReLU6 is commonly used).

The depthwise convolution then performs a separate convolution for each channel,
significantly reducing computation:

Xdw = σ(Wdw ⊙Xexp) (3.5)
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Here, ⊙ denotes the channel-wise (depthwise) convolution, and Wdw contains the depth-
wise filters.

Finally, in the projection phase, a 1× 1 linear convolution projects the output back
to a lower-dimensional space without using an activation function:

Xproj = Wp ∗Xdw (3.6)

where Wp is the projection weight tensor. The use of a linear activation in this step helps
preserve information that might otherwise be lost in a narrow bottleneck.

MobileNetV2 also uses residual connections when the input and output dimensions
match:

Y = X+Xproj (3.7)

The introduction of residual connections in deep networks plays a crucial role in im-
proving gradient flow during backpropagation. In the case of ResNet-50, this architec-
tural innovation enhances the network’s ability to learn deep feature hierarchies without
encountering vanishing gradient issues. By allowing information to bypass certain layers
and flow directly to deeper parts of the network, these connections strengthen the model’s
representational capacity while adding minimal computational overhead.

Similarly, MobileNetV2 incorporates a range of design choices aimed at achieving
both computational efficiency and strong performance. Its architecture includes inverted
residual blocks with linear bottlenecks, which help reduce the number of parameters and
improve memory usage. These structural optimizations allow MobileNetV2 to deliver
accurate results even in constrained environments. As a result, it is particularly well-
suited for real-time image classification tasks and deployment on resource-limited devices,
such as mobile phones and embedded systems.

3.3 DenseNet-121

DenseNet-121 is a deep convolutional neural network known for its innovative connectiv-
ity design. Presented by Gao Huang and colleagues in their influential paper “Densely
Connected Convolutional Networks” [15], this architecture breaks away from traditional
network structures by establishing direct connections between each layer and all subse-
quent layers. This dense pattern of connectivity helps to enhance the flow of information
and gradients throughout the network, promoting more efficient feature reuse and reduc-
ing redundancy. As a result, DenseNet-121 achieves impressive parameter efficiency while
maintaining strong performance, which has made it a popular choice for a wide range of
computer vision applications.

3.3.1 Architectural Design

Unlike traditional convolutional networks that arrange layers in a simple sequential order,
DenseNet-121 uses a unique feed-forward design. In this structure, each layer receives
input not only from the immediate preceding layer but also from the outputs of all earlier
layers within the same dense block. This approach encourages continuous reuse of features
throughout the network, leading to greater feature efficiency and minimizing redundancy.

The network is composed of four dense blocks, each containing multiple convolutional
layers as shown in Fig 3.4. These blocks are separated by transition layers that consist
of batch normalization, a 1× 1 convolution for channel compression, and a 2× 2 average
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Figure 3.4: DenseNet-121 architecture adapted from[14] .

pooling operation for spatial downsampling. The number “121” denotes the total number
of layers in the network, including convolutional, batch normalization, and fully connected
layers.

A distinctive characteristic of DenseNet is its use of a fixed growth rate, which defines
how many new feature maps each layer contributes. In DenseNet-121, the growth rate is
typically set to 32, meaning each layer within a dense block outputs 32 new feature maps
that are then concatenated with all previous feature maps.

Mathematically, the input to the ℓ-th layer in a dense block can be expressed as:

xℓ = Hℓ([x0,x1, . . . ,xℓ−1]) (3.8)

where [x0,x1, . . . ,xℓ−1] represents the concatenation of the feature maps produced by
layers 0 to ℓ − 1, and Hℓ(·) denotes the composite non-linear transformation (typically
Batch Normalization, ReLU, and a 3× 3 convolution) applied at layer ℓ.

The output dimensionality after the ℓ-th layer grows linearly with the number of layers
in the block, governed by the growth rate k:

Cℓ = C0 + k · ℓ (3.9)

where C0 is the number of input channels to the block, and Cℓ is the number of output
channels at layer ℓ.

Transition layers compress the feature maps between dense blocks using a 1× 1 con-
volution followed by average pooling. The compression factor θ controls the reduction in
channels:

Cout = θ · Cin (3.10)

where 0 < θ ≤ 1 (typically θ = 0.5).
This dense connectivity pattern significantly improves parameter efficiency, encourages

feature reuse, and enables the training of very deep models without overfitting or vanishing
gradients. DenseNet-121 has thus become a popular choice for various classification and
segmentation tasks.

3.4 Inception v3

Inception v3 is a deep convolutional neural network architecture that improves upon
earlier Inception models by incorporating several enhancements aimed at increasing com-
putational efficiency while preserving or even improving accuracy [24]. It was developed
by Christian Szegedy et al. and has been widely adopted for image classification tasks
due to its strong performance on the ImageNet dataset.
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3.4.1 Architectural Design

The Inception architecture is characterized by its use of Inception modules, which apply
multiple types of convolutions in parallel to the same input and concatenate their outputs.
This design allows the network to capture features at multiple spatial scales simultane-
ously. Inception v3 enhances this idea by incorporating several advanced techniques:

• Factorized Convolutions: Large convolutional filters such as 5 × 5 are replaced
with consecutive smaller filters (e.g., two 3×3 convolutions) to reduce computation.

• Asymmetric Convolutions: Filters are decomposed into n× 1 followed by 1× n
convolutions to further reduce computational complexity.

• Auxiliary Classifiers: Additional classifiers are added during training to improve
gradient flow and act as regularizers.

• Label Smoothing: A regularization technique that prevents the model from be-
coming overconfident by softening the target labels.

Figure 3.5: Inception v3 architecture adapted from[24] .

3.4.2 Mathematical Components

To reduce computational cost, a 5× 5 convolution is factorized into two consecutive 3× 3
convolutions. Assuming the number of input and output channels is the same, the cost
reduction can be approximated as:

Cost5×5 = 25C2, Cost3×3×2 = 18C2 (3.11)

This leads to a reduction in computational cost by approximately 28%, while retaining
the same receptive field.

Inception v3 also applies asymmetric convolutions to further reduce complexity. A
n× n convolution is approximated using:

f(x) = Conv1×n(Convn×1(x)) (3.12)

This technique not only reduces the number of operations but also introduces addi-
tional non-linearity, improving representational power.
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Label smoothing is applied to the softmax output to regularize training by modifying
the ground-truth distribution q(k) as:

q′(k) = (1− ϵ) · q(k) + ϵ

K
(3.13)

where K is the number of classes and ϵ is a small constant (e.g., ϵ = 0.1). This
prevents the model from becoming overconfident and improves generalization.

3.5 Vision Transformer (ViT)

The Vision Transformer (ViT) introduces a fundamentally different approach to im-
age recognition by utilizing the Transformer architecture, which was originally designed
for natural language processing tasks. Unlike traditional convolutional neural networks
(CNNs) that rely on local receptive fields and hierarchical feature extraction, ViT models
the image as a sequence of patches and applies self-attention mechanisms to learn global
context from the outset. This paradigm shift allows ViT to effectively capture long-range
dependencies and complex spatial relationships within images, especially when trained on
large-scale datasets [5].

3.5.1 Fundamental Design Principles

Figure 3.6: Architecture of Vision Transformer (ViT), showing patch division, embedding,
Transformer layers, and final classification adapted from [6] .

At the heart of ViT is the idea of treating image patches similarly to words in a
sentence. A given input image x ∈ RH×W×C is divided into N fixed-size non-overlapping
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patches of dimension P × P , where N = H·W
P 2 . Each patch is then flattened and passed

through a linear projection layer that transforms it into a D-dimensional embedding:

zi0 = xi
pE, for i = 1, 2, . . . , N (3.14)

To incorporate positional information, which is not inherently captured by the atten-
tion mechanism, learnable positional encodings Epos are added to the projected patch
embeddings:

z0 = [xcls; z
1
0 ; z

2
0 ; . . . ; z

N
0 ] + Epos (3.15)

Here, xcls is a special classification token appended at the beginning of the sequence.
This token is designed to aggregate information from all other patches during training.

3.5.2 Transformer Encoder Structure

Figure 3.7: Transformer Encoder and Decoder adapted from [6]

The combined sequence of embeddings is passed through a stack of L identical Transformer
encoder layers. Each layer comprises two main components: multi-head self-attention
(MSA) and a position-wise feed-forward network (FFN). These layers are wrapped with
residual connections and layer normalization (LN), ensuring training stability and effective
gradient flow:

z′l = MSA(LN(zl−1)) + zl−1 (3.16)

zl = MLP(LN(z′l)) + z′l (3.17)

This architecture allows ViT to compute attention scores across all patches at once,
capturing interactions between distant parts of the image.
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3.5.3 Classification Head

Once the input passes through all Transformer layers, the output corresponding to the
classification token is extracted and used for the final prediction. A simple fully connected
layer followed by a softmax activation computes the class probabilities:

ŷ = softmax(Wz
[CLS]
L + b) (3.18)

where W and b are trainable weights and bias terms, and z
[CLS]
L denotes the final

embedding of the classification token after L layers.

3.6 Vision Transformer Variants

Since the introduction of the original Vision Transformer (ViT) architecture, several vari-
ants have emerged to cater to different trade-offs between accuracy, speed, and computa-
tional complexity. These variants primarily differ in model size, the number of parameters,
and internal architectural configurations such as patch size and embedding dimensions.
This section outlines some commonly used ViT variants and their distinctive characteris-
tics.

3.6.1 ViT tiny patch16 224

The ViT-Tiny variant is a compact model designed for efficient inference on low-resource
hardware. It uses 16×16 patch sizes and processes input images of size 224× 224. With
a smaller embedding dimension (typically 192) and fewer transformer blocks (e.g., 12
layers), it offers fast computation at the expense of slightly reduced accuracy. It is ideal
for applications where speed and efficiency are critical.

3.6.2 ViT small patch16 224

ViT-Small provides a balance between efficiency and performance. Like ViT-Tiny, it uses
a patch size of 16× 16, but increases the embedding dimension to 384 and typically uses
12 transformer layers. This enhancement enables better representation learning without
a significant increase in computational cost, making it suitable for mid-sized applications.

3.6.3 ViT base patch16 224

The ViT-Base model serves as a standard benchmark for many Vision Transformer stud-
ies. It uses 16×16 patches and 224×224 resolution images, with an embedding dimension
of 768 and 12 transformer encoder layers. This model achieves strong performance on
large-scale datasets like ImageNet while maintaining manageable training costs. It serves
as a foundation for more advanced or larger ViT configurations.

3.6.4 Swin tiny patch4 window7 224

Swin-Tiny, or Swin Transformer Tiny, introduces a hierarchical transformer structure
where self-attention is computed within local windows, and windows shift between layers.
This patch-based model starts with 4× 4 non-overlapping patches and utilizes a window
size of 7 × 7. Such a design reduces computational complexity while preserving spatial
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locality. Swin-Tiny achieves better accuracy than standard ViT-Tiny with similar or lower
computational cost.

3.6.5 DeiT tiny patch16 224

The Data-efficient Image Transformer (DeiT-Tiny) is a distilled version of ViT-
Tiny designed for data-efficient training. Like its counterpart, it uses 16×16 patch size
and 224×224 image input, but it incorporates knowledge distillation by using a distillation
token alongside the class token. This helps the model learn more effectively with fewer
training samples, improving performance without increasing the model size.

3.6.6 DeiT base patch16 224

DeiT-Base extends the benefits of distillation to the base ViT model. It retains the
same configuration as ViT-Base (patch size 16×16, image size 224×224, embedding size
768, 12 layers) while incorporating the distillation strategy. The result is a model that
matches or surpasses ViT-Base performance with improved training data efficiency, espe-
cially beneficial when large-scale datasets are not available.

Comparison Summary

Table 3.1: Comparison of ViT and Transformer Variants
Model Embedding Dim Layers Patch Size Image Size
ViT-Tiny-P16-224 192 12 16×16 224×224
ViT-Small-P16-224 384 12 16×16 224×224
ViT-Base-P16-224 768 12 16×16 224×224
Swin-Tiny-P4-W7-224 Varies Varies 4×4 224×224
DeiT-Tiny-P16-224 192 12 16×16 224×224
DeiT-Base-P16-224 768 12 16×16 224×224

These variants demonstrate how design adjustments—such as patch granularity, em-
bedding size, or architectural strategies like windowed attention—can significantly impact
performance, resource usage, and training efficiency. Selecting the right variant depends
on the specific constraints and goals of a given application.
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Chapter 4

METHODOLOGY

In this study, we address the problem of multi-label scene classification in Amazon rainfor-
est satellite imagery by combining advanced preprocessing techniques with a lightweight
convolutional backbone. First, we describe the dataset and its preparation; next, we in-
troduce our haze-removal step; finally, we detail the design of the classification pipeline
built upon MobileNetV2.

4.1 Dataset Preparation

We utilize the “Planet: Understanding the Amazon from Space” dataset which comprises
40 479 RGB images of size 256×256, each annotated with one or more of 17 possible labels
(e.g., agriculture, water, roads,etc) as shown in Fig 4.1. These images, captured by sun-

Figure 4.1: Random samples containing the tags from the dataset

synchronous orbit satellites, provide a high-resolution view of land use and environmental
conditions in the Amazon basin. To ensure consistency across all inputs, we convert every
image to PNG format, then resize it to 224× 224 pixels. Following this, each channel is
normalized by

x′ =
x− µ

σ
(4.1)

where µ and σ are the per-channel mean and standard deviation computed over the
training split. We partition the dataset into training and test subsets using an 80:20 split
and employ five-fold cross-validation to assess model robustness.
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4.1.1 Haze Removal

Figure 4.2: Applying haze removal on our dataset

Satellite imagery often suffers from atmospheric haze that obscures fine details. To
mitigate this, we apply the Dark Channel Prior dehazing algorithm [12]. Within each
small patch Ω(x) of the input image I, we compute the dark channel

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Ic(y)

)
which highlights the lowest-intensity pixels across all color channels. The transmission
map t(x) is then estimated by

t(x) = 1− ω min
y∈Ω(x)

(
min
c

Ic(y)

Ac

)
where A represents the global atmospheric light and ω = 0.95. Finally, the haze-free
image J is recovered per channel as

J c(x) =
Ic(x)− Ac

max
(
t(x), t0

) + Ac

with t0 = 0.1 preventing division by very small values. This dehazing step enhances
contrast and reveals otherwise obscured textures critical for accurate classification as
given in Fig 4.2.

4.2 Process Pipeline

Our approach follows a structured pipeline that begins with the preprocessing of satellite
imagery and proceeds through stages of feature extraction and classification using a di-
verse set of deep learning models. These models are fine-tuned on a multi-label dataset
derived from the Kaggle Planet: Understanding the Amazon from Space challenge, which
provides satellite imagery tagged with environmental labels. The primary objective is to
detect multiple land cover and land use attributes present in each image, such as haze,
agriculture, water, and primary forest, among others.
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4.2.1 CNN-Based Architectures

To establish a strong baseline, we first employed several well-established Convolutional
Neural Network (CNN) architectures that have proven their effectiveness in a variety of
image classification tasks. Specifically, we utilized MobileNetV2, ResNet-50, DenseNet-
121, and Inception-v3, all of which were pre-trained on the ImageNet dataset. These
models serve as robust feature extractors, capable of capturing both low-level and high-
level visual features from the satellite images.

Among these, MobileNetV2 was particularly emphasized due to its lightweight design
and efficiency in low-resource settings—a crucial factor when deploying models in real-
world scenarios involving large volumes of satellite data or limited computational capacity.
It leverages depthwise separable convolutions and inverted residual connections, which
significantly reduce the number of parameters without compromising performance.

To adapt each CNN model for our multi-label classification task, we made the following
architectural adjustments:

• Replaced the final softmax classification layer with a customized head tailored to
our task.

• Added a Global Average Pooling layer to compress the spatial dimensions of feature
maps.

• Appended a dense (fully connected) layer with 128 neurons and ReLU activation to
introduce non-linearity.

• Incorporated a dropout layer with a rate of 0.5 to prevent overfitting.

• Finalized with a dense output layer comprising 17 units (corresponding to the 17
possible labels), each activated using the sigmoid function to allow for independent
class probabilities.

These modifications enable the CNNs to handle the multi-label nature of the dataset
while ensuring generalization across diverse image features.

4.2.2 Transformer-Based Architectures

To further push the boundaries of our classification performance, we integrated transformer-
based models into our study—specifically, lightweight and efficient Vision Transformer
(ViT) variants. These models introduce a paradigm shift from traditional convolutional
methods by replacing localized receptive fields with self-attention mechanisms, which are
inherently capable of capturing long-range dependencies across the image.

The transformer models explored in this study include:

• ViT-Tiny-Patch16-224

• ViT-Small-Patch16-224

• ViT-Base-Patch16-224

• Swin-Tiny-Patch4-Window7-224

• DeiT-Tiny-Patch16-224
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• DeiT-Base-Patch16-224

Each of these models was initialized with ImageNet21k pre-trained weights, allowing
them to benefit from rich semantic priors learned from large-scale image corpora. The
baseline ViT architecture processes input images by dividing them into fixed-size patches,
embedding these patches, and feeding the resulting sequence into a stack of transformer
encoders. Each encoder consists of:

• A multi-head self-attention module that learns to weigh different patches based on
their relevance.

• A feedforward neural network (FFN) that refines the representations learned from
the attention mechanism.

This setup allows the model to flexibly focus on important image regions—such as
cloud coverage, water bodies, or vegetation—regardless of their position or size, making
it especially powerful for multi-label remote sensing classification.

To tailor these models for our task, we appended the following layers to their output
heads:

• A dense layer with 128 units to map the high-dimensional transformer features into
a compact representation.

• A dropout layer (rate = 0.5) to reduce overfitting during training.

• A final dense output layer with 17 units, each equipped with a sigmoid activation
function to produce independent probability scores for each class label.

Through this dual-track architecture—comparing CNNs and transformer-based mod-
els—we aim to evaluate the trade-offs between computational cost, model complexity, and
classification performance in the context of satellite imagery with multiple labels.

4.3 Training Procedure

For both CNN and transformer-based models, the same training procedure is adopted to
ensure fair comparisons. We use the Adam optimizer with an initial learning rate of 10−4,
adjusted dynamically using a learning rate scheduler across 14 epochs. The loss function
employed is the binary cross-entropy loss, formulated as:

L = − 1

N

N∑
n=1

17∑
i=1

[yn,i log(pn,i) + (1− yn,i) log(1− pn,i)]

where yn,i is the ground truth and pn,i is the predicted probability for the i-th class in
the n-th sample.
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4.4 Thresholding Strategy for Prediction

In multi-label classification tasks, it is essential to convert the continuous-valued probabil-
ities—produced by the sigmoid activation in the final output layer—into discrete binary
class labels that indicate the presence or absence of each category. This step is crucial
for interpreting the model’s output in a real-world context, such as identifying whether a
satellite image contains signs of agriculture, water bodies, or deforestation.

To achieve this, we employ a thresholding strategy that maps each posterior class
probability p i to a binary label y

i . Specifically, a fixed threshold of = 0.2 t=0.2 is applied across all classes. This
value was not chosen arbitrarily; it was selected based on extensive empirical experimen-
tation and validation. Multiple threshold values were evaluated to find a balance that
optimally manages the trade-off between precision (minimizing false positives) and recall
(minimizing false negatives), which is particularly important in environmental monitoring
where missing a label could have significant consequences.

The final predicted label for each class is computed using the following rule:

ŷi =

{
1, if pi > 0.2,

0, otherwise.
(4.2)

This means that if the model assigns a probability greater than 0.2 to a specific class,
we interpret it as a confident prediction that the corresponding attribute is present in the
image. Otherwise, the class is considered absent.

While more dynamic thresholding techniques (such as class-specific or sample-dependent
thresholds) could potentially offer marginal gains, we found that using a global threshold
of 0.2 provided a good balance between simplicity, interpretability, and performance on
our validation set.

4.5 One-Hot Encoding and Label Co-Occurrence

The multi-label annotations are one-hot encoded during training. This approach enables
the model to handle interdependent class labels such as “clear/cloudy,” “water,” “roads,”
and “urbanization,” which frequently co-occur in the Amazon region. By learning from
these co-occurrences, the models become more adept at detecting complex and overlapping
environmental features.

4.6 Hard Fusion Strategy

In this phase, a hard fusion strategy was implemented to consolidate the predictions
from the best-performing models identified in both Paper 1 and Paper 2. The selected
models included MobileNetV2 (from Paper 1) and ViT tiny patch16 224. These
models were chosen based on their high accuracy and F-beta scores, providing a well-
rounded balance between computational efficiency and predictive performance.

The fusion approach employed is known as hard voting or majority rule voting.
In this ensemble method, the final label prediction for each satellite image was determined
by aggregating the outputs of the individual models. Let M1,M2, . . . ,Mn denote the n
models participating in the ensemble (here, n = 2), and let y

(j)
i ∈ {0, 1} be the binary

prediction for label i by model Mj. Then the final prediction ŷi for label i is given by:
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ŷi =

{
1, if

∑n
j=1 y

(j)
i ≥

⌈
n
2

⌉
0, otherwise

(4.3)

This strategy ensures that a label i is included in the final output only if the majority
of models agree on its presence.

Using hard fusion brought several important benefits. It improved the stability of
predictions, making the system less sensitive to noise and overfitting from any single
model. Additionally, it enhanced the robustness of classifying less common labels in multi-
label datasets. This approach was especially valuable in satellite-based environmental
monitoring, where minimizing false positives is crucial to maintaining accuracy.

In summary, the hard fusion mechanism allowed the system to harness the strengths
of each individual model while offsetting their weaknesses, leading to better overall clas-
sification performance and improved generalization.
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Chapter 5

RESULTS and DISCUSSION

This section presents and compares the experimental results obtained from the two dis-
tinct methodologies employed in our study. The first paper investigates a CNN-based ap-
proach including models such as MobileNetV2, ResNet-50, DenseNet-121, Vision Trans-
former (ViT), and Inception-v3. The second paper explores various lightweight Vision
Transformer architectures made available through the Timm library, including ViT-Tiny,
ViT-Small, Swin-Tiny, DeiT-Tiny, and DeiT-Base.

5.0.1 Paper 1: CNN and Vision Transformer Results

The performance metrics—training accuracy, testing accuracy, and F-beta score—were
used to evaluate the effectiveness of different deep learning models for multi-label classi-
fication. Table 5.1 summarizes the results from Paper 1.

Table 5.1: Performance Comparison of Models in Paper 1
Model (Training) Accuracy (Testing) F-beta Score
MobileNetV2 95.79% 0.9275
ResNet-50 95.56% 0.9240
DenseNet-121 95.70% 0.9248
Vision Transformer (ViT) 95.66% 0.9238
Inception-v3 93.50% 0.8920

Among the models evaluated in Paper 1, MobileNetV2 achieved the highest F-beta
score of 0.9275 with a testing accuracy of 95.79%, outperforming other CNN-based models
and even the baseline Vision Transformer. This validates the strength of MobileNetV2
in balancing accuracy and computational efficiency in multi-label classification tasks on
satellite imagery.

5.0.2 Paper 2: Lightweight Transformer Model Results

Paper 2 focuses on fine-tuning lightweight variants of Vision Transformer architectures
using the Timm library. The evaluation includes training accuracy, and F-beta scores on
both training and validation sets, as shown in Table 5.2.

From Paper 2, the Swin-Tiny variant achieved the highest accuracy at 96.64%, while
DeiT-Base reported the highest training F-beta score of 0.9612. However, in terms of val-
idation F-beta score—a more generalizable metric—ViT-Tiny performed best at 0.9252,
closely followed by DeiT-Tiny at 0.9242. These results highlight the effectiveness of
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Table 5.2: Performance of Lightweight Transformer Models (Paper 2)
Model Accuracy (%) Train F-beta Score Validation F-beta Score
ViT (Timm baseline) 95.66% 0.9444 0.9238
ViT small patch16 224 95.61% 0.9497 0.9215
ViT base patch16 224 95.21% 0.9301 0.9190
ViT tiny patch16 224 95.67% 0.9445 0.9252
Swin tiny patch4 224 96.64% 0.9450 0.8990
DeiT tiny patch16 224 95.50% 0.9485 0.9242
DeiT base patch16 224 95.85% 0.9612 0.9218

lightweight transformer models for multi-label classification tasks and suggest that ViT-
Tiny strikes the best balance between performance and efficiency.

5.0.3 Comparative Summary

Both papers demonstrate strong performance on multi-label satellite image classifica-
tion tasks. While the first paper shows that MobileNetV2 outperforms other CNNs and
the baseline ViT in F-beta score, the second paper reveals that lightweight transformer
variants, particularly ViT-Tiny and DeiT-Tiny, can match and even exceed that perfor-
mance. Notably, ViT-Tiny achieved the highest validation F-beta score (0.9252) among
all models across both studies. These findings suggest that transformer-based models,
when appropriately scaled and fine-tuned, can serve as powerful alternatives to CNNs for
environmental monitoring tasks using remote sensing imagery.
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Chapter 7

CONCLUSION AND FUTURE SCOPE

With the advent of high-resolution satellite imagery and the rapid growth of satellite imag-
ing enterprises, there has emerged an urgent necessity for the development of accurate,
efficient, and scalable methods for processing and interpreting vast volumes of remote
sensing data. This research work is motivated by the need to facilitate the understanding
of the complex land-use dynamics and environmental threats in the Amazon rainforest—a
region rich in biodiversity, ecological importance, and subject to increasing anthropogenic
pressures. To address the challenge of classifying multi-label satellite images, particularly
those with heterogeneous land cover types, atmospheric conditions, and varying scales of
anthropogenic activities, two complementary deep learning approaches were investigated.

The first study focused on leveraging the strengths of state-of-the-art convolutional
neural networks (CNNs), including ResNet-50, DenseNet-121, Inception-v3, and Mo-
bileNetV2, along with Vision Transformer (ViT). A comprehensive evaluation of these
models revealed that MobileNetV2 delivered the most effective classification performance,
achieving a high testing accuracy of 95.79% and an F-beta score of 0.9275. This model’s
lightweight nature and efficiency make it particularly suitable for large-scale image analy-
sis tasks in computationally constrained environments. The preprocessing pipeline in this
phase incorporated haze removal using the dark channel prior technique, normalization,
augmentation, and one-hot encoding of the multiple class labels, thereby ensuring that
the models could effectively learn the diverse semantic features present in the Amazon
satellite dataset.

Parallelly, the second study investigated the efficacy of lightweight Vision Trans-
former (ViT) models made available through the Timm library. The models evaluated
included ViT-Small, ViT-Tiny, ViT-Base, Swin-Tiny, DeiT-Tiny, and DeiT-Base. These
transformer-based models offer a powerful alternative to conventional CNNs, particularly
in their ability to capture long-range dependencies and global contextual information
through self-attention mechanisms. Among the evaluated models, ViT-Tiny emerged as
the top performer, achieving a validation F-beta score of 0.9252 and a testing accuracy
of 95.67%. DeiT-Base also showcased competitive performance with the highest training
F-beta score of 0.9612, underscoring the capability of these architectures in multi-label
classification tasks.

Recognizing the complementary strengths of the CNN-based and Transformer-based
models, a fusion strategy was designed in the final phase of this research. Specifically,
the best-performing models from both studies—MobileNetV2 and ViT-Tiny—were inte-
grated using a hard fusion ensemble approach. In this strategy, predictions from both
models were combined at the decision level using a predefined thresholding mechanism,
and a majority voting scheme was applied to generate the final multi-label output. This
approach is advantageous as it utilizes the feature extraction efficiency of MobileNetV2
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and the global contextual understanding of ViT-Tiny, thereby enhancing the robustness
and reliability of predictions.

The fusion framework involved preprocessing the input image, performing forward
passes through both models to obtain respective probability vectors, and then convert-
ing these vectors into binary predictions using a common threshold (0.2). A hard voting
mechanism was then applied to determine the final class labels. This ensemble not only
improved classification consistency but also offered resilience against the noise and am-
biguities often present in remote sensing data. The integration strategy demonstrated
significant promise in producing reliable multi-label classifications across seventeen anno-
tated class labels, encompassing land cover types, water bodies, vegetation states, and
anthropogenic impacts.

Furthermore, the utility of the proposed framework extends beyond academic inter-
est. The ability to accurately classify and monitor land-use changes in the Amazon has
profound implications for environmental sustainability and policy-making. Illegal mining
activities, particularly artisanal mines that are unregulated and often invisible to author-
ities, pose severe threats to biodiversity, water quality, and indigenous communities. The
proposed classification system can serve as a crucial tool in identifying such activities
from satellite images, thereby supporting government efforts in environmental protection
and resource management.

The studies collectively underscore the importance of combining deep learning method-
ologies for enhancing performance in multi-label satellite image classification. While
CNNs excel in capturing local spatial features, Vision Transformers bring the benefit
of holistic scene understanding. Their combination via ensemble techniques represents a
powerful paradigm for improving the accuracy and generalizability of classification frame-
works in the domain of remote sensing.

Looking forward, several avenues exist to further improve this work. These include
exploring more sophisticated fusion techniques such as weighted voting or trainable fusion
networks, incorporating temporal information from satellite image sequences to detect
dynamic changes, and utilizing additional satellite modalities such as hyperspectral and
SAR data. Moreover, expanding the study to encompass other ecologically sensitive
regions and integrating socio-economic datasets could provide a more comprehensive tool
for global environmental monitoring.

In conclusion, this research contributes significantly to the fields of remote sensing,
environmental informatics, and deep learning by developing and evaluating an efficient
and accurate framework for multi-label classification of satellite imagery. By integrating
the strengths of CNN and Transformer models, and leveraging hard fusion for ensemble
prediction, this work sets a foundation for future advancements in automated land-use
classification and deforestation monitoring. It highlights the role of machine learning in
supporting sustainable development goals and offers a scalable solution for addressing
environmental challenges through intelligent image analysis.
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