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ABSTRACT 
 
 

As global energy consumption continues to rise, the conventional energy sources 

becoming unprecedently more pressing. Moreover, the depletion of conventional fossil 

fuels and their environmental impact raises serious concerns about long-term 

sustainability. This challenge makes it essential to explore alternative, renewable 

energy solutions that can support future energy needs while minimizing ecological 

harm. Thermoelectric (TE) materials represent one of the most promising avenues for 

sustainable energy conversion. These materials can harness useful electricity from 

waste heat and thus have been a research focus in recent years. One such type is halide 

perovskites with crystal structure of form A3BX3. Many studies have demonstrated 

how strain and spin-orbit coupling (SOC) reduce the bandgap in halide perovskites, 

potentially enhancing their TE efficiency. 

 

We investigate structural, dynamical, elastic, electronic, and thermoelectric properties 

of cubic perovskite halide Ca3AsBr3 under the effect of strain using first-principles 

calculations. It is found to have a direct bandgap of 2.425 eV that further reduces under 

compressive strain making it an ideal candidate for thermoelectric application. The 

material satisfies various stability criteria, e.g., dynamical, thermodynamical, and 

mechanical. The transport calculations show the highest Seebeck coefficient of value 

-458.227 μVK⁻¹ at 700 K for n-type Ca3AsBr3 unstrained structure at carrier 

concentration 1×1021 cm⁻³, which is further enhanced to -482.366 μVK⁻¹ for -2% 

strain. The lattice thermal conductivity of the material is reduced from 1.243 Wm-1K-

1 to 0.627 Wm-1K-1 at 700 K under 3% strain. This low thermal conductivity, coupled 

with positive power factor values, results in increased peak thermoelectric figure of 

merit from 0.36 (unstrained) to 0.56 (+3% strain) at 700 K for an n-type doping 

concentration of 1×1020 cm⁻³.  
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Thermoelectric materials and energy harvesting 

 

In a world grappling with excessive fossil fuel consumption and its detrimental 

environmental impacts, achieving a net zero target requires balancing greenhouse gas 

emissions with removal efforts. To achieve this, developing clean and secure energy 

alternatives is imperative. New technologies can play a pivotal role in energy 

generation and storage. These encompass diverse areas such as photovoltaics, wind 

and water turbines, and energy-efficient technologies like low-loss electronics, 

piezoelectrics and thermoelectrics (TEs) [1–5]. Thermoelectricity refers to phenomena 

that involve the direct and thermodynamically reversible exchange of thermal energy 

to electricity or vice versa. The Seebeck, Peltier, and Thomson effects are three distinct 

phenomena that make up thermoelectricity and are named after the researchers who 

first identified them in the late 19th century.TE materials, for instance, can efficiently 

convert waste heat into usable electrical energy, powering TE generators. TE devices 

show unique advantages compared to other energy conversion devices, including 

stability, long service life, and noiselessness. TE materials harness temperature 

differentials to produce electrical energy, offering a means of achieving fully electric 

heating and cooling technology devoid of mechanical components or refrigerants. An 

additional benefit of this technology lies in its capability to capture residual heat from 

various phenomena and convert them into electricity. Considering that approximately 

2/3 of primary energy is dissipated as heat, the utilization of thermoelectric materials 

holds the potential to efficiently capture and convert a significant portion of this wasted 

heat into valuable electrical power. Thermoelectric (TE) materials represent one of the 

most promising avenues for sustainable energy conversion. These materials can 

harness useful electricity from waste heat and thus have been a research focus in recent 

years [6]. 
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Figure 1: Different sources of waste heat energy 

 

 

 

1.1.1 Thermoelectric figure of merit (ZT) 

 
 ZT represents the efficiency of TE material and can be calculated from the formula 

ZT = S²σT/𝜅, S denotes the Seebeck coefficient, σ represents electrical conductivity, 

where T is the absolute temperature, and κ encompasses the combined effects of 

electronic (κe) and lattice (κl) contributions to thermal conductivity. Achieving an 

optimal ZT necessitates a high power factor (S²σ) and reduced κ value. A significant 

challenge lies in optimizing S²σ and κe, as they are interdependent with each other 

through the carrier concentration. Various strategies have been devised to overcome 

this challenge to decouple these parameters. These include increasing the power factor 

via carrier concentration adjustments, tuning band structures, and reducing lattice 

thermal conductivity through dimensional reduction or introducing defects [7-12]. 
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The Seebeck effect is the phenomenon of the development of electromotive force 

(emf) across two sites of material as their temperatures differ, the emf is known as the 

thermoelectric emf. The Seebeck coefficient is the ratio of this emf and the 

corresponding temperature change in temperature . A thermocouple gauges the 

difference between the potential at the hot and cold ends of two different materials. 

The potential difference between the cold and hot ends is proportional to the difference 

in temperature across these ends. The first experiments revealing this effect were 

performed by Alessandro Volta in 1794. The Seebeck effect, like any other emf, 

produces measurable currents or voltages. J = σ (-∇ V + Eemf) is the current 

density(local), where σ conductivity and V is the local electrical potential. The Seebeck 

effect arises from a local electromotive field,  

Eemf = -S∇ T, where S is a parameter that depends locally and ∇ T is the temperature 

gradient. The Seebeck coefficient depends strongly on the composition of the material 

and, in general, also varies with the temperature. The Seebeck coefficient for ordinary 

materials at room temperature generally lies in the −100 μV/K to +1,000 μV/K range. 

 

 

Electrical conductivity (σ) is the measurement of the current carried by a material . 

It is an intrinsic property of a material and depends on the material properties. The 

electrical conductivity of a metallic conductor increases progressively as the 

temperature decreases. Superconductors exhibit a remarkable phenomenon wherein 

their resistance drops to zero below a critical temperature. Consequently, a current can 

flow through a superconducting wire loop without the need for applied power. 

In various systems, conduction is facilitated by either band holes or electrons. In the 

case of electrolytes, the movement of entire ions takes place, transporting their net 

electrical charge. For electrolytic solutions, the conductivity of the material is 

significantly influenced by the concentration of ionic species. 

 

The lattice component of thermal conductivity (kl) refers to the heat transmission 

through the vibrations of lattice ions within a solid. Delving into the physics governing 

the heat conduction process allows for a thorough and nuanced comprehension of the 

nature of lattice vibrations in solids. Among a material's fundamental and crucial 
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physical parameters, its thermal conductivity holds significance. It emerges from 

phonons of all frequencies. Its manipulation has inflicted a huge variety of technical 

applications that Incorporate the control of temperature in electrical, chemical, 

mechanical and even nuclear systems materials for thermal barriers and insulation; 

enhanced thermoelectric materials for increased efficiency; and sensors and 

transducers. 

A profound understanding of thermal conductivity proves crucial in the thermal 

management of diverse systems, including mechanical, electrical, chemical, and 

nuclear systems. Lattice thermal conductivity plays a key feature in enhancing the ZT 

values Materials that have ultralow lattice thermal conductivity possess high ZT 

values, especially two-dimensional materials.  

 

1.2 Types of Thermoelectric Materials 

 

1. Semiconductor Materials 

Semiconductors are the most widely studied and used materials for thermoelectric 

applications due to their high efficiency compared to metals and insulators. The 

properties of these materials can be tuned by doping and other modifications. 

Eg: Bismuth Telluride (Bi2Te3), Lead Telluride (PbTe), Silicon-Germanium (SiGe) 

Alloys, Skutterudites. 

 

2. Half-Heusler Alloys 

Half-Heusler Alloys have a structure similar to that of the Heusler alloys but 

with a different stoichiometry. These materials exhibit good thermoelectric 

performance over a wide temperature range (500–800 K). They offer a good 

balance between electrical conductivity and low thermal conductivity, making 

them suitable for power generation. 

 

3. Nanostructured Thermoelectric Materials 

Nanostructuring can significantly enhance the thermoelectric performance by 

reducing the thermal conductivity without severely impacting electrical 

conductivity. This is often achieved through the creation of nanowires, quantum 

dots, or superlattices. 
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4. Organic Thermoelectric Materials 

Organic materials have recently been of interest because they are 

flexible, easy to process, and can be manufactured at low cost. However, 

they generally have lower thermoelectric performance than inorganic materials. 

Eg: Conducting Polymers, Organic-Inorganic Hybrid Materials 

 

 5. Perovskite-Based Thermoelectric 

Perovskite materials in particular, halide perovskites, have attracted much 

attention as potential thermoelectrics because of their ability to be engineered to 

possess tunable electronic properties and low thermoelectric conductivity. 

 

1.2.1 Perovskite Materials 

 

Perovskite materials are a group of compounds that crystallize with the mineral 

perovskite structure, CaTiO₃. The perovskite structure is probably one of the 

most versatile and important crystal structures in materials science, known for 

its unique physical properties and versatility. These materials can be inorganic, 

organic-inorganic hybrid, or fully organic. They all show interesting and useful 

properties, such as superconductivity, ferroelectricity, magnetism, and efficient 

light absorption. 

 

 Halide Perovskite Materials 

Halide perovskites are a sub-class of perovskite materials wherein the "X" in the 

ABX₃ or A3BX3 structure is a halide ion (chloride, bromide, or iodide). The 

interest in these materials has been considerable in the past few years, with an 

emphasis on photovoltaic solar cells, LEDs, lasers, and photodetectors. The 

halide perovskites have demonstrated notable properties, including high 

absorption efficiencies, tunable band gaps, and ease of fabrication; therefore, 

they are regarded as among the most promising candidates for next-generation 

optoelectronic applications. 

 

Structure of Halide Perovskites 

 

The ABX₃ structure in halide perovskites consists of: 

A-site: Large organic or inorganic cation 

B-site: A small metal cation  

X-site: A halide anion, such as chloride (Cl), bromide (Br), or iodide (I). 

 

The perovskite structure forms a 3D framework where the B 

cations, such as Pb²⁺, are surrounded by halide ions, such as I⁻, and the A 
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cations are located in the voids between these octahedral units. This 

structure is responsible for their excellent optoelectronic and thermoelectric 

properties, such as high electron mobility and efficient charge transport. 

 

Inorganic Halide Perovskites: 

Cesium Lead Iodide (CsPbI₃) is a quite notable example of an inorganic 

halide perovskite. These materials are purely inorganic, which often leads to enhanced 

thermal stability compared to organic-inorganic hybrids. It has properties such as 

enhanced stability and reduced susceptibility to moisture, but they may require higher 

temperatures for efficient processing. 

 

1.3 Introduction to material of this study 

 

The inorganic materials like Bi₂Te₃ (effective at room temperature), chalcogenides and 

half Heusler compounds (suited for mid-to-high temperatures like 400 –800 K), 

skutterudites and clathrates (500–900 K), Zintl phases (covering various temperature 

ranges for different compositions ~300–900 K), and oxide perovskites (best for high 

temperatures ~700–1200 K) are widely used as efficient TE materials across different 

temperature regimes [13–16]. However, the scarcity of raw materials such as tellurium 

and lead, along with the complex and costly fabrication processes, significantly hinder 

the commercialization of such inorganic TE materials. Inorganic perovskites are low-

cost efficient materials emerging as promising materials in science and technology 

development [17]. Owing to their unique crystal structure ABX3 (with A, and B as 

cations of different sizes and X as an anion that bonds with both cations) perovskite 

materials are widely used in chemistry, physics, and other fields with successful 

synthesization of hundreds of distinct materials that make up the large perovskite 

family including conductors, semiconductors, and insulators [18]. These perovskites 

reveal many intriguing properties such as high TE power, ferroelectricity, 

superconductivity, spin-dependent transport, etc. [19–23]. Further, exploring 

alternative perovskite frameworks A₃BX₃ such as Sr3NCl3, Ca3PX3, and Sr3PBr3, 

which naturally exhibit cubic symmetry like traditional ABX₃ perovskites, offers 

several advantages, including greater structural stability, improved tunability of 
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electronic, and optical properties and can show great promise for TE applications [24–

27]. For instance, Ba₃AsX₃ (X = F, Cl) has demonstrated ZT values of 0.92 and 0.82, 

respectively, which result from its favorable σ, optimized S, and a stable perovskite 

framework that supports efficient charge transport [24]. 

Advancing TE technology requires materials with inherently low κₗ. Recently, Tranås 

et al. investigated a wide range of materials using a machine-learning model and first-

principles calculations and identified some materials that have intrinsically low κₗ [28]. 

Among the identified candidates, Calcium Arsenide Bromide (Ca₃AsBr₃), a cubic 

halide perovskite, might stand out as a promising TE material, which motivated us to 

select it for further investigation. This material was first studied experimentally in 

1984 by Hadenfeldt et al. [29], where its thermal behavior, was also analyzed. 

Recently, theoretical work has explored some properties of Ca₃AsBr₃, but its TE 

performance remains unexplored [30]. Many studies have demonstrated how strain 

and spin-orbit coupling (SOC) reduce the bandgap in halide perovskites, potentially 

enhancing their TE efficiency [31,32].  Strain influences S and σ by modifying the 

bandgap or enhancing the density of states (DOS) near the Fermi level [33]. 

In this study, we have confirmed various stability parameters of halide perovskite 

Ca₃AsBr₃, like mechanical, dynamical, thermodynamical, and calculated its electronic 

properties. TE properties of Ca₃AsBr₃ were studied under the effect of compressive 

and biaxial strain using first-principles calculation with semiclassical Boltzmann 

transport theory; also, the relaxation time and mobilities of carriers were calculated 

using the AMSET code. In the present study, we also showed carrier doping as an 

effective way to enhance TE performance by analyzing properties at different carrier 

concentrations for both p-type and n-type material. Further insights into the lattice 

dynamics of the material by observing group velocity, Grüneisen parameter, and 

phonon lifetime helped in the better analysis of the thermal properties of the 

investigated structures. Our calculated ZT is enhanced for +3% strain at 700 K 

compared to the unstrained structure, but it is still not that high and thus leaves scope 

for further material optimization. 
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CHAPTER 2 

METHODOLOGY  

 
 
 

2.1. Computational Methods  

 

2.1.1. Density Functional Theory (DFT)  

 

 DFT gives us a powerful mathematical tool to analyse the many-body system’s 

electronic properties, including molecules, atoms, and even condensed matter. The 

theory enables us to determine the properties of such systems based on their spatially 

dependent electron density, making it a remarkably versatile tool within the field of 

computational condensed matter physics [56]. 

 

 

 
 

Figure 3: Represents the theme of Density functional theory 

 

 

Derivation and formalism 

 

The Hohenberg-Kohn theorem highlights a main aspect of the function, The electron 

density that takes part in minimizing the overall functional energy corresponds to the 
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real electron density associated with the complete solution of the Schrödinger 

equation. If we were acquainted with the functional form which was accurate, we could 

adjust the electron density iteratively until the functional's energy is minimized, 

providing a method for determining the pertinent electron density. In practice, we 

apply the variational principle using approximate functional forms. Using the Born-

Oppenheimer approximation, treated molecule’s nuclei or clusters are taken to be 

stationary, producing a static potential V where electrons are travelling. Then, a 

wavefunction Ψ (r1, …, rN) meeting the many-electron time-independent Schrödinger 

equation can be used to describe a stationary electronic state. 

 

Ĥ Ψ = [T̂ + V̂nu-e + V̂e-e] Ψ = [ Σi=1,2,..,N ((- ħ2/2mi)∇i
2) + Σi=1,2,..,N (Vnu-e(ri)) + Σi<jVe-

e(ri, rj)] Ψ = E Ψ                                                                                                    (1) 

 

Where, for the system of N electrons, Ĥ (Hamiltonian operator), E denotes the overall 

energy, T̂ denotes the kinetic energy operator, V̂nu-e denotes the potential energy 

operator corresponding to the external field due to the positively charged nuclei and 

V̂e-e denotes the operator corresponding to inter-electronic interactions. The operators 

T̂ and V̂e-e are identical for any N-electron system and for this reason, are called 

universal operators. The operator V̂nu-e depends on the specifics of a particular system. 

Owing to the inter-electronic interaction term corresponding to V̂e-e,  

The application of DFT allows to mapping of the many-particle problem, containing 

V̂e-e, to a one-particle problem free from V̂e-e. The electron density n(r), a crucial 

quantity in DFT, is given for a normalized Ψ by 

 

n(r) = N ∫ d3r2 … ∫ d3rNΨ*(r,r2,…,rN) Ψ(r,r2,…,rN) .                                             (2) 

 

Ψ0= Ψ[n0],                                                                                                             (3) 

 

The fact that the wavefunction is a functional of n0(r)immediately leads to the finding 

that the expectation value of an observable Ô when the system is in the ground state is 

also a functional of n0(r) 
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O[n0] = ⟨Ψ[n0] | Ô | Ψ[n0] ⟩.                                                                               (4) 

 

Further, it is possible to explicitly write the contributions due to the external potential 

⟨Ψ[n0] | V̂nu-e| Ψ[n0] ⟩ as: 

 

Vnu-e[n0] = ∫Vnu-e(r) n0(r) d3r .                                                                           (5) 

 

This argument can be extended and the contribution due to the external potential may 

be expressed as: 

 

Vnu-e[n] = ∫Vnu-e(r) n(r) d3r .                                                                            (6) 

 

T[n] and U[n] are referred to as universal functionals, but Vnu-e[n] being dependent on 

the specifics of the given system is referred to as a non-universal functional. Having 

specified a system, the minimization of the functional 

 

E[n] = T[n] + Ve-e[n] + ∫Vnu-e(r) n(r) d3r                                                       (7) 

 

The objective is to minimize the energy functional concerning n(r). The minimization 

process of the energy functional results in the determination of the ground-state 

electron density (n(r)), subsequently determining all other observables associated 

with the ground state. 

 

The Lagrangian method of multipliers offers a solution to the variational problem of 

minimizing the energy functional [E[n]. To initiate the process, we examine an 

energy functional that does not incorporate the inter-electronic interaction energy. 

 

 

Eeq[n] = ⟨Ψeq[n]| T̂ + V̂eq | Ψeq[n] ⟩,                                                                      (8) 
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where T̂ denotes the operator corresponding to the kinetic energy, and , V̂eq denotes the 

operator corresponding to the equivalent potential in which the particles are travelling. 

Eeq can be used to generate the following Kohn-Sham equations for this auxiliary, 

noninteracting system: 

 

[-(ħ2/2m) ∇2 + Veq(r) ]φi (r) = εiφi (r),                                                                  (9) 

 

which gives the orbitals φi that mimic the electron density n(r) of the actual many-

particle system 

 

N(r) = Σi=1,2,..,n | φi (r) |2.                                                                                      (10) 

 

The equivalent single-body potential may be expressed as 

 

Veq(r) = Vnu-e(r) + ∫(n(r’)/|r-r’|) d3r’ + VEC[n(r)],                                               (11) 

 

first term Vnu-e(r)is the extrinsic potential, the second term is the Hartree term 

expressing the inter-electronic Coulombic interaction, and the third term VEC denotes 

the exchange-correlation potential. Here the entirety of the many-body interactions is 

incorporated in the exchange-correlation potential VEC. The task of finding the solution 

to the KSE  is approached in an iterative self-consistent fashion. Initially, a starting 

guess for n(r)is made following which the corresponding Veq is determined and the 

Kohn-Sham equations are solved for the φi. Using these φi’s a new electron density is 

determined and the aforementioned sequence of steps is repeated. Up until 

convergence, this process is repeated [57]. 

 

 

2.1.2.Exchange correlation functional 

 
It is guaranteed that the exchange-correlation functional has a correct shape by the 

Hohenberg-Kohn theorem, which remains unknown. However, there is a specific 

scenario in which we can precisely derive this functional: the uniform electron gas. In 

this instance, we assume that the n(r) remains the same at all points in space, denoted, 
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n(r) 1⁄4 constant. While this seems limited in relevance to real materials, which exhibit 

variations in electron density defining chemical bonds and contributing to material 

properties, the uniform electron gas offers a practical means to apply the KSE. Using 

this method, the known exchange-correlation potential from the uniform electron gas 

at the electron density observed at that place is set at each position.. This is 

accomplished by analysing the same system employed in the KSE. Through the K-S 

formulation of DFT, the total energy is expressed as follows 

 

Etot, KS-DFT=  - ( ½ )Σi ∫ Ψi
* (r)∇2 Ψi(r)d3r – ΣJ∫ (ZJ/|r-RJ|) n(r) d3r +          

 

             (½)∫∫(n(r)n(r’)/|r-r’|) d3rd3r’ + EEC + (½) ΣI≠J((ZIZJ)/|RI-RJ|)                 (12) 

 

The first right-hand term side expresses the electronic non-interacting kinetic energy, 

the next term expresses the nuclei-electron interaction energy followed by the 

Coulombic inter-electronic interaction energy, the next term expresses the exchange-

correlation energy and the fifth term expresses the inter-nuclei interaction energy. The 

orbitals and the electron density n = Σ|Ψi |
2 are attained by self-consistently solving 

the Kohn-Sham equations: Self-consistently solving KSE yields the orbitals Ψiand the 

electron density n = Σ|Ψi |
2 that may be used for the determination of Etot, KS-DFT : 

 

( - ( ½ )∇2– ΣJ( ZJ/ |r-RJ|) ) + ∫ (n(r’)/|r-r’|) d3r’ + vEC (r) ) Ψi(r) = εi Ψi(r).             (13) 

 

The exchange-correlation energy functional EEC and potential 𝜈EC=𝛿EEC/𝛿n are the 

only terms in Etot, KS-DFT, and the Kohn-Sham equations that are not precisely known. 

As a result, the correctness of the estimated characteristics is primarily dependent on 

the EEC and 𝜈EC estimates. A multitude of exchange and correlation approximations 

have been developed. They can be divided into several categories, including GGA, 

LDA, meta-generalized gradient approximation (meta-GGA), and hybrid 

approximations [58]. 
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2.1.3.Generalised gradient approximation 

When the correlation functional was expanded in terms of the gradient of the density 

through the Taylor series and terminated it at some order. Such an approximation is 

known as gradient expansion approximation (GEA) , this was initiated by Herman in 

1969. It turned out that such an approximation often gave worse results and did not 

provide any improvement over local density approximations. This was because the 

gradients of the density in the real system become very large; as a result, such 

expansions break down. it was also found that the GEA does not satisfy most of the 

sum rules. Later only, it was realized that there was no need of such an expansion and 

it was possible to construct exchange-correlation functional, which was a functional 

of density as well as its gradient and satisfied the sum rules. This could be written 

as[59]  

 

Exc [n↑,n↓] = ∫ d2 r f(n↑(r),n↓(r),∇n↑,∇n↓)                                                      (14)            

2.1.4.The LAPW method - 

 

 The LAPW method is one of the most precise methods for finding crystal 

electrical structures. It is based on DFT and addresses exchange and correlation 

using approaches such as the local spin density approximation (LSDA). there are 

several types of LSDA potentials, and new advancements employing the 

generalized gradient approximation (GGA) are also available. On either a scalar 

or a vector relativistic method, relativistic effects in valence states can be 

incorporated. or a second variational technique that takes spin-orbit coupling into 

account The core states are treated in their entirety relativistically. 

 

2.1.5. Boltzmann Transport Theory 

 

The Boltzmann transport theory expresses the interplay between the driving effect of 

the extrinsic fields and the dissipative effect of scattering of carriers by phonons and 

defects. This theory can be used to explore how the thermal equilibrium distribution 
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of carriers changes in the presence of external forces and electron scattering 

mechanisms.  

The Boltzmann equation, which is presented below, serves as the foundation for the 

analysis of solid-state transport characteristics.  

 

∂f/∂t + v .∇rf– (e/ ħ) ε.∇kf=  (∂f/∂t)s                                                                                                  (15) 

 

The drift terms are on the left-hand side and the terms on the right are scattering term. 

Let us assume that these scattering processes are immediate and can change the 

electron's local state from k to k'. Define W(k,k') as the scattering rate between the k 

and k' states.if k' is empty and k state is filled. The rate at which scattering alters the 

distribution function fk(v) is 

 

(∂f(r,k,t)/∂t)s =  (V/(2π)3) ∫dk’{[1-f(r,k,t)]wkk’f(r,k’,t) – [1-f(r,k’,t)]wk’kf(r,k,t))}   (16) 

 

the 2𝜋3 denominator originates from the count of permissible states within a k-space 

d3k‘. In the integral, the initial term signifies the electron rate transition from ′k′ state 

(hence the factor ′fk′) to k  which is unoccupied hence the factor (1−fk). The subsequent 

term accounts for the loss aspect. In a state of steady equilibrium, there is no alteration 

in the fk(v), and the overall summation of the partial derivative terms remains constant. 

 

 
 

Figure 4: Scattering of particles in a crystal structure 
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2.2. Computer programs 

 

2.2.1 VASP 

 
The Vienna Ab Initio Simulation Package (VASP), is a tool employed for conducting 

quantum mechanical calculations. This involves the use of PAW, coupled with a plane 

wave basis set. VASP solves the many-body Schrödinger equation approximately by 

solving the KSE (in the framework of DFT) or by solving the Roothaan equations (in 

the framework of the Hartree-Fock approach). Additionally, certain hybrid functionals 

that inherit aspects from both the Hartree-Foch approach and the DFT are also 

available. VASP calculates key quantities through plane wave basis: single-electron 

orbitals, charge density, and local potential. The exchange the electrons and ions is 

either expressed with the help of the PAW method or with the help of norm-conserving 

or ultrasoft pseudopotentials[60]. 

 

VASP  carrier out calculations using 4 necessary input files, which are  

1. INCAR: This file is used to determine what kind of calculation has to be done 

on the investigated system There are certain tags specified in the INCAR file 

which we have to set to select a certain algorithm and set the parameters.  

 

2. POSCAR: this file gives the details of the system that we study. it consists of 

the atomic positions in the unit cell and the translational vectors. 

 

3. POTCAR: This file consists of the pseudopotential for every single atomic 

species which is present in Mendeleev’s 

 

4. KPOINTS: This file sets the mapping for the irreducible Brillouin zone in 

the crystal reciprocal lattice structure   
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Figure 5: The Logo of VASP 

 

 

 

2.2.2 WIEN2k 

 
 WIEN2k is a program designed to calculate the electronic structure of solids DFT.       

It utilizes the most precise methods for determining band structure: local orbitals 

(Lo) combined with the full-potential LAPW method. WIEN2k is an all-electron 

system that includes several features and accounts for relativistic effects. 

 
 

Figure 6: The logo of WIEN2k software  

 

 



 
 

 17 

2.2.3 BoltZTraP2 

 
BoltZTraP2 is a software that utilises the linearized BTE to determine smoothed 

Periodic function Fourier expressions and their accompanying transport coefficients 

for extended systems. It utilizes the band structure,  

The program may be used as a Python module or through a command-line interface. 

One of the most important merits of the procedure employed by BoltZTraP2 is the 

computational ease in the evaluation of transport coefficients due to its ability to 

efficiently compute group velocities of quasi-particles. 

BoltZTraP is frequently used in conjunction with the CRTA. Within the CRTA, the S 

becomes independent of the scattering rate. As a result, it is possible to obtain the 

Seebeck coefficient. The combination of CRTA and RBA makes the group velocities 

independent of μ and T which also proves to be computationally advantageous as it 

removes dependence of the transport distribution function from temperature and 

doping. A single scan over a fixed transport distribution function can be used for the 

evaluation of the dependence of the transport coefficients on temperature and doping. 

The Fermi distribution function is solely responsible for the temperature and doping 

dependency of the transport coefficients.:  E.g., only σ and κe dependent on 𝝉 are 

delivered by it [61] 

 

 

2.2.4 AMSET 

 
The AMSET code stands for ab initio scattering and transport method which uses the 

electronic Boltzmann transport equation (BTE) to calculate rates of scattering and 

mobilities using the Born approximation. The code takes into consideration of various 

scatterings like acoustic deformation potential (ADP), ionized impurity scattering 

(IMP), and polar optical phonon scattering (POP) which are the most common 

scattering types found in semiconductor-like materials. The ADP is responsible for the 

electron-phonon interactions. IMP represents the charge carriers scattering through the 

ionization of lattice, and POP includes the exchange of electrons and polar optical 

phonons. Matthiessen’s rule can find out the resultant carrier relaxation time, the 

inverse of scattering rates by the following equation [62]: 
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1 1 1 1

ADP IMP POP   
= + +            (17) 

Where ADP, POP, IMP
 are the time of relaxation from the ADP, POP and IMP 

scattering In ADP and IMP scatterings, electrons undergo elastic scattering, where 

they neither gain nor lose energy. On the other hand, POP scatterings show inelastic 

scattering behaviour characterized by phonon emission or absorption-induced energy 

changes. The Fermi golden rule is applied to compute both elastic and inelastic 

scattering rates. This rule allows us to calculate the transition rates from an initial 

quantum state nk to a quantum state mk q+ . 

( )
21 2

( , )nk mk q nm nk mk qg k q


   −

→ + += −                                                                               (18) 

 

 

h stands for Planck's constant, δ represents a Dirac delta function, and n relates to the 

Bose-Einstein distribution. The quantity nk pertains to the energy of the state nk , 

while ( ),nmg k q  signifies the coupling matrix element governing the specific 

scattering process under consideration. To attain the scattering rates, it is necessary to 

have deformation, static and high-frequency constants along with elastic constants and 

dense and uniform band structures.  

 

 



 
 

 19 

 
 

Figure 7: The Logo of AMSET 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Structural Properties 

 

Fig 8. (a) Unit crystal structure (Blue, Green, and orange colour represent Ca, As, 

and Br atoms, respectively) (b) Brillouin zone of Ca₃AsBr₃ 

Ca₃AsBr₃ crystallizes in the cubic Pm3̅m space group (221) and the Wyckoff positions 

occupied by Ca atoms, As atoms, and Br atoms are 3c (½, 0, 0), 1a (0, 0, 0), and 3d (0, 

½, ½), respectively as shown in Fig 8. Each As atom is surrounded by six Ca atoms, 

forming a corner-sharing octahedral with no tilting in these shared octahedra showing 

that they are perfectly aligned whereas each Br atom is bonded to four Ca atoms and 

these four Ca atoms are arranged in a square, flat (co-planar) [43]. We have performed 

structural optimization of this compound and fitted the Birch-Murnaghan equation of 

state to compute its equilibrium lattice parameters [44]. Table 1 lists the bond length 

and optimal structural characteristics. In the absence of strain, the lattice constant of 

Ca₃AsBr₃ is 5.96 Å, this finding confirms the correctness and dependability of our 

computational methods by showing agreement with both experimental data and 

previously published theoretical predictions [29,30,45].  
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Table 1: The optimized lattice parameters (in Å), Volume of the unit cell (in Å3), and 

bond lengths (in Å) of Ca3AsBr3, along with available experimental data  

System a = b = c Volume Bond lengths 

Ca-As Ca-Br 

Ca₃AsBr₃ 5.963a, 5.92b, 

5.926c, 5.95d 

212.07a, 

210.64d  

2.97a, 2.96c, 

2.98d 

2.97a, 2.96c, 

2.98d 

aPresent work,  Others work: b[29], c[45], d[30] 

 

 

3.2 Computational details  

 
Fig. 9: Plot for the ground state energy with respect to the k-mesh varied in x-, y-, and 

z-directions by keeping kx = ky = kz. 

 
 
The full potential linearized augmented plane wave (FP-LAPW) method, which is 

implemented in WIEN2K software, was used to perform the structural, elastic, 

electrical, and TE characteristics of Ca3AsBr3 within the framework of DFT [34,35]. 

The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) 
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was used to optimize the structure [36]. We employed an optimized 10×10×10 k-point 

mesh (Fig. S9) that produced 1000 k-points in the Brillouin zone, for the self-

consistent calculations. The cut-off energies of the core and valence states were set to 

-6 Ry, and the plane wave cut-off was set as RMT×kmax = 7. With an energy 

convergence of 0.000001 Ry, the Kohn–Sham equations were solved self-consistently. 

We used the Tran-Blaha modified Becke-Johnson (TB-mBJ) approach to determine 

the electronic band structure more accurately as most of the time GGA underestimates 

the band gaps of semiconductors [37]. It is a semi-local approximation to an atomic 

exact-exchange potential and a screening term. We used a mixing factor of 0.2 in the 

self-consistent calculations to ensure efficient convergence. For the density of states 

(DOS) calculations, we used a dense k-mesh of 25×25×25. The Boltzmann Transport 

Equation (BTE) was solved under the rigid band approximation (RBA) and constant 

relaxation time approximation (CRTA), as implemented in the BoltzTraP2 code, in 

order to determine the TE characteristics [38]. For Vienna Ab-initio Simulation 

Package (VASP) calculations, we set the cutoff energy for plane wave basis functions 

at 520 eV , and a width of 0.01 eV for Gaussian smearing was used. To ensure accuracy, 

a strict convergence criterion for energy was fixed to 1 × 10−7 eV for the self-consistent 

calculations. Using the AMSET code interfaced with the VASP,  we computed 

scattering rates and mobilities within the Born approximation by solving the electronic 

BTE in the momentum relaxation-time approximation [39,40]. Instead of using CRTA, 

this code estimates the relaxation time (𝜏) based on the number of distinct bands and 

𝑘-point dependent scattering approaches. We computed scattering rates in this work 

by taking into account the following: (a) acoustic deformation potential (ADP), which 

is in charge of the phonon-electron coupling; (b) ionized impurity (IMP) scattering that 

denotes the scattering of charge carriers by ionization of the lattice; and (c) polar 

optical phonon (POP) scattering, which takes into account the interaction among polar 

optical phonons and electrons. We used Matthiessen's rule to determine the resulting 

carrier 𝜏, which is the inverse of the scattering rate: 
1

𝜏
=

1

𝜏𝐴𝐷𝑃 +
1

𝜏𝐼𝑀𝑃 +
1

𝜏𝑃𝑂𝑃, 

where 𝜏ADP, 𝜏IMP, and 𝜏POP are the relaxation times received from the ADP, IMP, and 

POP scattering, respectively [41]. Contrary to POP scatterings, which show inelastic 

scattering, ADP and IMP scatterings show elastic scattering, where electrons do not 
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gain or lose energy. DFT and density functional perturbation theory (DFPT) were used 

to calculate the parameters to produce the scattering rates, including polar-phonon 

frequency, elastic constants, wave-function coefficients, static and high-frequency 

dielectric constants, potentials, and dense and uniform band structures. An 

interpolation factor of 50 is used to predict 𝜏 and carrier mobility. The finite 

displacement approach was used to calculate the phonon dispersion of material to 

verify the dynamical stability, by building a 2 × 2 × 2 supercell and using a 4 × 4 × 4 

k-point mesh using the Phonopy code [42]. Using the same supercell, we calculated 

anharmonic third-order interatomic force constants to obtain the lattice thermal 

conductivity using Phono3py [42] interfaced with VASP [39]. To obtain the lattice 

thermal conductivity and other related phonon properties such phonon density of 

states, phonon group velocity, Gruneisen parameter, and phonon lifetime we used a 

converged q-mesh of 25×25×25 to sample the Brillouin zone.  

 

3.3 Stability analysis 

3.3.1 Thermodynamic stability 

The thermodynamical stability of the compound is assessed through the calculation 

of the formation energy 𝐸𝑓𝑜𝑟 using the following relation [46]: 

( )
3 3

3 3Ca AsBr Ca As Br

for

E E E E
E

N

 − − − =            (a) 

where N is the total number of atoms in the unit cell and 𝐸𝐶𝑎3As𝐵𝑟3
 is the ground state 

energy of Ca3AsBr3, 𝐸𝐶𝑎, 𝐸𝐴𝑠, and 𝐸𝐵𝑟 are the total energy per atom for Ca, As, and 

Br in bulk form, respectively. The calculated 𝐸𝑓𝑜𝑟 is determined to be -0.14 eV/atom, 

showing that the compound is thermodynamically stable. 

3.3.2 Mechanical Stability  

For a cubic system, the mechanical stability is usually analyzed by elastic constants of 

the material through Born stability criteria: C11>0,  C44>0,  C11−C12>0,  C11+2C12>0 

[47]. The elastic constants calculated for considered unstrained and strained structures 

along with other mechanical parameters are mentioned in Table 2. Both unstained and 
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strained Ca3AsBr3 are found to satisfy the Born stability criteria and hence are 

mechanically stable. 

Table 2: The elastic constants C11, C12, and C33 are in GPa, Gv, Gᵣ, Gh, E, and B are in 

GPa, Poisson’s ratio, Pugh’s ratio, and A are dimensionless and melting temperature 

(K) corresponding to all compressive and tensile strains (in %) 

Strain (%) 

Elastic Properties  

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 

C11 116.53 115.17 106.05 71.58 62.49 53.47 36.36 

C12 13.70 7.31 5.42 15.20 13.75 14.24 17.28 

C44 21.26 30.69 28.59 15.37 13.49 10.84 9.16 

Voigt Shear Modulus 

(Gᵥ) 
33.32 39.99 37.28 20.50 17.84 14.35 9.31 

Reuss Shear Modulus 

(Gᵣ) 
27.77 37.08 34.56 18.79 16.43 13.21 9.31 

Hill Shear Modulus (Gₕ) 30.55 38.54 35.92 19.64 17.13 13.78 9.31 

Young’s Modulus (E) 75.59 89.14 82.43 49.41 43.18 35.39 24.69 

Poisson’s Ratio (ν) 0.24 0.16 0.15 0.26 0.26 0.28 0.33 

Bulk modulus (B) 47.98 43.26 38.96 33.99 30.00 27.31 23.64 

Anisotropy Factor (A) 0.41 0.57 0.57 0.55 0.55 0.55 0.96 

Pugh’s Ratio (B/G) 1.57 1.12 1.08 1.73 1.75 1.98 2.54 

Melting Temperature 1241.72 1233.68 1179.74 976.02 922.33 868.99 767.87 

 

The bulk modulus (B) is obtained by B=(C11+2C12)/3 and it decreases from 33.99 GPa 

for the unstrained structure to 23.64 GPa for 3% strain, whereas for 3% compressive 

strain it increases to 47.98 GPa. The shear modulus (Gh) is calculated based on the 
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Voigt, Reuss, and Hill approximations, and is given by the relation Gh=(Gv+Gr)/2, 

where Gv= (C11-C12+3C44)/5 and Gr=(5(C11-C12) C44)/(4C44+3(C11-C12)) [48]. The 

Young's modulus (E) determined by E=9BGh/(3B+Gh), decreases sharply with strain, 

i.e., from 75.59 GPa at −3% to 24.69 GPa at +3%. The Poisson's ratio (v) is represented 

as v=(3B-2Gh)/2(3B+Gh) its value rises from 0.26 for unstrained material to 0.33 for 

+3% strain indicating more lateral expansion upon axial compression with strain. 

Pugh’s ratio (B/G) categorizes materials as brittle (B/G<1.75) or ductile (B/G>1.75) 

and this ratio increased with strain from 1.57 at −3% to 2.54 at +3%, indicating a 

variation from a slightly brittle nature of compressive strains to highly ductile behavior 

under tensile strains. This ductility is advantageous for TE applications, as it enhances 

the ability of the material to withstand thermal and mechanical pressures during 

practical use. The anisotropy factor (A) is the degree of mechanical anisotropy in the 

material and it is found to be 0.41 at −3% strain and 0.96 at +3%. We have also 

calculated the melting temperature for different strains as mentioned in Table 2. It is 

estimated using the empirical relation: Tm = 553 K+(5.91/GPa) C11 ± 300 K, Tm 

decreases with increasing strain, indicating reduced thermal stability. The 

experimental value shows that deformation of the Ca3AsBr3 compound does not 

happen till 920 K [45], which verifies its stability. The value of calculated mechanical 

parameters are in good comparison to previously reported data [30]. 

 

3.3.3 Dynamical stability 

We have also analyzed the dynamical stability of the Ca3AsBr3 compound at ambient 

(Fig. 10a) and for 3% compressive and tensile strain (Fig. 10c and 10d) by obtaining 

phonon dispersion along with -X-M--R-X direction in the Brillouin zone (shown in 

Fig. 8b), calculated using finite displacement approach. The absence of the negative 

frequencies in the phonon dispersion validates the dynamical stability of the cubic 

phase of Ca3AsBr3 at ambient and under applied strain. The unit cell has 7 atoms, so 

there are 21 total phonon branches, i.e., 3 acoustic and 18 optical phonon modes in the 

phonon dispersion curve.  Higher branches of the dispersion spectra indicate the 

optical branches that correlate to the frequency range of 2–8 THz, while the lower 
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branches correspond to the acoustic branches with the corresponding frequency range 

of 0–2 THz. It can be observed that the phonon dispersion becomes narrower with the 

increase in tensile strain, which might lead to enhanced phonon scattering and low 

phonon group velocity, consequently, the reduced lattice thermal conductivity, 

 

Fig. 10: (a) The phonon dispersion curve of unstrained Ca3AsBr3 and (b) Phonon 

Density of states (c) phonon dispersion curve of Ca3AsBr3 under strain –3% (d) 

phonon dispersion curve of Ca3AsBr3 under strains +3% 

compared to the unstrained structure. On the other hand, the opposite trend is observed 

with the increase in compressive strain.  Additionally, the phonon density of states 

(PDOS) as shown in Fig. 10 (b), is determined to examine the atomic contributions to 

the acoustic and optical modes. The acoustic and low-frequency lying optical modes 

are mainly contributed by the vibrations of Br atoms with a negligible contribution of 

Ca and As atoms. The high-frequency optical modes are dominated by the vibrations 

of Ca atoms and the substantial contribution of As and Br atoms. There is no band gap 
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between acoustic and low-frequency optical modes, which might enhance phonon 

scattering and lead to low lattice thermal conductivity [49].  

 

 

3.4 Electronic Properties 

Table 3: Bandgaps for different strains 

 

 

 

The electronic band structures of both unstrained and strained material with and 

without SOC effect were calculated using both GGA and TB-mBJ to understand the 

electronic properties of Ca3AsBr3. The band gap values obtained using these 

functionals with and without SOC are presented in Table 3, corresponding to all 

considered structures. 

Strain (%) 

Band Gap in (eV) 

GGA 

(without 

SOC) 

GGA 

(with SOC) 

TB-mBJ 

(without 

SOC) 

TB-mBJ 

(with SOC) 

-3 1.559 1.480 2.275 2.205 

-2 1.642 1.564 2.356 2.287 

-1 1.664 1.587 2.364 2.296 

0 1.729 1.654 2.425 2.385 

1 1.744 1.670 2.440 2.374 

2 1.796 1.796 2.493 2.428 

3 1.842 1.842 2.541 2.447 
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Fig. 11: Electronic band structures and density of states of unstrained Ca3AsBr3 with 

and without SOC 

 

Fig. 12: Electronic band structures of Ca3AsBr3 with (upper panel) and without SOC 

(lower panel) under compressive strains 
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Fig. 13: Electronic band structures of Ca3AsBr3 with (upper panel) and without SOC 

(lower panel) under tensile strain 

 

 The band gap value of unstrained Ca3AsBr3 calculated using GGA-PBE is 1.65, which 

is in good agreement with the previously reported value of 1.63 by Islam et al. [30]. 

The electronic band structure of Ca3AsBr3 with 0% strain along the high symmetry 

path (R--X-M-) in the Brillouin zone is shown in Fig. 11. Also, the band structures 

for both compressive and tensile strains with and without SOC are shown in Fig 12 

and Fig 13. The Fermi energy level was taken at 0 eV to make it simpler to determine 

the bandgap. The band structure for this system revealed that it is a semiconductor with 

a direct bandgap and remains direct under the impact of all strains. Also, from the 

electronic structure, it is observed that the bandgap decreases and increases with the 

increase in the compressive and tensile strain, respectively, which might result in 

enhanced ZT for the strained structures. On comparing the dispersion curves of +3% 

and -3%, we obtained more dispersive valence and conduction bands in the vicinity of 

the Fermi level for the -3% strain, while more flattened bands are obtained for the 

+3%. It means a large Seebeck coefficient and enhanced electronic density of states 

can be observed for tensile strain, and a high carrier mobility and high electrical 

conductivity for the compressive strain for both types of charge carriers.  Further, 

analysis of the band structure shows that the material has triply degenerate states at -

point. This degeneracy affects the TE performance by impacting important parameters 
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such as S, σ, etc. The density of states (DOS) was obtained to get deeper insights about 

the electronic characteristics of the material, as shown bottom panel in Fig. 11. The 

high effective DOS near the Fermi level, contributed by the triply degenerate bands, 

increases the number of accessible states for charge carriers also leading to higher S. 

The degeneracy also provides multiple paths for carrier transport, reducing scattering 

and thereby improving the carrier mobility (μ), which directly increases the σ of the 

material. The balance between carrier concentration and S is also maintained by this 

triply degenerate bands, which enhances power factor, which affects ZT in a good way. 

The p and d orbitals of As atoms contribute most to the valence band (VB), whereas 

the d-orbital of Ca atoms contribute most to the conduction band (CB). The VB 

maxima show sharp peaks, suggesting the possibility of a high S. The 2 eV bandgap in 

DOS proves that it is ideal case for TE as it allows for selective carrier transport 

without excessive carrier excitation, maintaining a balance between σ and S. 

3.5 Thermoelectric Properties 

The TE properties of Ca3AsBr3 were analysed using the semi-classical BTE as 

implemented in the BoltzTraP2 code [38]. The semiclassical Boltzmann model under 

the CRTA and RBA for an anisotropic system was used to calculate the transport 

coefficients (S, σ, 𝜅𝑒), and the relations used were:  

𝑆𝛼𝛽(𝜇, 𝑇) =
1

𝑒𝑇𝜎𝛼𝛽(𝜇,𝑇)
∫ 𝜎𝛼𝛽(𝜀)(𝜀 − 𝜇) (−

𝜕𝑓(𝑇,𝜀,𝜇)

𝜕𝜀
) 𝑑𝜀                                                        (b) 

𝜅𝛼𝛽
𝑒 (𝜇, 𝑇) =

1

𝑒2𝑇𝛺
∫ 𝜎𝛼𝛽(𝜀)(𝜀 − 𝜇)2 (−

𝜕𝑓(𝑇,𝜀,𝜇)

𝜕𝜀
) 𝑑𝜀                                                               (c) 

𝜎𝛼𝛽(𝜇, 𝑇) =
1

𝛺
∫ 𝜎𝛼𝛽(𝜀) (−

𝜕𝑓(𝑇,𝜀,𝜇)

𝜕𝜀
) 𝑑𝜀                                                                                  (d) 

where 𝑓(𝑇, 𝜀, 𝜇) is the Fermi-Dirac function, e is the electron charge, Ω is the 

reciprocal space volume, 𝜎𝛼𝛽(𝜀) is the conductivity tensor, and ε is the carrier energy, 

which is expressed as: 

𝜎𝛼𝛽(𝜀) =
1

𝑁
∑ 𝜎𝛼𝛽(𝑖, 𝑘)

𝛿(𝜀−𝜀𝑖,𝑘)

𝑑𝜀𝑖,𝑘                                                                                             (e) 

From equations (b-d) it can be inferred that the transport coefficients have strong 

dependence on the carrier concentration and temperature. A positive 𝜇 shows a rise in 
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the Fermi level during n-type doping. On the other hand, the Fermi level falls with p-

type doping, resulting in a negative 𝜇 [50]. Therefore, for both p-type and n-type 

doping, we calculated S, σ,  𝜅𝑒 and associated PF and ZT as a function of temperature 

for charge carrier concentrations ± 1019cm−3, ± 1020 cm−3, and ± 1021 cm−3, and strains 

0%, ±1%, ±2%, and ±3%.  

 

For degenerate semiconductors, S is expressed as [51]:  

𝑆 =
8𝜋2𝑘𝐵

2

3𝑒ℎ2 𝑚∗𝑇 (
𝜋

3𝑛
)

2

3
         (f) 

where n is the charge carrier concentration, m* is effective mass, and T is the absolute 

temperature. As shown in Fig. 14 for unstrained and ±3% strain, at fixed carrier 

concentration, for both p- and n-type S increased with an increase in temperature. S 

increases with temperature in semiconductors due to the increasing influence of 

thermally excited carriers. However, at fixed temperature S, it decreased with an 

increase in carrier concentration from 1 × 1019 cm-3 to 1 × 1021 cm-3 for both p- and n-

type. S behaved in a similar way for ±1, ±2% strains. The maximum value observed of 

S for the unstrained structure is -458.23 µVK-1 at 700 K, also it is -434.283, -482.366, 

-464.998, -451.827, -458.449, and -468.289 µVK-1 for -1, -2, -3, +1, +2, and +3 % 

strains, respectively, at 700 K for optimal carrier concentrations. A negative sign 

represents n-type semiconducting behaviour. The S goes as high as 482 

µV/K at compressive strain, comparable to KInC₃ with S of 500 µV/K [52].  
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Fig. 14: Seebeck coefficient vs temperature for different carrier concentrations for 

different strains. 

As Boltztrap2 provides 𝜎 𝜏⁄ ,  𝜅𝑒 𝜏⁄  where 𝜏 is taken as constant value, so we used 

AMSET code to find exact carrier (hole/electron) relaxation time and overall mobility 

by assessing different scattering phenomena in system. We have taken into account the 

three fundamental carrier scattering rates (ADP, IMP, and POP). The upper panel of 

Fig. 15 displays the scattering rate across the temperature range (300–700 K), for 

unstrained material for 1×1020 cm-3 charge carrier concentration for both n- and p-type. 

It shows that the POP lifetimes are an order of magnitude larger than ADP and IMP 

scattering-based lifetimes which shows that POP scattering increased the overall 

lifespan value. The order of dominance for both conduction- and valence-band edges 

was POP > ADP > IMP for all strains. Additionally, the lower panel in Fig. 15 shows 

the mobility of charge carriers at concentration 1×1020 cm-3 for 0% strained structure, 

it shows at 300 and 700 K, the values for the total mobility of electrons (holes) are 

approximately 12.97 (9.05) cm2V−1s−1 and 5.51 (3.74) cm2V−1s−1, respectively. The µ 
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of the electrons is comparatively greater than that of the holes, confirming that the 

material could effectively raise the ZT for 𝑛-doping. Furthermore, we see a drop in 

ADP, POP, and overall mobilities as the temperature rises, this can be explained by the 

increased quantity of phonons contributing to high scattering. Since temperature often 

has less of an effect on IMP scattering, their mobility is rather constant over the 

temperature ranges. 

 

Fig. 15 Scattering rates and carrier mobility due to different scatterings by varying 

the carrier concentration of Ca3AsBr3 for both p-type and n-type 
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Fig. 16: Electrical conductivity vs temperature for different carrier concentrations for 

different strains 0%, ±1%, ±2%, and ±3% 



 
 

 35 

Fig. 16 illustrates that for 0%, ±1, ±2%, and ±3% strains, σ reduces for almost all 

doping concentrations with temperature. The small electrical conductivity is obtained 

for the p-type in comparison to the n-type as a consequence of the flatter valence bands 

around the Fermi level. The minimum σ for each strain was shown by carrier 

concentration 1×1019 cm-3 for n-type doping with values 14.64, 16.20, 17.89, 13.28, 

12.20, 11.32, and 9.42 × 104 Ω-1m-1 for -1, -2, -3, 0, +1, +2, +3% strain, respectively. 

The minimum value of σ for p-type doping with hole concentration of 1×1019 cm-3 is 

0.05, 0.06, 0.07, 0.04, 0.03, 0.03, and 0.02 × 104 Ω-1m-1 for -1, -2, -3, 0, +1, +2, +3% 

strain, respectively. The reduced electrical conductivity for tensile strain can 

be attributed to strain-induced band structure modifications. i.e., less dispersive 

conduction and valence bands (as depicted in Fig. 11) that increase the effective mass 

of charge carriers and hence decrease their carrier mobilities. The behaviour is still 

temperature-dependent, and phonon scattering is the leading factor at high 

temperatures. 

 

Fig. 17: Electronic thermal conductivity vs temperature for different carrier 

concentrations for different strains 

 The e for 0%, ±1, ±2%, and ±3% strains are displayed in Fig. 17. The highest values 

are shown by carrier concentration of 1×1019 cm-3 for n-type doping for each strain. 

This is an immediate consequence of their higher electrical conductivity 

as prescribed by the Wiedemann-Franz law which states that e and  are related by 

formula e = L  T (where L is Lorentz number) [53]. The weak temperature 

dependence implies that electron-phonon scattering is of lesser importance for heat 
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transport in this regime. Furthermore, increased carrier concentrations map to greater 

e, reinforcing the importance of charge carriers for electronic thermal conduction. 

This is important for TE performance because high e tends to decrease the ZT. 

 

Fig. 18: Power factor vs temperature for different carrier concentrations for different 

strains. 

The variation of PF for different temperatures at various doping concentrations is 

shown in Fig. 18 for 0 and ±3% strains. As charge carrier concentration increased from 

1 × 1019 cm-3 to 1 × 1021 cm-3, PF decreased for n-type doping. It increased for all 

temperatures for all carrier concentrations and this behaviour can be analysed on basis 

of their S and  as PF= S2 . The maximum values for -1, -2, -3, 1, 0, 1, 2, and 3% 

strains, respectively, are 11.66×10-4, 13.85×10-4, 13.81×10-4, 10.17×10-4, 9.36×10-4, 

8.95×10-4, and 8×10-4 Wm-1K-2 at 700 K each. We obtained higher PF values for the n-

type because of high carrier mobility and high electrical conductivity of the electron 

carriers, whilst the lower PF for the p-type, corresponding to all considered structures, 

and this behaviour is consistent with the electronic band structure (as shown in Fig. 

11). 

Using the single-mode relaxation-time approximation, l  was calculated as a 

summation of individual phonon modes λ contributions following the equation [54]: 

1
l C v v

NV
   



 =          (g) 



 
 

 37 

where V is the volume of the unit cell, and N is the number of phonons wavevectors, 

v v   are the tensor products of the group velocities, C are the heat capacities and

  are the lifetimes.  

 

Fig.19: Lattice thermal conductivity for various strains at temperatures 300 to 700 K 

Fig.19 shows the variation of l  for each strain with temperature. The value of l  

estimated at room temperature is 2.88 Wm-1K-1 for unstrained structure, and it 

decreased to 1.24 Wm-1K-1 at 700 K temperature. For -1%, -2%, -3%, +1%, +2%, and 

+3% strains, the minimum value of l  is at 700 K i.e. 1.45, 1.44, 1.24, 1.04, 0.82, and 

0.63 Wm-1K-1, respectively. This reduction in l  is advantageous for enhancing the 

high TE conversion efficiency of the material. Finally,   is obtained by adding e  and 

l . The calculated value of  is 0.72 Wm-1K-1 at 700 K temperature for n-type doping 

concentration of 1020 cm-3 for 3% tensile strain. 

To gain a deeper understanding of the lattice dynamics that causes a significant strain-

induced change in l , we analyzed the group velocity, phonon lifetime, and Gruniesen 
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parameter for Ca3AsBr3 as a function of frequency, as displayed in Fig. 20. The phonon 

vg was obtained from the phonon dispersion relations, which were calculated using 

force constants within harmonic approximation. As expected, and illustrated in Fig. 

20(a)–(c) for -3%, 0%, and 3% strains ,the strain in these systems has a substantial 

influence on both the gv  of phonons and hence the thermal transport of phonons. 

Consequently, when the tensile/compressive strain increases, the gv  of phonons are 

noticeably reduced/increased. Increasing tensile strain results in narrower dispersions 

for phonon modes, which is depicted in Fig. 10, and weaker bonds. To characterize the 

values of gv  quantitatively for each strain, the average gv  over the phonon modes is 

evaluated. The average gv  of Ca3AsBr3 for -3%, -2%, -1%, 0%, 1%, 2%, and 3%, 

respectively, comes out to 1.31, 1.21, 1.12, 1.04, 0.97, 0.92, and 0.89 (kms-1). Fig 

20(d)-(f) shows the mode Grüneisen parameter (γ) for unstrained and ±3%. The 

average value of γ for unstrained Ca3AsBr3 is 1.25 while on increasing the strain, the 

average γ rises from 0.57 to 1.68 for -3% to +3% strained structure, indicating 

enhanced lattice anharmonicity in the case of tensile strain. A higher γ implies stronger 

phonon–phonon scattering, which directly contributes to the observed reduction in 

phonon lifetime and thermal conductivity. Then, we considered the phonon lifetime to 

analyse the phonon-phonon scattering, as shown in Fig. 20(g)–(i) for 0 and ±3% strain 

at 300 K. It exhibits a consistent trend, a significant rise in phonon scattering is 

observed as the strain increases. Also, based on the distribution of phonon lifetimes, it 

is evident that the primary factor influencing l  is the acoustic branches, whereas the 

optical mode has a lesser impact. For all structures at a low frequency, we can see 

phonon lifetime reaches up to 30 ps. At mid to high frequencies, phonon lifetimes are 

shorter and clustered to a few picoseconds, indicating higher scattering. Therefore, the 

combined effects of reduced group velocity, shortened phonon lifetime, and increased 
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anharmonicity with tensile strain comprehensively explain the decreased lattice 

thermal conductivity in strained Ca₃AsBr₃. 

 

Fig. 20 (a-c) Phonon group velocity, (d-f) Mode Grüneisen parameter (g-i) phonon 

lifetime corresponding to all phonon modes as a function of frequency for the 

unstrained and ±3% strained Ca₃AsBr₃. 

The TE figure of merit (ZT) is a significant parameter used to evaluate the efficiency 

of a material for power generation from heat. The higher the value of ZT, better the 

TE efficiency, and thus by determining it, the influence of strain, doping and 

temperature on the TE performance of material were analysed.  
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Fig. 21 ZT value for various strains for 300-700 K temperature for fixed carrier 

concentrations for 0%, +3%, -3% strains. 
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Fig. 22: ZT value for various concentrations for 300-700 K temperature for different 

carrier strains ±1% and ±2% 

 

Fig. 21 shows that for 0 and ±3% strain for each temperature ZT is highest at 1×1020 

cm-3 for n-type doping, a similar trend is followed by ±1 and ±2% strains as shown in 

Fig. 22. The maximum values for -1, -2, -3, 0, 1, 2, and 3 % strains are 0.34, 0.4, 0.4, 

0.36, 0.38, 0.45, and 0.55, respectively at 700 K. Temperature and charge carrier 

concentration have an impact on the ZT value. The relationship between the S and 

carrier concentration is inverse for both electrical and thermal conductivity. As a result, 

it is not simply an assumption that raising the carrier concentration will result in a 

higher ZT value. This is due to the fact that while the   and   𝜅𝑒 both rise with 

increasing carrier concentration, the S falls. Overall, these coupled parameters are 

optimized in such a way that ZT is maximized. Our research revealed strained 

Ca₃AsBr₃ with a peak ZT of 0.55 at 700 K, being as high as of double perovskite 

Cs2AuYCl6 [55]. These findings indicate that strain engineering in Ca₃AsBr₃ can 

efficiently improve TE performance. 
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CONCLUSIONS AND FUTURE SCOPE 

 
In this study, we have examined the thermoelectric properties of halide perovskite 

Ca3AsBr3 for various strains at different temperatures for different carrier 

concentrations using density functional theory and the Boltzmann transport equation. 

The obtained structural parameters aligned well with the available experimental and 

theoretical values. We have verified mechanical, thermodynamic, and dynamical 

stability by calculating elastic constants, formation energy, and analysing the phonon 

dispersion relations, respectively. The electronic band structures showed that it is a 

semiconductor with a direct bandgap, and remains direct even with the compressive 

and tensile strain. The strain modified the electronic band structure and improved the 

mobility of the charge carrier and hence the PF. We found that isotropic tensile strain 

significantly reduces lattice thermal conductivity ( l ) by decreasing phonon group 

velocities, shortening phonon lifetimes, and enhancing anharmonicity, as reflected in 

the Grüneisen parameter. For 3% strain, a l  is found as 0.63 Wm-1K-1 and a peak 

value of ZT, i.e., 0.55, is obtained at 700 K for the n-type doping concentration of 1020 

cm-3. The ZT can be further enhanced by decreasing the bandgap by introducing 

vacancies or interstitials that can create defects, or by doping of some alloy or other 

element that can introduce more energy states or by further varying carrier 

concentration.  Also, material can be nanostructured, which can not only reduce the 

bandgap but also reduce lattice thermal conductivity. The electron and hole carrier 

concentrations explored in the present work are limited to a few discrete values, finer 

carrier concentration tuning further leads to improved PF and ZT.  The specific strain 

and carrier concentration is challenging to realize experimentally.  Therefore, further 

research on the proposed halide perovskite can investigate the combined effects of 

strain and defects, explore anisotropic strain conditions (e.g., uniaxial or biaxial strain), 

and consider additional band structure engineering strategies like alloying or doping. 

We believe that the present study will pave the way for future experimental 

thermoelectric energy harvesting studies on this material, which will help society to 

move towards net zero target with better economy. 
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