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Abstract

This investigation explores the analytic and geometric properties of complex func-

tions. Specifically, we focus on a novel starlike function that is analytic, denoted as

S∗
nc, which is uniquely associated with a non-convex domain. The class on which we

are going to work is defined as :

S∗
nc =

{
f ∈ A :

z f ′(z)
f (z)

=
1 + z
cos z

≺ φnc(z), z ∈ D

}
.

Here, A represents the set of functions analytic in D that satisfy f (0) = 0 and f ′(0) =

1. The subordination condition involves a specific non-convex function φnc(z) =

(1 + z)/cos z, which characterizes the geometric properties of functions belonging to

this class.

Our primary objective is to determine the sharp second-order of Hankel and Toeplitz

determinats for the logarithmic coefficients of functions f belonging to this newly de-

fined class S∗
nc. Furthermore, the study extends to finding these precise bounds for the

logarithmic coefficients of z their inverse functions, f−1. The determination of sharp

bounds for these determinants and coefficients provides crucial insights into the in-

tricate behavior and structural properties of these analytic functions within the speci-

fied non-convex domain, contributing significantly to the understanding of coefficient

problems in geometric function theory.
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Chapter 1

Introduction

This chapter defines classes of analytic functions and introduces some basic terms and

concepts that will be used in later chapters. This section introduces the fundamental

notations and offers a broad overview of the thesis, emphasizing several significant

findings.

Definition 1.0.1 (Univalent Function). [13] A function f (z) is called univalent in a

domain D if it is one-to-one on D; that is, whenever

f (z1) = f (z2) for z1, z2 ∈ D,

it necessarily follows that z1 = z2 [1].

Definition 1.0.2 (Analytic Function). [13] A complex function f (z) is analytic at a

point z0 within a domain D if it’s differentiable throughout a neighborhood of z0,

meaning its derivative, f ′(z0), exists. If this condition holds for every point in D, then

f is considered analytic across the entire domain.

For any point z ∈ D, an analytic function f can be represented by its Taylor series

expansion around z0:

f (z) =
∞

∑
n=0

an(z − z0)
n =

∞

∑
n=0

f (n)(z0)

n!
(z − z0)

n,

where f (n)(z0) denotes the n-th derivative of f evaluated at z0.
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We define M(D) as the set of functions that are analytic on the unit disk D [1].

Within this class, M[a, n] refers to the subclass consisting of functions whose series

expansion begins as:

f (z) = a + anzn + an+1zn+1 + · · ·

We introduce A be a set of functions f that are analytic in the open unit disk D, which

is normalized by f ′(0) = 1 and f (0) = 0 [35]. The Taylor’s expansion of a function

f ∈ A [13] is represented by:

f (z) = z +
∞

∑
n=2

dnzn

This function operates within the open unit disk D = {z ∈ C : |z| < 1} [13]. The

existence of a solution to the associated coefficient problem, along with its connection

to the compactness of a particular function space, highlights the importance of nor-

malization. Since analytic and univalent functions in a domain D preserve both the

magnitude and direction of angles, they are referred to as conformal mappings in D.

Assume S be the subclass of A. Koebe function [1], which maps D onto the complex

plane with the exception of a slit along the half-line (−∞,−1/4], is the function k given

by

k(z) =
z

(1 − z)2 =
∞

∑
n=1

nzn

defined on the open unit disc D = {z ∈ C : |z| < 1} [13]. A surprising conclu-

sion known as the Riemann Mapping Theorem [35] was announced by Riemann in

1851.Simply connected domain that isn’t the entire complex plane C can be confor-

mally mapped onto the unit disk D.

Theorem 1.0.1 (Riemann Mapping Theorem). [35] Suppose b ∈ D, D ⊂ C be a simply

connected domain. A distinct analytic function [1] g : D → C exists, such that

(A.) g(b) = 0 and g′(b) > 0;

(B.) g is univalent;

(C.) g(D) = Ω, where Ω is also a simply connected domain.

The domain under consideration is the unit disk in the complex plane, specified by

|z| < 1 [13].

Consequently, it is easy to convert the properties of a univalent function defined on

2



the simply connected domain D into the properties of the original function defined

on the open unit disk D [13]. Studying analytic functions inside the unit disk D is

therefore adequate. Since

f1(z) =
f (z)− f (0)

f ′(0)
, f ′(0) ̸= 0

symbolizes the image domain’s f (D) contraction and shifting with rotation and any

property of the function f1(z) is immediately translated into a corresponding property

of f (z). Furthermore, the presence of a solution to the coefficient-related problem

and its relationship to the compactness of a certain function space demonstrate the

significance of normalization.

Theorem 1.0.2 (Bieberbach’s Conjecture). [17] According to Bieberbach’s Conjecture,

for any function f ∈ S , the modulus of the n-th coefficient satisfies the inequality

|an| ≤ n for all n ≥ 2. This estimate is known to be sharp, with equality attained

exclusively by rotations of the Koebe function k(z) [1, 35]. The conjecture saw partial

proofs over time: Löwner, Garabedian, and Schiffer confirmed it for n = 3 and n = 4,

respectively. Pederson and Schiffer later proved it for n = 5, followed by Pederson and

Ozawa independently for n = 6. Ultimately, Louis de Branges provided a complete

proof for all coefficients n in 1985 [1].

Theorem 1.0.3 (de Branges’ Theorem (formerly Bieberbach’s Conjecture)). [53] If f ∈

S , then for all n ≥ 2, the coefficients of f satisfy the bound |an| ≤ n.

The extremal case is attained solely when f coincides with the Koebe function or a

rotated form of it. This theorem captures several fundamental properties of univalent

functions, including the classical covering result.

Theorem 1.0.4 (Koebe One-Quarter Theorem). Let f ∈ S . Then the image of the open

unit disk D under f contains the disk

{
z ∈ C : |z| < 1

4

}
.

A notable consequence of de Branges’ Theorem is the Distortion Theorem, which pro-

vides precise bounds on the modulus of the derivative for functions in the class S .

3



The Distortion Theorem stands as a prominent corollary of de Branges’ foundational

result which gives sharp upper and lower bounds for the modulus of the derivative of

functions in the class S .

Theorem 1.0.5 (Distortion Theorem). [35] Let f ∈ S and z = reiθ ∈ D. Then the

derivative f ′(z) satisfies the inequality:

1 − r
(1 + r)3 ≤ | f ′(z)| ≤ 1 + r

(1 − r)3 .

Equality is attained exclusively when f corresponds to a rotated form of the Koebe

function.

The next theorem is a direct implication of the Distortion Theorem, which provides

sharp estimates for the modulus | f (z)| when f belongs to the class S [13].

Theorem 1.0.6 (Growth Theorem). [35] Let f ∈ S . Then for all z ∈ D with |z| = r < 1,

the following inequality holds:

r
(1 + r)2 ≤ | f (z)| ≤ r

(1 − r)2 .

An intellectually striking corollary that emerges from Bieberbach’s theorem is the

Rotation Theorem, which encapsulates the angular behavior of univalent functions,

which provides a bound on the argument of the derivative of functions in S .

Theorem 1.0.7 (Rotation Theorem). [35] Let f ∈ S . Then for z ∈ D with |z| = r < 1,

the argument of the derivative satisfies:

| arg f ′(z)| ≤


4 sin−1 r

1 − r2 , if r ≤ 1√
2

,

log
(

1 + r
1 − r

)
, if r >

1√
2

.

Univalency of analytic functions is also studied using the Fekete-Szegő coefficient

functional.

Theorem 1.0.8 (Fekete–Szegő Theorem). [35] Let f ∈ S . Then for any real parameter

α ∈ (0, 1), the coefficients of f satisfy the inequality:

∣∣∣a3 − αa2
2

∣∣∣ ≤ 1 + 2e−2α.
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1.1 Classes of univalent and starlike functions

The notation S is used to represent the subclass of A that contains univalent func-

tions [13]. If f ∈ S , from this, the Taylor’s expansion of the series for f is derived as

[1]:

f (z) = z +
∞

∑
n=2

anzn = z + a2z2 + a3z3 + · · · (1.1.1)

In 1907, Koebe proved that for the class S , there exists an absolute constant k > 0

such that the boundary of the image f (D) cannot approach the origin closer than a

distance k [1]. Later, in 1916, Bieberbach established the elegant result that |a2| ≤ 2

for every function f ∈ S , and using this result, determined the value of k as 1/4. This

highlights the geometric significance of coefficient bounds in the study of univalent

functions. Furthermore, Bieberbach conjectured that |an| ≤ n for all n ≥ 2. Although

the conjecture remained unproven for a long time, it was verified for several subclasses

of S . In 1925, J. E. Littlewood showed that |an| ≤ en, demonstrating that the conjecture

held up to a multiplicative constant of e ≈ 2.718 [1, 35]. In 1985, Louis de Branges

finally proved the entire conjecture, utilizing specialized methods.

Definition 1.1.1 (Starlike Function). [1] Assume domain D which is subset of complex

domain is said to be starlike to a point r0 ∈ D if, for each point r ∈ D, then line segment

joining r0 and r lies entirely within D. That is,

(1 − p)r0 + pr ∈ D for all p ∈ [0, 1].

A function f (z) is designated as a starlike function if it maps the open unit disk D

onto a domain that is stellar with respect to the origin (i.e., r0 = 0) [13].

From an analytical perspective, if f (z) ∈ A and ℜ(z f ′(z)/ f (z)) > 0, then the function

f (z) is starlike with respect to the origin. The class of starlike functions is represented

as S∗ [13]

S∗ = { f ∈ A : ℜ
(

z f ′(z)
f (z)

)
> 0}.

Definition 1.1.2 (Starlike Functions of Order α). [1] A function f ∈ S is categorized

5



as starlike of order α if and only if

ℜ
(

z f ′(z)
f (z)

)
> α for all z ∈ D, 0 ≤ α < 1.

The category encompassing all such functions is denoted by S∗(α) [13]. In particular,

when α = 0, we recover the class S∗ of starlike functions, i.e., S∗(0) = S∗ [1].

Definition 1.1.3 (Convex Function). [1] A subset D ⊂ C is characterized as convex

if, given any two points r1, r2 residing in D, their connecting line segment remains

entirely subsumed by D. In other words,

pr1 + (1 − p)r2 ∈ D ∀p ∈ [0, 1].

A function f is designated a convex function provided it transforms the open unit disk

D into a convex domain [1].

From an analytical standpoint, A function f ∈ A is characterized as convex if it satis-

fies the prescribed inequality

ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> 0 for all z ∈ D.

The class of such functions is denoted by CV (also commonly denoted by K) [1], and

is defined as:

CV =

{
f ∈ A : ℜ

(
1 +

z f ′′(z)
f ′(z)

)
> 0

}
.

The inclusion of convex functions within the class of starlike functions is widely ac-

knowledged, since the image of a Every convex domain is necessarily starlike with

respect to any of its interior points. However, the reciprocal assertion typically proves

false. As an illustration, consider the function f (z) = z + z2

2 , which is starlike yet not

convex.

In 1936, Robertson [29] generalized the theory of the classes S∗ (starlike functions) and

CV (convex functions), which led to significant advancements in geometric function

theory.

Definition 1.1.4 (Convex Function of order α). [1] A function f ∈ S is classified as a

6



convex function of order α provided it fulfills the inequality

ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> α for all z ∈ D, where 0 ≤ α < 1.

The ensemble of all such functions is represented by CV(α) [1]. Notably, in the instance

where α = 0, the class CV(α) becomes equivalent to the class of convex functions; that

is,

CV(0) = CV .

A fundamental result known as Alexander’s Theorem establishes a correspondence be-

tween the classes CV(α) and S∗(α). Specifically,

f ∈ CV(α) ⇐⇒ z f ′(z) ∈ S∗(α).

This relationship provides a powerful tool for translating results between the classes

of convex and starlike functions.

Definition 1.1.5 (Bounded Turning [1]). A function f ∈ S is said to have bounded

turning (i.e., f ∈ R) if its derivative maps the unit disk D into the right half-plane.

That is,

ℜ
(

f ′(z)
)
> 0, for all z ∈ D.

Equivalently, this is satisfied if∣∣∣∣ f ′(z)− 1
f ′(z) + 1

∣∣∣∣ < 1, for allz ∈ D.

Theorem 1.1.1 (Alexander’s Theorem [35]). Discovered in 1915, Alexander’s Theorem

establishes a fundamental connection between convex and starlike functions. It states:

f ∈ CV ⇔ z f ′(z) ∈ S∗,

where CV and S∗ denote the classes of convex and starlike functions, respectively.

This equivalence extends naturally to the generalized classes:

f ∈ CV(α) ⇔ z f ′(z) ∈ S∗(α),

7



as detailed in [1].

Definition 1.1.6 (Close-to-Convex[35]). A function f ∈ A is termed close-to-convex

in the unit disk D if, as first stated by Kaplan in 1952, there exists a convex function g

and a real parameter θ ∈ (−π, π) such that

ℜ
(

eiθ f ′(z)
g′(z)

)
> 0, for all z ∈ D.

These subclasses of S follow a chain of inclusions, indicating a hierarchy of geometric

properties [1]:

CV ⊂ S∗ ⊂ CCV ⊂ S .

Theorem 1.1.2 (Noshiro–Warschawski Theorem [1]). Consider a function g ∈ A ana-

lytic in a convex region R. If there exists a real number γ such that

ℜ
(

eiγg′(w)
)
> 0, for all w ∈ R,

then g is univalent in R. Kaplan leveraged this theorem to establish the univalence of

all close-to-convex functions [52].

Definition 1.1.7 (Starlike with Respect to Symmetric Points [13]). A function f ∈ A is

said to belong to the class S∗
s , referred to as starlike with respect to symmetric points,

as introduced by Sakaguchi in 1959 [22], if the following condition holds for every

z ∈ D:

ℜ
(

2z f (z)
f (z)− f (−z)

)
> 0.

This condition implies that, as z moves counter-clockwise when z traverses the circle

|z| = r in the positive (counter-clockwise) direction, the image of z under f rotates

around the point f (−z) with a strictly positive angular velocity.

Definition 1.1.8 (Carathéodory Class). A function p(z) is an element of the Carathéodory

class P provided it is holomorphic in the open unit disk D, adheres to the normaliza-

tion condition

p(0) = 1,

8



and maintains a positive real part across D:

ℜ(p(z)) > 0 for all z ∈ D.

Such functions admit a Taylor series expansion of the form:

p(z) = 1 + p1z + p2z2 + · · · .

Functions within P are alternatively referred to as Carathéodory functions or func-

tions exhibiting a positive real part [1, 13].

A fundamental connection exists between the Carathéodory class P and the class of

starlike functions S∗, as expressed by:

f ∈ S∗ ⇔ z f ′(z)
f (z)

∈ P . (1.1.4)

Lemma 1.1.9. Consider p(z) as an element of the class P [1], whose representation is

provided by the power series

p(z) = 1 + p1z + p2z2 + · · · .

Subsequently, the ensuing estimate is valid:

|pn| ≤ 2 for all n ∈ N.

For any real number α ∈ [0, 1), the collection of holomorphic functions p ∈ P that

fulfill

ℜ(p(z)) > α for all z ∈ D

is called P(α). Employing the notion of subordination, a function p(z) having a posi-

tive real part may be characterized as

p(z) ≺ 1 + z
1 − z

for all z ∈ D,

owing to the fact that the function q(z) = 1+z
1−z maps the unit disk onto the right half-

plane [1, 13, 35].

9



Ma and Minda presented a broader methodology for characterizing various subclasses

of starlike and convex functions. Rather than employing the standard function q(z) =
1+z
1−z , they utilized a more generalized holomorphic function φ(z) [1, 35]. This function

φ is holomorphic in the unit disk, fulfills the conditions φ(0) = 1, φ′(0) > 0, and

yields, as its image of the disk, a domain that exhibits axial symmetry around the real

axis and is starlike relative to the point

The class S∗(φ), called Ma-Minda starlike functions, includes f ∈ A that is

z f ′(z)
f (z)

≺ φ(z) for each z ∈ D.

Similarly, the CV(φ), called Ma-Minda convex functions, includes functions f ∈ A

such that

1 +
z f ′′(z)
f ′(z)

≺ φ(z) for each z ∈ D.



Chapter 2

Hankel Determinant and Toeplitz

Determinant

This chapter explores the definitions of the Hankel and Toeplitz determinants as well

as how they differ across various analytic function sub-classes.

Hankel determinants are instrumental in demonstrating the rationality of functions

within the unit disk (D). This is particularly true for functions characterized by spe-

cific restrictions, such as those that can be expressed as the ratio of two bounded ana-

lytic functions having integral coefficients in their Laurent series. Furthermore, Han-

kel determinants have provided significant insights when applied to the analysis of

meromorphic functions.

One commonly studied form is the Hankel determinant Hh,s( f ), especially in the

framework of the Fekete–Szegö problem. For example, the second-order Hankel de-

terminant H2,1 is defined as H2,1 = a3a1 − a2
2, which has been generalised to H2,1 =

a3 − µa2
2, µ ∈ C. Pommerenke, in his foundational work [10], established that for

univalent functions, the Hankel determinant satisfies the inequality

|Hh,s( f )| < Ks−(h+3)/2+β, with β >
1

4000
,

where the constant K depends only on the order h.

11



Subsequently, Hayman [51] proved that for areally mean univalent functions, the second-

order Hankel determinant satisfies the bound |H2(s)| < A2s, for s = 1, 2, . . . , where

A is an absolute constant.

Further investigations by Pommerenke [10] in 1967 extended the analysis of Hankel

determinants to various function classes, including areally mean p-valent functions,

univalent functions, and starlike functions.

Additionally, ElHosh derived sharp modulus for determinants of Hankel in the class

of injective holomorphic function with positive Hayman index α, as well as for k-fold

symmetric and close-to-convex functions [35].

The hth Hankel-determinant for h, s ∈ N, or Hh,s( f ), for a function f ∈ A is as follows:

Hh,s( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

as as+1 · · · as+h−1

as+1 as+2 · · · as+h
...

... . . . ...

as+h−1 as+h · · · as+2(h−1)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.0.1)

The Fekete-Szegö problem is regarded as one of the most significant results concerning

univalent functions [3], [7], [55]. It relates to the coefficients of a function’s [1] and was

introduced by Fekete and Szegő [7]. In Fekete-Szegő problem the optimization of the

absolute value of the functional |a3 − µa2
2| is our goal. Numerous researchers have

carefully examined and analyzed this outcome. For the Koebe function, the equality is

valid. Keogh and Merkes [39] discovered the sharp upper bound of the Fekete-Szegő

|a3 − µa2
2| in 1969 for a few univalent function sub-classes.

The Fekete Szegő is obtained for h = 2 and s = 1 in (2.0.1);

H2,1( f ) =

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣ = a3 − a2
2.

Further, sharp bounds for the functional |a2a4 − a2
3| are obtained in (2.0.1) for h = 2

and s = 2, the second order Hankel-determinant [10]:

H2,2( f ) =

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ = a2a4 − a2
3

12



In recent years, many researchers have focused on finding sharp upper bounds for the

Hankel determinant |H2,2( f )|. Exact estimates of |H2,2( f )| have been obtained for im-

portant subclasses of univalent functions, namely the classes R (functions of bounded

turning), S∗ (starlike functions), and K (convex functions).

Recently, Ye and Lim showed that every n× n matrix over C can, in general, be written

as a product of certain Toeplitz or Hankel matrices. Both Hankel and Toeplitz matrices

play a key role in many areas of mathematics due to their wide range of applications

[32]. In particular, Toeplitz matrices and their determinants are important tools in both

theoretical and applied mathematics. They appear in various fields such as complex

analysis, quantum physics, image and signal processing, and the theory of integral

equations. A detailed overview of these applications can be found in the related sur-

vey literature.

It is worth noting that in a Toeplitz matrix, each diagonal from top-left to bottom-right

contains the same element, while in a Hankel matrix, the elements along the anti-

diagonals (from top-right to bottom-left) are constant.

For a function f ∈ A, the hth Toeplitz determinant, Th,s( f ) as:

Th,s( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

as as+1 · · · as+h−1

as+1 as · · · as+h−2
...

...
...

...

as+h−1 as+h−2 · · · as

∣∣∣∣∣∣∣∣∣∣∣∣
Bieberbach approximated H2,1( f ) for the class S [9, 10]. For f ∈ A, the hth Hankel and

Toeplitz determinant, Hh,s(Ff /2) and Th,s(Ff /2 where h, s ∈ N are entries of logarith-

mic coefficients [28](refer Chapter 4), it is expressed as

Hh,s(Ff /2) =

∣∣∣∣∣∣∣∣∣∣∣∣

δs δs+1 · · · δs+h−1

δs+1 δs+2 · · · δs+h
...

... . . . ...

δs+h−1 δs+h · · · δs+2(h−1)

∣∣∣∣∣∣∣∣∣∣∣∣
, Th,s(Ff /2) =

∣∣∣∣∣∣∣∣∣∣∣∣

δs δs+1 · · · δs+h−1

δs+1 δs · · · δs+h−2
...

... . . . ...

δs+h−1 δs+h−2 · · · δs

∣∣∣∣∣∣∣∣∣∣∣∣
.

Kowalczyk et al. [9] studied the Hankel determinant with entries of logarithmic coef-

ficients. In this, we’re going to study about H2,1(Ff ) which can be found with the help
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of H2,1( f ) = a2a4 − a2
3, where f ∈ S (following logarithmic function methodology).

Given the widespread significance of various coefficients in geometric function theory,

Hankel determinant which is formulated from the logarithmic coefficients of functions

f ∈ S , has been recently put forth by Kowalczyk and Lecko [28]. Drawing motiva-

tion from this concept and established theories of determinants [9], this work under-

takes an analysis of the Hankel determinant Hh,s(Ff−1/2) and the Toeplitz determi-

nant Th,s(Ff−1/2). For these particular determinants, the constituent elements are the

logarithmic coefficients of the inverse functions f−1, where f−1 ∈ S [32]. A more com-

prehensive discussion of these inverse logarithmic coefficients is provided in Chapter

4.

The determinant Hh,s(Ff−1/2) is expressed as follows:

Hh,s(Ff−1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣

∆s ∆s+1 · · · ∆s+h−1

∆s+1 ∆s+2 · · · ∆s+h
...

... . . . ...

∆s+h1 ∆s+h · · · ∆s+2(h−1)

∣∣∣∣∣∣∣∣∣∣∣∣
and consequently the determinant Th,s(Ff−1/2) is

Th,s(Ff−1/2) =

∣∣∣∣∣∣∣∣∣∣∣∣

∆s ∆s+1 · · · ∆s+h−1

∆s+1 ∆s · · · ∆s+h−2
...

... . . . ...

∆s+h−1 ∆s+h−2 · · · ∆s

∣∣∣∣∣∣∣∣∣∣∣∣
.

Hankel and Toeplitz determinants are a well-researched topic for function classes like

starlike, convex, and their subclasses, with sharp bounds established in key studies

[9, 23, 33]. Though Hankel determinants involving logarithmic coefficients have been

a subject of recent inquiry for specific function subclasses such as close-to-convex,

strongly starlike, and strongly convex functions [13], pinning down sharp bounds for

Toeplitz determinants with logarithmic coefficients of inverse functions particularly

under specific symmetry or domain constraints—is still an open problem.

Progress has been made in related areas. For example, Zaprawa (2021) derived sharp

bounds for initial logarithmic coefficients in classes like S∗
S (starlike with symmetric

points) and KS (convex with symmetric points) [35, 28]. Recent studies have also ad-
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dressed 2nd and 3rd order Toeplitz determinants for f−1 in Ma-Minda classes, which

generalise many classical function families.

These results build on methods using coefficient relationships and growth theorems.

For instance, logarithmic coefficients of inverse functions satisfy δ1 = −a2/2 and

δ2 = −1
2

(
a3 − 3

2 a2
2
)
, enabling determinant calculations through Taylor coefficients.

Toeplitz matrices (with constant diagonals) and their determinants have wide appli-

cations in complex analysis, signal processing, and operator theory. A comprehensive

survey by Ye and Lim [21] details their mathematical significance across pure and

applied fields. Current challenges involve extending these results to higher-order de-

terminants and non-symmetric function classes.
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Chapter 3

Non-Convex Domain

This chapter investigates non-convex domains regions where straight lines between points may

cross outside the domain—and their distinct geometric properties, such as irregular bound-

aries and asymmetric connectivity. Unlike convex shapes, these domains introduce analytical

complexities that influence function behavior, particularly in coefficient growth and boundary

interactions. A central goal is establishing sharp bounds for Taylor coefficients (e.g., |an|) of

analytic functions defined on such domains, leveraging extremal function methods and subor-

dination theory to generalize classical convex-domain results.

Kumar and Giri recently brought forth a new classification of starlike functions, which

are connected to non-convex domains [42]. This classification is characterized as fol-

lows:

S∗
nc =

{
f ∈ A :

z f ′(z)
f (z)

≺ 1 + z
cos z

, z ∈ D

}
. (3.1)

Function f is in S∗
nc class iff it admits the following integral form representation:

f (z) = z exp
(∫ z

0

q(t)− 1
t

dt
)

, (3.2)

where the auxiliary function q(z) is analytic and subordinate to φnc(z) = (1+ z)/ cos z,

i.e., q(z) ≺ φnc(z) [42].

For integers n ≥ 2, define the family of canonical functions fn(z) satisfying fn(0) = 0
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Figure 3.1: Image of the unit disk under the function φnc.

and f ′n(0) = 1, and given by:
z f ′n(z)
fn(z)

=
1 + zn−1

cos zn−1 . (3.3)

Each function fn is in S∗
nc class. In particular, the case n = 2 yields an important

extremal function:

f̃ (z) = z exp
(∫ z

0

1 + t − cos t
t cos t

dt
)
= z + z2 +

3
4

z3 +
7
12

z4 +
35
96

z5 + · · · , (3.4)

which frequently arises in extremal problems within the class S∗
nc.

Following the framework established by Ma and Minda [54], for any function f ∈ S∗
nc,

the following subordination relationships hold:

f (z)
z

≺ f̃ (z)
z

and
z f ′(z)

f (z)
≺ z f̃ ′(z)

f̃ (z)
.

These relations confirm that f̃ serves as a dominant function in the class S∗
nc with

respect to these key functionals.

Theorem 3.0.1. [42]Let f ∈ S∗
nc and f̃ be the extremal function given by (3.4). Then the

following holds:
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1. Growth theorem[42]: For |z0| = r < 1, we have

− f̃ (−r) ≤ | f (z0)| ≤ f̃ (r).

Equality holds for some z0 ̸= 0 if and only if f is a rotation of f̃ .

2. Rotation theorem: For |z0| = r < 1, we have

∣∣∣∣arg
{

f (z0)

z0

}∣∣∣∣ ≤ max
|z|=r

arg
{

f̃ (z)
z

}
.

3. Distortion theorem: For |z0| = r < 1, we have

f̃ ′(−r) ≤ | f ′(z0)| ≤ f̃ ′(r).

Equality obtains for some z0 ̸= 0 if and only if f constitutes a rotation of f̃ .

Theorem 3.0.2 (see [42]). Let f ∈ S∗
nc, then

|a3 − µa2
2| ≤


−µ + 3

4 , µ < 1
4

1
2 , 1

4 ≤ µ ≤ 5
4

µ − 3
4 , µ > 5

4 .

The bound is sharp.

Theorem 3.0.3 (see [42]). If the function f (z) = z + ∑∞
n=2 anzn belongs to the class S∗

nc,

then

|a2| ≤ 1, |a3| ≤
3
4

, |a4| ≤
7

12
, |a5| ≤

1
3

.

The bounds of an for n = 2, 3, 4 are sharp.

Inclusion Relations and Radius Problems

In 1999, Kanas and Wiśniowska [40] introduced the class

k-ST =

{
f ∈ A : Re

z f ′(z)
f (z)

> k
∣∣∣∣z f ′(z)

f (z)
− 1
∣∣∣∣} ,
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of k-starlike functions. Geometrically, the boundary of the domain

Ωk = {w ∈ C : Re w > k|w − 1|}

represents an ellipse for k > 1, a parabola for k = 1, and a hyperbola for 0 < k < 1.

The next result establishes the inclusion relation between the class k-ST and the fol-

lowing classes (see [1, 3, 35]):

S∗(M) =

{
f ∈ A :

∣∣∣∣z f ′(z)
f (z)

− M
∣∣∣∣ < M

}
, M >

1
2

,

ST p(a) =
{

f ∈ A : Re
(

z f ′(z)
f (z)

+ a
)
> |w − a|

}
, a > 0,

and

µ(β) =

{
f ∈ A : Re

(
z f ′(z)

f (z)

)
< β

}
, β > 1.

A function f in the class S∗(M) is referred to as an M-starlike function.

Theorem 3.0.4 (see [42]). k-ST ⊂ S∗
nc for k ≥ 4 cos 1

4 cos 1−cos 2−1 .

Proof. Consider a function f ∈ k-ST , and let Ωk represent the region defined by the

inequality Re w > k|w − 1|. For values of k > 1, the boundary curve of this region,

denoted δk, constitutes an ellipse. This ellipse is described by the equation:

x2 = k2(x − 1)2 + k2y2.

Rearranging this equation, we can express the ellipse in its standard form:

(x − x0)
2

u2 +
(y − y0)

2

v2 = 1,

where the parameters are given by:

x0 =
k2

k2 − 1
, y0 = 0, u =

k
k2 − 1

, v =
1√

k2 − 1
.

To ensure that the ellipse δk is contained within the region Ωnc, a condition must be

met. Since u > v, the ellipse δk will lie inside Ωnc if and only if the range of x0 + u
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satisfies

x0 + u ≤ 4 cos 1
1 + cos 2

.

A simple calculation confirms that this condition is satisfied whenever k ≥ 4 cos 1
4 cos 1−cos 2−1 .[42]
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Chapter 4

Logarithmic Coefficient and Inverse

Logarithmic Coefficient

The fundamental objective herein is to is to investigate the behavior and properties of

logarithmic coefficients and inverse logarithmic coefficients associated with analytic

and univalent functions. These coefficients play a crucial role in the geometric function

theory, particularly in understanding the distortion, growth, and covering properties

of such functions. In this context, we will examine sharp bounds and structural results

related to these coefficients. Special emphasis will be placed on deriving estimates for

the second-order Hankel determinant, which captures nonlinear interactions among

the coefficients. We will present and prove several theorems concerning the bounds

of Hankel determinants formulated in terms of logarithmic and inverse logarithmic

coefficients, highlighting their relevance in the broader scope of complex analysis and

univalent function theory.

Definition 4.0.1 (Logarithmic Coefficients). The logarithmic coefficients δn for a func-

tion f belonging to the class S are established through its series expansion. Specif-

ically, for z within the punctured unit disk D \ {0}, these coefficients arise from the

following definition:

log
(

f (z)
z

)
= 2

∞

∑
n=1

δnzn. (4.0.1)
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where δn quantify the interaction between f and the logarithmic mapping. These co-

efficients play a critical role in growth/covering theorems and extremal problems.

Definition 4.0.2 (Milin’s Conjecture). [35, 13] Milin conjectured that for f ∈ S ,

n

∑
m=1

m

∑
k=1

(
k|δk|2 −

1
k

)
≤ 0,

with the sole circumstance under which equality is achieved is when f is a rotation

of the Koebe function k(z) = z/(1 − z)2. Proved by de Branges in 1984, this con-

jecture resolved the Bieberbach conjecture. Despite the Koebe function’s extremality,

logarithmic coefficients |δn| do not universally satisfy |δn| ≤ 1/n, even asymptotically.

Definition 4.0.3 (Sharp Bounds for Class S). For f ∈ S , the sharp bounds of the first

two logarithmic coefficients are:

|δ1| ≤ 1 and |δ2| ≤
1
2
+

1
e2 .

No sharp bounds are known for |δn| when n ≥ 3, highlighting a major open problem

in geometric function theory.

Lemma 4.0.4 (Logarithmic Coefficient Relations). For f (z) = z + ∑∞
n=2 anzn ∈ S , the

logarithmic coefficients satisfy:

δ1 =
1
2

a2,

δ2 =
1
2

(
a3 −

1
2

a2
2

)
,

δ3 =
1
4

(
a4 − a2a3 +

1
3

a3
2

)
,

δ4 =
1
4

(
a5 − a2a4 + a2

3 −
1
2

a2
2a3 −

1
4

a4
2

)
,

.

The 2nd order Hankel determinant for Ff (z) is represented by:

H2,1(Ff ) = δ1δ3 − δ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)
. (4.0.2)
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Under rotation fθ(z) = e−iθ f (eiθz), the determinant’s magnitude remains invariant:

∣∣H2,1(Ffθ
)
∣∣ = ∣∣H2,1(Ff )

∣∣ .

Theorem 4.0.1 (Fekete-Szegö Inequality). For f ∈ S and λ ∈ [0, 1), the sharp inequal-

ity

|a3 − λa2
2| ≤ 1 + 2e−2λ/(1−λ)

holds. This result, critical to coefficient estimation, generalises classical bounds for a3

and a2
2.

Definition 4.0.5 (Koebe’s 1/4 Theorem). Let f ∈ S (univalent with f (0) = 0, f ′(0) =

1). Then the image of D under f , denoted f (D), encompasses the disk D(0, 1/4),

meaning:

{w ∈ C : |w| < 1/4} ⊂ f (D),

and the constant 1/4 is sharp. The function that achieves this bound is the Koebe

function:

k(z) =
z

(1 − z)2 ,

which maps the unit disk D to the complex plane excluding the ray from negative in-

finity to −1/4, specifically C\ (−∞,−1/4]. This particular function acts as an extremal

example for a variety of questions in geometric function theory [1]. The theorem en-

sures the existence of a local inverse F = f−1 near the origin, enabling the study of

inverse coefficients.

Definition 4.0.6 (Inverse Logarithmic Coefficients). Let f ∈ S and f−1(w) = F(w) =

w + ∑∞
n=2 Anwn serve as its inverse function, which is holomorphic within the disk

|w| < 1/4. The inverse logarithmic coefficients ∆s are defined by:

log
(

F(w)

w

)
= 2

∞

∑
s=1

∆sws, |w| < 1
4

.

Regarding functions f ∈ S , Ponnusamy [32] established the precise inequality:

|∆s| ≤
1
2s

(
2s
s

)
(s ∈ N),
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where equality is attained only for rotations of the Koebe function. These coefficients

connect the geometry of to it’s inverse’s analytic properties.

4.1 Important lemmas

To reinforce the key findings, we now present several important lemmas that form the

foundation for proving theorems related to these determinant bounds. These lemmas

play a critical role in establishing sharp estimates and ensuring the mathematical rigor

of the analysis presented in this section.

The following lemma is due to Kwon, Lecko, and Sim [34].

Lemma 4.1.1 (see [34]). Let p ∈ P . Then, for certain x, δ, ρ ∈ D = {z ∈ C : |z| ≤ 1},

the following relations hold:

2c2 = c2
1 + (4 − c2

1)x,

4c3 = c3
1 + 2c1x(4 − c2

1)− x2c1(4 − c2
1) + 2(1 − |x|2)(4 − c2

1)δ,

8c4 = c4
1 + x

[
c2

1(x2 − 3x + 3) + 4x
]
(4− c2

1)− 4(4− c2
1)(1−|x|2)

[
c1(x − 1)δ + x̄δ2 − (1 − |δ|2)ρ

]
.

In this context, x, δ, and ρ represent complex numbers, each with a modulus not ex-

ceeding 1. Furthermore, if we set c1 = c, |x| = m, and |ρ| = y, these real quantities are

constrained within the intervals [0, 2], [0, 1], and [0, 1] in their respective order.

The following lemma is from R. J. Libera and E. J. Zlotkiewicz [36, 38].

Lemma 4.1.2. [see [36], [38]] Let p ∈ P , with c1 ≥ 0, then

c1 = 2ξ1, (4.1)

c2 = 2ξ2
1 + 2(1 − ξ2

1)ξ2, (4.2)

c3 = 2ξ3
1 + 4(1 − ξ2

1)ξ1ξ2 − 2(1 − ξ2
1)ξ1ξ2

2 + 2(1 − ξ2
1)(1 − |ξ2|2)ξ3 (4.3)

for some ξ1 ∈ [0, 1] and ξ2, ξ3 ∈ D = {z ∈ C : |z| ≤ 1}. For ξ1 ∈ T = {z ∈ C : |z| = 1},

we can find a unique function p ∈ P with c1 as in (4.1),

p(z) =
1 + ξ1z
1 − ξ1z

, z ∈ D. (4.4)
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For ξ1 ∈ D and ξ2 ∈ T, we can find a unique function p ∈ P with c1 and c2 as in (4.1)

and (4.2),

p(z) =
1 + (ξ1ξ2 + ξ1)z + ξ2z2

1 + (ξ1ξ2 − ξ1)z − ξ2z2
, z ∈ D. (4.5)

For ξ1, ξ2 ∈ D and ξ3 ∈ T, we can find a unique function p ∈ P with c1, c2 and c3 as

in (4.1) to (4.3),

p(z) =
1 + (ξ2ξ3 + ξ1ξ2 + ξ1)z + (ξ1ξ3 + ξ1ξ2ξ3 + ξ2)z2 + ξ3z3

1 + (ξ2ξ3 + ξ1ξ2 − ξ1)z + (ξ1ξ3 − ξ1ξ2ξ3 − ξ2)z2 − ξ3z3 , z ∈ D. (4.6)

The following lemma is due to Choi et al. [16].

Lemma 4.1.3. [16] Let A, B, C be any real numbers and

Y(A, B, C) = max
{
|A + Bz + Cz2|+ 1 − |z|2 : z ∈ D

}
.

(i) If AC ≥ 0, then

Y(A, B, C) =

|A|+ |B|+ |C|, |B| ≥ 2(1 − |C|),

1 + |A|+ B2

4(1−|C|) , |B| < 2(1 − |C|).

(ii) If AC < 0, then

Y(A, B, C) =


1 − |A|+ B2

4(1−|C|) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1 − |C|),

1 + |A|+ B2

4(1+|C|) , B2 < min{4(1 + |C|)2,−4AC(C−2 − 1)},

R(A, B, C), otherwise,

where

R(A, B, C) =


|A|+ |B| − |C|, |C|(|B|+ 4|A|) ≤ |AB|,

−|A|+ |B|+ |C|, |AB| ≤ |C|(|B| − 4|A|),

(|C|+ |A|)
√

1 − B2

4AC , otherwise.

The following lemma is due to [15].

Lemma 4.1.4. [15] Let w(z) = c1z + c2z2 + c3z3 + . . . be a Schwarz function. Then

|c1| ≤ 1, |c2| ≤ 1 − |c1|2, and |c3| ≤ 1 − |c1|2 −
|c2|2

1 + |c1|
.
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4.2 Main Results

This section is devoted to deriving bounds for the Hankel and as well as Toeplitz

determinants formed from the logarithmic coefficients of starlike functions associated

with a non-convex domain, represented by the class S∗
nc (see [20]). These determinants

play a significant role in analyzing the geometric characteristics and the coefficient

structure of functions belonging to thisclass.

Theorem 4.2.1. Let f ∈ S∗
nc, then

|H2,1(Ff /2)| ≤ 1
16

.

This is best possible result.

Proof. Consider a function f ∈ S∗
nc. By definition, there will be an analytic Schwarz

function w(z), such that
z f ′(z)

f (z)
=

1 + w(z)
cos w(z)

, z ∈ D.

Define the function p(z) via the Möbius transformation:

p(z) =
1 + w(z)
1 − w(z)

= 1 +
∞

∑
n=1

cnzn. (4.7)

Inverting the transformation, we express w(z) in terms of the coefficients cn as follows:

w(z) =
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2 +

1
2

(
1
4

c3
1 − c1c2 + c3

)
z3

+
1
2

(
c4 − c1c3 −

1
2

c2
2 −

1
8

c4
1 +

3
4

c2
1c2

)
z4 + · · · .

(4.8)

Now, recall the logarithmic derivative expansion of f :

z f ′(z)
f (z)

= 1 + a2z + (2a3 − a2
2)z

2 + (a3
2 − 3a2a3 + 3a4)z3

+ (4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3)z

4 + · · · .
(4.9)
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We also expand the other side of the identity involving w(z) using the Taylor series:

1 + w(z)
cos w(z)

= 1 +
c1z
2

+

(
c2

2
−

c2
1

8

)
z2 +

1
16

(
c3

1 − 4c1c2 + 8c3

)
z3

+
1

384

(
−19c4

1 + 72c2
1c2 − 48c2

2 − 96c1c3 + 192c4

)
z4 + · · · .

(4.10)

Comparing the coefficients of zn from equations (4.9) and (4.10), we identify the fol-

lowing relationships:

a2 =
c1

2
, a3 =

1
16

(
c2

1 + 4c2

)
, a4 =

1
96

(
c3

1 + 4c1c2 + 16c3

)
. (4.11)

Now consider the 2nd order Hankel determinant for the function f . Using the defini-

tion and expressions from (4.11), we get:

∣∣∣δ1δ3 − δ2
2

∣∣∣ = 1
3072

∣∣∣c4
1 + 8c2

1c2 − 48c2
2 + 32c1c3

∣∣∣ . (4.12)

Because H2,1(Ff /2) is invariant under rotation, we may take c1 = c ∈ [0, 2] without

loss of generality. We express the coefficients c2 and c3 in terms of c, a real param-

eter x ∈ C, and δ ∈ C with |x| ≤ 1, |δ| ≤ 1, using known coefficient bounds for

Carathéodory functions:

c2 =
1
2
(4 − c2)x, c3 =

1
4
(4 − c2)(1 − |x|2)δ.

Substituting into equation (4.12) and denoting m = |x|, we obtain:

∣∣∣δ1δ3 − δ2
2

∣∣∣ ≤ 1
3072

[
c4 + 8c2m2(4 − c2) + 12m2(4 − c2)2 + 4c2m(4 − c2)

+ 16c(1 − m2)(4 − c2)
]
= P(c, m).

To find the maximum of P(c, m), we differentiate it with respect to m and analyze:

∂P
∂m

=
1

3072
· 4(4 − c2)

(
c2 + 6m(4 − c2) + 16c2m − 32cm

)
.

As c ∈ [0, 2], it is straightforward to show that ∂P
∂m ≥ 0 for all m ∈ [0, 1]. Therefore,
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P(c, m) attains its maximum at m = 1, yielding:

P(c, 1) =
1

3072

[
c4 + 12c2(4 − c2) + 12(4 − c2)2

]
= ϕ(c).

Differentiating ϕ(c), we find ϕ′(c) ≤ 0 for c ∈ [0, 2], so ϕ(c) is a non increasing func-

tion. Hence, the greatest value occurs at c = 0, giving:

∣∣H2,1(Ff /2)
∣∣ ≤ ϕ(0) =

192
3072

=
1
16

.

Finally, this bound is sharp. The extremal function achieving equality is given by:

f1(z) = z exp
(∫ z

0

(1 + t2)− cos t2

t cos t2 dt
)
= z +

1
2

z3 +
1
4

z5 + · · · .

With the help of this function, we can write

a2 = 0, a3 =
1
2

, a4 = 0 ⇒ H2,1(Ff1/2) =
1
16

.

With this, the proof is done.

Theorem 4.2.2. [50] Let f ∈ S∗
nc. Then

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ ≤ 17
192

.

This is the best possible result.

Proof. For f ∈ S∗
nc, there will be a Schwarz function w(z) which implies that

z f ′(z)
f (z)

=
1 + w(z)
cos w(z)

, z ∈ D.

Using equation (4.9), we have:

a2 =
1
2

c1, a3 =
1

16
(c2

1 + 4c2), a4 =
1

96
(16c3 + 4c1c2 + c3

1). (4.13)
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Substituting into the Hankel determinant H2,1(Ff−1/2), we get:

H2,1

(
Ff−1/2

)
=

1
48

(
13a4

2 − 12a2
2a3 − 12a2

3 + 12a2a4

)
=

1
3072

(41c4
1 − 56c2

1c2 − 48c2
2 + 64c1c3). (4.14)

Applying Lemma (4.1.2), we express this in terms of pre-Schwarz function parameters:

H2,1

(
Ff−1/2

)
=

1
192

(
17ξ4

1 − 20(1 − ξ2
1)ξ

2
1ξ2 − 4(1 − ξ2

1)(3 + ξ2
1)ξ

2
2

+ 16ξ1(1 − ξ2
1)(1 − |ξ2|2)ξ3

)
.

(4.15)

We analyze this expression based on the value of ξ1 ∈ [0, 1][50].

Case I: ξ1 = 1. Then (4.15) yields

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ = 17
192

.

Case II: ξ1 = 0. Then from (4.15),

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ = 1
16

|ξ2|2 ≤ 1
16

.

Case III: ξ1 ∈ (0, 1). Implementing the triangle inequality to (4.15) and taking

|ξ3| ≤ 1, we get:

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ ≤ 1
192

∣∣∣17ξ4
1 − 20(1 − ξ2

1)ξ
2
1ξ2 − 4(1 − ξ2

1)(3 + ξ2
1)ξ

2
2 + 16ξ1(1 − ξ2

1)(1 − |ξ2|2)
∣∣∣

=
1

12
ξ1(1 − ξ2

1)
(
|A + Bξ2 + Cξ2

2|+ 1 − |ξ2|2
)

,

where

A =
17ξ3

1
192(1 − ξ2

1)
, B = −20ξ1

192
, C = −

4(3 + ξ2
1)

192ξ1
.

Since AC < 0, Lemma (4.1.3)(ii) is applicable. We now verify its conditions:

(a) The inequality

−4AC
(

1
C2 − 1

)
− B2 ≤ 0
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is equivalent to
ξ2

1(−57 + 9779ξ2
1 + 2ξ4

1)

576(−3 + 2ξ2
1 + ξ4

1)
≤ 0,

which holds for ξ1 ∈ (0, 1). However, |B| < 2(1 − |C|) fails, so we move to the next

condition.

(b) The inequality

B2 < min
{

4(1 + |C|)2,−4AC
(

1
C2 − 1

)}

is also violated for ξ1 ∈ (0, 1).

(c) The inequality

|C|(|B|+ 4|A|)− |AB| ≤ 0

reduces to

60 − 124ξ2
1 − 133ξ4

1 ≤ 0,

which is false in (0, 1).

(d) The inequality

|AB| − |C|(|B| − 4|A|) ≤ 0

reduces to

690ξ4
1 + 1048ξ2

1 − 240 ≤ 0,

which is satisfied for 0 < ξ1 ≤ ξ ′1 ≈ 0.449569. In this subinterval, using Lemma (4.1.2),

we obtain:

|H2,1(Ff−1/2)| ≤ 1
12

ξ1(1 − ξ2
1)(−|A|+ |B|+ |C|),

which simplifies to:

φ(ξ1) =
1

2304
(12 + 24ξ2

1 − 41ξ4
1). (4.16)

Define φ(t) = 1
2304(12 + 24t2 − 41t4). It attains its maximum in (0, ξ ′1] at t0 =

√
12/41,

hence

φ(ξ1) ≤ φ(t0) =
53

7872
≈ 0.006732 <

17
192

.
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(e) For ξ ′1 < ξ1 < 1, again using Lemma (4.1.2), we get:

Ψ(ξ1) =
12 − 8ξ2

1 + 15ξ4
1

2304

√
76 − 8ξ2

1
17(3 + ξ2

1)
. (4.17)

Since

Ψ′(t) < 0 for ξ ′1 < t < 1,

the function is decreasing, and

|H2,1(Ff−1/2)| ≤ Ψ(ξ1) ≤ Ψ(ξ ′1) ≈ 0.0055788 <
17
192

.

Combining all cases, the inequality holds for all f ∈ S∗
nc. For sharp bound, we will

take the following function

f2(z) = z exp
(∫ z

0

1 + t − cos t
t cos t

dt
)
= z + z2 +

3
4

z3 +
7

12
z4 +

35
96

z5 + · · ·

A direct computation shows

∣∣∣H2,1

(
Ff−1/2

)∣∣∣ ≤ 17
192

,

proving that the inequality is sharp.

Theorem 4.2.3. Let f ∈ S∗
nc. Then

∣∣∣T2,1

(
Ff−1/2

)∣∣∣ ≤ 89
1024

.

This bound is sharp.

Proof. Suppose f ∈ S∗
nc then, from equations (4.9) and (4.10), we obtain

a2 =
c1

2
, a3 =

1
16

(4c2 + c2
1). (4.18)
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Substituting these into the formula for the Toeplitz determinant T2,1(Ff−1/2), we get

T2,1

(
Ff−1/2

)
=

1
16

(
−9a4

2 + 4a2
2 − 4a2

3 + 12a2
2a3

)
=

1
1024

(
−25c4

1 + 64c2
1 + 40c2

1c2 − 16c2
2

)
. (4.19)

Applying the triangle inequality to (4.19) yields

1024
∣∣∣T2,1

(
Ff−1/2

)∣∣∣ ≤ 25|c1|4 + 64|c1|2 + 40|c1|2|c2|+ 16|c2|2. (4.20)

Letting x = |c1| and y = |c2|, we define the function

Q(x, y) = 25x4 + 64x2 + 40x2y + 16y2.

Then inequality (4.20) becomes

1024
∣∣∣∣T2,1

(Ff−1

2

)∣∣∣∣ ≤ Q(x, y). (4.21)

According to Lemma 4.1.4, the admissible region for (x, y) is

ϱ =
{
(x, y) ∈ [0, 1]2 : y ≤ 1 − x2

}
.

We now seek the greatest value of Q(x, y) in this area.

First, compute the partial derivatives:

∂Q
∂x

= 100x3 + 128x + 80xy,
∂Q
∂y

= 32y + 40x2.

Setting both derivatives to zero leads to no critical points within the interior of ϱ.

Therefore, the greatest must occur along the boundary of the region.

We examine three cases: Along y = 0, we have

Q(x, 0) = 25x4 + 64x2 ≤ Q(1, 0) = 89.

Along x = 0, we get

Q(0, y) = 16y2 ≤ 16.
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Along the curve y = 1 − x2, we compute

Q(x, 1 − x2) = 25x4 + 72x2 − 40x4 + 16.

This expression simplifies to

Q(x, 1 − x2) = −15x4 + 72x2 + 16.

By checking values numerically or through calculus, we verify that

Q(x, 1 − x2) ≤ 73 for x ∈ [0, 1].

Thus, the greatest value of Q(x, y) over ϱ is 89, attained at (x, y) = (1, 0). From (4.21),

it follows that ∣∣∣T2,1

(
Ff−1/2

)∣∣∣ ≤ 89
1024

.

To show sharpness, consider the function

f3(z) = z exp

(∫ z

0

√
89(1 + t2)−

√
89 cos(t2)

8t cos(t2)
dt

)
= z +

√
89

16
z3 + · · · .

A direct calculation shows that this function satisfies

∣∣∣T2,1

(
Ff−1

3
/2
)∣∣∣ = 89

1024
.

Hence, the bound is sharp.

Theorem 4.2.4. Let f ∈ S∗
nc. Then

∣∣T2,1
(

Ff /2
)∣∣ ≤ 65

1024
. (4.22)

This bound is sharp.

Proof. Given that f ∈ S∗
nc, we use the coefficient relationships derived previously:

a2 =
c1

2
, a3 =

1
16

(4c2 + c2
1). (4.23)

33



Substituting these into the expression for T2,1(Ff /2), and after simplify we obtain

1024(δ2
1 − δ2

2) = 64c2
1 − 16c2

2 + 8c2
1c2 − c4

1.

Now implementing the triangle inequality with Lemma 4.1.4, we estimate each term

as follows:

1024|δ2
1 − δ2

2 | ≤ |c1|4 + 64|c1|2 + 8|c1|2|c2|+ 16|c2|2

≤ ξ4 + 64ξ2 + 8ξ2(1 − ξ2) + 16(1 − ξ2)2, (4.24)

where ξ = |c1|, and the bounds |c2| ≤ 1 − ξ2 and ξ ∈ [0, 1] follow from Lemma 4.1.4.

Simplifying the (4.24),

1024|δ2
1 − δ2

2 | ≤ ξ4 + 64ξ2 + 8ξ2(1 − ξ2) + 16(1 − 2ξ2 + ξ4) = ξ4 + 64.

Since ξ ∈ [0, 1], we clearly have ξ4 + 64 ≤ 65. Thus,

∣∣T2,1
(

Ff /2
)∣∣ ≤ 65

1024
.

For the sharp bound, we construct a function for which equality is attained:

f4(z) = z exp

(∫ z

0

√
65(1 + t2)−

√
65 cos(t2)

8t cos(t2)
dt

)
= z +

√
65

16
z3 + · · · .

A direct computation verifies that for this function,

∣∣T2,1
(

Ff4/2
)∣∣ = 65

1024
,

which confirms the sharpness of the inequality.
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Chapter 5

Conclusion

This chapter wraps up the research conducted in this dissertation and points out some

interesting directions for future work. Our primary goal was to understand the varia-

tion in bounds of the Hankel determinant. This specific problem becomes particularly

complex when its entries are derived from logarithmic and inverse logarithmic coef-

ficients, especially when dealing with functions defined on a non-convex domain. To

tackle this, we relied on the well-established methodology of coefficient problems and

ingeniously leveraged known results from the Carathéodory class, a fundamental con-

cept in gft. The detailed findings and the methodologies employed to arrive at these

conclusions are thoroughly presented and discussed in Chapter 4 of this dissertation.
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