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ABSTRACT

This thesis focuses on the numerical solution of the one-dimensional convection-diffusion
equation using implicit Euler Method implemented on a non-uniform mesh. The convection-
diffusion equation is a fundamental partial differential equation that arises in various physical
and engineering problems involving the transport of mass, heat, or momentum. Accurately
solving this equation, particularly in convection dominated regimes, presents significant nu-
merical challenges such as artificial oscillations and smearing near steep gradients or bound-
ary layers. To address these issues, a non-uniform mesh is employed to provide higher res-
olution in regions with rapid variations in the solution, while maintaining coarser discretiza-
tion where the solution is smoother. An implicit Euler Method is adapted to accommodate
variable grid spacing, ensuring enhanced accuracy in both convection and diffusion terms.
The resulting system of algebraic equations is solved using appropriate numerical solvers.
Comparative analysis with uniform mesh solutions demonstrates that the non-uniform mesh
approach significantly improves accuracy and stability, especially in capturing sharp solution
features with fewer grid points. The findings of this work contribute to the development of
efficient and accurate numerical techniques for solving convection-diffusion problems en-
countered in scientific computing and engineering applications.

Keywords: Convection-Diffusion Equation, Second-Order Finite Difference, Non-Uniform
Mesh, Implicit Euler Method, Numerical Stability, Boundary Layer Resolution
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Chapter 1

Convection-Diffusion Problems

Convection-diffusion problems are fundamental in modeling the transport of physical
quantities such as heat, mass, or chemical species within a system. These equations
combine the effects of diffusion, which causes spreading due to random motion, and
convection, which represents directed transport by a flow.

1.1 1D Convection-Diffusion Equation
The general form of the one-dimensional steady-state convection-diffusion equation is
given by [32][45]

−ε u′′(x)+a(x)u′(x)+b(x)u(x) = f (x), x ∈ (0,1), (1.1)

subject to the boundary conditions

u(0) = α, u(1) = β . (1.2)

Here, ε denotes the diffusion coefficient, a(x) represents the convection velocity, b(x) is
a reaction term, and f (x) is a source function, α and β are constants[2].

The convection-diffusion equation is fundamental in various scientific and engineering
disciplines, as it describes the simultaneous processes of transport and dispersion. For
example, engineers apply this equation to forecast heat transfer in buildings or the spread
of contaminants in water bodies and the air. The equation is also significant in biol-
ogy and medicine, where it explains the movement of nutrients or medications within
tissues[32]. In hydrology, it helps to the flow of water and dissolved materials through
soil and groundwater systems. Due to its ability to represent both movement and dif-
fusion, the convection-diffusion equation is a crucial tool for addressing practical chal-
lenges in environmental science, engineering, and healthcare[26].
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1.2 Problem Statement
Modeling the transport of heat or mass in one-dimensional systems is essential for many
scientific purposes, and the convection-diffusion equation is a standard tool for this. How-
ever, standard numerical methods on uniform grids often fail, producing unwanted oscil-
lations and failing to resolve boundary layers in situations where convection dominates
diffusion. This leads to inaccurate predictions, which can compromise the design and
analysis of engineering systems. Existing approaches that use uniform grids are compu-
tationally inefficient, as they require a large number of grid points to achieve acceptable
accuracy near sharp gradients[45]. There is a need for robust numerical methods that can
efficiently and accurately capture these features without excessive computational cost.

1.3 Research Objective
In this research, we aim to solve the one dimensional convection-diffusion equation using
Implicit Euler Method on a non uniform mesh and compare the performance with tradi-
tional uniform mesh approaches in terms of computational efficiency and error. Also,
we identify practical considerations for implementing non-uniform mesh techniques in
real-world applications.
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Chapter 2

Perturbation Theory

Differential equations are essential in modeling a wide array of physical phenomena in
engineering and science. By relating a variable’s rate of change to the variable itself, they
enable us to analyze and predict system behavior over time and space. Their versatility
makes them indispensable across scientific and technological fields.

Perturbation theory provides approximate solutions to differential equations that cannot
be solved exactly. Consider:

Dε = εu′′(x)+a(x)u′(x)+b(x)u(x) = 0, (2.1)

where ε is a small parameter. Setting ε = 0 simplifies the equation, often making it solv-
able. Perturbation theory aims to construct solutions to the original equation by treating
ε as a small perturbation[26].

2.1 Types of Perturbation Problem
There are two main types[29][42]:

1. Regularly Perturbed Differential Equation

2. Singularly Perturbed Differential Equation
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2.2 Regularly Perturbed Differential Equation
In differential equations, a perturbation problem, represented as Dε , refers to a situation
where the highest order term is accompanied by a small parameter ε .

If, as ε → 0, the solution of Dε approaches the solution of the reduced problem D0
uniformly—where D0 is formed by setting ε = 0 in the original equation—then Dε is
called a regularly perturbed differential equation.

2.2.1 Example

Dε = u′′(x)−2εu′(x)+u(x) = 1, u(0) = 0, u(1) = 0 (2.2)

Actual Solution[14]

u(x) = c1e(ε+
√

ε2+1)x + c2e(ε−
√

ε2+1)x −1 (2.3)

where,

c1 =
1− eε−

√
ε2+1

eε+
√

ε2+1 − eε−
√

ε2+1
,

c2 = 1− c1

Reduced Problem as ε → 0

D0 = u′′(x)−u(x) = 1 (2.4)

Actual Solution of (2.4)

u(x) = c1ex + c2e−x −1 (2.5)

where,

c1 =
1− e−1

e− e−1 ,

c2 = 1− c1

Hence, Dε uniformly converges to D0 as ε → 0.
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2.3 Singularly Perturbed Differential Equation
The perturbation problem is called singularly perturbed if the solution of Dε as ε → 0
does not converge uniformly to the solution of the reduced problem D0, which is achieved
by setting ε = 0 in the perturbation problem Dε . This breakdown of a singularly per-
turbed problem is limited to short time intervals or restricted space intervals. The solu-
tion quickly transforms and separates into layers in these confined areas. These areas are
commonly known as boundary layers.

This study examines a singularly perturbed differential-difference equation that in-
volves a small positive parameter ε (0 < ε ≪ 1). When ε approaches zero, the solution
exhibits sharp variations in confined regions known as boundary layers, which are typi-
cally not captured well by standard numerical techniques. As a result, specialized meth-
ods like the finite difference approach are employed to analyze the solution’s behavior in
these areas.

[38]Generally, a singularly perturbed differential difference equation is of the form

Dε =−εu′′(x)+a(x)u′(x)+b(x)u(x) = f (x) (2.6)

along with boundary conditions:

u(0) = 0, u(1) = 0

[16]Here,if a(x) = 0 and b(x) ̸= 0, then the equation becomes a Reaction-Diffusion
problem. On the other hand, if b(x)= 0 and a(x) ̸= 0, it becomes a Convection-Diffusion
problem.
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Chapter 3

Numerical Methods For Singular
Perturbation Problems

When closed-form solutions are not feasible, numerical methods are used to obtain an
approximate solution. These methods yield quantitative insights and are designed to
address a wide range of issues. Unlike asymptotic methods, the quantitative nature of
numerical approaches often leads to qualitatively different results.

In recent decades, various numerical strategies have been developed to address singular
perturbation problems. These methods can be broadly categorized into computational
methods and parameter-uniform numerical methods. Traditional computational methods
such as the finite difference method often perform inadequately on uniform meshes and
require a significantly large number of mesh points to achieve accurate results when the
perturbation parameter is very small.

Sharp gradients or boundary layers in the analytical solution cause this limitation.[26].
The classical methods cannot reduce the maximum pointwise error unless the mesh size
is comparable to the singular perturbation parameter [45]. However, refining the mesh
to match the scale of the parameter greatly increases computational cost and processing
time. Thus, a major drawback of these computational techniques is their dependence
on the perturbation parameter for domain discretization. To overcome this, it is advan-
tageous to develop robust computational approaches whose convergence rate, error, and
discretization are independent of the perturbation parameter. Such methods are known as
parameter-uniform numerical techniques. These can generally be divided into two main
types: fitted mesh methods and fitted finite difference operators.

3.1 Standard Finite Difference Scheme
In some cases, it is difficult to find the analytic solution of the problem. Therefore, the
finite difference method is a numerical technique used to find approximate solutions of
differential equations. In the finite difference method, the derivative terms in the differ-
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ential equation are replaced with approximated finite difference formulas. These approx-
imations transform the differential equation into a system of algebraic equations. This
system of algebraic equations can be written as AU = B, where A is a tridiagonal matrix
and U is the set of solutions of the equation[45].

The error that arises when a differential operator is converted to a difference operator
determines the discrepancy between the exact and numerical answers. This type of error
is called a “truncation error” or a “discretization error”[32].

Let us consider the singularly perturbed problem:

−εu′′(x)+b(x)u(x) = f (x), x ∈ (0,1) (3.1)

with boundary conditions:
u(0) = 0, u(1) = 0 (3.2)

where b(x)> 0, ε <<<< 1.[34]

Assume that b(x)and f (x) lie in to interval [0,1]. Divide the interval [0,1] into n subin-
tervals with an equidistant with mesh with mesh size h = 1/N and grid points xi =
a+(i−1)h, i = 1,2, . . . ,N +1.

The central difference approximations are:

u′′(xi)≈
ui−1 −2ui +ui+1

h2 (3.3)

u′(xi)≈
ui+1 −ui−1

2h
(3.4)

Substituting into the differential equation, for i = 1,2, . . . ,N:

ui−1(−ε)+ui(2ε +h2b)+ui+1(−ε) = h2 f (x) (3.5)

This can be written in matrix form as AU = B, where:

A =



1 0

−ε 2ε +h2b −ε

0 −ε 2ε +h2b −ε

. . . . . . . . .

−ε 2ε +h2b −ε

0 1


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U =


u1
u2
u3
...

un+1



B =


h2 f (x1)
h2 f (x2)

...
h2 f (xn+1)


3.1.1 Upwind Finite Difference Scheme
The Upwind Finite Difference Scheme is generally used to avoid unnecessary oscillations
in the obtained solutions[12]. Upwinding occurs when the one-sided difference is taken
on the side away from the layer[30], that is,

u′(x)≈ ui −ui−1

h

The difference between the standard finite difference method using forward difference
approximation with a uniform mesh and the standard finite difference method using the
upwind scheme can be seen by the graphs given.

Figure 3.1: Finite Difference Method with Forward Difference
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Figure 3.2: Finite Difference Method with Upwind Scheme

3.2 Fitted Mesh Finite Difference Method

3.2.1 Piecewise Uniform Shishkin Mesh
The uniform mesh, given by xi = a+(i− 1) · h, typically lacks the ability to accurately
capture the dynamics within boundary layers when dealing with singularly perturbed
problems. Russian mathematician G.I. Shishkin gave a piecewise uniform mesh called
shishkin mesh.The width of Shishkin mesh can be adjust by the nature of solution.

The mesh spacing is always chosen in such a way that the layer region get maximum
number of solution points and more the number of solution points in the layer region
more final will be the region of interest can be studied. Shishkin mesh is generally used
when the solution exhibits sharper edges and this strategy of using piecewise uniform
mesh helps to get the important features in the layer region of the solution.

In this part, a fitted mesh finite difference method is is employed, comprising of a con-
ventional upwind finite difference operator applied to a piecewise uniform mesh that con-
denses at the boundary pointsx = 0 and x = 1 to discretize the boundary value problems
(3.1) and (3.2)[41].

To construct the fitted piecewise-uniform mesh ξ
N

over the interval [0,1], the domain
is divided into three subintervals: (0,λ ), (λ ,1−λ ), and (1−λ ,1).Each subinterval is
assigned a uniform mesh: N

4 + 1 equally spaced points are placed in both (0,λ ) and
(1−λ ,1), while N

2 points are distributed uniformly in (λ ,1−λ )[8] .

A crucial aspect of the Shishkin mesh is the transition parameter λ , which determines
the piecewise uniform mesh that is produced by λ = min

{1
4 ,
( 2

α

)
ε logN

}
, where α is a
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problem-dependent constant and ε is the small perturbation parameter. In order to ensure
that there is at least one point in the boundary layer, we assume that N = 2r with r ≥ 3.

Figure 3.3: Interval Distribution of Shishkin Mesh for Convection-Diffusion

The difference in mesh spacing between standard finite difference method with uniform
mesh and fitted finite difference scheme under piecewise uniform mesh is shown by the
figures below

Figure 3.4: Mesh spacing under Standard Finite Difference Method
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Figure 3.5: Mesh spacing under Shishkin Mesh

3.3 Euler Method
The Euler method is a very simple method for numerically solving Ordinary Differential
Equations and works by using the slope at a known point to estimate the value of the
solution at the next point, essentially following the tangent to the curve in small steps[50].
Given an equation of the form u′(x) = f (x,u) with an initial condition u(x0) = u0, the
method starts at this initial point and, using a chosen step size h, repeatedly applies the
formula:

un+1 = un +h · f (xn,un)

This process generates a sequence of approximate values for u at discrete points along the
x-axis. While the method is straightforward and easy to implement, it is not always highly
accurate compared to more advanced techniques, but its simplicity makes it a valuable
starting point for understanding numerical solutions to differential equations[45][32].

3.3.1 Explicit Euler Method
The explicit Euler method estimates the next value of the solution using information from
the current step. For an ODE of the form u′(x) = f (x,u) with an initial value u(x0) = u0,
the explicit Euler update rule is:

un+1 = un +h · f (un,xn)

where h is the chosen step size. This method is easy to implement and computationally
efficient[32]. However, it can become unstable if the step size is too large, especially for
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problems where the solution changes rapidly.

3.3.2 Implicit Euler Method
The implicit Euler method uses the unknown next value in its calculation:

un+1 = un +h · f (un+1,xn+1)

This means that at each step, we need to solve an equation (which may be nonlinear) to
find un+1. While this requires more computational effort, the implicit method is much
more stable and is particularly useful for stiff equations, where the explicit method would
require very small step sizes to maintain stability[45].

3.3.3 Example
To see how the Euler methods work in practice, let’s look at a simple example. Suppose
we have the differential equation u′(x) =−2u with the initial value u(0) = 1. This equa-
tion describes a situation where the amount of u decreases over time at a rate proportional
to its current value.

If we use the explicit Euler method, we estimate the next value of u using the current
value. The formula becomes:

un+1 = un +h · (−2un) = un(1−2h)

So, at each step, we just multiply the current value by (1−2h) to get the next one.

With the implicit Euler method, things are a bit different because the next value appears
on both sides of the equation. The update rule is:

un+1 = un +h · (−2un+1)

If we rearrange this, we get:

un+1(1+2h) = un ⇒ un+1 =
un

1+2h

Here, we need to do a little more math at each step, but this approach is much more
stable, especially if we use a larger step size.

This example shows the main difference between the two methods: the explicit method
is simpler and faster, but the implicit method is better at handling problems where the
solution can change quickly or become unstable.
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Figure 3.6: Comparison of Explicit and Implicit Euler Methods

3.4 Advantages of the Implicit Euler Method in Convection-
Diffusion Problems

The implicit Euler method offers several notable advantages when applied to convection-
diffusion problems. Most importantly, it provides enhanced numerical stability, allowing
for the use of larger time steps without compromising the reliability of the solution. This
is particularly beneficial in scenarios where the equations are stiff or where diffusion
effects are significant.

Additionally, the implicit Euler method is well-suited for efficiently approaching steady-
state solutions, as its inherent damping properties help the system converge more rapidly.
It is also highly adaptable, making it effective for problems involving non-uniform com-
putational grids or nonlinearities. As a result, the implicit Euler method is a robust and
versatile choice for a wide range of convection-diffusion applications, especially when
stability and computational efficiency are of primary concern.
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3.5 Implementation

3.5.1 Euler Implicit Method for Convection-Diffusion Equation
Consider

∂u
∂ t

+u
∂u
∂x

= ε
∂ 2u
∂x2 +2u3 −u2 −0.5u2, x ∈ (0,1), t > 0

u(0, t) = 0, u(1, t) = 0, t ≥ 0

u(x,0) = sin(πx), x ∈ [0,1]

Below is the MATLAB code with a self-contained implementation for numerically solv-
ing the one-dimensional convection-diffusion equation using the implicit Euler method
on a non-uniform grid, including error estimation between coarse and fine grids and out-
put of the final solution and error metrics.

1 clear all;

2 clc;

3 % This program uses the implicit Euler method for a nonlinear PDE.

4

5 fid2 = fopen(’jsr.txt’,’w’);

6 for ep = 1/4

7 for n = 16

8 tf = 1/16;

9 m = 10;

10 k = tf/m;

11 k = 1/16;

12 r = ep;

13 tau = ep * log(n);

14 if tau >= 0.5

15 tau = 0.5;

16 end

17 tau = 0.5;

18

19 h = zeros(1, n+1);

20 hd = zeros(1, 2*n+1);

21

22 for ii = 1:n+1

23 if ii <= n/2

24 h(ii) = (2*(1 -tau)) / n;

25 else

26 h(ii) = 2*tau / n;

27 end

28 end

29 for ii = 1:2*n+1

30 if ii <= 2*n/2

31 hd(ii) = (1-tau) / n;

32 else

33 hd(ii) = tau / n;

34 end
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35 end

36 X = zeros(1, n+1);

37 for ii = 1:n+1

38 if ii <= n/2

39 X(ii) = (ii -1) * h(ii);

40 else

41 X(ii) = 1-tau + (ii -1-n/2) * h(ii);

42 end

43 end

44 Xd = zeros(1, 2*n+1);

45 for ii = 1:2*n+1

46 if ii <= 2*n/2

47 Xd(ii) = (ii -1) * hd(ii);

48 else

49 Xd(ii) = 1-tau + (ii -1-n) * hd(ii);

50 end

51 end

52

53 for ii = 1:n+1

54 U_ini(ii) = sin(pi*X(ii));

55 end

56 for ii = 1:2*n+1

57 Ud_ini(ii) = sin(pi*Xd(ii));

58 end

59

60 for ii = 1:n+1

61 U_pre(ii ,1) = U_ini(ii);

62 end

63 for ii = 1:2*n+1

64 Ud_pre(ii ,1) = Ud_ini(ii);

65 end

66

67 for kk = 1:m+1

68 Y = jmsfun_tmp2(U_pre , h, r, n, k);

69 U_pre = Y;

70 Yd = jmsfun_tmp2(Ud_pre , hd , r, 2*n, k);

71 Ud_pre = Yd;

72 end

73

74 maxerror = 0;

75 error = zeros(n-1,1);

76 for ii = 1:n

77 error(ii) = abs(Y(ii) - Yd(2*ii -1));

78 if error(ii) >= maxerror

79 maxerror = error(ii);

80 end

81 end

82 fprintf(fid2 , ’%f \t’, maxerror);

83 clear U_pre Ud_pre U_ini Ud_ini h hd Xd;

84 end

85 fprintf(fid2 , ’\n’);

86 end

87 fclose(fid2);
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88

89 fid3 = fopen(’jsr1.txt’,’w’);

90 for ii = 1:n+1

91 fprintf(fid3 , ’%f\t %f\n’, X(ii), Y(ii));

92 end

93 fclose(fid3);

94

95 plot(X, Y, ’-g’);

96 hold on

97

98 %------------------- Local function below -------------------%

99 function [Y] = jmsfun_tmp2(U_pre , h, r, n, k)

100 h1 = h’;

101 U_old = U_pre;

102 S = 1;

103 D = 1;

104 F = 0.5;

105

106 % Boundary conditions

107 A = zeros(n+1, n+1);

108 for jj = 1:n+1

109 if jj == 1

110 A(1,jj) = 1;

111 A(n+1,jj) = 0;

112 elseif jj == n+1

113 A(1,jj) = 0;

114 A(n+1,jj) = 1;

115 else

116 A(1,jj) = 0;

117 A(n+1,jj) = 0;

118 end

119 end

120

121 for ii = 2:n

122 for jj = 1:n+1

123 if jj == ii -1

124 A(ii,jj) = -r*2/(( h1(ii)+h1(ii+1))*h1(ii)) - S*k*

U_old(ii)/h1(ii);

125 elseif jj == ii

126 A(ii,jj) = (r*2/(h1(ii)*h1(ii+1))) + S*k*U_old(ii)/

h1(ii) + 1 + S*k*U_old(ii)/h1(ii) ...

127 - S*k*U_old(ii -1)/h1(ii) - D*2*k*U_old(ii) + 3*

D*k*U_old(ii)*U_old(ii) ...

128 + D*F*k - 2*D*F*k*U_old(ii);

129 elseif jj == ii+1

130 A(ii,jj) = -r*2/(( h1(ii)+h1(ii+1))*h1(ii+1));

131 else

132 A(ii,jj) = 0;

133 end

134 end

135 end

136

137 % Right -hand side vector B
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138 B = zeros(1, n+1);

139 for ii = 1:n+1

140 if ii == 1

141 B(1,ii) = 0;

142 elseif ii == n+1

143 B(1,ii) = 0;

144 else

145 B(1,ii) = U_pre(ii) + S*k*U_old(ii)*U_old(ii+1)/h1(ii

+1) - S*k*U_old(ii)*U_old(ii)/h1(ii+1) ...

146 + D*k*2* U_old(ii)*U_old(ii)*U_old(ii) - D*k*U_old(

ii)*U_old(ii) - D*k*F*U_old(ii)*U_old(ii);

147 end

148 end

149 Y = A\B’; % More efficient than inv(A)*B’

150 end

Listing 3.1: MATLAB code for the Euler implicit method

3.6 Results and Discussion
The final solution at each spatial grid point is shown in Table 3.1, and the solution profile
is visualized in Figure 3.7.

Figure 3.7: Numerical solution of the convection-diffusion equation using the implicit
Euler method on a non-uniform mesh (n = 16 intervals, ε = 0.25).
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Table 3.1: Final computed solution u(xn) at each spatial coordinate xn for n = 16 grid
intervals. The rightmost column shows the maximum error at each time step; dashes
indicate steps beyond the number of time steps.

Index n Spatial Coordinate xn Computed Solution u(xn) Max Error (per time step)

0 0.000000 -0.000000 0.003269
1 0.062500 0.000000 0.001068
2 0.125000 0.000000 0.000286
3 0.187500 0.000001 0.000072
4 0.250000 0.000001 0.000018
5 0.312500 0.000001 0.000004
6 0.375000 0.000001 0.000001
7 0.437500 0.000001 0.000000
8 0.500000 0.000001 0.000000
9 0.562500 0.000001 0.000000

10 0.625000 0.000001 0.000000
11 0.687500 0.000001 0.000000
12 0.750000 0.000001 –
13 0.812500 0.000001 –
14 0.875000 0.000000 –
15 0.937500 0.000000 –
16 1.000000 0.000000 –
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3.6.1 Error Analysis
The code computes the maximum error at each time step by comparing the coarse grid
solution to the corresponding points on a refined grid. As shown in Table 3.1, the maxi-
mum error decreases rapidly with each time step and eventually becomes zero, showing
the expected convergence behavior of the numerical method.

3.6.2 Effect of Non-Uniform Mesh
The use of a non-uniform mesh allows for enhanced resolution near boundaries or regions
with steep solution gradients, as observed in the computed results[26]. This approach
efficiently captures the solution behavior without excessive computational cost, as grid
points are clustered where they are most needed. The non-uniform mesh thus improves
accuracy and stability, especially for convection-dominated problems, as supported by
recent studies on mesh adaptation for convection-diffusion equations.
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Chapter 4

Conclusion, Future Scope and Social
Impact

4.1 Summary of Findings
Stability and Robustness. The implicit Euler method demonstrated strong numerical
stability, even for small diffusion parameters and relatively large time steps. This stability
is particularly advantageous for convection-diffusion problems, which can become stiff
and challenging for explicit methods.

Accuracy. Numerical experiments confirmed that the scheme achieves first-order accu-
racy in time[29]. The maximum error decreased consistently as the mesh was refined,
in line with theoretical expectations for the implicit Euler method. The error analysis
showed that the method retains its convergence order and the global error is proportional
to the time step size, as established in classical analysis.

Boundary Layer Resolution. The use of a non-uniform (Shishkin-type) mesh allowed
for effective resolution of steep gradients and boundary layers without requiring exces-
sive grid refinement throughout the entire domain. Grid points clustered near regions of
rapid solution change led to improved accuracy and computational efficiency.

Comparison with Analytical Solutions. Where analytical solutions were available, the
numerical results closely matched the exact solutions, validating the implementation and
the effectiveness of the implicit Euler approach.

Computational Efficiency. The method efficiently approached steady-state solutions,
benefiting from the damping properties of the implicit Euler scheme. This made it suit-
able for both transient and steady-state convection-diffusion problems.

Error and Mesh Size Relationship. With refinement of the mesh, the maximum error
decreased significantly, confirming the expected convergence behavior. The non-uniform
mesh further reduced computational cost by concentrating points where needed most.
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4.2 Advantages and Limitations
Advantages. The implicit Euler method provides unconditional stability for linear sys-
tems, which makes it particularly suitable for stiff ordinary and partial differential equa-
tions, such as those encountered in convection-diffusion models. This stability property
permits the use of relatively large time steps without compromising the reliability of the
solution, a significant benefit for long-term simulations or when rapid convergence to
a steady state is required [1]. Furthermore, the method inherently damps transient os-
cillations, efficiently steering solutions toward equilibrium, and demonstrates robustness
across a variety of problem classes, including those involving non-uniform meshes or
nonlinearities.

Limitations. Despite its robust stability, the implicit Euler method is only first-order ac-
curate in time, so the overall error decreases linearly as the time step is refined[15]. Each
time step necessitates solving a (possibly nonlinear) system of algebraic equations, which
increases computational effort and implementation complexity, especially for large-scale
or nonlinear problems. Additionally, while its damping properties enhance stability, they
may also excessively smooth or dampen genuine physical transients, resulting in less ac-
curate capture of rapid changes or oscillatory features in the solution [1].Finally, although
large time steps are stable, they can introduce substantial truncation errors and obscure
important transient dynamics.

4.3 Future Scope
Extension to Higher Dimensions: A logical progression is to apply the implicit Euler
method with non-uniform meshes to multi-dimensional convection-diffusion equations,
enabling the modeling of more realistic physical systems.

Higher-Order and Hybrid Methods: Investigating higher-order discretization and hy-
brid numerical techniques could further enhance accuracy and handle complex geome-
tries more effectively.

Parallel Computing: Implementing these methods in parallel computing environments,
such as with GPU acceleration, would allow efficient solutions of large-scale and high-
dimensional problems.

4.4 Social Impact
The advancement of numerical techniques—such as employing the [39]implicit Euler
method on non-uniform grids for the one-dimensional convection-diffusion equation—holds
real-world significance for both society and the environment. These methods are not lim-
ited to theoretical interest; they play a vital role in simulating and understanding how pol-
lutants, heat, or other substances are transported in air, water, and engineered systems.
By improving the precision and reliability of these simulations, this research directly
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supports efforts to monitor and control environmental pollution, enhance air and water
quality, and ensure safer industrial operations. Accurate computational models empower
engineers and policymakers to make well-informed choices when addressing environ-
mental and public health challenges. Moreover, advancing and sharing robust numerical
techniques equips a broader range of experts and researchers to solve complex practical
problems, ultimately fostering sustainable development and healthier communities.

4.5 Conclusion
This thesis has demonstrated that [39]combining the implicit Euler method with a non-
uniform mesh provides a reliable and efficient approach for solving the one-dimensional
convection-diffusion equation. The results highlight how this methodology successfully
balances accuracy, stability, and computational efficiency, even in challenging scenar-
ios where sharp gradients or boundary layers are present. By adapting the mesh to the
problem’s features and using a robust time integration scheme, the approach ensures that
important solution characteristics are captured without unnecessary computational effort.
These findings not only validate the effectiveness of the chosen numerical techniques but
also lay a strong foundation for further research and practical applications in areas such
as environmental modeling, thermal analysis, and fluid flow. As computational methods
continue to evolve, the strategies explored in this work will remain relevant for tackling
increasingly complex problems in science and engineering.
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