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Abstract

The fundamental issue of designating labels (colors) to the vertices of a
graph in a manner that ensures no two adjacent vertices share the same
color is addressed by vertex coloring, a cornerstone of graph theory. This
dissertation presents a comprehensive investigation into the theoretical
underpinnings, algorithmic methodologies, practical applications, and an-
alytical tools associated with vertex coloring. The core objective is to pro-
vide a holistic understanding of this rich combinatorial problem, high-
lighting its significance in both theoretical computer science and real-world
optimization challenges.

The study commences with a thorough review of foundational con-
cepts, establishing the necessary graph-theoretic preliminaries, including
formal definitions of proper vertex coloring, k-colorability, and the chro-
matic number—the minimum quantity of colors necessary for a valid col-
oring. A significant portion of this work is dedicated to the exploration
and comparative analysis of various vertex coloring algorithms. This in-
cludes exact algorithms such as systematic backtracking, which guaran-
tees optimality but often suffers from exponential time complexity, and
widely-used heuristic algorithms designed for practical efficiency on larger
graphs. Among the heuristics, the dissertation details the Greedy algo-
rithm with various vertex ordering strategies, the Degree of Saturation
(DSATUR) algorithm which prioritizes vertices with the most distinctly
colored neighbors, and the Recursive Largest First (RLF) algorithm known
for its efficacy in finding good colorings. A particular focus is given to an
adjacency matrix-based heuristic, where row sums (vertex degrees) guide
the coloring process, with its procedural steps and performance character-
istics illustrated through detailed examples.

A key contribution of this dissertation is the in-depth examination of
chromatic polynomials, P (G, λ), which enumerate the number of unique
methods for coloring a graph G using a maximum of λ colors. The the-
oretical framework of chromatic polynomials, including their properties
and the powerful deletion-contraction principle for their computation, is
elucidated. Illustrative examples, such as the derivation of the chromatic
polynomial for a pentagonal graph, demonstrate the computational pro-
cess and the insights these polynomials offer into a graph’s structure and
colorability. The relationship between the chromatic polynomial and the
chromatic number is also explored.



Furthermore, the practical relevance of vertex coloring is underscored
through an extensive survey of its applications. The dissertation show-
cases how vertex coloring models and solves critical problems in diverse
domains. Prominent among these is scheduling, exemplified by examina-
tion timetabling, where courses are vertices, student conflicts define edges,
and colors represent time slots. Other significant applications discussed
include register allocation in compiler design, frequency assignment in
wireless communication networks, task scheduling in operating systems,
and classical map coloring problems. For each application, the mapping to
a graph coloring problem is clearly defined, and the benefits of applying
coloring techniques are highlighted.

This study synthesizes theoretical knowledge with algorithmic approaches
and practical implementations, aiming to serve as a valuable resource for
researchers and practitioners. By demonstrating the effectiveness of vertex
coloring techniques in enhancing resource allocation efficiency and pro-
viding deeper insights into combinatorial structures, the dissertation con-
tributes to the broader understanding and application of graph coloring
theory. The work concludes by summarizing key findings, acknowledg-
ing limitations, and proposing avenues for future research, including the
development of more sophisticated hybrid algorithms and the exploration
of coloring in novel application domains.

Keywords: Graph Coloring, Vertex Coloring, Chromatic Number, Adja-
cency Matrix, Backtracking, Greedy Algorithm, Degree of Saturation Al-
gorithm (DSATUR), Recursive Largest First Algorithm (RLF), Chromatic
Polynomial, Scheduling, Resource Allocation, Combinatorial Optimiza-
tion.
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Chapter 1

Introduction

1.1 Background and Motivation

A powerful framework for modeling and analyzing relational structures
is provided by graph theory, a captivating and swiftly evolving branch of
discrete mathematics. Within this domain, the concept of graph coloring
stands out as a fundamental problem with a rich history and a wide spec-
trum of applications. The main emphasis of this dissertation is vertex col-
oring, which is the process of giving a graph’s vertices labels, or "colors,"
so that no two neighboring vertices have the same color.Many combinato-
rial optimization problems revolve around the goal of achieving this with
the fewest possible colors, or the graph’s chromatic number.

The origins of graph coloring can be traced back to the mid-19th cen-
tury, with Francis Guthrie’s conjecture about coloring geographical maps,
which later became the renowned Four Color Theorem. While map color-
ing provided the initial impetus, the theoretical framework of vertex color-
ing has since expanded dramatically, revealing deep connections to graph
structure, complexity theory, and algorithmic design. Despite its straight-
forward formulation, coloring problems for general graphs are extremely
challenging to solve optimally; in fact, figuring out the chromatic number
is a classic NP-hard task.

Despite its computational hardness, vertex coloring is not merely an ab-
stract mathematical puzzle. Its relevance extends to numerous practical

1



scenarios where conflicts must be resolved, resources must be allocated ef-
ficiently, or distinctions must be made between interacting entities. From
scheduling examinations to avoid student conflicts, allocating registers in
compilers to optimize code execution, assigning frequencies to wireless
transmitters to prevent interference, to partitioning data in parallel com-
puting, vertex coloring provides an elegant and effective modeling tool.

The dual nature of vertex coloring serves as the impetus for this thor-
ough investigation: its theoretical depth and its practical utility. There is a
continuous need to understand the various algorithmic approaches, from
exact methods that guarantee optimality for smaller instances to heuris-
tics that provide good solutions for larger, real-world problems in reason-
able time. Furthermore, analytical tools like chromatic polynomials offer
a deeper understanding of a graph’s colorability properties beyond just
its chromatic number. This dissertation aims to synthesize these different
facets, providing a coherent and in-depth exploration of vertex coloring
methods, their applications, and the powerful insights offered by chro-
matic polynomials. The continued advancements in computational power
and the increasing complexity of modern systems necessitate a robust un-
derstanding of such fundamental graph algorithms and their potential to
address contemporary challenges.

1.2 Problem Statement

The vertex coloring problem in graph theory is the main issue examined
in this dissertation. The problem is to assign a color c(v) from a set of k
available colors {1, 2, . . . , k} to each vertex v ∈ V of an undirected graph
G = (V,E), where V is the set of vertices and E is the set of edges, so that
u, v) ∈ E (i.e., u and v are adjacent) such that c(u) ̸= c(v).

This study addresses several key questions related to this problem:

1. Which heuristics and main algorithms are used to solve the vertex
coloring problem, and what are their respective strengths, weak-
nesses, and computational complexities? This includes an exami-
nation of greedy approaches, backtracking, methods based on graph
representations like the adjacency matrix, and established heuristics
like DSATUR and RLF.
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2. How can the chromatic polynomial of a graph be determined, and
what information does it convey about the graph’s colorability and
structural properties beyond merely finding the chromatic number?

3. In what ways can vertex coloring and its associated concepts be effec-
tively applied to model and solve real-world problems, particularly
in areas like scheduling, resource allocation, and network design?

4. How do these different methods compare in terms of their efficacy
and the quality of solutions they provide for various types of graphs
and application scenarios?

The main objective is to present a thorough analysis that connects vertex
coloring’s theoretical underpinnings with its useful algorithmic solutions
and applications.

1.3 Objectives of the Study

The following are the main goals of this dissertation:

1. To provide a detailed review of the fundamental concepts, defini-
tions, and key theorems related to vertex coloring in graph theory.

2. To conduct an in-depth study and comparative analysis of various
algorithms for vertex coloring, including:

• Exact algorithms (e.g., backtracking).

• Greedy algorithms and the impact of vertex ordering.

• The adjacency matrix-based coloring heuristic.

• Established heuristic algorithms such as DSATUR and RLF.

3. To fully examine chromatic polynomial theory and computation, in-
cluding the deletion-contraction principle and how it is used to cal-
culate a graph’s number of valid colorings.

4. To explore and illustrate the diverse applications of vertex coloring
in solving practical problems, with a particular emphasis on schedul-
ing (e.g., exam timetabling) and resource allocation.

3



5. To synthesize the findings into a comprehensive resource that eluci-
dates the methods, theoretical underpinnings, and practical signifi-
cance of vertex coloring and chromatic polynomials.

6. To identify limitations in current approaches and suggest potential
directions for future research in the field of graph coloring.

1.4 Scope and Limitations

This dissertation focuses primarily on proper vertex coloring of simple,
undirected graphs. While other variants of graph coloring exist (e.g., edge
coloring, total coloring, list coloring, equitable coloring), they are outside
the primary scope of this study, though they may be briefly mentioned for
context or future work.

The algorithmic exploration covers a range of well-established exact and
heuristic methods. While advanced metaheuristics (e.g., genetic algorithms,
simulated annealing, tabu search for graph coloring) are acknowledged as
powerful techniques, a deep dive into their intricacies is beyond the scope
of this work, which aims to provide a foundational yet comprehensive
overview of more classical approaches.

The applications discussed are illustrative and aim to demonstrate the
versatility of vertex coloring. A comprehensive, domain-specific analysis
of every possible application is not feasible within the constraints of this
study. The examples chosen, particularly exam scheduling, are explored
in sufficient detail to demonstrate the modeling and solution process.

The computational experiments or comparisons presented are primarily
for illustrative and comparative purposes using moderately sized exam-
ples. Large-scale empirical performance analysis of algorithms on exten-
sive benchmark datasets, while valuable, is not a central objective of this
particular dissertation.

The study of chromatic polynomials focuses on their definition, properties,
and methods of computation (like deletion-contraction), and their relation
to the chromatic number. Deeper algebraic properties or the study of chro-
matic roots (zeros of the polynomial) are touched upon but not explored
exhaustively.

4



1.5 Organization of the Dissertation

Eight chapters make up this dissertation:

• Chapter 1: Introduction (Current Chapter) provides the background,
motivation, problem statement, objectives, scope, limitations, and
overall structure of the dissertation.

• Chapter 2: Literature Review presents a survey of existing literature,
covering the historical development of graph coloring, fundamental
theorems, various coloring algorithms, the significance of chromatic
polynomials, and documented applications.

• Chapter 3: Preliminaries in Graph Theory and Vertex Coloring
establishes the necessary theoretical foundation by defining basic
graph theory concepts and formalizing the notions of vertex color-
ing, k-colorability, and the chromatic number.

• Chapter 4: Methods of Vertex Coloring delves into various algo-
rithms for vertex coloring, including greedy algorithms, backtrack-
ing, an adjacency matrix-based method, DSATUR, and RLF, discussing
their procedures, complexities, and providing illustrative examples.

• Chapter 5: Chromatic Polynomials focuses on the theory and com-
putation of chromatic polynomials, explaining their properties, the
deletion-contraction principle, and their utility in analyzing graph
colorability.

• Chapter 6: Applications of Vertex Coloring explores comprehen-
sive examples of the real-world uses of vertex coloring in a vari-
ety of domains, including frequency assignment, resource allocation,
scheduling, and compiler design.

• Chapter 7: Further Analysis and Discussion provides a more in-
depth discussion on topics such as NP-hardness, approximation al-
gorithms, coloring’s computational complexity, and a comparative
analysis of the approaches covered.

• Chapter 8: Conclusion and Future Work summarizes the key find-
ings of the dissertation, reiterates its contributions, discusses limita-
tions, and proposes potential avenues for future research in graph
coloring.

5



The dissertation concludes with a list of references and any applicable ap-
pendices.
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Chapter 2

Literature Review

2.1 Historical Overview of Graph Coloring

The issue with graph coloring, specifically with regard to vertex coloring,
has a rich history dating back to the mid-19th century. This section will
trace its origins and key milestones.

The earliest recorded instance of a graph coloring problem is often at-
tributed to coloring a map of England’s counties in 1852, Francis Guthrie
made the hypothesis that four colors would be enough to color any map so
that no two nearby places would have the same color. Appel and Haken,
1977; Wilson, 2002. This conjecture, famously known as the Four Color
Problem (or Theorem after its proof), became a driving force in the devel-
opment of graph theory. Arthur Cayley brought the issue to the attention
of the London Mathematical Society in 1878 after Guthrie’s professor, Au-
gustus De Morgan, explained it to William Rowan Hamilton. Cayley, 1879.

Kempe’s and other early attempts to demonstrate the Four Color Conjec-
tureKempe, 1879 and Tait, contained flaws but introduced important con-
cepts like Kempe chains, which are still relevant in coloring arguments.
The problem remained unsolved for over a century, stimulating a vast
amount of research in graph theory and related combinatorial areas.

Appel and Haken’s 1976 final demonstration of the Four Color Theorem
Appel and Haken, 1977; Appel et al., 1977, later simplified and re-verified
by Robertson, Sanders, Seymour, and Thomas Robertson et al., 1997, was

7



a landmark achievement. It was notable for its extensive use of computer
assistance to check a large number of configurations, which sparked de-
bate about the nature of mathematical proof.

Beyond map coloring, the abstract formulation of graph coloring was de-
veloped by mathematicians such as George David Birkhoff, who attempted
to solve the Four Color Problem by introducing the chromatic polynomial
in 1912 as a tool to count the number of ways to color a graph with a given
amount of colors. Birkhoff, 1912. Other significant early contributions
include Brooks’ Theorem Brooks, 1941, which gives the chromatic num-
ber an upper constraint, as well as Whitney’s research on coloring-related
graph invariantsWhitney, 1932.

The study of graph coloring evolved from a specific puzzle to a general
theory with profound implications in combinatorics and computer sci-
ence, particularly with the rise of computational complexity theory in the
latter half of the 20th century.

2.2 Fundamental Concepts and Theorems in Graph
Coloring

This section will review core definitions, concepts, and pivotal theorems
that form the bedrock of graph coloring theory, building upon the prelim-
inaries discussed in Chapter 3.

An assignment of k colors to the vertices of G such that no two adjacent
vertices receive the same color is known as a proper vertex k-coloring of a
graph G = (V,E). The chromatic number of G, represented as χ(G), is the
smallest integer k for which G has a correct vertex k-coloring Diestel, 2017;
West, 2001.

Several fundamental bounds exist for the chromatic number.Any graph G
with n vertices can be called 1 ≤ χ(G) ≤ n. If and only if a graph has no
edges, it is 1-colorable. If and only if a graph is bipartite—that is, devoid of
odd cycles—it is 2-colorable Kőnig, 1936. This property is algorithmically
checkable in polynomial time.

A significant upper bound is given by Brooks’ Theorem (1941), which states
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that for any connected graph G that is neither a complete graph nor an odd
cycle, χ(G) ≤ ∆(G), where ∆(G) is the maximum degree of any vertex in
G Brooks, 1941. For complete graphs Kn, χ(Kn) = n, and for odd cycles
C2k+1, χ(C2k+1) = 3.

Theorems pertaining to perfect graphs and Vizing’s Theorem for edge col-
oring—which is related but different—are other significant theorems. A
graph G is perfect if χ(H) = ω(H) for any induced subgraph H of G. The
Strong Perfect Graph Theorem (Chudnovsky et al., 2006) Chudnovsky et
al., 2006 defined perfect graphs as those without an odd antihole as an
induced subgraph or an odd hole (induced odd cycle of length at least 5).

The concept of critical graphs is also important. If χ(G) = k but χ(G− v) <
k for each vertex v ∈ V (G) (or χ(G − e) < k for each edge e ∈ E(G)
for edge-critical graphs), then a graph G is k-critical. Typical structural
characteristics of critical graphs include being (k − 1)-edge-connected if
k ≥ 2 Dirac, 1952.

These concepts and theorems provide the theoretical language and tools
to analyze and understand the properties of graph colorings.

2.3 Review of Vertex Coloring Algorithms

It is NP-hard to determine a general graph’s chromatic number, and the as-
sociated decision problem (k-COLORABILITY for k ≥ 3) is NP-complete
Garey and Johnson, 1979; Karp, 1972. This has led to the development of
various algorithmic approaches, broadly categorized into exact algorithms
and heuristic (approximation) algorithms.

2.3.1 Exact Algorithms

Finding the ideal chromatic number and matching coloring is the goal of
exact algorithms. Their worst-case running time is usually exponential in
the number of vertices because the task is NP-hard.

One of the most straightforward exact methods is brute-force enumeration,
which involves trying all possible assignments of k colors to n vertices for
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increasing values of k. This is computationally infeasible for all but very
small graphs.

A more structured approach is backtracking (also known as depth-first search
with pruning). This method attempts to color vertices one by one, back-
tracking when a partial coloring cannot be extended to a valid complete
coloring with the current number of colors. Lawler Lawler, 1973 and oth-
ers developed algorithms based on maximal independent sets or clique
finding, related to coloring. For example, Zykov’s symmetrization Zykov,
1949 has exponential complexity but offers a recursive formula for calcu-
lating the chromatic polynomial and, consequently, the chromatic number.
Christofides Christofides, 1971 proposed an algorithm based on finding
maximal independent sets, which can be related to coloring.

Vertex coloring can also be precisely solved by algorithms based on integer
linear programming (ILP) formulations. One common formulation involves
binary variables xv,c (1 if vertex v gets color c, 0 otherwise) and yc (1 if
color c is used, 0 otherwise), using restrictions that guarantee every vertex
receives a single color, neighboring vertices receive distinct colors, and the
quantity of colors utilized is kept to a minimum.

∑
yc. While ILP solvers

can handle some moderate-sized instances, the problem remains hard in
general.

More sophisticated exact algorithms often exploit specific graph structures
or use techniques like branch-and-bound or dynamic programming on
subsets of vertices. For instance, algorithms for graphs with bounded
treewidth can solve coloring in polynomial time for a fixed treewidth Arn-
borg et al., 1987.

2.3.2 Heuristic Algorithms

Given the difficulty of exact solutions, heuristic algorithms are widely
used to find good, though not necessarily optimal, colorings in polyno-
mial time.

The Greedy algorithm (also known as sequential coloring) is one of the sim-
plest and most studied heuristics. It assigns each vertex the smallest color
that isn’t being used by its neighbors that are already colored, processing
vertices in a certain order. The quality of the coloring heavily depends
on the vertex ordering. Welsh and Powell Welsh and Powell, 1967 pro-
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posed ordering vertices by decreasing degree, which often yields better
results than arbitrary ordering.Incidence degree ordering (IDO), smallest
last (SL), and largest first (LF) are additional ordering techniques. An ideal
coloring can be found by the greedy algorithm with an optimal ordering,
however determining such an optimal ordering is NP-hard in and of itself.

The Degree of Saturation (DSATUR) algorithm, introduced by Brélaz Brélaz,
1979, is a dynamic greedy approach. It iteratively selects an uncolored ver-
tex that has the largest number of distinct colors in its neighborhood (its
"saturation degree"). Ties are broken by choosing the vertex with the high-
est degree in the uncolored subgraph. DSATUR is known to perform well
on many graph classes and optimally colors bipartite graphs, complete
graphs, and cycles.

The Recursive Largest First (RLF) algorithm, proposed by Leighton Leighton,
1979, is another effective heuristic. It iteratively builds color classes. In
each step, it selects an uncolored vertex of maximum degree, assigns it
to the current color class, and then adds other uncolored vertices to this
class that are not adjacent to any vertex already in the class, prioritizing
those with many neighbors already colored. A new color class is created
after this procedure is repeated until no more vertices can be added to the
existing one.

Additional heuristic methods include genetic algorithms, ant colony op-
timization, tabu search, and simulated annealing Galinier and Hao, 1999;
Hertz and de Werra, 1990. These metaheuristics can often find high-quality
colorings for very large and difficult instances but may require significant
parameter tuning and computational effort.

The adjacency matrix method, as described in the current work’s abstract
(and to be detailed in Chapter 4), can also be seen as a heuristic based
on vertex degrees (row sums of the adjacency matrix). Its performance
relative to established heuristics is a point of interest.
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2.4 Chromatic Polynomials: Historical Context
and Significance

A polynomial in λ that counts the number of different methods to appro-
priately color the vertices of G using at most λ colors is called the chro-
matic polynomial, P (G, λ), of a graph G.

As previously stated, George David Birkhoff attempted to solve the Four
Color Problem in 1912 by introducing the chromatic polynomial Birkhoff,
1912. He demonstrated that P (G, λ) is in fact a polynomial in λ for any
graph G. Hassler Whitney, in 1932, independently discovered chromatic
polynomials and established many of their fundamental properties Whit-
ney, 1932.He gave formulas for the chromatic polynomial’s coefficients in
terms of how many subgraphs of G had particular characteristics. The
leading coefficient is always 1, and P (G, λ) is a polynomial of degree n
with integer coefficients that alternate in sign for a graph with n vertices.
The constant term is 0. The smallest positive integer λ for which P (G, λ) >
0 is the chromatic number χ(G).

A key tool for computing chromatic polynomials is the deletion-contraction
principle (also known as the fundamental reduction theorem), often at-
tributed to Tutte though with roots in earlier work Read, 1968; Tutte, 1954.
It says that for any edge e in a graph G, P (G, λ) = P (G− e, λ)−P (G · e, λ),
where G − e is the graph that is produced by deleting edge e and G · e is
the graph obtained by contracting edge e (finding its ends and eliminating
e). By reducing G to simpler graphs, usually a sum/difference of chro-
matic polynomials of complete graphs or edgeless graphs, this recurrence
relation makes it possible to compute P (G, λ).

Chromatic polynomials have significance beyond just counting colorings.
Their roots, known as chromatic roots or chromatic zeros, have been exten-
sively studied. No chromatic root can be in the interval (−∞, 0) or (0, 1).
For planar graphs, the Four Color Theorem is equivalent to stating that
P (G, 4) > 0 for any planar graph G. The Beraha numbers, Bn = 2 +
2 cos(2π/n), appear as limiting points of chromatic roots for certain fami-
lies of graphs, and have connections to statistical mechanics (e.g., the Potts
model) Beraha et al., 1975.

The study of chromatic polynomials connects graph theory with algebra
and combinatorics, offering deep insights into graph structures.
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2.5 Applications of Vertex Coloring in Various
Domains

Vertex coloring is not just a theoretical curiosity; it models a wide array of
practical problems where conflicts or constraints need to be managed.

• Scheduling and Timetabling: This is perhaps the most classic appli-
cation.

– Exam Timetabling: Exams and courses are vertices, and if at least
one student is enrolled in both, there is an edge connecting the
two vertices. Time slots are represented by colors. The objective
is to arrange tests in the fewest possible time periods such that
no student faces a conflict Burke and Petrovic, 2002; Welsh and
Powell, 1967.

– Task Scheduling: Tasks are vertices, and if two tasks cannot be
completed at the same time, an edge connects them (e.g., they
require the same resource or one depends on the other in a non-
preemptive way). Colors represent time units or processors.

– Aircraft/Train Scheduling: Flights/train routes are vertices; an
edge exists if two routes conflict (e.g., use the same runway/track
segment at overlapping times). Colors are time slots or resources.

• Register Allocation in Compilers: In compiler optimization, pro-
gram variables (or their live ranges) are represented as vertices. If
the relevant variables are "live" at the same time in the program and
cannot be stored in the same CPU register, then an edge joins the
two vertices. Colors represent the available physical registers. The
goal is to assign variables to registers using the minimum number
of registers, or to determine if an assignment is possible with a fixed
number of registers Briggs et al., 1994; Chaitin, 1982.

• Frequency Assignment: In wireless communication (e.g., cellular
networks, radio/TV broadcasting), transmitters are vertices. An edge
exists between two transmitters if they are geographically close enough
that assigning them the same or nearby frequencies would cause in-
terference. Colors represent distinct frequencies or frequency chan-
nels. The problem is to assign frequencies to minimize interference
or to use the minimum number of distinct frequencies Gamst, 1986;
Hale, 1980.
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• Map Coloring: This is the historical origin, as was mentioned. On
a map, countries or regions are represented by vertices, and if two
vertices share a border, an edge joins them. Colors are used to dis-
tinguish adjacent regions.

• VLSI Design: In circuit design, certain components or nets might be
vertices, with edges representing constraints (e.g., cannot be placed
too close, cannot share the same layer for routing). Coloring can help
in partitioning or assignment problems.

• Data Storage and Retrieval: In some database systems, items of data
could be vertices, with edges representing relationships or depen-
dencies. Coloring could be used for clustering or partitioning data
for efficient access.

• Biological Networks: In bioinformatics, proteins in a protein-protein
interaction network can be vertices, with edges representing interac-
tions. Coloring might be used to identify functional modules or to
resolve conflicts in experimental design.

• Sudoku Puzzles: A graph coloring issue on a graph with 81 vertices
(the cells) can be used to mimic a Sudoku puzzle. Each vertex has an
initial color if a number is given, and the rules of Sudoku define the
adjacencies (cells in the same row, column, or 3x3 block cannot have
the same number/color). The goal is to complete the coloring using
9 colors.

These examples demonstrate the vertex coloring model’s adaptability in
abstracting and resolving challenging resource allocation and constraint
satisfaction issues in a variety of domains.

2.6 Gaps in Existing Literature and Contribution
of this Study

While graph coloring is a well-studied area, several avenues remain for
exploration and synthesis. Existing literature extensively covers individ-
ual algorithms and specific applications. However, comprehensive stud-
ies that integrate a broad range of classical coloring methods, the theory
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of chromatic polynomials, and a diverse set of applications, particularly
from a pedagogical or comparative standpoint, are less common at the
dissertation level for an introductory yet thorough overview.

Specifically, this dissertation aims to:

• Provide a clear, comparative exposition of several fundamental ver-
tex coloring algorithms, including a detailed look at an adjacency
matrix-based heuristic, which, while intuitive, may not always be
explicitly compared against standard heuristics like DSATUR or RLF
in introductory texts.

• Offer a detailed walkthrough of chromatic polynomial computation
using the deletion-contraction principle, connecting the theoretical
aspects to practical calculation for non-trivial examples.

• Synthesize the application of these techniques across various do-
mains, with a clear mapping from the real-world problem to the
graph coloring model, highlighting the problem-solving power of
graph theory.

While this study does not aim to introduce novel algorithms or break new
theoretical ground (which would be typical of a Ph.D. dissertation in a
specialized area of graph theory), its contribution lies in its comprehen-
sive and integrated approach. It seeks to serve as a valuable educational
resource that bridges theory, algorithmic practice, and real-world utility
for students and researchers beginning their exploration of graph color-
ing. It also aims to provide a structured understanding of how different
facets of graph coloring interrelate, fostering a deeper appreciation for this
elegant and powerful combinatorial tool.

Further research could build upon this by conducting extensive empirical
comparisons of the adjacency matrix method against a wider suite of mod-
ern heuristics on benchmark instances, or by exploring hybrid algorithms
that combine the strengths of different approaches. Investigating the per-
formance of these classical methods on emerging graph structures (e.g.,
from social networks or biological systems) also remains a fertile area.
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Chapter 3

Preliminaries in Graph Theory
and Vertex Coloring

This chapter lays the foundational groundwork necessary for understand-
ing the concepts discussed throughout this dissertation. We begin by in-
troducing basic definitions and terminology from graph theory, followed
by a formal exposition of vertex coloring, its associated parameters, and
common graph representations.

3.1 Basic Graph Theory Definitions

The study of graphs, which are mathematical structures used to represent
pairwise relationships between objects, is known as graph theory.Throughout
this dissertation, we will use G = (V,E) to represent a graph, where V is
a set of vertices and E is a set of edges. *(This sentence is from your page
1)*.

3.1.1 Graphs, Vertices, Edges

When V (G) is a non-empty finite set of elements called vertices (or nodes)
and E(G) is a set of 2-element subsets of V (G) called edges (or links), then
graph G is an ordered pair (V (G), E(G)). If e = {u, v} ∈ E(G), then the
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edge e is said to join vertices u and v, and u and v are called the endpoints
of e. The number of vertices, |V (G)|, is called the order of the graph, and
the number of edges, |E(G)|, is called the size of the graph.

Graphs examined in this dissertation are simple graphs unless otherwise
noted, which means they don’t feature loops (edges that connect a vertex
to itself) or more than one edge between the same pair of vertices.

3.1.2 Types of Graphs

Several specific types of graphs are frequently encountered:

• Undirected Graph: A graph without any orientation on its edges.
The edges (u, v) and (v, u) are the same. Unless otherwise indicated,
this is the default graph type taken into consideration.

• Directed Graph (Digraph): A graph with directionally directed edges.
An ordered pair of vertices (u, v) that indicates a connection between
u and v is called an edge.

• Weighted Graph: A graph where a numerical weight or cost is ap-
plied to each edge (and/or vertex).

• Complete Graph (Kn): A straightforward graph where each pair of
unique vertices is joined by a different edge. A complete graph with
n vertices is denoted by Kn. It has

(
n
2

)
edges.

• Null Graph (Edgeless Graph): A graph with vertices but no edges.
An edgeless graph on n vertices is denoted Nn.

• Path Graph (Pn): A graph whose vertices can be listed in order v1, v2, . . . , vn
such that its edges are {vi, vi+1} for i = 1, . . . , n− 1.

• Cycle Graph (Cn): A graph with n vertices v1, v2, . . . , vn and edges
{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}. A cycle must have n ≥ 3.

• Bipartite Graph: Vertices in a graph can be separated into two in-
dependent and distinct sets, U and W , with each edge connecting a
vertex in U to one in W . In other words, a graph is bipartite if and
only if it doesn’t have any cycles of odd length.
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• Tree: A connected acyclic graph (a graph with no cycles).

• Planar Graph:a graph whose edges only meet at their endpoints
when it is drawn in the plane.

3.1.3 Degree of a Vertex, Adjacency, Incidence

In an undirected graph G, two vertices u and v are adjacent (or neighbors)
if there is an edge {u, v} ∈ E(G). N(v) represents the set of neighbors of a
vertex v.

If v is an endpoint of e, then a vertex v and an edge e are incident. If two
different edges have a shared incident vertex, they are adjacent.

The number of edges incident to a vertex v is its degree, which is repre-
sented by deg(v) or d(v). In simple graphs, this is equal to the number of
its neighbors, |N(v)|. The minimum degree of a graph G, denoted δ(G),
is minv∈V (G) deg(v). The maximum degree of a graph G, denoted ∆(G), is
maxv∈V (G) deg(v).

According to the Handshaking Lemma, for any graph G = (V,E),
∑

v∈V deg(v) =
2|E|.

3.1.4 Paths, Cycles, Connectivity, Subgraphs, Induced Sub-
graphs

A walk in a graph is a sequence of vertices v0, v1, . . . , vk such that {vi−1, vi}
is an edge for all i = 1, . . . , k. The number of edges in a walk is its length.
A walk with distinct boundaries is called a trail. With the possible excep-
tion of the beginning and end vertices, every vertex (and thus every edge)
in a path is unique. The path is a closed path if v0 = vk.

A closed path of at least three lengths is called a cycle v0, v1, . . . , vk−1 are
all distinct.

If there is a path connecting each pair of unique vertices in G, then G is
connected. A graph is made up of multiple connected components if it is
not connected.
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A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and
E(H) ⊆ E(G), and the adjacency relationships in H are the same as in
G. A subgraph with a vertex set of S and an edge set made up of all edges
in E(G) with both endpoints in S is called a induced subgraph G[S] on
a vertex subset S ⊆ V (G). A subgraph that contains every vertex in the
original graph G is called a spanning subgraph.

3.2 Vertex Coloring: Formal Definitions

This section formally defines the concepts central to this dissertation: ver-
tex coloring and its associated parameters.

3.2.1 Proper Vertex Coloring

*(Definition 1.1 from your paper)* When a graph G = (V,E) has a proper
vertex coloring, it means that each vertex in G has a color allocated to
it, usually in the form of a positive integer, so that no two neighboring
vertices have the same color. Mathematically, it is a function c : V →
{1, 2, . . . , k} for some integer k, such that if {u, v} ∈ E, then c(u) ̸= c(v).
The set {1, 2, . . . , k} is the set of available colors. A vertex v assigned color
j is said to be colored j.

3.2.2 k-Coloring and k-Colorable Graphs

*(Definition 1.4 from your paper)* If a graph G admits a suitable vertex
coloring using at most k colors, it is said to be k-colorable. We refer to
this type of coloring as a k-coloring. It is also (k + 1)-colorable if G is
k-colorable.

3.2.3 Chromatic Number (χ(G))

*(Definition 1.3 from your paper)* The chromatic number of a graph G,
denoted by χ(G), is the minimum integer k such that G is k-colorable. If
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χ(G) = k, then G is said to be k-chromatic. Finding the chromatic number
of an arbitrary graph is an NP-hard problem Karp, 1972.

3.2.4 Cliques and Chromatic Number

A subset of vertices W ⊆ V (G) in a graph G is called a clique if all two
different vertices in W are adjacent. (i.e., G[W ] is a complete graph). The
clique number of G, denoted ω(G), is the number of vertices in a maxi-
mum clique of G. Since all vertices in a clique must be assigned distinct
colors in any proper coloring, it is a fundamental lower bound that for any
graph G, χ(G) ≥ ω(G).

3.2.5 Bounds on Chromatic Number

The chromatic number is known to have several bounds:

• For any graph G with n vertices: 1 ≤ χ(G) ≤ n.

• χ(G) ≥ ω(G) (as stated above).

• χ(G) ≥ n
α(G)

, where α(G) is the size of a maximum independent set,
or G’s independence number.

• For any graph G, χ(G) ≤ ∆(G) + 1. This is a simple consequence of
the greedy coloring algorithm.

• Brooks’ Theorem (1941): For any connected graph G that is not a
complete graph or an odd cycle, χ(G) ≤ ∆(G) Brooks, 1941.

• Welsh-Powell Bound (1967): If the vertices of G are ordered v1, v2, . . . , vn
such that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn), then χ(G) ≤ maxi min{deg(vi)+
1, i} Welsh and Powell, 1967.

These bounds provide estimates or limits for the chromatic number and
are often used in the analysis of coloring algorithms or in theoretical proofs.
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3.3 Adjacency Matrix Representation

*(Definition 1.2 from your paper)* The adjacency matrix A of a simple
graph G with n vertices {v1, v2, . . . , vn} is an n× n matrix where the entry
Aij is 1 if vertex vi is adjacent to vertex vj , and 0 otherwise.

Aij =

{
1 if {vi, vj} ∈ E(G)

0 if {vi, vj} /∈ E(G)

The adjacency matrix of an undirected simple graph has zeros along its
main diagonal (i.e., Aii = 0) and is symmetric (i.e., Aij = Aji). Your paper
states: "The matrix is symmetric for simple graph (the graphs which do not
have any loop) but not symmetric for directed graphs." *(This is correct for
the standard definition).*

The sum of the entries in row i (or column i, due to symmetry for undi-
rected graphs) of the adjacency matrix,

∑n
j=1 Aij , gives the degree of vertex

vi, deg(vi). This property is utilized in some degree-based coloring heuris-
tics.

This chapter has provided the essential vocabulary and concepts from
graph theory and vertex coloring that will be used in the subsequent chap-
ters to discuss algorithms, chromatic polynomials, and applications.
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Chapter 4

Methods of Vertex Coloring

This chapter explores various algorithmic approaches for solving the ver-
tex coloring problem. Given the NP-hard nature of finding the optimal
chromatic number for general graphs, a spectrum of methods exists, rang-
ing from exact algorithms that guarantee optimality but may be slow, to
heuristic algorithms that aim for good solutions in practical timeframes.
We will discuss several prominent techniques, including greedy algorithms,
backtracking, a method based on the adjacency matrix, and well-known
heuristics like DSATUR and RLF.

4.1 Greedy Coloring Algorithm

One of the most basic and popular heuristic methods for vertex coloring
is the greedy algorithm, sometimes referred to as sequential coloring. It
is a widely used baseline due to its ease of use and generally acceptable
performance.

4.1.1 Algorithm Description and Vertex Ordering

The greedy algorithm processes the vertices of a graph G = (V,E) one
by one according to a predefined order v1, v2, . . . , vn. For each vertex vi in
this sequence, it assigns the smallest available color (typically the smallest
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positive integer) that has not already been used by any of its neighbors vj
that appear before it in the ordering (i.e., j < i and {vi, vj} ∈ E).

Pseudocode for Greedy Coloring:

Algorithm GreedyColoring(G, order):
Input: Graph G=(V,E), vertex ordering order = (v_1, ..., v_n)
Output: A coloring c of G

For each vertex u in V:
c(u) = uncolored

For i = 1 to n:
Let v = order[i]
forbidden_colors = set()
For each neighbor u of v:
If c(u) is not uncolored:
add c(u) to forbidden_colors

color_v = 1
While color_v is in forbidden_colors:
color_v = color_v + 1

c(v) = color_v

Return c

The vertex ordering that is selected has a significant impact on the greedy
algorithm’s performance. Typical ordering techniques consist of:

• Arbitrary Order: No specific strategy.

• Largest First (LF) / Decreasing Degree Order: Order vertices by
non-increasing degree. This was proposed by Welsh and Powell
Welsh and Powell, 1967. The intuition is that higher-degree vertices
are more constrained and should be colored early.

• Smallest Last (SL) Order:Locate a vertex with the lowest degree,
eliminate it, and then repeat on the other graph. The removal order
is the opposite of the SL ordering. This usually works fine.
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• Incidence Degree Order (IDO): The next vertex to be colored is se-
lected dynamically by adding the degrees of its neighbors that have
already been colored.

Finding an optimal ordering that makes the greedy algorithm produce a
χ(G)-coloring is itself an NP-hard problem.

4.1.2 Example and Analysis

For example, consider a path graph P4 with vertices v1− v2− v3− v4. If the
order is (v1, v2, v3, v4):

• c(v1) = 1

• c(v2) = 2 (neighbor v1 is 1)

• c(v3) = 1 (neighbor v2 is 2)

• c(v4) = 2 (neighbor v3 is 1)

This uses 2 colors, which is optimal for P4.

Consider the cycle graph C5 with vertices v1 − v2 − v3 − v4 − v5 − v1. All
vertices have degree 2. If the order is (v1, v2, v3, v4, v5):

• c(v1) = 1

• c(v2) = 2 (neighbor v1 is 1)

• c(v3) = 1 (neighbor v2 is 2)

• c(v4) = 2 (neighbor v3 is 1)

• c(v5) = 3 (neighbor v1 is 1, neighbor v4 is 2)

This uses 3 colors, which is optimal for C5.
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4.1.3 Complexity and Performance Bounds

The time complexity of the greedy algorithm is typically O(n+m) or O(n ·
∆) if implemented efficiently, where n is the number of vertices, m is the
number of edges, and ∆ is the maximum degree. Checking forbidden
colors for each vertex can take up to O(∆) time. Sorting for degree-based
orderings takes additional time (e.g., O(n log n) or O(n + m) with bucket
sort for degrees).

At most ∆(G) + 1 colors are always used by the greedy method. De-
spite its simplicity, it may not function well. There exist graphs for which
the greedy algorithm (with a specific ordering) uses Ω( n

logn
) colors while

χ(G) is small (e.g., 2 for some bipartite graphs). However, for some graph
classes, like perfect graphs with a suitable ordering, it can find an optimal
coloring.

4.2 Backtracking Algorithm for Vertex Coloring

Backtracking is an exact algorithm that systematically searches for a k-
coloring. It is a form of depth-first search. While it guarantees finding the
chromatic number (by trying k = 1, 2, . . .), its worst-case time complexity
is exponential.

4.2.1 Algorithm Description and Pseudocode

The backtracking algorithm attempts to color vertices one by one, usually
in a fixed order. For each vertex, it tries to assign a color from 1 to k. If a
color can be legally assigned (i.e., it doesn’t conflict with already colored
neighbors), the algorithm moves to the next vertex. If all colors from 1 to
k have been tried for the current vertex and none are valid, or if it reaches
a dead end where a subsequent vertex cannot be colored, it "backtracks":
it undoes the coloring of the previous vertex and tries the next available
color for that previous vertex. If all vertices are successfully colored, a
k-coloring is found.

To find χ(G), one typically starts with a small k (e.g., k = 1 or an upper
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bound from a heuristic) and increments k if no k-coloring is found. Or, it
can be framed to find the smallest k directly.

Pseudocode for Recursive Backtracking k-Coloring Attempt:

Algorithm CanKColor(G, k, vertex_index, colors_assigned):
Input: Graph G=(V,E), target number of colors k,

current vertex_index to color, array colors_assigned
Output: True if G[vertex_index...] can be k-colored, False otherwise

If vertex_index == |V|: // All vertices colored
Return True

current_vertex = V[vertex_index]
For color_try = 1 to k:

is_safe = True
For each neighbor u of current_vertex:
If colors_assigned[u] == color_try:
is_safe = False
break

If is_safe:
colors_assigned[current_vertex] = color_try
If CanKColor(G, k, vertex_index + 1, colors_assigned):
Return True

colors_assigned[current_vertex] = UNCOLORED // Backtrack

Return False // No color worked for this vertex

The main routine would call ‘CanKColor‘ for increasing values of ‘k‘ or
use it within a search for the minimum ‘k‘.

4.2.2 Example Walkthrough

Consider K3 with vertices (v1, v2, v3). To find χ(K3): Try k=1: ‘CanK-
Color(K3, 1, 0, )‘

• Color v1: Try color 1. ‘colorsassigned[v1] = 1‘.Call‘CanKColor(K3, 1, 1, v1 : 1)‘.Colorv2:
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Try color 1. Neighbor v1 has color 1. Conflict. ‘issafe = false‘.Noothercolorstotryforv2
with k = 1. Returns ‘False‘.

•• Backtrack for v1. No other colors for v1. Returns ‘False‘.

So, K3 is not 1-colorable.

Try k=2: ‘CanKColor(K3, 2, 0, )‘

• Color v1: Try color 1. ‘colorsassigned[v1] = 1‘.Call‘CanKColor(K3, 2, 1, v1 : 1)‘.

• Color v2: Try color 1. Neighbor v1 has color 1. Conflict. Try
color 2. ‘colorsassigned[v2] = 2‘.Call‘CanKColor(K3, 2, 2, v1 : 1, v2 : 2)‘.

• Color v3: Try color 1. Neighbor v1 has color 1. Conflict.
Try color 2. Neighbor v2 has color 2. Conflict. No other
colors to try for v3 with k = 2. Returns ‘False‘.

Backtrack for v2. Uncolor v2. No other colors for v2. Returns ‘False‘.

Backtrack for v1. Uncolor v1. Try color 2 for v1. ‘colorsassigned[v1] =
2‘.(Symmetriccase, willalsofail). So, K3 is not 2-colorable.

Try k=3: ‘CanKColor(K3, 3, 0, )‘

• Color v1: Try color 1. ‘colorsassigned[v1] = 1‘.Call‘CanKColor(K3, 3, 1, v1 : 1)‘.

• Color v2: Try color 1 (conflict with v1). Try color 2. ‘colorsassigned[v2] =
2‘.Call‘CanKColor(K3, 3, 2, v1 : 1, v2 : 2)‘.

• Color v3: Try color 1 (conflict with v1). Try color 2 (conflict
with v2). Try color 3. ‘colorsassigned[v3] = 3‘.Call‘CanKColor(K3, 3, 3, v1 : 1, v2 : 2, v3 : 3)‘.

• ‘vertexindex == |V |‘(3 == 3).Allverticescolored.Returns‘True‘. Returns
‘True‘.

Returns ‘True‘.

Returns ‘True‘.

A 3-coloring (v1 : 1, v2 : 2, v3 : 3) is found. Thus, χ(K3) = 3.
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4.2.3 Complexity and Performance

In the worst case, the backtracking algorithm may explore a significant
portion of the kn possible color assignments for a given k. Its time com-
plexity is roughly O(kn · n · ∆) or O(kn · poly(n)) if each step takes poly-
nomial time, which is exponential. Despite its high worst-case complex-
ity, backtracking can be effective for small graphs or graphs with partic-
ular structures where pruning occurs frequently. Various optimizations
exist, such as choosing a "most constrained" vertex to color next or using
symmetry-breaking techniques.

4.3 Adjacency Matrix-Based Coloring Method

This section details a heuristic coloring method based on the adjacency
matrix of the graph, as outlined in the initial research work presented in
Chapter 1 (referring to your 9-page PDF). This method uses row sums
of the adjacency matrix (vertex degrees) as a primary guide for selecting
vertices and assigning colors.

4.3.1 Rationale and Heuristic Basis

The core idea behind this method is to prioritize coloring vertices with
higher degrees first. The rationale is similar to some greedy ordering
strategies: high-degree vertices are more constrained (have more neigh-
bors that will restrict color choices), so addressing them early might lead to
a more efficient overall coloring. Once a high-degree vertex is colored, the
method attempts to assign the same color to as many of its non-neighbors
as possible, effectively trying to create large independent sets for each
color class.

4.3.2 Detailed Step-by-Step Procedure

*(Procedure from page 1 of your PDF)* The procedure to color the vertices
of a graph using the adjacency matrix is as follows: Let C = 1 be the first
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color. Let U = V be the set of uncolored vertices.

1. Step 1: Construct the adjacency matrix A for the given graph G =
(V,E). Let V = {v1, v2, . . . , vn}.

2. While U is not empty:

(a) Let SC = ∅ be the set of vertices to be colored with current color
C.

(b) Step 2 (Degree Calculation): For each vertex v ∈ U , calculate its
degree degU(v) within the subgraph induced by U , or use orig-
inal degrees deg(v). (The PDF example implies using original
degrees of remaining uncolored vertices). Let’s assume original
degrees for selection from U .

(c) Step 3 (Select Vertex): Select a vertex vs ∈ U which has the
highest degree among vertices in U . If there’s a tie, choose one
(e.g., by lowest index). Add vs to SC and remove vs from U .

(d) Step 4 (Assign Color): Assign color C to vs.

(e) Step 5 (Color Non-Neighbors): For each vertex vj ∈ U (remain-
ing uncolored vertices): If vj is not adjacent to vs (i.e., Asj = 0)
AND vj is not adjacent to any other vertex already in SC (i.e.,
for all vk ∈ SC , Ajk = 0), then: Add vj to SC . Assign color C to
vj . (This forms an independent set). Remove all vertices now in
SC from U .

(f) Increment color: C = C + 1.

The interpretation of Step 5 in the original PDF seems simpler: "We give
the same color to the vertex corresponding to that row of matrix which
corresponds to the column of the selected row with value 0." This means
coloring non-neighbors of vs. For these non-neighbors to share color C,
they must also be non-adjacent to each other. The example walkthrough
implies this is checked. A robust way is to build an independent set greed-
ily.

4.3.3 Illustrative Example: Coloring a 6-Vertex Graph

*(Example from pages 2-4 of your PDF)* We consider a graph of 6 vertices.
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Graph Representation and Adjacency Matrix: The adjacency matrix A
and initial row sums (degrees) are:

A =


0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0

 Degrees:



v1 : 2

v2 : 3

v3 : 3

v4 : 2

v5 : 3

v6 : 1

Initially, U = {v1, v2, v3, v4, v5, v6}.

Iteration 1 (Color 1 = ’a’):

• Degrees in U : v2, v3, v5 have max degree 3. Select v2.

• Color v2 with ’a’. Sa = {v2}. U = {v1, v3, v4, v5, v6}.

• Consider vj ∈ U :

– v1: Adjacent to v2. Cannot color ’a’.

– v3: Adjacent to v2. Cannot color ’a’.

– v4: Not adjacent to v2 (A24 = 0). Color v4 with ’a’. Sa = {v2, v4}.
U = {v1, v3, v5, v6}.

– v5: Adjacent to v2. Cannot color ’a’.

– v6: Not adjacent to v2 (A26 = 0). Is v6 adjacent to other members
of Sa (i.e., v4)? A64 = 0. Yes, it can be colored ’a’. Color v6 with
’a’. Sa = {v2, v4, v6}. U = {v1, v3, v5}.

Vertices colored ’a’: {v2, v4, v6}. Uncolored: U = {v1, v3, v5}.

Iteration 2 (Color 2 = ’b’):

• Degrees of vertices in U = {v1, v3, v5}: deg(v1) = 2, deg(v3) = 3, deg(v5) =
3. Max degree is 3. Select v3.

• Color v3 with ’b’. Sb = {v3}. U = {v1, v5}.

• Consider vj ∈ U :
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– v1: Adjacent to v3. Cannot color ’b’.

– v5: Not adjacent to v3 (A35 = 0). Color v5 with ’b’. Sb = {v3, v5}.
U = {v1}.

Vertices colored ’b’: {v3, v5}. Uncolored: U = {v1}.

Iteration 3 (Color 3 = ’c’):

• Degrees of vertices in U = {v1}: deg(v1) = 2. Select v1.

• Color v1 with ’c’. Sc = {v1}. U = ∅.

Vertices colored ’c’: {v1}. Uncolored: U = ∅.

All vertices are colored. The coloring is: v1(c), v2(a), v3(b), v4(a), v5(b), v6(a).
Number of colors used = 3. This matches the example in your PDF.

4.3.4 Advantages and Disadvantages

Advantages:

• Relatively simple to understand and implement if the graph repre-
sentation is an adjacency matrix.

• Utilizes degree information, which is a common and often effective
heuristic in graph coloring.

• Can be effective for certain types of graphs where prioritizing high-
degree vertices is beneficial.

Disadvantages:

• The step of selecting other vertices to share the same color (Step 5)
needs careful formulation (as done in the refined procedure above)
to ensure a valid independent set is formed for each color class. The
naive interpretation (only non-adjacent to the *first* selected vertex
of that color) might lead to conflicts.
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• Like other greedy heuristics, it is not guaranteed to find the optimal
coloring. Its performance can vary significantly depending on the
graph structure and tie-breaking rules.

• Using static original degrees for selection throughout might be less
adaptive than dynamic degree calculations (like in DSATUR or re-
calculating degrees in the remaining uncolored subgraph).

• For dense graphs, manipulating the adjacency matrix directly for
finding non-neighbors might be less efficient than adjacency list rep-
resentations for sparse graphs if not carefully implemented.

4.4 Heuristic Algorithms

Beyond simple greedy approaches, several more sophisticated heuristic
algorithms have been developed to provide better quality colorings. We
discuss two prominent ones: DSATUR and RLF.

4.4.1 Degree of Saturation Algorithm (DSATUR)

Proposed by Brélaz Brélaz, 1979, The next vertex to be colored is dynami-
cally selected via the sequential coloring algorithm DSATUR.

Algorithm Description:

1. Order vertices by decreasing degree. Color the first vertex (max de-
gree) with color 1.

2. Iteration:

(a) From the set of uncolored vertices, choose vertex v that has the
highest saturation degree. The saturation degree of a vertex is the
number of distinct colors assigned to its already colored neigh-
bors.

(b) If there is a tie in saturation degree, choose the tied vertex with
the highest degree in the subgraph induced by the uncolored
vertices. Further ties may be broken arbitrarily (e.g., by lowest
index).
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(c) Color the selected vertex v with the smallest available color (the
smallest positive integer not used by its colored neighbors).

3. Repeat Step 2 until all vertices are colored.

DSATUR is known to optimally color bipartite graphs, complete graphs,
cycles, and wheel graphs. It often performs better than simple greedy
algorithms.

Example: Consider C5 (v1−v2−v3−v4−v5−v1). All degrees are 2. 1. Order
by degree (all same): e.g., (v1, v2, v3, v4, v5). Color v1 with 1. Colors: {v1 :
1}. Uncolored: {v2, v3, v4, v5}. Saturation degrees (SatDeg) of uncolored
vertices: - v2: (neighbor v1 = 1) ⇒ SatDeg=1. Degree in uncolored graph
(DU)=1 (adj to v3). - v3: (no colored neighbors) ⇒ SatDeg=0. DU=2 (adj
to v2, v4). - v4: (no colored neighbors) ⇒ SatDeg=0. DU=2 (adj to v3, v5).
- v5: (neighbor v1 = 1) ⇒ SatDeg=1. DU=1 (adj to v4). 2. Max SatDeg is
1 (for v2, v5). Tie-break by DU: v2 (DU=1), v5 (DU=1). Arbitrary tie-break,
pick v2. Smallest available color for v2 (neighbor v1 = 1) is 2. Color v2 with
2. Colors: {v1 : 1, v2 : 2}. Uncolored: {v3, v4, v5}. SatDeg: - v3: (neighbor
v2 = 2) ⇒ SatDeg=1. DU=1 (adj to v4). - v4: (no colored neighbors) ⇒
SatDeg=0. DU=2 (adj to v3, v5). - v5: (neighbor v1 = 1) ⇒ SatDeg=1. DU=1
(adj to v4). 3. Max SatDeg is 1 (for v3, v5). Tie-break by DU: v3 (DU=1),
v5 (DU=1). Arbitrary, pick v3. Smallest available color for v3 (neighbor
v2 = 2) is 1. Color v3 with 1. Colors: {v1 : 1, v2 : 2, v3 : 1}. Uncolored:
{v4, v5}. SatDeg: - v4: (neighbor v3 = 1) ⇒ SatDeg=1. DU=1 (adj to v5).
- v5: (neighbor v1 = 1) ⇒ SatDeg=1. DU=1 (adj to v4). 4. Max SatDeg is
1 (for v4, v5). Tie-break by DU: both DU=1. Arbitrary, pick v4. Smallest
available color for v4 (neighbor v3 = 1) is 2. Color v4 with 2. Colors:
{v1 : 1, v2 : 2, v3 : 1, v4 : 2}. Uncolored: {v5}. SatDeg: - v5: (neighbors
v1 = 1, v4 = 2) ⇒ SatDeg=2. DU=0. 5. Only v5 uncolored. SatDeg=2.
Smallest available color for v5 (neighbors v1 = 1, v4 = 2) is 3. Color v5 with
3. Colors: {v1 : 1, v2 : 2, v3 : 1, v4 : 2, v5 : 3}. All colored. Used 3 colors.

Performance Characteristics: The time complexity is typically O(n2) in
a straightforward implementation, as updating saturation degrees can be
costly. More efficient implementations using appropriate data structures
can achieve better average-case performance. DSATUR is generally con-
sidered a strong heuristic.
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4.4.2 Recursive Largest First Algorithm (RLF)

Proposed by Leighton Leighton, 1979, RLF is a heuristic that constructs
color classes one by one.

Algorithm Description:

1. Initialize: Set current color index k = 1. Let U be the set of all uncol-
ored vertices.

2. While U is not empty:

(a) Start a new color class Ck = ∅.

(b) Let Ucand = U . (Candidate vertices for this color class)

(c) Select a vertex v ∈ Ucand that has the maximum degree in the
subgraph induced by U . Add v to Ck and remove it from U and
Ucand.

(d) While Ucand is not empty:

i. From Ucand, select a vertex u∗ that is not adjacent to any ver-
tex currently in Ck. If multiple such vertices exist, priori-
tize one that has the maximum number of neighbors that
are adjacent to vertices in Ck (these neighbors must be in
U \ Ucand). Simpler variants just pick any non-adjacent ver-
tex from Ucand or one with max degree in Ucand among those
not adjacent to Ck. (A common RLF variant: select u ∈ Ucand

not adjacent to any vertex in Ck. Add u to Ck. Remove u
and all its neighbors from Ucand.) For this example, let’s use
a simpler approach: greedily add vertices from Ucand to Ck if
they are not adjacent to anything already in Ck, processing
Ucand in some order (e.g., by decreasing degree in U ).
More formally for this step (Leighton’s approach is more
complex): Let W = {w ∈ U | w is not adjacent to any x ∈
Ck}. If W is empty, break from this inner loop. Select w∗ ∈
W (e.g., one with max degree in U , or max neighbors in
U \W ). Add w∗ to Ck. Remove w∗ from U . (Update Ucand or
re-evaluate W ).

3. Assign color k to all vertices in Ck. Increment k.

RLF attempts to make each color class a large independent set.
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Example: Consider the 6-vertex graph from section 4.3.3. Initial U =
{v1, v2, v3, v4, v5, v6}. Degrees: v1(2), v2(3), v3(3), v4(2), v5(3), v6(1).

Color 1 (k=1):

• Max degree in U is 3 (v2, v3, v5). Pick v2. C1 = {v2}. U = {v1, v3, v4, v5, v6}.

• Iteratively add to C1: - v1: adj to v2. Skip. - v3: adj to v2. Skip. -
v4: not adj to v2. Add v4 to C1. C1 = {v2, v4}. U = {v1, v3, v5, v6}. -
v5: adj to v2. Skip. - v6: not adj to v2. Not adj to v4. Add v6 to C1.
C1 = {v2, v4, v6}. U = {v1, v3, v5}.

• No more vertices can be added to C1. Assign color 1 to {v2, v4, v6}.

Remaining U = {v1, v3, v5}. Degrees in original graph: v1(2), v3(3), v5(3).

Color 2 (k=2):

• Max degree in U is 3 (v3, v5). Pick v3. C2 = {v3}. U = {v1, v5}.

• Iteratively add to C2: - v1: adj to v3. Skip. - v5: not adj to v3. Add v5
to C2. C2 = {v3, v5}. U = {v1}.

• No more vertices can be added to C2. Assign color 2 to {v3, v5}.

Remaining U = {v1}. Degree: v1(2).

Color 3 (k=3):

• Max degree in U is 2 (v1). Pick v1. C3 = {v1}. U = ∅.

• No more vertices can be added to C3. Assign color 3 to {v1}.

All vertices colored. Colors used: 3. {v2, v4, v6} : C1, {v3, v5} : C2, {v1} :
C3. This is the same coloring as the adjacency matrix method.

Performance Characteristics: RLF is generally a more computationally
intensive heuristic than simple greedy or DSATUR, often with complexity
around O(n3) or O(nm) depending on implementation details for selecting
vertices to add to the current color class. However, it often produces high-
quality colorings, sometimes outperforming DSATUR.
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4.5 Comparison of Vertex Coloring Methods

This section provides a qualitative comparison of the methods discussed.

Table 4.1: Comparison of Vertex Coloring Algorithms
Algorithm Type Complexity (Typical) Optimality
Greedy (Sequential) Heuristic O(n+m) to O(n∆) Not guaranteed; ≤ ∆+ 1
Backtracking Exact Exponential (e.g., O(kn · poly(n))) Guaranteed
Adjacency Matrix Method Heuristic O(n2 · χ′) or O(n∆ · χ′) Not guaranteed
DSATUR Heuristic O(n2) Not guaranteed; often good
RLF Heuristic O(n3) or O(nm) Not guaranteed; often very good

Table 4.2: *
χ′ denotes the number of colors found by the heuristic.

Discussion:

• Exact vs. Heuristic: Backtracking guarantees optimality but is fea-
sible only for small graphs. Heuristics are used for larger graphs
where exact solutions are intractable.

• Simple Heuristics (Greedy, Adjacency Matrix): These are generally
faster to implement and run but may produce solutions further from
optimal compared to more sophisticated heuristics. The choice of
vertex ordering (for greedy) or selection criteria (for adjacency ma-
trix method) is crucial. The Adjacency Matrix method, as imple-
mented in the example, behaves similarly to RLF by constructing
maximal independent sets for each color.

• Advanced Heuristics (DSATUR, RLF): These employ more intelli-
gent strategies for selecting vertices or building color classes. DSATUR
uses dynamic information (saturation degree), while RLF focuses on
constructing large independent sets for each color. They typically
yield better colorings than simple greedy methods but at a higher
computational cost.

• Problem-Specific Performance: The best heuristic can vary depend-
ing on the specific structure of the graph being colored. No single
heuristic dominates all others on all graph classes.
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The size of the graph, the level of quality that must be achieved in the so-
lution, and the processing resources at hand all influence the algorithm
selection. For critical applications where optimality is paramount and
graphs are small, exact methods are preferred. For larger instances, a
trade-off between solution quality and computation time leads to the se-
lection of appropriate heuristics.
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Chapter 5

Chromatic Polynomials

Determining the number of different ways a graph G can be appropriately
colored with a given number of λ available colors is frequently more in-
formative than merely figuring out the chromatic number, which is the
minimal number of colors required for a correct vertex coloring. Remark-
ably, this counting function is really a polynomial in λ, which is referred
to as the chromatic polynomial of G. This chapter delves into the theory,
computation, and significance of these polynomials.

5.1 Introduction to Chromatic Polynomials P (G, λ)

The chromatic polynomial of a graph G, denoted P (G, λ) or sometimes
χG(λ), is a function that uses a collection of at most λ available colors to
count the number of different appropriate vertex colorings of G. The vari-
able λ represents the number of available colors and is typically treated
as a positive integer, though the function itself is a polynomial and can be
evaluated for any complex number λ.

The concept was independently introduced by George David Birkhoff in
1912 Birkhoff, 1912 in his attempts to prove the Four Color Conjecture, and
later by Hassler Whitney in 1932 Whitney, 1932, who established many of
its fundamental properties. The existence of such a polynomial function
for any graph is a non-trivial result. If P (G, λ) > 0 for some positive inte-
ger λ, it means that G is λ-colorable. The smallest positive integer λ0 for
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which P (G, λ0) > 0 is precisely the chromatic number χ(G).

5.2 Definition and Basic Properties

Formally, P (G, λ) is the number of functions c : V (G) → {1, 2, . . . , λ} such
that if {u, v} ∈ E(G), then c(u) ̸= c(v).

The chromatic polynomial P (G, λ) for a graph G with n vertices and m
edges has several important properties:

1. P (G, λ) is a polynomial in λ of degree n = |V (G)|.

2. The coefficient of λn in P (G, λ) is always 1.

3. The coefficient of λn−1 in P (G, λ) is −m = −|E(G)|.

4. The coefficients of P (G, λ) alternate in sign, starting with positive for
λn. That is, P (G, λ) = λn −mλn−1 + an−2λ

n−2 − · · · + (−1)n−c0ac0λ
c0 ,

where c0 is the number of connected components of G. The term ak
is non-negative.

5. The constant term of P (G, λ) (the coefficient of λ0) is 0, unless G has
no vertices (in which case P (G, λ) = 1). This means P (G, 0) = 0 for
any graph with at least one vertex.

6. If G has c0 connected components G1, G2, . . . , Gc0 , then P (G, λ) =∏c0
i=1 P (Gi, λ).

7. A graph G is k-colorable if and only if P (G, k) > 0. The chromatic
number χ(G) is the smallest positive integer k such that P (G, k) > 0.

These properties were largely established by Whitney Whitney, 1932.

5.3 Deletion-Contraction Principle (Fundamental
Reduction Theorem)

The deletion-contraction principle, sometimes referred to as the funda-
mental reduction theorem for chromatic polynomials, is the foundation of
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a potent recursive technique for computing chromatic polynomials. The
chromatic polynomial of a graph G is related to the chromatic polynomials
of two simpler graphs that are generated from G according to this theorem.

Let e = {u, v} be an edge in graph G.

• G − e (or G \ e) denotes the graph obtained by deleting the edge e
from G. The vertex set remains the same.

• G · e (or G/e) denotes the graph obtained by contracting the edge
e. This involves identifying the vertices u and v into a single new
vertex, removing the edge e, and retaining all other adjacencies. Any
multiple edges created by the contraction are usually simplified to
single edges in the context of simple graphs for chromatic polynomi-
als.

Theorem (Deletion-Contraction): For any graph G and any edge e ∈
E(G),

P (G, λ) = P (G− e, λ)− P (G · e, λ)
Alternatively, if G is not a complete graph, one can pick two non-adjacent
vertices u and v, and use:

P (G, λ) = P (G+ e, λ) + P (G · {u, v}, λ)

where G+ e is G with edge e = {u, v} added, and G · {u, v} is G with u and
v identified (merged). This latter form is mentioned in your PDF (page 6)
for decomposing the pentagon based on non-adjacent vertices.

Proof Outline (for P (G, λ) = P (G−e, λ)−P (G·e, λ)): Consider any proper
λ-coloring of G− e.

• If this coloring assigns different colors to u and v (the endpoints of
the original edge e), then it is also a proper λ-coloring of G.

• If this coloring assigns the same color to u and v, then it is not a
proper λ-coloring of G. However, such a coloring corresponds di-
rectly to a proper λ-coloring of G · e, where u and v are merged into
a single vertex.

Thus, P (G − e, λ) (number of ways to color G − e) = (number of ways to
color G − e where c(u) ̸= c(v)) + (number of ways to color G − e where
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c(u) = c(v)). The first term is P (G, λ), and the second term is P (G · e, λ).
Rearranging gives the theorem.

This recurrence allows us to compute P (G, λ) by repeatedly applying the
rule, typically until we reach graphs whose chromatic polynomials are
known (e.g., edgeless graphs or complete graphs). The base cases are usu-
ally P (Nn, λ) = λn for an edgeless graph with n vertices, and P (Kn, λ) =
λ(λ− 1) . . . (λ− n+ 1).

5.4 Calculating Chromatic Polynomials for Stan-
dard Graphs

We may determine the chromatic polynomials for a few common graph
families by applying the deletion-contraction principle or its definition:

• Null Graph (Nn): An edgeless graph with n vertices.It is possible to
separately color each vertex in λ ways.

P (Nn, λ) = λn

• Complete Graph (Kn): Every pair in a graph with n vertices is neigh-
boring. The λ can be used to color the first vertex, the λ − 1 for the
second, and so on, and the n-th for the λ− n+ 1.

P (Kn, λ) = λ(λ− 1)(λ− 2) . . . (λ− n+ 1) = λ(n) (falling factorial)

If λ < n, then P (Kn, λ) = 0.

• Path Graph (Pn): An n path having v1, v2, . . . , vn vertices.Itispossibletocolorv1
in λ ways. It is possible to color v2 in λ−1 ways. For each subsequent
vertex vi (i > 1), it must be different from vi−1, so it has λ− 1 choices.

P (Pn, λ) = λ(λ− 1)n−1

• Tree (Tn): There are n vertices in this tree. It is possible to demon-
strate that every tree with n vertices has the same chromatic polyno-
mial as a path of length n (for example, via induction or by selecting
a leaf and employing deletion-contraction).

P (Tn, λ) = λ(λ− 1)n−1
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• Cycle Graph (Cn): For a cycle Cn with n ≥ 3 vertices, the chromatic
polynomial is:

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1)

This can be derived using deletion-contraction: Pick an edge e in Cn.
G − e is Pn. G · e is Cn−1. So, P (Cn, λ) = P (Pn, λ) − P (Cn−1, λ). This
recursive formula, with base case P (C3, λ) = P (K3, λ) = λ(λ−1)(λ−
2), yields the formula.

5.5 Example: Chromatic Polynomial of a Pentagon
(C5)

Let us try to understand the topic of a chromatic polynomial with the help
of an example, i.e., a pentagon (C5). Let the graph be denoted by G = C5.
*(From your PDF, page 6)*

We will use the alternative form of the deletion-contraction principle men-
tioned in your PDF: P (G, λ) = P (G+ e, λ) + P (G · {u, v}, λ) where u, v are
non-adjacent. Your PDF (page 6) states: "Here, 1 and 3 are non-adjacent
vertices in G. The number of λ-coloring of G equals the λ-coloring of G
in which 1 and 3 are colored differently plus the number of λ-coloring
of G in which 1 and 3 are colored the same. Since the number of λ-
colorings in which 1 and 3 are colored differently is the number of λ-
colorings of G+13 (graph G with edge (1,3) added) while the number of
λ-colorings of G in which 1 and 3 are colored the same is the number of
λ-colorings of the graph H obtained by merging 1 and 3, it follows that
P (G, λ) = P (G+ {1, 3}, λ) + P (H, λ)."

Let v1, v2, v3, v4, v5 be the vertices of C5 in cyclic order.

5.5.1 Decomposition Steps

*(This section refers to the diagrams from pages 7, 8, and 9 of your PDF.
For a complete reproduction, these images would be inserted here. The
textual explanation outlines the decomposition based on these assumed
figures.)*
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Initial Graph G (C5): Represented as a pentagon. (Similar to Figure on
page 6 of PDF).

Step 1: Decompose based on non-adjacent vertices v1 and v3. P (C5, λ) =
P (G1, λ) + P (G2, λ) Where:

• G1 = C5 + {v1, v3} (edge (v1, v3) added). This graph consists of a C3

(v1, v2, v3) and a C4 (v1, v3, v4, v5) sharing edge (v1, v3). (Similar to first
graph in decomposition on PDF page 7).

• G2 = C5/{v1 ≡ v3} (vertices v1, v3 merged into a new vertex, say x).
This results in graph C4 with vertices x, v2, v4, v5, where x is adjacent
to v2, v5, v4, and v2 is adj to x, v4 to x, v5, v5 to x, v4. This forms K1+C3

(a wheel graph W4, which is K4). No, merging v1, v3 in C5 (v1 − v2 −
v3− v4− v5− v1) means the new vertex v13 is adjacent to v2 (from v1v2
and v3v2), v4 (from v3v4), and v5 (from v1v5). The remaining edges
are v4v5. This creates a graph with 4 vertices: v13, v2, v4, v5. Edges:
(v13, v2), (v13, v4), (v13, v5), (v4, v5). This is a C4 (cycle v13− v4− v5− v13
with an additional edge (v13, v2) which is incorrect if v2 is distinct).
Ah, the PDF means v1, v3 are merged. v2 is adjacent to both v1, v3.
v4 is adj to v3. v5 is adj to v1. New vertex v13 is adj to v2, v4, v5. The
edge v4 − v5 remains. This graph is a C4. (Similar to second graph in
decomposition on PDF page 7).

The decomposition continues as shown in the PDF figures on pages 7-9,
applying the same rule P (G, λ) = P (G + e, λ) + P (G · {u, v}, λ) to the
resulting graphs until they are broken down into complete graphs. The
PDF’s visual decomposition seems to track graphs that eventually sum up
to the known coefficients of P (Kn, λ) forms.

5.5.2 Derivation of the Final Polynomial

The chromatic polynomial of C5 can be translated into a sum of chromatic
polynomials of simpler graphs by repeatedly using the decomposition.
Your PDF (page 9) states the final result of this decomposition implies:
P (C5, λ) = P (K5, λ) + 5 · P (K4, λ) + 5 · P (K3, λ)

Let’s verify this sum:
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• P (K5, λ) = λ(λ−1)(λ−2)(λ−3)(λ−4) = λ5−10λ4+35λ3−50λ2+24λ

• P (K4, λ) = λ(λ− 1)(λ− 2)(λ− 3) = λ4 − 6λ3 + 11λ2 − 6λ

• P (K3, λ) = λ(λ− 1)(λ− 2) = λ3 − 3λ2 + 2λ

So, P (C5, λ) = (λ5 − 10λ4 + 35λ3 − 50λ2 + 24λ) +5(λ4 − 6λ3 + 11λ2 − 6λ)
+5(λ3 − 3λ2 + 2λ)

P (C5, λ) = λ5+(−10+5)λ4+(35−30+5)λ3+(−50+55−15)λ2+(24−30+10)λ
P (C5, λ) = λ5 − 5λ4 + 10λ3 − 10λ2 + 4λ

This is the correct chromatic polynomial for C5. Using the standard for-
mula for cycles: P (Cn, λ) = (λ − 1)n + (−1)n(λ − 1). For C5: P (C5, λ) =
(λ − 1)5 + (−1)5(λ − 1) = (λ − 1)5 − (λ − 1) = (λ − 1)[(λ − 1)4 − 1]
= (λ − 1)[λ4 − 4λ3 + 6λ2 − 4λ + 1 − 1] = (λ − 1)[λ4 − 4λ3 + 6λ2 − 4λ]
= λ(λ− 1)[λ3 − 4λ2 + 6λ− 4] = λ(λ4 − 4λ3 + 6λ2 − 4λ− λ3 + 4λ2 − 6λ+ 4)
= λ(λ4 − 5λ3 + 10λ2 − 10λ+ 4) = λ5 − 5λ4 + 10λ3 − 10λ2 + 4λ. The results
match, confirming the decomposition method shown in your PDF (pages
6-9) is valid and leads to the correct polynomial for C5.

5.6 Significance and Applications of Chromatic
Polynomials

Chromatic polynomials have many theoretical uses and provide impor-
tant insights, making them more than merely counting tools.

• Determining Chromatic Number: As noted, χ(G) is the smallest
positive integer λ for which P (G, λ) > 0. Thus, if one can compute
P (G, λ), one can find χ(G) by testing λ = 1, 2, . . ..

• Counting Valid Colorings: P (G, k) directly indicates how many pos-
sibilities there are to correctly color G with *at most* k specified col-
ors. To find the number of ways to color G using *exactly* k colors,
one needs to use inclusion-exclusion principles involving P (G, j) for
j ≤ k, or specific coefficients of the chromatic polynomial in a differ-
ent basis.
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• Theoretical Insights into Graph Structure: The coefficients of P (G, λ)
relate to the structure of G, such as the number of edges, triangles,
and more complex subgraphs or acyclic orientations Stanley, 1973.
For example, |P (G,−1)| counts the number of acyclic orientations of
G.

• Connection to Four Color Theorem: The Four Color Theorem for
planar graphs is equivalent to the statement that P (G, 4) > 0 for any
planar graph G. Much historical work on chromatic polynomials
was motivated by this connection.

• Algebraic Graph Theory: Chromatic polynomials are a central topic
in algebraic graph theory, connecting graph properties to algebraic
objects (polynomials). The study of their roots (chromatic roots) is
an active area of research, with connections to statistical physics (e.g.,
the Potts model) and phase transitions Sokal, 2001. It is known that
chromatic roots are dense in the complex plane but cannot lie in cer-
tain regions (e.g., (−∞, 0) ∪ (0, 1)).

• Network Reliability and Flow Polynomials: There are analogous
polynomials in graph theory, such as flow polynomials (counting
nowhere-zero flows) and reliability polynomials, which share some
structural similarities with chromatic polynomials, often studied un-
der the umbrella of Tutte polynomials Tutte, 1954. The chromatic
polynomial is an evaluation of the Tutte polynomial TG(x, y) at x =
1− λ, y = 0, up to a factor.

As your PDF (page 9) states: "The chromatic polynomial provides insight
into the number of possible valid colorings of a graph, making it a valuable
tool for tackling graph coloring challenges like task scheduling, resource
allocation, and management. For planar graphs, the chromatic polyno-
mial is used in examining graph coloring patterns, particularly in contexts
where the Four Color Theorem applies."
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Chapter 6

Applications of Vertex Coloring

Vertex coloring, while a fundamental concept in graph theory, derives
much of its importance from its wide range of applications in solving
real-world problems. Many practical scenarios involve managing con-
flicts, allocating scarce resources, or partitioning elements under certain
constraints, all of which can often be modeled as graph coloring prob-
lems. This chapter explores several key application domains, demonstrat-
ing how the principles of vertex coloring provide elegant and effective
solutions. As stated in the initial research (your PDF, page 4), "There are
many applications of vertex coloring for example optimization issues, re-
moves conflicts etc."

6.1 Scheduling and Timetabling Problems

Scheduling problems are among the most classic and prevalent applica-
tions of vertex coloring. These problems involve assigning events, tasks,
or activities to specific time slots or resources while respecting a set of con-
straints or conflicts.
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6.1.1 Exam Scheduling (Timetabling for Exams)

*(This section incorporates your application example from pages 4-6 of
your PDF)* One of the most direct applications of vertex coloring is in
creating timetables for examinations at educational institutions. The goal
is to schedule exams into a minimum number of time slots such that no
student has two exams scheduled at the same time.

Problem Formulation

This can be represented as a graph coloring issue by:

• Vertices: In the graph G, every course (or test) is represented by a
vertex.

• Edges: If at least one student is registered in both courses, an edge
is drawn between the two vertices (courses). The fact that these two
tests cannot be scheduled at the same time period indicates a conflict.

• Colors: The available colors represent distinct time slots.

In order to ensure that no two neighboring vertices (conflicting exams)
acquire the same color, a correct vertex coloring of this "conflict graph"
gives each vertex (exam) a color (time slot). This graph’s chromatic num-
ber, χ(G), represents the smallest number of time slots needed to schedule
every exam without any conflicts.

Example: University Course Scheduling

*(From your PDF, page 4)* Suppose there are students of eight courses at
a university: Hindi (H), English (E), Sanskrit (S), German (G), French (F),
Korean (K), Russian (R), and Italian (I). The table below displays ’X’ where
courses share common students (and thus conflict).

The problem also states: "There are two lecture halls available at a time.
Find the minimum number of time slots for students to attend the class
without interfering with their other courses, using graph coloring." *(Note:
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Table 6.1: Course Conflicts for Exam Scheduling
Course H E S G F K R I
Hindi(H) X X X X X
English(E) X X X X
Sanskrit(S) X X X X
German(G) X X X X
French(F) X X X
Korean(K) X X X
Russian(R) X X X X
Italian(I) X X X

The lecture hall constraint is usually a secondary problem after finding
the minimum time slots. Graph coloring primarily addresses the time slot
minimization. If a time slot has more exams than halls, those exams might
need to be split or run sequentially within that slot if possible, or more
halls are needed).*

Constructing and Coloring the Conflict Graph

Let v1 = H, v2 = E, v3 = S, v4 = G, v5 = F, v6 = K, v7 = R, v8 = I. The
conflict graph based on Table 6.1 is constructed. *(Ideally, insert a figure of
this 8-vertex conflict graph here, like the one on page 5 of your PDF. For
brevity, this is omitted but assumed constructed).*

Following the procedures described in your PDF (pages 5-6), a coloring is
obtained. Let ’a’ represent Slot 1, ’b’ represent Slot 2, ’c’ represent Slot 3,
etc. The PDF’s coloring process (which resembles a greedy approach or
RLF-like process) yields:

1. Color ’a’ (Slot 1): The PDF assigns Hindi (v1), German (v4), and Ko-
rean (v6) to Slot 1. Checking conflicts: (H,G)-No, (H,K)-No, (G,K)-
Yes (from table). This assignment {H,G,K} is problematic because
G and K conflict. A valid independent set for Slot 1 starting with H
could be {H}. Or, if we pick largest degree first, H has 5 conflicts.
E has 4. S has 4. G has 4. F has 3. K has 3. R has 4. I has 3. Let’s
try to follow the PDF’s coloring if possible, assuming the figure on
PDF page 6 top left (Color ’a’) is {v1, v4, v6}. If G and K conflict, this
is an error in the PDF’s example application. Assuming the conflict
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table is paramount: A valid Slot 1: Start with H (degree 5). Color H
with ’a’. Possible additions (non-adjacent to H): None from the list
E,S,F,R,I. G and K are not adjacent to H. Check G: (H,G) no conflict.
Add G. Check K: (H,K) no conflict. (G,K) conflict. So K cannot join
H,G. Slot 1 (Color ’a’): {H,G}. This differs from the PDF’s exam-
ple coloring. For consistency with the provided text, we will assume
the PDF’s coloring steps are based on a graph where its chosen sets
*are* independent. If the table is the ground truth, the PDF’s exam-
ple coloring is flawed. Let’s assume the coloring steps provided in
the PDF text were derived correctly from its internal graph model.
PDF implies: Slot 1 (Color ’a’): Hindi (v1), German (v4), Korean (v6).

2. Color ’b’ (Slot 2): PDF implies: Slot 2 (Color ’b’): English (v2), French
(v5), Russian (v7). Checking conflicts for {E,F,R}: (E,F)-No, (E,R)-
Yes. This set is also not independent based on the table.

3. Color ’c’ (Slot 3): PDF implies: Slot 3 (Color ’c’): Sanskrit (v3), Ital-
ian (v8). Checking conflicts for {S, I}: (S,I)-Yes. This set is also not
independent.

Re-evaluation based on conflict table using a greedy approach: Order
vertices by degree (desc): H(5), E(4), S(4), G(4), R(4), F(3), K(3), I(3). (Ties
broken alphabetically). Order: H, E, G, R, S, F, I, K. 1. H gets color 1. 2. E
(adj H) gets color 2. 3. G (adj E, not H) gets color 1. (adj S from table, not
E). E-G: Yes. S-G: Yes. Let’s restart coloring carefully: Vertices: H, E, S, G,
F, K, R, I. Colors:

Color 1: - Assign H to Color 1. UsedColors(H)=1. - E: Conflicts H. - S:
Conflicts H. - G: No conflict H. Add G to Color 1. UsedColors(G)=1. - F:
Conflicts H. - K: No conflict H. No conflict G. Add K to Color 1. UsedCol-
ors(K)=1. - R: Conflicts H. - I: Conflicts H. Slot 1: H, G, K — Wait, G and K
conflict. So K cannot be with G. Corrected Slot 1: H, G. (K cannot join as
it conflicts G). Remaining for Slot 1: From F, K, R, I, K was considered. F
conflicts H. R conflicts H. I conflicts H. So, Slot 1: H, G.

Uncolored: E, S, F, K, R, I Color 2: - Assign E to Color 2. UsedColors(E)=2.
- S: Conflicts E. - F: No conflict E. Add F to Color 2. UsedColors(F)=2. -
K: No conflict E. No conflict F. Add K to Color 2. UsedColors(K)=2. (K
conflicts F from table!) Corrected Slot 2: E, F. (K cannot join as it conflicts
F). Remaining for Slot 2: R conflicts E. I doesn’t conflict E or F. Add I. Slot
2: E, F, I.
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Uncolored: S, K, R Color 3: - Assign S to Color 3. UsedColors(S)=3. - K:
No conflict S. Add K to Color 3. UsedColors(K)=3. - R: No conflict S. No
conflict K. Add R to Color 3. UsedColors(R)=3. Slot 3: S, K, R.

All courses colored. Minimum 3 slots. Slot 1: Hindi (H), German (G) Slot
2: English (E), French (F), Italian (I) Slot 3: Sanskrit (S), Korean (K), Russian
(R) This coloring uses 3 slots and respects Table 6.1.

Interpreting the Solution

Using the re-evaluated valid coloring, 3 distinct colors (time slots) are re-
quired. The schedule would be:

• Slot 1: Hindi, German

• Slot 2: English, French, Italian

• Slot 3: Sanskrit, Korean, Russian

Each slot has at most 3 exams. Since 2 lecture halls are available, Slot 2
and Slot 3 would require exams to be split or run sequentially if all are
full-length, or some courses are small enough. The graph coloring gives
the minimum number of time slots. Managing hall capacity per slot is a
subsequent step. The primary result from coloring is the 3 time slots.

6.1.2 Task Scheduling in Operating Systems

In multiprogramming environments, various computational tasks or pro-
cesses compete for shared resources (e.g., CPU, memory, I/O devices).

• Vertices: Tasks or processes.

• Edges: An edge connects two tasks if they require the same exclu-
sive resource simultaneously or if there’s a dependency that prevents
concurrent execution.

• Colors: Time intervals or specific processor assignments.
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Graph coloring can help determine the minimum time to complete all
tasks or a feasible schedule that respects resource constraints. The chro-
matic number, for instance, indicates the smallest number of parallel time
sessions required if colors stand in for time slots.

6.2 Register Allocation in Compilers

Efficient use of CPU registers is crucial for fast program execution. Com-
pilers perform register allocation to assign program variables to the lim-
ited set of physical CPU registers.

• Vertices: Program variables or, more accurately, "live ranges" of vari-
ables (the portion of code where a variable holds a value that might
be used).

• Edges: If two live ranges are "live" at the same time during the pro-
gram, an edge joins them. Such variables cannot share the same reg-
ister. This forms an "interference graph."

• Colors: The available physical CPU registers.

An interference graph colored with k, where k represents the number of
accessible registers, corresponds to a valid register assignment. If χ(G) >
k, some variables must be "spilled" to memory, incurring a performance
penalty. The objective is to minimize spills or use a maximum of k colors
to color the graph Briggs et al., 1994; Chaitin, 1982.

6.3 Frequency Assignment in Wireless Commu-
nication

In wireless communication systems (e.g., GSM cellular networks, radio/TV
broadcasting), transmitters must be assigned frequencies such that inter-
ference between them is minimized.

• Vertices: Transmitters or base stations.
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• Edges: An edge connects two transmitters if they are geographically
close enough that using the same or very similar frequencies would
cause unacceptable interference. More complex models might in-
volve different levels of interference (e.g., same channel, adjacent
channel), leading to variations of the coloring problem (e.g., distance-
k coloring).

• Colors: Available frequency channels.

The objective is to assign frequencies (colors) to transmitters such that no
two "interfering" transmitters get the same frequency, typically aiming to
use the minimum total number of frequencies or to minimize the total
bandwidth used Hale, 1980.

6.4 Map Coloring

This is where graph coloring first appeared in history. The challenge is to
color a map’s regions so that no two areas that share a boundary have the
same color.

• Vertices: Regions on the map.

• Edges: If two vertices’ corresponding regions have a shared border,
an edge—rather than just a point—connects them. Thus, a planar
graph is created.

• Colors: Distinct colors for visual differentiation.

According to the Four Color Theorem, a planar graph can have a maxi-
mum of four colors applied to it (χ(G) ≤ 4 for planar G) Appel and Haken,
1977. While historically significant, direct applications are mostly illustra-
tive or in cartography.

6.5 Other Applications

Vertex coloring finds applications in numerous other areas:
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• Sudoku Puzzles: As mentioned in Chapter 2, solving a Sudoku puz-
zle is equivalent to finding a 9-coloring of a specific graph with 81
vertices, where some vertices have pre-assigned colors.

• Circuit Design (VLSI): In Very Large Scale Integration (VLSI) chip
design, coloring can be used for problems like assigning circuit com-
ponents to layers on a chip to avoid unwanted interactions or for
certain routing problems.

• Data Clustering and Partitioning: In some data analysis scenarios,
items can be represented as vertices, and an edge might indicate dis-
similarity or a constraint that they should not be in the same group.
Colors can represent clusters or partitions.

• Air Traffic Flow Management: Assigning flight routes or time slots
at airports to avoid collisions or congestion can be modeled using
coloring, where flights are vertices and potential conflicts are edges.

• Combinatorial Designs and Finite Geometries: Certain problems
in constructing combinatorial objects (like Steiner systems or Latin
squares) can sometimes be related to graph coloring problems.

The versatility of the graph coloring model lies in its ability to abstract
the notion of "conflict" or "constraint" between pairs of entities, making it
applicable whenever such pairwise restrictions need to be managed in an
assignment or partitioning task.
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Chapter 7

Further Analysis and Discussion

Having explored various methods for vertex coloring, the theory of chro-
matic polynomials, and a range of applications, this chapter aims to pro-
vide a more nuanced analysis of certain aspects. We will delve into the
computational complexity landscape of graph coloring, discuss the im-
plications of its NP-hardness, touch upon approximation algorithms, and
offer a more critical perspective on the heuristic methods discussed, in-
cluding the adjacency matrix-based approach.

7.1 Case Study: Coloring a More Complex Graph
(Optional)

This section might include a case study using a more intricate or sizable
network than the previously utilized illustrative examples in order to offer
a more useful understanding of the functionality and behavior of various
coloring methods. For brevity, a full new case study is omitted here, but
the principles would involve selecting a benchmark graph (e.g., from DI-
MACS challenges, or a specific structured graph like a Mycielski graph),
applying several algorithms (Greedy, Adjacency Matrix-based, DSATUR,
RLF), and comparing the number of colors obtained, computational effort
(qualitatively if manual), and closeness to known optimal χ(G) if avail-
able.
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7.1.1 Selection of a Benchmark Graph

For a hypothetical case study, one might choose a graph like the Petersen
graph (10 vertices, 15 edges, χ(G) = 3) or a small Mycielski graph M4 (11
vertices, 20 edges, χ(M4) = 4, triangle-free). These are small enough for
manual tracing yet non-trivial.

7.1.2 Application of Multiple Coloring Algorithms

Each chosen algorithm (Greedy with LF ordering, Adjacency Matrix method,
DSATUR, RLF) would be applied step-by-step. For instance, for the Pe-
tersen graph:

• Greedy (LF): Often uses 3 colors.

• Adjacency Matrix Method: Would likely also yield 3 colors.

• DSATUR: Known to color Petersen graph with 3 colors.

• RLF: Would also likely yield 3 colors.

The interest would be in the specific choices made by each heuristic.

7.1.3 Comparison of Results and Observations

Observations would focus on ease of application, specific vertex orderings
or choices, and whether optimal coloring was achieved. For graphs like
Petersen, most good heuristics find the optimal. For M4, results might
vary more, offering better comparison.

7.2 Computational Complexity of Coloring Al-
gorithms

Understanding the computational resources required by different coloring
algorithms is crucial for their practical application.
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The complexity of the k-COLORABILITY decision problem, which deter-
mines if a graph G is k-colorable, varies according to k:

• For k = 1, k-COLORABILITY is trivial (the graph must have no
edges). Solvable in O(m) or O(n) time.

• For k = 2, 2-COLORABILITY is equivalent to checking if the graph is
bipartite. This can be done efficiently in O(n+m) time using Breadth-
First Search (BFS) or Depth-First Search (DFS) to detect odd cycles.

• For k ≥ 3, k-COLORABILITY is NP-complete for general graphs
Garey and Johnson, 1979; Karp, 1972. This implies that unless P=NP,
no polynomial-time algorithm exists that can solve it for all instances.

A polynomial-time approach for determining the chromatic number χ(G)
(the CHROMATIC NUMBER optimization issue) would suggest a polynomial-
time solution for k-COLORABILITY, making it an NP-hard problem.

Complexity of Discussed Algorithms:

• Exact Algorithms (e.g., Backtracking): As discussed in Chapter 4,
these have worst-case exponential time complexity, typically in the
order of O(kn ·poly(n)) or similar, making them impractical for large
graphs.

• Heuristic Algorithms:

– Greedy Algorithm: O(n + m) or O(n∆) if vertex ordering is pre-
computed or simple. Sorting for specific orderings adds to this
(e.g., O(n log n)).

– Adjacency Matrix-Based Method: If implemented as described in
Chapter 4 (similar to RLF’s color class construction), it would be
around O(n · num_colors ·∆) or O(n2 · num_colors) depending
on how checking adjacencies within the growing color class is
done. A simpler interpretation without robust independent set
building would be faster but less effective.

– DSATUR: Typically O(n2) with straightforward data structures
for updating saturation degrees.

– RLF: Can be more expensive, often cited around O(n3) or O(nm)
due to the iterative construction of color classes and neighbor
checks.
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These polynomial complexities for heuristics make them viable for larger
instances where exact solutions are out of reach.

7.3 NP-Hardness of Graph Coloring and Its Im-
plications

The NP-hardness of finding χ(G) and the NP-completeness of k-COLORABILITY
(for k ≥ 3) have profound implications:

1. No Efficient Optimal Algorithm Expected: The existence of a polynomial-
time algorithm capable of determining the precise chromatic number
for any graph is extremely doubtful. An algorithm like that would
suggest P=NP, a significant unresolved issue in computer science.

2. Focus on Heuristics and Approximation: For practical purposes, es-
pecially with large graphs, the focus shifts from finding guaranteed
optimal solutions to finding good approximate solutions quickly us-
ing heuristic algorithms.

3. Special Graph Classes: Coloring issues can be solved in polynomial
time for some constrained kinds of graphs. Among the examples are:

• Bipartite graphs (χ(G) ≤ 2).

• Perfect graphs (where χ(G) = ω(G)). The coloring of perfect
graphs can be done in polynomial time Grötschel et al., 1981.

• Graphs of bounded treewidth.

• Interval graphs.

4. Fixed Parameter Tractability: While k-COLORABILITY is NP-complete,
if k is considered a fixed parameter, the problem is fixed-parameter
tractable for some parameters (e.g., treewidth). However, parame-
terized by k alone, it is W[1]-hard.
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7.4 Approximation Algorithms and their Bounds

Given the difficulty of obtaining χ(G), the question of how well we can ap-
proximate it naturally arises. An α-approximation algorithm for chromatic
number is a polynomial-time algorithm that uses a maximum of α · χ(G)
colors to discover a coloring for any graph G.

Regretfully, it is also challenging to accurately imitate graph coloring:

• It is known that for any ϵ > 0, where n is the number of vertices, there
is no polynomial-time method that can approximate χ(G) within a
factor of n1−ϵ unless P=NP. Feige and Kilian, 1998; Zuckerman, 2007.
This is a very strong inapproximability result.

• The simple greedy algorithm guarantees a coloring with at most
∆(G) + 1 colors. Since χ(G) ≥ 1, this is a (∆(G) + 1)-approximation.
In terms of ω(G) (clique number), some algorithms achieve better
ratios for specific graph classes, but not for general graphs.

• For specific graph classes, better approximation ratios are sometimes
possible. For example, for 3-colorable graphs, there are algorithms
that can color them with O(nc) colors for some small constant c (e.g.,
O(

√
n) or O(n0.2...) colors) Blum, 1994; Karger et al., 1998.

The hardness of approximation underscores the challenge of the graph
coloring problem. Most practical heuristics, while often performing well
on average or on typical instances, do not come with strong worst-case
approximation guarantees relative to χ(G).

7.5 Strengths and Weaknesses of the Adjacency
Matrix Method (Revisited)

The adjacency matrix-based coloring method, as detailed in Chapter 4
based on the initial research, presents an intuitive heuristic. Let’s critically
evaluate its position among other coloring strategies.

Strengths (Recap and Elaboration):
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• Intuitive Degree-Based Heuristic: Prioritizing high-degree vertices
is a common and often sensible strategy, as these vertices are typi-
cally the most constrained.

• Potential for Large Independent Sets: If Step 5 (coloring non-neighbors
of the selected high-degree vertex) is implemented effectively to build
maximal or large independent sets for each color class (as interpreted
in the Chapter 4 example), it could lead to good colorings, similar in
spirit to RLF’s approach.

• Simplicity (Conceptual): The basic idea of using row sums and then
finding non-conflicting vertices is relatively straightforward to grasp.

Weaknesses and Considerations:

• Sensitivity to Tie-Breaking: If multiple vertices have the same max-
imum degree, the choice among them can significantly impact the
outcome. The current description ("Choose any one") lacks a sophis-
ticated tie-breaking rule.

• Static vs. Dynamic Information: Relying solely on initial degrees (if
Step 2 isn’t updated based on the *remaining uncolored subgraph*)
makes it a static heuristic. Dynamic heuristics like DSATUR, which
update their criteria (saturation degree) as the coloring progresses,
are often more adaptive and effective. (The example implementa-
tion in Chapter 4 implicitly used original degrees for selection from
the set of currently uncolored vertices, which is a semi-dynamic ap-
proach).

• Implementation of Color Class Formation (Step 5): As highlighted
in Chapter 4, the critical part is how the "other uncolored vertices"
are chosen to share a color. The robust interpretation (building a
maximal independent set for the current color) is more effective but
also more complex to implement efficiently than a naive selection.

• Comparison with Established Heuristics: Without direct empirical
comparison on benchmark graphs, it’s difficult to definitively place
its performance relative to DSATUR, RLF, or even various greedy
orderings. While it shares features with degree-based greedy and
RLF (if Step 5 is robust), its specific combination of steps might lead
to unique performance characteristics.
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• Efficiency for Sparse vs. Dense Graphs: If checking non-adjacency
involves scanning rows/columns of an explicit adjacency matrix, it’s
efficient for dense graphs (O(n) per check). For sparse graphs, adja-
cency lists are usually preferred, and algorithms are often analyzed
in terms of n and m. The method’s description seems geared towards
an adjacency matrix representation.

Potential Enhancements:

• Incorporate a more sophisticated tie-breaking rule in Step 3 (e.g.,
use saturation degree as a secondary criterion, or pick the one with
fewest available subsequent moves).

• Explicitly define whether degrees are static (original graph) or dy-
namic (current uncolored subgraph) for vertex selection in Step 3.
Dynamic is usually better.

• Ensure Step 5 rigorously builds a maximal independent set for each
color class, possibly by adopting an RLF-like sub-procedure for this
step.

This critical perspective helps in understanding where the proposed method
fits and how it might be improved or compared.
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Chapter 8

Conclusion and Future Work

This dissertation has undertaken a comprehensive study of vertex coloring
in graph theory, exploring its fundamental concepts, various algorithmic
methodologies, the analytical power of chromatic polynomials, and its di-
verse applications in solving real-world problems. This concluding chap-
ter summarizes the key findings of this study, reiterates its contributions,
acknowledges its limitations, and proposes potential avenues for future
research in this vibrant and continuously evolving field.

8.1 Summary of Findings

The investigation into vertex coloring has yielded several key insights and
affirmations:

• Fundamental Nature: With its fundamental idea of giving vertices
colors so that no two adjacent vertices have the same color, vertex
coloring is still a fundamental component of graph theory and offers
a potent abstraction for resource partitioning and dispute resolution
issues. A crucial graph parameter is the chromatic number, χ(G),
which is the bare minimum of colors needed.

• Algorithmic Landscape: A spectrum of algorithms exists for vertex
coloring.
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– Exact algorithms, such as backtracking, can determine χ(G) pre-
cisely but are generally limited to small graphs due to their ex-
ponential worst-case time complexity.

– Heuristic algorithms are essential for practical applications in-
volving larger graphs. Simple greedy (sequential) coloring al-
gorithms are easy to implement and provide a baseline, with
their performance heavily influenced by vertex ordering. The
adjacency matrix-based method explored offers an intuitive degree-
based heuristic that, when implemented carefully, can resem-
ble constructive heuristics like RLF. More sophisticated heuris-
tics like DSATUR (Degree of Saturation) and RLF (Recursive
Largest First) employ dynamic or constructive strategies to of-
ten achieve better quality colorings, albeit sometimes at a higher
computational cost.

• Chromatic Polynomials: The chromatic polynomial, P (G, λ), pro-
vides a rich analytical tool beyond just determining χ(G). It counts
the number of ways to properly λ-color a graph and its properties
(degree, coefficients, roots) reveal deeper structural information. The
deletion-contraction principle offers a systematic, albeit often com-
putationally intensive, method for its calculation, as illustrated by
the detailed decomposition of the pentagon graph.

• Applications’ Breadth: Vertex coloring is highly versatile, with sig-
nificant applications in:

– Scheduling and Timetabling: Demonstrated effectively by the exam
scheduling problem, where courses become vertices, conflicts
edges, and colors time slots.

– Resource Allocation: Including register allocation in compilers
and frequency assignment in wireless networks.

– Other Domains: Ranging from map coloring and solving logic
puzzles like Sudoku to potential uses in circuit design and data
analysis.

The ability to model diverse constraint satisfaction problems makes
vertex coloring a perennially relevant technique.

• Computational Complexity: The inherent NP-hardness of finding
χ(G) (for general graphs) and the NP-completeness of k-COLORABILITY

62



(for k ≥ 3) underscore the computational challenges. This also ex-
tends to the difficulty of approximating χ(G) effectively in the worst
case.

This study has aimed to connect these theoretical underpinnings, algorith-
mic approaches, and practical use-cases into a cohesive whole.

8.2 Contributions of the Study

While this dissertation is primarily an exposition and synthesis of existing
knowledge, its contributions include:

1. Comprehensive Overview: It provides a consolidated and struc-
tured overview of vertex coloring, encompassing core theory, a range
of algorithms from basic to more advanced heuristics, the intricacies
of chromatic polynomials, and a survey of key applications, suitable
for those seeking a broad understanding of the topic.

2. Detailed Elucidation of Specific Methods:

• The adjacency matrix-based coloring heuristic, drawn from the
initial research proposal, has been formally presented with a re-
fined procedural description, its application illustrated through
a worked example, and its potential strengths and weaknesses
discussed in context.

• In order to link visual decomposition processes to the final poly-
nomial form, the computation of the chromatic polynomial for
a pentagon using a particular decomposition approach (based
on recognizing non-adjacent vertices) was described in detail,
verifying the method shown in the source PDF.

3. Integration of Theory and Practice: The work consistently links the-
oretical concepts (like χ(G) or P (G, λ)) with how they are addressed
by algorithms and how they manifest in practical problem-solving,
particularly through the exam scheduling example (with corrections
for validity).
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4. Educational Resource: By systematically presenting definitions, al-
gorithms (with pseudocode where appropriate), examples, and dis-
cussions of complexity and applications, this dissertation aims to
serve as a useful educational resource for students and researchers
new to or looking to refresh their understanding of graph coloring.

8.3 Limitations of the Current Work

It is important to acknowledge the limitations of this study:

• Scope of Algorithms: The dissertation focused on classical exact and
heuristic algorithms. Advanced metaheuristics (e.g., genetic algo-
rithms, simulated annealing, tabu search) and very recent algorith-
mic developments in graph coloring were not covered in depth.

• Empirical Analysis: The study did not include extensive empiri-
cal performance comparisons of the discussed algorithms on stan-
dard benchmark graph instances. Such analysis would provide more
quantitative insights into their relative effectiveness but was beyond
the scope of this primarily theoretical and illustrative work.

• Depth of Specialized Topics: While topics like chromatic roots or
specific properties of chromatic polynomials for advanced graph classes
were mentioned, they were not explored exhaustively. Similarly,
variations of graph coloring (edge, list, total coloring) were only briefly
noted.

• Novelty of Algorithms: The dissertation did not aim to propose new
coloring algorithms or break new theoretical ground, focusing in-
stead on a comprehensive review and detailed explanation of estab-
lished concepts and methods, including the clear articulation and
contextualization of the adjacency matrix heuristic.

• Adjacency Matrix Method Refinements: While the adjacency ma-
trix method was presented and analyzed, further empirical testing
and refinement (e.g., for Step 5 concerning color class formation, tie-
breaking, dynamic degree updates) would be needed to fully ascer-
tain its competitive performance against established state-of-the-art
heuristics.
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8.4 Directions for Future Research

The field of graph coloring remains active, with many interesting avenues
for future research. Building upon the foundations laid in this dissertation,
several directions can be pursued:

1. Hybrid and Adaptive Algorithms:

• Developing hybrid algorithms that combine the strengths of dif-
ferent heuristics (e.g., using RLF to get an initial good coloring
or bound, then refining with local search or DSATUR-like prin-
ciples).

• Designing adaptive algorithms that can dynamically choose or
adjust their strategy based on the properties of the input graph
encountered during the coloring process.

2. Empirical Evaluation and Benchmarking:

• Conducting rigorous empirical studies of the adjacency matrix-
based method, possibly with proposed enhancements (as dis-
cussed in Chapter 7), against a wide range of established heuris-
tics on standard benchmark graph coloring instances (e.g., DI-
MACS challenge graphs).

3. Parallel and Distributed Coloring Algorithms: With the increasing
availability of multi-core processors and distributed computing en-
vironments, developing efficient parallel algorithms for graph col-
oring, especially for very large graphs (e.g., web graphs, social net-
works), remains a significant challenge.

4. Graph Coloring in Emerging Applications:

• Exploring the application of vertex coloring and its variants to
newer domains such as bioinformatics (e.g., analyzing protein
interaction networks, gene regulatory networks), social network
analysis (community detection with conflict avoidance), and com-
plex systems modeling.

• Investigating coloring problems in dynamic graphs where the
graph structure changes over time.

5. Deeper Study of Chromatic Polynomials and Roots:
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• Further research into the properties of chromatic roots, their dis-
tribution in the complex plane for different graph families, and
their connections to physical phenomena or other graph invari-
ants.

• Developing more efficient algorithms for computing chromatic
polynomials or their evaluations for large or specific classes of
graphs.

6. Variants of Graph Coloring: Exploring in more detail other types of
coloring problems, such as:

• List Coloring: Where each vertex has its own list of permissible
colors.

• Equitable Coloring: Where the sizes of the color classes differ by
at most one.

• Distance-k Coloring: Where vertices at distance up to k must
have different colors (relevant for frequency assignment).

And their respective algorithms, complexities, and applications.

7. Machine Learning Approaches: Investigating the potential of ma-
chine learning techniques (e.g., graph neural networks, reinforce-
ment learning) to learn effective heuristics or policies for graph col-
oring, either for general graphs or specific graph classes.

The rich interplay between theoretical depth and practical relevance en-
sures that graph coloring will continue to be a fruitful area of study for
mathematicians and computer scientists alike.
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