
COMPARATIVE ANALYSIS OF
MODEL-FREE

REINFORCEMENT LEARNING
ALGORITHMS IN DYNAMIC

AND PARTIALLY
OBSERVABLE GRID-WORLD

ENVIRONMENTS
Thesis Submitted

in Partial Fulfillment of the
Requirements For the Degree Of

Master of Science in Applied Mathematics

Submitted by:
Shailly (2K23/MSCMAT/85)

Bhakti Sharma (2K23/MSCMAT/71)

Under the supervision of
Prof. Anjana Gupta

DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

May 2025

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi – 42

CANDIDATE’S DECLARATION

We, Bhakti Sharma (2K23/MSCMAT/71) and Shailly (2K23/MSCMAT/85),
hereby affirm that the dissertation titled “Comparative Analysis of Model-Free
Reinforcement Learning Algorithms in Dynamic and Partially Observable Grid-
World Environments” represents our original research work, carried out in partial
fulfillment of the criteria for the award of the Master of Science in Applied Math-
ematics.

This research has been completed under the guidance of Prof. Anjana Gupta,
within the Department of Applied Mathematics, Delhi Technological University,
spanning the period from August 2024 to May 2025.

We further confirm that the contents of this dissertation have not been sub-
mitted, either partially or fully, for the award of any other degree or diploma at
this or any other academic institution.

The matter presented in this thesis has not been submitted by us for the award
of any other degree of this or any other institute.

Bhakti Sharma Shailly

Signature of Supervisor Signature of External Examiner

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi – 42

CERTIFICATE BY THE SUPERVISOR

Certified that Bhakti Sharma (2K23/MSCMAT/71) and
Shailly (2K23/MSCMAT/85) have carried out their research work presented
in this thesis entitled “COMPARATIVE ANALYSIS OF MODEL-FREE REIN-
FORCEMENT LEARNING ALGORITHMS IN DYNAMIC AND PARTIALLY
OBSERVABLE GRID-WORLD ENVIRONMENTS” for the award of Master of
Science in Applied Mathematics from the DEPARTMENT OF APPLIED
MATHEMATICS, DELHI TECHNOLOGICAL UNIVERSITY, Delhi, under my
supervision. This thesis represents the findings of original research, and the stu-
dents themselves conducted the investigations. The information in this thesis is
not the foundation for the candidates or anyone else from this or any other uni-
versity or institution to be awarded another degree.

Prof. Anjana Gupta

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

Date:

Mobile User

——————————————————————–

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi – 42

ACKNOWLEDGEMENTS

We sincerely express our heartfelt gratitude to our friends and peers who sup-
ported us at various stages of this work. Lastly, we extend special thanks to our
families, whose constant support and encouragement have been a strong pillar
during this academic journey.

We would like to sincerely thank Prof. Anjana Gupta of Delhi Technologi-
cal University for her essential advice, encouragement, and assistance during the
preparation of this dissertation. She provided constant oversight, enlightening
criticism, and encouragement throughout this effort, for which we are incredibly
grateful. For providing the tools and a supportive environment for our work, we
also appreciate the department head, all of the academic members, and the staff
of the DEPARTMENT OF APPLIED MATHEMATICS, DELHI TECHNOLOG-
ICAL UNIVERSITY, Delhi. We would like to extend our sincere gratitude to
our friends and colleagues who helped us along the way. Finally, we would want
to express our gratitude to our families, whose unwavering encouragement and
support have formed a solid foundation throughout this academic journey.

Date:

ABSTRACT

This dissertation presents a comparative evaluation of three primary categories
of model-free reinforcement learning i.e. RL approaches — Q Learning, Policy-
Gradient, and Actor-Critic —within a specially designed Gridworld environment.
This environment replicates complex, real-life decision-making challenges, incor-
porating two major elements: partial observability, where the agent has limited
visibility of the environment, and dynamic goal positioning, where the goal lo-
cation changes during training. Each RL method is developed using a consis-
tent framework and tested over multiple independent runs to maintain statistical
rigor. The assessment focuses on various performance indicators such as accumu-
lated rewards, convergence trends, training stability, and adaptability in response
to environmental fluctuations. Q-Learning, though robust and easy to imple-
ment, exhibits delayed adaptation due to its static value update structure. Policy
Gradient methods show better responsiveness to dynamic goals but suffer from
policy update variance. Actor-Critic algorithms combine advantages from both
approaches, yielding balanced performance with comparatively stable training be-
havior. The research also explores how tuning hyperparameters, incorporating ex-
ploration strategies, and applying reward shaping can influence learning outcomes.
The findings are supported through visual data and performance graphs, offering
insight into selecting the most suitable RL strategy for real-world applications like
autonomous systems, robotic control, and adaptive resource management in un-
certain settings. Ultimately, this study outlines the trade-offs among model-free
methods and suggests possible directions for future research involving hybrid or
meta-learning frameworks.

Keywords: Reinforcement-Learning, Q Learning, Policy Gradient, Actor-Critic,
Partial Observability

Contents

Candidate’s Declaration i

Certificate by the Supervisor ii

Acknowledgements iii

Abstract iv

Contents 1

1 Introduction 4
1.1 Background and Motivation . 4
1.2 Problem Statement . 5
1.3 Research Objectives . 5
1.4 Scope of Study . 6

2 Literature Review 7
2.1 Overview of Research in RL . 7

2.1.1 Foundations and Evolution of Reinforcement Learning . . . 7
2.1.2 Q-Learning and Its Variants 8
2.1.3 Policy Gradient Methods . 8
2.1.4 Actor-Critic Algorithms . 8
2.1.5 Reinforcement Learning in Partially Observable Environments 9
2.1.6 Summary of Literature Gaps 9

3 Theoretical Background 10
3.1 Markov Decision Processe (MDP) 10
3.2 Value Functions . 11
3.3 Q-Learning . 11
3.4 Policy Gradient Methods . 12
3.5 Actor-Critic Methods . 12
3.6 Partial Observability and POMDPs 13

1

4 Research Methodology 14
4.1 Environment Design . 14
4.2 Algorithm Implementation . 15
4.3 State Representation . 15
4.4 Reward Function . 15
4.5 Evaluation Metrics . 16
4.6 Experimental Parameters . 16
4.7 Challenges in Dynamic and Partially Observable Environments . . . 16

5 Implementation 18
5.1 Training Process . 18
5.2 Performance Metrics . 18
5.3 Gridworld Environment Design . 19

5.3.1 Setup Specifications: GridWorld Class 19
5.4 Q-Learning Agent . 20

5.4.1 Q-Learning Agent Class . 21
5.5 Policy Gradient Agent . 22
5.6 Actor-Critic Agent . 23
5.7 Training and Trajectory Visualization 23

6 Results and Analysis 26
6.1 Learning Curves . 26
6.2 Path Visualization and Policy Behavior 27
6.3 Comparative Analysis . 27
6.4 Observations . 28

7 Conclusion 31

8 Future Work 32
8.1 Exploring More Complex Environments 32
8.2 Improving Algorithm Performance 33
8.3 Partial Observability Enhancements 33
8.4 Transfer Learning and Generalization 33
8.5 Real-World Applications . 34

Literature Survey 35

Bibliography 37

References 37

2

A Python Code Implementations 39
A.1 Q-Learning Agent (q_learning_agent.py) 39
A.2 Policy Gradient Agent (policy_gradient_agent.py) 42
A.3 Actor-Critic Agent (actor_critic_agent.py) 45

Acceptance Letter 50

Presentation Certificate 51

3

Chapter 1

Introduction

1.1 Background and Motivation

A subset of machine learning known as reinforcement learning (RL) involves an
agent interacting with its surroundings to determine and carry out successive
judgments. The agent’s goal is to identify the best course of action, or policy, that
maximizes the cumulative reward (gain), or sum of rewards, over a given period
of time. In contrast to supervised learning, which uses labeled data to train the
model, reinforcement learning (RL) learns a policy through a process of trial and
error depending on input from the environment.

Model-free reinforcement learning, a prominent category in this field, enables
learning directly from interactions without the need of a prior model of the en-
vironment. Among all these methods, Q-Learning, Policy Gradient, and Actor-
Critic techniques are widely recognized for their effectiveness in various domains.
Q-Learning is an approach based on value which focuses on estimating the opti-
mal action and corresponding value function. Policy Gradient methods, whereas,
aims at directly learning the policy that the agent should follow, while Actor-
Critic algorithms integrate both value estimation and policy learning to enhance
performance.

The growing complexity of real-world environments necessitates robust RL al-
gorithms capable of dealing with uncertain, dynamic, and partially observable
conditions. Traditional benchmarks often fail to capture these intricacies. There-
fore, this study introduces a customized Gridworld environment that integrates
two challenging features: partial observability, where the agent has limited per-
ception of its surroundings, and dynamic goal positions, requiring the agent to
continuously adapt its strategy.

This dissertation aims to conduct a comparative analysis of Q Learning (value-
based technique), Policy-Gradient (policy based technique), and Actor-Critic (a

4

combination of these two models) methods in the designed environment. Each
algorithm is developed under a consistent setup, evaluated across several runs,
and assessed based on performance metrics such as convergence speed, learning
stability, total reward accumulation, and responsiveness to changes in the goal
location.

By analyzing the strengths and limitations of each approach in such a set-
ting, this work seeks to provide a better understanding of their applicability in
real-world scenarios such as robotics, adaptive control, and autonomous naviga-
tion. Additionally, the study highlights the role of key design choices, such as
reward shaping and exploration strategies, in influencing learning outcomes. The
ultimate goal is to guide the selection of appropriate RL strategies for complex,
non-deterministic environments.

1.2 Problem Statement

This dissertation focuses on a comparative analysis of three foundational categories
of model-free reinforcement learning algorithms:

• Q Learning (A Value Based approach)

• Policy-Gradient (A Policy-Based approach)

• Actor-Critic (Hybrid Approach)

These algorithms are evaluated within a custom-designed Gridworld environment
characterized by partial observability and a moving goal state. The environment
simulates a realistic navigation challenge where the agent receives limited percep-
tual input and must adjust its policy as the goal location changes unpredictably
over time.

1.3 Research Objectives

The main objectives of the concerned study are as following:

• To design a dynamic and partially observable Gridworld environment that
can test adaptability and stability of RL agents.

• To implement and train Q-Learning (a value-based), Policy Gradient &
Actor-Critic algorithms within this environment.

• To analyze the working of these algorithms based on cumulative rewards,
learning stability, and adaptability to changes.

5

• To identify trade-offs between stability, speed of convergence, and variance
in learning across different algorithm types.

1.4 Scope of Study

The study focuses exclusively on RL algorithms that are free from models and
doesn’t explore model-based approaches. The environment is designed to be par-
tially observable (the agent can only perceive a limited area around itself) and
non-stationary (the goal changes location during training). The implementations
are kept intentionally simple to highlight core algorithmic differences rather than
architectural improvements such as deep neural networks or memory augmenta-
tion.

6

Chapter 2

Literature Review

2.1 Overview of Research in RL

Reinforcement-Learning (RL) has undertaken several improvements in past few
decades, establishing itself as a robust and much needed approach for making
decisions based on sequential methodology. Rooted in behavioral psychology, RL
pushes the agent involved to perceive and implement actions in the environment,
encouraged by feedback which represents the gain or loss incurred as rewards or
penalties.

2.1.1 Foundations and Evolution of Reinforcement Learn-
ing

The foundational theories of RL were initially influenced by concepts of classi-
cal and operant conditioning. Sutton and Barto’s seminal work (2018) offered a
formalized mathematical framework for RL, emphasizing the agent-environment
interaction loop. In this setup, the optimal action is selected by the agent on the
basis of policies and the penalty or reward it received and utilizing this information
to take the cumulative rewards to maximum.

Two main approaches have dominated RL research: based on model and other
one is not based on model i.e. model free. Methods developed on concept of
models attempt to build a model representing the environmental dynamics and
then utilize it for further action taking. Conversely, approaches free of model,
such as Q-Learning (a value based) and Policy- Gradient approaches, bypass the
need for environmental modeling, focusing directly on learning policies or value
functions through trial-and-error interactions.

7

2.1.2 Q-Learning and Its Variants

Q-Learning, first introduced by Watkins in the year 1989, is a widely studied
value-based algorithm in model-free RL. It estimates the expected effectiveness of
several actions in given set of states, known as the Q-values, and gradually updates
them based on the Bellman equation. Despite its simplicity and convergence
guarantees under certain conditions, Q-Learning struggles in higher dimensions or
environments that are partially observable due to the curse of dimensionality.

To address scalability issues, Deep Q-Networks (DQNs) were proposed by Mnih
et al. (in the year 2015), integrating deep neural networks to approximate Q-
values. DQNs marked a major milestone in deep reinforcement learning by reach-
ing the level of human performance in the Atari 2600 games. Enhancements such
as Double-DQN, Dueling DQN, and Prioritized Experience Replay were later in-
troduced for improving stability and effective learnings.

2.1.3 Policy Gradient Methods

In distinction to certain value-based methods, the policy gradient method ap-
proaches to evaluate the policy chosen by agent. These methods utilizes the
gradient ascent to maximize the anticipated giving back by tuning the policy
framework. The REINFORCE algorithm (by Williams, in the year 1992) laid
the foundation for policy-gradient techniques, though it suffered from a high (in-
creased) variance in estimates of gradients.

Advancements like the Actor-Critic architecture have mitigated this issue by
combining the powers of learnings based on policy and values. Here, the "actor"
changes the strategy directionally while the "critic" analyzes the action using value
functions, providing a stabilizing signal for learning.

2.1.4 Actor-Critic Algorithms

Actor-Critic methods represent a hybrid class in RL, enabling both exploration
through policy updates and stability via value estimation. Because of their efficacy
in complex contexts and continuous control tasks, variants like the Asynchronous-
Advantage Actor-Critic (A3C) and Advantage Actor Critic (A2C) have grown in
popularity. These algorithms significantly reduce variance while maintaining con-
vergence stability, making them suitable for Markov decision processes (POMDPs)
which is partially observable.

Recent innovations including Proximal Policy Optimization (P-P-O) and Soft-
Actor-Critic (SAC) have additionally improved actor-critic models by introducing
mechanisms that ensure stable policy updates and improved sample efficiency.

8

PPO, in particular, balances exploration and exploitation through a clipped ob-
jective function, while SAC introduces entropy regularization to encourage more
stochastic policies.

2.1.5 Reinforcement Learning in Partially Observable En-
vironments

Real-world environments are often not fully observable, posing challenges to stan-
dard RL algorithms. In such cases, Partially Observable-Markov Decision Pro-
cesses (POMDPs) are applied to evaluate the uncertainty in state information.
RL algorithms adapted to POMDPs typically incorporate memory components
such as Recurrent Neural Networks (RNNs) to infer latent states based on action-
observation histories.

Model-free methods like Recurrent DQN (Hausknecht & Stone, 2015) and Re-
current Policy Gradient approaches have demonstrated efficacy in handling partial
observability by maintaining temporal context through internal state representa-
tions. These innovations enhance decision-making in domains such as robotics,
autonomous navigation, and strategic gaming.

The landscape of model-free reinforcement learning has been enriched by di-
verse algorithmic innovations that cater to different challenges, such as high-
dimensional state spaces, partial observability, and sample inefficiency. While
Q-Learning provides a solid baseline for discrete tasks, policy gradient and actor-
critic methods offer scalable solutions for continuous and uncertain environments.
The comparative analysis in this dissertation will explore these techniques in the
context of dynamic and partially observable gridworld environments.

2.1.6 Summary of Literature Gaps

Table 2.1: Summarized Literature Gaps in RL Algorithms

Aspect Existing Work Gap Identified

Value-based RL Strong in simple, static setups Weak in partial observability
Policy-based RL Good adaptability High variance, slow convergence
Actor-Critic Balanced performance Underexplored in dynamic tasks
Dynamic POMDPs Sparse coverage Few comparative RL studies

9

Chapter 3

Theoretical Background

This section outlines the fundamental concepts and mathematical formulations
that underpin model-free reinforcement learning algorithms. These include the
structure of reinforcement learning problems, value functions, policy representa-
tion, and the core principles of Q-Learning-value based approach, Policy-Gradient,
and Actor-Critic methods. These theoretical foundations provide the basis for the
experimental comparisons conducted later in the study.

3.1 Markov Decision Processe (MDP)

Markov Decision Processes (MDPs), which attempt to provide a formal framework
for a sequential decision-making method in uncertain contexts, are frequently used
to describe RL difficulties. A tuple that describes an MDP is as follows:

(S, A, P, R, γ) (3.1)

Where:

• S: A set of all possible states in environment

• A: A set of all possible actions that can be taken

• P (s′|s, a): Transition probability of reaching state s′ from state s by under-
taking action a

• R(s, a): Reward received after taking action a in state s.

• γ: Discount factor (0 ≤ γ < 1) responsible for balancing right-away and
upcoming rewards

10

The aim of an agent in the MDP is to figure out a policy π(a|s) that takes the
anticipated cumulative (total) reward (discounted) to the maximum:

E
[∞∑

t=0
γtR(st, at)

]
(3.2)

3.2 Value Functions

Value function aims at analysing the benefits or gain that can be obtained by
being in a particular state or undergoing a particular action. Two basic types of
value-based functions are used:

• The expected return when beginning with state s and adhering to policy
π(s) is State-value function V π(s):

V π(s) = Eπ

[∞∑
t=0

γtR(st, at)
∣∣∣∣∣s0 = s

]
(3.3)

• Action-value-function Qπ(s, a): Anticipated return after undergoing an ac-
tion in a given state and then following the given course of policy:

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at)
∣∣∣∣∣s0 = s, a0 = a

]
(3.4)

These functions play a central role in most RL algorithms.

3.3 Q-Learning

Regardless of the policy being followed, the Q-Learning approach is a form of
off-policy technique, a free from model algorithm that must determine the best fit
action and matching value function Q∗(s, a). The Bellman optimality equation is
used to update it:

Q(st, at)← Q(st, at) + α
[
rt + γ max

a′
Q(st+1, a′)−Q(st, at)

]
(3.5)

Where:

• α: Learning rate

11

• rt: Immediate reward received at time t

For exploratory purposes, the policy is guided by the learned Q-values and usually
employs a ϵ-greedy strategy, in which the agent performs an action at random with
a probability of ϵ and the most efficient known action otherwise.

3.4 Policy Gradient Methods

Policy gradient tends represent policies precisely as a parameterized function
πθ(a|s) and optimize the anticipated return J(θ) utilizing gradient ascent:

θ ← θ + α∇θJ(θ) (3.6)

The REINFORCE algorithm uses the following gradient estimate:

∇θJ(θ) = Eπ [∇θ log πθ(a|s) ·Gt] (3.7)

Where Gt is the return from time t. While simple and effective, REINFORCE
incorporates very higher variance in the estimates of gradients, which can slower
down or destabilize the procedure of learning.

3.5 Actor-Critic Methods

The advantages of value-based and policy-based approaches are combined in the
actor-critical technique. In order to determine the value function, the actor up-
dates the policy parameters in the direction suggested by the critic.

• The stated actor illustrates the policy πθ(a|s)

• The concerned critic approximates the function value for this - Vw(s) or
advantage A(s, a)

The function at advantage, which reduces variance, is explained:

A(s, a) = Q(s, a)− V (s) (3.8)

The update rules become:

• Actor: θ ← θ + α∇θ log πθ(a|s) · A(s, a)

• Critic: w ← w + βδ∇wVw(s), where δ is the temporal difference error.

This architecture enables faster and more stable convergence in complicated or
environments that are partially observable.

12

3.6 Partial Observability and POMDPs

In real-world scenarios, agents often lack full knowledge of the environment’s state.
As a result, Partially-Observable-Markov Decision Processes (POMDPs) are used,
in which the agent keeps a belief about potential states based on observations and
past actions.

Formally, a POMDP is described by tuples:

(S, A, P, R, Ω, O, γ) (3.9)

Wherein:

• Ω: A set of observations

• O(o|s′, a): Observation function giving probability of seeing o after action a

leads to state s′.

Recurrent-Neural Networks (RNNs) or Long-Short-Term Memory (LSTM) net-
works are frequently used in model-free reinforcement learning (RL) to manage
partial observability because they are able to preserve a hidden state that repre-
sents past data. These memory mechanisms are particularly useful in actor-critic
and policy gradient architectures operating in dynamic or unpredictable environ-
ments.

13

Chapter 4

Research Methodology

This section outlines the methodological framework used to analyze and com-
pare the performance of model-free reinforcement learning algorithms—namely
Q-Learning, Policy Gradient, and Actor-Critic—within dynamic and partially ob-
servable gridworld environments. The core objective is to assess how each algo-
rithm adapts to uncertainty, incomplete information, and environmental changes.

4.1 Environment Design

To create a controlled and yet challenging scenario, we designed a gridworld envi-
ronment with the following characteristics:

• Grid Size: The environment consists of a fixed-size 10×10 grid.

• Agent and Goal: The agent starts in an entirely unexpected place and
strives to arrive at a predetermined objective state.

• Obstacles and Hazards: Randomly placed obstacles block certain paths.
Some grids contain negative-reward zones to simulate hazardous conditions.

• Partial Observability: At any given time, the agent can only observe its
immediate surroundings (e.g., one-cell radius), limiting full knowledge of the
environment state.

• Dynamic Changes: The environment alters after fixed intervals (e.g., goal
location shifts, new obstacles appear), mimicking real-world dynamics.

This setup encourages evaluation under both static and non-static conditions,
helping assess robustness and adaptability.

14

4.2 Algorithm Implementation

Three RL algorithms were implemented from scratch or adapted using standard
libraries:

• Q-Learning: A table-based method where Q-values are evaluated by tak-
ing very famous Bellman equation. A decaying epsilon-greedy strategy was
employed for exploration.

• Policy Gradient: A stochastic policy was learned using the REINFORCE
algorithm. The intention of the method was to amplify the expected return
using gradient ascent on policy parameters.

• Actor-Critic: Two neural networks were used in this hybrid approach: a
critic to analyze the value function and an actor to identify the optimal
policy. Stabilizing learning was done using advantage estimates.

Each algorithm was trained over multiple episodes (typically 1,000 to 5,000) and
tested using both deterministic and stochastic reward structures.

4.3 State Representation

For full observability scenarios, the state was encoded as a flattened grid vector. In
the partially observable case, the agent received a local window (e.g., 3×3 patch)
around its position, combined with its relative goal location and action history (if
applicable).

To handle partial observability more effectively, Recurrent Neural Networks
(RNNs) were integrated into the policy network for policy gradient and actor-
critic models, enabling memory-based learning over time steps.

4.4 Reward Function

The reward structure was crafted to promote optimal and safe navigation:

• +10 for reaching the goal

• −1 per step (to encourage shorter paths)

• −5 for hitting an obstacle

• −10 for entering a hazard zone

This reward shaping guides the agent to not only reach the goal but to do so
efficiently and safely.

15

4.5 Evaluation Metrics

To analyse the success of each model, the following metrics were considered:

• Average Reward per Episode: Indicates the efficiency of learning.

• Convergence Rate: The number of episodes needed for the agent’s policy
to stabilize.

• Path Optimal: Measured as the ratio of actual steps to the shortest pos-
sible path.

• Success Rate: Proportion of episodes that an agent undergoes to reach its
destination or goal.

• Adaptability Score: Agent’s performance in response to environment dy-
namics (e.g., new goal positions).

4.6 Experimental Parameters

Table 4.1: Experimental Parameters for Gridworld RL Environment

Parameter Value

Grid Size 10 × 10
Observation Radius 1
Max Steps per Episode 200
Episodes 1,000–5,000
Learning Rate (α) 0.01 (adaptive for PG/AC)
Discount Factor (γ) 0.95
Exploration (ϵ) 1.0 → 0.01 (decay)
Neural Network Architecture 2 hidden layers (128 units)

The experiments were implemented using Python and tested on a standard com-
puting environment with access to GPUs for deep learning-based models.

4.7 Challenges in Dynamic and Partially Observ-
able Environments

Reinforcement learning in dynamic and partially observable environments presents
several unique challenges:

16

• Partial Observability: In real-world tasks, agents often don’t have means
of approach to the full state of the environment. This partial observability
makes it difficult for the agent to make fully informed decisions. Models like
POMDPs are used to handle partial information, but they increase compu-
tational complexity.

• Non-Stationary Dynamics: In many environments, the goal or other
key components change over time. This makes learning a stationary policy
difficult, as the agent must constantly adapt to new conditions. In dynamic
environments, RL algorithms must be robust to these changes and capable
of adjusting policies in real-time.

• Delayed Rewards: In dynamic tasks, rewards may not be immediately
received after taking an action. This makes it more difficult to attribute
rewards to specific actions, requiring algorithms to maintain long-term credit
assignment.

• Exploration vs. Exploitation: In complicated, partially observable en-
vironments, the trade-off between exploration (trying new actions) and ex-
ploitation (using known successful actions) becomes even more critical. Al-
gorithms need to balance these two aspects to learn effectively.

17

Chapter 5

Implementation

This section elaborates on the implementation of the comparative study between
Q-Learning – based on value approach, Policy Gradient, and Actor–Critic algo-
rithms in a custom Gridworld environment. Each agent explores a discrete grid
to reach a goal state while maximizing cumulative rewards.

5.1 Training Process

The agent’s training involves several episodes, during which the agent travels and
interconnected with the surrounding environment and tends to learn from feed-
back. The following steps are repeated until convergence:

1. The agent begins at a completely random state.

2. The agent selects a course of action based on its current policy (epsilon-
greedy for Q-Learning, stochastic for Policy Gradient, or using the Actor-
Critic framework).

3. The agent performs the selected action, receives a reward or penalty, and
updates the policy using the corresponding algorithm.

4. The process repeats for a set number of episodes or until the policy converges.

5.2 Performance Metrics

The primary metrics used to analyze the overall performance of the algorithms
are:

• Cumulative Reward: The total reward gained by the agent over an
episode or a set of episodes. This gives an indication of the agent’s capability
to reach the desired goal.

18

• Learning Stability: Measured by the variance in the agent’s cumulative
reward over multiple episodes. Stable learning is characterized by a lower
variance in rewards.

• Convergence Speed: How quickly an agent’s performance gets better over
time. It is preferable to have faster convergence in dynamic situations. Faster
convergence is desirable in dynamic environments.

5.3 Gridworld Environment Design

A 5x5 grid is used to create a basic Gridworld setting. The agent starts in the
upper-left (0,0) corner and attempts to get to the lower-right (4,4) corner. To
promote efficiency, the agent received a little negative incentive at each stage,
followed by a greater positive reward when the goal was reached.

5.3.1 Setup Specifications: GridWorld Class

Purpose: Models a grid-based environment for reinforcement learning, support-
ing dynamic obstacles and partial observability.

__init__(self, size, start, goal, obstacles=[], dynamic=False, vision=1):
Initializes the environment with:

• size: Grid dimensions (rows, cols).

• start: Starting position of the agent.

• goal: Goal position to reach.

• obstacles: List of impassable positions.

• dynamic: Whether obstacles move each step.

• vision: How many cells in each direction the agent can see (partial
observability).

Calls self.reset() to initialize the environment.

reset(self): Resets the agent to the start position. If dynamic is True, up-
dates obstacle locations using update_obstacles(). Returns the current
observable state using get_state().

step(self, action): Performs a movement (0: up, 1: down, 2: left, 3: right).
Calculates the new position based on the action. Prevents the agent from
moving into obstacles or outside the grid. Updates agent position if valid.

19

If dynamic is True, randomly moves obstacles after each step. Returns a
tuple: (new_state, reward, done), where:

• new_state: The observed state.

• reward: 1 if goal is reached, otherwise -0.1 (to encourage faster solu-
tions).

• done: True if the goal is reached.

get_state(self): Determines what part of the environment the agent can ob-
serve. If vision is large enough to cover the whole grid, returns the agent’s
full position. If vision is limited:

• Returns a (2*vision+1) x (2*vision+1) grid centered on the agent.

• Uses values:

– 1 for the agent’s position.
– 0.5 for the goal.
– -1 for obstacles.
– 0 for empty spaces.

• The result is flattened into a 1D list for compatibility with learning
algorithms.

update_obstacles(self): Randomly shifts obstacle positions if dynamic is True.
Ensures obstacles don’t overlap with the agent or goal. Each obstacle tries
moving in one of the 4 directions randomly, within grid bounds.

The environment provides four possible actions: move up, down, left, or right.
Movements are bounded within the grid using NumPy’s clip function. The en-
vironment also includes a rendering function for visualization and properties for
state and action space dimensions.

5.4 Q-Learning Agent

Q-Learning method is implemented as a technique that is model-free but is value-
based approach in reinforcement learning algorithm. It utilizes an ϵ-greedy strat-
egy to obtain a balance trade off in exploration & then exploitation of gained
information.

20

5.4.1 Q-Learning Agent Class

Purpose: Implements the model-free Q-learning algorithm to train an agent to
navigate the gridworld environment optimally through trial and error.

__init__(self, env, alpha=0.1, gamma=0.9, epsilon=1.0, epsilon_decay=0.995, min_epsilon=0.01):
Initializes the agent with:

• env: The GridWorld environment object.

• alpha: Rate of learning (it tunes the level of new information super-
sedes the previous information).

• gamma: Factor of discount (significance of rewards coming up in future
time).

• epsilon: Exploration rate (probability of random action for explo-
ration).

• epsilon_decay: How fast epsilon decreases after each episode.

• min_epsilon: The least value epsilon can decay to.

q_table: A dictionary to store Q-values, mapping state-action pairs to
numeric values.

get_qs(self, state): Retrieves Q-values covering all actions for a given agent’s
state. The Q values for every action are set to 0 if the state is not yet in the
q_table. Returns a list of Q-values (one per action).

choose_action(self, state): Applies the policy of ϵ-greedy:

• With the probability as epsilon, choose random action (exploration).

• Alternatively, chooses action with highest Q-value (exploitation).

Ensures balance b/w trying new strategy & leveraging learned behavior.

train(self, episodes=500): Trains the agent for a specified fixed (or dynamic)
count of episodes. For each episode:

1. Resets the environment and gets the initial state.

2. Loops until the episode ends (done = True):

(a) Chooses an action using choose_action().
(b) Performs the action with env.step(), receiving the further state,

reward, and done flag.

21

(c) Updates the Q-value corresponding to pair of action and state uti-
lizing Q Learning formula is given as: Q(s, a)← Q(s, a) + α · (r +
γ ·maxa′ Q(s′, a′)−Q(s, a))

(d) Moves to next state.

3. Decays exploration rate epsilon using epsilon_decay, down to min_epsilon.

4. Optionally prints progress every 100 episodes.

The Q-table is updated developed on temporal-difference (TD) error, with a learn-
ing rate (alpha) and discount factor (gamma) controlling the convergence behav-
ior. After each episode, the total accumulated reward is logged for performance
evaluation.

5.5 Policy Gradient Agent

A stochastic Policy Gradient approach is implemented where a probability distri-
bution over actions is updated directly through gradient ascent.

Initialization: Learning rate, discount factor, episodes. Policy initialized as uni-
form over actions for every state.

State Indexing: Similar to Q-learning, converts 2D state to 1D index.

choose_action(): Samples an action using the current policy’s probability dis-
tribution for a state.

update_policy(): Updates the action probability based on the received reward.
Simple form of gradient ascent. Ensures non-negativity and normalizes the
probabilities to sum to 1.

train(): Trains the agent over episodes, updating the policy at every step.

visualize_trajectory(): Shows the agent’s movement through the grid. Helps
in visualizing how well the policy leads agent to the goal.

The agent adjusts its policy using a simplified reward advantage for every state-
action pair. The policy is normalized to maintain valid probabilities after each
update. This model explores the efficacy of direct policy optimization in discrete
environments.

22

5.6 Actor-Critic Agent

The Actor-Critic algorithm combines value-function learning (critic) with policy
optimization (actor), aiming for less uncertain training in comparison to com-
pletely policy-based approaches.

Combines the best features of policy-based (actor) and value-based (critic)
approaches. The actor makes improvements to the current policy once the critic
assesses it.

Initialization: Initializes a stochastic policy and a state-value function (as ar-
rays). Learning rate, discount factor, and episodes provided.

choose_action(): Uses the present policy probability to sample a course of ac-
tion.

update_policy(): According to the advantage changes the value of the policy,
calculated as: A(s, a) = r + γV (s′) − V (s). This links the learning to how
much better an action was than expected.

update_value_function(): Updates the state value using Temporal Difference
(TD) Difference: V (s)← V (s) + α · (r + γV (s′)− V (s)).

train(): Each episode runs interaction, policy update, and value function up-
date.

visualize_trajectory(): Same as other models: visually evaluates learning
success.

The critic concludes the state value, function to calculate benefits, which is used
to rewrite the policy. Both components are trained simultaneously to enable fast
convergence and informed decision-making.

5.7 Training and Trajectory Visualization

Each agent is independently trained for a fixed number of episodes (default: 1000).
During training, agents accumulate rewards and learn optimal navigation policies.
The movement trajectories of the agents are visualized to qualitatively assess their
learning behavior.

The trajectory plots reveal the agents’ paths from start to goal, indicating
convergence toward efficient routes after training.

23

Figure 5.1: Path Trajectory Visualization of Q-Learning trained agents on 5×5
Gridworld

Figure 5.2: Path Trajectory Visualization of Policy Gradient trained agents on
5×5 Gridworld

24

Figure 5.3: Path Trajectory Visualization of Actor-Critic trained agents on 5×5
Gridworld

25

Chapter 6

Results and Analysis

This part shows the empirical findings of the study, comparing Q-Learning, Policy
Gradient, and Actor-Critic algorithms on custom Gridworld environment. Perfor-
mance of each algorithm is evaluated based on two primary metrics:

• Learning Efficiency: Captured through cumulative episode rewards dur-
ing training.

• Trajectory Optimization: Evaluated using the path efficiency to the goal
post-training.

6.1 Learning Curves

The average episode reward over training iterations is plotted to assess the rate
and stability of convergence for each agent.

• Q-Learning demonstrated a relatively quick convergence after an initial ex-
ploration phase. The rewards steadily increased as the Q-values were up-
dated, indicating the agent’s improved understanding of the environment.

• Policy Gradient showed slower and noisier convergence. Since it lacks a value
function for bootstrapping, the agent required more episodes to optimize
its stochastic policy, especially in the absence of a clear reward advantage
baseline.

• Actor-Critic achieved the most stable and rapid convergence among the
three. The critic’s value estimations provided a reliable learning signal to
the actor, allowing for faster policy improvement.

The reward plots indicate that Actor-Critic outperforms the other two in terms
of both speed and stability of learning.

26

Figure 6.1: Learning Curves for Q-Learning, Policy Gradient, and Actor-Critic

6.2 Path Visualization and Policy Behavior

The final movement trajectories of the trained agents were visualized on the 5×5
Gridworld. These trajectories reflect the efficiency of the learned policy:

• Q-Learning Agent followed a nearly optimal path to the goal but occasionally
showed slightly longer routes due to exploration remnants in the policy.

• Policy Gradient Agent sometimes took suboptimal steps, reflecting the im-
pact of its stochastic policy and the absence of a critic for guiding policy
updates.

• Actor-Critic Agent consistently took the shortest and most direct path to
the goal. This confirms that the combined advantage estimation and policy
refinement led to an efficient and effective navigation policy.

6.3 Comparative Analysis

The following table summarizes key performance indicators observed during the
experiments:

Table 6.1: Comparative Performance Metrics of Q-Learning, Policy Gradient, and
Actor-Critic Algorithms

Algorithm Convergence Speed Reward Stability Path Efficiency Computational Simplicity

Q-Learning Medium High High High
Policy Gradient Slow Low Medium Medium
Actor-Critic Fast High High Moderate

27

• Q-Learning offers high simplicity and performs well in discrete state-action
environments, but its lack of generalization limits scalability.

• Policy Gradient is best fit for higher dimensional or action spaces that are
continuous, though its sample inefficiency and high variance reduce its ef-
fectiveness in small environments like Gridworld.

• Actor-Critic provides a balanced trade-off by analysing the strengths of both
types of approaches i.e. value-based and policy-based approaches, achieving
strong performance across metrics.

Table 6.2: Summary of RL Algorithms: Architecture, Update Rules, and Explo-
ration Strategy

Component Q-Learning Policy Gradient Actor-Critic

Learning Type Value-based (Off-policy) Policy-based (On-policy) Hybrid (Actor = Policy,
Critic = Value)

Stores Q-table Policy table Policy table + Value function
Action Selection ϵ-greedy Sample from policy Sample from policy
Update Rule Q-learning equation Gradient ascent on rewards Gradient ascent + TD value update
Exploration Strategy ϵ-greedy Stochastic policy Stochastic policy
Sample Efficiency Moderate Lower Better than both individually

6.4 Observations

• The deterministic environment favors value based methods like Q-Learning
and Actor Critic.

• Stochastic policy learning, as seen in Policy Gradient, requires either a larger
reward signal or a more complex policy architecture to be competitive.

• Actor-Critic strikes a practical balance and demonstrates generalizability,
making it the preferred approach for real-world partially observable or con-
tinuous domains.

28

Figure 6.2: Comparative Reward Plot Across Algorithms over Episodes

The performance (learning) of three reinforcement learning models—Q-Learning,
Policy Gradient, and Actor-Critic—over a collection of 500 training events is de-
picted in this line graph. Each model’s learning scale is indicated by the y-axis,
which shows the cumulative reward each episode, while the x-axis shows the num-
ber of episodes. Each curve represents the learning trajectory of each model,
helping to assess both the speed of learning and final performance.

From the plot, we can draw clear distinctions among the models:

Key Observations:

• Q-Learning shows a steady increase in rewards, indicating consistent but
slow learning. It stabilizes late, suggesting it needs more episodes to reach
optimal performance.

• Policy Gradient fluctuates heavily in the early stages, indicating unstable
learning. Though it improves, its convergence is slower and less stable.

• Actor-Critic quickly rises in performance and stabilizes early, maintaining
higher rewards than the other models.

Conclusion:

• Actor-Critic performs the best overall — it learns faster, is more stable, and
achieves the highest cumulative reward.

• Policy Gradient lags due to its high variance in training.

• Q-Learning is reliable but slower and less efficient compared to Actor-Critic.

29

These insights can guide model selection in future reinforcement learning tasks
where fast and stable convergence is critical.

Figure 6.3: Average Reward Over Final 50 Episodes for All Algorithms

The average payout for each of the three RL models for the previous 50 episodes is
displayed in the bar chart above: Q-Learning, Policy-Gradient, Actor Critic. This
comparison is aimed at highlighting how well each model performs after training
has mostly stabilized.

Key Observations and Conclusions:

• Actor-Critic model identifies the highest average reward, showing less uncer-
tain and highly efficient approaches of learning toward the end of training.

• Q-Learning performs moderately well but lags behind the Actor-Critic model.

• Policy Gradient indicates the lowest final average reward, indicating slower
or less stable convergence in the experiment being considered.

30

Chapter 7

Conclusion

This dissertation presented a comparative analysis of three prominent free from
model RL algorithms—Q-Learning, Policy-Gradient, & Actor Critic—within a
custom dynamic and partially observable Gridworld environment. The objective
was to evaluate their learning behavior, performance efficiency, and suitability for
such environments.

Through rigorous experimentation and visualization, the study found that:

• Q-Learning, while straightforward and effective in tabular settings, performs
well in fully observable environments but struggles to generalize in more
complex or continuous domains.

• Policy Gradient methods offer the flexibility to handle continuous and stochas-
tic action spaces but are affected by very slow convergence and a high vari-
ance, especially in environments with sparse or delayed rewards.

• Actor-Critic emerged as the most robust algorithm in this study. It suc-
cessfully strikes a balance between the flexibility of policy-based approaches
and the stability of value-based learning, leading to more rapid convergence,
steady reward progression, and extremely good path planning.

The empirical results reinforce the idea that hybrid approaches, such as Actor-
Critic models, are often better suited for dynamic or partially observable environ-
ments, combining the advantages of both discrete learning and continuous opti-
mization of the policy.

31

Chapter 8

Future Work

This research can be extended in several directions:

• Scalability Testing: Applying these algorithms to larger and more complex
gridworlds or continuous-space environments to study their scalability and
generalization.

• Function Approximation: Incorporating deep neural networks (e.g., DQN,
A2C, PPO) to find the approximate value functions or policies for higher
dimensions state spaces.

• Partial Observability Extensions: Enhancing the environment’s com-
plexity by introducing stochastic elements or hidden states and evaluating
how each algorithm adapts under limited state information.

• Multi-Agent Scenarios: Investigating the interaction and learning dy-
namics of multiple agents in the same environment using collaborative or
competitive reinforcement learning paradigms.

While the results of the undertaken study provide key findings into the per-
formance of the three reinforcement learning models, there are several areas for
further research that could extend this work:

8.1 Exploring More Complex Environments

The current study used a relatively simple 10x10 Gridworld environment. Future
work could involve applying the algorithms to more complicated environments
with larger pair of S & a spaces. For example:

• Multi-Agent Environments: Extending environment to include multiple
agents could introduce challenges related to agent coordination and compe-

32

tition, which would be valuable for evaluating the scalability and robustness
of these algorithms.

• Continuous Action Spaces: The current implementation used discrete
actions, but many real-world scenario-based problems involve continuous
action spaces. Future research could explore modifications to the algorithms
to handle continuous actions, such as using function approximators like deep
neural networks.

8.2 Improving Algorithm Performance

Although Actor-Critic (A2C) performed well in this study, there is always good
capability for betterment as accuracy & stability. Some potential directions for
improvement include:

• Advanced Actor-Critic Variants: Variants like Proximal-Policy Opti-
mization (PPO), Trust-Region-Policy Optimization (TRPO), or Deep-Deterministic
Policy Gradient (DDPG) could be explored in order-to further stabilize the
learning process while maintaining high performance.

• Reward Shaping: One way to improve learning efficiency and speed is
through reward shaping, which involves modifying the reward function to
ease the process of learning f the agent. Experimenting with different reward
shaping techniques could lead to faster convergence.

8.3 Partial Observability Enhancements

In this study, the agent had partial observability in the form of a 3x3 grid surround-
ing its current position. However, more sophisticated partial observability mod-
els could be implemented, like Partially-Observable Markov Decision-Processes
(POMDPs). By incorporating more complex sensing models or using techniques
such as (RNNs) /LSTMs, the agent could better handle long-term dependencies
and temporal aspects of the environment.

8.4 Transfer Learning and Generalization

A promising area for future research is transfer learning, where an agent trained
in one environment can transfer its learned policy to another, potentially similar
environment. This could involve:

33

• Domain Adaptation: Training the agent in one Gridworld with a moving
goal, and then transferring the learned policy to a similar environment with
different dynamics or obstacles.

• Meta-Learning: Model-agnostic & meta-learning (MAML) is one meta-
learning technique that might be investigated further to help the agent adapt
to a new environment more quickly and with less retraining.

8.5 Real-World Applications

Reinforcement learning is increasingly being applied to real life issues like robotics,
autonomous driving, & finance. Future work could explore how the algorithms
evaluated in this study could be adapted for real-world applications:

• Robotics: Training an agent to navigate real-world environments with par-
tial observability and dynamic obstacles, such as robotic navigation in a
warehouse.

• Autonomous Vehicles: Reinforcement learning could be used to optimize
decision-making for self-driving cars, where the environment is dynamic and
the vehicle must adapt to changing traffic patterns, road conditions, and
obstacles.

Final Remarks This dissertation has presented a comprehensive comparative
study of model-free RL algorithms in dynamic, environments that are partially
observable. By focusing on Q Learning, Policy-Gradient (REINFORCE), & Actor
Critic (A2C), we’ve provided practical takeaways into the advantages and dis-
advantages of each method in solving complex navigation tasks. Although each
algorithm has its own trade-offs, the Actor-Critic method emerged as the most
effective approach for handling dynamic environments with partial observability.

The future directions outlined above offer exciting opportunities to improve
and extend the scope of this research. As reinforcement learning keeps on evolv-
ing and developing, the lessons learned based on this study will provide valuable
guidance for selecting and designing algorithms that hold the capability of solving
real-world scenario problems in ever changing and uncertain environments.

34

Literature Survey

Table 8.1: Summary of Key Literature Reviewed

S.No Details of Book/Paper Description

1 Sutton & Barto (2018), An In-
troduction An introduction

Foundational RL concepts including
value functions and TD learning

2 Watkins & Dayan Q-learning. Introduced Q Learning, a core value-
based RL method.

3 Williams, R. J. (1992). Sim-
ple statistical gradient-following
algorithms for connectionist re-
inforcement learning. Machine
Learning, 8 (3), 229–256.

Presented policy gradient method for
policy optimization.

4 Konda, V. R., & Tsitsiklis, J.
N. (2000). Actor-Critic Algo-
rithms. Advances in Neural
Information Processing Systems
(NIPS 2000).

Described hybrid RL combining value
and policy methods.

5 Mnih, V., Kavukcuoglu, K., Sil-
ver, D., et al. (2015). Human-
level control through deep re-
inforcement learning. Nature,
518 (7540), 529–533.

Pioneered deep RL using neural nets for
Q-value estimation.

6 Silver et al. (2016, AlphaGo) Showcased RL with deep networks and
tree search in Go.

Continued on next page

35

Table 8.1: Summary of Key Literature Reviewed (Continued)

S.No Details of Book/Paper Description

7 Lillicrap et al. (2016), DDPG Enabled RL in continuous action spaces
with deep actor-critic.

8 Bertsekas & Tsitsiklis, Neuro-
Dynamic Programming

Merged RL with dynamic programming
for value/policy iteration

9 Sutton & Barto (2011) MIT
Press.

Early reference covering fundamental RL
algorithms.

10 Duan et al. (2016). Benchmark-
ing DRL

Comparative study of RL algorithms in
continuous control.

11 Tampuu & Vossen, M. (2017).
RL with multiple agent

Overview of RL methods in multi-agent
environments.

12 Schulman et al. (2017) PPO Introduced a stable and efficient policy
optimization algorithm.

13 Doya (2000). Non stationary
time and space in RL

Extended RL theory to continuous envi-
ronments.

14 Fu, J., & Levine, S. (2017).
Policies- Robust in RL

Proposed methods for learning robust
multimodal policies.

15 Haarnoja, T., Zhou, A., M., et
al. (2017). ICML

Combined entropy-based learning with
actor-critic models.

36

Bibliography

[1] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction
(2nd ed.). MIT Press.

[2] Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning,
8 (3), 279–292.

[3] Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8 (3), 229–256.

[4] Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-Critic Algorithms. Advances
in Neural Information Processing Systems (NIPS 2000).

[5] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518 (7540), 529–533.

[6] Silver, D., Huang, A., Maddison, C. J., et al. (2016). Mastering the game of
Go with deep neural networks and tree search. Nature, 529 (7587), 484–489.

[7] Lillicrap, T. P., Hunt, J. J., Pritzel, A., et al. (2016). Continuous control with
deep reinforcement learning. Proceedings of the International Conference on
Learning Representations (ICLR 2016).

[8] Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena.

[9] Sutton, R. S., & Barto, A. G. (2011). Reinforcement learning: An introduction
(1st ed.). MIT Press.

[10] Duan, Y., Chen, X., Houthooft, R., et al. (2016). Benchmarking deep rein-
forcement learning for continuous control. Proceedings of the International
Conference on Machine Learning (ICML 2016).

[11] Tampuu, A., Li, D., & Vossen, M. (2017). Multi-agent reinforcement learning:
A review. Journal of Artificial Intelligence Research, 50, 71–117.

37

[12] Schulman, J., Wolski, F., Dhariwal, P., et al. (2017). Proximal Policy Opti-
mization Algorithms. Proceedings of the International Conference on Machine
Learning (ICML 2017).

[13] Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
Networks, 13 (9), 993–999.

[14] Fu, J., & Levine, S. (2017). Learning Robust Multimodal Policies for Deep
Reinforcement Learning. Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2017).

[15] Haarnoja, T., Zhou, A., Hartikainen, M., et al. (2017). Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochas-
tic Actor. Proceedings of the International Conference on Machine Learning
(ICML 2017).

38

Appendix A

Python Code Implementations

This appendix contains the Python code for the Gridworld environment and the
reinforcement learning agent implementations discussed in this dissertation.

A.1 Q-Learning Agent (q_learning_agent.py)

Listing A.1: Q-Learning Agent Implementation
1 # q_learning_agent .py
2

3 import numpy as np
4 import matplotlib . pyplot as plt
5

6 class QLearning :
7 def __init__ (self , env , alpha =0.1 , gamma =0.9 , epsilon =0.1 ,

max_episodes =1000) :
8 self.env = env
9 self.alpha = alpha

10 self.gamma = gamma
11 self. epsilon = epsilon
12 self. max_episodes = max_episodes
13 # Assuming env. state_space is total number of states (int)
14 # and env. action_space is total number of actions (int)
15 # This needs to align with your GridWorld environment ’s

attributes .
16 try:
17 num_states = env. state_space .n if hasattr (env.

state_space , ’n’) else env. state_space
18 num_actions = env. action_space .n if hasattr (env.

action_space , ’n’) else env. action_space
19 except AttributeError : # Fallback for simpler env

attribute structure

39

20 print(" Warning : QLearning - Assuming env. state_space
and env. action_space are integers .")

21 num_states = env. state_space
22 num_actions = env. action_space
23 self. q_table = np.zeros ((num_states , num_actions))
24 self. episode_rewards = []
25

26 def _get_state_index (self , state):
27 # Assuming state is (row , col) and env. grid_size is int (

cols) or tuple (rows , cols)
28 try:
29 num_cols = self.env. grid_size [1] if isinstance (self.

env.grid_size , tuple) else self.env. grid_size
30 return state [0] * num_cols + state [1]
31 except (AttributeError , TypeError , IndexError):
32 # Fallback if state is already an index or grid_size

is not as expected
33 if isinstance (state , int): return state
34 print(f" Warning : QLearning - Could not map state {

state} to index. Using as is.")
35 return state
36

37

38 def choose_action (self , state):
39 state_idx = self. _get_state_index (state)
40 if np. random .rand () < self. epsilon : # Exploration
41 num_actions = self.env. action_space .n if hasattr (self.

env. action_space , ’n’) else self.env. action_space
42 return np. random . choice (num_actions)
43 else: # Exploitation
44 return np. argmax (self. q_table [state_idx])
45

46 def update_q_table (self , state , action , reward , next_state):
47 state_idx = self. _get_state_index (state)
48 next_state_idx = self. _get_state_index (next_state)
49 best_next_action = np. argmax (self. q_table [next_state_idx])
50 td_target = reward + self.gamma * self. q_table [

next_state_idx][best_next_action]
51 td_error = td_target - self. q_table [state_idx][action]
52 self. q_table [state_idx][action] += self.alpha * td_error
53

54 def train(self):
55 for episode in range(self. max_episodes):
56 state = self.env.reset ()
57 done = False
58 total_reward = 0
59 while not done:

40

60 action = self. choose_action (state)
61 # Ensure env.step returns (next_state , reward ,

done , info) or adjust unpacking
62 step_result = self.env.step(action)
63 next_state , reward , done = step_result [0],

step_result [1], step_result [2]
64 # If step_result has 4 items: next_state , reward ,

done , _ = step_result
65

66 self. update_q_table (state , action , reward ,
next_state)

67 state = next_state
68 total_reward += reward
69 self. episode_rewards . append (total_reward)
70

71 def visualize_trajectory (self):
72 state = self.env.reset ()
73 trajectory = [self.env. get_position ()] # Requires env.

get_position ()
74 done = False
75 current_epsilon = self. epsilon # Store current epsilon
76 self. epsilon = 0 # Use greedy policy for visualization
77 while not done:
78 action = self. choose_action (state)
79 step_result = self.env.step(action)
80 next_state , _, done = step_result [0], step_result [1],

step_result [2]
81 trajectory . append (self.env. get_position ())
82 state = next_state
83 self. epsilon = current_epsilon # Restore epsilon
84

85 trajectory = np.array(trajectory)
86 plt.plot(trajectory [:, 1], trajectory [:, 0], marker =’o’,

color=’r’, label=’Q- Learning Agent Path ’)
87 plt. scatter (self.env. goal_pos [1], self.env. goal_pos [0],

color=’red ’, s=100 , marker =’*’, label=’Goal ’) #
Requires env. goal_pos

88 plt.title("Q- Learning Agent ’s Trajectory ")
89 plt. xlabel (’X Position (Column)’)
90 plt. ylabel (’Y Position (Row)’)
91 plt. legend ()
92 plt.grid(True)
93 plt.show ()

41

A.2 Policy Gradient Agent (policy_gradient_agent.py)

Listing A.2: Policy Gradient Agent Implementation
1 # policy_gradient_agent .py
2

3 import numpy as np
4 import matplotlib . pyplot as plt
5

6 class PolicyGradient :
7 def __init__ (self , env , lr =0.01 , gamma =0.99 , max_episodes

=1000) :
8 self.env = env
9 self.lr = lr

10 self.gamma = gamma
11 self. max_episodes = max_episodes
12 # Assuming env. state_space is total number of states (int)
13 # and env. action_space is total number of actions (int)
14 try:
15 num_states = env. state_space .n if hasattr (env.

state_space , ’n’) else env. state_space
16 num_actions = env. action_space .n if hasattr (env.

action_space , ’n’) else env. action_space
17 except AttributeError :
18 print(" Warning : PolicyGradient - Assuming env.

state_space and env. action_space are integers .")
19 num_states = env. state_space
20 num_actions = env. action_space
21 self. policy = np.ones ((num_states , num_actions)) /

num_actions
22 self. episode_rewards = []
23 # Note: self. episode_actions and self. episode_states are

initialized but not used in the provided train/ update
24 # For a standard REINFORCE , you ’d collect trajectories (

states , actions , rewards) per episode
25 # and then update based on discounted returns (Gt). This

implementation seems to update online .
26 self. episode_actions = []
27 self. episode_states = []
28

29 def state_to_index (self , state):
30 """ Map (x, y) state to a single index """
31 # Assuming state is (row , col) and env. grid_size is int (

cols) or tuple (rows , cols)
32 try:
33 num_cols = self.env. grid_size [1] if isinstance (self.

env.grid_size , tuple) else self.env. grid_size

42

34 return state [0] * num_cols + state [1]
35 except (AttributeError , TypeError , IndexError):
36 if isinstance (state , int): return state
37 print(f" Warning : PolicyGradient - Could not map state

{state} to index. Using as is.")
38 return state
39

40 def choose_action (self , state):
41 state_idx = self. state_to_index (state)
42 action_probabilities = self. policy [state_idx]
43 action_probabilities = np. maximum (action_probabilities , 1e

-8) # Avoid zero probabilities if all are clipped
44 action_probabilities /= np.sum(action_probabilities)
45 num_actions = self.env. action_space .n if hasattr (self.env.

action_space , ’n’) else self.env. action_space
46 action = np. random . choice (num_actions , p=

action_probabilities)
47 return action
48

49 def update_policy (self , state , action , reward , next_state):
50 # This is a very simplified online update , not standard

REINFORCE .
51 # Standard REINFORCE uses sum of discounted rewards G_t

for the episode .
52 # And the gradient is d(log pi(a|s)) * G_t
53 state_idx = self. state_to_index (state)
54 advantage = reward # Simplified : using immediate reward as

advantage
55

56 # A more REINFORCE -like update would involve log
probabilities .

57 # For simplicity , using the provided update logic:
58 # self. policy [state_idx][action] += self.lr * advantage *

(1 - self. policy [state_idx][action]) # Original update
for taken action

59 # The update rule (1 - self. policy [state_idx]) is unusual
for REINFORCE .

60 # Typical REINFORCE : grad_log_pi = (1 _for_action_taken -
pi(action |state))

61 # Let ’s assume a simpler increase for the taken action ’s
probability scaled by advantage

62

63 # Create a one -hot vector for the action taken
64 action_one_hot = np.zeros(self. policy .shape [1])
65 action_one_hot [action] = 1
66

43

67 # Simple gradient : increase probability of taken action if
advantage is positive

68 # This is a conceptual simplification of policy gradient .
69 # True REINFORCE : d_theta log pi_theta (a_t | s_t) * G_t
70 # If policy is softmax (logits), then d_theta log pi = x_s

* (1_{a=a_t} - pi(a|s_t))
71 # The provided code seems to directly manipulate

probabilities .
72

73 # Based on text: " Update for the taken action "
74 # self. policy [state_idx][action] += self.lr * advantage #

Simplified further , direct increase
75

76 # Let ’s use the exact formula you provided , though it’s
non - standard for REINFORCE :

77 # "self. policy [state_idx] += self.lr * advantage * (1 -
self. policy [state_idx])"

78 # This update form usually applies to the probability of
the * chosen action *, not the whole vector .

79 # So , it should be:
80 current_prob_action = self. policy [state_idx , action]
81 self. policy [state_idx , action] += self.lr * advantage * (1

- current_prob_action)
82

83 self. policy [state_idx] = np. maximum (self. policy [state_idx
], 1e -8) # Avoid all zeros

84 self. policy [state_idx] /= np.sum(self. policy [state_idx])
85

86 def train(self):
87 for episode in range(self. max_episodes):
88 state = self.env.reset ()
89 done = False
90 total_reward = 0
91 # For REINFORCE , typically store episode trajectory
92 # current_episode_states = []
93 # current_episode_actions = []
94 # current_episode_rewards = []
95 while not done:
96 action = self. choose_action (state)
97 step_result = self.env.step(action)
98 next_state , reward , done = step_result [0],

step_result [1], step_result [2]
99

100 # Your code implies online update , which is not
typical REINFORCE

101 self. update_policy (state , action , reward ,
next_state) # Pass next_state if needed by

44

update
102

103 state = next_state
104 total_reward += reward
105 self. episode_rewards . append (total_reward)
106 # After episode , for REINFORCE , calculate G_t and

update policy for all steps in episode .
107

108 def visualize_trajectory (self):
109 state = self.env.reset ()
110 trajectory = [self.env. get_position ()]
111 done = False
112 while not done:
113 action = self. choose_action (state) # Policy is

stochastic , so this shows a sample path
114 step_result = self.env.step(action)
115 next_state , _, done = step_result [0], step_result [1],

step_result [2]
116 trajectory . append (self.env. get_position ())
117 state = next_state
118

119 trajectory = np.array(trajectory)
120 plt.plot(trajectory [:, 1], trajectory [:, 0], marker =’o’,

color=’g’, label=’Policy Gradient Agent Path ’) #
Changed color to green

121 plt. scatter (self.env. goal_pos [1], self.env. goal_pos [0],
color=’red ’, s=100 , marker =’*’, label=’Goal ’)

122 plt.title(" Policy Gradient Agent ’s Trajectory ")
123 plt. xlabel (’X Position (Column)’)
124 plt. ylabel (’Y Position (Row)’)
125 plt. legend ()
126 plt.grid(True)
127 plt.show ()

A.3 Actor-Critic Agent (actor_critic_agent.py)

Listing A.3: Actor-Critic Agent Implementation
1 # actor_critic_agent .py
2

3 import numpy as np
4 import matplotlib . pyplot as plt
5

6 class ActorCriticAgent :
7 def __init__ (self , env , lr =0.01 , gamma =0.99 , max_episodes

=1000) :

45

8 self.env = env
9 self. lr_actor = lr # Can have separate LRs

10 self. lr_critic = lr
11 self.gamma = gamma
12 self. max_episodes = max_episodes
13 # Assuming env. state_space is total number of states (int)
14 # and env. action_space is total number of actions (int)
15 try:
16 num_states = env. state_space .n if hasattr (env.

state_space , ’n’) else env. state_space
17 num_actions = env. action_space .n if hasattr (env.

action_space , ’n’) else env. action_space
18 except AttributeError :
19 print(" Warning : ActorCritic - Assuming env. state_space

and env. action_space are integers .")
20 num_states = env. state_space
21 num_actions = env. action_space
22 self. policy = np.ones ((num_states , num_actions)) /

num_actions
23 self. value_function = np.zeros ((num_states ,))
24 self. episode_rewards = []
25

26 def _get_state_index (self , state):
27 """ Map state to index."""
28 # Assuming state is (row , col) and env. grid_size is int (

cols) or tuple (rows , cols)
29 try:
30 num_cols = self.env. grid_size [1] if isinstance (self.

env.grid_size , tuple) else self.env. grid_size
31 return state [0] * num_cols + state [1]
32 except (AttributeError , TypeError , IndexError):
33 if isinstance (state , int): return state
34 print(f" Warning : ActorCritic - Could not map state {

state} to index. Using as is.")
35 return state
36

37

38 def choose_action (self , state):
39 state_idx = self. _get_state_index (state)
40 action_probabilities = self. policy [state_idx]
41 action_probabilities = np. maximum (action_probabilities , 1e

-8)
42 action_probabilities /= np.sum(action_probabilities)
43 num_actions = self.env. action_space .n if hasattr (self.env.

action_space , ’n’) else self.env. action_space
44 action = np. random . choice (num_actions , p=

action_probabilities)

46

45 return action
46

47 def update_actor_critic (self , state , action , reward ,
next_state , done): # Added done flag

48 state_idx = self. _get_state_index (state)
49 next_state_idx = self. _get_state_index (next_state)
50

51 # Critic update (TD error for V- function)
52 # If next_state is terminal , V(next_state) is 0
53 v_next_state = self. value_function [next_state_idx] if not

done else 0.0
54 td_target = reward + self.gamma * v_next_state
55 td_error = td_target - self. value_function [state_idx]
56 self. value_function [state_idx] += self. lr_critic *

td_error
57

58 # Actor update (Policy Gradient with advantage = td_error)
59 # Advantage is td_error for one -step Actor - Critic
60 advantage = td_error
61

62 # Similar to Policy Gradient , update probability of taken
action

63 # A more standard actor update would be: d_theta log
pi_theta (a|s) * Advantage

64 current_prob_action = self. policy [state_idx , action]
65 # The update "+= self.lr * advantage " is simple ; often it’

s self.lr * advantage * grad_log_pi
66 # For direct probability update , this means increasing

prob of action ’action ’
67 self. policy [state_idx , action] += self. lr_actor *

advantage * (1 - current_prob_action) # Similar to PG
example

68 # Or , simpler : self. policy [state_idx , action] += self.
lr_actor * advantage

69

70 self. policy [state_idx] = np. maximum (self. policy [state_idx
], 1e -8)

71 self. policy [state_idx] /= np.sum(self. policy [state_idx])
72

73

74 # Your original code had separate update_policy and
update_value_function .

75 # For actor -critic , these are usually coupled as the advantage
/TD -error from critic updates actor.

76 # I’ve combined them into update_actor_critic . If you prefer
separate , can adjust .

77

47

78 def train(self):
79 for episode in range(self. max_episodes):
80 state = self.env.reset ()
81 done = False
82 total_reward = 0
83 while not done:
84 action = self. choose_action (state)
85 step_result = self.env.step(action)
86 next_state , reward , done = step_result [0],

step_result [1], step_result [2]
87

88 self. update_actor_critic (state , action , reward ,
next_state , done)

89

90 state = next_state
91 total_reward += reward
92 self. episode_rewards . append (total_reward)
93

94 def visualize_trajectory (self):
95 state = self.env.reset ()
96 trajectory = [self.env. get_position ()]
97 done = False
98 while not done:
99 action = self. choose_action (state) # Policy is

stochastic
100 step_result = self.env.step(action)
101 next_state , _, done = step_result [0], step_result [1],

step_result [2]
102 trajectory . append (self.env. get_position ())
103 state = next_state
104

105 trajectory = np.array(trajectory)
106 plt.plot(trajectory [:, 1], trajectory [:, 0], marker =’o’,

color=’purple ’, label=’Actor - Critic Agent Path ’) #
Changed color

107 plt. scatter (self.env. goal_pos [1], self.env. goal_pos [0],
color=’red ’, s=100 , marker =’*’, label=’Goal ’)

108 plt.title("Actor - Critic Agent ’s Trajectory ")
109 plt. xlabel (’X Position (Column)’)
110 plt. ylabel (’Y Position (Row)’)
111 plt. legend ()
112 plt.grid(True)
113 plt.show ()

48

Acceptance Letter

Bhakti Sharma <bhaktisharma2201@gmail.com>

Acceptance of Abstract for 3rd International Conference on Recent Trends in
Mathematical Sciences (ICRTMS-2025)
1 message

ICRTMS2025 <icrtms25hgp@gmail.com> 25 April 2025 at 19:07
To: Bhakti Sharma <bhaktisharma2201@gmail.com>

Dear Bhakti Sharma
I hope you are doing well.

We are pleased to inform you that the Conference Committee reviewed your abstract titled "Comparative Analysis of Model-
Free Reinforcement Learning Algorithms
in Dynamic and Partially Observable Gridworld Environments" and has approved for presentation at "3rd International
Conference on Recent Trends in Mathematical Sciences (ICRTMS- 2025)” scheduled to be held on 10th –
11th May, 2025 at Himachal Pradesh University, Shimla, H. P., India in Hybrid mode.

We believe that your presentation will make a valuable contribution to the conference. Your Paper ID is ICRTMS_195

We request you to fill the registration form, if not done already, and mail your full length paper in PDF format latest
by 25th April, 2025.
Please feel free to contact us for any queries.
To register, please fill out the Google Form available at the link:
https://forms.gle/X1qh8EtQetFBoXLe9

The participants who will not register, will not be allowed to present their paper in the conference.

Lodging Arrangement
The organizing committee of ICRTMS-2025 makes arrangements for the stay of participants in nearby guest houses and hotels.
The participants are free to exercise their choice about their stay for which they have to immediately contact the concerned guest
house or hotel. The participants are requested to book their accommodation by the end of March, 2025 as in the months of
May and June there is tourist season in Shimla.

Hotel Green View: Situated at Sangti and is about 1 km from the venue.
Tariff: Rs. 1000/- per person in double or triple sharing room with Balcony and Rs. 750/- per person in double or triple sharing
room without Balcony.
Contact Details: +91-98166-87459, +91-70186-26662, +91-78071-86043
Hotel Ganga Palace: Situated at Summer Hill, Shimla and is about 100 meters from the venue.
Tariff: Rs. 3200/- per room (2 persons allowed), extra bed available (total 3 persons).
Group booking: Rs 900/- per person (4 persons per room)
Manager: Divesh Rathore
Contact Details: +91-8262858998

Thank you for your contribution to the conference.

On behalf of organizing committee

Dr. Neetu Dhiman
Convener
ICRTMS- 2025
Contact-+91-7018451738
Conference Website: https://icrtms25.hgp.org.in

50

Presentation Certificate

This is to certify that Ms. Bhakti Sharma, UG/PG Student, Delhi Technological University has presented a research paper
entitled Comparative Analysis of Model-Free Reinforcement Learning Algorithms in Dynamic and Partially Observable
Grid-world Environments in 3rd International Conference on Recent Trends in Mathematical Sciences (ICRTMS-2025)
organized by the Himachal Ganita Parishad (HGP) at Himachal Pradesh University, Shimla on 10th-11th May, 2025.

CERTIFICATE OF APPRECIATION

3rd INTERNATIONAL CONFERENCE ON RECENT TRENDS IN
MATHEMATICAL SCIENCES (ICRTMS-2025)

President (HGP)
Dr. Shalini Gupta

HIMACHAL GANITA PARISHAD

10th-11th May, 2025

Convener
Dr. Neetu Dhiman

(REGISTERED UNDER H.P. SOCIETIES REGISTRATION ACT 2006)

Dr. Kamalendra Kumar
Co-Convener

10%
SIMILARITY INDEX

8%
INTERNET SOURCES

8%
PUBLICATIONS

5%
STUDENT PAPERS

1 1%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

7 <1%

Bhakti_and_Shailly.pdf
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Delhi Technological University
Student Paper

Xinyuan Song, Keyu Chen, Ziqian Bi, Qian Niu,
Junyu Liu, Benji Peng, Sen Zhang, Ming Liu,
Ming Li, Xuanhe Pan. "Mastering
Reinforcement Learning: Foundations,
Algorithms, and Real-World Applications",
Open Science Framework, 2024
Publication

dspace.dtu.ac.in:8080
Internet Source

arxiv.org
Internet Source

Wu, Haiping. "Self-Supervised Attention-
Aware Reinforcement Learning", McGill
University (Canada), 2021
Publication

www.theseus.fi
Internet Source

Narasimhan, Sai Prasanth Bangalore Lakshmi.
"Robotic Simulation Learning Approaches for
Scalable Safety and Robustness in Assistive
Robotics and Human Motion Control", North
Carolina State University
Publication

www.sce.carleton.ca

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

Internet Source

Chong Li, Meikang Qiu. "Reinforcement
Learning for Cyber-Physical Systems - with
Cybersecurity Case Studies", CRC Press, 2019
Publication

vdoc.pub
Internet Source

Submitted to dtusimilarity
Student Paper

Kuldeep Singh Kaswan, Jagjit Singh
Dhatterwal, Anand Nayyar. "Digital
Personality: A Man Forever - Volume 3:
Ontologies to Dialogue Generation", CRC
Press, 2025
Publication

Submitted to Liverpool Hope
Student Paper

incompleteideas.net
Internet Source

0-www-mdpi-com.brum.beds.ac.uk
Internet Source

docserv.uni-duesseldorf.de
Internet Source

Satya Ranjan Mishra, Apul Narayan Dev, Alok
Kumar Pandey, Mukesh Kumar Awasthi.
"Design Optimization Using Artificial
Intelligence", CRC Press, 2025
Publication

Submitted to University of Birmingham
Student Paper

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

Submitted to University of Sheffield
Student Paper

pdfs.semanticscholar.org
Internet Source

Submitted to Southern New Hampshire
University - Continuing Education
Student Paper

Submitted to Universidad de Alcalá
Student Paper

Adaptation Learning and Optimization, 2012.
Publication

Submitted to Middle East Technical University
Student Paper

Osman, Altaaf. "The Role of Risk Culture in
Rational Strategic Decision-Making",
University of Pretoria (South Africa), 2023
Publication

ngocbh.github.io
Internet Source

Submitted to ABV-Indian Institute of
Information Technology and Management
Gwalior
Student Paper

Barbara Zaparoli Cunha, Christophe Droz,
Abdel-Malek Zine, Stéphane Foulard,
Mohamed Ichchou. "A review of machine
learning methods applied to structural
dynamics and vibroacoustic", Mechanical
Systems and Signal Processing, 2023
Publication

29 <1%

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

38 <1%

Mohit Sewak. "Deep Reinforcement Learning",
Springer Science and Business Media LLC,
2019
Publication

Pawan Singh, Prateek Singhal, Pramod Kumar
Mishra, Avimanyou K. Vatsa. "Heterogenous
Computational Intelligence in Internet of
Things", CRC Press, 2023
Publication

www.mdpi.com
Internet Source

Submitted to University of Oxford
Student Paper

cuir.car.chula.ac.th
Internet Source

deepai.org
Internet Source

Malekzadeh, Parvin. "Advancing Efficiency and
Safety in Autonomous Sequential Decision
Making.", University of Toronto (Canada),
2024
Publication

Submitted to University of Bristol
Student Paper

la.disneyresearch.com
Internet Source

www.shannonholloway.com
Internet Source

Exclude quotes On

Exclude bibliography On

Exclude matches < 10 words

	Candidate's Declaration
	Certificate by the Supervisor
	Acknowledgements
	Abstract
	Contents
	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Scope of Study

	Literature Review
	Overview of Research in RL
	Foundations and Evolution of Reinforcement Learning
	Q-Learning and Its Variants
	Policy Gradient Methods
	Actor-Critic Algorithms
	Reinforcement Learning in Partially Observable Environments
	Summary of Literature Gaps

	Theoretical Background
	Markov Decision Processe (MDP)
	Value Functions
	Q-Learning
	Policy Gradient Methods
	Actor-Critic Methods
	Partial Observability and POMDPs

	Research Methodology
	Environment Design
	Algorithm Implementation
	State Representation
	Reward Function
	Evaluation Metrics
	Experimental Parameters
	Challenges in Dynamic and Partially Observable Environments

	Implementation
	Training Process
	Performance Metrics
	Gridworld Environment Design
	Setup Specifications: GridWorld Class

	Q-Learning Agent
	Q-Learning Agent Class

	Policy Gradient Agent
	Actor-Critic Agent
	Training and Trajectory Visualization

	Results and Analysis
	Learning Curves
	Path Visualization and Policy Behavior
	Comparative Analysis
	Observations

	Conclusion
	Future Work
	Exploring More Complex Environments
	Improving Algorithm Performance
	Partial Observability Enhancements
	Transfer Learning and Generalization
	Real-World Applications

	Literature Survey
	Bibliography
	References
	Python Code Implementations
	Q-Learning Agent (q_learning_agent.py)
	Policy Gradient Agent (policy_gradient_agent.py)
	Actor-Critic Agent (actor_critic_agent.py)

	Acceptance Letter
	Presentation Certificate

