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Abstract

Effective neural network weight initialization is crucial for successful training, yet standard

methods often rely on assumptions violated by modern architectures and advanced activation

functions like Swish. This dissertation details a study investigating the feasibility of using

Reinforcement Learning (RL) to tune a scaling factor for He initialization when employing

Swish activations. An RL agent explored different scaling factors, evaluating them by training a

small convolutional neural network on CIFAR-10 for a 7-epoch proxy task. Over 200 episodes,

the RL agent demonstrated learning, converging towards a specific range of scaling factors

that optimized the 7-epoch validation accuracy. This preliminary investigation highlights the

functionality of the RL framework for initialization tuning and underscores the importance of

evaluating the fidelity of short-term proxy tasks in predicting longer-term training performance,

informing subsequent research into more complex symbolic initialization discovery.
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Chapter 1

INTRODUCTION

1.1 The Importance of Weight Initialization in Deep Learning

The initial values assigned to the weights within a deep neural network are not merely arbitrary
starting points; they profoundly dictate the subsequent training dynamics and ultimately, the
performance of the learned model. The process of deep learning optimization, typically achieved
through gradient-based methods like stochastic gradient descent (SGD) and its variants, is highly
sensitive to these initial conditions. An improperly initialized network can suffer from a myriad
of issues that impede effective learning, making weight initialization a cornerstone of successful
deep learning model development.

One of the most critical impacts of initial weights is on the convergence speed of the train-
ing process. When weights are too small, the gradients propagated back through the network
during backpropagation can vanish, becoming infinitesimally small. This phenomenon, known
as the vanishing gradient problem, effectively halts learning in earlier layers of deep networks,
as updates to their weights become negligible [1]. Conversely, if initial weights are excessively
large, gradients can explode, leading to numerical instability, oscillations during training, and
divergence of the optimization process—the exploding gradient problem [1]. Both scenarios sig-
nificantly prolong training times, or worse, prevent the network from converging to a meaningful
solution at all.

Beyond convergence speed, the choice of initial weights directly influences the final perfor-
mance of the model. Deep learning optimization landscapes are often complex and non-convex,
characterized by numerous local minima and saddle points. A poor initialization can trap the
optimization algorithm in a suboptimal local minimum, preventing the model from reaching a
high-performing global or near-global minimum [2]. The proximity of the initial weight config-
uration to a favorable region in the loss landscape can dramatically affect the model’s capacity
to generalize well to unseen data. Seminal works by Glorot and Bengio [1] and He et al. [2]
unequivocally established the critical role of thoughtful weight initialization in mitigating these
challenges and enabling the training of deeper and more effective neural networks. Their research
demonstrated that carefully scaled initializations could promote stable gradient flow, leading to
faster convergence and improved final model performance.

1.2 Challenges with Standard Initialization Heuristics

The groundbreaking work of Glorot and Bengio [1] and He et al. [2] introduced data-dependent
initialization schemes that dramatically improved the training of deep networks. Glorot and
Bengio’s ”Xavier” initialization proposed scaling weights based on the number of input and
output units of a layer, aiming to maintain variance of activations and gradients across layers.
This approach was particularly effective for activation functions that are symmetric around zero,
such as tanh and sigmoid, as it assumed a linear regime of operation for these activations around
zero.
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He et al. [2] further refined this concept, developing initialization strategies specifically tai-
lored for Rectified Linear Unit (ReLU) activation functions and their variants. Recognizing
that ReLUs rectify negative inputs to zero, breaking the symmetry assumption of Xavier, He
initialization scaled weights by considering only the number of input units to a layer. This
adjustment proved crucial for mitigating the vanishing gradient problem in networks employing
ReLU, allowing for the training of significantly deeper architectures.

Despite their widespread success, both Glorot and He initialization heuristics rely on specific
assumptions about the activation functions used within the network. These assumptions primar-
ily include linearity or piecewise linearity and symmetry around zero (for Glorot). However, the
landscape of activation functions in deep learning is continuously evolving, with novel functions
emerging that do not conform to these traditional assumptions. A prime example is the Swish
activation function, introduced by Ramachandran et al. [3], defined as f(x) = x · σ(βx), where
σ(x) is the sigmoid function and β is a learnable or fixed parameter.

Swish exhibits several desirable properties, including being smooth and non-monotonic. Its
non-monotonicity, where the output sometimes decreases even as the input increases, is a key
departure from traditional activations. This characteristic, along with its reliance on the sig-
moid function, violates the linear or symmetric assumptions underpinning both Glorot and He
initialization schemes. Consequently, analytically deriving optimal variance scaling factors for
Swish becomes significantly more challenging, if not intractable, using the methods employed
by Glorot and He. This limitation highlights a critical gap: as novel activation functions are
developed, the reliance on manual, analytical derivation of initialization parameters becomes
unsustainable and potentially suboptimal.

1.3 Reinforcement Learning for Automated Discovery

The challenges associated with manually deriving optimal initialization parameters for increas-
ingly complex and non-standard activation functions underscore the need for automated dis-
covery mechanisms. Reinforcement Learning (RL) presents a powerful paradigm for addressing
such problems. RL involves an agent learning to make a sequence of decisions by interacting
with an environment to maximize a cumulative reward signal. The agent, through trial and
error, explores the environment, performs actions, observes the consequences, and adjusts its
policy to achieve its objectives.

RL has demonstrated remarkable success in a wide array of automated discovery tasks,
particularly in the realm of machine learning itself. A notable example is its application in
Neural Architecture Search (NAS) [4], where RL agents are trained to design optimal neural
network architectures for specific tasks. This success illustrates RL’s capability to navigate vast
search spaces and learn complex relationships between design choices and performance outcomes.

Given its proven ability to learn optimal strategies in complex, high-dimensional spaces, we
propose RL as a promising approach for finding or tuning initialization parameters and even
discovering novel initialization formulas. Instead of relying on analytical derivations based on
simplifying assumptions, an RL agent can learn to select initialization parameters that em-
pirically lead to better training dynamics and model performance, effectively adapting to the
nuances of specific activation functions and network architectures. This data-driven approach
could overcome the limitations of traditional heuristic-based methods, paving the way for more
robust and generalizable initialization strategies.

1.4 Research Objectives

Building upon the insights from the pilot investigation and the identified challenges, this disserta-
tion aims to explore the potential of Reinforcement Learning for automated weight initialization
tuning. Specifically, we will address the following research questions:
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• Q1: Can an RL framework effectively learn to tune a continuous scaling parameter for
a standard weight initialization scheme (He) when used with a non-standard activation
function (Swish)?

• Q2: What are the learning dynamics of the RL agent, and what characteristics does the
reward landscape exhibit in this simplified initialization tuning problem?

• Q3: How well does a short-term proxy task (e.g., 7-epoch training) predict the utility of
an identified initialization parameter for longer, more extensive training durations?

• Q4: What are the implications of these findings for designing more complex RL-based
searches for novel, potentially symbolic, initialization formulas?

1.5 Scope and Contributions of this Dissertation

Scope: This dissertation focuses on a pilot investigation into the application of Reinforcement
Learning for weight initialization. Specifically, we will concentrate on tuning a single contin-
uous scaling factor ’s’ for the existing He initialization scheme, but in conjunction with the
non-standard Swish activation function. The experiments will be conducted on a specific Con-
volutional Neural Network (CNN) architecture trained on the CIFAR-10 dataset.

Contributions:

• Demonstration of a functional RL framework for tuning an initialization parameter.

• Empirical evidence of RL agent learning and convergence in this task.

• Analysis of proxy task fidelity for initialization tuning.

• Insights to guide future, more ambitious research in automated initialization discovery.

3



Chapter 2

LITERATURE REVIEW

2.1. Deep Neural Networks

Deep neural networks (DNNs) have revolutionized machine learning, achieving unprecedented
performance in computer vision, natural language processing, and reinforcement learning. This
section explores their fundamental concepts and architectures.

2.1.1. Basic Concepts: Neurons, Layers, Weights, and Biases

Neural networks are computational models inspired by biological brains [5]. The artificial neuron
is the basic building block, processing signals from connections that have adjustable weights [5].
Neurons are organized into an input layer, one or more hidden layers for computations, and an
output layer. A network with multiple hidden layers is a deep neural network [5].

Each neuron computes a weighted sum of inputs plus a bias term, followed by an activation
function (f) that introduces non-linearity. The pre-activation value for a neuron in layer l is:

z(l) = W (l) · a(l−1) + b(l)

Where W (l) is the weight matrix, a(l−1) is the previous layer’s output, and b(l) is the bias vector.
The output is then a(l) = f(z(l)) [6]. This process occurs during forward propagation.

2.1.2. Forward and Backward Propagation

Forward propagation calculates and stores intermediate variables from the input to the output
layer [6]. Input data traverses layer by layer, computing outputs until the final layer produces a
result used to calculate loss.

Backward propagation is the core algorithm for training DNNs. It calculates the gradient
of the loss function with respect to each weight, enabling updates that minimize loss [7]. The
error signal propagates backward, efficiently computing gradients using the chain rule [6].

For a weight w
(l)
ij :

∆w
(l)
ij = −η

∂C

∂w
(l)
ij

= −ηδ
(l)
i · a(l−1)

j

Where η is the learning rate, C is the cost function, δ
(l)
i is the error signal, and a

(l−1)
j is the

activation from the previous layer [8]. The bias update is ∆b
(l)
i = −ηδ

(l)
i . This recursive process

enables efficient training of deep networks [6].

2.1.3. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are specialized DNNs for grid-like data like images,
excelling in tasks such as image classification (e.g., CIFAR-10). CNNs typically comprise three
main layer types [5]:
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• Convolutional layers: Apply learnable filters (kernels) to detect local patterns like edges
and textures, generating feature maps.

• Pooling layers: Reduce spatial dimensions (e.g., max pooling), achieving translation
invariance and reducing computational complexity.

• Fully connected layers: At the end, these integrate information for final predictions,
similar to traditional neural networks.

CNNs’ hierarchical structure mirrors the visual cortex, allowing them to learn increasingly
abstract representations, making them effective for multi-level pattern recognition tasks like
CIFAR-10 [5].

2.2. Activation Functions

Activation functions are crucial in neural networks, introducing the non-linearity necessary for
learning complex patterns. Without them, deep networks would simply behave as linear regres-
sion models, regardless of their depth. They transform the linear combination of inputs and
weights into non-linear outputs, allowing neural networks to approximate arbitrary functions
and learn hierarchical representations [5]. They also act as gates, controlling information flow
by determining neuron activation intensity.

2.2.1. Traditional Activations: Sigmoid and Tanh

Early neural networks commonly used sigmoid and hyperbolic tangent (tanh) functions.

• Sigmoid Function: σ(x) = 1
1+e−x , maps inputs to [0, 1].

• Tanh Function: tanh(x) = ex−e−x

ex+e−x , maps inputs to [−1, 1].

Both functions suffer from saturation (gradients approach zero for large/small inputs) and the
vanishing gradient problem, where gradients diminish exponentially across layers during back-
propagation, making deep network training difficult [9]. They also involve computationally
expensive exponential operations. These limitations spurred the development of more efficient
alternatives.

2.2.2. ReLU and its Variants

The Rectified Linear Unit (ReLU) and its variants have largely supplanted traditional activa-
tions in modern deep learning. ReLU is defined as f(x) = max(0, x). Its advantages include
computational efficiency, sparse activation, and no saturation for positive inputs, mitigating
vanishing gradients [10]. However, ReLU can suffer from the ”dying ReLU” problem, where
neurons become permanently inactive.

To address this, several variants emerged:

• Leaky ReLU: f(x) = max(αx, x) (α ≈ 0.01), allows a small positive gradient for negative
inputs, preventing dying ReLUs [11].

• Parametric ReLU (PReLU): Similar to Leaky ReLU, but α is learned during training
[12].

• Exponential Linear Unit (ELU): f(x) = x for x > 0 and f(x) = α(ex − 1) for x ≤ 0.
ELU combines ReLU’s benefits with negative values that push mean activations closer to
zero, potentially improving learning dynamics [13].
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2.2.3. Swish/SiLU

Swish, also known as Sigmoid Linear Unit (SiLU), is a recent activation defined as f(x) =
x · σ(βx), where σ is the sigmoid function and β is a trainable parameter or fixed constant [14].
When β = 1, it simplifies to SiLU: f(x) = x · σ(x).

Swish’s effectiveness comes from its properties:

• Smoothness: It’s smooth everywhere, potentially aiding optimization [14].

• Non-monotonicity: It decreases slightly for negative values before increasing, allowing
for more complex function modeling [14].

• Self-gating mechanism: The sigmoid component dynamically controls the linear com-
ponent, providing a form of attention [14].

• Bounded below and unbounded above: It combines the boundedness of sigmoid for
negative inputs with ReLU’s non-saturating behavior for positive inputs.

Empirically, Swish often outperforms ReLU in deep networks, leading to improved accu-
racy and faster convergence, especially in architectures with 40+ layers [14]. However, its
non-standard behavior, particularly its non-monotonicity and negative outputs, means that
traditional initialization strategies—which make assumptions about activation function behav-
ior—may not be optimal, representing a significant gap in current literature.

2.3 Weight Initialization Strategies

Weight initialization is critical for deep neural networks, impacting convergence speed and sta-
bility. Proper initialization aims to mitigate the vanishing and exploding gradient problems,
fundamental challenges in deep learning.

2.3.1. The Vanishing and Exploding Gradient Problem

Vanishing gradients occur when gradients diminish significantly as they propagate backward
through deep networks, hindering learning in early layers. This is often exacerbated by tradi-
tional activations like sigmoid/tanh [9]. Conversely, exploding gradients arise when gradients
become excessively large, leading to unstable training and numerical overflow [15]. Both issues
stem from the multiplicative nature of gradient propagation across layers, where magnitudes of
weights and activation derivatives can cause exponential decay or growth. Effective initialization
ensures stable variance of activations and gradients throughout the network.

2.3.2. Weight Initialization Methods

Various strategies have been developed to initialize neural network weights, each with different
theoretical bases and applicability. These methods are summarized below:
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Method Key Idea Applicable
Activations

Formula (if any) Notes

Random
Init.

Small random values Any (not opti-
mal)

W ∼ U [−r, r] or N(0, σ2) Simplest; no variance
guarantees; inconsistent
performance.

Nguyen-
Widrow

Efficient use of active re-
gion

Sigmoid (shal-
low nets)

Scaled by neuron count Empirical; limited to
shallow networks; im-
proves convergence in
simple cases.

Glorot/Xavier
[9]

Preserve variance of acti-
vations & gradients across
layers

Symmetric
(tanh, sigmoid,
linear)

[
−
√

6
nin+nout

,
√

6
nin+nout

]
Balances for-
ward/backward vari-
ance; assumes zero mean
and linear-around-zero
activations.

He [12] Preserve variance for
ReLU-type activations

ReLU and vari-
ants

W ∼ N
(
0, 2

fan in

)
Compensates for ReLU’s
variance reduction; effec-
tive for deep ReLU net-
works.

LSUV [16] Ensure unit variance for
each layer’s output empir-
ically

Any Data-dependent: or-
thonormal init, then
normalize with forward
pass.

Data-dependent; adaptive
to architecture/data; of-
ten provides better initial
conditions.

Orthogonal
[17]

Preserve norms during
forward propagation

Any (esp. very
deep nets,
RNNs)

Initialize as random or-
thogonal matrices.

Helps maintain stable gra-
dient flow; extended to
convolutional layers.

2.4 RL for Hyperparameter Optimization and AutoML

Hyperparameter optimization (HPO) is a critical aspect of deep learning, significantly impacting
model performance. This section explores how reinforcement learning (RL) has been applied
to automate hyperparameter selection, a key component of Automated Machine Learning (Au-
toML).

2.4.1. Overview of RL for Hyperparameter Optimization

Traditional HPO methods, such as grid search, random search, or Bayesian optimization, often
struggle with the high-dimensional, non-differentiable nature of hyperparameter spaces and the
sequential decision-making involved in tuning [18]. Reinforcement learning offers a promising
alternative by framing hyperparameter optimization as a sequential decision process where:

• States: Represent the current model configuration and its performance.

• Actions: Involve making specific hyperparameter adjustments.

• Rewards: Are derived from improvements in validation metrics.

• Policy: Is the strategy for selecting hyperparameters based on the current state.

This formulation leverages RL’s strengths in sequential decision-making under uncertainty, al-
lowing for adaptive exploration of the hyperparameter space based on feedback from previous
trials [18]. Recent research indicates that RL-based approaches can surpass traditional methods
in both final performance and computational efficiency, especially for complex hyperparameter
landscapes [18].

2.4.2. Neural Architecture Search (NAS)

Neural Architecture Search (NAS) stands as one of the most successful applications of RL to
AutoML, focusing on automating the design of neural network architectures. In pioneering
work by Zoph and Le (2017), a recurrent neural network (RNN) controller was trained with

7



reinforcement learning to generate neural network architectures [19]. The controller outputs
descriptions of neural networks, which are then trained to completion. The validation accuracy
of these trained networks serves as the reward signal for updating the controller’s policy.

Mathematically, the NAS framework aims to maximize:

J(θc) = EP (a1:T ;θc)[R]

Where θc represents the controller parameters, a1:T is a sequence of architecture decisions, and
R is the validation accuracy of the generated architecture [19]. This approach has successfully
produced architectures that rival or even surpass the best human-designed networks on tasks
like image classification and language modeling. For instance, on CIFAR-10, RL-based NAS
achieved a test error rate of 3.65%, outperforming previous state-of-the-art models [19].

2.4.3. Positioning Current Research

While Neural Architecture Search has garnered significant attention, applying RL principles to
optimize specific hyperparameters within established architectures remains an important and
complementary approach. The current research is positioned in this area, specifically focusing
on the critical hyperparameter of weight initialization scaling factors, particularly for modern
activation functions like Swish/SiLU.

This focused approach offers several advantages:

• Targeted Optimization: By concentrating on a specific hyperparameter with theoret-
ical significance, the method can leverage domain knowledge while benefiting from RL’s
sequential decision-making capabilities.

• Computational Efficiency: Optimizing initialization factors requires significantly fewer
computational resources compared to a full architecture search, potentially leading to
substantial performance improvements with less overhead.

• Generalizability: Findings regarding optimal initialization strategies are often general-
izable across multiple architectures and tasks, unlike NAS which typically produces task-
specific architectures.

The current research applies reinforcement learning principles to fine-tune initialization scaling
factors, directly addressing a recognized gap in the literature concerning optimal initialization
strategies for modern activation functions [14]. This represents a novel application of RL within
the broader AutoML context, concentrating on a critical hyperparameter that profoundly influ-
ences neural network training dynamics and final performance.
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Chapter 3

METHODOLOGY

This chapter details the Reinforcement Learning (RL) framework developed and employed to
investigate the automated tuning of a scaling factor for He weight initialization in a Convolutional
Neural Network (CNN) utilizing Swish activation functions. The methodology encompasses the
design of the child neural network, the parameterized initialization scheme, the RL environment,
and the RL agent.

3.1 Overview of the RL Framework

The core of this research involved an RL agent interacting with a custom-designed environment.
In each interaction step (episode), the RL agent proposed a continuous value representing a
scaling factor, s. This factor was then used to initialize the weights of a ”child” CNN. The
child network was subsequently trained on the CIFAR-10 dataset for a fixed, short number of
epochs (the ”proxy task”). The validation accuracy achieved by the child network on this proxy
task served as a reward signal, guiding the RL agent’s learning process. The objective of the
RL agent was to learn a policy that selected scaling factors leading to higher rewards, thereby
identifying s values optimal for the proxy task’s performance.

Figure 3.1: RL Framework for Initialization Scaling Factor Tuning. A block diagram showing:
[RL Agent] → action (scaling factor s) → [Environment (ScaleEnv)] → trains [Child CNN] →
returns reward (validation accuracy) & next state → [RL Agent].

3.2 Child Neural Network Architecture (Child CNN)

A relatively small CNN was designed as the ”child network” for evaluation within the RL loop.
The architecture was chosen to be sufficiently complex to represent common image classifica-
tion tasks while remaining computationally inexpensive for rapid training and evaluation across
numerous RL episodes.

The child network, SimpleCNN, is a convolutional neural network designed for image classi-
fication. It processes 3-channel input images (e.g., CIFAR-10 images of size 32 × 32 × 3). The
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architecture is detailed below:

• Input: 3-channel images (e.g., CIFAR-10 images of size 32× 32× 3).

• Convolutional Block 1 (self.conv1): Consists of a convolutional layer followed by
SiLU activation and max pooling.

• Convolutional Block 2 (self.conv2): Similar to Block 1, but with increased feature
maps.

• Convolutional Block 3 (self.conv3): Similar to Block 2, with further increased feature
maps.

• Flattening: The output of the final pooling layer is flattened from 128 × 4 × 4 to 2048
features.

• Fully Connected Layer 1 (self.fc1): A dense layer with 2048 input features and 256
output units, followed by SiLU activation.

• Output Layer (self.fc2): A fully connected layer with 256 input features and 10 output
units (for CIFAR-10 classes). Softmax activation is implicitly applied by nn.CrossEntropyLoss.

Table 3.1: SimpleCNN Architecture Details
Layer Input Shape Output Shape Kernel/Pool Activation

Input 3× 32× 32 3× 32× 32 N/A N/A

Conv1 3× 32× 32 32× 32× 32 3× 3 SiLU
MaxPool1 32× 32× 32 32× 16× 16 2× 2 (stride 2) N/A

Conv2 32× 16× 16 64× 16× 16 3× 3 SiLU
MaxPool2 64× 16× 16 64× 8× 8 2× 2 (stride 2) N/A

Conv3 64× 8× 8 128× 8× 8 3× 3 SiLU
MaxPool3 128× 8× 8 128× 4× 4 2× 2 (stride 2) N/A

Flatten 128× 4× 4 2048 N/A N/A

FC1 2048 256 N/A SiLU

FC2 256 10 N/A Softmax (implicit)

The SiLU (Swish) activation, SiLU(x) = x · σ(x), was consistently applied after each conv
and the first FC layer.

3.3 Parameterized Weight Initialization

The study focused on adapting the widely used He initialization scheme [2] for networks using
Swish/SiLU activations. He initialization, designed for ReLU-like activations, samples weights
from a normal distribution N(0, σ2

He) where fan in represents the number of input units to the
layer and the standard deviation

σHe =

√
2.0

fan in

A scaling factor s was introduced:

σscaled = s ·
√

2.0

fan in
(Equation 3.1) (3.1)

The init weights method applied this logic for both convolutional and linear layers:
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• The value of fan in is computed based on the layer type.

• The standard deviation is scaled by the factor s.

• Weights are initialized from a normal distribution, and biases are set to zero.

The RL agent explored values of s within a predefined range

3.4 Reinforcement Learning Environment (ScaleEnv)

A custom environment, ScaleEnv, compatible with the Gymnasium API [20], was developed to
facilitate the interaction between the RL agent and the child network evaluation process.

Figure 3.2: Workflow of the ScaleEnv environment, illustrating the interaction between the RL
agent and the child network evaluation process.

3.4.1 State Space (self.observation space)

The state provided to the RL agent at the beginning of each episode consisted of the previous
scaling factor attempted (self.current scale) and the reward obtained from that attempt
(self.current reward). The observation space was defined as a spaces.Box with:

• Low values: [min scale explored, -2.0] (where -2.0 is the NaN penalty).

• High values: [max scale explored, 10.0] (where 10.0 is the max possible reward if accuracy
is 1.0 and scaled by 10).

• Shape: (2,) representing the two continuous values.

• Data type: np.float32.

Upon reset, self.current scale was initialized by sampling uniformly from [min scale, max scale]
and self.current reward was set to 0.0.

3.4.2 Action Space (self.action space)

The action space was continuous, representing the scaling factor s to be evaluated. It was defined
as a spaces.Box with:

• Low value: min scale (e.g., 0.1 or 0.3 as per run rl training parameters).

• High value: max scale (e.g., 1.7 or 1.9 as per run rl training parameters).

• Shape: (1,).

• Data type: np.float32.

The raw action output by the agent’s policy network was clipped to ensure it remained within
[min scale, max scale] using np.clip(action[0], self.min scale, self.max scale) within
the step method.
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3.4.3 Evaluation Proxy Task (train and evaluate function)

Upon receiving an action (a proposed scale factor), the step method of the environment
instantiated the SimpleCNN with this scale factor. This child network was then trained and
evaluated using the train and evaluate function:

• Dataset: CIFAR-10.

• Training Epochs: A fixed number (num epochs), typically 5 or 7 for the proxy task during
RL agent training (parameter num epochs in ScaleEnv and run rl training).

• Optimizer: Adam [21] with a learning rate specified (e.g., lr=0.001).

• Loss Function: nn.CrossEntropyLoss.

• Batch Size: 128.

The train and evaluate function returned the final validation accuracy on the CIFAR-10 test
set and a boolean flag indicating if NaNs were encountered during training.

3.4.4 Reward Function

The reward R returned to the agent was based on the child network’s 7-epoch (or proxy task
epoch count) validation accuracy:

• R = validation accuracy× 10 if no NaN was detected during training.

• R = −2.0 if a NaN was detected (e.g., torch.isnan(loss) or torch.isinf(loss)).

This corresponds to the logic in the step method of ScaleEnv and matches Equation 2 from
the pilot study. The accuracy was scaled by 10 to provide a more substantial reward signal for
the policy gradient updates. The NaN penalty strongly discouraged initializations leading to
unstable training.

3.4.5 Episode Definition

Each episode consisted of a single step:

• The agent selected an action (scale factor).

• The environment evaluated this scale factor by training the child CNN for the proxy
task duration.

• The environment returned the next state (updated current scale and current reward),
the computed reward, a done flag (always True as episodes were single-step), and an info
dictionary containing scale factor, accuracy, and nan detected.

3.5 Reinforcement Learning Agent (ReinforceAgent)

A REINFORCE policy gradient agent [22, 23] was implemented to learn the policy for selecting
the scaling factor s.
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3.5.1 Policy Network Architecture

The policy π(a|s; θ) was represented by a simple Multi-Layer Perceptron (MLP), defined within
the ReinforceAgent class:

• Input Layer: state dim units (2 units: previous scale, previous reward).

• Hidden Layer 1: 64 units, followed by ReLU activation.

• Hidden Layer 2: 64 units, followed by ReLU activation.

• Output Layer: action dim × 2 units (i.e., 2 units for a 1D action space). These two
units represented the mean (µ) and the logarithm of the standard deviation (log std) of
a Gaussian distribution from which the raw action was sampled.

3.5.2 Action Selection (select action method)

• The current state was fed into the policy network to obtain µ and log std.

• log std was clamped (e.g., min=-20, max=2) to ensure numerical stability.

• The standard deviation std was computed as log std.exp().

• A raw action was sampled from the Normal distribution N(µ, std2).

• This raw action was then transformed to the desired range [min scale, max scale] using
a sigmoid function to map it to [0, 1], followed by scaling and shifting: scaled action =

torch.sigmoid(action) * self.action range + self.min scale.

• The log probability of the sampled (pre-scaled) action, dist.log prob(action), was saved
for the policy update.

3.5.3 Policy Update (update method)

The policy parameters θ were updated after each episode using the REINFORCE algorithm:

• Calculate Returns: Since episodes were single-step, the return Gt for the single step
was simply the reward R obtained (γ was defined but effectively not used for a single-step
return R = r+γ×0). The code in update calculates discounted returns R = r+γ×Rnext,
which is standard REINFORCE. For single-step episodes, this simplifies to G0 = R0.

• Normalize Returns (Optional but implemented): If more than one reward was
collected (though not in this single-step per episode setup for Gt, but over a batch of
episodes if updates were batched), returns were normalized by subtracting the mean and
dividing by the standard deviation (plus a small epsilon for stability). Your updatemethod
collects rewards from multiple episodes before an update if agent.update() is called
less frequently than agent.rewards.append(). The pilot description implies update per
episode. Clarify if update is after each single-step episode or batched.

• Compute Policy Loss: The loss was calculated as L(θ) = −
∑

log πθ(at|st)×Gt. In the
code, this is policy loss.append(-log prob * R).

• Optimization: The Adam optimizer was used to update the policy network parameters
by performing gradient ascent on the expected return (or gradient descent on the negative
loss).

• Gradient Clipping: Gradient norms were clipped (torch.nn.utils.clip grad norm )
to a maximum value (e.g., 1.0) to prevent exploding gradients during policy updates.
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• Saved log probabilities and rewards were cleared after the update.

This detailed methodology provided a systematic way to explore the impact of the scaling
factor s and allow the RL agent to learn an effective strategy for its selection.
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Chapter 4

EXPERIMENTAL SETUP and DESIGN

This chapter outlines the experimental framework and procedures used to evaluate the proposed
RL-based weight initialization strategy. It describes the datasets, training configurations for both
the proxy and final validation models, RL agent setup, evaluation protocol, and computational
tools and resources.

4.1 Dataset: CIFAR-10

The CIFAR-10 dataset [24] was used throughout this study.

• Description: 60,000 32× 32 RGB images across 10 classes (50,000 training, 10,000 test).

• Preprocessing (PyTorch proxy task):

– ToTensor()

– Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) to scale pixel values to [−1, 1].

• Preprocessing (Keras final validation):

– Pixel values scaled to [0, 1].

– Labels one-hot encoded.

4.2 Child Network Training Configuration

4.2.1 RL Proxy Task (PyTorch SimpleCNN)

The RL loop trains a lightweight CNN called SimpleCNN using PyTorch. This model is used to
evaluate the scaling factor s proposed by the RL agent.

• Optimizer: Adam [25], with learning rate 0.001 and default parameters.

• Loss Function: Cross-Entropy.

• Batch Size: 128.

• Epochs: Typically 5 or 7 (7 used in final proxy task).

• Device: Apple MacBook with M3 chip (MPS acceleration).

• Initialization: Weights initialized using a scaled He scheme:

σscaled = s×
√

2.0

fan in

• Reproducibility: Random seeds fixed to 42; CUDA backends configured for deterministic
behavior.
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4.2.2 Final Validation Network (TensorFlow/Keras)

To validate the effectiveness of the scaling factor s, a deeper CNN was implemented in Tensor-
Flow/Keras and trained for an extended duration.

Table 4.1: Convolutional Neural Network Architecture Details
Layer Filters Input Shape Output Shape Pool Size Activation

Input N/A 3× 32× 32 3× 32× 32 N/A N/A

Conv Block 1
Conv2D 32 3× 32× 32 32× 32× 32 3× 3 Swish
BatchNorm N/A 32× 32× 32 32× 32× 32 N/A N/A
Conv2D 32 32× 32× 32 32× 32× 32 3× 3 Swish
BatchNorm N/A 32× 32× 32 32× 32× 32 N/A N/A
MaxPooling2D N/A 32× 32× 32 32× 16× 16 2× 2 (stride 2) N/A
Dropout N/A 32× 16× 16 32× 16× 16 N/A N/A

Conv Block 2
Conv2D 64 32× 16× 16 64× 16× 16 3× 3 Swish
BatchNorm N/A 64× 16× 16 64× 16× 16 N/A N/A
Conv2D 64 64× 16× 16 64× 16× 16 3× 3 Swish
BatchNorm N/A 64× 16× 16 64× 16× 16 N/A N/A
MaxPooling2D N/A 64× 16× 16 64× 8× 8 2× 2 (stride 2) N/A
Dropout N/A 64× 8× 8 64× 8× 8 N/A N/A

Conv Block 3
Conv2D 128 64× 8× 8 128× 8× 8 3× 3 Swish
BatchNorm N/A 128× 8× 8 128× 8× 8 N/A N/A
Conv2D 128 128× 8× 8 128× 8× 8 3× 3 Swish
BatchNorm N/A 128× 8× 8 128× 8× 8 N/A N/A
MaxPooling2D N/A 128× 8× 8 128× 4× 4 2× 2 (stride 2) N/A
Dropout N/A 128× 4× 4 128× 4× 4 N/A N/A

Dense Block
Flatten N/A 128× 4× 4 2048 N/A N/A
Dense 512 2048 512 N/A Swish
BatchNorm N/A 512 512 N/A N/A
Dropout N/A 512 512 N/A N/A

Output Layer 10 512 10 N/A Softmax

Architecture:

Initialization: All Conv2D and Dense layers used tf.keras.initializers.HeNormal() with
a custom scaling factor s (i.e., ScaledHeNormal(scale=s)).

Training Configuration:

• Optimizer: Adam (learning rate = 0.001)

• Loss: categorical crossentropy

• Batch Size: 64

• Epochs: 100

• Device: NVIDIA T4 GPU (via cloud)
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4.3 RL Agent and Environment Configuration

4.3.1 ReinforceAgent (Policy Gradient)

• Policy Network: As described in Section 3.5.1.

• Optimizer: Adam, learning rate 0.001.

• Discount Factor: γ = 0.99

• Action Range: s ∈ [0.3, 1.7] for the final reported experiments.

4.3.2 Environment (ScaleEnv)

• Observation Space: Previous scale and reward.

• Action Space: Continuous scalar for s.

• Reward: 10× validation accuracy or −2.0 if NaN occurred.

• Training per Episode: 7 epochs on CIFAR-10.

4.4 Evaluation Protocol

4.4.1 Phase 1: RL Agent Training and Search

The RL agent interacted with ScaleEnv over 200 episodes. In each episode:

• A scaling factor s was proposed.

• A child CNN was initialized with s and trained for 7 epochs.

• Validation accuracy was returned as reward.

• The best non-NaN s (denoted sproxy) was selected based on maximum reward.

Metrics including rewards, accuracies, and NaN occurrences were logged via Weights &
Biases [26].

4.4.2 Phase 2: Final Validation with Keras CNN

To evaluate the generalizability of sproxy, the deeper TensorFlow CNN (Section 4.2.2) was trained
twice for 100 epochs:

• Once using s = 1.0 (standard He initialization)

• Once using s = sproxy (e.g., 1.25)

Final test accuracies were compared to assess performance gain from the RL-optimized ini-
tialization scale.
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4.5 Tools and Libraries

• Language: Python 3.

• Libraries:

– PyTorch [27]

– TensorFlow/Keras

– NumPy [28]

– Gymnasium [29]

– Matplotlib [30]

– tqdm

• Experiment Tracking: Weights & Biases [26]

4.6 Computational Resources

• RL Training (Proxy): Apple MacBook with M3 chip using MPS backend.

• Final Validation: NVIDIA T4 GPU via cloud environment.

• Device Detection: The code auto-selects between MPS, CUDA, and CPU depending
on hardware availability.
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Chapter 5

RESULT and ANALYSIS

5.1 Introduction to Experimental Results

This chapter presents the empirical results obtained from the Reinforcement Learning (RL)
framework designed to tune the initialization scaling factor s for He initialization when using
Swish activation functions. As detailed in Chapter 3 (Methodology), an RL agent was tasked
with exploring a continuous range of s values (specifically [0.3, 1.7] in the final documented ex-
periment), receiving rewards based on the 7-epoch validation accuracy of a small Convolutional
Neural Network (SimpleCNN in PyTorch, hereafter referred to as the “proxy network”) trained
on the CIFAR-10 dataset. The primary objectives were to assess the RL agent’s learning capa-
bility and to identify a potentially optimal s for this 7-epoch proxy task using the proxy network.
Subsequently, the characteristics of the discovered scaling factor region were validated through
more extensive training (100 epochs) using a different, more standard, and robust CNN archi-
tecture implemented in TensorFlow/Keras (hereafter referred to as the “validation network”) to
evaluate the generalizability of the RL-identified scaling factor to a distinct and more complex
model.

5.2 Reinforcement Learning Agent Training Dynamics with the
Proxy Network

The REINFORCE agent was trained for a total of 200 episodes. Each episode involved the
agent selecting a scaling factor s, initializing the proxy network (SimpleCNN), training it for 7
epochs, and receiving a reward based on the resulting validation accuracy. The evolution of key
metrics during this training process was logged using Weights & Biases [?] and is presented in
Figure 5.1.

5.2.1 Proxy Network Performance During RL Search

The top row of Figure 5.1 illustrates the performance of the proxy network (SimpleCNN) during
each of the 200 RL episodes. The train loss and train acc plots show the characteristic
learning curves for a 7-epoch training run on this proxy network, repeated for each new scaling
factor proposed by the agent. The considerable variance in these plots is expected, as each of
the 200 “steps” on the x-axis represents the aggregated metrics from a distinct 7-epoch training
session of the proxy network with potentially different initialization scales. These plots confirm
that the proxy network was generally trainable across the range of scaling factors explored. The
test accuracy plot (top-right), which directly informs the agent’s reward (scaled by 10), shows
values fluctuating primarily between approximately 0.70 and 0.75 for the proxy network. There
appears to be a slight upward drift in the average and peak test accuracy achieved as the RL
training progresses, particularly in the latter half of the episodes.
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Figure 5.1: Reinforcement Learning search dynamics over 200 episodes using the SimpleCNN
proxy network. (Top Row, L-R) Proxy network training loss per RL episode, proxy network
training accuracy per RL episode, proxy network test accuracy (reward/10) per RL episode.
(Bottom Row, L-R) Sampled scale factor by the RL agent, received reward by the RL agent,
and RL agent’s policy loss.

5.2.2 RL Agent’s Action Selection (Scaling Factor s)

The scale factor plot (Figure 5.1, bottom-left) depicts the evolution of the s values sampled
by the RL agent for the proxy network. Initially, during the first ∼250–300 episodes, the agent
exhibited broad exploration, sampling s values across a wide segment of its allowed range (ap-
proximately 0.3 to 1.7). Following this initial exploratory phase, the agent’s sampling behavior
began to converge. From approximately episode 500 onwards, the agent predominantly focused
its exploration on s values within a narrower band, roughly between 1.1 and 1.4. This shift
from broad exploration to more focused exploitation of a specific region indicates that the agent
identified this range as generally yielding higher rewards for the 7-epoch proxy task when using
the SimpleCNN. While some exploration outside this band persisted, the mean of the sampled
s values clearly stabilized in this higher range compared to the initial phase.

5.2.3 RL Agent’s Reward and Policy Loss

The reward plot (Figure 5.1, bottom-middle) mirrors the test accuracy of the proxy network.
Consistent with the test accuracy observations, the reward signal exhibits significant variance
but suggests a marginal increase in the average reward received by the agent as it learned to
favor the identified range of scaling factors for the proxy network. The policy loss for the
REINFORCE agent (Figure 5.1, bottom-right) shows a distinct, albeit noisy, downward trend
over the 200 episodes. This reduction in policy loss is a strong indicator of policy improvement
and stabilization, suggesting that the agent became more confident in its action selections as
training progressed.

5.3 Optimal Scaling Factor for the 7-Epoch Proxy Task using
SimpleCNN

Based on the 200-episode RL search conducted with the SimpleCNN proxy network, the agent
effectively learned to explore the scaling factor space for the 7-epoch validation accuracy. The

20



region of scaling factors s ∈ [1.1, 1.4] was identified as consistently yielding higher rewards when
applied to the SimpleCNN.

The single best performing scaling factor encountered during the entire 200-episode search for
the SimpleCNN, denoted as sproxy (or sproxy best 7 epoch run), was 1.25. With this scaling factor,
the SimpleCNN proxy network achieved a 7-epoch validation accuracy of Accuracy(sproxy =
1.25, SimpleCNN, 7 epochs) = 0.7367.

For comparison, when the baseline He initialization (s = 1.0) was applied to the SimpleCNN
proxy network, it achieved a 7-epoch validation accuracy of Accuracy(s = 1.0, SimpleCNN, 7 epochs) =
0.7369.

In this specific 200-episode search with the SimpleCNN, the absolute best 7-epoch perfor-
mance was achieved by the baseline s = 1.0, albeit by a very small margin (0.0002). The RL
agent converged to a region (1.1–1.4) near this, with its best single discovery (sproxy = 1.25)
performing almost identically on the SimpleCNN. No instances of numerical instability (NaNs)
were frequently reported in the preferred range of s, indicating that the explored range and the
proxy network/training setup were generally stable for these short 7-epoch runs.

5.4 Validation of Discovered Scaling Factor on Extended Train-
ing with a Standard TensorFlow/Keras CNN

While the RL agent identified sproxy = 1.25 as a promising scaling factor based on its perfor-
mance with the simpler SimpleCNN proxy network in the 7-epoch task (Section 5.3), a more
rigorous and critical test is its generalizability to longer training durations and, importantly, to
a different, more standard, and robust model architecture. Therefore, to assess this transfer-
ability, the efficacy of applying sproxy = 1.25 was evaluated by training a distinct Convolutional
Neural Network, implemented in TensorFlow/Keras (as detailed in Section 4.5 and referred to
as the “validation network”), for an extended period of 100 epochs on the CIFAR-10 dataset.
This validation network is more complex than the SimpleCNN used in the RL loop, featuring
multiple VGG-style convolutional blocks incorporating Swish activation, Batch Normalization,
MaxPooling, and Dropout layers, followed by dense layers. The performance of this valida-
tion network initialized with initializer scale = sproxy = 1.25 was compared against the
same validation network initialized with the baseline He scaling factor (initializer scale

= 1.0). All other training parameters for this extended validation, such as optimizer (Adam,
learning rate=0.001), loss function (categorical crossentropy), and batch size (64), were
kept consistent for both s = 1.0 and s = 1.25 runs on the validation network.

The final validation accuracies on the CIFAR-10 test set after 100 epochs of training the
TensorFlow/Keras validation network are summarized in Table 5.1.

Table 5.1: Validation Accuracy After 100 Epochs
Scaling Factor (s) Test Accuracy Test Accuracy Run 2

s = 1.0 (Baseline He) 0.8606 0.8578
s = sproxy (1.25) 0.8642 0.8616

The results in Table 5.1 indicate that the scaling factor sproxy = 1.25 maintained, and indeed
slightly extended, its advantage over the baseline He initialization (s = 1.0) when training was
carried out for 100 epochs. On average, sproxy = 1.25 achieved a validation accuracy of 0.8629,
compared to 0.8592 for s = 1.0. This represents an average improvement of approximately
0.0037, or 0.37 percentage points. While modest, this improvement suggests that the signal
captured by the RL agent from the 7-epoch proxy task was directionally correct and translated
to tangible benefits in longer training. The consistency across two runs (Run 1: +0.0036, Run
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Figure 5.2: Training/validation accuracy and loss curves for the TensorFlow/Keras validation
CNN over 100 epochs, comparing baseline He initialization (s = 1.0) and the RL-identified
scaling factor (sproxy = 1.25).
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2: +0.0038) lends further support to this observation, although more runs would be beneficial
for stronger statistical claims.

5.4.1 Analysis of Learning Curves

Analysis of the learning curves shown in Figure 5.2 reveals several key insights:

• Initial Learning Phase (Epochs 1–20): Observing the initial phase of training, both
s = 1.0 and s = 1.25 exhibit rapid increases in training and validation accuracy.

• Mid-to-Late Training Phase (Epochs 20–100): As training progresses, both con-
figurations appear to converge. The validation accuracy for s = 1.25 consistently tracks
slightly above that of s = 1.0 throughout a significant portion of this phase, culminating
in the higher final validation accuracy reported in Table 5.1.

• Training Accuracy vs. Validation Accuracy: Both configurations show training
accuracy surpassing validation accuracy, indicative of some level of overfitting, which is
common. A key point of comparison would be whether the gap between training and
validation accuracy (generalization gap) differs significantly between the two initialization
strategies. The current plot suggests comparable generalization gaps, but a plot of the loss
curves (both training and validation) might provide additional insights into overfitting and
optimization stability.

• Stability: The curves for s = 1.25 appear to be as smooth as, if not slightly smoother
than, those for s = 1.0, suggesting that the modified initialization did not introduce
instability into the training process.

The training accuracy for both configurations on the TensorFlow/Keras validation network
surpassed their respective validation accuracies, indicating some degree of overfitting, which is
typical for such models on CIFAR-10 even with regularization like Dropout and Batch Normal-
ization. The generalization gap (difference between training and validation accuracy) appeared
comparable for both scaling factors. The smoothness of the learning curves for sproxy = 1.25
relative to s = 1.0 suggests that the chosen scaling factor did not introduce additional instability
into the training process of the validation network.

This rigorous validation on a distinct and more complex architecture provides crucial context
for the RL agent’s findings. It underscores that while an RL agent can effectively optimize for
a given proxy task and network, the direct transferability of the exact discovered parameters to
different architectural settings requires careful empirical verification.

5.5 Summary of Experimental Findings

The Reinforcement Learning search mechanism, operating on a SimpleCNN proxy network for
7-epoch evaluations, successfully demonstrated learning. It converged its exploration of the
initialization scaling factor s towards a region (approximately s ∈ [1.1, 1.4]) that generally
yielded high 7-epoch validation accuracy for this proxy network. The agent’s policy loss also
showed a consistent decrease, indicating policy improvement. The best single scaling factor
encountered by the agent during this proxy search was sproxy = 1.25, achieving an accuracy of
0.7367 on the SimpleCNN, which was very close to the baseline s = 1.0 (0.7369) on the same
proxy network.

A more critical test involved applying this RL-identified sproxy = 1.25 to a different, more
complex TensorFlow/Keras validation network for an extended 100-epoch training period. On
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this validation network, sproxy = 1.25 achieved a test accuracy of 0.8629, while the baseline
s = 1.0 achieved average test accuracy of 0.8592. This outcome provides important context for
interpreting the results of automated search methods that rely on proxy tasks and networks,
highlighting the potential for generalizable discovery.
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Chapter 6

DISCUSSION

6.1 Interpretation of RL Agent Behavior and Discovered Pa-
rameters

The 200-episode Reinforcement Learning experiment, conducted with the SimpleCNN proxy net-
work, provided valuable insights into the agent’s learning process and the nature of the optimiza-
tion landscape for the initialization scaling factor s within that specific context. The agent’s
observable shift from broad exploration of s values (spanning approximately 0.3 to 1.7) to a
more focused sampling regimen concentrated around values between 1.1 and 1.4 (as depicted
in Figure 5.1) unequivocally indicates that it successfully identified this particular region as
yielding higher rewards within the 7-epoch evaluation framework of the proxy network. This
convergence, when considered alongside the consistent decrease in the agent’s policy loss, serves
as strong confirmation of the REINFORCE algorithm’s efficacy in navigating and optimizing
within this specific, albeit simplified, parameter tuning context for the SimpleCNN.

A particularly intriguing observation is the fact that the agent favored s > 1.0 (e.g., the
1.1–1.4 region) for the 7-epoch proxy task with the SimpleCNN, even though the absolute best
single 7-epoch run within the 200 episodes was achieved by s = 1.0 (albeit by a very marginal
difference of 0.0002). This preference suggests that, for the SimpleCNN architecture employing
Swish activations, scaling factors slightly larger than standard He initialization might confer an
advantage in the very early stages of training. This could manifest as an initial acceleration in
learning or a more effective means of overcoming initial learning plateaus over a short training
horizon like 7 epochs. The Swish activation function, with its non-monotonic nature and regions
where its derivative can be relatively small, might benefit from slightly larger initial weight
magnitudes to ensure sufficient signal strength and robust gradient propagation during these
crucial initial iterations. The RL agent, through a process of purely empirical trial and error
on the SimpleCNN, effectively “discovered” this locally beneficial region for rapid, short-term
performance.

6.2 Fidelity of the 7-Epoch Proxy Task and Transferability of
Findings

A central theme emerging from this study is the fidelity of the short-term proxy task (7-epoch
training of the SimpleCNN) in predicting longer-term performance, especially when the insights
are transferred to a different, more complex validation network. The results from the extended
100-epoch validation using the TensorFlow/Keras validation network (detailed in Section 5.4)
are critical in this assessment.

The observation that sproxy = 1.25 (a representative value from the RL-favored region iden-
tified using the SimpleCNN proxy) maintained and indeed slightly improved its performance
advantage over the baseline s = 1.0 when both were applied to the distinct TensorFlow/Keras
validation network and trained for 100 epochs is a highly encouraging and significant result.
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Specifically, the TensorFlow/Keras validation network achieved an average test accuracy of
0.8629 with sproxy = 1.25, compared to 0.8592 with s = 1.0. This outcome suggests that, for
this specific problem of tuning a single scaling factor for He initialization with Swish, the 7-epoch
proxy task conducted on the simpler SimpleCNN provided a remarkably reliable signal that gen-
eralized positively not only to longer training durations but also across a notable architectural
shift to the more complex TensorFlow/Keras validation network.

While it’s true that s = 1.0 yielded a marginally higher single-best accuracy on the 7-
epoch SimpleCNN proxy task itself, the RL agent’s convergence to the 1.1–1.4 region (which
included sproxy = 1.25) proved to be a strategically sound discovery for long-term performance
on the more robust validation architecture. This could be attributed to the fundamental role
of the initialization scaling factor in influencing the very initial dynamics of training. If an s
value establishes a favorable learning trajectory early on—one that promotes stable and efficient
gradient flow without leading to immediate instability—that benefit can persist and compound
over more extended training, even in a different network that shares the same core activation
function (Swish) and initialization strategy (scaled He). The fact that this positive correlation
held despite the architectural differences (including the presence of Batch Normalization and
Dropout in the TensorFlow/Keras validation network) strengthens the finding. However, it
remains crucial to acknowledge that such successful transfer might not universally hold for more
disparate architectural changes, vastly different tasks, or when searching for more complex,
multi-parameter initialization formulas.

6.3 Comparison to Standard Initialization and Implications for
Swish Activation

The consistent exploration by the RL agent of s values often greater than 1.0 during the 7-epoch
proxy task with the SimpleCNN is an intriguing finding, especially when considering the origins
of standard He initialization. He initialization was primarily derived under the assumption
of ReLU-like activation functions. The Swish activation function, however, possesses distinct
mathematical properties, including its non-monotonicity and smooth, self-gated behavior. It is
therefore plausible that the “ideal” initial weight variance for networks employing Swish might
indeed differ, even if subtly, from that prescribed for ReLU. This pilot study, by empowering
the RL agent to search for an optimal scaling factor for He initialization when used with Swish,
provides a data-driven, albeit indirect, exploration of this hypothesis.

The subsequent superior performance of sproxy = 1.25 in the extended 100-epoch training of
the more complex TensorFlow/Keras validation network provides compelling empirical evidence.
It suggests that a simple, modest scaling of the standard He initialization (specifically, increasing
the variance slightly) can be advantageous when Swish activations are used, at least within the
context of the CNN architectures and the CIFAR-10 dataset investigated here. This implies
that for Swish, a slightly larger initial variance than that dictated by the standard He formula
(s = 1.0) might be beneficial for achieving better final model performance, possibly by ensuring
a more robust initial signal propagation or by helping the optimization navigate the early loss
landscape more effectively.

6.4 Limitations of the Study

This preliminary investigation, while yielding insightful results, carries several limitations that
must be acknowledged when interpreting its findings and considering their broader implications:

• Architectural Discrepancy in Proxy Task Fidelity: While the 7-epoch proxy task
using the SimpleCNN successfully guided the RL agent to an sproxy value that generalized
well to the more complex TensorFlow/Keras validation network, this positive outcome
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might not be universally guaranteed. The degree of architectural mismatch between a
proxy network and a target validation network can significantly impact the transferability
of discovered hyperparameters. A more direct, albeit computationally expensive, approach
would involve using a scaled-down version of the target architecture within the RL loop.

• Simplified Search Space: The exploration was deliberately constrained to a single scalar
parameter s modifying a fixed He initialization structure. This represents a highly simpli-
fied search space compared to the ultimate research goal of discovering novel, potentially
complex, symbolic initialization formulas. The optimal s found is conditional upon the
underlying He structure and might change if the base formula itself were different.

• Specificity of Network Architectures and Dataset: The results obtained are specific
to the SimpleCNN (PyTorch) used for the RL search, the more complex CNN (Tensor-
Flow/Keras) used for validation, and the CIFAR-10 dataset. The optimal scaling factor
s, and indeed the fidelity of any given proxy task, could vary significantly for different
network architectures (e.g., much deeper ResNets, Transformers), other datasets (e.g.,
ImageNet), or if the Swish hyperparameter β were different or a learnable parameter.

• RL Algorithm Choice and Hyperparameter Tuning: The REINFORCE algorithm,
while foundational for policy gradients, is known for its high sample variance and can be
less sample-efficient than more advanced alternatives. Algorithms such as PPO (Proximal
Policy Optimization) or SAC (Soft Actor-Critic) might offer improved learning stability,
faster convergence, or the ability to find even better solutions. Furthermore, the hyperpa-
rameters for the REINFORCE agent itself (e.g., learning rate, policy network architecture)
were chosen based on common practices and were not exhaustively tuned for this specific
initialization problem.

• Reward Signal Simplicity: The reward signal for the RL agent was predominantly
based on the 7-epoch validation accuracy achieved by the proxy network, with a strong
penalty for NaN occurrences. This reward function did not explicitly incorporate more
nuanced metrics of training stability (such as the variance of gradient norms, statistics of
activation distributions across layers) or the speed of convergence in the early epochs, which
could potentially guide the agent towards solutions with even better long-term properties
or improved robustness.

• Single RL Search Run: The 200-episode RL search, while extensive for a pilot, repre-
sents a single training run of the agent. To rigorously assess the variance and consistency
of the discovered optimal s value and the characteristics of the converged region, multiple
independent RL search runs would ideally be conducted. (The presence of two runs for
the 100-epoch validation of the final s values is a good practice for assessing the stability
of the final model training, but does not address the RL search variance itself).

6.5 Implications for Broader Research on Automated Initializa-
tion Discovery

Despite its acknowledged limitations, this pilot study offers valuable takeaways that directly
inform the main dissertation work and contribute to the broader field of automated discovery
for neural network initialization:

1. Demonstrated Feasibility of RL for Initialization Tuning: The study confirms that
Reinforcement Learning agents can indeed be effectively trained to optimize continuous
parameters related to neural network initialization schemes based on empirical performance
feedback from training proxy networks.
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2. Criticality of Evaluation Strategy and Proxy Fidelity: The nuanced relation-
ship observed between the short-term proxy performance (7-epochs on SimpleCNN) and
the longer-term validation on a different, more complex network (100-epochs on Tensor-
Flow/Keras CNN) starkly illustrates the paramount importance of careful design and
understanding of evaluation protocols within any automated search paradigm. When
short-duration or simplified proxy evaluations are employed, their correlation with the
true, ultimate objective must be rigorously assessed, or strategies to mitigate the poten-
tial “proxy gap” must be actively considered. The finding that the RL-favored region
for the proxy led to a beneficial sproxy for the validation network, even though the proxy
optimum itself was subtly different, is an important subtlety highlighting that proxies can
guide towards generally good regions.

3. Potential for More Sophisticated Reward Signals: The reliance solely on short-term
accuracy, while functional, might be insufficient for discovering initializations that are op-
timal across a broader range of desirable characteristics (e.g., stability, faster convergence
to good solutions, better generalization). Future research, including the planned symbolic
search in this dissertation, should give serious consideration to incorporating more direct
measures of training stability and learning dynamics into the reward function provided to
the RL agent.

4. Highlighting Computational Considerations: The process of tuning even a single
continuous parameter (s) required a substantial number of child network trainings (200
episodes × 7 epochs per episode). The subsequent, more ambitious goal of searching for
complex symbolic initialization formulas will undoubtedly be orders of magnitude more
computationally demanding. This underscores the critical need for highly efficient search
strategies, robust and informative (yet inexpensive) evaluation proxies, and potentially
more sample-efficient RL algorithms.

This pilot study has thus effectively served its intended purpose. It has provided a func-
tional baseline RL framework for initialization tuning, brought key challenges and considera-
tions—particularly regarding proxy task design and evaluation fidelity across different archi-
tectures—into sharp focus, and has been instrumental in refining the research questions and
methodological approaches for the subsequent, more comprehensive exploration of discovering
novel symbolic initialization formulas.
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Chapter 7

CONCLUSION AND FUTURE SCOPE

7.1 Summary of Findings from the Study

This dissertation included a preliminary investigation into the use of Reinforcement Learning
(RL) for tuning a scaling factor s for He initialization, specifically when employing Swish ac-
tivation functions. The key findings from this pilot study, which involved an RL search using
a SimpleCNN (PyTorch) proxy network and subsequent validation on a distinct, more complex
TensorFlow/Keras validation network, are:

1. RL Agent Learning on Proxy Network: An RL agent, trained for 200 episodes using
the SimpleCNN proxy network, successfully learned to optimize the scaling factor s based
on a reward signal derived from 7-epoch validation accuracy. The agent demonstrated
convergence by focusing its exploration on a specific range of s values (approximately
s ∈ [1.1, 1.4]) for this proxy network and exhibited a decreasing policy loss, indicating
policy improvement.

2. Optimal Parameter for Proxy Task with SimpleCNN: The agent identified sproxy =
1.25 as the best single scaling factor for maximizing 7-epoch validation accuracy from
its search on the SimpleCNN proxy network, achieving an accuracy of 0.7367. This was
marginally lower than the baseline He initialization (s = 1.0) which achieved 0.7369 under
the same 7-epoch conditions with the SimpleCNN.

3. Generalizability to Extended Training on a Different, More Complex Valida-
tion Network: The critical validation of sproxy = 1.25 was performed by applying it
to a distinct, more complex TensorFlow/Keras validation network for an extended train-
ing duration of 100 epochs. On this validation network, the RL-favored scaling factor
(sproxy = 1.25) resulted in an average test accuracy of 0.8629, outperforming the baseline
s = 1.0 which achieved an average test accuracy of 0.8592 on the same TensorFlow/Keras
validation network.

4. Nuances of Proxy Task Fidelity and Transferability: The study highlighted the
critical dependence of the discovered solution’s utility on how well insights from a short-
term evaluation proxy (7-epoch training on SimpleCNN) align with the desired outcome on a
different target system (100-epoch training on the TensorFlow/Keras validation network).
While the 7-epoch proxy with SimpleCNN did not perfectly rank sproxy = 1.25 over s =
1.0 for its own short-term performance, it successfully guided the RL agent to a region
that demonstrated superior long-term performance when transferred to the more complex
validation network.

7.2 Key Contributions of the Study

Within the context of the broader dissertation, this pilot study made the following contributions:
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• Methodological Feasibility of RL for Initialization Tuning: It established a func-
tional RL framework capable of exploring and optimizing parameters related to neural
network initialization, serving as a foundational component and proof-of-concept for more
complex, symbolic searches.

• Empirical Insights into Proxy Task Design and Transferability: It provided con-
crete empirical evidence regarding the challenges and potential successes of relying on
simplified proxy networks and short-duration tasks for guiding automated search. The
successful transfer of a beneficial scaling factor from the SimpleCNN proxy to the more
complex TensorFlow/Keras validation network, despite the architectural differences, is a
valuable finding. The nuance that a generally good region can be found, even if the proxy
optimum itself isn’t perfectly aligned with the long-term target optimum, is particularly
insightful.

• Informed Design for Subsequent Research: The lessons learned, particularly con-
cerning evaluation fidelity across different architectures, the nature of the reward signal,
and computational trade-offs, directly inform and refine the design choices for the main
research endeavor focused on discovering novel symbolic initialization formulas.

7.3 Limitations (Recap from Discussion)

It is important to reiterate the key limitations of this specific pilot study, including the simpli-
fied search space (a single scaling factor), the specificity of the SimpleCNN proxy network and
the TensorFlow/Keras validation network to the CIFAR-10 dataset, the inherent characteristics
of the REINFORCE algorithm, the primary reliance on short-term accuracy from the proxy
network for the reward signal, and the architectural mismatch between the proxy search net-
work and the final validation network. These limitations frame the study as preliminary and
exploratory, setting the stage for more comprehensive investigations.

7.4 Future Work and Main Dissertation Directions

This pilot study serves as a crucial stepping stone towards the primary research goals of this
dissertation. The insights gained pave the way for several avenues of future work, which form
the core of the subsequent chapters:

1. Symbolic Initialization Formula Search: The immediate next step is to expand the
search space from a single continuous parameter to the discovery of complex, symbolic
formulas for the initialization variance σ2 (or standard deviation σ), as originally proposed.
This will involve developing or adapting a more sophisticated RL controller or search
mechanism capable of generating and evaluating structured sequences of mathematical
primitives and input features (e.g., fan in, fan out).

2. Enhanced Reward Engineering: Based on the findings, future iterations of the RL
search (particularly for symbolic formulas) will explore more nuanced and potentially
multi-objective reward functions. This may include:

• Incorporating direct metrics of training stability (e.g., gradient norm variance, smooth-
ness of loss, statistics of activation distributions) from early epochs of the proxy
evaluation as components of the reward or as explicit penalties.

• Investigating metrics related to the shape, rate of decrease, or convergence properties
of the training loss curve as potentially better predictors of final performance or
generalization.
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• Exploring methods to balance short-term performance on a proxy task with indicators
of longer-term stability and robustness.

3. Adaptive Evaluation Budgets and Proxy Architectures: Investigate strategies for
dynamically allocating computational budget during the search, perhaps training more
promising candidates for longer or using techniques like learning curve extrapolation. Cru-
cially, explore the use of proxy networks that, while still computationally cheaper, more
closely mirror the key architectural characteristics of the target validation networks to
improve the direct transferability of discovered initializers.

4. Broader Architectural and Dataset Validation: Any promising symbolic initializers
discovered will require rigorous and extensive validation across a wider range of modern
neural network architectures (including deeper models like various ResNet configurations,
Vision Transformers) and more challenging, diverse datasets (e.g., ImageNet or its subsets,
other computer vision tasks, or even tasks in different domains like NLP).

5. Exploration of Different RL Algorithms or Search Methods: For the computa-
tionally demanding symbolic search, consider employing more sample-efficient and stable
RL algorithms (e.g., PPO, SAC) or exploring alternative black-box optimization and auto-
mated machine learning techniques (e.g., evolutionary algorithms, Bayesian optimization
adapted for symbolic spaces).

6. Theoretical Analysis of Discovered Formulas: For any truly novel and demonstrably
effective symbolic initialization formulas discovered, an attempt should be made at a the-
oretical analysis to understand the underlying principles of why they might be beneficial
for specific activation functions, network structures, or data characteristics.

7.5 Concluding Remarks on the Study

In conclusion, the pilot study on tuning an initialization scaling factor via Reinforcement Learn-
ing successfully demonstrated the potential of such an automated approach and, critically, high-
lighted key challenges and considerations for future work. The direct outcome regarding an
improved scaling factor for Swish was positive: the RL-favored sproxy = 1.25 (found via a 7-
epoch proxy task on a SimpleCNN) did indeed generalize to improved 100-epoch performance on
a different, more complex TensorFlow/Keras validation network when compared to the standard
s = 1.0 baseline. This successful transfer, despite architectural differences, is an encouraging
result.

However, the methodological insights gained regarding proxy task design, reward engineering,
and the nuances of evaluating transferability are arguably even more invaluable. This work
affirms that while RL can be a powerful tool for navigating complex design spaces in deep
learning, the careful construction of the evaluation environment (including the choice of proxy
network and task duration) and the reward signal is paramount. These elements must be
designed to ensure that the solutions discovered are not merely optimal for a contrived proxy
but are genuinely beneficial for the ultimate goal of training effective, robust, and generalizable
neural networks. The path is now clearer, and the groundwork more solidly laid, for embarking
on the more ambitious search for novel, symbolic initialization paradigms.
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Appendix A

CODE

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 import torch.optim as optim

5 from torch.utils.data import DataLoader

6 from torchvision import datasets, transforms

7 import numpy as np

8 import random

9 import matplotlib.pyplot as plt

10 import time

11 from tqdm import tqdm # Changed from tqdm.notebook to regular tqdm

12 import os

13 import wandb

14 import gymnasium as gym

15 from gymnasium import spaces

16 from collections import deque

17

18 # Create data directory if it doesn't exist

19 os.makedirs('./data', exist_ok=True)

20

21 # Set seeds for reproducibility

22 def set_seed(seed=42):

23 random.seed(seed)

24 np.random.seed(seed)

25 torch.manual_seed(seed)

26 if torch.cuda.is_available():

27 torch.cuda.manual_seed_all(seed)

28 torch.backends.cudnn.deterministic = True

29 torch.backends.cudnn.benchmark = False

30

31 set_seed()

32

33 # Check if MPS (Apple Silicon GPU) is available

34 if torch.backends.mps.is_available():

35 device = torch.device("mps")

36 print(f"Using MPS (Apple Silicon GPU)")

37 elif torch.cuda.is_available():

38 device = torch.device("cuda")

39 print(f"Using CUDA")

40 else:

41 device = torch.device("cpu")

42 print(f"Using CPU")

43

44 # PHASE 1: CORE SETUP
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45 # -------------------

46

47 # Child Network: Simple CNN with Swish activation

48 class SimpleCNN(nn.Module):

49 def __init__(self, scale_factor=1.0):

50 super(SimpleCNN, self).__init__()

51 self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)

52 self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)

53 self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)

54 self.pool = nn.MaxPool2d(2, 2)

55 self.fc1 = nn.Linear(128 * 4 * 4, 256)

56 self.fc2 = nn.Linear(256, 10)

57

58 # Initialize with modified He initialization using scale_factor

59 self.init_weights(scale_factor)

60

61 def init_weights(self, scale_factor):

62 # Apply scaled He initialization to all convolutional and linear layers

63 for m in self.modules():

64 if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):

65 fan_in = m.weight.data.size()[1] # fan_in

66 if isinstance(m, nn.Conv2d):

67 fan_in *= m.kernel_size[0] * m.kernel_size[1]

68 std = scale_factor * np.sqrt(2.0 / fan_in)

69 nn.init.normal_(m.weight.data, mean=0.0, std=std)

70 if m.bias is not None:

71 nn.init.constant_(m.bias.data, 0.0)

72

73 def forward(self, x):

74 x = F.silu(self.conv1(x)) # Using SiLU (Swish) activation

75 x = self.pool(x)

76 x = F.silu(self.conv2(x))

77 x = self.pool(x)

78 x = F.silu(self.conv3(x))

79 x = self.pool(x)

80 x = x.view(-1, 128 * 4 * 4)

81 x = F.silu(self.fc1(x))

82 x = self.fc2(x)

83 return x

84

85 # Basic Training Function

86 def train_and_evaluate(scale_factor, num_epochs=10, batch_size=128, lr=0.001,

log_wandb=False):↪→

87 """Train the CNN with given scale factor and return validation accuracy."""

88

89 # Data Loading and Preprocessing

90 transform = transforms.Compose([

91 transforms.ToTensor(),

92 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

93 ])

94

95 # Load CIFAR-10 dataset

96 train_dataset = datasets.CIFAR10(root='./data', train=True, download=True,

transform=transform)↪→

97 test_dataset = datasets.CIFAR10(root='./data', train=False, download=True,

transform=transform)↪→

98
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99 # Using num_workers=0 for better compatibility on macOS

100 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,

num_workers=0)↪→

101 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,

num_workers=0)↪→

102

103 # Create model with the given scale factor

104 model = SimpleCNN(scale_factor=scale_factor).to(device)

105 criterion = nn.CrossEntropyLoss()

106 optimizer = optim.Adam(model.parameters(), lr=lr)

107

108 nan_detected = False

109

110 # Training loop

111 for epoch in range(num_epochs):

112 model.train()

113 running_loss = 0.0

114 correct = 0

115 total = 0

116

117 # Use tqdm for progress bar

118 for inputs, labels in tqdm(train_loader, desc=f"Epoch

{epoch+1}/{num_epochs}", leave=False):↪→

119 inputs, labels = inputs.to(device), labels.to(device)

120

121 optimizer.zero_grad()

122 outputs = model(inputs)

123 loss = criterion(outputs, labels)

124

125 # Check for NaN

126 if torch.isnan(loss) or torch.isinf(loss):

127 nan_detected = True

128 break

129

130 loss.backward()

131 optimizer.step()

132

133 running_loss += loss.item()

134

135 # Calculate accuracy

136 _, predicted = torch.max(outputs.data, 1)

137 total += labels.size(0)

138 correct += (predicted == labels).sum().item()

139

140 if nan_detected:

141 break

142

143 # Epoch statistics

144 epoch_loss = running_loss / len(train_loader)

145 epoch_acc = correct / total

146 print(f'Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}, Train Acc:

{epoch_acc:.4f}')↪→

147

148 # Log to wandb if requested

149 if log_wandb:

150 wandb.log({

151 'epoch': epoch,
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152 'train_loss': epoch_loss,

153 'train_acc': epoch_acc,

154 'scale_factor': scale_factor

155 })

156

157 # If NaN detected, return early with penalty

158 if nan_detected:

159 if log_wandb:

160 wandb.log({'nan_detected': True, 'scale_factor': scale_factor})

161 return -1.0, True

162

163 # Evaluation

164 model.eval()

165 correct = 0

166 total = 0

167

168 with torch.no_grad():

169 for inputs, labels in tqdm(test_loader, desc="Evaluating", leave=False):

170 inputs, labels = inputs.to(device), labels.to(device)

171 outputs = model(inputs)

172 _, predicted = torch.max(outputs.data, 1)

173 total += labels.size(0)

174 correct += (predicted == labels).sum().item()

175

176 accuracy = correct / total

177 print(f"Test Accuracy: {accuracy:.4f}")

178

179 # Log final accuracy to wandb

180 if log_wandb:

181 wandb.log({

182 'test_accuracy': accuracy,

183 'scale_factor': scale_factor,

184 'nan_detected': False

185 })

186

187 return accuracy, False

188

189 # PHASE 2: RL ENVIRONMENT AND AGENT

190 # ---------------------------------

191

192 # RL Environment

193 class ScaleEnv(gym.Env):

194 def __init__(self, min_scale=0.1, max_scale=2.0, num_epochs=5):

195 super(ScaleEnv, self).__init__()

196 self.min_scale = min_scale

197 self.max_scale = max_scale

198 self.num_epochs = num_epochs

199

200 # Define action and observation spaces

201 self.action_space = spaces.Box(

202 low=self.min_scale,

203 high=self.max_scale,

204 shape=(1,),

205 dtype=np.float32

206 )

207

208 # Simple observation space - just the previous scale and reward
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209 self.observation_space = spaces.Box(

210 low=np.array([self.min_scale, -2.0]),

211 high=np.array([self.max_scale, 1.0]),

212 dtype=np.float32

213 )

214

215 self.current_scale = None

216 self.current_reward = None

217

218 def reset(self, seed=None):

219 super().reset(seed=seed)

220 self.current_scale = np.random.uniform(self.min_scale, self.max_scale)

221 self.current_reward = 0.0

222 return np.array([self.current_scale, self.current_reward]), {}

223

224 def step(self, action):

225 # Clip action to ensure it's within bounds

226 scale_factor = np.clip(action[0], self.min_scale, self.max_scale)

227

228 # Train and evaluate the network with this scale factor

229 accuracy, nan_detected = train_and_evaluate(

230 scale_factor=scale_factor,

231 num_epochs=self.num_epochs,

232 log_wandb=True

233 )

234

235 # Compute reward

236 if nan_detected:

237 reward = -2.0 # Large penalty for NaN

238 else:

239 reward = accuracy * 10 # Scale up accuracy to have more meaningful

gradients↪→

240

241 # Update current state

242 self.current_scale = scale_factor

243 self.current_reward = reward

244

245 # Always terminate after one step

246 done = True

247 info = {

248 'scale_factor': scale_factor,

249 'accuracy': accuracy if not nan_detected else 0.0,

250 'nan_detected': nan_detected

251 }

252

253 return np.array([self.current_scale, self.current_reward]), reward, done,

False, info↪→

254

255 # REINFORCE Agent

256 class ReinforceAgent:

257 def __init__(self, state_dim, action_dim, min_scale, max_scale, lr=0.001,

gamma=0.99):↪→

258 self.gamma = gamma

259 self.min_scale = min_scale

260 self.max_scale = max_scale

261 self.action_range = max_scale - min_scale

262 self.action_dim = action_dim
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263

264 # Policy network: 2-layer MLP outputting mean and log_std

265 self.policy = nn.Sequential(

266 nn.Linear(state_dim, 64),

267 nn.ReLU(),

268 nn.Linear(64, 64),

269 nn.ReLU(),

270 nn.Linear(64, action_dim * 2) # Output mean and log_std

271 ).to(device)

272

273 self.optimizer = optim.Adam(self.policy.parameters(), lr=lr)

274

275 # Save rewards and actions for training

276 self.saved_log_probs = []

277 self.rewards = []

278

279 def select_action(self, state):

280 state = torch.FloatTensor(state).to(device)

281

282 # Forward pass through the policy network

283 output = self.policy(state)

284

285 # Split the output into mean and log_std

286 mean, log_std = output[:self.action_dim], output[self.action_dim:]

287

288 # Check for NaN values and handle them

289 if torch.isnan(mean).any() or torch.isnan(log_std).any():

290 print("Warning: NaN detected in policy output. Using fallback

action.")↪→

291 return np.array([0.5 * (self.min_scale + self.max_scale)]) # Default

to middle of range↪→

292

293 # Ensure log_std is not too small for numerical stability

294 log_std = torch.clamp(log_std, min=-20, max=2)

295

296 # Create normal distribution

297 std = log_std.exp()

298 dist = torch.distributions.Normal(mean, std)

299

300 try:

301 # Sample action from the distribution

302 action = dist.sample()

303

304 # Scale the action to our desired range

305 scaled_action = torch.sigmoid(action) # First to [0, 1]

306 scaled_action = scaled_action * self.action_range + self.min_scale #

Then to [min_scale, max_scale]↪→

307

308 # Save log probability for training

309 log_prob = dist.log_prob(action)

310 self.saved_log_probs.append(log_prob)

311

312 return scaled_action.detach().cpu().numpy()

313 except ValueError as e:

314 print(f"Error sampling from distribution: {e}")

315 print(f"Mean: {mean}, Std: {std}")

316 # Return a fallback action
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317 return np.array([0.5 * (self.min_scale + self.max_scale)]) # Default

to middle of range↪→

318

319 def update(self):

320 # Check if we have any rewards to update with

321 if len(self.rewards) == 0:

322 print("No rewards to update with.")

323 return 0.0

324

325 # Convert rewards to returns (discounted cumulative future reward)

326 returns = deque()

327 R = 0

328 for r in reversed(self.rewards):

329 R = r + self.gamma * R

330 returns.appendleft(R)

331

332 # Convert to tensor

333 returns = torch.tensor(returns, device=device)

334

335 # Normalize returns if we have more than 1 element

336 if len(returns) > 1:

337 try:

338 # Use a small epsilon for numerical stability

339 returns = (returns - returns.mean()) / (returns.std() + 1e-8)

340 except RuntimeError as e:

341 print(f"Error normalizing returns: {e}")

342 # Don't normalize if there's an error

343

344 # Check if we have any saved log_probs to update with

345 if len(self.saved_log_probs) == 0 or len(self.saved_log_probs) !=

len(returns):↪→

346 print("Mismatch between saved log probs and returns.")

347 self.saved_log_probs = []

348 self.rewards = []

349 return 0.0

350

351 # Compute loss

352 policy_loss = []

353 for log_prob, R in zip(self.saved_log_probs, returns):

354 policy_loss.append(-log_prob * R)

355

356 # Check if we have any policy loss to update with

357 if len(policy_loss) == 0:

358 print("No policy loss to update with.")

359 self.saved_log_probs = []

360 self.rewards = []

361 return 0.0

362

363 policy_loss = torch.cat(policy_loss).sum()

364

365 # Check for NaN in policy loss

366 if torch.isnan(policy_loss).any():

367 print("NaN detected in policy loss. Skipping update.")

368 self.saved_log_probs = []

369 self.rewards = []

370 return 0.0

371
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372 # Update policy

373 self.optimizer.zero_grad()

374 policy_loss.backward()

375

376 # Gradient clipping to prevent exploding gradients

377 torch.nn.utils.clip_grad_norm_(self.policy.parameters(), max_norm=1.0)

378

379 self.optimizer.step()

380

381 # Clear saved rewards and log_probs

382 self.saved_log_probs = []

383 self.rewards = []

384

385 return policy_loss.item()

386

387 # PHASE 3: RL TRAINING AND ANALYSIS

388 # --------------------------------

389

390 def run_rl_training(num_episodes=50, min_scale=0.3, max_scale=1.7, num_epochs=5):

391 """Run the RL training loop."""

392 # Initialize wandb for tracking

393 wandb.init(

394 project="rl-nn-initialization",

395 name=f"scale_search_{time.strftime('%Y%m%d_%H%M%S')}",

396 config={

397 "num_episodes": num_episodes,

398 "min_scale": min_scale,

399 "max_scale": max_scale,

400 "num_epochs": num_epochs,

401 "device": device.type

402 }

403 )

404

405 # Create environment

406 env = ScaleEnv(min_scale=min_scale, max_scale=max_scale,

num_epochs=num_epochs)↪→

407

408 # Get state and action dimensions

409 state_dim = env.observation_space.shape[0]

410 action_dim = env.action_space.shape[0]

411

412 # Create agent

413 agent = ReinforceAgent(state_dim, action_dim, min_scale, max_scale)

414

415 # Lists to track progress

416 all_rewards = []

417 all_scales = []

418 all_accuracies = []

419 all_nan_flags = []

420

421 # Training loop

422 for episode in tqdm(range(num_episodes), desc="RL Training"):

423 # Reset environment

424 state, _ = env.reset()

425

426 # Select action

427 action = agent.select_action(state)
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428

429 # Take action in environment

430 next_state, reward, done, _, info = env.step(action)

431

432 # Store reward

433 agent.rewards.append(reward)

434

435 # Track metrics

436 all_rewards.append(reward)

437 all_scales.append(info['scale_factor'])

438 all_accuracies.append(info['accuracy'])

439 all_nan_flags.append(info['nan_detected'])

440

441 if episode % 5 == 0:

442 # Print progress

443 print(f"Episode {episode}, Scale: {info['scale_factor']:.4f}, "

444 f"Reward: {reward:.4f}, NaN: {info['nan_detected']}")

445

446 # Log to wandb

447 wandb.log({

448 'episode': episode,

449 'scale_factor': info['scale_factor'],

450 'reward': reward,

451 'accuracy': info['accuracy'],

452 'nan_detected': info['nan_detected']

453 })

454

455 # Update the policy every episode

456 if done:

457 policy_loss = agent.update()

458 wandb.log({'episode': episode, 'policy_loss': policy_loss})

459

460 # Run baseline with standard He initialization (s=1.0)

461 print("\nEvaluating baseline (s=1.0)...")

462 baseline_accuracy, baseline_nan = train_and_evaluate(scale_factor=1.0,

num_epochs=num_epochs, log_wandb=True)↪→

463 print(f"Baseline (s=1.0): Accuracy = {baseline_accuracy:.4f}, NaN =

{baseline_nan}")↪→

464

465 # Find best non-NaN scale factor

466 non_nan_indices = [i for i, nan in enumerate(all_nan_flags) if not nan]

467 if non_nan_indices:

468 non_nan_rewards = [all_rewards[i] for i in non_nan_indices]

469 non_nan_scales = [all_scales[i] for i in non_nan_indices]

470 non_nan_accuracies = [all_accuracies[i] for i in non_nan_indices]

471

472 best_idx = np.argmax(non_nan_rewards)

473 best_scale = non_nan_scales[best_idx]

474 best_accuracy = non_nan_accuracies[best_idx]

475 print(f"Best scale factor: {best_scale:.4f}, Accuracy:

{best_accuracy:.4f}")↪→

476

477 wandb.log({

478 'best_scale': best_scale,

479 'best_accuracy': best_accuracy,

480 'baseline_accuracy': baseline_accuracy

481 })
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482 else:

483 print("All runs resulted in NaN. Consider adjusting the scale range.")

484

485 return all_scales, all_rewards, all_accuracies, all_nan_flags,

baseline_accuracy↪→

486

487 # PHASE 4: ANALYSIS AND VISUALIZATION

488 # ----------------------------------

489

490 def analyze_results(scales, rewards, accuracies, nan_flags, baseline_accuracy):

491 """Analyze and visualize the results."""

492 # Create a figure with two subplots

493 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))

494

495 # Plot 1: Reward vs Scale Factor

496 ax1.scatter(scales, rewards, alpha=0.6, c=['red' if nan else 'blue' for nan

in nan_flags])↪→

497 ax1.axvline(x=1.0, color='green', linestyle='--', label='Baseline He Init

(s=1.0)')↪→

498 ax1.set_xlabel('Scale Factor')

499 ax1.set_ylabel('Reward')

500 ax1.set_title('Reward vs Scale Factor')

501 ax1.grid(True)

502 ax1.legend(['NaN Detected' if nan else 'Valid Run' for nan in [True, False]]

+ ['Baseline He Init (s=1.0)'])↪→

503

504 # Plot 2: Training Progress (Reward over Episodes)

505 non_nan_indices = [i for i, nan in enumerate(nan_flags) if not nan]

506 if non_nan_indices:

507 non_nan_rewards = [rewards[i] for i in non_nan_indices]

508 non_nan_scales = [scales[i] for i in non_nan_indices]

509

510 # Add polynomial fit to help visualize trends

511 if len(non_nan_scales) > 2:

512 try:

513 z = np.polyfit(non_nan_scales, non_nan_rewards, 2)

514 p = np.poly1d(z)

515

516 # Create smoothed line

517 x_poly = np.linspace(min(non_nan_scales), max(non_nan_scales),

100)↪→

518 y_poly = p(x_poly)

519

520 ax2.plot(x_poly, y_poly, 'r--', label='Trend')

521

522 # Find the peak of the polynomial

523 # For a quadratic, the peak is at -b/(2a)

524 if z[0] < 0: # Check if it's a convex parabola (has a maximum)

525 peak_x = -z[1] / (2 * z[0])

526 if min(non_nan_scales) <= peak_x <= max(non_nan_scales):

527 peak_y = p(peak_x)

528 ax2.scatter([peak_x], [peak_y], c='gold', s=100,

zorder=5,↪→

529 label=f'Predicted Optimal: s{peak_x:.3f}')

530 except:

531 print("Could not fit polynomial to data")

532
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533 # Add an artificial "episode" axis to show progression

534 episode_numbers = list(range(len(rewards)))

535 ax2.scatter(episode_numbers, rewards, alpha=0.6, c=['red' if nan else 'blue'

for nan in nan_flags])↪→

536 ax2.axhline(y=baseline_accuracy*10, color='green', linestyle='--',

label=f'Baseline (s=1.0): {baseline_accuracy:.4f}')↪→

537 ax2.set_xlabel('Episode')

538 ax2.set_ylabel('Reward')

539 ax2.set_title('Reward over Episodes')

540 ax2.grid(True)

541 ax2.legend()

542

543 plt.tight_layout()

544 plt.savefig('rl_init_results.png')

545 plt.show()

546

547 # Log chart to wandb

548 wandb.log({"results_chart": wandb.Image(fig)})

549

550 # Compute statistics

551 non_nan_indices = [i for i, nan in enumerate(nan_flags) if not nan]

552 if non_nan_indices:

553 best_idx = np.argmax([rewards[i] for i in non_nan_indices])

554 best_scale = scales[non_nan_indices[best_idx]]

555 best_accuracy = accuracies[non_nan_indices[best_idx]]

556 best_reward = rewards[non_nan_indices[best_idx]]

557

558 print("\n=== RESULTS SUMMARY ===")

559 print(f"Baseline (s=1.0): Accuracy = {baseline_accuracy:.4f}")

560 print(f"Best found scale: s = {best_scale:.4f}, Accuracy =

{best_accuracy:.4f}")↪→

561 print(f"Improvement over baseline: {(best_accuracy - baseline_accuracy) *

100:.4f}%")↪→

562

563 # Count the number of NaN runs

564 nan_count = sum(nan_flags)

565 print(f"Total runs: {len(rewards)}, NaN runs: {nan_count}

({nan_count/len(rewards)*100:.1f}%)")↪→

566

567 return best_scale, best_accuracy

568 else:

569 print("All runs resulted in NaN. Consider adjusting the scale range.")

570 return None, None

571

572 # Main execution function

573 def main():

574 print("Starting RL Neural Network Initialization Optimization")

575

576 # Run with shorter training to save time

577 print("\nPhase 1-3: Running RL training...")

578

579 try:

580 # Use narrower scale range to reduce NaNs but with more episodes and

epochs↪→

581 # Reduced number of episodes and epochs for MacBook to run faster

582 scales, rewards, accuracies, nan_flags, baseline_accuracy =

run_rl_training(↪→
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583 num_episodes=200, # Reduced from 200 to 50 for faster execution

584 min_scale=0.1, # Increased from 0.1 to avoid very small scales

that can cause NaNs↪→

585 max_scale=1.9, # Decreased from 2.0 to avoid very large scales

that can cause NaNs↪→

586 num_epochs=7 # Reduced from 10 to 7 for faster execution

587 )

588

589 print("\nPhase 4: Analyzing results...")

590 best_scale, best_accuracy = analyze_results(

591 scales, rewards, accuracies, nan_flags, baseline_accuracy

592 )

593

594 if best_scale is not None:

595 # Validate the best scale with a longer training run

596 print("\nValidating best scale with longer training...")

597 final_accuracy, final_nan = train_and_evaluate(

598 scale_factor=best_scale,

599 num_epochs=20, # Reduced from 20 to 10 for faster execution

600 log_wandb=True

601 )

602 baseline_final, _ = train_and_evaluate(

603 scale_factor=1.0,

604 num_epochs=20, # Same length for fair comparison

605 log_wandb=True

606 )

607

608 print(f"\nFinal validation (10 epochs):")

609 print(f"Best scale (s={best_scale:.4f}): Accuracy =

{final_accuracy:.4f}")↪→

610 print(f"Baseline (s=1.0): Accuracy = {baseline_final:.4f}")

611 print(f"Difference: {(final_accuracy - baseline_final) * 100:.4f}%")

612

613 # Log final results to wandb

614 wandb.log({

615 'final_best_scale_accuracy': final_accuracy,

616 'final_baseline_accuracy': baseline_final,

617 'final_improvement': (final_accuracy - baseline_final) * 100

618 })

619 except Exception as e:

620 print(f"An error occurred during execution: {e}")

621

622 # Close wandb run

623 wandb.finish()

624

625 if __name__ == "__main__":

626 main()
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Appendix B

PLAGIARISM REPORT
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