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Abstract

This paper explores an end-to-end learning framework for state estimation that lever-

ages deep learning techniques to directly infer latent system states from observational

data. State estimation in nonlinear dynamical systems is a critical task across numer-

ous scientific and engineering domains. Reliable state estimation in nonlinear dynamical

systems is critical for defense applications such as missile guidance, UAV navigation,

and real-time control of hypersonic vehicles—where classical filters often fall short due

to nonlinearity, unmodeled dynamics, and sensor noise. This paper presents an end-to-

end learning framework that combines Physics-Informed Neural Networks (PINNs) and

Deep Koopman Operators for accurate and robust state estimation without relying on

explicit system models. PINNs incorporate known physical laws—such as conservation

of momentum and energy—into the loss function, while Koopman-based models learn

interpretable linear embeddings of nonlinear systems. It demonstrate our approach on

simulated high-speed flight dynamics and benchmark systems like the Lorenz attractor

and Van der Pol oscillator, under both ideal and noisy conditions. Results show that our

method outperforms traditional approaches like the Extended Kalman Filter in both ac-

curacy and stability, highlighting its potential for deployment in mission- critical DRDO

systems requiring real-time, data-driven control and decision-making. Experimental re-

sults demonstrate that our hybrid learning approach achieves higher accuracy and greater

robustness compared to classical filtering techniques. These results indicate strong po-

tential for real-time deployment in sensor fusion, UAV navigation, and adaptive control

of nonlinear systems.
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Chapter 1

INTRODUCTION

1.1 General Definitions

A non-linear dynamical system is a system where the output is not directly proportional
to the input given to the system. These systems often exhibit complex behaviors like
chaos, bifurcations, and self-organization. They can appear chaotic, unpredictable, or
counterintuitive. But, their behaviour is not random. They are an active area of research
in physical sciences. State estimation in nonlinear dynamical systems involves estimating
the system’s state (variables) using measurements and a model of the system’s dynamics,
which can be challenging due to the non-Gaussian nature of the posterior state distribu-
tions. State estimation is crucial in control and decision-making because it allows for the
accurate monitoring and prediction of system behaviour, enabling informed decisions and
proactive control actions, especially in complex systems where not all variables are directly
measurable. Nonlinear dynamical systems are ubiquitous across various scientific and en-
gineering domains, describing the evolution of state variables where the relationships are
inherently non-proportional [1].

Unlike linear systems, which obey the principles of superposition and homogeneity,
nonlinear systems exhibit a rich array of complex behaviors, including multiple equilib-
rium points, sustained oscillations known as limit cycles, qualitative changes in system
dynamics termed bifurcations, and unpredictable, yet deterministic, motion referred to
as chaos [2] A nonlinear dynamical system is defined as a mathematical model where
the rate of change of the system’s state variables is not a linear function of the current
state 1. This implies that the system’s behavior cannot be predicted by simply scaling
or superposing individual responses to different inputs [1]. Real-world systems across
various disciplines, including physics, biology, engineering, and economics, frequently ex-
hibit nonlinear behavior [1] End-to-end learning is often implemented using deep learning
techniques, particularly neural networks like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). A model is trained to map raw inputs to desired
outputs using a large amount of labelled data. The model learns to extract useful features
from the data and to use these features to make predictions. It is a key concept in deep
learning, streamlines the learning process by training a model to map raw inputs directly
to desired outputs, eliminating the need for manual feature engineering and improving
overall system performance. It simplifies the learning process by allowing the model to
learn all the necessary steps from raw input to final output simultaneously, rather than
requiring separate stages for feature extraction and prediction.

Definition of State Estimation in Nonlinear Systems State estimation is the process
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of determining the internal states of a nonlinear dynamical system using noisy, indirect,
or incomplete measurements. Since many real-world systems (e.g., robotics, weather,
and biological systems) exhibit nonlinear dynamics, accurately estimating their states is
essential for control, prediction, and decision-making.

1.2 Challenges in Nonlinear State Estimation

1.2.1 Challenges of Traditional Methods for State Estimation

State estimation in nonlinear dynamical systems is complicated by several factors:

• Nonlinearity: Traditional linear filters like the Kalman Filter (KF) fail in the
presence of strong nonlinear dynamics.

• Noise and Uncertainty: Real-world systems are subject to unknown disturbances
and non-Gaussian noise.

• High-Dimensional States: Estimating states in large-scale systems introduces
significant computational challenges.

• Sparse or Indirect Measurements: Observations may be noisy, intermittent, or
only indirectly related to the true system state.

Common solutions to these challenges include:

• Extended Kalman Filter (EKF): Linearizes the system around the current es-
timate using a first-order Taylor expansion.

• Unscented Kalman Filter (UKF): Uses a set of sigma points to better approx-
imate the propagation of uncertainty.

• Particle Filter (PF): Employs sampling-based techniques to approximate the
posterior distribution in complex settings.

• Deep Learning Methods: Models like LSTMs, Koopman Networks, and PINNs
learn to estimate states directly from data.

Limitations of Classical Filters

Extended Kalman Filter (EKF): The EKF uses a first-order Taylor series to lin-
earize the nonlinear system about the current estimate. While computationally efficient,
it suffers from degraded accuracy in highly nonlinear settings and may diverge if the
system is non-differentiable or the initial estimate is poor.

Example: In mobile robotics, the EKF often fails to track sharp maneuvers due to
poor linearization.

Unscented Kalman Filter (UKF): The UKF improves on the EKF by using deter-
ministic sampling (sigma points) to better capture the distribution of nonlinear transfor-
mations. However, its computational burden grows rapidly with the state dimension, and
performance is sensitive to tuning parameters like process and observation noise covari-
ances.

Example: In radar tracking with a high number of state variables, UKF offers better
accuracy than EKF but at the cost of real-time feasibility.
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Particle Filter (PF): PFs handle highly nonlinear and non-Gaussian systems by ap-
proximating the posterior distribution using a set of weighted particles. They are highly
flexible but suffer from the curse of dimensionality—requiring a prohibitive number of
particles in high-dimensional spaces.

Example: In SLAM (Simultaneous Localization and Mapping) for autonomous vehi-
cles, PFs can become computationally infeasible due to the need for millions of particles
to maintain accuracy.

1.3 Advantages of End-to-End Deep Learning Meth-

ods

Modern deep learning techniques address many of the above challenges:

• Model-Free Learning: Approaches such as LSTMs and Transformers learn to
estimate states directly from data without explicit models.

• Handling High Dimensionality: Koopman Networks learn linear representations
in latent spaces, making them suitable for large systems.

• Robustness to Noise: Bayesian Neural Networks (BNNs) and Variational Au-
toencoders (VAEs) capture non-Gaussian uncertainty in sensor data.

• Irregular Observations: Attention mechanisms and Graph Neural Networks (GNNs)
manage sparse and asynchronous measurements effectively.

• Computational Efficiency: GPU acceleration enables real-time inference, often
unachievable with PFs.

Example: Deep learning models enable robust state estimation for autonomous drones
operating in contested environments, where GPS signals are jammed or spoofed.

These advantages make deep learning a compelling alternative for state estimation in
complex, nonlinear, and adversarial environments.

1.3.1 Background on Extended Kalman Filter (EKF)

The EKF predicts the next state using a nonlinear process model and linearizes the
dynamics around the current estimate using the Jacobian matrix. This linearized model
is then used to perform the Kalman Filter update steps.

The EKF remains popular in real-time systems like GPS navigation, aerospace, and
robotics due to its computational efficiency. However, it assumes Gaussian noise and can
become unstable when faced with strong nonlinearities or poor initial estimates.

The need to recompute Jacobians at every time step also makes the EKF sensitive to
modeling errors and unsuitable for systems with discontinuous dynamics. In such cases,
more robust filters such as the UKF or PF—or learning-based alternatives—are preferred.
Unscented Kalman Filter (UKF) The UKF addresses the shortcomings of the EKF by
using the Unscented Transform to propagate a set of sigma points through the nonlinear
system instead of linearizing it. These sigma points are selected to capture the mean and
covariance of the state distribution up to the second order, which leads to better perfor-
mance in nonlinear settings. Unlike the EKF, the UKF does not require the computation
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of Jacobians, making it more suitable for systems with complex or unknown derivatives. It
is especially effective in applications such as autonomous vehicles, spacecraft navigation,
and nonlinear control systems, where moderate nonlinearity and uncertainty are present.
Nevertheless, the UKF still assumes that the noise in the system is Gaussian and that
the state distribution is approximately unimodal. It is more computationally demanding
than the EKF, particularly in high-dimensional state spaces. When the posterior be-
comes multimodal or skewed, UKF may produce biased estimates or fail to capture the
full uncertainty of the system.

1.3.2 Particle Filter (PF)

The Particle Filter is a non-parametric, fully Bayesian approach to state estimation that
approximates the posterior distribution using a set of discrete weighted samples, or par-
ticles. Each particle represents a hypothesis of the system state, and their weights are
updated according to how well they match the observed data.

PFs are highly flexible and can handle nonlinear, non-Gaussian, and even multimodal
distributions. They are often used in applications such as object tracking, fault detection,
and SLAM (Simultaneous Localization and Mapping). The particles are propagated us-
ing the system’s transition model and resampled based on their likelihood to reflect the
updated belief about the state.

Despite their versatility, Particle Filters suffer from several practical challenges. A
large number of particles is often needed to accurately approximate the posterior, espe-
cially in high-dimensional problems, leading to high computational cost. Additionally,
particle degeneracy can occur, where after several iterations, most particles carry negligi-
ble weight. This is addressed using resampling techniques, which themselves can introduce
sample impoverishment if not handled carefully.

1.4 Machine Learning Approaches for Dynamical Sys-

tems and Time-Series Modeling

• Long Short-Term Memory (LSTM) Networks: Used for modeling and fore-
casting temporal sequences by capturing long-range dependencies. Suitable for non-
linear and nonstationary time-series data.

• Transformers for Time-Series: Attention-based models that allow parallel pro-
cessing of sequential data and excel at capturing global dependencies, making them
effective for complex time-series prediction tasks.

• Koopman Operator Learning: A framework to represent nonlinear dynamical
systems in a linear, infinite-dimensional function space using data-driven methods.
Koopman-based models enable linear prediction of nonlinear systems and can be
learned via neural networks.

• Physics-Informed Neural Networks (PINNs): Incorporate physical laws de-
scribed by differential equations directly into the loss function of neural networks.
Useful for learning solutions to PDEs and ensuring model predictions remain phys-
ically consistent.
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1.5 Defense Applications of End-to-End Learning in

Nonlinear Dynamics

State estimation is a cornerstone for the functionality of autonomous vehicles and robotics
within the defense sector, providing the essential information needed for critical tasks such
as navigation, control, and comprehensive situational awareness. End-to-end learning
methodologies offer promising avenues for significantly enhancing the performance of these
sophisticated systems.

In the realm of Unmanned Aerial Vehicles (UAVs), end-to-end learning techniques
are actively being explored to elevate the accuracy and robustness of state estimation,
particularly in challenging operational environments such as those where GPS signals are
either denied or unreliable, or during the execution of complex flight maneuvers. For ex-
ample, an innovative online end-to-end learning method has been proposed for proactive
state estimation of UAVs. This method integrates refined UAV dynamics, modeled using
LSTM-based Recurrent Neural Networks (RNNs), with Kalman filter-based state esti-
mation that incorporates active learning of noise parameters. This integrated approach
has demonstrated the capability to achieve high levels of accuracy in state estimation by
leveraging real-time flight data. The reported root-mean-square (RMS) state prediction
errors for position and orientation using this online end-to-end learning method for UAVs
were remarkably low, at approximately 1.2

State estimation is equally critical for Unmanned Ground Vehicles (UGVs) as they
operate across diverse and often highly unstructured terrains. End-to-end learning holds
significant potential for contributing to more robust localization, mapping, and overall
control for these platforms. These principles can be leveraged for tasks such as navigating
through complex and varied environments or executing autonomous missions without
direct human intervention.

Precise and dependable target tracking is a foundational requirement for numerous
defense applications, including critical areas such as missile defense systems, comprehen-
sive surveillance operations, and detailed reconnaissance missions. End-to-end learning
models, especially those that are based on RNNs and Transformer architectures, can be
effectively trained to learn the complex motion patterns of targets directly from various
types of sensor data. This data-driven learning process can lead to notable improvements
in tracking accuracy and the ability to predict the future movements of targets, even those
that are highly agile and exhibit unpredictable behavior.

In the context of surveillance applications, end-to-end learning can be effectively uti-
lized to process data streams from a variety of sensors, including radar systems, sonar
arrays, and electro-optical/infrared (EO/IR) sensors. The integrated analysis of this mul-
tisensory data can provide a more comprehensive and accurate understanding of the area
under surveillance.

Defense systems frequently depend on the integration of data from a multitude of sen-
sors. End-to-end learning offers powerful tools for achieving sophisticated sensor fusion,
enabling the seamless integration of data originating from diverse sources such as IMUs,
GPS, radar systems, and lidar sensors. End-to-end deep learning frameworks have been
specifically developed for real-time inertial attitude estimation using measurements from
IMUs, demonstrating superior levels of accuracy and robustness.

The increasing reliance on cyber-physical systems within the defense sector renders
them susceptible to various forms of cyberattacks. End-to-end learning methodologies for
state estimation can play a crucial role in detecting anomalies and potential cyber intru-
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sions by learning the patterns of normal operational behavior within these critical systems.
Neural networks can aid in the detection of cyberattacks by identifying deviations from
the expected operational states of the system.

End-to-end learning techniques can also be effectively applied to analyze sensor data
originating from various types of military equipment and vehicles. By learning the inher-
ent patterns and detecting anomalies in their operational states, these models can predict
potential failures before they occur. This proactive approach can lead to increased equip-
ment availability and reduced maintenance costs.

1.5.1 Advantages of End-to-End Learning in Defense

A significant advantage of employing end-to-end learning for state estimation lies in its
capacity to learn the underlying system dynamics directly from observed data, thereby
diminishing the reliance on the development of detailed and often intricate analytical
models. This is particularly advantageous for defense systems where the creation of
accurate physical models can be an arduous task due to the inherent complexity of the
systems or rapidly evolving configurations.

End-to-end learning models, particularly neural networks, possess an inherent abil-
ity to learn and adapt to system dynamics that are both nonlinear and time-varying.
This adaptability is of paramount importance in the dynamic and often unpredictable
environments that characterize defense operations. Military systems frequently encounter
changing operational environments and evolving mission requirements. End-to-end learn-
ing models have the capability to continuously learn and adjust their state estimation
strategies based on newly acquired sensor data.

By training on extensive datasets of real-world sensor data, end-to-end learning models
can effectively capture the subtle nuances and inherent complexities of actual operating
conditions. This includes accounting for sensor noise, various environmental disturbances,
and system dynamics that might not have been explicitly modeled. Real-world defense
scenarios often involve numerous factors that are difficult to model using analytical tech-
niques.

Deep neural networks have the remarkable ability to automatically learn hierarchical
representations of the input data. This allows them to extract features that are highly
relevant for the task of state estimation without requiring any manual intervention in
the feature engineering process. This capability is particularly advantageous when deal-
ing with high-dimensional sensor data. End-to-end learning simplifies the development
process for state estimators in defense systems by automating the critical task of feature
extraction.

1.5.2 Challenges and Limitations in Defense Applications

A significant impediment to the widespread adoption of end-to-end learning in defense
applications is the fundamental requirement for large, high-quality labeled datasets to
effectively train the models.Obtaining such extensive datasets in defense scenarios often
presents a formidable challenge due to a confluence of factors, including the sensitive
or classified nature of the data, the inherent rarity of certain critical events that would
be valuable for training, and the substantial cost and logistical complexity associated
with collecting accurate ground truth information in dynamic operational environments.
Neural networks employed for state estimation in military contexts frequently necessitate
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substantial volumes of labeled data that are specific to the intended operational environ-
ment. The acquisition of such data can prove to be a difficult, costly, or even potentially
hazardous undertaking. The limited availability of suitable labeled data in many defense
domains thus represents a major obstacle that must be overcome to facilitate the broader
application of end-to-end learning for state estimation. Deep learning models are inher-
ently data-driven, and their ability to learn intricate patterns and generalize effectively
to novel situations is directly proportional to the size and quality of the labeled training
data they are exposed to. The scarcity of such data in the defense sector can significantly
constrain the potential performance and overall applicability of these advanced models.
In numerous defense applications, particularly those that directly inform critical decision-
making processes, there exists a strong and justifiable need for the interpretability and
explainability of the state estimation results. End-to-end learning models, especially the
deep neural networks that often underpin them, are frequently characterized as ”black
boxes.” This designation arises from the difficulty in understanding the intricate reason-
ing processes that lead to their specific predictions. Such a lack of transparency can
be a significant concern within military contexts, where trust in the reliability of the
system and accountability for its actions are of paramount importance. The inherent
difficulty in interpreting the outputs of end-to-end learning models can therefore hinder
their widespread adoption in defense systems, where a clear understanding of the basis
for the provided state estimates is absolutely crucial for ensuring operational trust and
overall safety. Military personnel must be able to understand the rationale behind a par-
ticular state estimate, especially when confronted with high-stakes situations. The lack
of transparency in deep learning models can make it challenging to validate their outputs
and to build the necessary level of confidence in their reliability.
End-to-end learning models are known to be susceptible to adversarial attacks, where care-
fully crafted, often imperceptible, perturbations to the input data can cause the model
to produce incorrect outputs. This vulnerability represents a significant security risk
for defense applications, where potential adversaries might attempt to manipulate sensor
data to deliberately mislead state estimation systems, potentially with severe operational
consequences. The susceptibility of end-to-end learning models to adversarial attacks is
therefore a major concern for their deployment in defense systems, as it could potentially
compromise the accuracy and reliability of state estimates in the presence of malicious ac-
tors. Adversaries could exploit these inherent vulnerabilities to inject false data or subtly
manipulate sensor readings in a manner that leads to incorrect state estimations, poten-
tially causing mission failures, endangering personnel, or compromising critical assets.
Many defense applications necessitate that state estimation be performed in real-time,
often on platforms that are characterized by limited computational resources, such as
unmanned systems or various embedded devices. Deep neural networks, which frequently
form the core of end-to-end learning systems, can be computationally intensive, demand-
ing significant processing power and memory that may not be readily available on these
resource-constrained military platforms. Neural network-based techniques for state es-
timation can be unsuitable for real-time deployment on ultra-resource-constrained de-
vices, such as microcontrollers, due to their excessive requirements for both memory and
computational resources. The substantial computational demands associated with many
end-to-end learning models can therefore be a limiting factor in their practical real-time
deployment within defense applications where computational resources are inherently con-
strained. Military hardware often operates under strict limitations regarding size, weight,
and power consumption. These constraints can restrict the complexity and the overall
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computational requirements of the artificial intelligence models that can be effectively
deployed for real-time state estimation.
End-to-end learning models might encounter difficulties in generalizing effectively to en-
tirely novel scenarios or operational conditions that were not adequately represented
within their training data. This poses a particular concern for defense applications, which
frequently involve operating in highly diverse and unpredictable environments and poten-
tially facing unforeseen threats or situations. The ability of end-to-end learning models
to generalize to new and unexpected situations that might arise in the context of defense
operations requires further thorough investigation and significant improvement to ensure
consistently reliable performance across a wide range of operational scenarios. Military
operations can involve a vast array of environments, conditions, and adversarial tactics
that might not have been fully or accurately represented in the training data. Conse-
quently, the performance of end-to-end models in these previously unseen scenarios is
absolutely crucial for their practical utility and overall effectiveness within the defense
sector.

1.5.3 Security Considerations and Adversarial Resilience

End-to-end learning models, particularly deep neural networks, exhibit a known suscepti-
bility to adversarial attacks. These attacks involve the subtle addition of carefully crafted
perturbations to the input data, which, while often imperceptible to human observers,
can cause the model to yield significantly erroneous state estimates. These attacks can be
ingeniously designed to be stealthy, enabling them to bypass traditional bad data detec-
tion mechanisms that are often in place to identify and filter out anomalous or corrupted
sensor readings.57 The inherent vulnerability of end-to-end learning models to adversar-
ial attacks presents a significant security challenge for their application in defense-critical
state estimation systems, where compromised state estimates could potentially lead to
severe and far-reaching operational consequences. Adversaries could strategically exploit
these inherent vulnerabilities to inject false data or subtly manipulate sensor readings in
a manner that ultimately leads to incorrect state estimations, potentially causing mission
failures, endangering personnel, or compromising the security of critical assets.
Various defense mechanisms are currently under active research and development to ef-
fectively mitigate the potential impact of adversarial attacks on state estimators based
on end-to-end learning methodologies. One prominent technique is adversarial training,
which involves augmenting the original training dataset with carefully generated adversar-
ial examples. By training the model on this expanded dataset, which includes both clean
and perturbed inputs, the model is forced to learn to correctly predict the state even when
the input data has been subjected to adversarial perturbations. Another strategy focuses
on the protection of critical sensors. This involves identifying the sensors that are most
influential in the state estimation process and implementing robust security measures to
prevent them from being compromised or manipulated by malicious actors. By secur-
ing these key data sources, the effectiveness of certain types of adversarial attacks can
be significantly reduced. Additionally, the deployment of anomaly detection algorithms,
operating independently of the primary state estimator, can provide an extra layer of
security. These algorithms are designed to identify unusual patterns in the input data or
in the resulting state estimates, which can serve as an indication of an ongoing adversarial
attack that might have managed to evade the initial state estimation process. Further-
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more, the concept of Moving Target Defense (MTD) is being explored. This approach
involves introducing dynamic and unpredictable changes to the state estimation model
itself or to the overall system configuration. The goal of MTD is to make it significantly
more challenging for attackers to craft adversarial examples that remain effective over
time, as the target system is constantly evolving. It is likely that a comprehensive and
effective security posture for end-to-end learning-based state estimation in defense appli-
cations will necessitate a multi-layered defense approach. This would involve strategically
combining several of these individual techniques to provide robust resilience against in-
creasingly sophisticated adversarial attacks.
The increasing sophistication and prevalence of cyber threats underscore the critical im-
portance of developing and deploying state estimation techniques for defense applications
that are not only accurate and efficient but also inherently secure and resilient. The in-
creasing reliance of modern defense systems on data-driven insights and interconnected
networks makes them prime targets for cyber adversaries who might seek to compromise
their fundamental functionalities, including state estimation. Robust security measures
are therefore essential to protect these critical systems from malicious manipulation and
to ensure the integrity and effectiveness of defense capabilities in the face of evolving
cyber threats.

1.6 Current Research Trends

Current research efforts in the field of end-to-end learning for state estimation in de-
fense are largely focused on addressing the key limitations that currently hinder its more
widespread adoption. These limitations include the need for large amounts of labeled
data, the challenge of ensuring the interpretability of the models, the necessity for robust-
ness against adversarial attacks, and the computational costs associated with deploying
these models on resource-constrained platforms. To tackle the issue of data efficiency, re-
searchers are actively exploring techniques such as transfer learning, which allows knowl-
edge gained from one task to be applied to another , few-shot learning, which aims to train
models with only a limited number of examples, and active learning, where the model
strategically selects the data points it needs to learn most effectively. To enhance the
interpretability of end-to-end state estimators, there is ongoing research in the develop-
ment of explainable AI (XAI) methods that can provide insights into the decision-making
processes of these complex models. Ensuring the robustness of these systems against ad-
versarial attacks is another critical area of focus, with researchers investigating techniques
such as adversarial training, which involves training models on perturbed data to make
them more resilient , and the design of more robust neural network architectures. To
address the computational costs, efforts are being made to develop lightweight and effi-
cient neural network architectures that are suitable for deployment on the resource-limited
platforms commonly found in defense applications. Furthermore, there is a growing inter-
est in hybrid approaches that strategically combine the strengths of end-to-end learning
with traditional filtering techniques, such as Kalman filters and particle filters. Finally,
the integration of physical laws and constraints into the neural network training process,
through the use of Physics-Informed Neural Networks (PINNs), is an emerging trend that
promises to improve the accuracy, robustness, and data efficiency of these models.
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Chapter 2

LITERATURE REVIEW

2.1 Particle Filter (PF)

The Particle Filter is a non-parametric, fully Bayesian approach to state estimation that
approximates the posterior distribution using a set of discrete weighted samples, or par-
ticles [1]. Each particle represents a hypothesis of the system state, and their weights are
updated according to how well they match the observed data.

PFs are highly flexible and can handle nonlinear, non-Gaussian, and even multimodal
distributions. They are often used in applications such as object tracking, fault detection,
and SLAM (Simultaneous Localization and Mapping). The particles are propagated using
the system’s transition model:

x
(i)
t ∼ p(xt|x(i)t−1) (2.1)

Weights are updated using the observation likelihood:

w
(i)
t ∝ w

(i)
t−1 · p(yt|x

(i)
t ) (2.2)

To avoid degeneracy, resampling is performed when the effective sample size falls below
a threshold:

Neff =
1∑N

i=1(w
(i)
t )2

(2.3)

Despite their versatility, Particle Filters suffer from several practical challenges. A
large number of particles is often needed to accurately approximate the posterior, espe-
cially in high-dimensional problems, leading to high computational cost. Additionally,
particle degeneracy can occur, where after several iterations, most particles carry negligi-
ble weight. This is addressed using resampling techniques, which themselves can introduce
sample impoverishment if not handled carefully.

2.2 Machine Learning Approaches for Dynamical Sys-

tems and Time-Series Modeling

• Long Short-Term Memory (LSTM) Networks: Used for modeling and fore-
casting temporal sequences by capturing long-range dependencies [2]. Suitable for
nonlinear and nonstationary time-series data.
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The LSTM dynamics are governed by the following equations:

ft = σ(Wfht−1, xt] + bf )

it = σ(Wiht−1, xt] + bi)

ot = σ(Woht−1, xt] + bo)

c̃ ∗ t = tanh(Wch ∗ t− 1, xt] + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.4)

ht = ot ⊙ tanh(ct) (2.5)

• Transformers for Time-Series: Attention-based models that allow parallel pro-
cessing of sequential data and excel at capturing global dependencies, making them
effective for complex time-series prediction tasks [3, 4].

• Koopman Operator Learning: A framework to represent nonlinear dynamical
systems in a linear, infinite-dimensional function space using data-driven methods
[5]. Koopman-based models enable linear prediction of nonlinear systems and can
be learned via neural networks.

Given a nonlinear system:
xt+1 = f(xt) (2.6)

It is lifted into a higher-dimensional space such that:

ψ(xt+1) = Kψ(xt) (2.7)

where K is the Koopman operator and ψ(·) is a dictionary of observables.

• Physics-Informed Neural Networks (PINNs): Incorporate physical laws de-
scribed by differential equations directly into the loss function of neural networks
[6]. Useful for learning solutions to PDEs and ensuring model predictions remain
physically consistent.

For a PDE of the form:
∂u

∂t
+Nu] = 0

The PINN loss is given by:

L = L ∗ data + λL ∗ physics, (2.9)

L ∗ physics = 1

Nf

∑
∗i = 1Nf

∣∣∣∣∂û∂t (xi, ti) +N û(xi, ti)]

∣∣∣∣2

2.3 Defense Applications of End-to-End Learning in

Nonlinear Dynamics

State estimation is a cornerstone for the functionality of autonomous vehicles and robotics
within the defense sector, providing the essential information needed for critical tasks such
as navigation, control, and comprehensive situational awareness. End-to-end learning
methodologies offer promising avenues for significantly enhancing the performance of these
sophisticated systems.
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In the realm of Unmanned Aerial Vehicles (UAVs), end-to-end learning techniques
are actively being explored to elevate the accuracy and robustness of state estimation,
particularly in challenging operational environments such as those where GPS signals are
either denied or unreliable, or during the execution of complex flight maneuvers [7]. For
example, an innovative online end-to-end learning method has been proposed for proactive
state estimation of UAVs. This method integrates refined UAV dynamics, modeled using
LSTM-based Recurrent Neural Networks (RNNs), with Kalman filter-based state esti-
mation that incorporates active learning of noise parameters. This integrated approach
has demonstrated the capability to achieve high levels of accuracy in state estimation by
leveraging real-time flight data. The reported root-mean-square (RMS) state prediction
errors for position and orientation using this online end-to-end learning method for UAVs
were remarkably low, at approximately 1.2

State estimation is equally critical for Unmanned Ground Vehicles (UGVs) as they
operate across diverse and often highly unstructured terrains. End-to-end learning holds
significant potential for contributing to more robust localization, mapping, and overall
control for these platforms [8].

Precise and dependable target tracking is a foundational requirement for numerous
defense applications, including critical areas such as missile defense systems, comprehen-
sive surveillance operations, and detailed reconnaissance missions. End-to-end learning
models, especially those that are based on RNNs and Transformer architectures, can be
effectively trained to learn the complex motion patterns of targets directly from various
types of sensor data [9]. This data-driven learning process can lead to notable improve-
ments in tracking accuracy and the ability to predict the future movements of targets,
even those that are highly agile and exhibit unpredictable behavior.

In the context of surveillance applications, end-to-end learning can be effectively uti-
lized to process data streams from a variety of sensors, including radar systems, sonar
arrays, and electro-optical/infrared (EO/IR) sensors. The integrated analysis of this mul-
tisensory data can provide a more comprehensive and accurate understanding of the area
under surveillance.

Defense systems frequently depend on the integration of data from a multitude of sen-
sors. End-to-end learning offers powerful tools for achieving sophisticated sensor fusion,
enabling the seamless integration of data originating from diverse sources such as IMUs,
GPS, radar systems, and lidar sensors [10]. End-to-end deep learning frameworks have
been specifically developed for real-time inertial attitude estimation using measurements
from IMUs, demonstrating superior levels of accuracy and robustness.

The increasing reliance on cyber-physical systems within the defense sector renders
them susceptible to various forms of cyberattacks. End-to-end learning methodologies for
state estimation can play a crucial role in detecting anomalies and potential cyber intru-
sions by learning the patterns of normal operational behavior within these critical systems.
Neural networks can aid in the detection of cyberattacks by identifying deviations from
the expected operational states of the system [11].

End-to-end learning techniques can also be effectively applied to analyze sensor data
originating from various types of military equipment and vehicles. By learning the inher-
ent patterns and detecting anomalies in their operational states, these models can predict
potential failures before they occur. This proactive approach can lead to increased equip-
ment availability and reduced maintenance costs.
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2.3.1 Advantages of End-to-End Learning in Defense

A significant advantage of employing end-to-end learning for state estimation lies in its
capacity to learn the underlying system dynamics directly from observed data, thereby
diminishing the reliance on the development of detailed and often intricate analytical
models. This is particularly advantageous for defense systems where the creation of
accurate physical models can be an arduous task due to the inherent complexity of the
systems or rapidly evolving configurations.

End-to-end learning models, particularly neural networks, possess an inherent abil-
ity to learn and adapt to system dynamics that are both nonlinear and time-varying.
This adaptability is of paramount importance in the dynamic and often unpredictable
environments that characterize defense operations. Military systems frequently encounter
changing operational environments and evolving mission requirements. End-to-end learn-
ing models have the capability to continuously learn and adjust their state estimation
strategies based on newly acquired sensor data.

By training on extensive datasets of real-world sensor data, end-to-end learning models
can effectively capture the subtle nuances and inherent complexities of actual operating
conditions. This includes accounting for sensor noise, various environmental disturbances,
and system dynamics that might not have been explicitly modeled. Real-world defense
scenarios often involve numerous factors that are difficult to model using analytical tech-
niques.

Deep neural networks have the remarkable ability to automatically learn hierarchical
representations of the input data. This allows them to extract features that are highly
relevant for the task of state estimation without requiring any manual intervention in
the feature engineering process. This capability is particularly advantageous when deal-
ing with high-dimensional sensor data. End-to-end learning simplifies the development
process for state estimators in defense systems by automating the critical task of feature
extraction.
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Chapter 3

METHODOLOGY

This section outlines the systematic approach planned to address the research problem,
which involves modeling, prediction, or control of a complex nonlinear dynamical system.
The methodology starts by mathematically defining the system, then explores deep learn-
ing frameworks for modeling, and finally discusses the practical aspects of training these
models.

3.1 Mathematical Formulation and Applications

This section formalizes the mathematical foundations underlying the models studied in
this work and outlines their relevance to real-world applications. The primary focus is on
the modeling, prediction, and control of discrete-time nonlinear dynamical systems using
modern deep learning techniques augmented with mathematical structure.

3.1.1 System Dynamics and Observation Model

We consider a general nonlinear dynamical system represented in state-space form as
follows:

xt+1 = f(xt,ut) + ηt, (3.1)

yt = h(xt) + νt, (3.2)

where:

• xt ∈ Rn: Hidden state vector at time t

• ut ∈ Rm: Control input

• yt ∈ Rp: Observable output

• f : Nonlinear transition function

• h: Nonlinear observation function

• ηt, νt: Process and measurement noise, respectively

The problem addressed in this research involves estimating xt, learning f and h, and
designing ut for optimal control, given noisy measurements {yt} and inputs {ut}.
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3.1.2 Koopman Operator-Based Formulation

To linearize the system in a higher-dimensional latent space, we adopt a Koopman oper-
ator framework. Let g : Rn → Rd be a learned lifting function mapping the original state
to a higher-dimensional space where linear dynamics are assumed:

zt = g(xt), zt+1 = Kzt + Γut, (3.3)

where:

• zt ∈ Rd: Lifted latent state

• K ∈ Rd×d: Koopman linear transition matrix

• Γ ∈ Rd×m: Control influence matrix in latent space

The functions g, K, and Γ are learned jointly using deep neural networks, enabling
linear evolution in z while capturing nonlinearities in the original state space.

3.1.3 Physics-Informed Learning Constraints

To enforce physical consistency, PINNs incorporate prior knowledge in the form of differ-
ential or algebraic equations. The loss function is augmented as:

Ltotal = Ldata + λphysics · Lphysics, (3.4)

where:

• Ldata: Prediction loss (e.g., MSE between predicted and observed values)

• Lphysics: Residual of physical constraints (e.g., ∥ẋ− f(x,u)∥2)

• λphysics: Weighting factor controlling the influence of physics

This enforces that the neural network not only fits the data but also adheres to known
governing laws (e.g., conservation of energy, mass balance, etc.).

3.1.4 Application Scenarios

The developed framework is applicable to a broad class of problems involving complex
system dynamics:

• Autonomous Systems: Accurate state estimation and prediction enable safe nav-
igation and control in robotics, UAVs, and self-driving cars.

• Industrial Process Control: Nonlinear dynamics in chemical plants, HVAC sys-
tems, or manufacturing lines can be better regulated through physics-informed pre-
dictive control.

• Climate and Environmental Modeling: Koopman-based models offer inter-
pretability for modeling weather patterns or pollutant dispersion.

• Biological Systems: Hybrid models help estimate internal physiological states
from sparse, noisy medical data for personalized medicine or drug dosing.

• Energy Systems: Renewable energy forecasting, smart grid optimization, and
battery management benefit from robust and interpretable models.
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3.1.5 Control Design Implications

Once a linear approximation of the nonlinear dynamics is obtained via Koopman lifting,
classic control strategies such as Linear Quadratic Regulator (LQR), Model Predictive
Control (MPC), or pole placement can be directly applied in the latent space:

ut = −Lzt, (3.5)

where L is the optimal feedback gain matrix computed from the Koopman-linearized
dynamics. This facilitates efficient and interpretable control design even for originally
nonlinear systems.

3.2 Problem Formulation

This subsection establishes the mathematical foundation for the system under investiga-
tion, defining it as a discrete-time nonlinear dynamical system. Such formulations are
suitable for systems with changes at specific time intervals and governed by nonlinear
relationships.

• State Transition Equation:

xt+1 = f(xt,ut) + ηt

– xt: Hidden (latent) state vector at time t.

– ut: Control input applied at time t.

– f(xt,ut): Nonlinear dynamics function.

– ηt: Process noise (e.g., Gaussian).

• Observation Equation:
yt = h(xt) + νt

– yt: Observable measurement at time t.

– h(xt): Observation (measurement) function.

– νt: Measurement noise.

Goals:

• State Estimation: Estimate xt given observations {y0, . . . ,yt}.

• System Identification: Learn f and h from observed data {yt,ut}.

• Prediction: Forecast future states xt+k or outputs yt+k.

• Control: Design control sequences ut to achieve desired behaviors.
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3.3 End-to-End Learning Framework

This subsection explores modern deep learning approaches used to model the nonlinear
system. End-to-end learning refers to directly mapping raw inputs (e.g., yt, ut) to outputs
(e.g., x̂t, ŷt+1), minimizing manual intervention.

• Deep Koopman Operators:

– Concept: Transform the nonlinear dynamics into a higher-dimensional linear
system using learned embeddings.

– Formulation: Learn g(x) such that zt = g(xt) and:

zt+1 ≈ Kzt + Γut

– Advantages: Enables linear prediction, analysis, and control using linear
systems theory.

• Physics-Informed Neural Networks (PINNs):

– Concept: Embed known physical laws into the training loss function.

– Mechanism: Combine data-driven fitting with penalty terms for violation of
governing equations (e.g., PDE residuals).

– Advantages: Better generalization, physical consistency, useful when data is
sparse or noisy.

• Recurrent Neural Networks (RNNs), LSTMs, and Transformers:

– RNNs: Capture temporal dependencies via a recurrent hidden state.

– LSTMs/GRUs: Improve long-term memory through gating mechanisms.

– Transformers: Use attention mechanisms to capture long-range dependen-
cies, suitable for complex time-series.

– Application: Model yt, ut → x̂t or ŷt+1 for forecasting or simulation.

3.4 Training and Optimization

This subsection discusses practical training considerations, including loss functions, data
types, and computational efficiency.

• Loss Functions:

– MSE:

LMSE =
1

T

T∑
t=1

(yt − ŷt)
2

– Physics Constraints: Added to the loss to enforce physical laws (e.g., con-
servation laws, PDE residuals).

– Energy Conservation: Penalize discrepancies in conserved quantities.

– Other Losses: MAE, cross-entropy (for classification), or task-specific costs.
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Figure 3.1: Epoch values with n =1000, the loss in this case is much higer (28) so n is
too small

• Training Data: Synthetic vs. Real-World:

– Synthetic Data: Simulated with known f and h.

∗ Pros: Abundant, controlled, full ground truth available.

∗ Cons: May not generalize due to simulator gap.

– Real-World Data: Collected from the physical system.

∗ Pros: Reflects true system dynamics and noise.

∗ Cons: Scarce, noisy, expensive, often lacks ground truth.

– Strategy: Pre-train on synthetic data, fine-tune on real data. Techniques
include domain adaptation and domain randomization.

• Computational Considerations:

– Challenges: High compute cost for training large models on long sequences
or with complex constraints.

– Factors: Model size, dataset size, sequence length, dimensionality, physics
penalty terms.

– Real-Time Inference: Models for online use must be efficient in both com-
putation and memory.

– Optimization Strategies: Gradient accumulation, mixed-precision training,
hardware acceleration (GPUs, TPUs).

Changing n
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Table 3.1: Summary of Methodology Components
Stage Description
Problem Formulation Define the system as a discrete-time nonlinear dynam-

ical system with state transition and observation equa-
tions. Identify key goals such as state estimation, system
identification, and control.

Model Selection Investigate deep learning frameworks suitable for model-
ing nonlinear dynamics, including Koopman operators,
Physics-Informed Neural Networks (PINNs), and recur-
rent architectures like LSTMs and Transformers.

Model Implementa-
tion

Construct neural architectures for each selected ap-
proach. Define network structure and corresponding
mappings from input observations and controls to la-
tent states or outputs.

Training Strategy Train using a combination of synthetic and real-world
datasets. Use loss functions that incorporate prediction
accuracy and physical constraints.

Optimization Tech-
niques

Incorporate regularization, gradient-based optimization,
and resampling strategies where appropriate. Balance
model complexity with computational feasibility.

Evaluation Assess model performance based on reconstruction fi-
delity, physical consistency, and generalization to unseen
scenarios. Compare results across modeling approaches.

Figure 3.2: Epoch values with n =10000 , the loss in this case is much lower and can be
further reduced by using a larger n but that leads to more computational time.
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Chapter 4

Experimental Setup and Design

This section outlines the experimental methodology used to evaluate the proposed deep
learning frameworks on nonlinear dynamical systems. It describes the datasets, prepro-
cessing strategies, experimental protocols, model configurations, and performance metrics.

4.1 Objectives

The primary goals of the experimental study are to:

• Evaluate the ability of deep Koopman and PINN models to learn underlying system
dynamics from noisy observations and control inputs.

• Compare the performance of these models in terms of prediction accuracy, state
estimation fidelity, and physical consistency.

• Investigate the impact of incorporating physical constraints and lifting strategies on
model generalization and data efficiency.

4.2 Datasets

Two categories of datasets are used to simulate realistic nonlinear systems:

• Synthetic Benchmark System: A simulated nonlinear system with known ground
truth dynamics and states, such as the Lorenz system or a nonlinear spring-mass-
damper system. These serve as controlled environments to evaluate state estimation
and predictive capabilities.

• Real-World-Inspired Dataset: A more complex simulation mimicking a real-
world scenario such as a soft robotic manipulator or a chemical process plant. Sensor
noise and unmodeled dynamics are included to simulate real operational challenges.

Each dataset consists of sequences of control inputs {ut}, system observations {yt},
and in the synthetic case, ground truth latent states {xt}.

4.2.1 Preprocessing

• Normalization: All features are scaled to zero mean and unit variance to facilitate
stable neural network training.
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• Noise Injection: Controlled Gaussian noise is added to test robustness under
imperfect measurements.

• Time Windowing: Data is segmented into overlapping time windows to train
sequential models like LSTMs and Transformers.

4.2.2 Model Configuration

We evaluate the following model architectures:

• Deep Koopman Network: Uses a multi-layer perceptron (MLP) to learn the
lifting function g(x), along with linear layers modeling the Koopman operator K
and control matrix Γ.

• Physics-Informed Neural Network (PINN): An MLP trained on both obser-
vation loss and residuals of known governing equations (e.g., conservation laws).

• Recurrent Models (RNN, LSTM, Transformer): Baseline black-box archi-
tectures trained end-to-end to map past (yt,ut) to future predictions.

Hyperparameters: (consistent across models unless stated otherwise)

• Hidden Layers: 3–5 fully connected layers with 64–256 units

• Activation: ReLU or tanh

• Optimizer: Adam with learning rate 1× 10−3

• Batch Size: 64

• Training Epochs: 100–300 depending on convergence

4.3 Training Strategy

• Split: 70% training, 15% validation, 15% test.

• Loss Components:

– Koopman: L = ∥zt+1 −Kzt − Γut∥2

– PINN: L = Ldata + λphysicsLphysics

• Regularization: L2 weight decay and dropout to prevent overfitting.

• Fine-tuning: For hybrid models, pre-training on synthetic data followed by fine-
tuning on noisy or real-world data.
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4.3.1 Evaluation Metrics

Model performance is assessed using the following metrics:

• Prediction Accuracy (MSE): Mean squared error between predicted and true
states/observations.

• State Estimation Error: When ground truth xt is known, we compute ∥xt−x̂t∥2.

• Physical Residual: Norm of residuals from the governing equations, indicating
physical consistency.

• Stability: Eigenvalue analysis of learned Koopman operator to ensure dynamic
stability.

• Computational Efficiency: Time per training epoch and inference latency per
sequence.

4.3.2 Experimental Variants

To study the impact of model design choices, we define multiple variants:

• Baseline: RNN or LSTM without physical constraints.

• Koopman-Lifted: Includes Koopman operator with learned linear dynamics.

• PINN-Augmented: Incorporates governing equation constraints into training.

• Hybrid: Koopman-based latent dynamics with PINN regularization.

4.4 Implementation Details

All models are implemented in PyTorch and trained using NVIDIA GPUs (e.g., RTX
3090). Training and inference are managed through custom data loaders and experiment
tracking via Weights & Biases.
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Table 4.1: Summary of Experimental Setup and Design
Component Description
System Under Study A discrete-time nonlinear dynamical system with un-

known latent dynamics and partially observable out-
puts.

Data Sources Use of both synthetic datasets (generated via known dy-
namics) and real-world datasets (collected from sensors
or experimental platforms).

Input Features Observation data (e.g., sensor outputs), control inputs
(if applicable), and time-series history used for training
and inference.

Model Variants Experiments conducted using multiple model architec-
tures including Deep Koopman models, PINNs, LSTMs,
and Transformers.

Training Protocol Pre-training on synthetic data followed by fine-tuning
on real-world data. Employ early stopping, learning rate
scheduling, and checkpointing.

Evaluation Criteria Assessment based on prediction accuracy, latent state
recovery, adherence to physical laws, and qualitative
consistency with known behavior.

Computational Re-
sources

Models trained on GPU-accelerated environments using
Python, PyTorch/TensorFlow, and scientific computing
libraries.
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Chapter 5

RESULTS and DISCUSSION

5.1 Results and Discussion

The experimental results across the diverse model architectures—Physics-Informed Neu-
ral Networks (PINNs), LSTM, Koopman Operator-based networks, and the hybrid RNN-
Kalman approaches—are evaluated on two benchmark datasets: the Lorenz system and
the VID UAV dataset. The VID dataset, derived from defense-oriented multirotor UAVs,
offers realistic sensor data and trajectory tracking scenarios where accurate state estima-
tion is mission-critical.

5.1.1 Benchmark Results on Lorenz System

The Lorenz system provides a controlled yet chaotic nonlinear environment to test the
fidelity of each model. The results demonstrate that:

• The PINN model achieves the lowest RMSE on trajectory prediction due to its
incorporation of governing equations.

• The Koopman-based model exhibits superior long-term forecasting stability ow-
ing to its linear representation in lifted space.

• LSTM and RNN models, while flexible, show degradation in accuracy for long
prediction horizons, a known issue with recurrent networks in chaotic systems.

5.1.2 Defense-Oriented UAV State Estimation Results

In the second experiment, the LSTM model was trained using the VID dataset, which
includes real-world IMU and control signal data from a multirotor UAV. This experiment
reflects a practical defense system requiring high-fidelity state estimation.

• The LSTM achieved high accuracy in estimating position and velocity states, par-
ticularly in stable hover and slow maneuvering regimes.

• During aggressive maneuvers or sensor dropout intervals, the model performance
degraded slightly, suggesting potential improvements via hybrid filters (e.g., LSTM
+ Kalman).

• The learned model was capable of real-time inference with latency suitable for on-
board deployment, supporting tactical autonomy use cases.
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Figure 5.1: Results for State Estimation for Estimation poistion of a target

5.1.3 Model Comparison and Insights

• Interpretability: PINNs and Koopman methods provide more interpretability
than deep RNNs.

• Data Efficiency: PINNs perform well with limited data due to physical priors,
while LSTMs require larger datasets.

• Robustness: Hybrid approaches combining data-driven learning and filtering tech-
niques (e.g., RNN + Kalman Filter) offer improved resilience under noise.

5.1.4 Implications for Defense Applications

The LSTM-based approach on the VID dataset highlights the feasibility of deploying deep
learning models for real-time UAV state estimation in defense systems. Future work may
extend to multi-agent systems, adversarial scenarios, and integration with decision-making
pipelines.

5.2 Qualitative Analysis

The qualitative prediction trajectories (not shown due to space constraints) further reveal
that physics-aware models (PINN and Hybrid) are capable of accurately capturing system
behavior, especially in stiff or discontinuous regimes where black-box models struggle. The
Hybrid model’s latent Koopman space also offers interpretability benefits, allowing linear
control synthesis and modal analysis.

Table 5.1: Comparison of End-to-End Learning Frameworks

Method Data Type Phy Use Key Feature

Koopman Op State and control No Learns linear dynamics in lifted space
PINNs Observation and PDE Yes Enforces physical laws via loss terms
RNN / LSTM Observation sequences No Captures sequential dependencies
Transformers Long time-series No Attention-based sequence modeling
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Figure 5.2: Loss Decreases over iterations

Figure 5.3: VanDerPol
Figure 5.4: Lorentz

Figure 5.5: Comparison of VanDerPol and Lorentz
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5.3 Discussion

Overall, the results validate the hypothesis that incorporating domain knowledge (e.g.,
physics constraints and Koopman embeddings) significantly enhances the learning of com-
plex nonlinear systems. While RNNs and Transformers offer modeling flexibility, their
generalization is poor under limited data and noise. The Hybrid model emerges as the
best-performing approach across convergence, prediction, and robustness metrics. How-
ever, it also incurs higher computational costs due to the dual loss terms and network
complexity. The experiment was designed to evaluate the effectiveness of the Koopman-
PINN hybrid model for state estimation in nonlinear dynamical systems subject to noisy
observations. Two benchmark systems—the Van der Pol oscillator and the Lorenz attrac-
tor—were selected due to their well-known nonlinear and chaotic dynamics. Synthetic
trajectories were generated by numerically integrating the respective system equations
over 100 timesteps with a fixed timestep of 0.01 seconds, starting from randomly initial-
ized states sampled from a standard normal distribution. To simulate realistic sensor
noise, Gaussian noise with a standard deviation of 0.05 was added to the observed states.
The model architecture comprised an encoder that mapped noisy observations into a 4-
dimensional latent space, a linear Koopman operator that evolved the latent state, and
a decoder that reconstructed the predicted next states. Training was conducted over 500
episodes using a combined loss function that included both the mean squared error be-
tween predicted and true states and a physics-informed term enforcing consistency with
known system dynamics. The Adam optimizer with a learning rate of 0.001 was used
to update the model parameters. All experiments were implemented in PyTorch, with
training performed on CPU or GPU depending on resource availability. Performance
was evaluated based on prediction accuracy and adherence to physical laws, monitored
through learning curves and loss metrics.

Future work may explore meta-learning to further improve generalization, or the use
of sparse Koopman observables to reduce training time while retaining accuracy.
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Chapter 6

CONCLUSION AND FUTURE SCOPE

In conclusion, end-to-end learning has emerged as a powerful paradigm for state estimation
in nonlinear dynamical systems, offering promising alternatives to traditional model-based
approaches. Deep Koopman Operators provide a unique way to linearize nonlinear dy-
namics by lifting the system into a higher-dimensional space, enabling the application of
linear system theory for state estimation. Physics-Informed Neural Networks leverage the
knowledge of governing physical equations by incorporating them into the loss function,
guiding the learning process towards physically plausible and data-consistent solutions.
Recurrent Neural Networks, including LSTMs and Transformers, excel at learning com-
plex temporal dependencies directly from data, making them well-suited for estimating
states in systems with intricate dynamics.
End-to-end learning represents a highly promising paradigm for state estimation in non-
linear defense systems, offering significant potential advantages in terms of adaptability,
achievable accuracy, and a reduced dependency on explicit system modeling. However,
the field still faces substantial challenges, particularly in the areas of data requirements,
model interpretability, vulnerability to adversarial attacks, and computational constraints,
all of which must be effectively addressed before widespread adoption can occur in crit-
ical defense applications. The potential benefits of end-to-end learning for enhancing
the capabilities of autonomous systems, improving the performance of target tracking
and surveillance, enabling robust sensor fusion, and strengthening the security of cyber-
physical systems within the defense domain are indeed significant. Nevertheless, the
inherent challenges related to data availability, the interpretability of the models, their
susceptibility to security vulnerabilities, and limitations in deployment must be carefully
considered and actively mitigated through focused and sustained research and develop-
ment efforts.
Future research and development in this critical area should prioritize the creation of data-
efficient learning techniques that are specifically tailored to the unique data constraints
often encountered in defense applications. Continued efforts are essential to enhance the
interpretability and explainability of end-to-end state estimators, as this will be crucial for
building trust and enabling effective human oversight in their operation. The development
of robust defense mechanisms against adversarial attacks is of paramount importance for
ensuring the security and overall reliability of these systems, especially when they are de-
ployed in the face of potential malicious manipulation. Furthermore, the development of
efficient and lightweight neural network architectures will be absolutely necessary to enable
the real-time deployment of these advanced techniques on the resource-limited military
platforms that are common in the field. The further exploration of hybrid approaches that
strategically combine the inherent strengths of end-to-end learning with well-established
traditional state estimation methods holds considerable potential for addressing the com-
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plex and evolving challenges within the defense sector. Finally, continued investigation
into emerging areas such as physics-informed neural networks and continuous-time state
estimation could yield significant advancements in the field, pushing the boundaries of
what is currently achievable in state estimation for nonlinear defense systems.

State estimation plays a crucial role in defense applications such as missile guidance,
radar tracking, UAV navigation, underwater vehicle control, and electronic warfare. Tra-
ditional estimation methods like Extended Kalman Filters (EKF), Unscented Kalman Fil-
ters (UKF), and Particle Filters (PF) struggle with the highly nonlinear, high-dimensional,
and uncertain nature of modern defense systems. End-to-end deep learning approaches,
such as Physics-Informed Neural Networks (PINNs), Koopman Neural Networks, and Re-
current Neural Networks (RNNs), offer significant advantages by learning directly from
sensor data, without requiring precise mathematical models.
In missile tracking and interception, nonlinear aerodynamics and unpredictable envi-
ronmental disturbances make accurate state estimation difficult. End-to-end learning
models, trained on historical missile trajectories, can estimate missile position, velocity,
and acceleration more accurately than Kalman Filters, especially under high-G maneu-
vers. Similarly, in radar target tracking, deep learning-based state estimators process raw
radar signals to predict target motion under electronic countermeasures (ECM) and low
signal-to-noise ratio (SNR) conditions. Koopman-based approaches can linearize complex
aircraft or UAV dynamics, allowing efficient tracking in adversarial environments.
For autonomous defense drones and UAVs, state estimation is vital for real-time naviga-
tion, especially when GPS signals are jammed or denied. Deep learning models such as
Transformer-based sequential estimators can fuse multiple sensor inputs (IMU, LiDAR,
radar) to estimate position and velocity in real-time. Graph Neural Networks (GNNs)
further enable swarm intelligence, allowing multiple UAVs to share and refine state es-
timates for improved situational awareness. Similarly, in underwater defense systems,
where traditional filters struggle due to nonlinear hydrodynamics and low-visibility sonar
data, deep learning-based estimators improve submarine and torpedo state prediction.
In electronic warfare, high-speed signal classification and threat detection depend on state
estimation of unknown, dynamic radio frequency (RF) environments. End-to-end learn-
ing can model nonlinear signal propagation and quickly adapt to jamming and spoofing
threats. Neural ODEs and Bayesian Neural Networks (BNNs) provide uncertainty-aware
state estimation, crucial for robust decision-making in adversarial scenarios.
Each of these methodologies presents its own set of advantages and challenges. Deep
Koopman Operators offer a global linear representation but require careful selection of
observables and can suffer from high dimensionality. PINNs effectively integrate physical
knowledge but can be sensitive to the design of the loss function and the balance between
data and physics constraints. RNNs are adept at learning temporal patterns but can be
computationally intensive to train and may require large amounts of data.

6.1 Future Scope

Emerging trends and potential future research areas in this field include the exploration
of continuous-time state estimation using neural networks. This approach aims to di-
rectly estimate the system’s state as a continuous function of time, potentially offering
significant advantages for handling asynchronous sensor data and for inferring the state at
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any arbitrary point in time. Another important direction involves developing end-to-end
models that can not only accurately estimate the system’s state but also provide reliable
estimates of the uncertainty associated with their predictions. This capability is crucial
for risk assessment and informed decision-making in defense applications. Research is
also needed to improve the domain adaptation and generalization capabilities of end-to-
end state estimators, enabling models trained on simulated or limited real-world data to
perform effectively in new and previously unseen operational environments and scenarios.
Given the critical nature of many defense applications, continued focus on developing
explainable and trustworthy AI techniques for state estimation is essential. This will help
to ensure that these models are not only accurate but also interpretable and reliable for
use in situations where human oversight and understanding are paramount. Finally, with
the increasing prevalence of edge computing in defense systems, there is a growing need
for the development of efficient end-to-end state estimation models that can be deployed
and run directly on edge devices, thereby reducing latency and improving real-time per-
formance.
Future research in this field is likely to focus on addressing the current limitations and
further enhancing the capabilities of these end-to-end learning frameworks. This includes
developing more robust and efficient methods for learning Koopman embeddings, improv-
ing the design and optimization of physics-informed loss functions for complex systems,
and exploring novel RNN architectures and training techniques for better accuracy and
efficiency. Investigating hybrid approaches that intelligently combine the strengths of
different methodologies holds significant potential for achieving superior state estimation
performance. Furthermore, developing better strategies for generating high-fidelity syn-
thetic data and effectively bridging the gap with real-world applications will be crucial for
the wider adoption of these techniques. Finally, addressing the interpretability of deep
learning models used for state estimation remains an important area for future work,
particularly for safety-critical applications.
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Appendix A

Code
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