
Application of XGBoost Algorithm and Deep Learning 

Techniques for Severity Assessment of Software Defect 

Reports 

 

 
A DISSERTATION 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE AWARD OF DEGREE 

OF 

MASTER OF TECHNOLOGY 

IN 

SOFTWARE ENGINEERING 

 

 
Submitted By: 

AKANKSHA CHAUHAN 

2K18/SWE/02 

Under the supervision of 

Dr. RUCHIKA MALHOTRA 

(Associate Professor) 
 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College Of engineering) 

Bawana Road, Delhi-110042 

JUNE, 2020 



i  

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

 
DELHI TECHNOLOGICAL UNIVERSITY 

 
(Formerly Delhi College Of engineering) 

Bawana Road, Delhi-110042 

 
 

 DECLARATION 
 

 

I, Akanksha Chauhan, Roll No. 2K18/SWE/02 student of M.Tech (Software 

Engineering), hereby declare that the Project Dissertation titled 

“Application of XGBoost Algorithm and Deep Learning Techniques for 

Severity Assessment of Software Defect Reports” which is submitted by 

me to the Department of Computer Science & Engineering , Delhi 

Technological University, Delhi in partial fulfillment for the requirement of 

the award of degree of Master of Technology, is original and not copied from  

any source without proper citation. This work has not previously formed the 

basis for the award of any Degree, Diploma Associateship, Fellowship or 

other similar title or recognition. 

 

 

 

 

 

 

 

 

 
Place: DTU, Delhi                                                                     Akanksha Chauhan 

Date: 30-06-2020 (2K18/SWE/02) 

 

 

 



ii  

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

 
DELHI TECHNOLOGICAL UNIVERSITY 

 
(Formerly Delhi College Of engineering) 

Bawana Road, Delhi-110042 

 

 

 CERTIFICATE 
 

 

I hereby certify that the Project Dissertation titled “Application of XGBoost 

Algorithm and Deep Learning Techniques for Severity Assessment of 

Software Defect Reports” which is submitted by Akanksha Chauhan, Roll 

No. 2K18/SWE/02, Department of Computer Science & Engineering, Delhi 

Technological University, Delhi in partial fulfillment for the requirement of 

the award of degree of Master of Technology (Software Engineering) is a 

record of a project work carried out by the student under my supervision. To 

the best of my knowledge this work has not been submitted in part or full for 

any Degree or Diploma to this University or elsewhere. 

 

 

 

 

 
Place: Delhi                                                             (Dr. Ruchika Malhotra) 

Date: 30-06-2020 SUPERVISOR 

                                Associate Professor 

                            Department of C.S.E. 

            Delhi Technological University 

 

  



iii  

                                              ABSTRACT 

 

 

Software is present in every aspect of our everyday life, and defects are bound to be found 

during the testing of the software, no matter how small. It is therefore imperative for 

software testing engineers to assess the severity of software defects to allocate proper 

resources for the correction of the defects and prevent software crashes. In this study, we 

have proposed the use of the Extreme Gradient Boosting Technique and deep learning 

techniques: Convolutional Neural Network and Recurrent Neural Network to predict the 

severity of the defects occurring in the software. AUC and sensitivity are the metrics used 

to evaluate the results. All three techniques: XGBoost algorithm, CNN and RNN have 

performed really well in predicting the severities for all the defects. It has also been noted 

that XGBoost algorithm is the most efficient in predicting high severity defects, while 

the performance of deep learning techniques is excellent for the highest as well as the 

lowest severity defects. For the rest of the severity values, the performance of all the three 

classifiers is fairly consistent. 
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CHAPTER 1 INTRODUCTION 

 

1.1. OVERVIEW 

 
Software programs are present in every walk of our daily lives. From a fitness tracker 

tracking our morning walks to centralized home solutions like Google Nest, Apple 

HomePod etc. which control the lights of our room at night among various other things, 

the use of software programs is so extensive that now we cannot imagine our lives without 

them. After the development of a software, it goes through a rigorous testing phase before 

being used by the end-users/customers. However, it is almost impossible to perform an 

exhaustive testing of any software. This leads to the software accumulating one or more 

defect(s). A software defect may be defined as an erroneous operation of a software when 

it does not meet the software requirements specified in the software requirements 

specifications document. A Software is bound to pick up some defects while in the 

development phase, and it is the job of the testing engineers to assess these defects and 

their impact on that software. These defects cause the software to behave abnormally and 

the software might end abruptly or crash, putting the reputation of the developing 

organization at risk. It is to be noted that not every defect has the same impact. Some 

defects, if triggered, can cause a major damage to the software making it extremely 

important as well as urgent to deal with them first.  Some other defects might be so trivial 

that they have little or no impact on the working of the software. The extent of this impact 

is known as the severity of the defect. The severity of a defect may be defined as the level 

of impact of a failure on a software. In critical systems, mainly real-time systems like 

those of NASA, it is highly imperative that the testing engineers are sure that the software 

will not crash while operating as it may cause major damage to the project and the 

reputation of the organization. Similarly, in banking softwares and air traffic control, the 

stakes associated with software failures is so high that even the slightest defect in the 

software might cause huge losses in terms of money and lives. It is to be noted that the 

severity and the priority of a defect may not be the same. For example, it might be the 

case that a defect is required to be removed immediately as it is violating some copyright 

but the damage caused by the defect is not that high as it is not affecting the usability of 

the program. In such cases, the priority of the defect is high, but the severity is not. In this 

research, however, we are discussing the severity of the defect. A defect may not occur 

immediately, but if and when it occurs, it may cause some severe damage. In software 



2 

 

testing, it is a well-known fact that the sooner the defects are recognized, the lesser it 

costs to correct them, hence, minimizing the overall cost of software development. 

Severity assessment can be used for this purpose as well, to assess the severity of the 

reported defects in time so that the defects can be rectified causing as less damage to the 

software as possible and thereby controlling the overall cost of the software. Software 

defect reports are an example of user generated content and are generated by the end-user 

of the software whenever the software does not perform in its intended manner. These 

defect reports are in the form of text, which is an example of highly unstructured data. 

Bug tracking software such as Jira, Bugzilla, Zoho etc. are integrated with the project 

development software in organizations and are used to keep a track of the defect. Most 

of these software programs allow the end-users to directly report a defect. These software 

programs are also known as issue tracking systems and their databases typically include 

the defect reports, time of occurrence of the defect, id of the person who reported the bug 

along with the severity of the defect. As already mentioned, these defect reports are in 

the form of the text and are highly unstructured. To assess the severity of defects from 

such an unstructured data we need to clean the data, and extract important words which 

will prove useful in predicting the severity of the defect. 

Almost all the work that has been done previously has used standard data mining 

techniques or basic ML techniques, to comprehend software defect recognizers from 

historical records of static code features.  Those data mining methods work only when 

the input data that is being fed to the model is highly structured, which is rarely the case, 

if ever. In this study, we proffer three severity classification models using ML & DL 

algorithms and apply it to a database that is largely unstructured. This method would 

provide us with a far better approach to tackle the problem at hand as compared to the 

previously explored data mining methods or nascent stage ML methods. Thus, we 

propose an automated method to assess the severity of the software defects by using a 

machine learning algorithm known as XGBoost and also a couple of deep learning 

algorithms, namely, CNN & RNN. One of the main contributions of this work is that it 

successfully addresses an important issue (automated defect severity assessment from 

unstructured or loosely structured text), which has been largely ignored by the research 

community. Though a lot of work has been done in this field, there's still a long way to 

go when it comes to the use of ensemble methods and deep learning techniques to predict 

the severity. In this study, text mining techniques have been employed along with 

XGBoost algorithm and deep learning techniques for predicting the severity of software 
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defect reports. We have used XGBoost, which is the strongest existing ensemble machine 

learning method. It is trusted by a number of winning teams of machine learning 

competitions. A large number of teams that have won machine learning competitions 

organized by competition sites such as kaggle, Topcoder etc. have done so using the 

XGBoost algorithm.  The performance of this method is comparable to deep learning 

methods. We have also employed deep learning techniques: CNN and RNN using word 

embeddings for the same. 

1.2. RESEARCH OBJECTIVES 

 
The research explores the various available techniques for multiclass text classification 

and applies it on the PITS-A dataset in order to analyze and compare those techniques. 

The aim is to automate the process of assignment of severity values to the software defect 

reports based on certain textual cues using ML & DL models. In this study, we have used 

two deep learning models, namely, Convolutional Neural Networks and Recurrent Neural 

Networks, and one machine learning model, namely, XGBoost. A primary approach to 

decipher the accurate severity level of a software defect report is to look for some text-

based evidence. Therefore, the textual features are fed as input to the classifiers so that 

they can accurately predict the severity of a software defect report. All the three classifiers 

employed in this study, i.e., CNN, RNN and XGBoost are fed the exact same input 

features. The performance of each classifier is validated on the NASA’s PITS-A dataset. 

The results of each of the classifiers are compared against one another. The main target 

is to achieve a high efficacy for the severity assessment tasks pertaining to software defect 

reports after performing tuning of different hyper-parameters of the afore-mentioned 

classifiers and deciding on which approach out of the three fares the best in terms of 

efficiency. 

1.3. ORGANIZATION OF THESIS 

 
The thesis has been divided into five chapters. Each chapter deals with one component 

related to this thesis. Chapter 1 being introduction to this thesis, gives us the brief 

introduction about the project, thereafter chapter 2 tells us about the literature survey 

which further includes related work section. Following up is chapter 3 which tells about 

the proposed work. Chapter 4 provides us with the experimental results followed by the 

final chapter, chapter 5, which is the conclusion of the thesis. 
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CHAPTER 2 LITERATURE SURVEY 
 

The chapter explains various kinds of severity levels, the difference between severity 

& priority, and the work done so far in the field of automatic severity assessment of 

software defect reports. 

2.1. TYPES OF DEFECT SEVERITY LEVELS 

Severity defines the upper limit to which a particular software defect can hamper the 

normal functioning of an application or a system. Severity lets us know how devastating 

to the system a particular defect can be and what is its impact. Different organizations or 

bodies usually define different levels of severity based on their understanding of the topic. 

However, on a generic level there are four defect severity levels which are as follows: 

1. Critical 

A defect that brings the system to a complete halt or which disrupts the natural flow of 

the system resulting in the system’s collapse is termed as a critical severity defect. If, for 

any particular reason, the application crashes or it becomes unusable, the defect is 

categorized as critical. For Example: If in a social media platform such as Facebook or 

twitter, after you have entered the correct username and password, instead of granting 

you access to your homepage, the application crashes or throws a fatal error message, the 

defect is registered as critical. 

2. Major 

If any particular major feature implemented in a program is not working in the way it was 

intended to work, such a defect is termed as a major severity defect. Basically, if a major 

feature is behaving in a manner that is contradictory to its defined use-cases & 

requirements, the defect is categorized as major. For Example: If in an email service 

provider such as Gmail or iCloud, the CC section is not taking more than one recipient, 

the defect is registered as a major defect because a major feature of the application is 

malfunctioning. 

3. Minor 

If any particular feature implemented in a program is not working in the way it was 

intended to work, but the impact on the program due to that difference is miniscule, such 

a defect is termed as a minor severity defect. In case of a minor defect, the particular 

feature does behave in a manner which contradicts its use-cases & requirements, but the 



5 

 

consequences of such a defect are very narrow. For Example: In an email service provider 

such as Gmail or iCloud, there is a section called “Terms and Conditions” and in that 

section, there are several links pertaining to the terms & conditions of the website. If one 

of those links stop working, it is registered as a minor defect as it doesn’t have a huge 

implication on the workability of the application. 

4. Low 

Any sort of graphical or cosmetic defect including spelling errors, font issues, alignment 

issues etc. is categorized as a low severity defect. A low severity defect is one in which 

there is almost no impact on the functionality but it is still a valid defect by definition and 

it should be rectified. For Example: In an email service provider such as Gmail or iCloud, 

there is always a “License page”. If there is a spelling error or alignment issue on that 

page, such a defect is registered as a low severity defect. 

2.2. SEVERITY VS PRIORITY 

Severity of a defect report is the upper limit to which a particular software defect can 

hamper the normal functioning of an application or a system. Priority defines the 

sequence for the developers in which they should rectify the defects. A higher priority 

defect must be dealt with first compared to a lower priority one. Priority pertains to 

scheduling, whereas severity deals with functionality. Generically speaking, priority is 

classified into three types, namely, low, medium & high, whereas severity is classified 

into four types, namely, critical, major, minor & low. Priority dictates how soon a defect 

needs to be corrected, whereas severity depicts the seriousness of any particular defect. 

The priority of any defect is finalized after consulting with the client or manager, whereas 

the severity of any defect is finalized by the QA engineers. The value of priority is 

subjective in nature and it may change in the future depending upon the latest project 

situations. On the other hand, the value of severity is objective and is much less likely to 

change during the course of the project as compared to the priority value. The level of 

priority depends upon the customer’s requirements, whereas the value of severity depends 

largely on the technical aspect of the application. Basically, priority is driven by business 

value and severity is driven by functionality. High severity & low priority defect means 

that the defect is a critical one but it does not warrant an immediate rectification. On the 

other hand, High priority & low severity defect means that the defect is not a critical one 

but it needs to be fixed immediately.   
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Fig. 2.1 Severity vs Priority 

2.3. RELATED WORK 

Menzies and Marcus [1] were the first ones who worked on the severity assessment of 

software defect reports and they used rule learning algorithms to do so. They designed a 

tool named SEVERIS. SEVERIS was applied to NASA’s PITS database. PITS contained 

data collected over ten years including issues of robotic satellite mission and human-rated 

systems. The system was applied to 5 datasets from PITS database: PITS A, PITS B, 

PITS C, PITS D, PITS E, which contained issues of five robotic missions of NASA. The 

tool was used to review reports and raise an alert if the predicted severity was anomalous. 

Cubranic and Murphy [2] used machine learning techniques for automatic bug triage. 

Bug triage refers to what needs to be done with a bug if and when it is reported. Their 

work was to assign the developers a particular bug based on the description of the bug as 

entered by the user and developers’ skills. They tested their approach on Eclipse bug 

reports and used Naive Bayes Classifier for classifying the bug reports. Lamkanfi et al. 

[3] compared various machine learning methods to assess the severity of reported bugs 

on three open-source systems: Mozilla, Eclipse and GNOME. They clubbed the six 

severity levels: blocker, critical, major, normal, minor, and trivial into two: severe and 

non-severe. Non-severe included trivial and minor whereas severe included blocker, 

critical and major. Normal severity bugs were not taken into account. The classifiers used 

by Lamkanfi et al. [3] were Naive Bayes, 1,2,3,4-Nearest neighbors, Naive Bayes 

Multinomial, and SVM using RBF kernel. Orthogonal Defect Classification is the most 
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influential framework for defect classification and analysis. However, it does require 

intensive human labor and expertise of both ODC and domain knowledge to classify the 

defects. Huang et al. [4] worked to automate ODC by treating it as a supervised text 

classification problem by using SVM classifier. Patil [5] used Explicit Semantic Analysis 

to compute semantic similarity between defect reports and defect labels based on the 

concept. The defect label was assigned to the defect report based on its similarity with 

the defect report. Yang et al. [6] worked with three prevalent feature selection schemes: 

information gain, correlation coefficient, and chi-square to select the best features and 

finally used Multinomial Naive Bayes Classifier to predict the bugs. Yang et al. [7] 

worked on a textual emotion words-based dictionary, combining it with Naive Bayes 

Multinomial classifier to assess the severity of defect reports.  Chaturvedi and Singh in 

[8] determined the bug severity on the software bug reports dataset obtained from 

NASA's PROMISE repository. They used the following machine learning techniques: 

Naïve Bayes, Support Vector Machine, Naïve Bayes Multinomial, k-Nearest Neighbour, 

J48, and RIPPER to predict the severity of bugs in the bug reports. Ramay et al. [9] 

applied deep learning methods to predict the severity of bug reports of two open-source 

systems: Eclipse and Mozilla. Similar to Lamkanfi et al. [3], they clubbed the six 

severities into two: severe and non-severe. They also considered the emotion score of the 

bug reports as users are very expressive about reporting the bugs. Senti4SD repository 

was used to calculate the emotion score of the bug reports. MNB, RF, CNN, and LSTM 

were used to predict the severity of the reported bugs.  

Table 2.1: Work done in the field of Severity Assessment 

Year of 

Publication 
Author Dataset 

Techniques 

Used 
Conclusion 

 

2008 

 

Menzies and 

Marcus [1] 

 

PITS Rule Learning 

SEVERIS is a 

good predictor 

for issue severity 

levels. 

 

2004 

 

Cubranic and 

Murphy [2] 

 

Eclipse NB 

NB classifier 

performed bug 

triaging with 30 

% accuracy. 
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2010 

 

Lamkanfi et 

al. [3] 

 

Mozilla, Eclipse 

and GNOME. 

NB, 1-NN, 

MNB, SVM 

using RBF 

kernel. 

NB classifier 

outperforms all 

the others. 

 

2015 

 

Huang et al. 

[4] 

403 defect 

records provided 

by the industrial 

company P. 

 

ODC using 

SVM. 

AutoODC 

classified defects 

with an accuracy 

of 80.2 %.  

 

 

 

2017 

 

 

 

Patil [5] 

200 from Mahout 

JIRA, 200 from 

Lucene JIRA 

repository, and 

100 from 

OpenNLP JIRA 

repository. 

 

 

Explicit 

Semantic 

Analysis. 

Concept based 

classification 

proves to be a 

promising 

approach for 

software defect 

classification. 

 

 

 

2012 

 

 

 

Yang et al. [6] 

 

 

 

Eclipse and 

Mozilla. 

Feature selection 

methods like 

information gain, 

correlation 

coefficient, and 

chi-square with 

MNB. 

This study shows 

that feature 

selection can be 

used to improve 

the accuracy of 

severity 

prediction. 

 

2017 

 

Yang et al [7] 

 

Eclipse, Android 

and JBoss. 

Textual emotion 

words-based 

dictionary with 

MNB. 

The proposed 

approach 

outperforms all 

the others. 

 

 

 

2012 

 

 

 

Chaturvedi 

and Singh [8] 

 

 

 

PITS 

 

 

NB, SVM, MNB, 

kNN, J48, and 

RIPPER. 

Appropriate 

number of terms 

using InfoGain 

observed to be 

125. Best F-

Scores for 

severity level 2, 3 
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& 4 by almost all 

ML techniques. 

 

 

2019 

 

 

Ramay et al. 

[9] 

 

 

Eclipse and 

Mozilla. 

Deep Neural 

classifier 

consisting of 

CNN using 

emotion score of 

defect reports. 

The proposed 

approach 

outperforms the 

state-of-the-art 

by 7.90% in 

terms of f-score. 

 

In this study, our goal is the same as Menzies and Marcus [1], that is to accurately predict 

the severity of bug reports and we have employed XGBoost algorithm and deep learning 

methods: CNN and RNN for the same.  
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CHAPTER 3 PROPOSED METHOD 

 

In this project, we have worked on the dataset obtained from NASA's PITS database. The 

dataset contains defect reports in textual form along with the severity value of the defects. 

We divide the dataset in a ratio of 70% to train the machine learning and deep learning 

models and 30% to test the models. Since the text is highly unstructured, and there are no 

predefined features present in it as are present in structured data, we employ text mining 

techniques to extract the features from the data and reduce its dimension. After that, 

XGBoost (machine learning technique) and deep learning techniques are applied to assess 

the defect severity.  

Preprocessing of data is performed before the textual features are fed into the classifiers. 

We tokenize the data, remove stop words and perform stemming. After preprocessing, in 

case of the XGBoost classifier, tf-idf vectoriser is used for feature extraction and then 

information gain is used for feature selection and then the features are finally fed to the 

classifier for it to generate an output. In case of CNN and RNN, GloVe word embedding 

is used to convert the data into a word-level matrix where each word is represented by a 

vector. Then, before feeding any input to the model, we create an embedding layer. The 

textual features are represented using the embedding layer which is then fed to the CNN 

and RNN classifiers. Both, CNN and RNN require input to have a static size and we know 

that sentence lengths can vary greatly. Therefore, we chose a maximum sentence length 

of 200, i.e., a sentence can have a maximum of 200 words only.  If a sentence contained 

less than 200 tokens, a special stop word was repeatedly appended to the start of the 

sentence to meet the 200-word requirement. If a sentence contained over 200 words, only 

the first 200 were considered to be representative of that sentence.  

The dataset is split into training and testing sets in the ratio of 70:30. In each run, there 

are different training and testing sets based on a partitioning variable (random state). The 

validation is performed on ten different values of partitioning variable to get more 

accurate and generalized results. 

3.1. PREPROCESSING 

Preprocessing is the task of preparing the data in a manner, which is easier for the machine 

learning model to comprehend. The raw data is transfigured into clean data which is then 

used as input to the model. The following preprocessing of the features was done to make 
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them suitable for the severity assessment task: 

Tokenization:  Tokenization is the process of converting a text into tokens. These tokens 

can be sentences, words, or characters. For our project, we have tokenized the text up to 

word level. Word Tokenizer available in the NLTK library is used to tokenize the text 

into words. Cleaning of text is also performed wherein all the punctuation marks, special 

symbols, numbers and unnecessary spaces are removed from the text. Therefore, a 

sentence ["Hey! look, what's there?"] gets converted to a list of words as [Hey look what 

s there]. 

Stop Word Removal: Stop words are the most regularly occurring words in any 

language. These may be prepositions, conjunctions or interjections which are used very 

often in the text and do not really add to the meaning of the text. Words like a, an, the, 

this, that, and, in, it, etc. are omitted from the text. Stop words of the English language 

are available in NLTK library and can be imported from there. Stop words may also be 

specific to a particular application. For example, if there is an application related to the 

healthcare industry, the word 'doctor' might appear quite a lot of times and may not really 

add to the meaning of the text. In such cases, these additional words may be appended to 

the stop words list and all of them can be removed from the text in one go. 

Stemming: Stemming and Lemmatization are performed to get the base/root form of 

each word. While both the techniques are used to get the base form of each word in the 

text, there is a major difference in how it is achieved in both the techniques. Stemming 

works by simply stripping off of any suffixes or prefixes that might be present with the 

base word. By using stemming 'run', 'running', 'runner' gets converted to 'run'. But there 

might occur a case of over-stemming and under-stemming. Often it might be the case that 

the words obtained after stemming may not make any sense because of the wrong context 

or wrong spelling. Lemmatization converts each word to its base form by checking the 

lexicon, i.e., we can say that the root words obtained after lemmatization are 

morphologically correct. By using lemmatization, ‘caring' gets converted to ‘care’ which 

would have been converted to ‘car’ using stemming. Lemmatization, therefore, takes 

more time than stemming. In this project, we have applied Stemming by using the 

PorterStemmer, as is the case in Menzies and Marcus [1]. 
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3.2. MACHINE LEARNING METHODOLOGY 

In this section, we are going to discuss the approach that we followed for the XGBoost 

classifier, from the feature extraction phase to the final output generation. 

3.2.1. Feature Extraction: We have used the Tf-IDF approach to extract features from 

the textual data. Tf*IDF is the product of Term Frequency and Inverse Document 

Frequency. It assigns weight to each term in the text which signifies the importance of 

the term. The weight of each term is directly proportional to the number of occurrences 

of the term in a document while it is inversely proportional to the number of occurrences 

of the term in the corpus. It is used to normalize the weights of each term in cases where 

the occurrence of some terms is benefitted by the length of document. 

Mathematically,  

 𝑇𝑓 ∗ 𝐼𝐷𝐹 =
𝑡𝑒𝑟𝑚

𝑡𝑜𝑡𝑎𝑙𝑇𝑒𝑟𝑚𝑠
× 𝑙𝑜𝑔

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡[𝑡𝑒𝑟𝑚]
                               (3.1) 

where, term is the term in consideration, 

totalTerms is the total number of terms in a document,  

document[term] is the document containing term, 

documents is the total number of documents. 

3.2.2. Feature Selection: We have used Information gain as a measure for feature 

selection. Information gain is basically the calculation of entropy or surprise element in 

a dataset. If a dataset is split in a particular ratio InfoGain measures the entropy introduced 

in the dataset before and after the split. Information gain is low for high frequency terms 

and high for rare terms. We have used MutualInfoClassifier available in scikit-learn 

library of python, which gives the mutual correlation between a term and the outcome. It 

employs information gain in the background and tells us how much impact a term has in 

a particular result. Mutual information tells us how much information can be gained from 

a random variable. 

We have selected the top 100 terms as ranked by the MutualInfoClassifier’s score. These 

100 terms act as the input features to our classifier. Rest of the features are not taken into 

further consideration. In this study, we have considered the top 100 features only. 

 3.3.3. XGBoost: XGBoost was Developed by Tianqi Chen and Carlos Guestrin at the 

University of Washington in 2014 [10]. Extreme Gradient Boost or XGBoost is a scalable 

decision tree-based ensemble machine learning algorithm that uses a gradient boosting 
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framework. Ever since its introduction, XGBoost has proved to be the fastest of all the 

machine learning algorithms. In fact, it has a good competition with deep learning 

methods in terms of accuracy and score. Many teams that have won in various 

competitions organized by machine learning competition site Kaggle employed 

XGBoost. For unstructured data, neural networks still prove to be the most useful, but for 

small structured/tabular data, decision tree-based algorithm outperform all the other 

algorithms. XGBoost has given state-of-the-art results in many problems. It is for this 

reason that we have used this algorithm along with deep learning methods to predict the 

severity of software defect reports.  

The architecture of the XGBoost algorithm is shown in Fig. 3.1. The process of boosting 

involves building strong classifiers from multiple weak classifiers iteratively. All samples 

in the dataset are assigned the same weights initially. The first weak classifier is trained 

by picking some of the samples from the dataset randomly. Every sample present in the 

dataset has an equal probability of being selected to be included in the training set. Each 

weak classifier tests all the samples and then updates the weights for all the misclassified 

samples. These samples with their updated weights are used for the training of the next 

weak classifier. These weak classifiers work in a consecutive manner. While predicting 

the results for a test sample, predictions made by all the classifiers is taken into 

consideration and the majority of these predictions is the final prediction. 

 

                 Fig. 3.1 The Architecture of XGBoost Algorithm 

Regularization issues are not taken very seriously by most of the boosting algorithms. In 

Gradient Boosting Technique, some regularization parameters are present like maximum 
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depth learning rate, minimum samples per leaf, etc. which can be used for controlling the 

tree structure. It is further improved by extreme gradient boosting. Therefore, extreme 

gradient boosting or XGBoost is a more regularized version of Gradient Boosted Trees.  

                                 Fig. 3.2 Evolution of Tree-based Algorithms  

The robustness of the model can be increased by changing the learning rate which 

minimizes weights on each step. We have taken 0.1 as the learning rate. The maximum 

depth of the tree is set to 6 to avoid overfitting of the model. The number of trees 

generated is given by the parameter n estimators and its value is set to 100. The objective 

function used is the multi-class version of the softmax function. 

3.3. DEEP LEARNING METHODOLOGY  

In this section, we are going to discuss the approach we followed for the deep learning 

classifiers, namely, CNN & RNN, from the creation of the embedding layer to the final 

output generation.  

3.3.1 Embedding Layer: The embedding layer of a neural network converts an input 

from a sparse representation into a distributed or dense representation. Word Embedding 

facilitates natural language understanding by means of semantic parsing such that the 

meaning from text is extracted preserving the contextual similarity of words. In this 

research, we use the state-of-the-art pre-trained GloVe word embeddings model [11] to 

generate the word vectors. Basically, the vector representations for text are termed as 

word embeddings. Word embeddings are considered a major breakthrough when it comes 

to Natural Language Processing using Deep Learning. Each word is represented using a 

real-valued word vector often having tens or hundreds of dimensions. The vector values 

are learned in a way that resembles a neural network, and hence the technique is used in 

deep learning. The main principle behind using word embeddings is that words having 

similar meanings have similar representations. The GloVe word embedding used in this 

study is an extension to the word2vec method for learning word vectors. GloVe combines 

the global statistics of matrix factorization techniques like LSA with local context-based 

learning in word2vec. Each word is represented by the vector closest to the point obtained 

corresponding to that word. Similar words are closer to each other. 

3.3.2 Convolutional Neural Network: Convolutional Neural Networks are several 
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layers of convolutions. A convolution may be defined as a sliding window function 

applied to a matrix. These functions are non-linear activation functions like relu or tanh. 

The convolutions are used over the input layer to calculate the output. Each layer may 

use a different convolution. 

                                              Fig. 3.3 The Architecture of CNN 

A pooling layer is present after each convolution layer, which subsamples the output of 

the previous convolution layer and feeds it as an input to the next layer. The simplest 

pooling operation may be a max operation applied to the result of each filter. A global 

max pooling is performed at the end and its result is fed to the final fully-connected/ dense 

layer. Finally, the classification is performed by using a softmax activation function at 

the output layer. We use three 1D convolution layers with relu as the activation function, 

which decides the output. We have chosen the filter value to be 128 which indicates the 

number of neurons, and the value of kernel size is set to 3, which indicates the size of the 

filter. Global max pooling is performed, and the output of the global max-pooling layer 

serves as the input to a dense layer consisting of 128 neurons. Output layer maps input to 

a single output, which is the predicted severity of the corresponding bug report. We have 

used categorical_crossentropy as the loss function for the model, which is a cross-

entropy loss that is used to measure the performance of a multi-class classification model. 

3.3.3. Recurrent Neural Network: Traditional neural networks lacked persistence. They 

could not make an informed decision about an event based on the previous occurrences 

of that event. In simpler terms, they lacked memory. Recurrent Neural Networks were 

designed to overcome this issue. RNNs have loops in them, which allow the persistence 

of information. Traditional RNNs are able to connect previous relevant information to 
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the present task, but when the gap between the relevant information and the current task 

becomes large, they fail, viz. they are unable to handle long term dependencies. To 

address this issue, a special kind of RNN was developed known as Long Short-Term 

Memory. LSTMs are capable of learning long term dependencies. It is in their innate 

nature to remember information for long periods of time. The repeating module in a 

LSTM has four neural network layers, which interact in a unique way as compared to the 

standard RNN that has just one neural network layer in its repeating module. The key 

components of an LSTM are a cell state and three gates. The LSTM can add or remove 

information from the cell state with the help of gates. The remarkable results that people 

have achieved using RNNs are due to the LSTM only. They are highly effective for text 

classification problems and are also strongly recommended for the same. 

Fig 3.4 The Architecture of RNN 

In our study, we feed the input to the RNN model using the embedding layer, which 

consists of the embedding matrix. The input goes through an LSTM network. The output 

of the LSTM network is passed through a global max-pooling layer. The output of the 

global max-pooling layer is passed onto a fully connected dense layer having 50 neurons 

and finally, the output layer declares its verdict on the classification of the defect report 

into one of the five available classes by using the softmax activation function. 

 

 

 

 

 

 



17 

 

CHAPTER 4 IMPLEMENTATION AND RESULTS 

 

4.1. THE PITS-A DATASET 

We evaluated our system on NASA’s original PITS A dataset. NASA’s PITS database 

contained data collected over ten years including issues of robotic satellite mission and 

human-rated systems. There are five datasets from PITS database: PITS A, PITS B, PITS 

C, PITS D, PITS E, which contained issues of five robotic missions of NASA. PITS A 

contained issues of one of the robotic missions of NASA.  The dataset is available at 

https://zenodo.org/. There are five levels of severity, labeled 1 through 5. Label 1 is the 

most critical of all the bugs and may prove to be fatal to the project as well as humans 

involved in the project. Label 1 bugs are therefore always present in scarce amounts in 

such datasets as every possible measure is taken in order to avoid them. In the PITS A 

dataset, label 1 bugs are not present. Severity decreases with the rise in the number of 

labels, Label 5 being the most trivial of all the bugs. Label 5 is so trivial that more often 

than not the bug is corrected without even reporting. Therefore, there are very less reports 

having label as 5 which makes the dataset highly imbalanced.  

We have used two attributes of the dataset: ‘Description’ attribute gives the textual bug 

report and ‘Severity’ attribute that gives the extent to which the bug can impact the system 

if not corrected. The total number of bug reports in the dataset is 965. Label 1 bugs are 

not present in this dataset, label 2 bugs are 325 in number, label 3 bugs are 375, label 4 

bugs are 239 and there are 26 label 5 bugs. 

Table 4.1: No. of Reports with Severity Levels in PITS A Dataset 

PITS A DATASET 

Severity Number of Reports 

1 0 

2 325 

3 375 

4 239 

5 26 

Total 965 
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4.2. PERFORMANCE MEASURES 

We need to have an understanding of the below-mentioned four labels in order to understand the 

metrics used in this paper: 

1) True Positive (TP) 

If a sample that is positive is labeled as positive. 

2) False Positive (FP) 

 If a sample that is negative is labeled as positive. 

3) False Negative (FN) 

If a sample that is positive is labeled as negative. 

4) True Negative (TN) 

If a sample that is negative is labeled as negative. 

We have used the following evaluation metrics in our work: 

Sensitivity:  

Also called recall, sensitivity is the metric that gives the model's ability to predict true 

positives of each category, i.e., it provides the percentage of reports that have defects and 

are correctly predicted so. Mathematically, 

                              𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100.                                     (4.1) 

AUC Score:  

Receiver Operating Characteristics is a probability curve that is created by plotting the 

True Positive Rate /Sensitivity against the False Positive Rate. AUC is the area under the 

ROC curve and represents the degree of separability. It indicates how capable the model 

is, in discriminating between the classes. The value of AUC lies between 0 and 1. Higher 

values of AUC represent the model's ability to distinguish between the classes more 

efficiently. In the multi-class model, we can plot multiple ROC curves corresponding to 

each class using one versus all approaches.  

Accuracy:  

Accuracy describes the closeness of a measurement to the true value. The accuracy is 

defined as the average number of correct predictions in the case of multi-class 

classification. Metrics calculation is done for each individual run and then overall metric 

calculation is done using the macro averaging. As the PITS dataset is imbalanced, we 

take one versus one macro average in the case of AUC as it is insensitive to class 
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imbalance and gives a better picture of the model. 

4.3. HYPERPARAMETER TUNING 

Hyperparameter tuning is the process of trying out different combinations of parameters 

of a classifier in a bid to find the best possible combination that generates the most 

accurate output. In this study, experiments have been performed several times by using 

sets of different parameters each time in order to get the best possible result. The tables 

4.2 through 4.4 below represent some of those set of parameters for XGBoost, RNN and 

CNN respectively.  

Table 4.2: Hyperparameter tuning in XGBoost 

XGBoost 

Max_Depth n_estimators Learning rate Accuracy 

4 50 0.1 73.45 

5 100 0.1 76.21 

6 200 0.1 76.55 

6 100 0.01 77.41 

6 100 0.1 78.62 

 

Table 4.3: Hyperparameter tuning in RNN 

RNN 

Embedding 

Dimension 

LSTM 

Units 

Hidden 

Units 
Epochs Batch Size Accuracy 

 

50 50 50 5 32 74 

100 50 50 5 64 76 

200 100 100 7 32 77 

300 100 100 7 64 77 

300 50 50 7 32 78 

 

Table 4.4: Hyperparameter tuning in CNN 

CNN 

Embedding 

Dimension 

Filters Kernel 

Size 

Hidden 

Units 
Epochs Batch Size Accuracy 

50 64 3 128 6 32 75 

100 64 3 128 6 64 77 

200 128 4 128 7 64 77 

300 64 3 256 7 64 78 

300 128 4 256 7 64 78 

300 128 3 128 7 32 79 
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4.4. FINAL PARAMETER VALUES 

 
There are various parameters that have been used for each of the three classifiers, namely, 

CNN, RNN and XGBoost. These parameters were finalized upon after performing 

hyperparameter tuning. These are the parameters that would provide us with the best 

possible output in terms of accuracy from all three of the classifiers used.  The tables 4.5 

through 4.7 below represent the set of those final parameter values for XGBoost, RNN 

and CNN respectively. 

Table 4.5: Parameters used in XGBoost 

XGBoost 

Parameters Value 

Maximum depth 6 

Objective ‘multi:softmax’ 

Num_class 4 

N_estimators 100 

Learning rate 0.1 

 

Table 4.6: Parameters used in RNN 

RNN 

Parameter Value 

LSTM Units 50 

Hidden Units 50 

Non-Linearity Function ReLu 

Optimizer Adam 

Dropout 0.5 

MAX SEQ LENGTH 200 

Embedding Dimension 300 

Batch Size 32 

Epochs 7 

Loss Categorical Crossentropy 

Return Sequences True 

Trainable True 

 

Table 4.7: Parameters used in CNN 

CNN 

Parameters Value 

Embedding 300 

Filter 128 

Kernel Size 3 

Hidden Units 128 

Epochs 7 

Batch Size 32 
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Non-linearity function ReLu 

Optimizer Adam 

Dropout 0.5 

MAX SEQ LENGTH 200 

Loss Categorical Crossentropy 

Return Sequences True 

Trainable True 

 

4.5. EXPERIMENTAL RESULTS 

We have divided the whole dataset into training and testing sets in a ratio of 70:30 based 

on different partitioning variables. For each partitioning variable, a unique set is 

generated corresponding to that variable and in each set, 70 percent of the data will be 

used as the training set and 30 percent will be used as the testing set. These same training 

sets will then be used by the XGBoost, CNN and RNN models to train, and the 

corresponding testing sets will be used by these models to predict the severity of defect 

reports. We have performed the validation on ten different values of the partitioning 

variable for XGBoost and five different values each for CNN and RNN to get more 

accurate and generalized results.  

4.5.1. XGBoost: The following Table 4.8 shows the individual results for each severity 

for various runs of XGBoost and whereas the overall results of the model obtained by 

taking a macro average of the individual results are shown in Table 4.9. The results have 

been evaluated corresponding to the top 100 features with AUC, sensitivity, and accuracy 

as the evaluation metrics. 

Table 4.8: Individual Results of XGBoost 

XGBoost 

S. No.  Severity 2 Severity 3 Severity 4 Severity 5 

AUC Sensitivity AUC Sensitivity AUC Sensitivity AUC Sensitivity 

1 0.88 81.44 0.79 81.03 0.78 64.79 0.75 50 

2 0.87 77.78 0.83 85.84 0.81 70 0.81 62.50 

3 0.88 81.44 0.82 85.83 0.74 55.56 0.80 60 

4 0.90 85.10 0.78 78.45 0.78 65.28 0.75 50 

5 0.88 82.24 0.76 76.19 0.77 61.76 0.65 30 

6 0.91 86.36 0.78 78.76 0.78 65.82 0.75 50 
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7 0.85 77.57 0.80 79.63 0.81 70.77 0.80 60 

8 0.88 80.95 0.76 81.03 0.72 52.44 0.81 62.50 

9 0.90 86.11 0.80 81.73 0.77 60.87 0.78 55.56 

10 0.90 84.91 0.78 78.43 0.76 61.11 0.85 70 

As we can see from the above table 4.8 that the AUC measure of the model comes out to 

be 0.91 for severity 2 and the corresponding sensitivity comes out to be 86.36%. Whereas, 

as the severity is decreasing (increasing number), the AUC measure declines to 0.83 for 

severity 3, corresponding sensitivity being 85.84%. For severity 4, these values further 

decrease to AUC being 0.81 and sensitivity being 70.77%. However, for the severity 

value 5, the AUC measure shows a slight increase, and the value comes out to be 0.85 

while the sensitivity is 70%. The trend in these values shows that the model is the most 

efficient in predicting high severity (severity 2) values, though, other severities do not 

lag behind by much. Considering AUC and sensitivity as the measure for performance 

evaluation, we can say that the model is consistent with respect to all the severity levels. 

Table 4.9: Overall Results of XGBoost 

XGBoost 

S. No. AUC  Sensitivity Accuracy 

1 0.795 69 76.55 

2 0.82 74.02 78.62 

3 0.80 70.71 76.9 

4 0.80 69.71  76.55 

5 0.75 62.55 73.45 

6 0.80 70.24 76.55 

7 0.81 71.99 76.21 

8 0.79 69.23 72.41 

9 0.81 71.07 77.59 

10 0.82 73.61 76.21 

From table 4.9 we can see the overall results. The overall AUC which is obtained by the 

one versus one macro averaging comes out to be 0.82 while sensitivity comes out to be 

74.02% with an overall accuracy of 78.62%. 
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4.5.2. CNN: The following table 4.10 shows the individual results for each severity for 

various runs of CNN, and the overall results of the model obtained by taking the macro 

average of the metrics used are shown in table 4.11. The results have been evaluated 

corresponding to the top 200 features and the evaluation metrics used are AUC, 

sensitivity, and accuracy. 

Table 4.10: Individual Results of CNN 

CNN 

S. No. Severity 2 Severity 3 Severity 4 Severity 5 

AUC Sensitivity AUC Sensitivity AUC Sensitivity AUC Sensitivity 

1 0.95 87.23 0.89 87.96 0.91 59.26 0.95 57.14 

2 0.92 72.92 0.89 70.18 0.88 84.51 0.96 72.78 

3 0.95 72.92 0.88 92.97 0.88 44.64 0.95 60 

4 0.93 79.79 0.85 80.91 0.86 62.16 0.96 66.67 

5 0.95 83.67 0.87 84.29 0.87 53.97 0.94 62.5 

We can see from the above table 4.10 that the highest value of AUC comes out to be 0.96 

for severity 5 with corresponding sensitivity being 72.78%. The second highest value is 

obtained for severity 2 with a sensitivity of 87.23%. For severity 3, the AUC comes out 

to be 0.89, and the highest sensitivity obtained is 92.97%. For severity 4, the AUC 

obtained is 0.91, and the highest sensitivity obtained is 84.51%. Considering AUC and 

sensitivity as the evaluation measure, we can say that the performance of the model is 

consistent and the model is efficient for all the severities. The following table 4.11 shows 

the overall results of CNN over five runs of the partitioning variable. 

        Table 4.11: Overall Results of CNN 

 

 

 

 

 

CNN 

S. No. AUC Sensitivity Accuracy 

1 0.92 72.90 79 

2 0.91 76.34 75 

3 0.91 67.63 76 

4 0.90 72.38 75 

5 0.91 71.11 77 
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The overall results are calculated in a manner similar to that of XGBoost by taking the 

macro average of the individual results. The overall value of AUC is evaluated using one-

versus-one macro averaging, which is insensitive to the class imbalance present in the 

data. The highest value of overall AUC comes out to be 0.92, while sensitivity and 

accuracy come out to be 76.34% and 79%, respectively. The high value of AUC suggests 

that the model is capable of differentiating between the classes. 

4.5.3 RNN: Similar to XGBoost and CNN, RNN model performed various runs for 

different values of the partitioning variable. Individual results of each severity are being 

shown in Table 4.12. The results have been evaluated corresponding to the top 200 

features, and the evaluation metrics used are AUC, sensitivity, and accuracy. 

Table 4.12: Individual Results of RNN 

RNN 

S. No. Severity 2 Severity 3 Severity 4 Severity 5 

AUC Sensitivity AUC Sensitivity AUC Sensitivity AUC Sensitivity 

1 0.93 77.08 0.87 87.72 0.88 57.75 0.95 66.66 

2 0.96 85.42 0.88 85.16 0.90 55.36 0.96 50 

3 0.94 79.57 0.87 79.84 0.91 72.73 0.96 71.43 

4 0.95 82.24 0.87 74.76 0.90 71.83 0.96 55.56 

5 0.96 83.33 0.87 78.07 0.86 61.97 0.94 55.56 

From the individual results for each severity (Table 4.12) we can deduce that the AUC 

value for both severity 2 and 5 comes out to be 0.96 with their respective sensitivities 

being 85.42% and 71.43%. For severity 3, AUC value is 0.88, and the sensitivity is 

87.72%. For severity 4, AUC value is 0.91, and the sensitivity is 72.73%. Considering 

AUC and sensitivity as the evaluation measure, we can see that the performance of the 

model is consistent. The value of AUC being close to 1 suggests the model's capability 

to differentiate between the classes. 

Table 4.13: Overall Results of RNN 

RNN 

S. No. AUC Sensitivity Accuracy 

1 0.91 72.3 76 
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2 0.91 68.98 78 

3 0.91 75.89 78 

4 0.91 71.09 76 

5 0.89 69.73 75 

Table 4.13 shows the overall results of the various runs of RNN obtained by macro 

averaging the individual results. The highest value of overall AUC comes out to be 0.91 

while the highest sensitivity is 75.89% and the highest accuracy is 78%. The value of 

AUC being so close to 1 suggests the model’s capability to differentiate between the 

classes. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 
 

In this chapter, we firstly provide a brief conclusion of this work and then summarize the 

whole thesis. At last, we suggest possible future work in order to better tackle the problem 

at hand. 

5.1 CONCLUSION 

Software programs are present in every aspect of our lives nowadays, and it is quite 

inevitable for these softwares to have defects. Users report these defects to the developers, 

and it is the task of the developer to assign a correct severity value to each defect in order 

to work on them in the right order. Our proposed approach employs XGBoost and deep 

learning techniques, namely, CNN & RNN to automate the severity prediction of defect 

reports. We have used the PITS A dataset available in NASA's PITS database to evaluate 

the model. The results were analyzed using the AUC measure and sensitivity as the 

metrics. We concluded that with XGBoost, the model performs better in predicting the 

high level severity (severity 2) defects as compared to the low level defects. Whereas in 

case of the deep learning techniques, CNN and RNN, the models were exceptionally well 

in predicting the highest as well as the lowest priority of the defect reports (severity 2 and 

severity 5), and for the rest of the severities, the models' performances were fairly 

consistent. 

5.2 SUMMARIZATION 

Our aim in this thesis is to predict the severity level for a real-time defect report submitted 

by a user. The PITS A dataset from NASA is used for carrying out this study.  

In chapter 2, we review the non-technical and technical studies dedicated to 

severity assessment. The research field of automation of severity assessment of defects 

still has a long way to go. The development of such a model is of crucial importance for 

the IT industry.  The chapter deals with the types of severity, the work done in this field 

and also the background studies that are important for performing the analysis. In this 

thesis, our target media object consists of textual data from the defect reports.   

Chapter 3 illustrates the methodology proposed by us. In this study, we have 

undertaken two separate methodologies, i.e., one for ML and one for DL. We have 

utilized the PITS A dataset and perform preprocessing and feature extraction on the data. 

We further explained each of these classifiers in detail. The chapter also introduces all 
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the features that are used as input for the ML and DL models. 

Chapter 4 is where we show the implementation details, experimental 

setup and classification results. We have also shown the process of hyperparameter tuning 

of each classifier. We have explained the setting of various parameters that have been 

used for performing the experiments for each of the classifier. We have defined the proper 

distribution of the data in the PITS A dataset. Furthermore, we have analyzed our model 

individually for each of the four severities in the PITS A dataset as well as for all the 

severities combined. The results from the three classifiers are compared with one another 

to find out which classifier performed the best. The performance of all three classifiers 

was fairly consistent throughout the dataset. 

5.3 FUTURE SCOPE 

In our study, we have used only the PITS A dataset out of the NASA’s repository which 

consists of four other datasets as well, i.e., PITS B, C, D and E. In the future, this study 

can be extended to include those other datasets as well.  A severity assessment model 

should be generic in nature and not be dataset specific. Thus, the approach used in this 

study can be applied on other software defect datasets such as Eclipse, Mozilla etc as 

well. Another prospect for the future could be using meta data along with the textual data. 

Various datasets consist of some meta data related to the defect reports. This data can 

also be used as input to the classifiers in order to enhance their performance. Lastly, in 

case of our study, we have taken top 100 features in case of XGBoost and we have set 

maximum sequence length at 200 for CNN and RNN. These types of limitations are kept 

in place in order to generate the output at a faster pace but they marginally reduce the 

efficiency of the system. It is a trade-off that is necessary as per the latest advancements 

in the field of machine and deep learning but in the future, we can look for ways to reduce 

the computation time without having to reduce the efficiency.    
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Abstract 

Software is present in every aspect of our everyday life, and defects are bound to be found during the testing of the software, no matter how 

small. It is, therefore imperative for software testing engineers to assess the severity of software defects to allocate proper resources for the 

correction of the defects and prevent software crashes. In this paper, we have proposed the use of the Extreme Gradient Boosting Technique 

(XGBoost) and deep learning techniques: CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network) to predict the severity 

of the defects occurring in the software. AUC and sensitivity are the metrics used to evaluate the results. All three techniques: XGBoost 

algorithm, CNN, and RNN have performed really well in predicting the severities for all the defects. It has also been noted that XGBoost 

algorithm is the most efficient in predicting high severity defects, while the performance of deep learning techniques is excellent for the highest 

as well as the lowest severity defects. Also, for the rest of the severity values, the performance of both CNN and RNN is fairly consistent.  

 

Keywords: deep learning; software defects; severity; severity assessment. 

1. Introduction 

The severity of a defect may be defined as the impact of failure on a software. In critical systems, mainly real-

time systems like those of NASA, it is highly imperative that the testing engineers are sure that the software will 

not crash while operating as it may cause major damage to the project as well as the reputation of the organization.  

Software is bound to pick up some defects while in the development phase, and it is the job of the testing engineers 

to assess these defects and their impact on the software. Note that the severity and priority of a defect may not be 

the same. For example, it may be the case that a defect is required to be removed immediately as it is not letting 

the users/customers to proceed further but the damage caused by the defect is not that high. In such cases, the 

priority of the defect is high, but the severity is not. Here, however, we are discussing the severity of the defect, 

i.e., the defect may not occur immediately, but if and when it occurs, it may cause some severe damage. 

In software testing, it is a well-known fact that the sooner the defects are recognized, the lesser it costs to correct 

them, hence, minimizing the overall cost of software development. Here, we propose an automated method to 

assess the severity of the software defects by using machine learning and deep learning techniques. Software 

defect reports are generated by the user of the software whenever the software does not perform in its intended 

manner. Software such as Jira and Bugzilla are used to report the defect. These defect reports are in the form of 

text, which is an example of highly unstructured data. Though a lot of work has been done in this field, there's 

still a long way to go when it comes to the use of ensemble methods and deep learning techniques to predict the 

severity. In this paper, text mining techniques have been employed along with XGBoost and deep learning 

techniques for predicting the severity of software defect reports. We have used XGBoost, which is the strongest 

ensemble machine learning method at the time of writing of this paper. It is trusted by a number of winning teams 

of machine learning competitions. The performance of this method is comparable to deep learning methods. We 

have also employed deep learning techniques: CNN and RNN using word embeddings for the same. 
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