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Abstract

Unsupervised clustering methods are used in spectral unmixing of multispectral

images since to estimate the endmembers. But their performance is hampered

due to inadequate data and imprecise initialization of endmembers. In this study

we propose modified picture fuzzy c-means (PFCM) technique to initialize the

endmembers.

Experimental assessments carried out on multi-spectral datasets reveal that

our approach consistently surpasses current leading techniques. Performance

indicators such as the BVI, UI, and IRCM validate its enhanced capabilities in

endmember separability, accuracy of abundance estimation, and spatial consistency.

These findings underscore the efficacy and adaptability of the proposed method

across various multi-spectral imaging contexts. Incorporating the heuristic consistently

enhances performance in various datasets. Significantly, a revised version of

PFCM that includes our heuristic achieving a BVI of 0.004, UI of 0.999 and

IRCM of 0.466 on the multispectral image dataset. Tests performed on both

the Iris dataset and a multispectral image reveal enhancements in the BVI, UI,

and IRCM metrics, as well as faster convergence rates compared to traditional

implementations.
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Chapter 1

INTRODUCTION

1.1 Spectral Imaging

Spectral imaging is an advanced technique that acquires image data over a broad
spectrum of wavelengths within the electromagnetic spectrum. In contrast to
conventional photography, which captures only three primary colors (red, green,
and blue), spectral imaging gathers numerous narrow spectral bands, ranging
from dozens to hundreds. This capability enables the precise identification and
analysis of materials, surfaces, or biological tissues based on their distinct spectral
signatures. Spectral imaging has an extensive application in fields such as remote
sensing, agriculture, environmental monitoring, medical diagnostics, and industrial
inspection. Through the examination of spectral data, we can identify subtle
variations in material composition, assess crop health, or detect pollutants in
aquatic environments.

Multispectral imaging (MSI) is a specialized form of spectral imaging. Originally
created for military reconnaissance, MSI captures and analyzes data from specific
wavelengths within the electromagnetic spectrum, uncovering details that are
not perceivable by the human eye. This technique ensures that wavelengths
are isolated without overlap, enabling users to examine the effects of distinct
subsets of wavelengths. The benefits of multispectral imaging, which set it apart
from RGB imaging, include monitoring changes, detecting concealed patterns,
achieving ultra-high resolution, and providing detailed compositional information.
Its ability to track subtle, often unnoticed changes over time holds considerable
importance in agriculture and environmental monitoring. Additionally, the ultra-high
resolution of multispectral images offers users precise and comprehensive data,
which is especially advantageous in fields that demand high accuracy, such as
studies of vegetation. The capability of MSI to detect light beyond the visible
spectrum and deliver valuable insights is extensively applied in weather forecasting
and environmental monitoring, highlighting its practical significance.

Multi-spectral imaging is a significant component of remote sensing technology.
These images possess exceptionally high spectral resolution. They capture data
across numerous narrow and adjacent electromagnetic bands that span a wide
range of the electro-magnetic spectrum, typically from visible to infrared regions.
However, due to the distance of sensor from Earth’s surface and various technical
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factors, the spatial resolution of most of these images is often quite coarse,
meaning that a single pixel can represent a large area on the Earth’s surface.

Figure 1.1: Spectral reconstruction from an RGB image

1.2 Spectral Unmixing

Spectral unmixing is a technique used in remote sensing to analyze multispectral
images where each pixel may represent a mixture of multiple materials.The objective
of spectral unmixing is to break down these mixed pixels into a set of pure
spectral signatures, referred to as endmembers, and to assess their respective
proportions, known as abundances. This technique improves the precision of land
cover classification and material identification, rendering it an essential tool for
environmental monitoring, agriculture, and urban research. Clustering methods
are typically divided into two categories: hard clustering and soft clustering. In
hard clustering, each data point is exclusively allocated to one cluster, ensuring
no overlap among clusters. A well-known example of this method is the K-Means
algorithm, which groups observations according to their proximity to the nearest
cluster centroid. Conversely, soft clustering permits data points to be part of
multiple clusters at the same time, with varying levels of membership. The
FCM algorithm illustrates this method by assigning a membership value to each
data point for every cluster, indicating the extent of association. Clustering is
considered as a useful tool in the processes of pattern recognition and knowledge
discovery from a database; thus being applied to various crucial applications
[1]. Nonetheless, the clustering quality of FCM is not high since this algorithm is
deployed on the basis of the traditional fuzzy sets, which have some limitations in
the membership representation, the determination of hesitancy and the vagueness
of prototype parameters. Among various clustering techniques, FCM and its
extensions, such as Intutionistic Fuzzy C-Means (IFCM), Picture Fuzzy C-Means
(PFCM), have gained popularity due to their ability to handle overlapping and
complex data structure. However, the effectiveness of PFCM heavily depends
on the initialization of cluster centers, as poor initialization can lead to slow
convergence and suboptimal clustering results. Traditional methods, such as
random initialization, often fail to provide a robust starting point, leading to
inconsistencies in cluster formation.
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Figure 1.2: Spectral unmixing of various components (endmembers)

1.3 Modified PFCM

Picture Fuzzy C-Means (PFCM) is an advanced version of the traditional Fuzzy
C-Means (FCM) algorithm, which utilizes picture fuzzy set theory to more effectively
address uncertainty, hesitancy, and indeterminacy present in data. Unlike FCM,
which focuses solely on membership degrees, PFCM introduces three distinct
parameters for each data point: the degree of membership, non-membership, and
hesitation. This triadic framework enables PFCM to more precisely represent
the ambiguity found in complex real-world datasets, particularly in situations
where cluster assignment decisions are not straightforward. Consequently, PFCM
improves clustering performance in fields such as medical image analysis, pattern
recognition, and decision support systems, where ambiguous and conflicting information
frequently occurs. The algorithm optimizes an objective function that integrates
all three components, resulting in more robust and informative clustering results
compared to earlier models.

Game theory, a mathematical framework for evaluating strategic interactions,
has been widely used for optimization and decision-making problems. The Shapley
Value is a fundamental concept in cooperative game theory that provides a fair
way to distribute the total gains (or costs) among players in a coalition based
on their individual contributions. In this paper, we use game theoretic approach
to improve the initialization of PFCM. We achieve a more stable and effective
initial prototype by transforming cluster selection into a strategic game. Here,
data points compete as rational players for optimal cluster allocations. This
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game-theoretic technique assures that the initial cluster centers are appropriately
located, improving the overall performance of PFCM.

The primary contribution of this research lies in modifying PFCM with a
game theory heuristic to optimize the initialization of cluster centers. Once the
initial cluster centers have been computed using the heuristic, the usual PFCM
procedure refines the clusters. This strategy not only enhances the stability and
accuracy of PFCM, but it also addresses concerns associated with inadequate
initialization.

This report is structured into seven primary chapters that together offer a
thorough overview of the research conducted. Chapter 1, Introduction, outlines
the background, motivation, and objectives of the study. Chapter 2, Related
Work, provides a review of the existing literature. Chapter 3, Preliminary,
introduces the essential concepts and definitions required to comprehend the
following content. Chapter 4, Methodology, elaborates on the research approach,
which is divided into two phases, Phase I and Phase II, to systematically outline
the steps taken. Chapter 5, Experimental setup, describes the experimental
design, tools, and datasets used to validate the proposed method. Chapter 6,
Results and Discussion, presents the results of the experiments and interprets
the findings in relation to the study’s objectives. Lastly, Chapter 7, Conclusion
and Future Scope, encapsulates the main contributions and outlines potential
directions for future work.
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Chapter 2

RELATED WORK

The concept of unsupervised clustering in machine learning has evolved over time.
The study [2] presents a Unsupervised k-means clustering algorithm that removes
the necessity for initialization and parameter selection, while also autonomously
identifying the optimal number of clusters, thereby enhancing both the efficiency
and accuracy of clustering. Key unsupervised machine learning methods like
k-means, hierarchical clustering, and PCA are investigated in this work [1] with an
eye toward their application in high-dimensional data analysis thereby enhancing
healthcare research and individualized patient care. Entropy-based fuzzy c-means
techniques have been used in many disciplines to handle uncertain data and
enhance clustering accuracy. The study [3] introduces an entropy-based variant
of the Fuzzy C- Ordered Means algorithm aimed at minimizing the sensitivity to
the fuzzification parameter m, thereby enhancing clustering precision, resilience to
noise, and efficiency of convergence. The study [4] introduces an entropy-driven
fuzzy c-means clustering algorithm designed for the segmentation of noisy 3D
brain MRI images, tackling issues of uncertainty and intensity inhomogeneity
through the application of both global and locally constrained membership functions.
The study [5] introduces an effective entropy-driven fuzzy clustering approach
that autonomously determines cluster centers and develops a rule-based fuzzy
model, thereby minimizing time complexity and streamlining parameter selection.
The study [6] offers a fuzzy clustering-based method for data stream clustering
and idea drift detection based on entropy, which provides more precise correlations
and higher sensitivity than traditional hard clustering. The research [7] proposes
a robust unsupervised spectral unmixing approach, termed as Gradient Descent
Maximum Entropy (GDME), which employs the maximum entropy principle to
increase abundance estimation accuracy in noisy or complicated hyperspectral
data. The paper [8]introduces the unsupervised fuzzy partition-optimal number
of classes (UFP-ONC) algorithm, which combines fuzzy k-means and fuzzy maximum
likelihood estimation to conduct fuzzy clustering without making previous assumptions
about cluster counts, resulting in better classification accuracy.

Particularly for picture segmentation and disease identification, many medical
researchers have effectively used fuzzy c-means clustering. The work [9] presents
the Fuzzy Joint Points (FJP) algorithm, a hierarchical fuzzy clustering technique
addressing outliers over spatial data applications, noise robustness, and hidden
cluster structures detection.A variety of studies have performed comparative
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analyses of different unsupervised clustering algorithms to assess their effectiveness
across a range of scenarios. The paper [10] compares Fuzzy C-Means with
Subtractive Clustering algorithms in terms of clustering validity, modeling capabilities,
and performance, with a focus on subtractive clustering’s accuracy, consistency,
and absence of training requirements. The research [11] presents a theoretical
framework for comparing clustering algorithms based on functional aspects, including
fuzzy membership types, learning modes, and structural qualities, in order to
unify clustering system evaluation. The research [12] examines various fuzzy
clustering methods used to build fuzzy classification models, concentrating on
computational efficiency and accuracy across benchmark datasets and a real-world
bankruptcy prediction scenario. The study [13] compares Fuzzy C-Means and
Entropy-Based Fuzzy Clustering on numerous datasets, measuring cluster quality
and computation time, and visualizing with self-organizing maps for easier interpretation.

Various algorithms are used in multispectral unmixing. The research [14]
analyzes the mathematical properties of picture fuzzy clustering, proving its
convergence and examining its loss function behavior. The research [15] proposes
an entropy-based spatial fuzzy c-means technique for multispectral image unmixing,
improving noise reduction, classification, and efficiency. Using geographical information,
the research [16] builds a spectral unmixing technique to improve proportion
estimates and investigate spatial spectral enhancements of end-member identification.
Using an optimization method based on ADMM, the research [17] presents a linear
mixing model for multispectral unmixing that explicitly accounts for spatial and
spectral variability of the endmembers, thus lowering the estimate errors and
increasing the accuracy. The research [18] enhances fuzzy C-means clustering
by using picture fuzzy sets, addressing limitations in the representation and
uncertainty of membership. The proposed FC-PFS algorithm shows improved
clustering accuracy over existing methods in real-world datasets. The study [19]
improves Linear Spectral Mixture Analysis (LSMA) by incorporating a Fully
Constrained Least Squares (FCLS) approach, which guarantees precise material
quantification in multispectral images while effectively managing nonnegativity
and sum-to-one constraints. This work by [20] improves cluster stability and
accuracy in land cover categorization by means of a game theory-based Shapley
value strategy, hence strengthening FCM clustering for remote sensing image
segmentation.
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Chapter 3

PRELIMINARY

In many spectral unmixing algorithms clustering has been used rather than linear
unmixing methods to tackle the cases where we don’t know about the endmembers
involved. Clustering is an unsupervised method of machine learning which groups
various data points together on the basis of their properties (here pixel values).
K-means and FCM are two typical clustering algorithms used in machine learning.
However, it is observed that FCM performs better as compared to K means.

Further, focusing on FCM, which has been extended Intutionistic FCM, Picture
FCM etc.

3.1 Fuzzy-c-Means

The Objective function for FCM is

J =
N∑
k=1

C∑
j=1

µm
kj||Xk − Vj||2 (3.1)

subject to contraints {
0 ≤ µkj ≤ 1∑C

j=1 µkj = 1
(3.2)

Solving the above optimization problem using Lagrange’s Multiplier method we
get the cluster prototype,

Vj =

∑N
k=1 µ

m
kjXk∑N

k=1 µ
m
kj

(j = 1, 2, ..., C) (3.3)

µkj =
1∑C

i=1

(
||Xk−Vj ||
||Xk−Vi||

) 2
m−1

(3.4)

k = 1, 2, 3....., N j = 1, 2, 3, ....., C
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3.2 Intutionistic Fuzzy-c-Means

Intuitionistic Fuzzy C-Means (IFCM) is a sophisticated clustering technique that
enhances the conventional Fuzzy C-Means (FCM) by integrating the notion of
intuitionistic fuzzy sets, which consist of two elements: membership and hesitation
degrees. This added dimension of information aids in more effectively addressing
uncertainty and ambiguity within data, particularly in intricate or noisy contexts
such as remote sensing imagery. In IFCM, each data point is assigned not only
a degree of membership to a cluster but also a corresponding hesitation margin,
which indicates the uncertainty of the assignment. This characteristic renders
IFCM more resilient and efficient in situations where data categories overlap
or are vaguely defined, resulting in superior clustering outcomes compared to
traditional FCM. The Objective function for IFCM is

J =
N∑
k=1

C∑
j=1

µm
kj||Xk − Vj||2 +

C∑
j=1

π∗
j e

1−π∗
j (3.5)

where

π∗
j =

1

N

N∑
k=1

πkj (3.6)

subject to contraints (3.2)
Solving the above optimization problem using Lagrange’s Multiplier method

we get the cluster prototype as in equation (3.3), (3.4)
Further, the hesitation degree is calculated by

πkj = 1− µkj − (1− µkj)
α)

1
α (3.7)

and πkj is used to update the membership degree as follows:

µkj = µkj + πkj (3.8)

k = 1, 2, 3....., N j = 1, 2, 3, ....., C
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Chapter 4

METHODOLOGY

In this paper, we have proposed a 2-phase method to overcome the limitations
of PFCM by using game-theoretic heuristic. Our proposed method consists of 2
phases. Phase I initializes the endmember, abundance and neutality matrices.
Phase II uses PFCM technique to find the final abundance and endmember
matrices

4.1 Phase-I

Here we define a game theory heuristic to initialize the cluster centers. In
cooperative game theory, the Shapley Value is a basic idea used to equitably
divide the overall payoff among participants depending on their contributions
to several coalitions.It ensures that each player receives their fair share of the
overall value created by cooperation. In multispectral unmixing, the Shapley
value aids in evaluating the contribution of endmembers and enhancing pixel-wise
interpretability, which is beneficial for initializing the cluster centers (i.e., endmembers).

ϕi =
1

2

N∑
j=1

sim(Xi, Xj) (i = 1, 2, ..., N) (4.1)

where N is the no. of data points.

The similarity function acts as a quantitative indicator of the resemblance between
data instances or features, and is essential in assessing the degree of similarity a
sample has with others in the dataset. X denotes the data matrix with dimensions
N × C. Here Xi and Xj (∈ X)represent a row corresponding to each data point
from the data matrix X .

sim(Xi, Xj) = 1− ||Xi −Xj||
max(||Xi −Xj||)

(4.2)

where ∥.∥ is computed using Euclidean distance.

By employing the endmembers derived from the Shapley value-based method,
we set up the abundance matrix in alignment with the Fuzzy C-Means (FCM)
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algorithm. The abundance matrix is initialized using equation 3.4 The initial
neutrality matrix η is obtained by the formula

ηkj =


0.5 , Xj ∈ C and k = j

0 , Xj ∈ C and k ̸= j
1−|Xj−Xk|

2
, Xj /∈ C and Xk ∈ C

(4.3)

4.2 Phase-II

Here we elaborate the Phase II PFCM which helps in forming unsupervised
clusters so as to unmix the multispectral image using the cluster centers initialised
in Phase I.

The variable V signifies the endmembers, µ refers to the abundance (or
membership) matrix and η indicates the neutrality matrix, which illustrates the
extent to which a specific data point (or pixel) is not associated with a particular
cluster. ξ represents the hesitancy matrix, reflecting the uncertainty regarding a
data point (or pixel) belonging to a specific cluster. The Objective function for
PFCM is

J =
N∑
k=1

C∑
j=1

(µkj(2− ξkj))
m||Xk − Vj||2 +

N∑
k=1

C∑
j=1

ηkj(log ηkj + ξkj) (4.4)

subject to constraints:
µkj + ξkj + ηkj ≤ 1

C∑
j=1

µkj(2− ξkj) = 1

C∑
j=1

(
ηkj +

ξkj
C

)
= 1

k = 1, 2, 3....., C j = 1, 2, 3, ....., N

We obtain optimal solutions of the system by solving above optimization problem
using Lagrange’s Multiplier method.

ξkj = 1− (µkj + ηkj)− (1− (µkj + ηkj)
α)

1
α (4.5)

µkj =
1∑C

i=1(2− ξkj)
(

||Xk−Vj ||
||Xk−Vi||

) 2
m−1

(4.6)

where ∥.∥ is computed using Euclidean distance.

ηkj =
e−ξkj∑C
i=1 e

−ξki

(
1− 1

C

C∑
i=1

ξkj

)
(4.7)
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Vj =

∑N
k=1(µkj(2− ξkj))

mXk∑N
k=1(µkj(2− ξkj))m

(4.8)

k = 1, 2, 3....., C j = 1, 2, 3, ....., N

The algorithm for 2-phase method is defined in Algorithm 1

Algorithm 1 PFCM with Game Theory

1: Input: A threshold value δ and a data matrix X of order n x m.
2: Output: Final Abundance matrix, U and endmember matrix, C
3: function game theory (data , δ)
4: C=[ ]
5: i← 1
6: while i ≤ n do
7: Calculate Shapley value ϕi using equation (4.1)
8: end while
9: Q← X
10: ϕtemp ← ϕ
11: while Q ̸= ∅ do
12: t= arg max ϕi

13: C = C ∪Xt

14: I = k : sim(Xk, Xt) ≥ δ using equation (4.2)
15: P = Xi ∈ Q : sim(Xi, Xt) ≥ δ using equation (4.2)
16: Q = Q \ (P ∪Xt)
17: ϕtemp = ϕtemp \ (ϕt ∪ ϕk)
18: end while
19: return C
20: end function
21: function pfcm (data , C,α)
22: Initialize U using equation (3.4)
23: Initialize N using formula (4.3)
24: Initialize Z using equation (4.5)
25: Calculate Objective function (O) using equation (4.4)
26: Iterate U,N,Z,C,O until convergence of objective function using equations

(4.6), (4.7), (4.5), (4.8) and (4.4) respectively
27: return U, C
28: end function
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Chapter 5

EXPERIMENT SETUP

In this study, we utilized two distinct datasets. The first is the Iris dataset,
a well-established benchmark in pattern recognition and machine learning. It
comprises 150 samples, evenly divided among three species of Iris flowers: Iris
setosa, Iris versicolor, and Iris virginica. Each sample is characterized by four
numerical attributes—sepal length, sepal width, petal length, and petal width—expressed
in centimeters. The Iris dataset is frequently employed for evaluating classification
algorithms and data visualization methods due to its balanced class distribution
and straightforward nature. The second dataset consists of a multispectral image
derived from prior research, aimed at capturing reflectance data across various
spectral bands, including those outside the visible spectrum. Unlike conventional
RGB images, this dataset offers a more comprehensive array of features by
integrating information from near-infrared and short-wave infrared bands. Each
pixel in this dataset contains a spectral signature, facilitating in-depth analysis
of surface characteristics and material composition. This dataset is particularly
advantageous for applications such as land cover classification, anomaly detection,
and environmental monitoring, where spectral diversity is essential.

We have performed the experiment on a matlab version 2024 on a system
having 16GB RAM and i9 processor. Moreover, various indexes like Bensaid
validity index (BVI), uniformity index (UI), and Inter-cluster to Intra-cluster
Compactness Measure (IRCM) are used to evaluate the quality of clustering
results. These indices guarantee that the clustering structure is relevant and
efficient by helping to ascertain the degree of separation, compactness, and balance
among the clusters.

Using BVI, we can assess the quality of the clusters.It is particularly useful
for fuzzy clustering algorithms. A lower BVI value indicates that the clusters are
better isolated from each other and more compact (data points within the same
cluster are close to each other). Thus, a low BVI indicates that our clustering
result is probably good.

BV I =
C∑

p=1

∑N
j=1 µ

2
pj(Xj − Vp)

2

np

∑C
k=1(Vk − Vp)2

(5.1)

The uniformity of data point distribution across clusters is evaluated by UI.
Indicates the degree of equality with which the data set is distributed among the
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clusters. A more balanced clustering result is shown by a lower UI value, which
implies that the data points are distributed more evenly among the clusters.
However, depending on the application, a higher UI value could indicate an
imbalance in which some clusters are significantly denser or sparser than others,
which could be undesirable.

UI = 1− 2

N

C∑
p=1

∑
Xj∈Cp

(Xj −Xp)
2

[maxXj∈Cp(Xj)−minXj∈Cp(Xj)]2
(5.2)

IRCM is an index based on ratios that assesses the distance between clusters
(inter-cluster) in relation to the compactness within clusters (intra-cluster). A
higher IRCM value indicates superior clustering, signifying that clusters are not
only densely packed internally but also distinctly separated from one another.
This index is straightforward and commonly utilized to measure the efficacy of
clustering concerning spatial organization and the clarity of boundaries between
various groups.

IRCM =

∑C
p=1 ypcp∑C
p=1 yp

(5.3)
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Chapter 6

RESULTS and DISCUSSION

This section analyzes the effectiveness of different clustering techniques utilized
for multispectral unmixing. The findings are presented in Tables (6.1) and
(6.2). We evaluated the abundance matrix in relation to the final endmembers
by employing validity indices, including the Bensaid Validity Index (BVI), the
Unmixing Index (UI), and the Improved Regional Consistency Measure (IRCM).
Our heuristic method shows a quicker convergence when applied to FCM, IFCM,
and PFCM, respectively. The accompanying graphs (6.1), (6.2) and (6.3) demonstrates
a substantial improvement in the quality of the clustering methods following the
implementation of our heuristic.

The combination of our proposed heuristic with clustering algorithms like
FCM, IFCM, and PFCM results in notable enhancements in performance, especially
regarding the initialization of endmembers. The heuristic-modified PFCM exhibited
the highest performance among all methods tested. When utilized on the Iris
dataset and a multispectral image, this setup recorded BVI values of 0.0026,
0.0042, UI values of 0.9988, 0.9998, and IRCM values of 0.2738, 0.4669 respectively.
Additionally, it was observed that the heuristic facilitated faster convergence for
all three algorithms—FCM, IFCM, and PFCM—highlighting its effectiveness in
not only boosting accuracy but also improving computational efficiency.

FCM FCM with
Game
Theory

IFCM IFCM with
Game
Theory

PFCM PFCM with
Game
Theory

BVI 0.006578 0.004252 0.005761 0.003833 0.003584 0.002619
UI 0.980495 0.990495 0.981495 0.991495 0.990851 0.998851

IRCM 0.214224 0.228403 0.229841 0.236598 0.246198 0.273896
No. of
iterations

34 29 27 24 23 18

Table 6.1: Performance metric for IRIS dataset
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FCM FCM with
Game
Theory

IFCM IFCM with
Game
Theory

PFCM PFCM with
Game
Theory

BVI 0.007727 0.006727 0.006829 0.006146 0.005237 0.004288
UI 0.979879 0.986879 0.989873 0.989988 0.999776 0.999879

IRCM 0.440357 0.442523 0.465912 0.465913 0.466129 0.466913
No. of
iterations

32 28 30 27 24 20

Table 6.2: Performance metric for Multispectral Image

Figure 6.1: Comparision of BVI for Two Datasets
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Figure 6.2: Comparision of UI for Two Datasets

Figure 6.3: Comparision of IRCM for Two Datasets
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Chapter 7

CONCLUSION and FUTURE SCOPE

In this research, a new approach for multispectral unmixing was introduced and
assessed using established performance metrics. The efficacy of this method
was confirmed through various cluster validity indices, including the Bensaid
Validity Index (BVI), Uniformity Index (UI), and Inter-cluster to Intra-cluster
Compactness Measure (IRCM). The experimental findings reveal that the proposed
technique achieves enhanced clustering quality, marked by greater inter-cluster
separation, improved intra-cluster compactness, and increased uniformity. These
results suggest that the method not only improves unmixing accuracy but also
offers a more dependable representation of the underlying spectral signatures,
surpassing current methodologies.

The future of multispectral imaging is highly promising across various fields,
propelled by advancements in sensor technology, data processing, and artificial
intelligence. In agriculture, it is set to transform precision farming by facilitating
real-time monitoring of crops, detection of diseases, and prediction of yields
through sensors mounted on drones. In the realm of environmental monitoring,
multispectral data will play an increasingly vital role in tracking deforestation,
urban growth, water quality, and natural disasters, offering enhanced temporal
and spatial resolution. The defense and surveillance industries are anticipated
to implement lightweight multispectral sensors for reconnaissance and target
identification across diverse terrains. In the context of space and planetary
exploration, multispectral imaging is being incorporated into next-generation
satellites and space missions to investigate Earth-like planets, atmospheric conditions,
and mineral compositions. Moreover, with the advancement of machine learning
and artificial intelligence, the analysis of multispectral data will become more
rapid and precise, facilitating real-time decision-making. Miniaturized multispectral
sensors integrated into smartphones, UAVs, and nanosatellites will render the
technology more accessible and economical, paving the way for innovations in
smart cities, precision forestry, public health monitoring, and disaster response.
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