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     ABSTRACT  

 

In today’s vast and complex data landscapes, every model or prediction we make is 

influenced by a multitude of factors, often referred to as dimensions in the context of machine 

learning. In such cases, reducing the dimensionality of the data can significantly simplify the 

model without losing important information. By reducing the dimensions, we can focus only 

on the most crucial factors, making the model more efficient and accurate. This is where PCA 

comes in – it helps reduce dimensionality while retaining the most important features, making 

models more efficient, easier to interpret and computationally feasible. Therefore, PCA 

becomes an essential tool in handling high-dimensional data. To give learners an extensive 

understanding of PCA function in today's machine learning, this dissertation studies the 

mathematical basis, expansions, and applications of the method. Different properties of PCA 

and its variants like sparse PCA, kernel PCA, incremental PCA and robust PCA are 

highlighted with detailed derivations and graphical interpretations. We have Applied PCA to 

different types of datasets across multiple domains, including bioinformatics, genome 

analysis or computer vision to evaluate its practical effectiveness. In recent years, the 

combinations with PCA has proved or solved many problems. And, these advancements like 

PCA with cluster analysis or PCA combined with discriminant analysis help in reducing 

dimension obviously, reducing noise and better feature extraction since data in this huge 

space is very complex. While PCA has various advantages, it is not always the perfect 

solution for every problem. Researchers often face several challenges when applying PCA in 

experiments. One major limitation is its assumption of linearity. Additionally, PCA is highly 

sensitive to noisy or irrelevant features, which can lead to misleading results. Another 

challenge is the difficulty in interpretability of new components, as they are linear 

combinations of the original variables rather than direct meaningful features. 
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                                                                    CHAPTER 1 

                         

                         1.1   INTRODUCTION  

                         Let us begin by discussing what motivates the concept of Principal Component Analysis 

(PCA). Why do we need PCA? Given that there are numerous other algorithms available 

for data analysis, one might wonder what makes PCA stand out. This is exactly what we 

will explore. In today’s vast and complex data landscapes, every model or prediction we 

make is influenced by a multitude of factors, often referred to as dimensions in the context 

of machine learning. As the number of dimensions increases, several challenges emerge. 

These challenges manifest as computational difficulties, problems in data analysis, and 

issues related to storage and memory. The more dimensions we deal with, the more 

complex and resource-intensive the problem becomes. However, sometimes the data is 

much simpler than it initially appears. Often, the key to understanding the data lies not in 

every single feature, but only in a subset of them. In such cases, reducing the 

dimensionality of the data can significantly simplify the model without losing important 

information.  

                             For instance, consider a scenario where we want to predict whether an animal is a cat or a 

dog, simply by touching it. In this case, the colour feature is irrelevant, and reducing the 

dimensionality by removing unnecessary features like colour will streamline the model.  

                             Similarly, let’s consider an image of the digit ‘7’ in a 52x52 pixel format (which is 2,704  

- dimensional space because 52 times 52 equals to 2,704). [2] If the image is expanded to 

64x64 pixels, it becomes a much larger image with far more data. However, the majority 

of these additional pixels may not significantly affect the image's interpretation. Only a 

few key features within this larger space are truly important for recognizing the digit. By 

reducing the dimensions in this way, we can focus only on the most crucial factors, making 

the model more efficient and accurate. This is where PCA comes in – it helps reduce 

dimensionality while retaining the most important features, making 

      models more efficient, easier to interpret, and computationally feasible. Therefore, PCA 

becomes an essential tool in handling high-dimensional data. 

                             So, now we can conclude that PCA is used for applications like reducing the dimension, 

visualizing the data, or selecting the features. We have to ensure that data will have the as 

much variance as possible. By doing this , the most important patterns or data will be there 

and duplications will be removed. PCA helps in simplifying complicated datasets and 

improving efficiency. 
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    1.2  PROBLEM STATEMENT 

     Despite its usefulness, PCA also has several challenges: 

• Linear Relationships – PCA is helpful in lot of cases like to identify data variance, but 

the problem is it consider data to be linear always. Therefore, when dataset is complex 

or non-linear, it fails to provide any help as it only depends on linear transformation.  

 

• Unseen Data and Outliers –PCA learns the complexity of data set very well therefore 

whenever there is any unseen data or outlier, its prediction differs significantly. 

Predictions may become unstable as a result, which reduces its reliability for real-world 

applications where data is continuously changing. 

  

• Cost Problem –PCA demands high cost while performing any computations which is 

required in PCA such as any simplifications needed in solving matrices. Without proper 

optimization, processing very high-dimensional data becomes difficult as the number 

of features increases since it takes more time and memory. 

 

 

Various kinds of PCA variants and extensions have been introduced to tackle these issues, 

each of which is used to handle one of the problem. For bettering PCA's performance and 

flexibility in a variety of situations, scientists have studied and suggested several 

modifications. For example, one of the biggest problem of PCA is that it considers the 

relationship to be linear always, so to handle the complex datasets various advanced 

techniques have been made. These changes guarantee that PCA remains to be an effective 

technique even when traditional linear transformations are unable to provide useful 

findings. 

These improved PCA versions make it more accurate, flexible, and appropriate for a greater 

variety of real-world applications by improving the fundamental methods. This will 

include:  

1. Kernel PCA (KPCA): This variation of PCA is presented only to handle the 

problem of linearity in traditional PCA. Standard PCA might not give the 

accurate result when applied to non linear or on complex datasets. This same 

kind of technique is used in support vector machine, so the idea behind this is 

same. by applying kernel PCA, it mainly reduce the dimension of the non-linear 

dataset.[1]  

 

2. Sparse PCA (SPCA) : As evident from the name “sparse” means few or very 

less. In the context of machine learning, Sparse PCA is presented to maintain 

the interpretability. This kind of PCA works on this problem by selection small 

number of principal components, so that accuracy will remain intact and the 

relevant information will not get lost. Unlike traditional PCA, which creates  
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full principal components that may involve contributions from all original 

features. So by this way, we can easily analyse or interpret the results. 

 

 

3. Robust PCA (RPCA): Traditional PCA's sensitivity to noise and outliers is one 

of its major drawbacks. To solve this problem, Robust PCA (RPCA) is used, 

which efficiently handles misclassified data while maintaining the accuracy and 

significance of the principal components. Data can be made more stable and 

robust by breaking it down into low rank and sparse components.[2] 

 

 

4. Incremental PCA (IPCA): Though most of the problems of PCA are 

solved such as interpretability, non-linearity etc. but one of the major challenge 

is left which is when data is very large. Traditional PCA becomes extremely 

costly and demands a large amount of memory and processing power when 

working with high-dimensional data. Due to limits in handling large-scale 

computations, this can have an influence on accuracy as well as efficiency. 

Incremental PCA (IPCA) was created to address this. IPCA divides the data into 

smaller quantities and applies an individual fit to each batch instead of analysing 

the complete dataset all at once. 
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      1.3 RESEARCH PURPOSE  

      To give learners an extensive understanding of PCA function in today’s machine learning, 

this dissertation studies the mathematical basis, expansions, and applications of the 

method. In particular, it seeks to: 

 

• Different properties of PCA and its variants like sparse PCA, kernel PCA, incremental 

PCA and robust PCA.  

 

• To learn which type of PCA suits best in different kind of conditions or scenarios. 

 

• Examine the extensions of PCA and its connections with eigenvalues and eigenvectors, 

providing deeper insights into its theoretical framework. 

 

• Apply PCA to different types of datasets across multiple domains, including image 

processing, finance, healthcare, and anomaly detection, to evaluate its practical 

effectiveness. 

 

 

 

         1.4   IMPORTANCE OF THE STUDY  

          Large datasets exist in a huge feature space, making it difficult to interpret the results 

effectively. As the number of dimensions increases, extracting meaningful insights 

becomes more complex. PCA plays a crucial role in addressing this challenge by 

reducing dimensionality while minimizing information loss, allowing for better analysis 

and interpretation of data. Dimensionality reduction is the major reason why we have 

used this technique as it will preserve the important information. It is helpful in various 

sectors such as healthcare, finance etc. Various types of PCA will reduce the problem 

whether it is sensitivity towards outliers or computational cost, every problem is 

resolved. Therefore, to know more, to learn about this study is very important as there 

might be some drawback. Let’s dive into the world of PCA, its variants and advances 

in machine learning. By exploring more in different types of PCA such robust, 

incremental, sparse or kernel PCA, we can know more about which type will work best 

on which dataset.  
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                                                  CHAPTER 2 

   

                   2.1 MATHS INTUITION BEHIND TRADITIONAL PCA 

                        To truly learn about the mathematics behind Principal Component Analysis (PCA), it is 

essential to have a strong understanding of statistics and linear algebra. These mathematical 

foundations help in deriving the core algorithms of PCA, which essentially revolve around 

two key optimization approaches: 

                            1. Maximizing the variance of the projected data points.[2] 

                            2. Minimizing the squared reconstruction error.[2] 

 

 

 

                        2.1.1 We will begin by exploring the first algorithm, which is based on 

maximizing variance. 

                        At this point, an important question arises: Why do we focus on variance rather than any 

other statistical measure? The answer is quite easy—we can use variance because it has 

squared term in its formula, which will be helpful when we differentiate the term. Because 

of this feature, it works well for optimization issues and enables us to calculate 

principal components quickly and effectively using methods based on calculus. To better 

understand why maximizing variance is crucial, let's consider a simple real-world example. 

Imagine an assembly of students standing in a row. A teacher wants to count the total 

number of students in the assembly. Now, if the teacher stands at the side of the row and 

counts, it becomes much easier to see all the students at once because the spread is 

maximized. However, if the teacher stands directly in front of the row, the students appear 

to be stacked one behind the other, making it difficult to differentiate between them. This 

example clearly demonstrates why maximizing variance is important in PCA. By spreading 

out the data as much as possible in a new coordinate system, the most important patterns 

and variations in the data are efficiently captured thanks to PCA. Better dimensionality 

reduction and feature extraction result from the transformation being more relevant as the 

spread increases. Therefore, maximizing variance is a key idea in the mathematical 

formulation of PCA since it enables it to keep the most information from the original 

dataset while lowering dimensionality. 

                            Let’s consider we have N data points denoted as {𝑎𝑛} where n = 1,2 ….., N and each data 

point has M dimensions (features). To make things simpler, we assume a 2-d dataset and 

aim to reduce it to 1-d using PCA. PCA finds a new coordinate system, where each axis  
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                         represents a Principal Component (PC). These principal components capture the 

maximum variance in the data and are denoted as: 

• PC1, PC2, ..., PC'M (depending on the number of dimensions). 

Key Constraints of Principal Components: 

1. The number of Principal Components (PCs) is always less than or equal to the number 

of original features. That is, if the data has M features, then the number of PCs will be 

at most M. 

2. All Principal Components are orthogonal (perpendicular) to each other, meaning they 

form a new set of basis vectors that are uncorrelated. 

Now we will first compute the mean: 

                     �̅� = 
1

𝑁
∑ 𝑎𝑛

𝑁
𝑛=1  

This mean-centered transformation helps in simplifying the computations, making it 

easier to find the principal components that best represent the data. 

We shall choose a unit vector such that 𝑣𝑇𝑣 = 1, as we are only interested in direction.  

       Variance = 
1

𝑁
 ∑ { 𝑣𝑇𝑎𝑛 −  𝑣𝑇𝑁

𝑛=1 �̅�} = 𝑣𝑇𝑋𝑣 

Where X is co-variance matrix, defined by: 

          X = 
1

𝑁
 ∑ (𝑎𝑛 − 𝑁

𝑛=1 a ̅)(𝑎𝑛 − �̅�)𝑇 

We now maximize the variance with respect to 𝑣. Now, from the properties of matrices 

we know that  

                                        X 𝑣 =  𝜆𝑣  

 

Where 𝑣 is the eigen vector of X. 

                               𝑣𝑇𝑋𝑣 =  𝜆 

 

The eigen vector corresponding to largest eigen value 𝜆 is known as principal 

component or referred as PC1. Python provides an easy way to perform this 

computation using NumPy’s linalg.eig() function. This function allows us to efficiently 

extract eigenvalues and eigen vectors.  
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Summarizing the PCA , it includes steps: 

Standardisation:  Normalize the dataset to ensure all features contribute equally. 

Compute Covariance Matrix – Captures relationships between different features. 

Find Eigenvalues & Eigenvectors – Eigenvectors define new axes, eigenvalues indicate 

variance captured. 

Select Principal Components – Choose eigenvectors with the highest eigenvalues as 

PC. 

Project Data onto PCs – Transform data into the new lower-dimensional space. 
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2.1.2   PCA VIA MINIMUM SQUARED RECONSTRUCTED 

ERROR 

 

Previously, we studied the variance maximization approach, where PCA finds the 

principal components that capture the maximum variance in the dataset. Now, we will 

explore another mathematical perspective on PCA: minimizing the squared 

reconstruction error. This approach gives us the geometric representation of PCA as 

finding a subspace without much loss of information. Now we will understand the maths 

behind this approach. 

We want to minimize      
1

𝑁
∑ ‖𝑎𝑛 − �̃�𝑛‖2𝑁

𝑛=1  

Now we will introduce orthonormal basis, such that  𝑣𝑖
𝑇𝑣𝑗  is 1 when i = j and otherwise 

0.  

New basis will be,  

𝑎𝑛 =  ∑ 𝑏𝑛𝑖

𝑀

𝑖=1

 𝑣𝑖 

Multiply 𝑣𝑗
𝑇 on both sides,  

𝑏𝑛𝑖 =  𝑎𝑛
𝑇𝑣𝑖 

 

Implies 𝑎𝑛 = ∑ (𝑎𝑛
𝑇𝑣𝑖)𝑀

𝑖=1  𝑣𝑖   

 

For reconstruction, 𝑎�̃� = ∑ (𝑎𝑛
𝑇𝑣𝑖)𝑚

𝑖=1  𝑣𝑖 +  ∑ 𝑧𝑖
𝑀
𝑖=𝑚  𝑣𝑖 

𝑎𝑛-𝑎�̃� = ∑ (𝑎𝑛
𝑇𝑣𝑖)

𝑀
𝑖=1  𝑣𝑖   - ∑ (𝑎𝑛

𝑇𝑣𝑖)
𝑚
𝑖=1  𝑣𝑖 -  ∑ 𝑧𝑖

𝑀
𝑖=𝑚  𝑣𝑖  

             = ∑ (𝑎𝑛
𝑇𝑣𝑖)

𝑀
𝑖=𝑚  𝑣𝑖   -  ∑ 𝑧𝑖

𝑀
𝑖=𝑚  𝑣𝑖  

             = ∑  (𝑎𝑛
𝑇𝑣𝑖)

𝑀
𝑖=𝑚  𝑣𝑖 - 𝑧𝑖𝑣𝑖 
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1

𝑁
∑ ‖𝑎𝑛 − �̃�𝑛‖2𝑁

𝑛=1  = 
1

𝑁
∑ ‖∑  (𝑎𝑛

𝑇𝑣𝑖)
𝑀
𝑖=𝑚  𝑣𝑖  −  𝑧𝑖𝑣𝑖‖

2𝑁
𝑛=1  

 

Let 𝑧𝑖 = �̅�𝑇𝑣𝑖, we are left with 

= 
1

𝑁
∑ ‖((𝑎𝑛 − 𝑎�̃�)𝑣𝑖)𝑣𝑖‖2𝑁

𝑛=1  

Expand the square using the property ‖𝑍‖2 = 𝑍𝑍𝑇 

After simplification, we got  

∑ 𝑣𝑖
𝑀
𝑖=𝑚 𝑋𝑣𝑖

𝑇 , where X = covariance matrix.  

It started to look lot like what we have studied previously, where  

 𝑣𝑖
𝑇𝑣𝑖 = 1, 

Therefore, we can conclude that minimum squared reconstructed error is equal to 

maximum projected variance.  

        Both approaches in PCA—variance maximization and reconstruction error 

minimization—serve different purposes depending on the nature of the data and the 

objective. maximizing variance is the recommended approach when working with strongly 

correlated features since it minimizes redundancy while maintaining the most important 

patterns in the data. This method is mainly useful for feature selection and improving 

performance by ensuring that the resultant components are uncorrelated and retain 

maximum information. However, the reconstruction error minimization strategy works 

better when dimensionality reduction is the main objective. This is particularly important 

in cases where preserving reconstruction quality is essential, such as data compression, 

image processing, and managing high-dimensional information. 
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2.2   EIGEN DECOMPOSITION VS SINGULAR VALUE 

DECOMPOSITION (SVD)  

 

      The maths intuition behind this is that basic matrix factorization approach in linear algebra 

is called singular value decomposition (SVD), which allows every given matrix to be 

broken down into the product of three unique matrices. To put it simply, a matrix can be 

factorized into components that reveal significant elements, much like we can express a 

number as the product of its prime factors. This decomposition is especially helpful for 

data compression, noise filtering, and dimensionality reduction. 

 

      Real-Life Example of SVD: 

      To understand its practical application, consider an underground pipe through which water 

flows. Suppose we want to calculate the volume of the pipe, which primarily depends on 

the fraction of water flow. However, there are additional factors such as speed, temperature, 

pressure, and other physical parameters that make the problem more complex. Since not 

all of these dimensions contribute equally to our primary objective, we can apply SVD to 

reduce the number of variables while still retaining the most crucial information. This 

allows us to focus only on the significant components, simplifying the calculations without 

losing critical information.  

      A key advantage of SVD over traditional Eigen Decomposition is that we can use this to 

any matrix, whether square or rectangular. Eigen decomposition, on the other hand, is only 

for square matrices. Because of this, SVD is a more flexible and reliable method that can 

be used in a wider range of fields, including recommendation systems, signal processing, 

and machine learning. 

 

    Mathematical Representation of SVD :  

    For any given matrix B(size is p×n) , we can decompose it as  

                                                    B = U∑𝑉𝑇 

   U is an p×p unitary (orthogonal) matrix containing left singular vectors. 

   Σ (Sigma) is p×n diagonal matrix containing singular values, which represent the importance 

of each component. 

   𝑉𝑇 is n×n unitary (orthogonal) matrix containing right singular vectors. 
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     When there are large datasets, simplifying the decomposition might be expensive and 

extremely time consuming. In such cases, we try to ignore the less important values and 

focus just on the important singular values which are likely to more helpful in future. This 

process is referred as economy singular value decomposition. This is particularly useful in 

dimensionality reduction, where we ignore low-importance singular values to improve 

efficiency without significantly affecting accuracy. The scikit- learn library provides an 

inbuilt feature for performing SVD which is np.linalg.svd() in NumPy. Its ability to handle 

any matrix, efficiently reduce dimensions, and focus on dominant features makes it very 

efficient.  

     Now we will see one mathematical example for SVD: 

Consider a 2×2 matrix B ,  

B = 
4 3
0 −5

 

     STEP 1:  Find 𝐵𝑇B 

𝐵𝑇 =  [
4 0
3 −5

] 

    𝐵𝑇B = [
16 12
12 34

] 

Step 2: compute the eigen values  

|𝐵𝑇B - λI∣ = 0   implies   |
16 − λI 12

12 34 − λI
| = 0 

We get 𝜆1  =  40,    λ2 = 10 

The singular values are the square roots of the eigenvalues: 

𝜎1 = 6.3246 approx. 

𝜎2 = 3.1623 approx.  

Step 3: find the eigenvectors of  𝐵𝑇B:  

For 𝜆1 = 40 ,      

(𝐵𝑇B- 𝜆1 𝐼)v = 0 

We get ,  -24x+12y=0   ⇒y=2x   

Let x = 1 then y =2 

Normalised eigenvector = 
0.4472
0.8944

 

Similarly for λ2 = 10,  
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(𝐵𝑇B- 𝜆2𝐼)v = 0 

We get , 6x+12y=0   ⇒x=−2y 

Let y=1, then x=−2 

Normalised eigenvector = 
−0.8944
0.4472

 

𝑉𝑇 = [
0.4472 0.8944

−0.8944 0.4472
] 

Step 4: now find the left singular vectors  

𝑢𝑖  = 
𝐵𝑣

𝜎𝑖
 

We get, U = [
0.8944 0.4472

−0.4472 0.8944
] 

Step 5: construct sigma  

∑ = [
𝜎1 0
0 𝜎2 

] = [
6.3246 0

0 3.1623
] 

Therefore, SVD of B is: 

                                                    B = U∑𝑉𝑇 

B   =[
0.8944 0.4472

−0.4472 0.8944
] [

6.3246 0
0 3.1623

] [
0.4472 0.8944

−0.8944 0.4472
] 

We can see that any matrix can be decomposed into three matrices using SVD .  
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CHAPTER 3 

 

                       3.1 EXTENSIONS AND VARIATIONS OF   PCA IN MACHINE 

LEARNING  

                   For many years, principal component analysis has been an essential technique in data 

analysis and to reduce dimensions. Originally introduced by Karl Pearson in 1901 as a 

method for identifying patterns in data, PCA then was formalized by Harold Hotelling in 

the 1930s, expanding its applications beyond statistics to fields like image processing, 

finance, and machine learning. The idea behind PCA is same is to transform high 

dimensional data into lower dimensional data with much information loss. However, 

standard PCA has encountered a number of challenges as datasets have become more huge 

and complicated, which has prompted the creation of numerous extensions and 

adaptations.  

                        In the early days, main focus of PCA was to analyse small datasets with a large number of 

linear correlations. But with the increase in datasets in this huge space difficulties such 

handling non-linearity, robustness to outliers, sparsity, and processing efficiency have 

become critical. Traditional PCA is less useful in many real-world situations since it makes 

the assumption that data is linearly separable as well as subject to noise and outliers.  

To get over these problems, researchers have created a number of PCA variations, each of 

which is meant to meet a certain restriction.  

 

                            The following are examples of modern PCA adaptations: Sparse PCA, which improves 

interpretability by choosing a subset of important features; Robust PCA, which improves 

stability by reducing sensitivity to noise and outliers; Kernel PCA, which improves PCA 

to non-linear datasets by mapping data into a higher-dimensional space using kernel 

functions; and Incremental PCA, which makes PCA efficient when applied to large-scale 

datasets by processing data in batches. These modifications have improved PCA's utility 

and usability as a tool in areas including image recognition, biology, and finance.  

 

                             We will now go into more detail about these PCA innovations, including how they work 

and how they overcome the limitations of traditional PCA, in the sections that follow. Also 

we will look at the maths intuition behind all of these variations of PCA:  
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                           3.2 KERNEL PCA  

                            Traditional PCA assumed that data is well represented in linear subspace, which limits its 

effectiveness when working with complex datasets where patterns are not easily separated 

by straight lines. KPCA uses a kernel function to get around this restriction by converting 

the data into a higher-dimensional feature space, which makes linear PCA possible.[4] This 

technique is also used in SVM when dataset is non separable and we want to transform 

lower dimension to higher dimension. 

                           Kernel PCA maps the data into new space using a function, denoted as ɸ. To avoid the 

computational cost, KPCA uses kernel tricks which allows us to compute the dot product 

of transformed points without directly performing the transformation, in this we can avoid 

the large computations.  

                         There are various kinds of kernel functions such as polynomial kernel, sigmoid kernel etc.  

                        K(𝑥1𝑥2) = ɸ(𝑥1)𝑇  ɸ(𝑥2) , this is called kernel function.  

 Popular kernel functions include: 

• Polynomial kernel -  K(𝑥1𝑥2) = (𝑥1
𝑇𝑥2  +  c)𝑞 

Example : let  𝑥1 = [1 2] , 𝑥2 = [2 3] and c = 1  

K(𝑥1𝑥2) =( 8 + 1)2 = 81 

 

• Gaussian kernel   -  K(𝑥1𝑥2) =  𝑒
−‖𝑥1 − 𝑥2 ‖2

2σ2  

         

• Sigmoid kernel  -   K(𝑥1𝑥2) = tanh (a𝑥1
𝑇𝑥2  +  c) 

 Now we need to find the kernel matrix M, whose elements are nothing but the dot product 

of transformed data points. The choice of kernel function plays a crucial role in this 

process, as it determines how the data is mapped. The choice of kernel function plays a 

important role in this process, as it determines how the data is mapped. After this, 

traditional PCA steps are applied: computing eigenvalues and eigenvectors of the centered 

kernel matrix, selecting the principal components based on the largest eigenvalues, and 

projecting the data onto these components to obtain a lower-dimensional representation. 

KPCA comes with several limitations:  

1. Which kernel function fits best – KPCA does not gives us any information about 

the best fit kernel . there is no universal rule to find this  

2. Complexity -  For large datasets, this leads to high memory usage and 

computational cost, making KPCA difficult for big data applications. 
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3. Problem in interpretation – In traditional PCA, where the principal components 

are linear combinations of original features, KPCA 

 

operates in a transformed high-dimensional space, making it difficult to interpret 

the results. 

4. Lack of scalability - KPCA's performance drastically decreases for very big 

datasets because it depends on storing and computing the kernel matrix. 

 

      Applications of KPCA:  

1. Use in biotechnology: KPCA is applied to genetically modify or detect patterns in genetic 

traits. In high-dimensional biological datasets, it improves DNA sequence clustering and 

classification, we can say it is used for gene data analysis.  

2. To analyse whether and climate data: it helps us to analyse climate patterns by determining 

sea surface temperature.  

3. Processing satellite images : it includes complex or detailed data and we get to know about 

the amount of aerosols which will help us to know about the cloud formation.  

4. Recognition of images: It aids in identifying faces, recognizing handwritten text, and 

classifying objects. 

5. Defining diseases and medical diagnoses:  KPCA making it easier to detect diseases such 

as cancer and brain disorders.[10] It also helps in organizing and sorting patient records. 

 

 

                        3.3 ROBUST PCA ( RPCA)  
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                  One of the key drawbacks of traditional PCA is its sensitivity to outliers and noise. Even a 

few corrupted data points can significantly affect the principal components, leading to 

inaccurate feature extraction and poor performance in real-world applications. Robust PCA 

(RPCA) was introduced to address this limitation by ensuring that the extracted 

components remain stable and reliable, even when dealing with noisy or misclassified 

data.[11]  

                        The core idea behind RPCA is to decompose a given data matrix M into two components: 

                                                     M = L + R  

                        L is a Low-Rank Matrix: Represents the clean and structured part of the data, capturing the 

underlying patterns while removing out noise.  

                        R is a Sparse Matrix: Contains the corruptions, outliers, or noise, ensuring that these 

anomalies do not distort the meaningful features. 

                            A low-rank matrix is essential because real-world data often lies in a lower dimensional 

subspace despite being represented in a high-dimensional form. For example: Facial photos 

of the same person taken in various lighting situations still have similar structures, which 

means that a low-rank representation can capture their variation in face recognition. By 

focusing on the low-rank structure, RPCA preserves the most informative part of the data 

while discarding noise and outliers. Now, we can think that there infinite number of ways 

we can decompose a matrix into sum of other two matrices then how can this method be 

efficient or how can we select the most appropriate decomposition. so the answer is that 

we can done this by putting some constraints and converting this into a convex 

optimization problem. let us discuss that now:  

                            To effectively separate the low-rank and sparse components, RPCA formulates the 

decomposition as an optimization problem with specific constraints. The goal is to 

minimize the rank of L and the sparsity of R while ensuring that their sum reconstructs the 

original matrix M. Since directly minimizing the rank function is computationally 

challenging, an alternative approach is used: 

                                            min ∥ L ∥∗+ λ ∥ R ∥ 1   subject to   M = L + R 

                     where,  

                         ∥ L ∥∗ = The sum of singular values of L, used as a relaxation of rank minimization (nuclear 

norm). 

                     ∥ R ∥ 1 = Encourages sparsity in R, ensuring that only a few entries contain significant noise or 

outliers (L1 norm). 

                       λ = A weighting parameter that balances the trade-off between keeping data clean and 

preserving key structures. 
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                       But RPCA has various limitations, such as it takes lot of computational cost as solving the 

optimization problem requires repeated SVD, making it inefficient for large-scale datasets. 

Another problem is that this problem is highly dependent on choice of λ, wrong choice 

may lead to poor results, this plays a crucial role in RPCA. Also RPCA considers that there 

is always a noise in the data, but it is not always in the case of highly correlated data. These 

limitations highlight the need for alternative PCA variations, such as Sparse PCA, Kernel 

PCA, and Incremental PCA, to address specific challenges more effectively. 
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3.4 SPARSE PCA (SPCA)  

                  Question arises is why we need sparse PCA when we already have other variants of PCA? 

                            As clear from the name “sparse” means few or scattered. In PCA, assume we have large 

dataset for example let’s say we have dataset with 200 features and according to traditional 

PCA it creates new principal components that are linear combinations of all 200 features. 

So when there is lack of sparsity, researchers gives us the idea of sparse PCA. 

                            To be precise, lack of sparsity makes interpretation and feature selection very difficult. 

Instead of finding the most important features, traditional PCA will start to work on all 

features  

                             Now sparse PCA will help to reduce noise and redundant that is those features which are 

not important. Now I think we get the idea why we need sparse PCA, along with that we 

are going to understand the maths intuition behind sparse PCA in the following section:  

                                                                    min  
1

2
‖𝐴 − 𝐴𝑋‖𝐹

2  + α‖𝑋‖1 

                            where, A be the data matrix and X be the principal component matrix. Let us breakdown 

the formula - 

                            The first term ensures that reconstructed data AX would be close to original data, reducing 

the error. And in the second term L1 norm is used as it makes models sparse by setting 

some values to zero.  That means only few components contribute to principal components. 

The constant α controls the level of sparsity, big α means more sparsity and small α means 

less sparsity. After that ‖. ‖𝐹
2  means the Frobenius norm, which measures the squared error 

between original data and reconstructed data. This is all about the formula of sparse PCA 

published in one of the paper in 2006 .  

                            Now, we will see how to apply Sparse Principal Component Analysis (Sparse PCA) using 

Python's scikit-learn library. 

      There are various drawbacks of sparse PCA: 

1. Role of α is crucial – The performance is highly influenced by the choice of α. 

Degree of sparsity is determined by this, either too much sparsity result in losing 

some important features or very less sparsity.  

2. Lack of information about variance - It may remove significant variance from 

the original data, which could result in less than ideal feature selection. 

3. Complexity – As compared to traditional PCA, sparse PCA is costly due to 

optimization involved.  

4. Not ideal for selecting features - Sparse PCA might not be the best option always 

for selecting the features because it forces sparsity in its main parts rather than 

specifically choosing features.  
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3.5   INCREMENTAL PCA 

 
      When working with huge dataset, storing and managing those datasets is not 

really easy task time all the time. To solve this problem, Incremental PCA is 

introduced by researchers. It is a better version of traditional PCA made to solve 

the problem of managing large scale data. The process is IPCA transform into 

small groups unlike traditional PCA. 

      As new data becomes available, IPCA iteratively updates the principal 

components rather than computing them all at once. This method maintains the 

capacity to identify significant patterns in high-dimensional data while reducing 

memory needs.  

      By continuously refining the principal components, IPCA ensures that it can 

adapt to evolving datasets without needing to recompute everything from 

scratch. This makes it highly effective for real-time applications, online 

learning, and large-scale data analysis.  

 

 

 

 

 

 

This code shows the comparision between the standard PCA and incremental 

PCA. Both approaches are used to split the dataset into two principal 

components, and the outcomes are shown for comparison. IPCA is best for large 

datasets , as it breaks the dataset into small batches . PCA and IPCA produce 

comparable outcomes because of the small Iris dataset. 
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CHAPTER 4  

 

4.1 PCA in Bioinformatics and Genome Analysis 

 

Use case 1 – PCA FOR PLANT STRESS : 

Any external factor that interefers with a plant's regular growth , development, or physiological 

functions is referred to as plant stress. There are two types of plant stress , biotic stress - which 

is caused by living organisms ( bacteria , Insects and pests, Weeds and competing plants) , 

abiotics stress - Caused by non-living environmental factors (draught , salinity , UV radiations) 

.[6] 

We will understand how PCA contributes in managing plant stress : 

Principal Component Analysis plays a crucial role in analyzing large datasets by identifying 

underlying patterns and reducing dimensionality. By eliminating irrelevant or redundant 

features, PCA allows scientists to focus only on the most significant factors, improving the 

efficiency of research and decision-making. One key application of PCA in agriculture is 

assessing salt tolerance among plants. PCA is widely used in studying gene expression patterns 

which allows researchers to determine which particular genes are beneficial in reducing 

environmental stress. Furthermore, PCA helps in remote sensing applications, enabling early 

detection of plant stress before visible damage occurs, this early approach allows for immediate 

action by improving crop management and ensuring sustainable agricultural practices. By 

analyzing plant traits and gene expressions, PCA helps identify genetic variations associated 

with stress resistance which enables the selection of strong plant varieties which in turn 

contributes to reducing plant stress and indirectly enhances soil fertility by encouraging 

healthier crop growth. 

 

Scientists use biotechnology to enhance plant resistance to stress through very useful CRISPR-

Cas Technology –  

By enabling researchers to precisely edit genes, examine gene functions, and categorize various 

bacterial strains, CRISPR-Cas technology has altered the study of bacterial genomes. It aids in 

the identification and modification of particular genes, improving our knowledge of bacterial 

evolution, pathogenic potential, and antibiotic resistance. However, because of the vast number 

of variables and complex patterns, CRISPR-based investigations produce a lot of complex 

genomic data that is challenging to analyze. That is where PCA commes in role , it helps in 

interpret and process large scale bacterial genomic data . PCA reduces the number of features 

while maintaining essential genetic patterns. PCA helps researchers to focus on the key features 

which would help them to study more about genetic patterns.[12] It will help to classify same 

kind of genes by making clusters . It helps in visually representing bacterial genome variations, 

making it easier to identify groups of similar bacteria or unusual strains with unique genetic 

changes. 
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Use case 2 – PCA FOR FINDING PROTEIN STRUCTURE: 

Protein structure means specific shapes based on the arrangements of amino acids. To 

investigate protein structures, learn about molecular dynamics, and forecast folding patterns, 

scientists use computer methods such as PCA. It majorly helps in to study about the flexibility 

and movements of proteins . let us know more about how PCA in helpful in finding protein 

structure –  

1. PCA helps to reduce the dimesions as there are thousands of atomic coordinates , 

because of this researchers can efficiently work on the most significant structural 

changes. 

2. It is used to cluster similar types of genes, which helps in the classification of genetic 

patterns. Researchers can identify various genetic differences, find possible biomarkers, 

and differentiate between healthy individuals because to this clustering. 

3. PCA helps scientists study how proteins change shape when a molecule binds to them. 

By analyzing these movements, researchers can identify important regions where drugs 

can attach. 

There is one study called Alzheimer disease gene study : A progressive neurological condition 

that affects thinking, behavior, and memory is Alzheimer's disease. It results from the 

accumulation of unusual protein structures in the brain, like tau tangles and beta-amyloid 

plaques, which harm nerve cells and impair their ability to communicate with one another. 

Now PCA when combined with other machine learning algorithm can help to cure this 

disease or hepful in better diagnosis with its properties such as by reducing the dimensions 

as it has thousands of genes .[7] 
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4.2   PCA IN COMPUTER VISION AND IMAGE PROCESSING  

 

PCA can solve various challenges in computer vision such as face recoginition, 

handwriting recognition, image compression etc. Various PCA variations improve 

its performance in computer vision by tackling certain issues such as sparsity, 

robustness, and non-linearity. For example KPCA, it is a useful tool for identifying 

difficult, nonlinear patterns in photos and extensively utilized in picture 

segmentation, texture classification, and object recognition. 

 

USE CASE 1 :  PCA for Autonomous Surveillance and Threat Detection in Defense 

 

In modern defense technology, real-time thermal imaging is critical for detecting 

unauthorized movements, potential threats, and enemy activities in low-visibility 

conditions. PCA speeds up processing by lowering the dimensionality of the data, 

which makes it possible to identify defects more quickly. To effectively identify 

and monitor threats, a PCA-based system may be installed on ground-based infrared 

cameras or surveillance planes.[8] It also helps to eliminate background noise, 

ensuring that only relevant thermal signatures are examined for increased threat 

detection accuracy. 

1. Since infrared rays include huge quantities of data, PCA eliminates duplicate 

features, improving quick processing and real-time decision-making. 

 

2. PCA reduces false alarms by taking important thermal features to differentiate 

between people, animals, and vehicles; it also improves recognition of targets 

by concentrating on the most useful thermal patterns, which increases 

reliability and precision of surveillance by eliminating redundant information. 

 

3. It compresses the thermal video so that video can stream smoothly over all 

places like in every military area or even in remote area where connectivity is 

less. 

 

4. To react quickly to any threats, this can initiate security steps or send 

notifications automatically, PCA helps to analyse thermal data to find 

different-different patterns. 

 

PCA is a powerful defensive technology tool because it improves awareness of 

conditions, surveillance accuracy, and real-time danger detection when combined 

with thermal imaging and artificial intelligence. 
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USE CASE 2 : PCA on Contour Detection using OpenCV 

 

 

In computer vision, contour detection method is used to determine the boundaries 

of any object. Using PCA, we are able to find the looks of any object such as shape, 

alignment etc. PCA helps in identifying the contour's major and minor axes which 

is helpful for picture preprocessing, object alignment, and shape recognition. 

 

OpenCV means open source computer vision library, in this library there are 

specific types of tools which are helpful in finding the contour.  

When it comes to contour detection in OpenCV, PCA assists in determining the 

current contour direction in an image, which is helpful for alignment, object 

recognition, and shape analysis. 
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CHAPTER 5 

Challenges, Limitations and Future Scope  

 

While PCA has various advantages, it is not always the perfect solution for every problem. 

Researchers often face several challenges when applying PCA in experiments. One major 

limitation is its assumption of linearity, meaning it may not perform well when dealing with 

complex, nonlinear relationships in data. Additionally, PCA is highly sensitive to noisy or 

irrelevant features, which can lead to misleading results. Another challenge is the difficulty in 

interpretability of new components, as they are linear combinations of the original variables 

rather than direct meaningful features. However, choosing the optimal number of principal 

components is not always straightforward, and selecting too many or too few can impact the 

effectiveness of dimensionality reduction. We will study these limitations one by one in detail: 

 

5.1  CHALLENGES IN HANDLING HIGH DIMENSIONAL  AND NOISY 

DATA  

 

When using PCA, managing complex and noisy data presents major difficulties. Finding the 

principal components that are actually relevant in high-dimensional datasets can be challenging 

due to the quantity of related features. Even though PCA helps in dimension reduction, it keeps 

elements that don't add much to the total variance, which results in poor feature selection. 

Furthermore, because PCA cannot naturally differentiate between important variations and 

random fluctuations, noise in the data can have a major impact on its performance. The 

performance of the extracted components may be decreased if PCA detects and amplifies noisy 

elements. Another challenge is the "curse of dimensionality," where an increase in the number 

of features leads to computational inefficiencies and requires more data to maintain results. 

Moreover, interpreting the transformed components becomes difficult as they are linear 

combinations of multiple original features rather than straightforward variables. To address 

these issues, researchers often use preprocessing techniques such as feature extraction, 

normalization, and methods to reduce noise before applying PCA to ensure the extracted 

principal components are both relevant and interpretable. 

 

The example of thermal photography in defense technologies helps us better understand. 

Assume that a surveillance drone monitors a border region using infrared cameras to spot any 

unauthorized activity. A high-dimensional dataset is produced by the hundreds of pixels with 

different patterns of heat found in the thermal photos that were taken. In order to identify 

possible dangers, such as differentiating between people, animals, or cars, PCA is used to 

reduce dimensionality and extract essential data. 

However, the accuracy of PCA may be affected by data noise, which can be brought on by 

outside variables like fog, rain, or sensor failures. PCA may incorrectly consider noise as a 

significant feature since it lacks the inherent ability to distinguish between relevant signal 

changes and random noise. For example, PCA might consider abrupt temperature changes  
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brought on by wind or heat reflections from surfaces as principal components, which could 

result in false positives. This may lead to wrong warnings or an inability to identify real dangers. 

Additionally, PCA may remain computationally costly and reduce real-time efficiency in high-

dimensional thermal video streams if it retains an excessive number of components. However, 

important thermal patterns that help in threat identification may be missed if insufficient 

components are chosen. Therefore, even though PCA aids in feature extraction and data 

compression, appropriate preprocessing—such as removing noise and choosing pertinent 

components—is required to guarantee its efficacy in these practical applications. 

 

 

 

 

 

The original data with distinct groups is displayed in the plot on the left. The right plot shows 

how the clusters may overlap or become distorted after using PCA to decrease the 

dimensionality to 2D, losing important structure in the process. This illustrates how, when 

lowering dimensions, PCA can occasionally distort significant patterns. 
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5.2  Limitations of PCA in nonlinear transformations. 

 

PCA functions best when the significant variations in the dataset show straight-line 

relationships, which is based on the assumption that the data is linearly separable. However, 

PCA is unable to represent the complex, nonlinear structures found in many real-world datasets. 

PCA may lose important patterns when applied to such data, which could result in the loss of 

important information. For instance, curved or nonlinear manifolds are frequently followed by 

object shapes or facial expressions in picture recognition. PCA may misrepresent these 

variations by using only linear projections, which would lower the classification accuracy. 

 

Let us understand this by an example , Remote sensing images such as satellite imagery, often 

contain highly nonlinear patterns due to variations in terrain, atmospheric conditions, and object 

shapes. PCA, being a linear technique, struggles to capture these complex relationships. 

Consider this scenario where we have to find land cover types from satellite images such as 

distinguishing between forests, water bodies, urban areas, and agricultural land. The way 

different land types reflect light creates complex patterns in high-dimensional space. These 

patterns are influenced by factors like how light hits the surface, changes in brightness, and 

differences between seasons. 

Challenges with PCA –  

1. PCA tries to project this complex dataset onto a lower-dimensional space using straight-

line projections, assuming that the most important variations are linear. 

 

2. This often results in different land cover types overlapping in the reduced space which 

makes classification less accurate. 

 

3. Nonlinear relationships, such as vegetation indices reacting differently to soil moisture 

levels may be lost after PCA compression. 

 

      Due to this there are various consequences such as different types of land cover (such as 

water, vegetation, and urban areas) may become harder to classify. Since PCA reduces 

the number of features, some important differences between these land types might get 

mixed together causing errors in classification. Essential features that help in 

distinguishing different surface types (e.g., subtle water pollution variations or shadow 

effects in urban areas) may not be well preserved. 
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       Another great example explaining the limitation of PCA in non- linear transformation is 

Climate Statistics and Temperature Changes. 

 

      PCA assumes linearity, but many real-world datasets (such as climate data) exhibit nonlinear 

relationships. Temperature, humidity, and atmospheric pressure do not follow a simple linear 

pattern. PCA assumes that the most important variations in climate data are along straight-line 

directions, which is often not the case. 

      When scientists analyse global temperature datasets, they observe long-term warming trends 

mixed with short-term fluctuations caused by ocean currents, volcanic eruptions, or solar 

cycles. PCA can show an overall rise in temperature, but it misses important details, like the 

fact that polar regions heat up faster than tropical areas. 

 

                              
      

      This image shows how PCA has difficulty capturing nonlinear temperature changes in climate 

data. The original temperature trend (black points) naturally follows a curved shape, 

representing complex variations over time. However, PCA (red points) tries to fit this data into 

a straight-line pattern, simplifying the trend and losing important details. This demonstrates 

one of the main limitations of PCA—it struggles to accurately represent nonlinear 

transformations, which are common in climate statistics. 
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5.3 Possible Advancements In Hybrid Approaches And Deep Learning. 

 

 
As we know that Principal component analysis is the technique majorly used for 

dimensionality reduction. But in this section, we will try to understand PCA with other 

high dimensional techniques. In recent years, the combinations with PCA has proved or 

solved many problems. Furthermore, these advancements help in reducing dimension 

obviously, reducing noise and better feature extraction since data in this huge space is 

very complex. Now what could be the possible combinations, for example PCA 

combined with cluster analysis, neural networks, linear discriminant analysis etc. If we 

look deeper and thought more about these combinations, we can say that PCA could 

possibly combine with any other technique which we used in machine learning for 

improved accuracy. We will study more about these advancements in following section: 

 

 

 

5.3.1 PCA Combined With Clustering 

In cluster analysis, we try to put similar kind of items together according to their 

behaviour. We don’t know the group in advance, unlike linear discriminant analysis 

where we already know the groups and want to know what really differentiates them. 

The main goal is to allow the machine to put together the similar kind of data that makes 

sense. Now clustering is used after PCA for dimensionality reduction.[3]  

For example: In a carton, there are bulbs and tubes. Clustering helps to sort them into 

similar kind of things in one cluster and other kind in different group just by looking at 

their characteristics. And what PCA does is , since there are lot of dimensions like shape, 

colour, guarantee time etc. so PCA takes all these features and try to reduce them.  

We will now understand more about this, PCA converts the data into two dimensional, 

in this way we can easily visualize the similarities by doing grouping in 2-d. but 

sometimes what happens is that reduced plot may miss some important group patterns. 

But using clustering this is not a bigger deal as we are trying to find patterns and don’t 

already know them. PCA will give useful view if data doesnot have clear clusters. 

EXAMPLE: Consider we have high dimensional dataset containing different features 

from different people such as height, weight, age, address etc. now the data looks 

unrelated and scattered. So first PCA is applied to reduce the feature and keeping only 

the useful features. After this we use clustering that will do the grouping of similar kind 

of features.  
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In the above graph, we can see that this is the more simplified and understandable 

2-d plot. Even though the data set does not have any patterns, PCA helped to find 

the clusters. Hence, this technique helps to reduce dimensions and uncover the 

hidden groups, by which we can understand the visualization. Such types to methods 

basically used in image recognition, bioinformatics etc. 
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5.3.2 PCA Combined with Discriminant Analysis 

  

 Linear discriminant analysis is basically used for reducing dimensions. To separate 

the classes within the dataset by identifying linear combination of features. So the 

random vector r(say), assumed to have normal distribution. In linear discriminant 

analysis, our main goal is to minimize the problematic areas such as mis-

classification. 

Now since there are huge datasets, therefore there are lot of random vectors 

associated with it. Our idea of combining PCA with discriminant analysis is to 

replace these lot of random vectors by the first k(say) principal components whose 

variance are high.  

 

     Which eventually will led to reduction in dimensions, more accurate results and 

reduction of outliers.  

We can clearly observe from the picture, that there are two separable classes by the 

decision boundary of discriminant analysis and then after applying PCA, there are 

two easily distinguishable clusters. Hence, with this hybrid approach we can reduce 

various problems faced by the researchers.  

 

  

  

                   

 

                                                



31 
 

 

 

 

References 

[1] Buntine, Wray. "Variational extensions to EM and multinomial PCA." European 

Conference on Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. 

[2] Pattern Recognition and Machine Learning by Christopher M. Bishop. 

[3] I.T Jolliffe Principal Component Analysis, second edition. 

[4] Hoffmann, Heiko. "Kernel PCA for novelty detection." Pattern recognition 40.3 (2007): 

863-874. 

[5] Ebied, Hala M. "Feature extraction using PCA and Kernel-PCA for face recognition." 2012 

8th International Conference on Informatics and Systems (INFOS). IEEE, 2012. 

[6] Sivakumar, J., et al. "Principal component analysis approach for comprehensive screening 

of salt stress-tolerant tomato germplasm at the seedling stage." Journal of biosciences 45 

(2020): 1-11. 

[7] López, Míriam, et al. "Principal component analysis-based techniques and supervised 

classification schemes for the early detection of Alzheimer's 

disease." Neurocomputing 74.8 (2011): 1260-1271. 

[8] Arivudainambi, D., Varun Kumar KA, and P. Visu. "Malware traffic classification using 

principal component analysis and artificial neural network for extreme 

surveillance." Computer Communications 147 (2019): 50-57. 

[9] Weenink, David. "Canonical correlation analysis." Proceedings of the Institute of Phonetic 

Sciences of the University of Amsterdam. Vol. 25. Amsterdam: University of Amsterdam, 

2003. 

[10] Pechenizkiy, Mykola, Alexey Tsymbal, and Seppo Puuronen. "PCA-based feature 

transformation for classification: issues in medical diagnostics." Proceedings. 17th IEEE 

Symposium on Computer-Based Medical Systems. IEEE, 2004. 

[11] Xu, Huan, Constantine Caramanis, and Sujay Sanghavi. "Robust PCA via outlier 

pursuit." Advances in neural information processing systems 23 (2010). 

[12] Feng, Xuping, et al. "Discrimination of CRISPR/Cas9-induced mutants of rice seeds using 

near-infrared hyperspectral imaging." Scientific reports 7.1 (2017): 15934. 

[13] Duda, Richard O., Peter E. Hart, and David G. Stork. "Pattern classification. 2nd edn 

Wiley." New York 153 (2000). 

[14] Ye, Jieping, and Bin Yu. "Characterization of a family of algorithms for generalized 

discriminant analysis on undersampled problems." Journal of Machine Learning 

Research 6.4 (2005). 

[15] Xu, Rui, and Donald Wunsch. "Survey of clustering algorithms." IEEE Transactions on 

neural networks 16.3 (2005): 645-678. 

[16] Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020 

[17] Ross, David A., et al. "Incremental learning for robust visual tracking." International 

journal of computer vision 77 (2008): 125-141. 



32 
 

 

 

 

 

[18] Schölkopf, Bernhard, et al. "Kernel PCA pattern reconstruction via approximate pre-

images." International Conference on Artificial Neural Networks. London: Springer 

London, 1998. 

[19] Shawe-Taylor, John, and Nello Cristianini. Kernel methods for pattern analysis. 

Cambridge university press, 2004. 

[20] Abdi, Hervé, and Lynne J. Williams. "Principal component analysis." Wiley 

interdisciplinary reviews: computational statistics 2.4 (2010): 433-459. 

[21] Golub, Gene H., and Charles F. Van Loan. Matrix computations. JHU press, 2013. 

[22] Eckart, Carl, and Gale Young. "The approximation of one matrix by another of lower 

rank." Psychometrika 1.3 (1936): 211-218. 

  



33 
 

 

 

 

  



34 
 

 

. 

 

 

 

  



35 
 

 

 

 

 

  



36 
 

 

 

 

 

 

 

 

 

 

 



37 
 

 

 

 

 


