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FRACTIONAL MATHEMATICAL MODEL FOR DYNAMICS OF 

INFECTIOUS DISEASES 

 

SWATI 
 

ABSTRACT 
 

 

 

This thesis presents a comprehensive study of fractional-order differential models 

used for analysing the dynamics of infectious diseases. The fractional-order 

framework generalizes classical models with the inclusion of derivatives not 

being integer, thus capturing memory effects that describe long-term 

dependencies in disease spread and dynamics. We have also introduced time 

delays to account for incubation periods or delayed interventions seen in the real-

world delay between disease spread and treatment. Such delays have major 

impacts on both epidemic progress and the timing of control measures, such as 

quarantine, vaccination or therapeutic intervention. In this work, we developed 

and evaluated fractional-order models for infectious diseases, including delayed 

versions of SIR and SIQR models. We investigated the system's positiveness, 

boundedness, stability, bifurcation, and long-term behavior with various 

fractional orders and time delays. This study examined how these characteristics 

affect crucial epidemiological indicators including the basic reproduction number 

(𝑅0). Numerical simulations are used to describe the spread of diseases like 

COVID-19, demonstrating that time delays along with fractional dynamics 

provide a more accurate description of disease behaviour over time. 

 

Keywords: Epidemic; Fractional order differential equations (FODE); Basic 

Reproduction number, Incidence rates; Treatment rates;       Bifurcation; Stability 

Analysis 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

 

Infectious diseases have always threatened public health, ranging from 

influenza to malaria and tuberculosis, ending most recently in the COVID-19 outbreak 

that highlighted the essentiality of having strong epidemiological models. The desire 

to understand the dynamics of infectious disease transmission, persistence and control 

has led to the use of a range of mathematical models. For example, the Susceptible-

Infectious-Recovered (SIR) framework is well known compartmental models that 

have been widely used for describing disease dynamics. But these classical models 

typically use integer-order derivatives, which might not completely characterize the 

long memory, and the complicated dynamics present in the biological systems that 

describe disease transfer. In this case, fractional calculus provides an interesting 

enhancement of the classical models. Through utilizing the fractional-order 

derivatives, which provide a generalization of the concept of differentiation to non-

integer orders, they enable the model to account for memory effects commonly 

observed in real-world epidemic processes. Fractional models permit domains where 

the influence of lasting past states on future dynamics are unresolved: a generality that 

affords more nuance (and so complexity) to capturing the subtle and at times, non-

intuitive, dynamics required for describing certain diseases. 

 

 

This is an introductory chapter which provides summary of findings during 

mechanisms of epidemic transmission in the field of mathematical epidemiology. The 

current chapter aims to provide some background on the infection mechanisms, 

epidemic control mechanism, role of mathematical models in epidemiology and 

motivation of the work performed as part of this thesis. Additionally, the current 

chapter provides a preview of the work completed. 

 

 

1.1 Infectious Diseases 

 

 

Infectious diseases have always been one of the biggest threats to human 

health, and they have long been considered a threat to human health. It is well known 

that factors associated to the disease, including the infectious agent, the mechanism of 

transmission, susceptibility, and the available treatment options, all have a role in the 

spread of communicable diseases. Infectious agents continue to adapt and change 

many emerge as novel infectious diseases while others re-emerge again from dormant 

states after slumbering for decades. Some of the diseases that have been identified are 
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lyme disease (1975), hepatitis C (1989), hepatitis E (1990) and hantavirus (1993). 

Climate change is causing diseases like yellow fever, dengue fever, and malaria to 

reappear and spread to new places. Sometimes new outbreaks of cholera, plague, and 

haemorrhagic fevers occur. Since December 2019, Wuhan, China had seen an increase 

in the number of cases of novel coronavirus-infected pneumonia (NCIP), which was 

first discovered on December 31 in the same year. The COVID-19 pandemic was a 

public health emergency of global concern which needs a sophisticated strategy. The 

emerging and reemerging diseases have led to a revived interest in infectious diseases 

 

 

1.1.1 Modes of Transmission 

 

 

Infectious diseases spread by a variety of modes, specific to the pathogen, 

environment and human behavior. Modes of transmission include: 

 

• Direct Contact Transmission: This happens if an infected person touches 

or exchanges body fluids with another person by contact with skin, by 

touching, kissing, shaking hands or sexual contact direct from one person 

to another. Examples: HIV, Zika virus or Syphilis. 

 

• Indirect Contact Transmission: Infected individuals can transfer 

infectious pathogens by contaminating objects or surfaces. Example 

diseases include MRSA, norovirus, and rhinovirus (common cold). 

 

• Droplet Transmission: Droplets exhaled by an infected person while 

coughing, sneezing, or talking might be inhaled by people around. 

Droplets usually travel small distances. Example diseases: COVID-19, 

influenza, tuberculosis. 

 

• Vector-borne Transmission: Pathogens are transmitted to humans via the 

bites of infected insects or animals (vectors). Examples: Malaria 

(mosquitoes), dengue (mosquitoes), Lyme disease (ticks), plague (fleas) 

etc are some of the examples of diseases. 

 

• Waterborne Transmission: Spread when the pathogens are taken in 

through water that is contaminated. Example diseases: Cholera, typhoid 

fever, hepatitis A.  

 

• Zoonotic Transmission: Transmissions of diseases from animals to 

humans, either through direct contact or via contact with an intermediate 

pathway (vector, contaminated food, and environment). Example: 

Rabies, avian influenza, and hantavirus. 
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It is important to know the mode of transmission as it determines the 

clinical manifestations and control measures including hygiene, vaccination, 

quarantine, or vector control. 

 

 

1.1.2  Disease prevention and control 

 

 

Limiting contacts is a highly effective strategy for managing epidemics. 

But in today's world with more social connections, this strategy is difficult to 

implement. The two most often used preventative measures that may reduce disease 

spread and improve control are immunization and treatment. Over the past ten years, 

the population's behavior has changed, screening and preventive services have been 

expanded, and disease management and immunization programs have all worked 

together to curb the spread of infection.  

 

 

The primary motivation for people to prevent infections is that prevention 

is possible and effective if implemented correctly. Effective measures can be 

implemented to prevent disease and minimize the harms caused by infectious diseases. 

Preventive measures for infections are available but not given to a significant 

proportion of those in need, or they are out of reach. The course of treatment is a crucial 

part of an all-encompassing strategy for preventing harm to the health. Treatment for 

infected persons reduces mortality and morbidity among the susceptible population, 

prevents further transmission, lowers overall healthcare and societal expenditures, and 

improves productivity. To attain the best results, the treatments must be well-organized 

and of the highest standards. A chance to slow the rate at which infections spread 

across society is provided by the availability of efficient treatment services. 

 

 

Vaccination, also known as an immunization, is used to strengthen the 

immune system's resistance to a specific infection. A pathogen's physical 

characteristics are like those of the material used in vaccinations. Essentially, one can 

consider an antibody to be a fake pathogen devoid of the ability to replicate and spread 

the disease. It could very well be composed of a broken or weakened pathogen. 

Immunizations can activate the host's immune system and cause the development of 

antibodies against the pathogens, helping the host recall them as foreign invaders, 

because they resemble harmful microorganisms. This way, the immune system 

eliminates the real bacterium whenever it is encountered inside the host. We refer to 

this phenomenon as immunity or resistance. Thus, as soon as an antibody to a disease 

is available, it is an ideal tool for protecting the whole population against the pathogen. 

Antibodies have, in fact, saved millions of lives(Rahman et al., 2016) however, as there 

was no primary measles immunization at that time, prior to the vaccine's introduction 

in 1963 about 400,000 measles incidences got reported annually throughout the United 

States. The risk of death or serious morbidity through diseases like polio, rubella or 

mumps amongst children used to be massive too. With proper immunization, these 

diseases will no longer be prevalent. 
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1.2 Mathematical Modelling of Infectious Diseases 

 

 

Infectious diseases continue to pose a substantial threat to human 

existence. Consequently, understanding the dynamics of disease progression is critical 

for disease control or elimination. Mathematical models can be used to explore the 

dynamics of infectious diseases. Mathematical modeling of infectious diseases carries 

an importance as it provides advancement in understanding the mechanisms for the 

disease spread and makes health decisions more cost-effective and reliable than the 

experimental studies. We may use the model to predict the future path of an outbreak 

to a significant extent, allowing us to evaluate control methods. As a result, new fields, 

such as mathematical epidemiology, have emerged. Models employ fundamental 

assumptions and parameters to predict whether a disease will spread or die out in the 

community. 

 

 

The first ever mathematical modeling was being traced back to the 18th 

century when in 1766, Daniel Bernoulli formulated a smallpox model to predict the 

effect of control measures on smallpox-infected population (Hethcote, 2006). 

However, because of the advent of numerous diseases in society, mathematical models 

have taken on a new platform in the twentieth century, following the model established 

by Kermack and Mckendrick (Kermack & Mckendrick, 1927), which indicates 

whether an outbreak of smallpox would occur. They (Hethcote, 2006; Anderson & 

May, 1991) have addressed a wide range of biological phenomena, including infection 

phases, vertical transmission, disease vectors, age structure, social and sexual mixing 

groups, spatial spread, chemotherapy, immunization, isolate, passive immunity, steady 

loss of vaccine, and disease-acquired immunity. Some models focused on diseases 

such as measles, rubella, chickenpox, diphtheria, cancer, smallpox, malaria, rabies, 

herpes, syphilis, and HIV/AID (Hethcote, 2000, Anderson & May, 1991, Longini & 

Halloran, 2005; Usher, 1994). The disease transmission models describe the 

transmission process and track the afflicted individuals. Models can identify the 

population remaining uninfected at the end of an epidemic. The concept of population 

compartments is often used in epidemic models (Hethcote, 2000, Anderson & May 

1991, Diekmannn and Heesterbeek, 2000, Murray, 1989). 

 

 

For mathematical convenience, these compartments are typically labelled 

by their initial letter, with S, E, I, and R signifying the susceptible, exposed, infected, 

and recovered populations, respectively. People who are vulnerable against infection 

are termed as susceptible and have been placed into the S (susceptible) compartment. 

A person who is currently infected but does not show symptoms or cannot infect others 

has been placed in the E (exposed) compartment. Once an infected person begins 

contaminating others, he or she is termed infected and assigned to compartment I 

(infected). Finally, once an individual has been cured from the disease he or she is 

transferred to the R (recovered) compartment. A recovered individual either stays there 

if he or she achieves permanent recovery or becomes susceptible again and moves 

back into the S compartment, depending on the disease. 
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Various models can be built by addressing these compartments in terms of 

pathogens and infections, such as SIS, SIR, SIRS, and so on. If an infected person 

becomes susceptible again after treatment, a SEIS or SIS model might be appropriate 

for disease dynamics. Bacterial diseases could be considered SIS models. However, if 

recovery is long-lasting and the healed persons are no longer susceptible to the 

pathogen, as seen in viral infection, an SIR-type model would be acceptable. In these 

demonstrative exercises, the population is homogeneously mixed, with persons 

contracting diseases or being cured at consistent rates. 

 

 

The following ordinary differential equations provided a basic SIR 

epidemic model(Kermack & Mckendrick, 1927). 

 

 
𝑑𝑆

𝑑𝑡
=
−𝛽𝑆𝐼

𝑁
 

𝑑𝐼

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝛾𝐼                                                                                                 (1.1) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

 

 

where 𝛽 is the transmission rate and 𝛾 is the recovery rate. This simple 

model depicts how sub-populations of susceptible, infected, and recovered classes 

evolve without regard for the host population's demographics. Several aspects have 

been incorporated into model (1.1) to capture the most significant characteristics of 

the situation under consideration; nevertheless, doing so has increased the model's 

complexity and rendered the analysis difficult, even unattainable. Therefore, when 

employing a mathematical modeling approach to explore disease dynamics, 

establishing a balance between a model's rationality and mathematical tractability 

always remains a crucial issue. 

 

 

The bilinear or mass action incidence rate, shown by the parameter 

𝛽𝑆(𝑡)𝐼(𝑡), in model (1.1) illustrates how incidence rises as the number of susceptible 

and infected individuals increases. This transmission rate is calculated by multiplying 

the frequency of interpersonal interaction by the probability that an infectious person 

will infect a vulnerable person. Several further nonlinear saturated incidence rates that 

are frequently employed by different researchers are as follows: 

 

 

Holling type II: The expression 𝐹 (𝑆, 𝐼) = 
𝛽𝑆𝐼

1+γI 
, 𝑆, 𝛽, 𝛾 > 0, is known as Holling 

functional type II incidence rate (Holling, 1959) introduced this incidence rate, which 

is also known as the saturated incidence rate. Holling type II is best suitable for the 

condition stated as: “For each outbreak of the disease, its incidence is first very low 

and then develops slowly as infection increases. Furthermore, due to the crowding 
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effect, when the number of infected persons is very big, the infection reaches its peak” 

(Dubey, 2016). 

 

 

Holling type III: The expression for Holling Type III incidence rate is given by 

𝐹(𝑆, 𝐼) =
𝛽𝐼2

1+𝛾𝐼2
 , 𝑆, 𝛽, 𝛾 > 0. Holling type III defines the condition in which incidence 

of infection first grows very fast initially with increase in infectives and then it grows 

slowly and finally settles down to maximum saturated value. After this condition, any 

increase in infection will not affect the infection rate.   

 

 

Beddington-DeAngelis functional type: The expression 𝐹(𝑆, 𝐼) =
𝛽𝑆𝐼

1+𝛼𝑆+𝛾𝐼
, 𝛽, 𝛼, 𝛾 >

0 is known as Beddington-DeAngelis type incidence rate. Here  𝛽 is the transmission 

rate, 𝛼 is a measure of inhibition effect, such as preventive measures taken by 

susceptible and 𝛾 is a measure of inhibition effect such as treatment with respect to 

infectives (Dubey et.al., 2015). This incidence was introduced by Beddington 

(Beddington, 1975) and DeAngelis (Deangelis et al., 1975) independently. “This 

incidence rate considers the effect of inhibition among infectives in case of the low 

density of population (Dubey et al., 2015)”. 

 

 

 Crowley-Martin functional type: The Crowley-Martin type of functional response 

was introduced by P.H. Crowley and E.K. Martin (Crowley & Martin, 1989) and is 

expressed as 𝐹(𝑆, 𝐼) =
𝛽𝑆𝐼

(1+𝛼𝑆)(1+𝛾𝐼)
, 𝛽, 𝛼, 𝛾 > 0. “From the expression, we observe that 

like the Beddington-DeAngelis type incidence rate, one can easily derive other forms 

of incidence rates. The important difference between Beddington-DeAngelis type and 

Crowley-Martin type incidence rate is that the later considers the effect of inhibition 

among infectives even in case of high density of susceptible population while the 

former neglects this”(Dubey et al., 2015). 

 

 

Treatment is essential for curing diseases and preventing the emergence of 

resistant pathogens. As a result, the treatment rate must be carefully considered in the 

epidemic model. In 2004, Wang and Ruan (W. Wang & Ruan, 2004) investigated the 

impact of treatment capacity on disease transmission dynamics using the SIR epidemic 

model with bilinear incidence rate and constant treatment rate. This type of treatment 

rate is appropriate when there are few infectives and treatment resources are plentiful, 

but it is improper when there are many infected individuals and treatment resources 

are scarce. Therefore, in 2012, Zhou and Fan (L. Zhou & Fan, 2012) improved the 

treatment rate by considering a saturated treatment rate and explored the SIR epidemic 

model to understand the effect of the limited medical resources and their supply 

efficiency on the transmission of infectious diseases. To regulate the disease, most 

researchers concentrate on a nonlinear form of treatment rate. Dubey et al (Dubey et 

al., 2013) added the nonlinear treatment rate as Holling Type II, Holling Type III, and 

Holling Type IV into their model and offered nonlinear dynamics to manage the 
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epidemic. In this thesis, we have investigated the effects of different nonlinear 

treatment rates on disease transmission models. The authors emphasized that, in 

addition to the nonlinearity in the incidence and treatment rates, public awareness is a 

significant strategy for reducing disease transmission. Many authors have explored 

how knowledge and awareness affect the spread of epidemics. (Al-Dmour et al., 2020; 

Goel et al., 2020; Kumar et al., 2019; Manzoni et al., 2021; Misra et al., 2011; Naik, 

2020) 

 

 

1.2.1  Deterministic and Stochastic Models 

 

 

Usually, differential and difference equations are used to determine the 

model in deterministic models. For handling big populations, deterministic models 

have been employed. The infectious population and susceptible population sizes in 

these kinds of models are always continuous functions of time. Different 

compartments in the model, each denoting a different epidemic stage, are depicted. 

Deterministic model has non-random parameters and variables. When there is a very 

small population, the deterministic model is invalid. Therefore, to analyse the small 

size population with random variable, the stochastic model has been applied. The 

probability distribution’s interrelationships and dynamics are explained by this model. 

There are two different kinds of stochasticity: environmental and demographic. 

Demographic stochasticity occurs when a person is vulnerable to occurrences with 

equal probabilities. In environmental stochasticity, the model is governed by the 

circumstance with fluctuation in probability. The outcome of the stochastic model may 

differ depending on the random variable evaluated. 

 

 

1.2.2  Delay differential equations 

 

 

The evaluation of past and currently ongoing epidemics and the 

formulation of structure for future-cost control interventions jointly depend on delay 

differential equation (DDE). It may be stated that when a disease first appears, there 

will be a delay in recognizing it. Therefore, the time delay is an essential parameter in 

the dynamical behavior of infectious diseases, which may lead to a change in the 

dynamical system's behavior. Delay differential equations (DDEs) are known to allow 

richer dynamics than ordinary differential equations and therefore provide a more 

realistic representation of time delays in real-world problems. This was well 

established by Driver (Driver, 1977). Usually, time delays are used to describe that a 

person may not be infectious soon after being infected. The contagious disease latency 

period, defined as the span between pathogen exposure and infection (while after 

exposed in which the pathogen is presence in an active but not detectable, dormant 

stage without clinical symptoms or signs of infection given a host), can be modeled 

by DDE. There are several reasons for the delay, particularly when it comes to 

epidemiology. The two most significant reasons to think about time delay are (i) the 

infection's latency in a vector and (ii) the infection's latency in an infected host. In 
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these instances, a period must pass as the level of infection of infected host (or the 

vector will reach a high enough threshold to continue transmission). Delay is hard to 

quantify mathematically because the usual way of incorporating it into a mathematical 

model leads to delay differential equations, and these are challenging from an 

analytical standpoint. Several researchers have examined disease transmission models 

with latent or incubation period since many diseases (e.g., flu, tuberculosis, H1N1) 

have an incubatory period where a host is considered infected but is not yet able to 

pass the infection on to another individual. DDEs (delay differential equations) has 

been widely applied to describe time effects of infectious period in SIR, SIS, SEIR 

and other epidemic models (Alshorman et al., 2017; Deng et al., 2007; Goel & Nilam, 

2019; Hattaf, Lashari et al., 2013; Hattaf, Yousfi, et al., 2013; Hattaf & Yousfi, 2016; 

A. Kumar & Nilam, 2019; M. Li & Liu, 2014; Rihan et al., 2019; Tipsri & 

Chinviriyasit, 2014; K. Wang et al., 2007). In (Rakkiyappan et al., 2019), examined a 

virus infection based on a system of nonlinear differential equations with multiple time 

delays. The authors (Wei et al., 2008)  considered the vector borne epidemic model 

with time delay. (Meng et al., 2010) talked about a situation where the incidence is 

delayed in the infected but not in the susceptible; in other words, the bilinear incidence 

rate is 𝛽𝑆(𝑡)𝐼(𝑡 − 𝜏) with an incubation period of 𝜏. The current rate of new infective 

human cases depends on both the current population of susceptible humans, and on 

the current population of infective mosquitoes. 

 

 

1.3 Basic Reproduction Number 

 

 

The basic reproduction number 𝑅0 in epidemiology is stated as “the 

average number of secondary infections generated by a single infected individual over 

the course of his/her infectious period in an entirely susceptible community”(Van Den 

Driessche & Watmough, 2002). This parameter is heavily influenced by contact rate; 

the higher the number of effective contacts, the higher the chance of catching a new 

disease. The other factor is the duration of infectiousness: a person who can spread an 

infection to others for longer periods of time will be in contact with more people while 

infected and so is likely to infect more. According to widely used infection models, 

when 𝑅0>1, the infection will eventually be able to spread through the population, in 

other words, an epidemic will occur, while it is not if 𝑅0< 1. In general, the higher the 

value of 𝑅0, the harder it is to control epidemic. This threshold property provides 

important information on how diseases spread or are controlled. There exist various 

approaches for calculating the basic reproduction number 𝑅0 (Diekmann et al., 1990). 

To determine the basic reproduction number 𝑅0, we used the next generation matrix 

method approach (Van Den Driessche & Watmough, 2002) in the thesis. 
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1.3.1 Next generation matrix method 

 

 

The basic reproduction number for a compartmental model of the spread 

of infectious diseases is computed in epidemiology using the next-generation matrix. 

The method was given by Diekmann et al. (Diekmann et al., 1990) and van den 

Driessche and Watmough (Van Den Driessche & Watmough, 2002). Using a next-

generation matrix, the entire population is split into 𝑝 compartments with 𝑝 < 𝑞 

infected compartments to get the fundamental reproduction number. Let 𝑥𝑖, 𝑖 =
1,2,3, … 𝑝 be the number of infected individuals in the 𝑖𝑡ℎ infected compartment at time 

𝑡 caused by the 𝑗𝑡ℎ infected individual. Now the epidemic model is 
𝑑𝑥𝑖

𝑑𝑡
= 𝐹𝑖(𝑥) −

𝑉𝑖(𝑥), where 𝑉𝑖(𝑥) = [𝑉𝑖
−(𝑥) − 𝑉𝑖

+(𝑥)]. In these equations, 𝐹𝑖(𝑥) represents the rate 

of new infections in compartment 𝑖, 𝑉𝑖
+ represents the rate of transfer of individuals 

into compartment 𝑖 by all other means, and 𝑉𝑖
− represents the rate of transfer of 

individuals out of the compartment 𝑖. Let 𝑥0 be the disease-free equilibrium. The values 

of the parts of the Jacobian matrix 𝐹(𝑥) and 𝑉(𝑥) are 𝐷𝐹(𝑥0) = (
𝐹 0
0 0

) and 

𝐷𝑉(𝑥0) = (
𝑉 0
𝐽3 𝐽4

) respectively. Here 𝐹 and 𝑉 are 𝑝 × 𝑝 matrices, defined as, 𝐹 =

𝜕𝐹𝑖(𝑥0)

𝜕𝑥𝑗
 and 𝑉 =

𝜕𝑉𝑖(𝑥0)

𝜕𝑥𝑗
.  Now the matrix 𝐹𝑉−1 is known as the next generation matrix. 

The basic reproduction of the model is then given by the eigenvalue of 𝐹𝑉−1 with the 

largest absolute value.  

 

 

1.4 Fractional Calculus 

 

 

Fractional calculus (FC) was originally mentioned by Gottfried Wilhelm 

Leibniz, one of the founders of classical calculus, in a letter to L'Hôpital dated 

September 30, 1695. L'Hôpital inquired of Leibniz what would happen if the 

derivative's order, which was formerly an integer, was changed to a fraction. Leibniz 

replied: “It will lead to a paradox, from which one day useful consequences will be 

drawn.” The notation 
𝑑𝑛𝑦

𝑑𝑥𝑛
, for 𝑛 =

1

2
 was introduced by Leibniz (Ross, 1975). 

Fractional calculus sparked the interest of other mathematicians, including Euler, 

Laplace, Fourier, Lacroix, Weyl, Grunwald, Abel, Riemann, and Liouville, who all 

contributed to its growth in the pure theoretical realm of mathematics. FC theory is 

defined as the application of conventional differentiation and integration to arbitrary 

orders. FC has a history dating back over 320 years. Fractional calculus is not as 

popular as other branches of research due to a lack of problem-solving strategies and 

intricacy. In recent years, due to its applicability in the fields of science and 

engineering, the FC has been a popular topic among researchers, resulting in many 

theoretical and numerical results. 
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1.4.1  Fractional Order Epidemiology 

 

 

Fractional calculus can be used to describe memory and hereditary 

properties of a system, more attractively than integer-order differential equations. This 

ability is especially applicable in cases of epidemiology, where previous states affect 

future dynamics. Here in human population memory refers to personal understanding. 

Therefore, epidemic development and control process could not be considered as such 

in the human level without memory effect. Because the dynamics of the system depend 

on both the present state and history of the system, the classical SIR model fails to 

describe many disease processes. The dynamic process based on fractional order 

derivative carries memory of the past and current state. Thus, fractional order systems 

may be a more realistic choice for the modeling of such dynamics in epidemiological 

compartmental models. This generalization provides a broader basis for the modeling 

of different physical, biological and engineering systems particularly possessing 

memory, hereditary attributes or nonlinear diffusion properties. Several models have 

been proposed to explore the dynamics of epidemics using fractional order derivatives 

(Angstmann et al., 2016; Hoan et al., 2020; Naik, 2020; Owoyemi et al., 2020; 

Rostamy & Mottaghi, 2016) 

 

 

1.4.2 Fractional order Delay Differential Equations 

 

 

A Fractional-order Delay Differential Equation (FODDE) is an extension 

of a standard differential equation that uses fractional calculus to quantify the memory 

and hereditary properties in systems. These are particularly useful in epidemic 

modeling because the transmission dynamics frequently involve dependencies on past 

states of the system. This is important for diseases that have incubation times, 

immunity delays or behavioral memory effects. 

  

 

Epidemic models with fractional-order derivatives and time delays have 

recently gained popularity(Chinnathambi & Rihan, 2018; Deng et al., 2007; S. Liu et 

al., 2020). Most real-world occurrences are inevitably influenced by memory or 

temporal delay. The authors  (Naim et al., 2022) investigated the effect of dual time 

delay and Caputo fractional derivative on the long-run behavior of a viral system with 

the non-cytolytic immune hypothesis and discovered that fractional order can 

significantly improve the dynamics and strengthen the infection model's stability. 

Authors in (S. Liu et al., 2020) investigate the bifurcation analysis of a fractional order 

SIQR model with double delay. 
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1.5 Stability Analysis 

 

 

When a higher level of nonlinearity is applied to address real-world 

problems, mathematical models become more complicated. It is difficult to develop an 

explicit solution for these models. Approximate solutions with fixed parameters can be 

determined via numerical simulations, but the general solution may not be known. 

Stability analysis is an especially valuable method for determining a solution's long-

term behavior when the general solution is difficult to obtain. Local and global model 

solutions are the two most common forms found in literature. While global stability 

describes the behavior of the solution across the domain, local stability concentrates 

on the behavior of the model solution around the equilibrium point. 

 

 

1.6 Limit Cycle 

 

 

An isolated closed trajectory is called a limit cycle According to Strogatz 

(Strogatz, 2018), the term "isolated" refers to trajectories that spiral either toward or 

away from the limit cycle and are not closed to their neighbours. We refer to the limit 

cycle as steady or attractive if all nearby trajectories approach it. If not, the limit cycle 

is either unstable or, in rare circumstances, half-stable. 

 

 

1.7 Bifurcation 

 

 

When the stability behavior or dynamics of equilibrium points change, then 

it refers to Bifurcation and the point at which bifurcation occur is called Bifurcation 

point (Strogatz, 2018). The bifurcation term has been introduced by Poincare 

(Guckenheimer & Holmes, 1983) to say about the “splitting” of equilibrium solutions 

in a family of differential equations. Bifurcation can cause changes in equilibrium 

point, stability condition and periodic orbit as well. Examples of different types of 

bifurcations are: Transcritical, Hopf bifurcation and Saddle-node bifurcation. 

 

 

1.7.1 Saddle-node bifurcation 

 

 

Any dynamical system's ability to create or destroy equilibrium points is 

governed by this fundamental mechanism. Two equilibrium points in this bifurcation-

one of which is a saddle point and the other a stable node-collision and mutual 

annihilation occur at the bifurcating point. 
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1.7.2 Transcritical bifurcation 

 

 

In this bifurcation, two equilibriums of the system collide and switch their 

stable points. In this case, as the parameter traverses critical value one equilibrium 

point converts from unstable to stable and another from stable to unstable. However, 

in this case there is no equilibrium point being created or disappearing. 

 

 

1.7.3 Hopf bifurcation 

 

 

At the critical value of the bifurcation parameter, a limit cycle is created, 

and an equilibrium point loses stability in this bifurcation. In this instance, the 

imaginary axis is crossed from the left half-plane to the right half-plane by two entirely 

imaginary eigenvalues. Consequently, the system has a limit cycle. There are 

essentially two forms of Hopf bifurcation depending on the structure of the limit cycle. 

Supercritical Hopf bifurcation occurs when the limit cycle is orbitally stable; 

subcritical Hopf bifurcation occurs when the limit cycle is orbitally unstable. 

 

 

1.8 Thesis Organization 

 

 

The thesis entitled “Fractional Mathematical Model for dynamics of 

Infectious Diseases” contains seven chapters followed by conclusion & future scope 

and bibliography. The thesis is organized as follows: 

 

 

Chapter 1 

 

 

The first chapter is an introductory section that provides a comprehensive 

overview of a fractional-order mathematical model for analysing the dynamics of 

infectious diseases, including the fundamental terminologies, significant concepts and 

various types of models. Traditional integer-order models frequently fail to capture the 

complexity and memory effects associated with disease transmission. This study uses 

fractional calculus, which allows for non-integer orders of differentiation and 

integration, to improve disease modeling and prediction for treatment possibilities 

including time delays to better reflect real-world events. This chapter aims to provide 

a chronological overview of the development of epidemiology and the rationale behind 

the research conducted in the thesis. 
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Chapter 2 

 

 

In this work, an attempt has been made to study and investigate a non-linear, 

non-integer SIR epidemic model for COVID-19 by incorporating Beddington-De 

Angelis incidence rate and Holling type II saturated cure rate. Beddington-De Angelis 

incidence rate has been chosen to observe the effects of measure of inhibition taken by 

both: susceptible and infective. This includes measure of inhibition taken by susceptible 

as wearing proper mask, personal hygiene and maintaining social distance and the 

measure of inhibition taken by infectives may be quarantine or any other available 

treatment facility. Holling type II treatment rate has been considered for the model for its 

ability to capture the effects of available limited treatment facilities in case of COVID- 

19. To include the neglected effect of memory property in integer order system, Caputo 

form of non-integer derivative has been considered, which exists in most biological 

systems. It has been observed that the model is well posed i.e., the 

solution with a positive initial value is reviewed for non-negativity and boundedness. 

Basic reproduction number 𝑅0 is determined by next generation matrix method. Routh 

Hurwitz criteria has been used to determine the presence and stability of equilibrium 

points and then stability analyses have been conducted. It has been observed that the 

disease-free equilibrium 𝑄𝑑 is stable for 𝑅0 < 1 i.e., there will be no infection in the 

population and the system tends towards the disease-free equilibrium 𝑄𝑑 and for 𝑅0 >
1, it becomes unstable, and the system will tend towards endemic equilibrium 𝑄𝑒. 

Further, global stability analysis is carried out for both the equilibria using 𝑅0. Lastly 

numerical simulations to assess the effects of various parameters on the dynamics of 

disease has been performed. 

 

 

The work of this chapter has been published entitled “Fractional order 

SIR epidemic model with Beddington-De Angelis incidence and Holling type II 

treatment rate for COVID-19” in Journal of Applied Mathematics and Computing, 

2021 (Springer). https://doi.org/10.1007/s12190-021-01658-y Impact Factor-2.4, 

Indexing: SCIE 

 

 

Chapter 3 

 

 

During COVID-19 outbreak, the large population was exposed to social 

media. Since it was a new virus and no specific information was available about its 

dynamics, therefore people were dependent on social media to gather more and more 

information.  Social media has its pros and cons, which have an impact on the life of 

human being which was more in case of COVID-19 due to restricted interaction during 

the period of pandemic. In this article the effects of social media on the mental health 

of people have been investigated with the help of Holling type II and Monod Haldane 

rates in the form of incidence and treatment rates, respectively. The model exhibits 

two types of equilibria viz. disease-free equilibrium (DFE) and endemic equilibrium 

(EE), which has been confirmed by the Fractional Routh-Hurwitz criterion. Further 

https://doi.org/10.1007/s12190-021-01658-y%20Impact%20Factor-2.4
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stability behavior has been also analysed under certain sufficient conditions that 

depends on 𝑅0, a Basic Reproduction number, which is determined by the method of 

next generation matrix.  The findings indicate that the fractional derivative order has a 

considerable influence on the dynamic process. The difference between fractional and 

integer order derivatives is illustrated by the memory effect. Finally, numerical 

simulations have been performed to examine the effect of various parameters on the 

dynamics of social media on mental health. 

 

 

The work of this chapter has been published entitled “Fractional order 

model using Caputo fractional derivative to analyse the effects of social media on 

mental health during COVID-19” in Alexandria Engineering Journal, 2024 

(Elsevier). https://doi.org/10.1016/j.aej.2024.02.049 Impact Factor- 6.2, Indexing: 

SCIE 

 

 

Chapter 4 

 

 

In Chapter 4, a mathematical model of infectious diseases that is non-

integer SIR-type is studied. This model considers the psychological changes in 

individuals that are caused by a concurrent rise in public awareness. Here, a nonlinear, 

non-integer model has been developed by considering the Monod-Haldane incidence 

rate, the Holling type III treatment rate, and the Caputo derivative. Numerical 

simulations have been performed to verify the theoretical analysis's consistency. As 

the fractional derivative order parameter is increased, each solution approaches 

equilibrium more quickly. Furthermore, it has been observed that raising media 

knowledge reduces the number of infected people, hence lowering the peak of the 

epidemic.  

 

 

The work presented in this chapter has been communicated with title 

“Caputo Fractional derivative model for impact of awareness on infectious 

disease”. 

 

 

Chapter 5 

 

 

Time delays and fractional order are critical components of biological 

memory systems. Non-integer order enhances the model's behaviour; however, time 

lag has major implication on the occurrence of Hopf bifurcation and system stability. 

This work examines the dynamics of fractionally ordered delay differential 

Susceptibles-Infectives-Recovered epidemiological model with Holling functional 

type II treatment rate and Crowley-Martin (CM) functional type incidence. To acquire 

a more practical understanding of the epidemic's dynamics, the incidence rate was 

delayed by the latency time. We examine the sufficient requirements for steady-state 

https://doi.org/10.1016/j.aej.2024.02.049
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stability and Hopf bifurcation in the presence of time delay. The model exhibits a Hopf 

bifurcation at the threshold parameters. When time delays exceed critical values, the 

model goes through Hopf bifurcation. Some numerical simulations are offered to 

support the theoretical findings. Numerical studies demonstrate that combining 

fractional order with time delays in the epidemic model affects the behavior and 

improves the model's stability 

 

 

The work presented in this chapter has been communicated with title “The 

behavior of the fractional order delay differential SIR epidemic model with 

Holling type II treatment rate and Crowley-Martin rate of incidence”. 

 

 

Chapter 6 

 

 

Fractional order and time delays are required for biological systems with 

memory. In this chapter, we analyse a double delayed fractional order susceptible-

infected-quarantine-recovered epidemic model with saturated incidence and treatment 

rates. The model incorporates two time delays: one for the duration of the incubation 

period and another for people's resistance to isolation. The model experiences Hopf 

bifurcation when delays exceed critical values. The application of the acquired results 

is demonstrated by providing a few numerical simulation examples. 

 

 

The work presented in this chapter has been communicated with title 

“Bifurcation analysis of a double delayed SIQR fractional order model 

incorporating Holling Type-II treatment rate and Monod-Haldane incidence 

rate”. 
 

 

Chapter 7 

 

 

Chapter 7 is conclusive in nature. This thesis is comprising of 7 chapters 

in which Introduction of the work is given in chapter 1. Chapter 2, 3 and 4 aimed to 

incorporate fractional calculus into the modeling process of infectious diseases to 

capture the memory effects observed in disease transmission with different incidence 

and treatment rates. By incorporating memory effects into the analysis, this thesis lays 

the groundwork for more sophisticated models that can better inform public health 

strategies and improve our response to disease outbreaks. Chapter 5 and 6 is an 

advancement of chapters 2, 3 and 4 with the inclusion of time delays, expanding the 

model to incorporate more diverse types of delays. The inclusion of fractional calculus 

with time delays in the mathematical model resulted in a significantly improved 

representation of infectious disease dynamics.  

      This thesis provides a valuable framework for future research and practical 

applications, highlighting the importance of considering both memory effects and time 
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delays in disease modeling. By improving the ability to predict and manage outbreaks, 

this work contributes to more effective public health strategies and a deeper 

understanding of disease dynamics. Future research could focus on simplifying the 

computational aspects of the fractional model to make it more accessible for real-time 

applications. Additionally, exploring the integration of the fractional model with other 

types of data, such as genetic information or environmental factors, could provide a 

more comprehensive understanding of disease dynamics.  
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CHAPTER 2 

 

 

FRACTIONAL ORDER SIR EPIDEMIC MODEL WITH 

BEDDINGTON – DE ANGELIS INCIDENCE AND HOLLING 

TYPE II TREATMENT RATE FOR COVID-19 

 

 

 

____________________________________________________________________ 

 

In this chapter, an attempt has been made to study and investigate a non-

linear, non-integer SIR epidemic model for COVID-19 by incorporating Beddington-

DeAngelis incidence rate and Holling type II saturated cure rate. Beddington-De 

Angelis incidence rate has been chosen to observe the effects of measure of inhibition 

taken by both: susceptible and infective. This includes measure of inhibition taken by 

susceptible as wearing proper mask, personal hygiene and maintaining social distance 

and the measure of inhibition taken by infectives may be quarantine or any other 

available treatment facility. Holling type II treatment rate has been considered for the 

present model for its ability to capture the effects of available limited treatment 

facilities in case of COVID-19. To include the neglected effect of memory property in 

integer order system, Caputo form of non-integer derivative has been considered, 

which exists in most biological systems. It has been observed that the model is well 

posed which means that the solution with a positive initial value is reviewed for non 

negativity and boundedness. Basic reproduction number 𝑅0 is determined by next 

generation matrix method. Routh Hurwitz criteria have been used to determine the 

presence and stability of equilibrium points and then stability analyses have been 

conducted. It has been observed that the disease-free equilibrium 𝑄𝑑 is stable for 𝑅0 <
1 i.e., there will be no infection in the population and the system tends towards the 

disease-free equilibrium 𝑄𝑑 and for 𝑅0 > 1, it becomes unstable, and the system will 

tend towards endemic equilibrium 𝑄𝑒. Further, global stability analysis is carried out 

for both the equilibria using 𝑅0. Lastly numerical simulations to assess the effects of 

various parameters on the dynamics of disease has been performed. 

 

____________________________________________________________________ 
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2.1 Introduction 

 

 

The current outbreak of coronavirus disease COVID-19 got reported first 

from Wuhan, China on 31st Dec 2019. On March 11, 2020, WHO announced that the 

spread of coronavirus infection COVID-19 would be described as pandemic. On 

March 13, 2020, WHO declared Europe the centre of the pandemic outbreak. 

Since March 2020, while new cases appear to be evolved in China, the number of 

cases in rest of the world has been rising exponentially. Many governments have 

adopted stringent steps to avoid the spread of this new virus, such as travel bans, 

demanding social distance and shutting schools, bars, restaurants, and other 

businesses. The transmission rate is heterogeneous across countries and far exceeds 

the rate of recovery which allows for a rapid spread. Since the proper treatment 

facilities are not available for corona virus, therefore the only way to stabilize the 

outbreak is perhaps to reduce the rate of transmission by limiting exposure of public 

gathering or social distancing.  

 

 

The complex behavior of infectious disorders has long been explored as 

good health is among the most significant concerns in the physical world. The 

epidemic dynamics are investigated by several mechanisms. A mathematical 

description of the dynamics helps us to explore the complexity of the disease critically, 

to analyse statistical and model data, to make predictions about newly emerging 

diseases like COVID-19 and to determine the efficacy of the steps taken. 

 

 

Kermack and Mckendrick (Kermack & Mckendrick, 1927) developed the 

first compartmental model for the study of the disease dynamics, many researchers 

then presented numerous mathematical models such as SIR, SIRS, SEIR, SEIRS etc. 

(where S, I, E and R represents the susceptible, infected, exposed, and recovered 

individuals)  (Dubey et al., 2013; A. Kumar, Kumar, et al., 2020; A. Kumar & Nilam, 

2019, 2018; M. Li & Liu, 2014). 

 

 

In recent times, infectious simulation research has been diverted to 

fractional differential research due to its ability to offer a convincing analysis of certain 

nonlinear dynamics, the study of fractional order differential equations in the past 

decades has received a significant attention of researchers. Since, 2019 novel 

coronavirus is discovered, many research articles in modeling of COVID-19 

transmission have used ordinary differential equations to study its dynamics (Bardina 

et al., 2020; Din & Algehyne, 2021; Palladino et al., 2020). Though there are reasons 

that the non-integer models give better fit to the actual data, numerous models have 

been developed to study the dynamics of COVID-19 using fractional order derivatives 

(Debasis Mukherjee & Maji, 2020; Owoyemi et al., 2020; Rajagopal et al., 2020; 

Rezapour et al., 2020). 
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Motivated by the above-mentioned literature, we formulated a fractional 

order SIR model for COVID-19 pandemic with nonlinear incidence rate known as 

Beddington-DeAngelis type incidence rate and Holling type II saturated treatment rate. 

To incorporate the effects of measure of inhibition taken by susceptible such as 

wearing proper mask, personal hygiene and maintaining social distancing and the 

measure of inhibition taken by infectives can be quarantine, Beddington-DeAngelis 

incidence rate has been chosen (Beddington, 1975). For any outbreak of new disease, 

treatment capacity is first very low and then grows slowly with improvement of 

hospital’s conditions, availability of effective drugs, vaccines etc which are also the 

conditions arises in case of COVID-19. Since Holling type II function (W. Wang, 

2006; W. Wang & Ruan, 2004) follow the same pattern, therefore it has been chosen 

as treatment rate for the present study. The fractional order derivative is taken in 

Caputo-sense. We evaluated the model mathematically first, and then the simulations 

have been performed for the model. 

 

 

 

2.2 Formulation of Fractional order epidemic Model  

 

 

Several disease models were suggested and evaluated during the last few 

years. Here we are proposing a fractional order epidemic model for COVID-19 by 

using the Caputo fractional derivative with order ρ, where 0 < ρ ≤ 1. Whole 

population N(t) is categorized into three classes namely susceptible S(t), infectives I(t) 

and recovered R(t). We assume that recovered individuals cannot become infected 

again and, they cannot infect the susceptible population again. The Caputo derivative 

is described in definition 1in Appendix. Under these assumptions we proposed a 

Caputo-fractional order SIR model represented by the following non-linear differential 

equations:  

 

𝐷0
𝑐

𝑡
𝜌
 𝑆(𝑡) = 𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1𝑆(𝑡)+𝛽2 𝐼(𝑡)

𝐷 𝐼(𝑡)𝑡
𝜌

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1 𝑆(𝑡)+𝛽2 𝐼(𝑡)
− (𝜆 + 𝛼 + 𝛾)𝐼(𝑡) −

𝜎 𝐼(𝑡)

1+𝛿 𝐼(𝑡)

𝐷 𝑅(𝑡)𝑡
𝜌

0
𝑐  = 𝛾 𝐼(𝑡) − 𝜆𝑅(𝑡) +

𝜎 𝐼(𝑡)

1+𝛿 𝐼(𝑡) }
 
 

 
 

                                    (2.1) 

 

with non-negative initial conditions: 𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0 and 𝑅(0) = 𝑅0 ≥
0, where the different model parameters are defined likewise:  
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Table 2.1 Parameters with their descriptions 

 

S.No. Parameter Description 

1 𝛽 
Coefficient of transmission between susceptible S and infected 

persons I 

2 𝜆  Natural mortality rate of people in each class 

3 𝜇 Constant rate of recruitment is susceptible due to immigration 

4 𝛼 Infection mortality rate in infected people 

5 𝛾 Rate of recovery in contaminated persons 

6 𝛽1 

Measure of inhibition (preventive measures taken by susceptibles 

such as wearing proper mask, maintaining personnel hygiene, 

maintaining social distance etc) 

7 𝛽2 
Measure of inhibition (preventive measures taken by infectives such 

as treatment of infective individuals, quarantine) 

8 𝜎 Treatment rate of disease 

9 𝛿 Rate of limitation in treatment availability 

 

 

 

2.3 Basic Properties of the Model 

 

 

Let ℝ+
3 : = {𝑋 𝜖 ℝ3: 𝑋 ≥ 0 } and 𝑋(𝑡) =  (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))

𝑇
 on non-

negative solutions, the lemmas needed to prove the theorem are mentioned in 

Appendix.  

 

Theorem 2.1 There exists a unique non-negative solution for fractional differential 

equation given by system (2.1) for 𝑡 ≥ 0 and the solution will remain in region 𝑀 =

{(𝑆, 𝐼, 𝑅) ∈ 𝑅+
3 : 0 < 𝑆 + 𝐼 + 𝑅 ≤ �̅� , �̅�  ≥ 𝐶𝐸

𝜇

𝜆
} for 𝑡 ≥ 0. 

 

Proof. First, we check that all the solutions of the model (2.1) with its initial conditions 

are non-negative.  

Suppose that 𝑆(0) > 0 for 𝑡 = 0. Now we show that 𝑆(𝑡) ≥ 0 for all  𝑡 ≥ 0. We will 

prove this by contradiction, let 𝑆(𝑡) ≤ 0 for all  𝑡 ≥ 0. Then, there exists a 𝜏1 > 0 

such that 𝑆(𝑡) > 0 for that 0 ≤ 𝑡 < 𝜏1 , 𝑆(𝑡) = 0 at 𝑡 =  𝜏1, and 𝑆(𝑡) < 0 for 𝜏1 <
𝑡 < 𝜏1 + 𝜖1 with sufficiently small 𝜖1 > 0. Now taking first equation of model (2.1), 

we obtain 𝐷𝜌 𝑆(𝑡)|𝑡=𝜏1 = 𝜇0
𝑐 > 0. From Lemma 2, for any 0 < 𝜖1 ≪ 1, we have 

𝑆(𝜏1 + 𝜖1) = 𝑆(𝜏1) +
1

𝛤(𝛼)
𝐷𝜌𝑆(𝜉) (𝜖1)

𝜌. Thus, we get 𝑆(𝜏1 + 𝜖1) ≥ 0, which is in 

contradiction to the fact that 𝑆(𝑡) < 0 for 𝜏1 < 𝑡 < 𝜏1 + 𝜖1. Hence, we have 𝑆(𝑡) ≥ 0 

for all  𝑡 ≥ 0. 

Next, we prove that 𝐼(𝑡) ≥ 0 for all  𝑡 ≥ 0. Once again, we do it by contradiction. 

Assume that 𝐼(𝑡) ≥ 0 is not true, then there exists a 𝜏2 > 0 such that 𝐼(𝑡) > 0 for that 
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0 ≤ 𝑡 < 𝜏2 , 𝐼(𝑡) = 0 at 𝑡 =  𝜏2, and 𝐼(𝑡) < 0 for 𝜏2 < 𝑡 < 𝜏2 + 𝜖2 with sufficiently 

small 𝜖2 > 0. Then we obtain 

𝐷𝜌 𝐼(𝑡)|𝑡=𝜏2 = 00
𝑐 . 

 

From Lemma 2, for any 0 < 𝜖2 ≪ 1, we have 𝐼(𝜏2 + 𝜖2) = 𝐼(𝜏2) +
1

𝛤(𝛼)
𝐷𝜌𝐼(𝜉) (𝜖2)

𝜌. Thus, we get 𝐼(𝜏2 + 𝜖2) ≥ 0, which is in contradiction to the fact 

that 𝐼(𝑡) < 0 for 𝜏2 < 𝑡 < 𝜏2 + 𝜖2. Hence, we have 𝐼(𝑡) ≥ 0 for all  𝑡 ≥ 0. Similarly, 

we can prove that  𝑅(𝑡) ≥ 0 for all  𝑡 ≥ 0. Thus, it is concluded that all the solutions 

of model (2.1) with initial conditions are non-negative.  

 

Now we prove boundedness of solutions. 

Adding all the equations of the model (2.1), we obtain: 

𝐷𝑡
𝜌
𝑁 =  𝜇 − 𝜆𝑁 − 𝛼𝐼 

Where 𝑁 = 𝑆 + 𝐼 + 𝑅. As  𝐼(𝑡) ≥ 0, we have 

𝐷𝑡
𝜌
𝑁 ≤  𝜇 − 𝜆𝑁. 

 

Now consider the initial value problem 𝐷𝑡
𝜌
�̅� =  𝜇 − 𝜆�̅�, �̅�(0) = �̅�0. Using 

comparison principle (Lu & Zhu, 2018) we obtain the following inequality: 

𝑁(𝑡) ≤ �̅�(𝑡) for all 𝑡 ≥ 0. Now applying Laplace transform to the initial value 

problem we obtain 𝑠𝜌𝐿[�̅�(𝑡)] − 𝑠𝜌−1�̅�0 =
𝜇𝜌

𝑠
− 𝜆𝐿[�̅�(𝑡)] 

 

⇒ 𝐿[�̅�(𝑡)] =
𝑠𝜌−1�̅�0
𝑠𝜌 + 𝜆

+
𝜇𝜌𝑠−1

𝑠𝜌 + 𝜆
 

 

Using Lemma 3, we obtain 

 𝐿[𝐸𝜌,1(−𝜆𝑡
𝜌)] =

𝑠𝜌−1

𝑠𝜌 + 𝜆
 

𝐿[𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡
𝜌)] =

𝑠−1

𝑠𝜌 + 𝜆
 

 

Applying inverse Laplace transform in the above two equations, we get 

 

�̅�(𝑡) = �̅�0𝐸𝜌,1(−𝜆𝑡
𝜌) +  𝜇𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡

𝜌),  

 

using 𝐷𝑡
𝜌
𝑁 ≤  𝜇 − 𝜆𝑁  

 

we have 𝑁(𝑡) ≤ 𝑁0𝐸𝜌,1(−𝜆𝑡
𝜌) +  𝜇𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡

𝜌), 

 

By Lemma 4, we obtain 

 

|𝑁(𝑡)| ≤
𝑁0𝐶𝐸
1 + 𝜆𝑡𝜌

+
𝜇𝑡𝜌𝐶𝐸
1 + 𝜆𝑡𝜌
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Where 𝐶𝐸 is constant given in Lemma 4. Hence, as 𝑡 → ∞, we have 𝑁(𝑡) ≤ �̅� with 

�̅� ≥ 𝐶𝐸
𝜇

𝜆
. Thus, the solutions are bounded and will remain in region M for 𝑡 ≥ 0. 

Therefore, theorem 2.1 is proved and solution remains in ℝ+
3  .            

 

                                                  

2.4  Mathematical analysis of the model 

 

 

This section performs stability analysis of the disease free equilibrium 

point and the endemic equilibrium point. 

 

 

2.4.1 Equilibria and their stability 

 

 

As in the above non-linear model of three equations, for stability analysis 

it is logical to consider only the first two equations because these are independent of 

the third equation. The model is therefore reduced to: 

 

𝐷0
𝑐

𝑡
𝜌
 𝑆(𝑡) = 𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1𝑆(𝑡)+𝛽2 𝐼(𝑡)

 𝐷 𝐼(𝑡)𝑡
𝜌

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1 𝑆(𝑡)+𝛽2 𝐼(𝑡)
− (𝜆 + 𝛼 + 𝛾)𝐼(𝑡) −

𝜎 𝐼(𝑡)

1+𝛿 𝐼(𝑡)

}                                    (2.2) 

 

Where 𝑎 = 𝜆 + 𝛼 + 𝛾 

 

To find the equilibrium points, set the right side of the system (2.2) to zero, we get 

  

𝜇 − 𝜆 𝑆(𝑡) −
𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1𝑆(𝑡)+𝛽2 𝐼(𝑡)
= 0

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛽1 𝑆(𝑡)+𝛽2 𝐼(𝑡)
− (𝜆 + 𝛼 + 𝛾)𝐼(𝑡) −

𝜎 𝐼(𝑡)

1+𝛿 𝐼(𝑡)
= 0

}                                                (2.3) 

 

 

Thus, solving the above system, we obtain the two equilibria points called disease free 

equilibrium point (DFE) and endemic equilibrium point (EEP) specified as 

 

(i) DFE: 𝑄𝑑 = (𝑆𝑑, 𝐼𝑑) = (
𝜇

𝜆
, 0)  showing no illness in the environment and all the 

people are susceptible only 

 

(ii) EEP: 𝑄𝑒 = (𝑆𝑒 , 𝐼𝑒) which is described in the later section. 

 

Now, to obtain the behaviour of stability of these two equilibria, Basic Reproduction 

Number 𝑅0 is required to be computed(Van Den Driessche & Watmough, 2002).  
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2.4.2 Determination of Basic Reproduction Number 

 

 

To compute the Basic Reproduction number 𝑅0 using the next generation 

matrix method, we assume that 

𝐷𝑡
𝜌
𝑥 = 𝑃(𝑥) − 𝑅(𝑥) 

 

 

Where 𝑥 = (𝑆, 𝐼)𝑇, 𝑃(𝑥) represents the matrix of new infections coming and 

𝑅(𝑥) represents the matrix of transfer of individuals entering and leaving from the 

compartments. 

 

 

The Jacobian matrices of 𝑃(𝑥) and 𝑅(𝑥) are evaluated at disease free equilibrium point 

𝑄𝑑and are given by 

𝑃 = (
𝛽𝜇

𝜆 + 𝛽1𝜇
0

0 0

) 

 

𝑅 = (

𝜎 + 𝑎 0
𝛽𝜇

𝜆 + 𝛽1𝜇
𝜆
) 

 

 

𝑃𝑅−1 = (
𝛽𝜇

(𝑎 + 𝜎)(𝜆 + 𝜇𝛽1)
0

0 0

) 

 

This matrix 𝑃𝑅−1 is known as next generation matrix and the spectral radius of this 

matrix is the basic reproduction number  𝑅0 (Ye & Xu, 2019). 𝑅0  for our model is  

 

 𝑅0 =  𝜌(𝑃𝑅−1) =
𝛽𝜇

(𝜆 + 𝛽1𝜇)(𝜎 + 𝑎)
 

 

The basic reproduction number  𝑅0 is the average number of secondary cases caused 

by an infective in a fully susceptible population. The value of  𝑅0 depends on both the 

disease and the host population. 

 

 

2.4.3 Analysis of local stability behaviour DFE (𝑸𝒅) 

 

 
Now we are concerned about the local stability of disease-free equilibrium 

point (DFE  𝑄𝑑). We claim the following theorem for this and prove this: 
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Theorem 2.2 𝑄𝑑=(𝑆𝑑 , 𝐼𝑑) = (
𝜇

𝜆
, 0),the disease- free equilibrium of model (2.2) is 

locally asymptotically stable when the Basic Reproduction number 𝑅0 < 1 and unstable 

otherwise. 

 

Proof. The local stability behaviour of the DFE point of the non-linear system (2.3) is 

computed by linearizing the system around the DFE (𝑄𝑑). Thus, we have obtained a 

linearized matrix of the system at 𝑄𝑑 as shown below 

 

𝐽𝑑 = (
−𝜆 −

𝛽𝜇

𝜆+𝛽1𝜇

0 (𝑅0 − 1)(𝜎 + 𝑎)
)                                                                (2.4) 

 

Now the characteristic equation of the Jacobian matrix 𝐽𝑑 is computed as  

𝑞2 − ((𝑅0 − 1)(𝜎 + 𝑎) − 𝜆)𝑞 − 𝜆(𝑅0 − 1)(𝜎 + 𝑎) = 0                                  (2.5)        

                                    

  ⟹ 𝑞2 + 𝑎𝑞 + 𝑏 = 0 

 

where 𝑎 = −((𝑅0 − 1)(𝜎 + 𝑎) − 𝜆) and 𝑏 = −𝜆(𝑅0 − 1)(𝜎 + 𝑎) 

 

First, we will prove that the roots (𝑞1 and 𝑞2) of the characteristic equation (2.5) which 

are given as are real 

 

𝑞1 =
−𝑎 + √𝑎2 − 4 𝑏

2
 

 

𝑞2 =
−𝑎 − √𝑎2 − 4 𝑏

2
 

 

𝑎2 − 4 𝑏 = (𝑅0 − 1)
2(𝜎 + 𝑎)2 + 𝜆2 + 2 𝜆(𝑅0 − 1)(𝜎 + 𝑎) ≥ 0 

 

Therefore, both the roots 𝑞1 and 𝑞2 are real. We now show that when 𝑅0 < 1 both the 

roots are negative.  

 

Sum of the roots 𝑞1 + 𝑞2 = −𝑎 = (𝑅0 − 1)(𝜎 + 𝑎) − 𝜆  
Product of the roots 𝑞1𝑞2 =  𝑏 = −𝜆 (𝑅0 − 1)(𝜎 + 𝑎) 
 

Thus 𝑎  = −(𝑅0 − 1)(𝜎 + 𝑎) − 𝜆 > 0                                                      (when 𝑅0 < 1) 

and   𝑏 = −𝜆 (𝑅0 − 1)(𝜎 + 𝑎) > 0                                                            (when 𝑅0 < 1) 

 

Hence, we conclude that the roots of the characteristic equation (2.5) are negative when 

𝑅0 < 1. Thus, alternately we can say that all the eigen values of the Jacobian matrix 

𝐽𝑑 are of negative sign when 𝑅0 < 1. Consequently all the roots of the equation (2.5) 

have negative real parts, thus, by the fractional Routh-Hurwitz criteria (Matignon & 

Matignon, 1996; Otto & Day, 2019) all roots follow |𝑎𝑟𝑔(𝑞𝑖)) | >𝜌
𝜋

2
 , 𝑖 = 1,2 . Figure 

2.1 interprets theorem 2.2 using the values given in table 2.2. 
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2.4.4 EEP (𝑸𝒆) existence and study of local equilibrium 

 

 

The conditions for the existence of the endemic equilibrium (𝑄𝑒 =
(𝑆𝑒 , 𝐼𝑒)) are defined here and the endemic equilibrium’s local stability behavior is 

discussed in this section. 

 

𝜇 − 𝜆 𝑆𝑒 −
 𝛽  𝑆𝑒 𝐼𝑒

1+𝛽1 𝑆𝑒+𝛽2 𝐼𝑒
= 0

 β  𝑆𝑒 𝐼𝑒

1+β1 𝑆𝑒+β2 𝐼𝑒
− (𝜆 + 𝛼 + 𝛾)𝐼𝑒 −

𝜎 𝐼𝑒

1+ 𝛿 𝐼𝑒
= 0

}                                                          (2.6) 

 

After solving the equations (2.6) we obtain: 

 

𝑆𝑒   =
(𝑎 + 𝑎𝛿𝐼𝑒 + 𝜎)(1 + 𝛽2𝐼

𝑒)

𝛽(1 + 𝛿𝐼𝑒) − 𝛽1(𝑎 + 𝑎 𝛿𝐼𝑒 + 𝜎)
 

 

and 𝐼𝑒 is the root of the following equation:  

 

𝐴0 + 𝐴1𝐼
𝑒 + 𝐴2𝐼

𝑒2 + 𝐴3𝐼
𝑒3 = 0                                                                         (2.7) 

 

where the coefficients  𝐴0, 𝐴1 , 𝐴2  𝑎𝑛𝑑 𝐴3 are given by  

 

𝐴0 =  𝜇(𝛽 − 𝛽1(𝜎 + 𝑎)) − 𝜆(𝜎 + 𝑎) = (𝑅0 − 1)(𝜎 + 𝑎)(𝜆 + 𝜇𝛽1) 

 

𝐴1 = 𝜇 𝛿(2 𝛽 − 2 𝛽1 𝑎 − 𝛽1𝜎) − 𝜆(𝑎 𝛿 + (𝜎 + 𝑎)(𝛿 + 𝛽2))

− (𝑎 + 𝜎)(𝛽 − 𝛽1(𝜎 + 𝑎)) 

 

𝐴2 =  𝜇 𝛿2(𝛽 − 𝛽1𝑎) − (2𝑎𝛽2 + 𝑎𝛿 + 𝜎𝛽2)𝜆𝛿 − (2𝑎𝛽𝛿 − 2 𝑎
2𝛿𝛽1 − 𝑎𝛿𝛽1𝜎 )

− 𝜎𝛿(𝛽 − 𝛽1𝑎) 
 

𝐴3 = −𝜆𝑎𝛽2𝛿
2 − 𝑎𝛿2(𝛽 − 𝑎𝛽1) 

 

 

Theorem 2.3. For 𝑅0 >1   there exist a unique endemic equilibrium (𝑄𝑒=(𝑆𝑒 , 𝐼𝑒) of 

model (2.2).  

 

 

Proof.  Let 𝑅0 >1 Considering equation (2.7) which is third degree polynomial given 

as 𝐹(𝐼𝑒) = 𝐴0 + 𝐴1𝐼
𝑒 + 𝐴2𝐼

𝑒2 + 𝐴3𝐼
𝑒3 .We observe  that 𝐴3 , the coefficient of  𝐼𝑒

3
, 

the leading coefficient, is negative. Therefore 𝐿𝑖𝑚
𝐼𝑒→∞

𝐹(𝐼𝑒) = −∞ , also 𝐹(0) = 𝐴0 

and  𝐴0 > 0 for  𝑅0 >1, 𝐹(𝐼𝑒)  is   a continuous function of  (𝐼𝑒). 
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Thus, the fundamental theorem of algebra implies that there exist at most three real 

positive roots of  𝐹(𝐼𝑒). Here, we examine only the case of a particular endemic 

equilibrium. Assuming  𝑅0 >1 and noting that 𝐴3 < 0 and 𝐴0 > 0, under the 

following signs of 𝐴1 and 𝐴2 a unique endemic equilibrium exists: 

 

(i) 𝐴1 < 0, 𝐴2 < 0  

              

(ii) 𝐴1 > 0, 𝐴2 < 0   

            

(iii) 𝐴1 > 0, 𝐴2 > 0         

 

 

If any of the criteria (i)-(iii) is fulfilled, then there exist a unique  𝐼𝑒, from which we 

can find the value of  𝑆𝑒 . So, unique endemic equilibrium 𝑄𝑒=(𝑆𝑒 , 𝐼𝑒) has been 

demonstrated for 𝑅0 >1 

 

 

The local stability of endemic equilibrium 𝑄𝑒 = (𝑆𝑒 , 𝐼𝑒) is now examined here. To 

do so, we linearize the model (2.3) around endemic equilibrium 𝑄𝑒 and thus obtain 

the Jacobian matrix 𝐽𝑒 as shown below: 

 

𝐽𝑒 = 

(

 
 
−𝜆 −

𝛽𝐼𝑒(1 + 𝛽2𝐼
𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
−

𝛽𝑆𝑒(1 + 𝛽1𝑆
𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2

𝛽𝐼𝑒(1 + 𝛽2𝐼
𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
𝛽𝑆𝑒(1 + 𝛽1𝑆

𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
− 𝑎 −

𝜎

(1 + 𝛿𝐼𝑒)2)

 
 

 

 

The characteristic equation of  𝐽𝑒 is given by 

 

𝑟2 + 𝜔1𝑟 + 𝜔2 = 0                            (2.8) 

 

 

 

Where 

𝜔1 =  𝜆 +
𝛽𝐼𝑒(1 + 𝛽2𝐼)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
−

𝛽𝑆𝑒(1 + 𝛽1𝑆
𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
+ 𝑎 +

𝜎

(1 + 𝛿𝐼𝑒)2
 

 

𝜔2 = (𝜆 +
𝛽𝐼𝑒(1 + 𝛽2𝐼

𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
)(𝑎 +

𝜎

(1 + 𝛿𝐼𝑒)2
) −

𝜆𝛽𝑆𝑒(1 + 𝛽1𝑆
𝑒)

(1 + 𝛽1𝑆𝑒 + 𝛽2𝐼𝑒)2
 

 

It can readily be seen that Jacobian matrix 𝐽𝑒’s eigen value have negative real parts if 

and only if 𝜔1 > 0 and 𝜔2 > 0. Also, 𝜔1 > 0 and 𝜔2 > 0 if 
𝛽𝑆𝑒(1+𝛽1𝑆

𝑒)

(1+𝛽1𝑆𝑒+𝛽2𝐼𝑒)2
<  𝑎 +

𝜎

(1+𝛿𝐼𝑒)2
. Hence, by fractional Routh-Hurwitz criteria (Matignon & Matignon, 1996; 

Otto & Day, 2019) all the roots of equation (2.8) have negative real parts and satisfy 

the condition |𝑎𝑟𝑔(𝑟𝑖)) | >𝜌
𝜋

2
 , 𝑖 = 1,2. This proves the following theorem. 
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Theorem 2.4. 𝑄𝑒=(𝑆𝑒 , 𝐼𝑒), the endemic equilibrium of model (2.2) is locally 

asymptotically stable when the Basic Reproduction number 𝑅0 >1 and unstable 

otherwise. 

 

 

2.4.5 Global stability analysis of DFE (𝑸𝒅) and Endemic equilibrium (𝑸𝒆) 

 

 

Now we are concerned about DFE’s and EE’s global stability. We claim 

the following theorem for this and prove this: 

 

 

Theorem 2.5 The disease- free equilibrium 𝑄𝑑=(𝑆𝑑, 𝐼𝑑) of model (2.2) is globally 

asymptotically stable when  𝑅0 ≤ 1. 

 

 

Proof.  We define a Lyapunov function by 

  

𝐿1(𝑡) =
1

1 + 𝛽1𝑆𝑑
(𝑆(𝑡) − 𝑆𝑑 − 𝑆𝑑𝑙𝑛

𝑆(𝑡)

𝑆𝑑
) + 𝐼(𝑡) 

 

 Now we have  

 

𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) = 𝐷0

𝑐
𝑡
𝜌
( 

1

1 + 𝛽1𝑆𝑑
(𝑆(𝑡) − 𝑆𝑑 − 𝑆𝑑𝑙𝑛

𝑆(𝑡)

𝑆𝑑
) + 𝐼(𝑡))  

 

𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) = 𝐷0

𝑐
𝑡
𝜌
 

1

1 + 𝛽1𝑆𝑑
(𝑆(𝑡) − 𝑆𝑑 − 𝑆𝑑𝑙𝑛

𝑆(𝑡)

𝑆𝑑
) + 𝐷0

𝑐
𝑡
𝜌
𝐼(𝑡) 

 

𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) =

1

1 + 𝛽1𝑆𝑑
𝐷0
𝑐

𝑡
𝜌
 (𝑆(𝑡) − 𝑆𝑑 − 𝑆𝑑𝑙𝑛

𝑆(𝑡)

𝑆𝑑
) + 𝐷0

𝑐
𝑡
𝜌
𝐼(𝑡) 

𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) ≤

1

1 + 𝛽1𝑆𝑑
 (1 −

𝑆𝑑

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝑆(𝑡) + 𝐷0

𝑐
𝑡
𝜌
𝐼(𝑡) 

 

𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) ≤

1

1 + 𝛽1𝑆𝑑
 (1 −

𝑆𝑑

𝑆(𝑡)
) (𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1𝑆(𝑡) + 𝛽2 𝐼(𝑡)
)

+ (
𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1 𝑆(𝑡) + 𝛽2 𝐼(𝑡)
− 𝑎𝐼(𝑡) −

𝜎 𝐼(𝑡)

1 + 𝛿 𝐼(𝑡)
) 

 

Using the value of  𝑅0 𝑎𝑛𝑑  𝑆
𝑑 = 

𝜇

𝜆
 in above equation, we have 
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𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) ≤ −

𝜆(𝑆(𝑡) − 𝑆𝑑)2

𝑆(𝑡)(1 + 𝛽1𝑆𝑑)
+ (

𝑅0(𝑎 + 𝜎)( 1 + 𝛽1𝑆(𝑡))𝐼(𝑡)

1 + 𝛽1 𝑆(𝑡) + 𝛽2 𝐼(𝑡)
) − 𝑎𝐼(𝑡)

−
𝜎 𝐼(𝑡)

1 + 𝛿 𝐼(𝑡)
 

 

 This concludes that if 𝑅0 < 1, then we have 𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) ≤ 0.Furthermore, we know 

that 𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) = 0 , if and only if 𝑆(𝑡) = 𝑆𝑑 and 𝐼(𝑡) = 𝐼𝑑. Thus the largest 

invariant set for {(𝑆, 𝐼) ∈ 𝜓: 𝐷0
𝑐

𝑡
𝜌
𝐿1(𝑡) = 0} is the singleton set {𝑄𝑑}, where 𝜓 =

{(𝑆, 𝐼) ∈ 𝑅+
2 : 0 ≤ 𝑆 + 𝐼 ≤

𝜇

𝜆
, 𝑆, 𝐼 ≥ 0} and also all the solutions in 𝜓 converges to 

𝑄𝑑 in accordance with the LaSalle’s invariance principle (Diekmann et al., 2010; La 

Salle, 1976; Shuai & Van Den Driessche, 2013; Van Den Driessche & Watmough, 

2002). So, 𝑄𝑑 is globally asymptotically stable when 𝑅0 ≤ 1. Hence theorem 2.5 is 

verified. 

 

 

Theorem 2.6. The endemic equilibrium  𝑄𝑒=(𝑆𝑒 , 𝐼𝑒) of model (2.2) is globally 

asymptotically stable when 𝑅0 >1. 

 

 

Proof. We define a Lyapunov function by 

  

𝐿2(𝑡) = (𝑆(𝑡) − 𝑆
𝑒 − 𝑆𝑒𝑙𝑛

𝑆(𝑡)

𝑆𝑒
) + (𝐼(𝑡) − 𝐼𝑒 − 𝐼𝑒𝑙𝑛

𝐼(𝑡)

𝐼𝑒
) 

 

Now we have  

 

𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) = 𝐷0

𝑐
𝑡
𝜌
 (𝑆(𝑡) − 𝑆𝑒 − 𝑆𝑒𝑙𝑛

𝑆(𝑡)

𝑆𝑒
) + 𝐷0

𝑐
𝑡
𝜌
(𝐼(𝑡) − 𝐼𝑒 − 𝐼𝑒𝑙𝑛

𝐼(𝑡)

𝐼𝑒
) 

𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ (1 −

𝑆𝑒

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝑆(𝑡) + (1 −

𝐼𝑒

𝐼(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝐼(𝑡) 

𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ (1 −

𝑆𝑒

𝑆(𝑡)
) [𝜇 −  𝜆 𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1𝑆(𝑡) + 𝛽2 𝐼(𝑡)
]

+ (1 −
𝐼𝑒

𝐼(𝑡)
) [

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1 𝑆(𝑡) + 𝛽2 𝐼(𝑡)
− 𝑎𝐼(𝑡) −

𝜎 𝐼(𝑡)

1 + 𝛿 𝐼(𝑡)
] 

 

Using the endemic conditions, 

 

𝜇 = 𝜆 𝑆𝑒 −
𝛽 𝑆𝑒𝐼𝑒

1 + 𝛽1𝑆𝑒 + 𝛽2 𝐼𝑒
 

𝛽 𝑆𝑒𝐼𝑒

1 + 𝛽1𝑆𝑒 + 𝛽2 𝐼𝑒
= 𝑎𝐼𝑒 −

𝜎 𝐼𝑒

1 + 𝛿 𝐼𝑒
 

 

We get 
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𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ (1 −

𝑆𝑒

𝑆(𝑡)
) [𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1𝑆(𝑡) + 𝛽2 𝐼(𝑡)
]

+ (1 −
𝐼𝑒

𝐼(𝑡)
) [

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛽1 𝑆(𝑡) + 𝛽2 𝐼(𝑡)
− 𝑎𝐼(𝑡) −

𝜎 𝐼(𝑡)

1 + 𝛿 𝐼(𝑡)
] 

 

𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ −

(𝑆(𝑡) − 𝑆𝑒)2

𝑆(𝑡)
[𝜆 +

𝛽 𝐼

1 + 𝛽1𝑆(𝑡) + 𝛽2 𝐼(𝑡)
]

−
(𝐼(𝑡) − 𝐼𝑒)2

𝐼(𝑡)
[𝑎 +

𝜎 

1 + 𝛿 𝐼(𝑡)
] 

This implies, 

 

𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ −

(𝑆(𝑡) − 𝑆𝑒)2

𝑆(𝑡)
[𝜆 +

𝛽 𝐼

1 + 𝛽1𝑆(𝑡) + 𝛽2 𝐼(𝑡)
]

−
(𝐼(𝑡) − 𝐼𝑒)2

𝐼(𝑡)
[𝑎 +

𝜎 

1 + 𝛿 𝐼(𝑡)
] 

                 ≤ 0, 

 

Therefore, 𝐷0
𝑐

𝑡
𝜌
𝐿2(𝑡) ≤ 0. Also, the largest invariant set for  {(𝑆, 𝐼) ∈ 𝜓: 𝐷0

𝑐
𝑡
𝜌
𝐿2(𝑡) =

0} is the singleton set {𝑄𝑒} and all the solutions in 𝜓 converges to 𝑄𝑒 in accordance 

with the LaSalle’s invariance principle (Diekmann et al., 2010; La Salle, 1976; Shuai 

& Van Den Driessche, 2013; Van Den Driessche & Watmough, 2002).Therefore, 𝑄𝑒 

is globally asymptotically stable when 𝑅0 >1. Hence theorem 2.6 is verified.  

 

 

2.5 Numerical Simulation 

 

 

In this section, to support our analytical work we performed numerical 

simulations using MATLAB 2012(b). The initial conditions that are used in the 

simulation are S (0) = 85, I (0) = 0 and R (0) = 0 (A. Kumar, 2020)  and the required 

parameters are given in table 2.2. Parameters 𝛽1, 𝛽2, 𝛿 are estimated and rest are 

chosen from paper (A. Kumar, 2020). Using the predictor-corrector method (Diethelm 

et al., 2002), system (2.1) is simulated numerically by MATLAB for various values of 

the fractional order 𝜌 ranging from 0.4 to 1 to observe the dynamical behavior of 

susceptibles, infectives, and recovered population with changed order of derivative. 

Figure 2.2 demonstrates the dynamic phenomena of susceptible class for various 

values of 𝜌 and it is found that susceptible are significantly influenced by decreasing 

the fractional order value. It has been seen that the increased value of fractional order 

𝜌 is one of the reasons which held responsible for the increment in susceptible 

population in the community. Also, memory effect can be observed for different values 

of 𝜌, for 𝜌 = 1 there is no memory effect on susceptibles and by lowering down the 

value of 𝜌 the memory affect becomes visible which is the fractional order derivatives 

property. 
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Table 2.2 Model parameters with their values 

 
S.No. Parameters Value 

1 𝛽 0.003 

2 𝜆  0.05 

3 𝜇 5 

4 𝛼 0.06 

5 𝛾 0.002 

6 𝛽1 0.002 

7 𝛽2 0.001 

8 𝜎 0.02 

9 𝛿 0.002 

 

 

 

Figure 2.3 indicates the pattern of infected persons for various fractional 

order values. From this figure it is  noticed that there is a lower number of infected 

individulas for small order , as the order raises the number of infected individuals also 

increases and and then it starts decreaing as the fractional order 𝜌 decreases after 

hitting the peak value of I(t) = 68 for 𝜌 = 1. Also, we can observe the presence of 

memory effect because as we decrease the value of  𝜌, the infected people are taking 

more time to recover. In addition, from both the figures (Figure 2.2 and 2.3) it is seen 

that system converges to its steady state more rapidly as the order of fractional order 

derivatives decreases, which is in accordance with these papers (A. Kumar, 2020; 

Naik, 2020). Figure 2.4 reveals the population of people recovered for various 

fractional orders and it is observed that the number of those recovered people is raised 

as we increase the order of fractional derivatives. 

 

 

Figures 2.5(i), 2.5(ii) and 2.5(iii) shows behavior of susceptible on varying 

preventive measures taken by susceptible for different values of fractional order and 

no measures of inhibition are adopted by infected individuals. It infers those preventive 

measures taken by susceptible will be affecting the transmission of susceptible into 

infected compartments. More the number of individuals following the preventive 

measures implies a greater number of susceptible and lesser number of infectives. 

Despite contact occurring between susceptible and infective individuals, if preventive 

measures are taken by susceptible, then the transmission from susceptible 

compartment to infective compartment is reduced largely. 

 

 

In figure 2.5(iii) for fractional order 𝜌 = 1, an inverted peak in the number 

of susceptible population can be noticed, which progressively fades as the order of 

derivative reduces, which is due to the memory effect or the people’s encounter with 

the disease. For 𝛽1= 0.001, number of susceptible peoples were 76 for 𝜌 = 0.6 at time 

t = 50 days (Fig 2.5(i)), while  they were 58 and 43 respectively for 𝜌 = 0.8 (Figure 

2.5(ii)) and 𝜌 = 1 (Figure 2.5(iii)). It is indicating that for the same 𝛽1 as the fractional 
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order decreases, the number of susceptible increases ultimately number of infected 

populations decreases which is due to the people’s memory effect about the disease. 

 

 

Figures 2.6(i), 2.6(ii) and 2.6(iii) shows the behavior of infected 

individuals by varying the level of preventive measures taken by susceptible (𝛽1) when 

no inhibitory measure is taken by infected people for different values of fractional 

order 𝜌 and it is observed that on increasing the value of preventive measures by 

susceptibles number of infectives starts decreasing. Also, the memory effect can be 

seen by comparing these three graphs as the fractional order decreases the peak in the 

infectives gradually disappears. 

 

 

Figures 2.7(a)(i,ii,iii) and 2.7(b)(i,ii,iii) show the behavior of infectives by 

changing the measures of inhibition taken by infectives for various values of fractional 

order. In figure 2.7(a)(i,ii,iii) no preventive measures are taken by susceptible while in 

figure 2.7(b)(i,ii,iii) susceptible take preventive measures. It is evident that at any time 

if enough preventive measures are taken by susceptible then number of infectives are 

less in comparison to when no preventative measures are taken by susceptible. Also, 

it is depicted that as the preventive measures taken by infectives increases, the number 

of infected populations starts decreasing. In figure 2.7a(ii) at time t = 50 number of 

infected individuals were 24 while in figure 2.7b(ii) they were 21 at same time for 𝛽2= 

0.001 which shows that if susceptible use enough preventive measures, then their 

chances of entering the infected compartment reduces. Initially for lower order of 

fractional order no peak is there but as the fractional order 𝜌 increases, peak in the 

increasing infected population starts appearing which shows the effect of memory 

property.  

 

 

Figures 2.8(a)(i,ii,iii) shows the effect of change in preventive measures 

taken by infectives on susceptible when no preventive measures were taken by 

susceptible while in figures 2.8(b)(i,ii,iii) preventive measures were taken by 

susceptible. First, if infected individuals would get proper and timely treatment then 

the rate of spreading the infection decreases due to which susceptible population also 

decreases. In figure 2.8a(iii) at time t = 50, number of susceptible were 51 with 𝛽2 = 

0.001 and no safety measures were used by susceptibles while in figure 2.8b(iii) at the 

same time susceptible population is 45, here they have used the preventive measures 

with same 𝛽2. Second, when figure 2.8(a)(i,ii,iii) is compared with figure 2.8(b)(i,ii,iii) 

it is inferred that if susceptible population practice more preventive measures like 

wearing masks, keeping social distance, and maintaining sufficient hygiene, their risk 

of entering infected compartment decreases. When comparing graphs, the memory 

effect is immediately evident.  

 

 

Figures 2.9(a)(i,ii,iii) shows the effect of lockdown on infected population. 

Because of the lockdown the rate of transmission is reduced leading in a drop of 

infected population. Also, it is observed that for lower order of fractional order there 
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is no peak but peak starts appearing as 𝜌 increases which shows the presence of 

memory effect. Similar effect of lockdown can be observed for susceptible population 

as shown in figure 2.9(b)(i,ii,iii), because of lockdown interaction will be less and the 

speed of transmission will be reduced, and a smaller number of people will be infected. 

 

 

Figure 2.10(i) shows the effect of immigration on infectives for different 

values of recruitment rate. As the pace of recruitment rate rises, so does the number of 

infectives; however, after reaching its peak, the number of infectives begin to decline 

and settles down into a steady state, likewise figure 2.10(ii) describes the effect of 

immigration on susceptibles and same impact can be observed on susceptibles i.e., the 

higher the number of immigrants, higher the number of susceptibles and after a period 

the number of susceptibles archives the steady state. Figure 2.11 demonstrates that 

when the transmission rate increases, so does the reproduction number, implying that 

the infected population will increase. Figure 2.12 illustrates that, the more the 

preventive actions like as vaccination, masking, ensuring social distance and personal 

hygiene are adopted by susceptible population, the lower the number of infected cases 

and thus reproduction number will be reduced.    

 

Figure 2.1. Basic Reproduction number vs Infected 
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Figure 2.2 Result of varying fractional order 𝜌 on 

susceptibles 

 

Figure 2.3 Result of varying fractional order 𝜌 on 

infectives 
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Figure 2.4 Result of varying fractional order 𝜌 on 

recovered 

 

Figure 2.5 (i) Effect of varying measures taken by 

susceptibles on susceptibles with 𝜌 = 0.6 and no 

measures taken by infectives 
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Figure 2.5(ii) Effect of varying measures taken by 

susceptibles on susceptibles with 𝜌 = 0.8 and no 

measures taken by infectives 

 

 

Figure 2.5(iii) Effect of varying measures taken by 

susceptibles on susceptibles with 𝜌 = 1.0 and no 

measures taken by infectives 
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Figure 2.6(i) Effect of varying preventive measures 

taken by susceptibles on infectives with 𝜌 = 0.6 and no 

measures taken by infectives 

 
Figure 2.6 (ii) Effect of varying preventive measures 

taken by susceptibles on infectives with 𝜌 = 0.8 and no 

measures taken by infectives 
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Figure 2.6 (iii) Effect of varying preventive measures 

taken by susceptibles on infectives with 𝜌 = 1.0 and no 

measures taken by infectives 

 

 
Figure 2.7a (i) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 0.6 and no measures 

taken by susceptibles 
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Figure 2.7a (ii) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 0.8 and no measures 

taken by susceptibles 

 
Figure 2.7a (iii) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 1 and no measures 

taken by susceptibles 
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Figure 2.7b (i) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 0.6 

 

 
Figure 2.7b (ii) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 0.8 
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Figure 2.7b (iii) Effect of varying measures taken by 

infectives on infectives with 𝜌 = 1 

 

 

Figure 2.8a (i) Effect of varying measures taken by 

infectives on susceptibles with 𝜌 = 0.6 and no 

measures taken by susceptibles 
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Figure 2.8a (ii) Effect of varying measures taken by 

infectives on susceptibles with 𝜌 = 0.8 and no 

measures taken by susceptibles 

 
Figure 2.8a (iii) Effect of varying measures taken by 

infectives on susceptibles with 𝜌 = 1.0 and no 

measures taken by susceptibles 
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              Figure 2.8b (i) Effect of varying measures taken by 

              infectives on susceptibles with 𝜌 = 0.6 

 

 

Figure 2.8b (ii) Effect of varying measures taken 

by infectives on susceptibles with 𝜌 = 0.8 
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Figure 2.8b (iii) Effect of varying measures taken by 

infectives on susceptibles with 𝜌 = 1 

 

 

Figure 2.9a (i) Effect of lockdown on infectives with 

 𝜌 = 0.4 
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Figure 2.9a (ii) Effect of lockdown on infectives with 

𝜌 = 0.8 

 

 

Figure 2.9a (iii) Effect of lockdown on infectives with 

𝜌 = 1 
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Figure 2.9b (i) Effect of lockdown on susceptibles 

with 𝜌 = 0.6 

 

 

Figure 2.9b (ii) Effect of lockdown on susceptibles 

with 𝜌 = 0.8 
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Figure 2.9b (iii) Effect of lockdown on susceptibles 

with 𝜌 = 1 

 

Figure 2.10 (i) Effect of immigration on infectives 
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Figure 2.10 (ii) Effect of immigration on susceptibles 

 

 

Figure 2.11 Effect of transmission of disease on basic 

reproduction number  𝑅0 
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Figure 2.12 Effect of measures taken by susceptibles 

on basic reproduction number  𝑅0 

 

 

2.6 Conclusion 

 

 

This chapter introduces and discusses a novel Caputo-fractional SIR model 

with Beddington-De Angelis incidence rate for COVID-19 and Holling type II type 

saturated treatment rate. The system (2.1) experience two equilibriums:  disease-free 

equilibrium 𝑄𝑑 and endemic equilibrium 𝑄𝑒. The 𝑅0, basic reproduction number 

studied the analysis of local stability for both the equilibria. The equilibrium of 

disease-free state has proven to be stable for 𝑅0 < 1 i.e., disease diminishes and 

for 𝑅0 > 1, the disease-free equilibrium 𝑄𝑑 becomes unstable and the endemic 

equilibrium  𝑄𝑒 becomes stable under some conditions. Further, the global stability 

behavior of both the disease-free equilibria and the endemic equilibria is analysed and 

it is found that DFE is globally asymptotically stable when 𝑅0 ≤ 1 and the endemic 

equilibrium is globally asymptotically stable when 𝑅0 > 1.   

 

 

Moreover, numerical results for the favour of the analytical work are 

obtained. It is noted that the variation in the values of non-integer order derivatives 𝜌 

does not impact the equilibrium stability of the system but the time to achieve steady 

conditions or endemic equilibrium decreases i.e., better convergence can be 

accomplished by reducing the order of fractional derivatives or greater the values of 
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𝜌 slower is the convergence thus, the utility of the non-integer order derivative rather 

than the integer order model has been investigated. The rate of disease transmission 

will decrease if there is less contact between susceptibles and infectives, which could 

be achieved by taking adequate safety precautions both by susceptibles and infectives, 

as well as imposing lockdown. Moreover, if disease transmission is reduced, 𝑅0, the 

basic reproduction number declines. With this fractional order model and taking the 

authentic data of COVID-19, the dynamics of COVID-19 can be predicted.  
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CHAPTER 3 

FRACTIONAL ORDER MODEL USING CAPUTO 

FRACTIONAL DERIVATIVE TO ANALYSE THE EFFECTS OF 

SOCIAL MEDIA ON MENTAL HEALTH DURING COVID-19  

 

 

 

____________________________________________________________________ 

 

During COVID-19 outbreak, the large population was exposed to social 

media. Since it was a new virus and no specific information was available about its 

dynamics, therefore people were dependent on social media to gather more and more 

information.  Social media has its pros and cons, which have an impact on the life of 

human being which was more in case of COVID-19 due to restricted interaction during 

the period of pandemic. In this chapter the effects of social media on the mental health 

of people have been investigated with the help of Holling type II and Monod Haldane 

rates in the form of incidence and treatment rates, respectively. The model exhibits 

two types of equilibria viz. disease-free equilibrium (DFE) and endemic equilibrium 

(EE), which has been confirmed by the Fractional Routh-Hurwitz criterion. Further 

stability behavior has been also analyzed under certain sufficient conditions that 

depends on 𝑅0, a Basic Reproduction number, which is determined by the method of 

next generation matrix.  The findings indicate that the fractional derivative order has a 

considerable influence on the dynamic process. The difference between fractional and 

integer order derivatives is illustrated by the memory effect. Finally, numerical 

simulations have been performed to examine the effect of various parameters on the 

dynamics of social media on mental health. 

____________________________________________________________________ 
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3.1 Introduction 

 

 

Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS CoV-2), 

2019-nCoV a new coronavirus capable of causing coronavirus disease, a severe 

respiratory illness similar to SARS and MERS, originally first identified in Wuhan, 

China, in December 2019. The World Health Organization first declared the COVID-

19 breakout as Concern of International Public Health Emergency and then as 

pandemic. As a result of the breakout, rigorous laws prohibiting massive gatherings 

and social activities have been implemented across the world. Because of the stringent 

social distancing restrictions, people were heavily relying on media, particularly social 

media, for up-to-date information regarding the outbreak and to maintain connectivity. 

Among the most widely utilized resources of information is social media networks; 

they are one of the simplest and most effective techniques of transmitting information. 

The World Health Organization has revealed that they are currently fighting not only 

with a global pandemic, but also with a social media infodemic, with some media 

organizations claiming that the coronavirus is the first true social media infodemic 

because it has exacerbated information and misinformation globally, causing panic and 

confusion among people (Hao & Basu, 2020).The term infodemic (Zarocostas, 2020) 

has been coined to outline  the perils of misinformation phenomena during the 

management of disease outbreaks, since it could even speed up the epidemic process 

by influencing and fragmenting social response(Kimid et al., 2019). 

 

 

Indeed, Li et al. (Z. Li et al., 2020) found that the public reported even 

higher levels of vicarious traumatization than front-line nurses fighting COVID-19. 

According to an ABC News poll, anxiety due to the coronavirus spreads faster on 

social media than the virus itself, triggering mass chaos (Joan Muwahed, 2020). 

Compared with traditional media, social media has played a multitude of positive roles 

in information exchange during the COVID-19 crisis, including disseminating health-

related recommendations, enabling connectivity and psychological first aid (Merchant 

& Lurie, 2020). On the other hand, social media has also fuelled the rapid spread of 

misinformation and rumours, which can create a sense of panic and confusion among 

the public (Garfin et al., 2020). In China, the peak of information searches on the 

Internet and social media platforms came 10-14 days before the peak of COVID-19 

cases, suggesting that searches on the Internet and social media networks are linked to 

disease occurrence (C. Li et al., 2020). 

 

 

Social media networks have shown to be effective in keeping people in 

touch with friends and family, preventing solitude and monotony, which have been 

associated with stress and long-term misery, and have thus emerged as a viable 

alternative for minimizing isolation at home. Social media may lead to 

(mis)information overload (Bontcheva et al., 2013; Roth & Brönnimann, 2014), which 

in turn may cause mental health problems such as stress, anxiety, depressive 

symptoms, insomnia, denial, anger, and fear etc. 

 



53 

 

 

 

Public awareness is crucial for controlling the infectious diseases and 

prevention from COVID-19, inadequate understanding of infectious illnesses brings 

about less identification rates. Therefore, to stop the spread of COVID-19 infection in 

Jordan, the Jordanian Ministry of Health launched specific national disease control 

measures, using several media campaigns (Ministry of Health, 2021), posters, and 

advertisements on television and printed media along with other methods to improve 

the awareness of this pandemic among the general population. The assessment of 

government websites and social media platforms for public awareness is important 

because it helps determine the impact of governmental prevention efforts and measures 

and gauges the need for intervention (Allgaier & Svalastog, 2015). Researchers have 

proposed numerous mathematical compartmental models for predicting and 

understanding the time-evolution of infectious disease epidemics (Dubey et al., 2013; 

Goel et al., 2020; A. Kumar, Kumar, et al., 2020). Because of its ability to provide a 

convincing analysis of certain nonlinear dynamics, infectious simulation research has 

recently been diverted to fractional differential research(Awais et al., 2020; Debasis 

Mukherjee & Maji, 2020; A. Kumar, 2020; Swati & Nilam, 2022). 

 

 

Whenever we see, read, or hear something, its good, or bad effect remains 

in our memory and therefore fractional or non-integer differential equations are better 

for modeling the effects of having memory of things on social media regarding 

COVID-19. In this chapter, we have formulated a non-integer i.e., fractional order SIR 

model to analyze the effect of social media during COVID-19 on public mental health 

with the Holling type II incidence and Monod-Haldane treatment rate. Caputo form of 

fractional order has been considered here to capture the memory property which exists 

in most biological scenarios. The reason behind choosing the Holling type II incidence 

rate is to investigate the effects of infectives induced inhibitory measures such as 

awareness about consequences of overusing social media, switching to traditional 

media use (television, radio, newspaper etc.), focusing on exercise, yoga meditation 

etc. Monod-Haldane treatment rate has been chosen here to represent the constraints 

in treatment availability for huge number affected people.  

 

 

3.2 Formulation of Fractional order Mathematical Model 

 

 

In this section a non-integer fractional order mathematical model is 

formulated to observe the effect of social media on mental health during COVID time. 

The whole population N(t) is categorized into three classes viz. Susceptibles S(t), 

Infectives I(t) and Recovered R(t). Holling type II incidence rate and Monod-Haldane 

treatment rate have been used to derive the model using Caputo form of fractional 

derivative. The Caputo derivative is described in definition 1in Appendix. The model 

is as follows: 

 

 



54 

 

 

𝐷0
𝑐

𝑡
𝜌
 𝑆(𝑡) = 𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)

𝐷 𝐼(𝑡)𝑡
𝜌

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
− (𝜆 + 𝛿 + 𝜎)𝐼(𝑡) −

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2

𝐷 𝑅(𝑡)𝑡
𝜌

0
𝑐  =

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2 + 𝜎 𝐼(𝑡) − 𝜆 𝑅(𝑡) }

 
 

 
 

                                            (3.1) 

 

𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0 and 𝑅(0) = 𝑅0 ≥ 0 are the positive initial conditions. 

  

S(t) : Number of people using social media at time t 

I(t)  : Number of people suffering from mental health problem because of using    

          social media 

R(t) : Number of people recovered from mental health problems 

𝜇     : Recruitment rate 

𝜆     : Rate at which individuals leave their respective compartments. 

𝛽     : Transmission rate 

𝛼     : Inhibition rate by infectives such as awareness about consequences of       

          overusing social media, switching to traditional media (TV, radio, newspaper   

         etc), getting involved into exercise, yoga, meditation, self-induced restricted  

         use of social media, etc. 

𝛿     : Disease induced mortality rate 

𝜎     : Recovery rate 

𝑎     : Cure rate 

𝑏     : Limitation in treatment availability 

 

 

3.3 Basic Properties of the Model 

 

 

Let ℝ+
3 : = {𝑋 𝜖 ℝ3: 𝑋 ≥ 0 } and 𝑋(𝑡) =  (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))

𝑇
 on non-negative 

solutions, the lemmas needed to prove the theorem are mentioned in Appendix.  

 

 

Theorem 3.1 The region of attractor of solution, which remains positive, 

corresponding to system (3.1) is 𝛺 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅+
3 : 0 < 𝑆 + 𝐼 + 𝑅 = 𝑁 ≤ 𝐶𝐸

𝜇

𝜆
} for 

𝑡 ≥ 0, where 𝐶𝐸 is defined in Lemma 4. 
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Proof. To prove the positiveness of each solution with corresponding initial conditions 

of the model (3.1), assume that at t = 0, 𝑆(0) > 0 . Now we prove that 𝑆(𝑡) ≥ 0 ∀ 𝑡 ≥
0. We will demonstrate this using a contradiction, let 𝑆(𝑡) ≤ 0 ∀ 𝑡 ≥ 0. After that, 

there is a 𝜔1 > 0 as a result 𝑆(𝑡) > 0 for that 0 ≤ 𝑡 < 𝜔1 , 𝑆(𝑡) = 0 at 𝑡 =  𝜔1, and 

𝑆(𝑡) < 0 for 𝜔1 < 𝑡 < 𝜔1 + 𝜖1 with sufficiently small 𝜖1 > 0. So, if we take the first 

equation in model (3.1), we get 𝐷𝜌 𝑆(𝑡)|𝑡=𝜔1 = 𝜇0
𝑐 > 0. From Lemma 2, for any 0 <

𝜖1 ≪ 1, we have 𝑆(𝜔1 + 𝜖1) = 𝑆(𝜔1) +
1

𝛤(𝛼)
𝐷𝜌𝑆(𝜉) (𝜖1)

𝜌. Thus, we get 𝑆(𝜔1 +

𝜖1) ≥ 0, which is in contradiction to the fact that 𝑆(𝑡) < 0 for 𝜔1 < 𝑡 < 𝜔1 + 𝜖1. As 

a result, we obtain 𝑆(𝑡) ≥ 0 ∀ 𝑡 ≥ 0. Then we show that 𝐼(𝑡) ≥ 0 ∀  𝑡 ≥ 0. Again, 

we accomplish this through contradiction by, assuming that 𝐼(𝑡) ≥ 0 is not true, then 

∃ a 𝜔2 > 0 as a result 𝐼(𝑡) > 0 for that 0 ≤ 𝑡 < 𝜔2 , 𝐼(𝑡) = 0 at 𝑡 =  𝜔2, and 𝐼(𝑡) <
0 for 𝜔2 < 𝑡 < 𝜔2 + 𝜖2 with sufficiently small 𝜖2 > 0. Then we obtain 

 

𝐷𝜌 𝐼(𝑡)|𝑡=𝜔2 = 00
𝑐  

 

 

From Lemma 2, for any 0 < 𝜖2 ≪ 1, we have 𝐼(𝜔2 + 𝜖2) = 𝐼(𝜔2) +
1

𝛤(𝛼)
𝐷𝜌𝐼(𝜉) (𝜖2)

𝜌. Thus, we get 𝐼(𝜔2 + 𝜖2) ≥ 0, despite the fact that 𝐼(𝑡) < 0 for 

𝜔2 < 𝑡 < 𝜔2 + 𝜖2. Thus, we have 𝐼(𝑡) ≥ 0 for all  𝑡 ≥ 0. Likewise, we can establish 

that 𝑅(𝑡) ≥ 0 for all  𝑡 ≥ 0. 
 

 

Therefore, each solution of model (3.1) considering initial conditions is nonnegative. 

We will now illustrate that solutions are bounded. When all the three equations of 

model (3.1) are added together, we get: 

 

 

𝐷𝑡
𝜌
𝑁 =  𝜇 − 𝜆𝑁 − 𝛿𝐼 

 

Where 𝑁 = 𝑆 + 𝐼 + 𝑅. As  𝐼(𝑡) ≥ 0, we have 

 

𝐷𝑡
𝜌
𝑁 ≤  𝜇 − 𝜆𝑁. 

 

 

Consider the initial value problem 𝐷𝑡
𝜌
�̅� =  𝜇 − 𝜆�̅�, �̅�(0) = �̅�0. Using comparison 

principle (Lu & Zhu, 2018), we obtain the following inequality: 

𝑁(𝑡) ≤ �̅�(𝑡) for all 𝑡 ≥ 0. The initial value problem has been solved using Laplace 

transform 

 

𝑠𝜌𝐿[�̅�(𝑡)] − 𝑠𝜌−1�̅�0 =
𝜇𝜌

𝑠
− 𝜆𝐿[�̅�(𝑡)] 

 

⇒ 𝐿[�̅�(𝑡)] =
𝑠𝜌−1�̅�0
𝑠𝜌 + 𝜆

+
𝜇𝜌𝑠−1

𝑠𝜌 + 𝜆
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Using Lemma 3, we obtain 

 

𝐿[𝐸𝜌,1(−𝜆𝑡
𝜌)] =

𝑠𝜌−1

𝑠𝜌 + 𝜆
 

 

𝐿[𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡
𝜌)] =

𝑠−1

𝑠𝜌 + 𝜆
 

 

 

The above two equations reduced into the following form by applying the inverse 

Laplace transform, 

 

 

�̅�(𝑡) = �̅�0𝐸𝜌,1(−𝜆𝑡
𝜌) +  𝜇𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡

𝜌), using 𝐷𝑡
𝜌
𝑁 ≤  𝜇 − 𝜆𝑁 , 

 

we have 

 

𝑁(𝑡) ≤ 𝑁0𝐸𝜌,1(−𝜆𝑡
𝜌) +  𝜇𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡

𝜌), 

 

By Lemma 3.4, we obtain 

 

|𝑁(𝑡)| ≤
𝑁0𝐶𝐸
1 + 𝜆𝑡𝜌

+
𝜇𝑡𝜌𝐶𝐸
1 + 𝜆𝑡𝜌

 

 

 

𝐶𝐸 is a constant term stated in the Lemma 4. Thus, for time t tending towards infinity, 

we see 𝑁(𝑡) ≤ �̅� with  �̅� ≥ 𝐶𝐸
𝜇

𝜆
.  For 𝑡 ≥ 0, solution remain in region 𝛺 which is 

bounded also. 

 

 

3.4 Mathematical analysis of the model 

 

 

This section performs stability analysis of the disease free equilibrium 

point and the endemic equilibrium point. 

 

 

3.4.1 Equilibria and their Stability 

 

 

Since the third equation is independent of two initial equations, hence we 

simply consider first two equations of the system for stability analysis. 
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𝐷0
𝑐

𝑡
𝜌
 𝑆(𝑡) = 𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)

𝐷 𝐼(𝑡)𝑡
𝜌

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
− (𝜆 + 𝛿 + 𝜎)𝐼(𝑡) −

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2

}                                            (3.2) 

 

Let 𝑐 =  𝜆 + 𝛿 + 𝜎 

 

𝐷0
𝑐

𝑡
𝜌
 𝑆(𝑡) = 𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)

𝐷 𝐼(𝑡)𝑡
𝜌

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
− (𝜆 + 𝛿 + 𝜎)𝐼(𝑡) −

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2

}                                            (3.3) 

 

For equilibrium points, setting right hand side of (3.3) to zero: 

 

𝜇 − 𝜆 𝑆(𝑡) −
𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
= 0

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
− (𝜆 + 𝛿 + 𝜎)𝐼(𝑡) −

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2 = 0

}                                                          (3.4) 

 

3.4.2 Disease free equilibria (DFE): 

 

 

There is no epidemic i.e., no infectives in the community (𝐼 = 0) 

 

𝐷𝑓 = (𝑆𝑓 , 𝐼𝑓) = (
𝜇

𝜆
, 0) 

 

 

3.4.3 Endemic equilibria (EE): 

 

 

𝜇 − 𝜆 𝑆∗(𝑡) −
𝛽 𝑆∗(𝑡)𝐼∗(𝑡)

1+𝛼 𝐼∗(𝑡)
= 0

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛼 𝐼(𝑡)
− (𝜆 + 𝛿 + 𝜎)𝐼(𝑡) −

𝑎 𝐼(𝑡)

1+𝑏 (𝐼(𝑡))
2 = 0

}                                                         (3.5) 

 

From equation (3.4) we obtain 

 

𝑆∗ = 
(𝑎+𝑐+𝑏 𝑐 (𝐼∗(𝑡))2)(1+ 𝛼 𝐼∗(𝑡))

(1+𝑏 𝐼∗(𝑡)2)𝛽
                                                                                          (3.6) 

 

Now adding (3.3) and (3.4), and using (3.5) we get 

 

𝐽0 + 𝐽1𝐼
∗(𝑡) + 𝐽2(𝐼

∗(𝑡))
2
+ 𝐽3(𝐼

∗(𝑡))
3
= 0                                                                   (3.7) 

 

Where these coefficients are given by: 
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  𝐽0 =  𝜇 𝛽 −  𝜆 (𝑎 + 𝑐)

         𝐽1 = −(𝑎 + 𝑐)(𝛼 𝜆 +  𝛽 )

𝐽2 = 𝑏 ( 𝜇 𝛽 −  𝜆 𝑐 )

𝐽3 = −𝑏 𝑐 (𝛼 𝜆 +  𝛽) }
 

 
                                                                                      (3.8) 

 

 

3.4.4 Computation of Basic Reproduction Number 

 

 

The Basic Reproduction number 𝑅0 is determined using the next 

generation matrix method as discussed in (Diekmann et al., 2010; La Salle, 1976; 

Shuai & Van Den Driessche, 2013; Van Den Driessche & Watmough, 2002). We 

assume that 

 

𝐷𝑡
𝜌
𝑥 = 𝑃(𝑥) − 𝑆(𝑥) 

 

Where 𝑥 = (𝑆, 𝐼)𝑇,  𝑃(𝑥) denotes the matrix of new infections arriving, and 𝑆(𝑥) 
denotes the matrix of people entering and exiting the compartments. 𝑃(𝑥)  and 𝑆(𝑥) 
Jacobian matrices are calculated at the disease free equilibrium point 𝐷𝑓 and are given 

by 

 

𝑃 = (
𝛽𝜇

𝜆
0

0 0

) 

 

𝑆 = (
𝑐 + 𝑎 0
𝛽𝜇

𝜆
𝜆
) 

 

Now we need to compute 𝑃𝑆−1 : 

 

𝑃𝑆−1 = (
𝛽𝜇

𝜆(𝑐 + 𝑎)
0

0 0

) 

 

This matrix 𝑃𝑆−1 is referred as next generation matrix and the spectral radius of the 

matrix 𝑃𝑆−1 is equal to the basic reproduction number  𝑅0. Thus, 𝑅0 for our model is 

 

𝑅0 =
𝛽𝜇

𝜆(𝑐 + 𝑎)
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3.4.5 Local stability analysis of DFE (𝑫𝒇) and EEP (𝑫𝒆) 

 

 

We prove a theorem for the local stability of disease-free equilibrium point 

(DFE 𝐷𝑓). 

 

 

Theorem 3.2. When the Basic Reproduction number 𝑅0 < 1, the model's disease-free 

equilibrium 𝐷𝑓 is locally asymptotically stable, otherwise unstable. 

 

 

Proof. We analyse the local stability behaviour of the disease free equilibrium point 

of the non-linear system (3.4) by linearizing the system around the DFE (𝐷𝑓), as a 

result, at 𝐷𝑓, on linearizing the matrix of the system, we get 

 

 

𝐽𝑓 = (
−𝜆 −

𝛽𝜇

𝜆

0 (𝑅0 − 1)(𝑐 + 𝑎)
)                                             (3.9) 

 

The Jacobian matrix 𝐽𝑓 has the following characteristic equation 

 

𝑑2 − ((𝑅0 − 1)(𝑐 + 𝑎) − 𝜆)𝑑 − 𝜆(𝑅0 − 1)(𝑐 + 𝑎) = 0                                                (3.10) 

 

⇒ 𝑑2 + 𝑟1𝑑 + 𝑟2 = 0 

 

where 𝑟1 = −((𝑅0 − 1)(𝑐 + 𝑎) − 𝜆) and 𝑟2 = −𝜆(𝑅0 − 1)(𝑐 + 𝑎) 

 

First, we will prove that the roots (𝑑1 and 𝑑2) of (3.10) are real. 

 

𝑑1 =
−𝑟1 + √𝑟1

2 − 4 𝑟2
2

                               𝑎𝑛𝑑                          𝑑2 =
−𝑟1 −√𝑟1

2 − 4 𝑟2
2

 

 

𝑟1
2 − 4𝑟2 = (𝑅0 − 1)

2(𝑐 + 𝑎)2 + 𝜆2 + 2 𝜆(𝑅0 − 1)(𝑐 + 𝑎) ≥ 0 

 

Thus, both the roots 𝑑1 and 𝑑2 are real. We now show that both the roots are negative 

in nature when 𝑅0 < 1. 

 

Sum of the roots 𝑑1 + 𝑑2 = −𝑟1 = (𝑅0 − 1)(𝑐 + 𝑎) − 𝜆 

 

Product of the roots 𝑑1𝑑2 = 𝑟2 = −𝜆 (𝑅0 − 1)(𝑐 + 𝑎) 
 

Thus  𝑟1 = −((𝑅0 − 1)(𝑐 + 𝑎) − 𝜆) > 0 

 

and   𝑟2 = −𝜆 (𝑅0 − 1)(𝜎 + 𝑎) > 0 

 



60 

 

 

Thus, when 𝑅0 < 1, we concluded that every eigenvalue of the Jacobian 

matrix 𝐽𝑓 have negative sign. Consequently, both the roots of the equation (3.10) have 

negative real parts, thus, by the fractional Routh-Hurwitz criteria (Matignon & 

Matignon, 1996; Otto & Day, 2019) all roots follow |𝑎𝑟𝑔(𝑑𝑖)) | >𝜌
𝜋

2
 , 𝑖 = 1,2 

 

 

Theorem 3.3. 𝐷𝑒=(𝑆∗, 𝐼∗), the unique endemic-equilibrium point of the model (3.1) 

is locally asymptotically stable for the Basic Reproduction number 𝑅0 >1, otherwise 

unstable. 

 

 

Proof.  Let 𝑅0 >1, considering equation (3.7) 

𝐽(𝐼∗) = 𝐽0 + 𝐽1𝐼
∗(𝑡) + 𝐽2(𝐼

∗(𝑡))
2
+ 𝐽3(𝐼

∗(𝑡))
3
= 0  We observe  that  𝐽3, the leading 

coefficient, is negative. Therefore 𝐿𝑖𝑚
𝐼∗→∞

𝐽(𝐼∗) → −∞ , also 𝐽(0) = 𝐽0 and  𝐽0 > 0 for  

𝑅0 >1, 𝐽(𝐼∗)  is   a continuous function of  (𝐼∗). 
 

According to the fundamental theorem of algebra, 𝐽(𝐼∗) has no more than three real 

positive roots. Only case of specific endemic equilibrium is examined in this paper. 

Assuming  𝑅0 >1 and considering that 𝐽3 < 0 and 𝐽0 > 0, a unique endemic 

equilibrium exists under the following 𝐽1 and 𝐽2 signs.: 

 

(i) 𝐽1 < 0,  𝐽2 < 0 

(ii) 𝐽1 > 0,  𝐽2 < 0 

(iii) 𝐽1 > 0,  𝐽2 > 0 

 

If any of the conditions (i)-(iii) is satisfied, then there exists a unique 𝐼∗ 
from which the value of R can be calculated. For 𝑅0 >1, a unique endemic equilibrium 

𝐷𝑒=(𝑆∗, 𝐼∗) has been shown. This paper investigates the local stability of the endemic 

equilibrium 𝐷𝑒 = (𝑆∗, 𝐼∗). Now, linearizing the model equations (3.4) about the 

endemic-equilibrium 𝐷𝑒, resulting in the Jacobian matrix 𝐽∗, as shown below. 

 

 

 

𝐽𝑒 = 

(

 
 
−𝜆 −

𝛽𝐼∗

(1 + 𝛼𝐼∗)⬚
−

𝛽𝑆∗

(1 + 𝛼𝐼∗)2

𝛽𝐼∗

(1 + 𝛼𝐼∗)

𝛽𝑆∗

(1 + 𝛼𝐼∗)2
− 𝑐 −

𝑎(1 − 𝑏𝐼∗2)

(1 + 𝑏𝐼∗2)2)

 
 

 

 

The characteristic equation of  𝐽∗ is given by 

 

𝑠2 + 𝛻1𝑠 + 𝛻2 = 0                                                                                                                               (3.11) 

 

where 
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𝛻1 =  𝜆 +
𝛽𝐼∗

(1 + 𝛼𝐼∗)⬚
−

𝛽𝑆∗

(1 + 𝛼𝐼∗)2
+ 𝑐 +

𝑎(1 − 𝑏𝐼∗2)

(1 + 𝑏𝐼∗2)2
 

 

𝛻2 = (𝜆 +
𝛽𝐼∗

(1 + 𝛼𝐼∗)
) (𝑐 +

𝑎(1 − 𝑏𝐼∗2)

(1 + 𝑏𝐼∗2)2
) −

𝜆𝛽𝑆∗

(1 + 𝛼𝐼∗)2
 

 

 

It is clear that the eigen value of Jacobian matrix 𝐽∗’s has negative real components if 

and only if 𝛻1 > 0 and 𝛻2 > 0. Also, 𝛻1 > 0 and 𝛻2 > 0 if (𝜆 +
𝛽𝐼∗

(1+𝛼𝐼∗)
) (𝑐 +

𝑎(1−𝑏𝐼∗2)

(1+𝑏𝐼∗2)2
) <

𝜆𝛽𝑆∗

(1+𝛼𝐼∗)2
. Hence, by fractional Routh-Hurwitz criteria all the roots of 

equation (3.9) have negative real parts and satisfy the condition |𝑎𝑟𝑔(𝑠𝑖)) | >𝜌
𝜋

2
 , 𝑖 =

1,2. 

 

 

3.4.6 Global stability analysis of DFE (𝑫𝒇) and EEP (𝑫𝒆) 

 

 

Theorem 3.4 The disease- free equilibrium 𝐷𝑓 of model (3.3) is globally-

asymptotically stable for 𝑅0 ≤ 1. 

 

 

Proof. Defining a Lyapunov function as 

𝐹1(𝑡) =  (𝑆(𝑡) − 𝑆
𝑓(𝑡) − 𝑆𝑓(𝑡)𝑙𝑛

𝑆𝑓(𝑡)

𝑆(𝑡)
) + (𝐼(𝑡) − 𝐼𝑓(𝑡) − 𝐼𝑓(𝑡)𝑙𝑛

𝐼𝑓(𝑡)

𝐼(𝑡)
) 

 

Differentiating 𝐹1(𝑡) along with the solution of system (3.3) gives 

 

𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) =   (1 −

𝑆𝑓(𝑡)

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝑆(𝑡) + (1 −

𝐼𝑓(𝑡)

𝐼(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝐼(𝑡) 

 

𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) = (1 −

𝑆𝑓(𝑡)

𝑆(𝑡)
) (𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
)

+ (1 −
𝐼𝑓(𝑡)

𝐼(𝑡)
) (
𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
− 𝑐 𝐼(𝑡) −

𝑎 𝐼(𝑡)

1 + 𝑏 (𝐼(𝑡))
2  ) 

 

Using the value of  𝑅0 𝑎𝑛𝑑  𝑆
𝑓 = 

𝜇

𝜆
 in above equation, we have 

 

𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) ≤ −

𝜆(𝑆(𝑡) − 𝑆𝑓)2

𝑆(𝑡)
+ (

𝑅0(𝑐 + 𝑎)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
) − 𝑐 𝐼(𝑡) −

𝑎 𝐼(𝑡)

1 + 𝑏 (𝐼(𝑡))
2 
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This draws the inference that if 𝑅0 < 1, then we have 𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) ≤ 0. Furthermore, we 

know that 𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) = 0 , if and only if 𝑆(𝑡) = 𝑆𝑓(𝑡) and 𝐼(𝑡) = 𝐼𝑓(𝑡). Thus the 

largest invariant set for {(𝑆, 𝐼) ∈ 𝜓: 𝐷0
𝑐

𝑡
𝜌
𝐹1(𝑡) = 0} is the singleton set {𝐷𝑓}, where 

𝜓 = {(𝑆, 𝐼) ∈ 𝑅+
2 : 0 ≤ 𝑆 + 𝐼 ≤

𝜇

𝜆
, 𝑆, 𝐼 ≥ 0} and also all the solutions in 𝜓 converges 

to 𝐷𝑓 in accordance with the LaSalle’s invariance principle (Diekmann et al., 2010; 

La Salle, 1976; Shuai & Van Den Driessche, 2013; Van Den Driessche & Watmough, 

2002). So, 𝐷𝑓 is globally asymptotically stable for 𝑅0 ≤ 1. 

 

 

Theorem 5. The endemic equilibrium  𝐷𝑒=(𝑆∗, 𝐼∗) of model (3.3) is globally 

asymptotically stable for 𝑅0 >1. 

 

 

Proof.  Let a Lyapunov function be defined as 

 

𝐹2(𝑡) =  (𝑆(𝑡) − 𝑆
∗(𝑡) − 𝑆∗(𝑡)𝑙𝑛

𝑆∗(𝑡)

𝑆(𝑡)
) + (𝐼(𝑡) − 𝐼∗(𝑡) − 𝐼∗(𝑡)𝑙𝑛

𝐼∗(𝑡)

𝐼(𝑡)
) 

 

Differentiating 𝐹2(𝑡) along with the solution of system (3.3) 

 

𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) = 𝐷0

𝑐
𝑡
𝜌
 (𝑆(𝑡) − 𝑆∗(𝑡) − 𝑆∗(𝑡)𝑙𝑛

𝑆∗(𝑡)

𝑆(𝑡)
)

+ 𝐷0
𝑐

𝑡
𝜌
 (𝐼(𝑡) − 𝐼∗(𝑡) − 𝐼∗(𝑡)𝑙𝑛

𝐼∗(𝑡)

𝐼(𝑡)
) 

 

𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) =  (1 −

𝑆∗(𝑡)

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝑆(𝑡) + (1 −

𝐼∗(𝑡)

𝐼(𝑡)
) 𝐷0
𝑐

𝑡
𝜌
𝐼(𝑡) 

𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) =  (1 −

𝑆∗(𝑡)

𝑆(𝑡)
) (𝜇 − 𝜆 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
)

+ (1 −
𝐼∗(𝑡)

𝐼(𝑡)
) (
𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
− 𝑐 𝐼(𝑡) −

𝑎 𝐼(𝑡)

1 + 𝑏 (𝐼(𝑡))
2  ) 

 

Using the Endemic Conditions: 

 

𝜇 = 𝜆 𝑆∗(𝑡) −
𝛽 𝑆∗(𝑡)𝐼∗(𝑡)

1 + 𝛼𝐼∗(𝑡)
 

𝛽 𝑆∗(𝑡)𝐼∗(𝑡)

1 + 𝛼𝐼∗(𝑡)
= 𝑐 𝐼∗(𝑡) −

𝑎 𝐼∗(𝑡)

1 + 𝑏 (𝐼∗(𝑡))
2 
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𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) ≤ − (

(𝑆(𝑡) − 𝑆∗(𝑡))2

𝑆(𝑡)
)(𝜆 +

𝛽 𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
)

− (
(𝐼(𝑡) − 𝐼∗(𝑡))2

𝐼(𝑡)
)(
𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
− 𝑐 𝐼(𝑡) −

𝑎 𝐼(𝑡)

1 + 𝑏 (𝐼(𝑡))
2  ) 

 

Thus, 𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) ≤  0. Therefore, 𝐷0

𝑐
𝑡
𝜌
𝐹2(𝑡) ≤ 0. In addition, the largest invariant set 

for  {(𝑆, 𝐼) ∈ 𝜓: 𝐷0
𝑐

𝑡
𝜌
𝐹2(𝑡) = 0} is the singleton set {𝐷𝑒} and all the solutions in 𝜓 

converges to 𝐷𝑒 in accordance with the LaSalle’s invariance principle. Therefore, 

Endemic equilibrium 𝐷𝑒 is globally asymptotically stable for 𝑅0 >1. 

 

 

3.5 Numerical Simulations 

 

 

In this section, using MATLAB 2012(b) and the predictor-corrector 

method (Diethelm et al., 2002), numerical simulations are presented for different 

fractional orders to observe the dynamical behavior of susceptibles, infectives, and 

recovered population. 

 

 

The initial values of the subpopulations are S (0) = 85, R (0) = 0 and I (0) = 3. The set 

of tested values of parameters have been chosen from  (A. Kumar & Nilam, 2019). 

 

 

Table 3.1 Model parameters with their values 

 

S.No. Parameters Value 

1 𝛽 
0.004 per person- per 

day 

2 𝜆 0.05 per day 

3 𝜇 5 person- per day 

4 𝛼 
0.002 per person- per 

day 

5 𝑎 0.2 per day 

6 𝑏 
0.004 per person- per 

day 

7 𝜎 0.002 per day 

8 𝛿 0.001 per day 

 

 

 

Figures 3.1 and 3.2 depicts the effect of memory about the social media's 

influence on mental health of susceptibles and infectives respectively. In figure 3.1, 
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for 𝜌 = 1.0, after 50 days there is no change in number of susceptibles, it is because 

single search with no memory has less effect on mental health and therefore 

susceptibles decreases as memory decreases. 

 

 

From figure 3.2, it is inferred that as the fractional order 𝜌 decreases, i.e., 

memory about the disease increases in the society, number of infectives start reducing 

significantly. Incidence rate and treatment rate takes care of preventive measures to 

use social media and treatment of the people suffering from mental health problem 

majorly due to overuse of social media. 

 

 

Figure 3.3 and 3.4 shows that as the limitation on available resources 

increases for fractional order 𝜌 = 0.50 and 𝜌 = 1.0 respectively, the number of 

infectives also increases, because due to limited resources, the treatment will not be 

available to all infected individuals resulting in an increment in the population of 

infectives. The difference in the infected population is significantly large between b = 

0.002 and b = 0.004 in both the figures. It illustrates the situation of availability of 

ample resources for the infected population. 

 

 

Figures 3.5, 3.6 and 3.7 shows the effect of varying cure rates on infectives 

with various fractional orders 𝜌 = 0.60, 0.80 and 1.0 respectively. It has been noted 

that the number of infectives reduces remarkably on increasing the cure rates. Also, on 

comparing these figures it can be stated that as the memory about the disease in the 

society increases, number of infectives also starts decreases with time. 

 

 

Figures 3.8, 3.9 and 3.10 presents the effect of varying inhibition rate due 

to infection on infected people with 𝜌 = 1, 0.80 and 0.60 respectively. This has been 

observed that more the inhibitory procedures taken by infected individuals, lower will 

be the number of infective populations. Also, if fractional order decreases, then number 

of infectives starts decreasing. 

 

 

The phase portraits depict that all the trajectories beginning from different 

starting points are converging to its equilibrium point as shown in figures 3.11 and 

3.12 for fractional order 𝜌 = 0.90 and 𝜌 = 0.70 respectively. 

 

 

 



65 

 

 

 

Figure 3.1 Effect of memory on susceptibles 

 

Figure 3.2 Effect of memory on infectives 
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Figure 3.3 Effect of limitation in treatment availability 

on infectives for fractional order 𝜌 = 0.50 
 

 

Figure 3.4 Effect of limitation in treatment availability 

on infectives for fractional order 𝜌 = 1.0 
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Figure 3.5 Effect of varying cure rates on infectives for 

𝜌 = 0.60 
 

 
Figure 3.6 Effect of varying cure rates on infectives for 

𝜌 = 0.80 
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Figure 3.7 Effect of varying cure rates on infectives for 

𝜌 = 1 

 

 
Figure 3.8 Effect of varying inhibition rate due to 

infection on infectives for 𝜌 = 1 
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Figure 3.9 Effect of varying inhibition rate due to 

infection on infectives for 𝜌 = 0.80 
 

 
Figure 3.10 Effect of varying inhibition rate due to 

infection on infectives for 𝜌 = 0.60 
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Figure 3.11 Phase portrait of the system for fractional 

order 𝜌 = 0.90 
 

 
Figure 3.12 Phase portrait of the system for fractional 

order 𝜌 = 0.70 

 

 



71 

 

 

 

 

3.6  Conclusion 

 

 

A fractional order model has been presented and examined here aiming to 

include the effect of social media on mental health due to corona using Caputo-

fractional order derivative, by taking Holling type- II functional as incidence rate and 

Monod-Haldane functional as treatment rate. For the basic reproduction number 𝑅0 

less than one, the disease-free equilibrium point is locally asymptotically stable, but 

when 𝑅0 is more than one, it is unstable. The presence of a unique positive endemic- 

equilibrium is also established, and the stability of endemic equilibrium point is 

examined. When 𝑅0 is more than one and the condition specified in theorem-3 holds, 

the endemic-equilibrium point is found to be locally asymptotically stable. Also, for 

some conditions, the global stability behaviour of both disease-free equilibrium and 

endemic equilibrium is explored, and it is established that DFE is globally 

asymptotically stable for 𝑅0 ≤ 1 and EE is globally asymptotically stable if 𝑅0 > 1, 

as demonstrated in theorems 3.4 and 3.5. 

 

 

We can see through simulation that as the fractional order reduces or the 

memory rises, the population of susceptible increases because, in the case of having a 

memory from social media use, individuals explore and respond for it, resulting in an 

increase in the number of susceptible. On reducing the fractional order, number of 

infectives decreases. Also, number of infectives decreases by optimum and control use 

of social media in case of any situation like COVID-19 where the possibility of panic 

is very high. From this work we suggest that as the infected individuals take more 

precautions such as switching to traditional media use, reducing online time, practicing 

yoga, exercise and meditation, appropriate use of social media etc, number of 

infectives decreases. 
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CHAPTER 4 

CAPUTO FRACTIONAL DERIVATIVE MODEL FOR IMPACT 

OF AWARENESS ON INFECTIOUS DISEASE 

  
 

 

______________________________________________________________________ 

 

During times of crisis, mass-media coverage is amongst the most widely used 

government strategies to influence public opinion. The use of awareness campaigns 

during epidemics and pandemics is a very effective method of promoting healthy 

behavioral practices among individuals. An important tool in analyzing the effects of 

media awareness on infectious disease spread is mathematical modeling. This chapter 

examines an infectious disease non integer SIR-type mathematical model that considers 

the behavioural changes in people spurred on by the concurrent spread of public 

awareness. The behavior of a human population in response to an outbreak of disease can 

alter the spread of the disease. Therefore, a nonlinear, non-integer model has been 

formulated here by considering Caputo derivative, Holling type III treatment rate and 

Monod-Haldane incidence rate. Solutions with positive initial values are tested for 

nonnegativity and boundedness, indicating that the model is well-posed. To compute 

the basic reproduction number 𝑅0, the next generation matrix approach is used. A local 

stability analysis has been performed after determining the existence and stability of 

disease free and endemic equilibrium points using Routh Hurwitz's criteria. Based on 

Lyapunov-stability LaSalle's theorem, the global stability analysis of both the 

equilibrium points is examined by building appropriate Lyapunov functions. To 

demonstrate consistency with the theoretical analysis, numerical simulations have been 

conducted. It has been observed that the stability of the equilibrium points is not affected 

by the long-term memory. However, when the fractional derivative order parameter is 

increased each solution attains equilibrium more rapidly. Further, it has been discovered 

that increasing media awareness decreases the number of infected individuals and 

consequently reduces the peak of the epidemic. 

______________________________________________________________________ 
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4.1 Introduction 

 

 

An epidemic outbreak is typically spread by a transmissible infection, 

which can be spread from animal to human, animal to animal, or person to person, or 

direct contact with potentially infected environments (van Seventer & Hochberg, 

2016). Several large-scale epidemic outbreaks such as Ebola, SARS, Zika virus, and 

swine flu have affected the socioeconomic status of the population and inadequate 

healthcare access over the last two decades (Fauci & Morens, 2012). Information about 

these outbreaks is disseminated swiftly because of globalized travel and significant 

advancements in social media, which can have a considerable impact on the dynamics 

of the epidemic itself (Jones & Salathé, 2009; Pruyt et al., 2015). It is important for 

every individual to be aware about the identification of such diseases and the 

preventive measures to be followed. Awareness is the understanding of an issue or 

problem, recognizing that it exists and knowing what actions are necessary in response. 

The more aware we are about the dynamics of a disease, the better equipped we are to 

prevent it from spreading up to certain extent. It is important for people to be aware of 

their surroundings and recognize when someone might have an illness that could 

potentially be contagious. It is indeed interesting to note that raising awareness can 

impact the dynamics of disease propagation in extremely intricate and perhaps 

surprising ways. The awareness about infectious diseases can be carried out in many 

ways like by public education campaigns, media coverage, social media posts etc. 

Traditional models of infectious illnesses consider the interactions between 

susceptibles and infectives. The transmission of infectious diseases is nevertheless also 

influenced by other factors, like media exposure, immunization, people’s mobility, 

awareness programs, etc. In particular, the awareness programs have a significant 

impact on how people respond to diseases and how the government intervenes in 

wellness programs to stop the spread of such diseases. By educating the public about 

the disease and the steps that may be taken to lessen their risk of getting infected with 

it, such as wearing protective masks, getting vaccinated etc, the awareness programs 

have been essential in the spread of the disease. Consequently, the impact of the 

awareness programs must be considered during the modelling process in order to 

anticipate the effects of infectious disease. The disease transmission may be minimized    

by a variety of disease control techniques, such as the use of face masks, sanitizers, or 

other equipment designed to prevent the spread of a particular disease along with 

immunizations and even quarantine have a significantly positive impact. 

 

 

In the presence of awareness, behavioral changes in the population become 

more complicated, and this behavior have influences on disease dynamics. To examine 

how knowledge and awareness affect epidemic spread, several mathematical models 

have been proposed (Al-Dmour et al., 2020; Funk et al., 2009; Goel et al., 2020; A. 

Kumar et al., 2019; Manzoni et al., 2021; Misra et al., 2011; Naik, 2020). A statistical 

analysis of AIDS awareness campaigns reveals that raising public awareness can 

significantly contribute to reducing the AIDS epidemic (Misra et al., 2011). There have 

been some compartmental models created with the presumption that the media will 

decrease the possibility of interaction between susceptibles with infectives (J. Cui et 
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al., 2008; J. A. Cui et al., 2008; Y. Liu & Cui, 2012). Recently, however, many 

researchers have applied fractional extensions to mathematical models to study the 

dynamics of epidemics (Akdim et al., 2022; Mandal et al., 2020; Naik, 2020; Rostamy 

& Mottaghi, 2016) because biological systems involve dynamical processes with 

memory effects, which can be captured properly by fractional-order differential 

equations. A decline in infections or diseases may be observed during epidemics 

because of population experiences and memory effects, which can't be modeled by 

natural derivatives alone. Because of this, fractional models are more accurate than 

models based on ordinary differential equations. Numerous fractional SIR-type models 

involving the Caputo fractional derivative have been developed and studied in recent 

years (Naik, 2020; Swati & Nilam, 2022). In their study, the authors found that 

memory effects influence the dynamics of epidemics, which is governed by the order 

of fractional derivatives. Recent research has explored the dynamics of the COVID-19 

pandemic using fractional-order mathematical models (Boudaoui et al. 2021; Kozioł, 

Stanisławski, and Bialic 2020; Yadav et al. 2021). To slow down the spread of an 

epidemic, public health departments have used awareness campaigns as their most 

reliable non-pharmaceutical method. The media has shown a significant amount of 

interest in the present COVID-19 pandemic problem as a way of health education 

through the spread of awareness programmes and preventive actions. Health 

awareness programmes have had a significant impact on how individuals behave, 

which has helped to reduce the severity of the infection (Musa et al. 2021). 

 

 

In this chapter, we focus on the question of how much awareness through 

various media and information campaigns is enough to control the disease significantly 

from the society using a non-integer model with Caputo derivative, Monod-Haldane 

incidence rate and Holling type III treatment rate. Choosing Monod-Haldane incidence 

rate is a rational choice as it takes into consideration psychological effects of 

behavioral changes in susceptible individuals, whereas Holling type III treatment rate 

is based on a known disease that has resurfaced and has treatment options available. 

As infectives increase, removal rates initially grow very fast, slowly grow till they 

finally settle down to maximum saturated levels. The Caputo derivative is a 

generalization of the Taylor series, and it is used to model various phenomena in 

physics, engineering, and economics which has been found to be more accurate than 

other types of derivatives. This is because it does not have any singularity points and 

has memory property, which makes it easier for it to accurately simulate the spread of 

an epidemic. 

 

 

Awareness Strategy 

 

 

In this work, to introduce the concept of awareness for reducing the infected 

population, we have considered the fractional order  𝜎 as 𝜎 =1- u, where u is the 

percentage awareness in the entire population. Also, we have supposed that u less than 

20% means there is hardly any awareness in the society and u greater than 80% means 



76 

 

 

that almost population has awareness about the disease. Higher the value of u, more the 

memory of the past things and people will be more alert for the upcoming incidents. 

 

 

4.2 Formulation of Fractional order Mathematical Model 

 

 

The first step in modeling an epidemic with a fractional-order differential 

equation (FODE) is to create a differential equation that represents the population in 

each state. The most important equation in the fractional order model is the 

Susceptible-Infective-Recovered (SIR) equation, which describes how an infection 

spreads through a population. Population 𝑁(𝑡) can be divided into three types - 

susceptible 𝑆(𝑡), infectious 𝐼(𝑡)and recovered 𝑅(𝑡). Our assumption is that recovered 

individuals cannot become infected again, nor can they infect the susceptible 

population again. The Caputo derivative is described in definition 1in Appendix. This 

assumption led to a Caputo-fractional order SIR model expressed as the following non-

linear differential equations: 

 

𝐷𝑡
𝜎

0
𝑐  𝑆(𝑡) = 𝜃 − 𝜑 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2

𝐷  𝐼(𝑡)𝑡
𝜎

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2

𝐷  𝑅(𝑡)𝑡
𝜎

0
𝑐  =

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2 − 𝜑𝑅(𝑡) + 𝛼𝐼(𝑡) }

 
 

 
 

                                        (4.1) 

 

with non-negative initial conditions: 𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0 and 𝑅(0) = 𝑅0 ≥
0, where the different model parameters are defined below:  

 

Table 4.1 The parameters and their Illustrations 

 

The 

Parameter 
Illustration Unit 

𝛽 
Transmission coefficient between susceptibles 

S and infected persons I 

 per person - per day 

𝜑  
The rate of natural mortality for each class of 

people 

per day 

𝜃 Immigrant’s constant recruitment rate  person - per day 

𝛿 
Death rate from infection among infected 

individuals 

 per day 

𝛼 Infection recovery rate per day 

𝛾 Inhibition by infected individuals per person - per day 
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𝜇 Disease cure rate per day 

𝜌  
The rate at which access to treatment is 

limited 

per person - per day 

 

4.3 Basic Properties of the Model 

 

 

Let ℝ+
3 : = {𝑋 𝜖 ℝ3: 𝑋 ≥ 0 } and 𝑋(𝑡) =  (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))

𝑇
 on non-negative 

solutions, the lemmas needed to prove the theorem are mentioned in Appendix.  

 

  

Theorem 4.1. For the fractional differential equation represented by system (4.2) for 

𝑡 ≥ 0, there is only one non-negative solution that exists, and that solution will remain 

in the region  𝑀 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅+
3 : 0 < 𝑆 + 𝐼 + 𝑅 ≤ �̅� , �̅�  ≥ 𝐶𝐸

𝜇

𝜆
} for 𝑡 ≥ 0. 

 

 

Proof. We first verify that all the model (4.1) solutions under its initial conditions are 

positive. Considering 𝑆(0) > 0 for 𝑡 = 0. For all  𝑡 ≥ 0 we demonstrate that 𝑆(𝑡) ≥
0 . This will be established by contradiction, let 𝑆(𝑡) ≤ 0 for each 𝑡 ≥ 0. 

Consequently, there is a 𝜗1 > 0 such that 𝑆(𝑡) > 0 for that 0 ≤ 𝑡 < 𝜗1 , 𝑆(𝑡) = 0 at 

𝑡 =  𝜗1, and 𝑆(𝑡) < 0 for 𝜗1 < 𝑡 < 𝜗1 + 𝜀1 with sufficiently small 𝜀1 > 0. Taking the 

model's (4.1) first, We achieve 𝐷𝜌 𝑆(𝑡)|𝑡=𝜗1 = 𝜇0
𝑐 > 0. From Lemma 2, for any 0 <

𝜀1 ≪ 1, we have 𝑆(𝜗1 + 𝜀1) = 𝑆(𝜗1) +
1

𝛤(𝛼)
𝐷𝜌𝑆(𝜉) (𝜀1)

𝜌. Thus, we get 𝑆(𝜗1 +

𝜀1) ≥ 0, which is in contradiction to the fact that 𝑆(𝑡) < 0 for 𝜗1 < 𝑡 < 𝜗1 + 𝜀1. As a 

result, we obtain 𝑆(𝑡) ≥ 0 for all  𝑡 ≥ 0. 

 

 

Thereafter, we demonstrate that 𝐼(𝑡) ≥ 0 for every 𝑡 ≥ 0. We accomplish it once 

more through contradiction. Assuming, 𝐼(𝑡) ≥ 0 is not true, then there exists a 𝜗2 > 0 

such that 𝐼(𝑡) > 0 for that 0 ≤ 𝑡 < 𝜗2 , 𝐼(𝑡) = 0 at 𝑡 =  𝜗2, and 𝐼(𝑡) < 0 for 𝜗2 <
𝑡 < 𝜗2 + 𝜀2 with sufficiently small 𝜀2 > 0. Then we obtain 

 

 

𝐷𝜌 𝐼(𝑡)|𝑡=𝜗2 = 00
𝑐 . 

 

 

From Lemma 2, for any 0 < 𝜀2 ≪ 1, we have 𝐼(𝜗2 + 𝜀2) = 𝐼(𝜗2) +
1

𝛤(𝛼)
𝐷𝜌𝐼(𝜉) (𝜀2)

𝜌. Thus, we get 𝐼(𝜗2 + 𝜀2) ≥ 0, which is in contradiction to the fact 

that 𝐼(𝑡) < 0 for 𝜗2 < 𝑡 < 𝜗2 + 𝜀2. Hence, we have 𝐼(𝑡) ≥ 0 for all  𝑡 ≥ 0. In a 

similar manner, we can demonstrate that 𝑅(𝑡) ≥ 0  for any 𝑡 ≥ 0. 
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As a result, it can be said that all of model (4.1)'s solutions under the initial conditions 

are positive. We now demonstrate the solutions' boundness. When all the model's (4.1) 

equations are added together, we get: 

 

 

𝐷𝑡
𝜌
𝑁 = 𝜃 − 𝜑 𝑁 − 𝛿𝐼 

 

Where 

 

𝑁 = 𝑆 + 𝐼 + 𝑅.  

 

As  𝐼(𝑡) ≥ 0, we have 

 

 

𝐷𝑡
𝜌
𝑁 ≤  𝜃 − 𝜑 𝑁 

 

 

Now consider the initial value problem 

 

𝐷𝑡
𝜌
�̅� =  𝜃 − 𝜑 𝑁, �̅�(0) = �̅�0. 

 

Using comparison principle (Lu and Zhu 2018), we obtain the following inequality: 

 

𝑁(𝑡) ≤ �̅�(𝑡) for all 𝑡 ≥ 0. 

 

 Implementing the Laplace transform to the initial value problem, we now get the 

following: 

𝑠𝜌𝐿[�̅�(𝑡)] − 𝑠𝜌−1�̅�0 =
𝜃𝜌

𝑠
− 𝜑𝐿[�̅�(𝑡)] 

 

⇒ 𝐿[�̅�(𝑡)] =
𝑠𝜌−1�̅�0
𝑠𝜌 + 𝜑

+
𝜃𝜌𝑠−1

𝑠𝜌 + 𝜑
 

 

Using Lemma 3, we obtain 

𝐿[𝐸𝜌,1(−𝜑𝑡
𝜌)] =

𝑠𝜌−1

𝑠𝜌 + 𝜑
 

𝐿[𝑡𝜌𝐸𝜌,𝜌+1(−𝜑𝑡
𝜌)] =

𝑠−1

𝑠𝜌 + 𝜑
 

 

 

When we use the inverse Laplace transform on the two equations above, we get 

 

 �̅�(𝑡) = �̅�0𝐸𝜌,1(−𝜑𝑡
𝜌) +  𝜃𝑡𝜌𝐸𝜌,𝜌+1(−𝜑𝑡

𝜌) 

 

using  𝐷𝑡
𝜌
𝑁 ≤  𝜃 − 𝜑𝑁 we have  
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𝑁(𝑡) ≤ 𝑁0𝐸𝜌,1(−𝜑𝑡
𝜌) +  𝜃𝑡𝜌𝐸𝜌,𝜌+1(−𝜑𝑡

𝜌) 

 

By Lemma 4, we obtain 

 

|𝑁(𝑡)| ≤
𝑁0𝐶𝐸
1 + 𝜑𝑡𝜌

+
𝜃𝑡𝜌𝐶𝐸
1 + 𝜑𝑡𝜌

 

 

Where 𝐶𝐸 is constant given in Lemma 4. Hence, as 𝑡 → ∞, we have 𝑁(𝑡) ≤ �̅� with 

�̅� ≥ 𝐶𝐸
𝜃

𝜑
. The solutions are therefore bounded and will remain in domain M for 𝑡 ≥

0.. As a result, Theorem 4.1 is established, and ℝ+
3  still holds the solutions.    

                      

                                                                                                                     

4.4 Mathematical analysis of the model 

 

 

This section begins by identifying disease-free equilibrium and endemic 

equilibrium, and then observes stability results for both equilibrium types. A next-

generation matrix is then used to determine the Basic Reproduction number, which 

involves persistence and eradication of the disease. Lastly, we discussed the existence 

and stability of equilibrium points as well as their local stability. 

 

 

4.4.1 Equilibria and their stability 

 

 

In the non-linear model above, the first two equations are independent of 

the third equation, therefore stability is only determined by the first two. The model is 

therefore reduced to: 

 

𝐷𝑡
𝜎

0
𝑐  𝑆(𝑡) = 𝜃 − 𝜑 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2

𝐷  𝐼(𝑡)𝑡
𝜎

0
𝑐 =

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2

}                                         (4.2) 

 

To find the equilibrium points, set the right side of the system (4.2) to zero, we get 

  

𝜃 − 𝜑 𝑆(𝑡) −
𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 = 0

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2 = 0

}                                                     (4.3) 

 

As a result of solving the above system, we obtain the two equilibrium 

points, disease free equilibrium point (DFE) and endemic equilibrium point (EEP), 

which are specified as follows:  
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(i) DFE: 𝐵0 = (𝑆0, 𝐼0) = (
𝜃

𝜑
, 0).  There is no illness in the environment, and 

all people are only susceptible. 

 

(ii)  EEP: 𝐵∗ = (𝑆∗, 𝐼∗). A description of this can be found in the following 

sections. 

 

Now, to obtain the behaviour of stability of these two equilibria, basic reproduction 

number 𝑅0 is required to be computed (Van Den Driessche and Watmough 2002). 

 

 

4.4.2 Determination of Basic Reproduction Number 

 

 

Next generation matrix method calculates the basic reproduction number 

as follows: 

 

𝐷𝑡
𝛼𝑥 = 𝑅(𝑥) − 𝑆(𝑥) 

 

Where 𝑥 = (𝑆, 𝐼)𝑇, matrix 𝑅(𝑥)  represents the matrix of new infections coming in, 

while matrix 𝑆(𝑥)  represents the transfer of individuals leaving and entering 

compartments. A Jacobian matrix of 𝑅(𝑥) and 𝑆(𝑥) is evaluated at disease free 

equilibrium point and is expressed as follows: 

 

𝑅 = (
𝛽𝜃

𝜑
0

0 0

) 

 

𝑆 = (

𝜑 + 𝛿 + 𝛼 0
𝛽𝜃

𝜑
𝜑
) 

 

Now we need to compute the inverse of 𝑅 and then 𝑅𝑆−1 given by 

 

𝑅𝑆−1 = (
𝛽𝜃

𝜑(𝜑 + 𝛿 + 𝛼)
0

0 0

) 

 

This matrix 𝑅𝑆−1 is known as next generation matrix and the spectral radius of this 

matrix is the basic reproduction number  𝑅0  for our model is  

 

 𝑅0 =  𝜌(𝑅𝑆
−1) =

𝛽𝜃

𝜑(𝜑 + 𝛿 + 𝛼)
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4.4.3 Analysis of local stability behavior 

 

 

A study of local stability behavior of both DFE and EEP is presented in 

this section. 

 

 

4.4.3.1 Local stability analysis of DFE ( 𝑩𝟎) 

 

 

We are now interested in finding out if the disease-free equilibrium point.  

Is stable locally (DFE  𝐵0). We claim the following theorem for this: 

 

 

Theorem 4.2  𝐵0 = (𝑆0, 𝐼0) = (
𝜃

𝜑
, 0), the disease- free equilibrium of model (4.2) is 

locally asymptotically stable when the Basic Reproduction number 𝑅0 < 1 and unstable 

otherwise. 

 

 

Proof. By linearizing the system around the disease-free equilibrium point DFE ( 𝐵0) 

of the non-linear system (4.3), we can calculate its local stability behavior. We have 

thus obtained the linearized matrix of the system shown below 

 

   

                         𝐽0 = (
−𝜑 −

𝛽𝜃

𝜑

0 (𝑅0 − 1)(𝜑 + 𝛿 + 𝛼)
)                                              (4.4)                                                             

 

 

Therefore, we have seen that one eigenvalue is negative i.e., −𝜑 , at disease-free 

equilibrium  𝐵0 and the other eigen value is (𝑅0 − 1)(𝜑 + 𝛿 + 𝛼) is negative if 𝑅0 <
1. Therefore, by the Routh-Hurwitz stability conditions for fractional order systems 

(Matignon 1996) describes that the necessary and sufficient condition 

|arg(𝑒𝑖𝑔(𝐽0))| >  𝜎
𝜋

2
 for various fractional order models. The eigenvalues of both 

equations meet the above condition. Hence, as long as 𝑅0 is less than one, the disease-

free equilibrium in the system (4.1) is locally asymptotically stable. 

 

 

4.4.3.2 EEP (𝑩∗) existence and study of local equilibrium 

 

 

This section discusses the conditions for endemic equilibrium 𝐵∗ =
(𝑆∗, 𝐼∗) to form and the local stability behavior of the equilibrium. 
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𝜃 − 𝜑 𝑆∗(𝑡) −
𝛽 𝑆∗(𝑡)𝐼∗(𝑡)

1+𝛾(𝐼∗(𝑡))
2 = 0

𝛽 𝑆∗(𝑡)𝐼∗(𝑡)

1+𝛾(𝐼∗(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼

∗(𝑡) −
𝜇 (𝐼∗(𝑡))

2

1+𝜌 (𝐼∗(𝑡))
2 = 0

}                                                 (4.5) 

 

After solving the equations (4.5) we obtain: 

𝑆∗   =
((𝜑 + 𝛼 + 𝛿) (1 + 𝜌(𝐼∗(𝑡))

2
) + 𝜇𝐼∗(𝑡)) (1 + 𝛾(𝐼∗(𝑡))

2
)

𝛽 (1 + 𝜌(𝐼∗(𝑡))
2
)

 

 

and 𝐼∗ is the root of the following equation:  

 

𝑎5 + 𝑎4𝐼
∗(𝑡) + 𝑎3(𝐼

∗(𝑡))
2
+ 𝑎2(𝐼

∗(𝑡))
3
+ 𝑎1(𝐼

∗(𝑡))
4
= 0                                 (4.6) 

                                                                                                                                                                      

where the coefficients 𝑎5, 𝑎4 , 𝑎3,  𝑎2 and 𝑎1 are given by  

 

𝑎5 =  𝜃𝛽 − 𝜑(𝜑 + 𝛼 + 𝛿) = (𝑅0 − 1)𝜑(𝜑 + 𝛼 + 𝛿)

𝑎4 = −𝛽(𝜑 + 𝛼 + 𝛿) −  𝜑𝜇

𝑎3 = 𝜃𝛽𝜌 −  𝜇𝛽 − 𝜑𝜌(𝜑 + 𝛼 + 𝛿) − 𝜑𝛾(𝜑 + 𝛼 + 𝛿)

𝑎2 = −𝜇𝜑𝛾 − 𝛽𝜌(𝜑 + 𝛼 + 𝛿)

𝑎1 = −𝜑𝜌𝛾(𝜑 + 𝛼 + 𝛿) }
 
 

 
 

                                          (4.7) 

  

                                                             

Theorem 4.3. For 𝑅0 >1 and under the condition that 𝜃𝜌 < 𝜇   there exist a unique 

endemic equilibrium 𝐵∗ = (𝑆∗, 𝐼∗) of model (4.2).  

 

 

Proof.  Let 𝑅0 >1, In equation (4.7), we have a fourth-degree polynomial given 

as 𝐻(𝐼∗(𝑡)) = 𝑎5 + 𝑎4𝐼
∗(𝑡) + 𝑎3(𝐼

∗(𝑡))
2
+ 𝑎2(𝐼

∗(𝑡))
3
+ 𝑎1(𝐼

∗(𝑡))
4
. It is noted 

that 𝑎1, the leading coefficient of (𝐼∗(𝑡))
4
, is negative.Therefore 𝐿𝑖𝑚

𝐼∗→∞
𝐻(𝐼∗) = −∞ , 

also 𝐻(0) = 𝑎5 and  𝑎5 > 0 for  𝑅0 >1, 𝐻(𝐼∗)  is   a continuous function of  𝐼∗. 
 

Thus, the fundamental theorem of algebra implies that there exists a unique 

endemic equilibrium point under the condition that  𝑅0 >1 and for 𝜃𝜌 < 𝜇. Thus, there 

exist a unique  𝐼∗(𝑡), from which we can find the value of 𝑆∗(𝑡). So, unique endemic 

equilibrium 𝐵∗ = (𝑆∗, 𝐼∗) has been demonstrated for 𝑅0 >1. Here, we examine local 

stability of endemic equilibrium 𝐵∗ = (𝑆∗, 𝐼∗). As shown below, by linearizing the 

model (4.3) around equilibrium, we obtain the Jacobian matrix. 
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𝐽∗

= 

(

 
 
 
 −𝜑 −

𝛽𝐼∗(𝑡)

1 + 𝛾(𝐼∗(𝑡))
2 −

𝛽𝑆∗(𝑡) (1 − 𝛾(𝐼∗(𝑡))
2
)

(1 + 𝛾(𝐼∗(𝑡))
2
)
2

𝛽𝐼∗(𝑡)

1 + 𝛾(𝐼∗(𝑡))
2

𝛽𝑆∗(𝑡) (1 − 𝛾(𝐼∗(𝑡))
2
)

(1 + 𝛾(𝐼∗(𝑡))
2
)
2 − (𝜑 + 𝛼 + 𝛿) −

2𝜇𝐼∗(𝑡)

(1 + 𝜌(𝐼∗(𝑡))
2
)
2

)

 
 
 
 

 

 

The characteristic equation of 𝐽∗  is given by 

 

                                          𝑙2 + 𝜏1𝑙 + 𝜏2 = 0                                                         (4.8) 

 

Where 

𝜏1 =  𝜑 +
𝛽𝐼∗(𝑡)

1 + 𝛾(𝐼∗(𝑡))
2 −

𝛽𝑆∗(𝑡) (1 − 𝛾(𝐼∗(𝑡))
2
)

(1 + 𝛾(𝐼∗(𝑡))
2
)
2 + (𝜑 + 𝛼 + 𝛿)

+
2𝜇𝐼∗(𝑡)

(1 + 𝜌(𝐼∗(𝑡))
2
)
2 

 

𝜏2 = 𝜑 +
𝛽𝐼∗(𝑡)

1 + 𝛾(𝐼∗(𝑡))
2

(

 (𝜑 + 𝛼 + 𝛿) +
2𝜇𝐼∗(𝑡)

(1 + 𝜌(𝐼∗(𝑡))
2
)
2

)

 

−
𝜑𝛽𝑆∗(𝑡) (1 − 𝛾(𝐼∗(𝑡))

2
)

(1 + 𝛾(𝐼∗(𝑡))
2
)
2  

 

Eigen values with negative real parts are readily apparent if and only 𝜏1 > 0 and 𝜏2 >

0. Also, 𝜏1 > 0 and 𝜏2 > 0 if (𝜑 + 𝛼 + 𝛿) +
2𝜇𝐼∗(𝑡)

(1+𝜌(𝐼∗(𝑡))
2
)
2 >

𝛽𝑆∗(𝑡)(1−𝛾(𝐼∗(𝑡))
2
)

(1+𝛾(𝐼∗(𝑡))
2
)
2 . Hence, 

by fractional Routh-Hurwitz criteria (Matignon and Matignon 1996; Otto and Day 

2019) both the roots of equation (4.8) have negative real parts and satisfy the condition 

| 𝑎𝑟𝑔(𝑙𝑖)|>𝛼
𝜋

2
 , 𝑖 = 1,2. This proves the following theorem.       

 

                                                            

Theorem 4.4 𝐵∗ = (𝑆∗, 𝐼∗), the endemic equilibrium of model (4.2) is locally 

asymptotically stable when the Basic Reproduction number 𝑅0 > 1 and unstable 

otherwise. 
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4.4.4 Global Stability Analysis of Disease free equilibrium (𝑩𝟎) and Endemic 

equilibrium point (𝑩∗) 

 

 

We now concern about the global stability of the DFE and EE. To support 

our assertion, we provide the following theorem: 

 

 

Theorem 4.5 The model’s (4.2) disease- free equilibrium  𝐵0 = (𝑆0, 𝐼0) is globally 

asymptotically stable when  𝑅0 < 1 and unstable if 𝑅0 > 1.   

 

 

Proof.  To prove this, we define a Lyapunov function by 

 

ℋ1(𝑡) ∶  ℝ+
2 ⟶ℝ+

2   given by  

 

ℋ1(𝑡) = (𝑆(𝑡) − 𝑆0 − 𝑆0𝑙𝑛
𝑆(𝑡)

𝑆0
) + 𝐼(𝑡)  

 

This function is defined, continuous and positive definite for all 𝑡 ≥ 0. It can be 

verified that the equality holds if and only if  𝑆(𝑡) = 𝑆0 and 𝐼(𝑡) =  𝐼0. Now we have  

 

𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) = 𝐷0

𝑐
𝑡
𝜎 ( (𝑆(𝑡) − 𝑆0 − 𝑆0𝑙𝑛

𝑆(𝑡)

𝑆0
) + 𝐼(𝑡))   

 

𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) = 𝐷0

𝑐
𝑡
𝜎  (𝑆(𝑡) − 𝑆0 − 𝑆0𝑙𝑛

𝑆(𝑡)

𝑆0
) + 𝐷0

𝑐
𝑡
𝜎𝐼(𝑡)  

 

Now using Lemma 4.8 (Mandal et al. 2020), we have 

 

𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) ≤ (1 −

𝑆0

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜎𝑆(𝑡) + 𝐷0

𝑐
𝑡
𝜎𝐼(𝑡)  

 

𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) ≤ (1 −

𝑆0

𝑆(𝑡)
) (𝜃 − 𝜑 𝑆(𝑡) −

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2) + (

𝛽 𝑆(𝑡)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2)  

 

Using the value of  𝑅0 𝑎𝑛𝑑  𝑆
0 = 

𝜃

𝜑
 in above equation, we have 

 

𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) ≤ −

𝜑(𝑆(𝑡)−𝑆0)
2

𝑆(𝑡)
+ (

𝑅0(𝜑+𝛼+𝛿)𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2 ) − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1+𝜌 (𝐼(𝑡))
2  

 

 

This concludes that if 𝑅0 < 1, then we have 𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) ≤ 0.Furthermore, we know 

that 𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) = 0 , if and only if 𝑆(𝑡) = 𝑆0 and 𝐼(𝑡) = 𝐼0. Thus the largest invariant 

set for {(𝑆, 𝐼) ∈ 𝛸: 𝐷0
𝑐

𝑡
𝜎ℋ1(𝑡) = 0} is the singleton set { 𝐵0}, where 𝛸 =



85 

 

 

{(𝑆, 𝐼) ∈ ℝ+
2 : 0 ≤ 𝑆 + 𝐼 ≤

𝜃

𝜑
, 𝑆, 𝐼 ≥ 0} and also all the solutions in 𝛸 converges to  𝐵0 

in accordance with the LaSalle’s invariance principle (Diekmann, Heesterbeek, and 

Roberts 2010; Van Den Driessche and Watmough 2002; Shuai and Van Den Driessche 

2013). So,  𝐵0 is globally asymptotically stable when 𝑅0 ≤ 1. Hence theorem 4.5 is 

verified.                         

                                         

 

Theorem 4.6. The endemic equilibrium  𝐵∗ = (𝑆∗, 𝐼∗) of model (4.2) is globally 

asymptotically stable when 𝑅0 >1. 

 

 

Proof. We define a Lyapunov function by  

 

ℋ2(𝑡) ∶  ℝ+
2 ⟶ℝ+

2   given by   

 

𝐿2(𝑡) = (𝑆(𝑡) − 𝑆
∗ − 𝑆∗𝑙𝑛

𝑆(𝑡)

𝑆∗
) + (𝐼(𝑡) − 𝐼∗ − 𝐼∗𝑙𝑛

𝐼(𝑡)

𝐼∗
)  

 

This function is defined, continuous and positive definite for all 𝑡 ≥ 0. It can be 

verified that the equality holds if and only if  𝑆(𝑡) = 𝑆0 and  𝐼(𝑡) =  𝐼0 

Now we have  

 

𝐷0
𝑐

𝑡
𝜎ℋ2(𝑡) = 𝐷0

𝑐
𝑡
𝜎  (𝑆(𝑡) − 𝑆∗ − 𝑆∗𝑙𝑛

𝑆(𝑡)

𝑆∗
) + 𝐷0

𝑐
𝑡
𝜌
(𝐼(𝑡) − 𝐼∗ − 𝐼∗𝑙𝑛

𝐼(𝑡)

𝐼∗
)  

 

Again, using Lemma 4.8 (Mandal et al. 2020) we have 

 

𝐷0
𝑐

𝑡
𝜎ℋ2(𝑡) ≤ (1 −

𝑆∗

𝑆(𝑡)
) 𝐷0
𝑐

𝑡
𝜎𝑆(𝑡) + (1 −

𝐼∗

𝐼(𝑡)
) 𝐷0
𝑐

𝑡
𝜎𝐼(𝑡)  

 

𝐷0
𝑐

𝑡
𝜎ℋ2(𝑡) ≤  (1 −

𝑆∗

𝑆(𝑡)
) [𝜃 − 𝜑 𝑆(𝑡)

−
𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛾(𝐼(𝑡))
2]                                                                  

+  (1 −
𝐼∗

𝐼(𝑡)
) [

𝛽 𝑆(𝑡)𝐼(𝑡)

1 + 𝛾(𝐼(𝑡))
2 − (𝜑 + 𝛼 + 𝛿)𝐼(𝑡) −

𝜇 (𝐼(𝑡))
2

1 + 𝜌 (𝐼(𝑡))
2] 

 

Using the endemic conditions, 

 

𝜃 = 𝜑 𝑆∗(𝑡) +
𝛽 𝑆∗(𝑡) 𝐼∗(𝑡)

1+𝛾(𝐼∗(𝑡))
2  

 

𝛽 𝑆∗(𝑡) 𝐼∗(𝑡)

1+𝛾( 𝐼∗(𝑡)))2
= (𝜑 + 𝛼 + 𝛿) 𝐼∗(𝑡) +

𝜇 ( 𝐼∗(𝑡))
2

1+𝜌 ( 𝐼∗(𝑡))
2  
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𝐷0
𝑐

𝑡
𝜌
ℋ2(𝑡) ≤  −

(𝑆(𝑡)−𝑆∗)2

𝑆(𝑡)
[𝜑 +

𝛽  𝐼(𝑡)

1+𝛾(𝐼(𝑡))
2] –

(𝐼(𝑡)−𝐼∗)2

𝐼(𝑡)
 [(𝜑 + 𝛼 + 𝛿) +

𝜇 𝐼(𝑡)

1+𝜌 ( 𝐼∗(𝑡))
2]  

 

This implies, 

 

𝐷0
𝑐

𝑡
𝜌
ℋ2(𝑡) ≤ 0 for all 𝑡 ≥ 0. 

 

Therefore ℋ2(𝑡) is bounded and non-increasing. Further, the limit of ℋ2(𝑡) exist as 

𝑡 → ∞. In addition, we know that 𝐷0
𝑐

𝑡
𝜌
ℋ2(𝑡)|6 = 0, if and only if 𝑆(𝑡) = 𝑆∗ and 

𝐼(𝑡) = 𝐼∗. Therefore, the maximum invariant set for {(𝑆, 𝐼) ∈ 𝛸: 𝐷0
𝑐

𝑡
𝜎ℋ2(𝑡)|6 = 0} is 

the singleton set { 𝐵∗}. According to the with the LaSalle’s invariance principle, we 

know that all solutions in 𝛸 converge to  𝐵∗, Therefore, the endemic equilibrium of 

model (4.5) is globally asymptotically stable when 𝑅0 >1. Hence the theorem 4.6.     

                                                       

 

4.5 Numerical Simulation 

 

 

In this section, using MATLAB 2012(b) and the predictor-corrector 

method (Diethelm et al. 2002), numerical simulations are presented for different 

fractional orders to observe the dynamical behavior of susceptible, infectives, and 

recovered population. The initial values of the subpopulations are S (0) = 100, I (0) = 

5 and R (0) = 0 and from the literature (Kumar and Nilam 2019), we chose the 

following set of tested parameter values given in Table 4.2. 

 

Table 4.2 Model parameters with their values 

 

S.No. Parameters Value 

1 𝛽 0.05 per person- per day 

2 𝜑 0.05 per day 

3 𝜇 0.02 person-per day 

4 𝛼 0.002 per person-per day 

5 𝜃 12 persons per day 

6 𝛿 0.01 per person- per day 

7 𝛾 0.001 per person-per day 

8 𝜌 0.002 per person-per day 

 

 

Figures 4.1, 4.2 and 4.3 depicts the effect of varying awareness about the 

disease among the infected population and from the graphs it is inferred that as the 

awareness about the disease increases in the society, number of infectives start 

reducing significantly. Similar effect can be seen for susceptible population that if we 

increase the awareness about consequences of using social media then, number of 

susceptible populations starts increasing as shown in figures 4.4, 4.5 and 4.6. Figure 

4.7 illustrates the considerable decrease in percentage of infected population for 

different values of u, u = 25%, 50%, 75%. For u = 25% in 38.59 days there is a decrease 



87 

 

 

of 34% in infected population after that infection starts increasing specifying that there 

will be no use of spreading awareness after 38.59 days. In the same way for u = 50%, 

due to the awareness programs there is a decrement of 52% in 59.9 days and for u = 

75%, 57.85% in 84 days. It is clear from the graph that as the awareness about the 

mental illness caused due to social media increases, infected population starts 

declining.  

 

 

Figure 4.8 shows the increase in percentage in susceptible population with 

increasing values of u, u = 25%, u = 50% and u = 75%. For u = 25%, the susceptible 

population increases till 38 days to 39% after that it starts decreasing, which means 

that there will be no of use awareness programs after 38 days. Similarly for u = 50% 

and u= 75%, infected population increases to 58.18% and 64.42% in 51 days and 57 

days respectively and then starts declining indicating that organizing awareness 

programs will no longer be helpful after that. This means that as the awareness 

percentage increases in the society there will be more susceptibles and less infectives. 

Figures 4.9, 4.10 and 4.11 shows the effect of varying treatment rates on infectives 

with u = 40%, 20% and 0% respectively. It is observed that as the treatment rate 

increases the number of infectives decreases. Also, on comparing these figures, it can 

be stated that as the awareness in the society increases, number of infectives also starts 

decreases with time. Figures 4.12, 4.13 and 4.14 presents the effect of varying 

inhibition rate due to infection on infectives with awareness percentage u = 0, 20% and 

30% respectively. It is observed that more the preventive measures taken by infectives, 

lower will be the number of infectives. Also, along with the preventive measures if we 

increase the awareness then also number of infectives starts decreasing.  

 

 

Figures 4.15, 4.16 and 4.17 shows the effect of varying inhibition rate due 

to infection on susceptibles with awareness percentage u = 0, 20% and 40% 

respectively. It is inferred that more the preventive measures taken by infectives lesser 

number of susceptible people will get infected, thus the susceptible population rises. 

Figures 4.18, 4.19 and 4.20 shows the phase portraits of the system for different 

fractional orders 0.8, 0.9 and 1.0 respectively. All the trajectories starting from 

different initial conditions are converging to its equilibrium point. 
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Figure 4.1 Effect of awareness on infectives for u = 0 

and u = 25% 

 

Figure 4.2 Effect of awareness on infectives for u = 0 

and u = 50 % 
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Figure 4.3 Effect of awareness on Infectives for u = 0 

and u = 75% 

 

Figure 4.4 Effect of awareness on susceptibles for u = 

0 and u = 25% 
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Figure 4.5 Effect of awareness on susceptibles for u = 

0 and u = 50% 

 

Figure 4.6 Effect of awareness on susceptibles for u = 

0 and u = 75% 
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Figure 4.7 Percentage of decrement in infected 

population for different u 

 

Figure 4.8 Percentage of increment in susceptible 

population for different u 
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Figure 4.9 Effect of varying treatment rates on 

infectives with u = 40% 

 

Figure 4.10 Effect of varying treatment rates on 

infectives with u =20% 
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Figure 4.11 Effect of varying treatment rates on 

infectives with u = 0 

 

Figure 4.12 Effect of varying inhibition rate due to 

infection on infectives with u = 0 
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Figure 4.13 Effect of varying inhibition rate due to 

infection on infectives with u = 20% 

 

Figure 4.14 Effect of varying inhibition rate due to 

infection on infectives with u = 40% 
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Figure 4.15 Effect of varying inhibition rate due to 

infection on susceptibles with u = 0 

 

Figure 4.16 Effect of varying inhibition rate due to 

infection on susceptibles with u = 20% 
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Figure 4.17 Effect of varying inhibition rate due to 

infection on susceptibles with u = 30% 

 

Figure 4.18 Phase Portrait for fractional order 0.8 
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Figure 4.19 Phase Portrait for fractional order 0.9 

 

Figure 4.20 Phase Portrait for Integer order system 

with order 1.0 
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4.6 Conclusion 

 

 

The goal of this chapter was to incorporate the impact of awareness on 

susceptible populations into a fractional-order SIR epidemic model using the Caputo-

fractional order derivative since awareness can play a vital role in controlling the 

spread of an infectious disease especially in case of newly emerging diseases when 

either the treatment strategy is unknown or very limited. A Monod-Haldane functional 

was used as an incidence rate and a Holling Type III functional as a treatment rate in 

the study. The disease-free equilibrium point is locally asymptotically stable when the 

basic reproduction number 𝑅0  is less than one, but it is unstable when 𝑅0 is more than 

one, as shown in theorem 4.2. The presence of a unique positive endemic- equilibrium 

is also established in theorem 4.3, and the stability of endemic equilibrium point is 

examined. The endemic-equilibrium point is discovered to be locally asymptotically 

stable if 𝑅0 is greater than 1, otherwise unstable as stated in theorem 4.4. Also, for 

some condition, the global stability behaviour of both disease-free equilibrium and 

endemic equilibrium is explored, and it is established that DFE is globally 

asymptotically stable for 𝑅0 ≤ 1 and EE is globally asymptotically stable if 𝑅0 > 1, 

as demonstrated in theorems 4.5 and 4.6. 

 

 

It is observed through simulation that as the fractional order reduces or the 

awareness increases, the population of susceptible increases because, in case of having 

awareness from different means, individuals explore and respond for it, resulting in an 

increase in the number of susceptibles. On the other hand, the number of infectives 

decreases on reducing the fractional order meaning hereby spreading optimal 

awareness as in case of any situation like COVID-19. This is possible because of 

adopting various preventive measures and other strategies which have been made 

popular through awareness programmes.  It is also inferred that spreading awareness 

about a disease is effective only for a certain period after which, it is no longer 

necessary since people have sufficient information about the disease or might take it 

for granted if repeated information is provided. It is stated that as the treatment rate 

increases the number of infectives decreases, also, as the awareness in the society 

increases, number of infectives start reducing with time. From this work we suggest 

that along with inhibitory measures if proper awareness for a sufficient time period is 

spread among the population, then the number of susceptibles increases due to prior 

knowledge about the disease due to awareness programmes but number of infectives 

decreases in a more significant way. 
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CHAPTER 5 

 

THE BEHAVIOR OF THE FRACTIONAL ORDER DELAY 

DIFFERENTIAL SIR EPIDEMIC MODEL WITH HOLLING 

TYPE II TREATMENT RATE AND CROWLEY-MARTIN RATE 

OF INCIDENCE 

 

 

 

____________________________________________________________________ 

 

Time delays and fractional order are critical components of biological 

memory systems. Non-integer order enhances the model's behaviour; however, time 

lag has major implication on the occurrence of Hopf bifurcation and system stability. 

The present chapter examines the dynamics of fractionally ordered delay differential 

Susceptibles-Infectives-Recovered epidemiological model with Holling functional 

type II treatment rate and Crowley-Martin (CM) functional type incidence. To acquire 

a more practical understanding of the epidemic's dynamics, the incidence rate was 

delayed by the latency time. We have examined the sufficient requirements for steady-

state stability and Hopf bifurcation in the presence of time delay. The model exhibits 

a Hopf bifurcation at the threshold parameters. When time delays exceed critical 

values, the model goes through Hopf bifurcation. Numerical simulations have been 

offered to support the theoretical findings. Numerical studies demonstrate that 

combining fractional order with time delays in the epidemic model affects the behavior 

and improves the model's stability. 

____________________________________________________________________ 
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5.1 Introduction 

 

 

Spreading infectious diseases continue to pose a serious threat to world 

health, impacting populations and economies worldwide. Mathematical models have 

proven invaluable in understanding the spread and control of such diseases, providing 

insights into transmission dynamics and informing public health interventions. In 

epidemic modeling literature a number of mathematical models such as SIS (J. A. Cui 

et al., 2008; J. Liu et al., 2018; Y. Wang et al., 2012; Wu & Fu, 2011), SIR(Gomez 

Alcaraz & Vargas-De-Leon, 2012; Hattaf, Lashari, et al., 2013; Hattaf, Lashari, 

Louartassi, et al., 2013; A. Kumar, Goel, et al., 2020; M. Li & Liu, 2014; Shulgin et 

al., 1998; Zhonghua & Yaohong, 2010; Zhou & Fan, 2012) , SEIR (Aghdaoui et al., 

2021; S. Kumar et al., 2023; M. Y. Li et al., 1999; Mammeri, 2020; Tipsri & 

Chinviriyasit, 2014), SIRS (C. H. Li et al., 2014), and many more have been proposed 

to control the spread of disease. Furthermore, in epidemiology, measures like as 

medical care, immunization, isolation, and many more are crucial in limiting the 

spread of the illness. Traditional SIR models, however, often use integer-order 

derivatives and may not fully capture the intricacies of disease dynamics such as 

memory effects, time delays etc.  

 

 

Extensive research has been conducted to understand infectious disease 

dynamics and generalize epidemic models in the literature. Real-world application 

challenges necessitate the use of fractional-order differential equations (FODE). 

Several well-known mathematicians, including Abel, Fourier, Riemann, and 

Liouville, contributed to the Theory of Fractional Calculus. With fractional-order 

derivatives describing the entire space and integer-order derivatives providing 

information about only the local characteristics of a state, FODE models are preferable 

than classical ODE and/or delay differential equation models (Podlubny, I. (1999)). 

To explain it simply, the FODE models assume that a physical phenomenon's next 

certain location depends on all past states in addition to its current condition. 

Therefore, fractional-order models expand the stability zone of the states and provide 

more realistic biological models requiring memory. Several fields in science, 

engineering, applied mathematics, economics, and bioengineering have used 

fractional-order models in the past few decades (Baleanu et al., 2019; Hilfer, 2000). 

Unlike integer-order models, which either don't account for these effects or make them 

impractical to take into consideration, fractional-order differential equations offer a 

strong tool for incorporating memory and hereditary features of the systems. 

Furthermore, the fractional models have one extra degree of freedom when fitting data 

compared to the integer-order model (Rihan et al., 2017). Several researchers have 

established intriguing applications to study the dynamics of such fractional order 

models with memory systems based on these advantages (Chen, 2008; El-Sayed et al., 

2007; Hoan et al., 2020; S. Liu et al., 2020; Naik, 2020; Owoyemi et al., 2020; 

Rostamy & Mottaghi, 2016; Sene, 2021) 
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Time delay is a common and natural feature in population dynamics 

models, especially in macroscopic models of the immune response. Time delay affects 

biological systems' dynamical behaviors in several ways. Time delays must therefore 

be considered when studying biological systems from both a theoretical and a practical 

standpoint. There is a latent period before an infected person becomes contagious, 

according to the assumptions made in infectious disease modeling. Stated 

alternatively, the transmission of an infection from one susceptible host to another 

occurs gradually. As a result, it is crucial to analyse the dynamical characteristics of 

systems with time delays (Deng et al., 2007; Goel & Nilam, 2019; Hattaf, Lashari, et 

al., 2013; Hattaf, Lashari, Louartassi, et al., 2013; A. Kumar & Nilam, 2019; M. Li & 

Liu, 2014; Tipsri & Chinviriyasit, 2014). In (Rakkiyappan et al., 2019), a system of 

nonlinear differential equations with multiple time delays is used to evaluate zika virus 

infection. The authors of (Wei et al., 2008)  took into account the vector borne 

epidemic model with time delay. Influence of time lag on the transmission term 

between the host and the vector, which has the potential to destabilize the system, was 

extensively covered by the authors. Hopf bifurcation is another method for raising 

periodic solutions. 

 

 

Recently, there has been a growing fascination with epidemic models that 

incorporate fractional-order derivatives and time delays (Chinnathambi & Rihan, 

2018; Deng et al., 2007a; S. Liu et al., 2020). Naturally, memory or time delay play 

an inevitable role in the dynamics of most real-world phenomena. The authors of 

(Naim et al., 2022) examined the impact of dual time delay and Caputo fractional 

derivative on the long-run behavior of a viral system with the non-cytolytic immune 

hypothesis and they found that the combination of fractional order can significantly 

improve the dynamics and strengthen the infection model's stability condition. 

Authors in (S. Liu et al., 2020) studies the bifurcation analysis of a fractional order 

SIQR model with double delay. 

 

 

5.2 Formulation of Fractional order Mathematical Model 

 

 

The literature indicates that most mathematical modeling of biological 

systems relies on fractional-order differential equations without delays or delay 

differential equations (DDEs) with integer orders. However, non-integer-order 

calculus is more appropriate than integer-order calculus for simulating systems of 

biological world with complex memory and long-range interactions, especially 

mechanisms of epidemic evolution. Compared to conventional integer-order 

mathematical modeling, which disregards the effects of memory or long-range 

interactions, fractional-order differential equation modeling of such systems offers 

more advantages. Indeed, memory effects are critical in the transmission of diseases. 

Memory effects in epidemic models of susceptible-infected-recovered (SIR) appear to 

be an appropriate fit for this type of analysis. We study the impact of incorporating 

time delays and fractional order in an epidemic model. 
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The disease transmission model splits up the population into three groups: 

susceptible (𝑆), infected (𝐼), and recovered (𝑅). Individuals that are susceptible to the 

disease but not yet afflicted at time 𝑡 are denoted by 𝑆(𝑡). The term 𝐼(𝑡) refers to 

infected persons who can spread the infection to others. 𝑅(𝑡) refers to individuals who 

have been infected, removed from the risk of infection, and entered the recovered 

compartment due to the body's autoimmune reaction and medical treatment.  

We suppose that individuals who are susceptible are recruited at rate σ. The Crowley-

Martin incidence rate governs the movement from the susceptible compartment to the 

infective compartment, taking into account the effect of inhibition among infectives 

even in cases of high susceptible population density, which is ignored by other 

incidence rates.  

 
𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏)

(1 + 𝛼1𝑆(𝑡 − 𝜏))(1 + 𝛼2𝐼(𝑡 − 𝜏))
 

 

The delay due to the latency period is 𝜏 > 0, and the infected vector can 

only infect a susceptible individual after this time. The transmission rate is represented 

by 𝛽, whereas susceptible adopt 𝛼1 and infectives adopt 𝛼2 measures of inhibition.  

 

 

The term  
𝛾1𝐼(𝑡)

1+𝛾2𝐼(𝑡)
 defines the Holling type II treatment rate where 𝛾1 

represents the treatment rate and 𝛾2 indicates the limiting rate in resource availability. 

The parameters 𝛿1, 𝛿2, and 𝛿3 refers the rates for natural mortality, disease-induced, 

and recovery. 𝜌 is the Caputo fractional derivative with a range of (0,1]. The Caputo 

derivative is described in definition 1in Appendix. Based on these assumptions, 

changes in 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) with respect to time 𝑡 are described by the nonlinear 

system of delay differential equations that follows: 

 

𝐷0
𝐶

𝑡
𝜌
𝑆(𝑡) = 𝜎 − 𝛿1𝑆 −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼1𝑆(𝑡−𝜏))(1+𝛼2𝐼(𝑡−𝜏))

 𝐷0
𝐶

𝑡
𝜌
𝐼(𝑡) =

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼1𝑆(𝑡−𝜏))(1+𝛼2𝐼(𝑡−𝜏))
− (𝛿1 + 𝛿2 + 𝛿3)𝐼(𝑡) −

𝛾1𝐼(𝑡)

1+𝛾2𝐼(𝑡)

𝐷0
𝐶

𝑡
𝜌
𝑅(𝑡) =

𝛾1𝐼(𝑡)

1+𝛾2𝐼(𝑡)
+ 𝛿3 𝐼(𝑡) − 𝛿1𝑅(𝑡) }

 
 

 
 

                  (5.1) 

 

 

 

The initial conditions of the model (5.1) are provided by 

𝑆(𝑡) = 𝜑1(𝑡), 𝐼(𝑡) = 𝜑2(𝑡) , 𝑅(𝑡) = 𝜑3(𝑡), 𝜑𝑖(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0]                     (5.2) 
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5.3 Basic Properties of the Model 

 

The model describes the dynamics of the human population; hence the 

system has non-negative solutions. Furthermore, the model's state variables are non-

negative and bounded for all (t ≥ 0). Let ℝ+
3 : = {𝑋 𝜖 ℝ3: 𝑋 ≥ 0 } and 𝑋(𝑡) =

 (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))
𝑇
on non-negative solutions, the lemmas needed to prove the theorem 

are mentioned in Appendix. 

 

 

 

Theorem 5.1 All the solutions of the system (5.1) satisfying the initial conditions (5.2) 

are non-negative and the solution will persists in region 𝐸 = {(𝑆, 𝐼, 𝑅) ∈ 𝑅+
3 : 0 < 𝑆 +

𝐼 + 𝑅 ≤ �̅� , �̅�  ≥ 𝐶𝐸
𝜎

𝛿1
} for 𝑡 ≥ 0. 

 

 

Proof. In order to prove the non-negativity of the system it is assumed that there exist 

a 𝑡∗ > 𝑡0 such that 𝑆(𝑡∗) = 0 and 𝑆(𝑡) < 0 for 𝑡 ∈ (𝑡∗, 𝑡1] where 𝑡1 is sufficiently close 

to 𝑡∗. If 𝑆(𝑡) = 0, 𝐷𝑡
𝜌
𝑆(𝑡∗) = 𝜎 , thus one obtains, 𝐷𝑡

𝜌
𝑆(𝑡) > 0 for all 𝑡 ∈ [𝑡∗, 𝑡1] and 

𝐷𝑡
𝜌
𝑆(𝑡) > 𝜖 𝑆(𝑡) where 𝜖 > 0. Hence one derives 𝑆(𝑡) > 𝑆(𝑡∗)𝐸𝜌(𝜖(𝑡 − 𝑡∗)

𝜌), 𝑡 ∈

[𝑡∗, 𝑡1] where 𝐸𝜌(𝑧) = ∑
𝑧𝑘

𝛤(𝜌𝑘+1)

∞
𝑘=0  is the Mittag Leffler function, this contradicts our 

assumption. Hence 𝑆(𝑡) > 0 for any 𝑡 > 𝑡0.  In the same manner 𝐼(𝑡) and 𝑅(𝑡) are 

non-negative. The boundedness of the solutions is now proved. By adding together 

each equation in model (5.1), we get: 

 

𝐷𝑡
𝜌
𝑁(𝑡) =  𝜎 − 𝛿1𝑁(𝑡) − 𝛿2𝐼(𝑡) 

 

Where 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).  As  𝐼(𝑡) ≥ 0, we have 

 

𝐷𝑡
𝜌
𝑁 ≤  𝜎 − 𝛿1𝑁(𝑡) 

 

Now consider the initial value problem 𝐷𝑡
𝜌
�̅� =  𝜎 − 𝛿1�̅�, �̅�(0) = �̅�0. Using 

comparison principle (Lu & Zhu, 2018), we obtain the following inequality: 

 

𝑁(𝑡) ≤ �̅�(𝑡) for all 𝑡 ≥ 0. By using the Laplace transform on the initial value 

problem, we can now obtain 

 

𝑠𝜌𝐿[�̅�(𝑡)] − 𝑠𝜌−1�̅�0 =
𝜎𝜌

𝑠
− 𝛿1𝐿[�̅�(𝑡)] 

 

⇒ 𝐿[�̅�(𝑡)] =
𝑠𝜌−1�̅�0
𝑠𝜌 + 𝛿1

+
𝜎𝜌𝑠−1

𝑠𝜌 + 𝛿1
 

 

Using Lemma 3, we obtain 
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𝐿[𝐸𝜌,1(−𝛿1𝑡
𝜌)] =

𝑠𝜌−1

𝑠𝜌 + 𝛿1
 

 

𝐿[𝑡𝜌𝐸𝜌,𝜌+1(−𝛿1𝑡
𝜌)] =

𝑠−1

𝑠𝜌 + 𝛿1
 

 

Using the inverse Laplace transform on the two equations above, we obtain 

 

�̅�(𝑡) = �̅�0𝐸𝜌,1(−𝛿1𝑡
𝜌) +  𝜎𝑡𝜌𝐸𝜌,𝜌+1(−𝛿1𝑡

𝜌), 

 

 using 𝐷𝑡
𝜌
𝑁 ≤  𝜎 − 𝛿1𝑁 we have  

 

𝑁(𝑡) ≤ 𝑁0𝐸𝜌,1(−𝛿1𝑡
𝜌) +  𝜎𝑡𝜌𝐸𝜌,𝜌+1(−𝛿1𝑡

𝜌), 

 

By Lemma 4, we obtain 

 

|𝑁(𝑡)| ≤
𝑁0𝐶𝐸

1 + 𝛿1𝑡𝜌
+

𝜎𝑡𝜌𝐶𝐸
1 + 𝛿1𝑡𝜌

 

 

where 𝐶𝐸 is constant given in Lemma 4. Hence, as 𝑡 → ∞, we have 𝑁(𝑡) ≤

�̅� with �̅� ≥ 𝐶𝐸
𝜎

𝛿1
. Thus, the solutions are bounded and will remain in region 𝐸 for 𝑡 ≥

0. Therefore, theorem 1 is proved and solution remains in 𝑅+
3 . Therefore, for 𝑡 ≥ 0, 

the solutions are bounded and continue to exist in region 𝐸. Thus, the solution is still 

in  𝑅+
3 , and theorem 5.1 is validated. 

 

 

5.4 Mathematical analysis of the model 

 

This section performs stability analyses of the disease free equilibrium point and the 

endemic equilibrium point. 

 

 

5.4.1 Disease Free Equilibria and Stability Analysis 

 

 

In this section we study the stability analysis of disease-free equilibrium 

points, basic reproduction number and endemic equilibrium points and its stability 

analysis. 

 

 

We are examining the following reduced system for analysis because the first two 

equations of the model (5.1) are not affected by 𝑅: 
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𝐷0
𝐶

𝑡
𝜌
𝑆(𝑡) = 𝜎 − 𝛿1𝑆 −

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼1𝑆(𝑡−𝜏))(1+𝛼2𝐼(𝑡−𝜏))

𝐷0
𝐶

𝑡
𝜌
𝐼(𝑡) =

𝛽𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

(1+𝛼1𝑆(𝑡−𝜏))(1+𝛼2𝐼(𝑡−𝜏))
− (𝛿1 + 𝛿2 + 𝛿3)𝐼(𝑡) −

𝛾1𝐼(𝑡)

1+𝛾2𝐼(𝑡)
  
}                    (5.3) 

 

 𝑆(𝑡) = 𝜑1(𝑡), 𝐼(𝑡) = 𝜑2(𝑡) , 𝜑𝑖(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0]                                  (5.4) 

                                                                                                                                                                                             

 

The system's (5.3) right side is brought to zero to solve the equilibria. Evidently, 

system (5.3) consistently maintains disease free equilibrium 𝑌1 = (
𝜎

𝛿1
, 0). Using the 

next-generation matrix approach (Van Den Driessche & Watmough, 2002), the basic 

reproduction number is given by 

 

𝑅0 =
𝛽𝜎

(𝛿1 + 𝛼1𝜎)(𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)
 

 

 

which represents the expected number of secondary cases generated by a single 

infectious case in a susceptible population. We are now investigating local stability of 

disease free equilibrium point. The matrix of characteristics associated to system (5.6) 

is provided by: 

 

∆(𝜆) =

[
 
 
 
 −𝛿1 − 𝜆

𝜌 −
𝛽𝜎 𝑒−𝜆𝜏

(𝛿1 + 𝛼1𝜎)

0
𝛽𝜎 𝑒−𝜆𝜏

(𝛿1 + 𝛼1𝜎)
− (𝛿1 + 𝛿2 + 𝛿3) − 𝛾1 − 𝜆

𝜌

]
 
 
 
 

 

 

The corresponding characteristic polynomial at disease -free equilibrium 𝑌1 = (
𝜎

𝛿1
, 0) 

is  

 

(𝛿1 + 𝜆
𝜌) (−

𝛽𝜎 𝑒−𝜆𝜏

(𝛿1+𝛼1𝜎)
+ (𝛿1 + 𝛿2 + 𝛿3) + 𝛾1 + 𝜆

𝜌) = 0                                                 (5.5) 

 

Case 5.4.1.1 When 𝜏 = 0, equation (5.5) can be written as 

  

(𝛿1 + 𝜆
𝜌) (−

𝛽𝜎 

(𝛿1+𝛼1𝜎)
+ (𝛿1 + 𝛿2 + 𝛿3) + 𝛾1 + 𝜆

𝜌) = 0                                                                                                    

 

(𝛿1 + 𝜆
𝜌)((𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)(1 − 𝑅0) + 𝜆

𝜌) = 0                                                              (5.6) 

 

It is evident that if 𝑅0 < 1, then every root of equation (5.6) would have negative real 

components. If 𝑅0 < 1 , 𝑌1 is then locally asymptotically stable.  

 

 

Case 5.4.1.2 When 𝜏 ≠ 0, equation (5.5) can be deduced as the following equation 
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−
𝛽𝜎 

(𝛿1+𝛼1𝜎)
𝑒−𝜆𝜏 + (𝛿1 + 𝛿2 + 𝛿3) + 𝛾1 + 𝜆

𝜌 = 0                                                                (5.7) 

 

Suppose the above equation has purely imaginary roots 𝜆 = 𝑖𝜔,𝜔 > 0, then 𝜔 satisfy 

 

(𝑖𝜔)𝜌 + (𝛿1 + 𝛿2 + 𝛿3 + 𝛾1) −
𝛽𝜎 

(𝛿1+𝛼1𝜎)
𝑒−(𝑖𝜔)𝜏 = 0         

                                                                                                       

𝜔𝜌 (cos
𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
)+(𝛿1 + 𝛿2 + 𝛿3 + 𝛾1) −

𝛽𝜎 

(𝛿1+𝛼1𝜎)
(cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0 

 

Separating the real and imaginary parts of the above equation 

 

 𝜔𝜌 cos
𝜌𝜋

2
+(𝛿1 + 𝛿2 + 𝛿3 + 𝛾1) = 

𝛽𝜎 

(𝛿1+𝛼1𝜎)
 cos𝜔𝜏 

 

𝜔𝜌 sin
𝜌𝜋

2
= −

𝛽𝜎 

(𝛿1+𝛼1𝜎)
 sin𝜔𝜏 

 

Squaring and adding both sides, we get 

 

𝜔2𝜌 + 2(𝛿1 + 𝛿2 + 𝛿3 + 𝛾1) cos
𝜌𝜋

2
𝜔𝜌 + (𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)

2(1 − 𝑅0
2) = 0  (5.8) 

 

It is evident that equation (5.8) has no positive root if 𝑅0 < 1, however equation (5.8) 

has a positive root for 𝑅0 > 1. Hence equation (5.7) has no purely imaginary roots for 

𝑅0 < 1 and 𝜏 > 0.  From Lemma 5, the disease-free equilibrium point is 

asymptotically stable for 𝜏 ≥ 0.  

 

                                                                            

Theorem 5.2 If 𝑅0 < 1 and 𝜏 ≥ 0 then the disease free equilibrium of system (5.3) 

𝑌1 (
𝜎

𝛿1
, 0) is locally asymptotically stable and if 𝑅0 > 1 then 𝑌1 is unstable.  

 

 

5.4.2 Existence and stability analysis of endemic equilibrium 

 

 

After rearranging system (5.3) to obtain 𝑆∗ and 𝐼∗, we may determine the presence of 

an endemic equilibrium 𝑌2(𝑆
∗, 𝐼∗).  

 

𝑆∗ =
𝜎 + (𝜎𝜗2 − 𝛿1 − 𝛿2 − 𝛿3 − 𝛾1)𝐼

∗ − 𝛾2(𝛿1 + 𝛿2 + 𝛿3)𝐼
∗2

𝛿1(1 + 𝛾2𝐼∗)
 

 

and the following equation yields 𝐼∗: 
 

𝐷1𝐼
∗4 + 𝐷2𝐼

∗3 + 𝐷3𝐼
∗2 + 𝐷4𝐼

∗ + 𝐷5 = 0                                                                     (5.9) 

 

𝐷1 = 𝛼2𝛾2
2𝛼1(𝛿1 + 𝛿2 + 𝛿3)

2 
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𝐷2 = (𝛼2𝛾2𝛼1(𝛿1 + 𝛿2 + 𝛿3)(𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)

+ 𝛾2(𝛿1 + 𝛿2 + 𝛿3)(−α1𝛾2(𝛿1 + 𝛿2 + 𝛿3) + 𝛼2𝛿1𝛾2

+ 𝛼2𝛼1(𝜎𝛾2 − 𝛿1 − 𝛿2 − 𝛿3 − 𝛾1)) + 𝛽𝛾2
2(𝛿1 + 𝛿2 + 𝛿3)) 

 

𝐷3 =((𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)(−α1𝛾2(𝛿1 + 𝛿2 + 𝛿3) + 𝛼2𝛿1𝛾2 + 𝛼2𝛼1(𝜎𝛾2 − 𝛿1 − 𝛿2 −

           𝛿3 − 𝛾1)) + 𝛾2(𝛿1 + 𝛿2 + 𝛿3)(𝛿1𝛾2 + 𝛼1(𝜎𝛾2 − 𝛿1 − 𝛿2 − 𝛿3 − 𝛾1) + 𝛼2𝛿1 +

           𝛼2𝛼1𝜎) − 𝛽𝛾2(𝜎𝛾2 − 2𝛿1 − 2𝛿2 − 2𝛿3 − 𝛾1)) 

 

𝐷4 = ((𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)(𝛿1𝛾2 + 𝛼1(𝜎𝛾2 − 𝛿1 − 𝛿2 − 𝛿3 − 𝛾1) + 𝛼2𝛿1 + 𝛼2𝛼1𝜎)

+ 𝛾2(𝛿1 + 𝛿2 + 𝛿3)(𝛿1 + 𝛼1𝜎) − 𝛽(2𝜎𝛾2 − 𝛿1 − 𝛿2 − 𝛿3 − 𝛾1)) 

 

𝐷5 = ((𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)(𝛿1 + 𝛼1𝜎) − 𝛽𝜎) 

      = (𝛿1 + 𝛿2 + 𝛿3 + 𝛾1)(𝛿1 + 𝛼1𝜎)(1 − 𝑅0) 

 

According to Descarte's Rule of signs, the biquadratic equation (5.9) has a unique 

positive real 𝐼∗ if any of the following conditions are fulfilled: 

 

i. 𝐷1 > 0,𝐷2 < 0,𝐷3 < 0,𝐷4 < 0 and 𝐷5 < 0 

ii. 𝐷1 > 0,𝐷2 > 0,𝐷3 < 0,𝐷4 < 0 and 𝐷5 < 0 

iii. 𝐷1 > 0,𝐷2 > 0,𝐷3 > 0,𝐷4 < 0 and 𝐷5 < 0 

iv. 𝐷1 > 0,𝐷2 > 0,𝐷3 > 0,𝐷4 > 0 and 𝐷5 < 0 

 

If any of the aforementioned conditions are fulfilled, there will be a unique 𝐼∗ > 0 that 

can be used to calculate the value of 𝑆∗. This means that there exists a unique endemic 

equilibrium 𝑌2(𝑆
∗, 𝐼∗). Now, we analyse the local stability of 𝑌2. Now linearizing the 

matrix at 𝑌2(𝑆
∗, 𝐼∗), we get the following Jacobian matrix  

 

𝐽(𝑌2) = (
−𝑎1 − 𝑎2𝑒

−𝜆𝜏 −𝑎3𝑒
−𝜆𝜏

𝑎2𝑒
−𝜆𝜏 𝑎3𝑒

−𝜆𝜏 − 𝑎4 − 𝑎5
) 

 

Where 

 

 𝑎1 = 𝛿1, 𝑎2 =
𝛽𝐼∗

(1+𝛼2𝐼∗)(1+𝛼1𝑆∗)2
 , 𝑎3 =

𝛽𝑆∗

(1+𝛼1𝑆∗)(1+𝛼2𝐼∗)2
, 𝑎4 = 𝛿1 + 𝛿2 + 𝛿3 and 𝑎5 =

𝛾1

(1+𝛾2𝐼∗)2
 

 

Thus, we get the characteristic equation as  

 

𝜆2𝜌 + 𝜆𝜌(𝑎1 + 𝑎4 + 𝑎5) + 𝑎1(𝑎4 + 𝑎5) + 𝜆
𝜌𝑒−𝜆𝜏(−𝑎3 + 𝑎2) + 𝑒

−𝜆𝜏(−𝑎1𝑎3 +

𝑎2(𝑎4 + 𝑎5)) = 0                                                                                                                               (5.10) 
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Case 5.4.2.1 Suppose 𝜏 = 0, then equation (5.10) becomes  

 

𝜆2𝜌 + 𝜆𝜌(𝐵1 + 𝐵3) + (𝐵2 + 𝐵4) = 0                                                                                         (5.11) 

 

Where 𝐵1 = 𝑎1 + 𝑎4 + 𝑎5, 𝐵3 = −𝑎3 + 𝑎2, 𝐵2 = 𝑎1(𝑎4 + 𝑎5), 𝐵4 = −𝑎1𝑎3 +

𝑎2(𝑎4 + 𝑎5) 

 

Assume that  

 

(𝐺1): (𝐵1 + 𝐵3) > 0, (𝐵2 + 𝐵4) > 0, 

 

Using the Routh-Hurwitz Criterion, we have established- 

 

Proposition 5.1 For 𝜏 = 0, if 𝑅0 > 1 and assumption (𝐺1) is satisfied then the roots of 

(5.11) are real and negative. As a result, the endemic equilibrium 𝑌2(𝑆
∗, 𝐼∗) is locally 

asymptotically stable. 

 

 

Case 5.4.2.2 Suppose 𝜏 >  0 and 𝑅0 > 1  then equation (5.10) becomes  

 

𝜆2𝜌 + 𝐵1𝜆
𝜌 + 𝐵2 + 𝐵3𝜆

𝜌𝑒−𝜆𝜏 + 𝐵4𝑒
−𝜆𝜏 = 0                                                                        (5.12) 

 

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (5.12), then we have   

 

𝜔2𝜌(cos 𝜌𝜋 + 𝑖 sin 𝜌𝜋) + 𝐵1𝜔
𝜌 (cos

𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
) + 𝐵2 + 𝐵4(cos𝜔𝜏 − 𝑖 sin𝜔𝜏)

+ 𝐵3𝜔
𝜌(cos𝜔𝜏 − 𝑖 sin𝜔𝜏) (cos

𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
) = 0  

 

Separating the real and imaginary parts, we get 

 

𝐶1 cos𝜔𝜏 + 𝐶2 sin𝜔𝜏 = −𝐶3
𝐶2 cos𝜔𝜏 − 𝐶1 sin𝜔𝜏 = −𝐶4

}                                                                                        (5.13) 

 

where   

𝐶1 = 𝐵3𝜔
𝜌 cos

𝜌𝜋

2
+ 𝐵4 

𝐶2 = 𝐵3𝜔
𝜌 sin

𝜌𝜋

2
 

𝐶3 = 𝜔
2𝜌 cos 𝜌𝜋 + 𝐵1𝜔

𝜌 cos
𝜌𝜋

2
+ 𝐵2 
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𝐶4 = 𝜔
2𝜌 sin 𝜌𝜋 + 𝐵1𝜔

𝜌 sin
𝜌𝜋

2
 

It follows from (5.13) that  

 

sin𝜔𝜏 =
𝐶1𝐶4 − 𝐶2𝐶3

𝐶1
2 + 𝐶2

2  

 

cos𝜔𝜏 = −
𝐶1𝐶3 + 𝐶2𝐶4

𝐶1
2 + 𝐶2

2  

 

By sin2𝜔𝜏 + cos2𝜔𝜏 = 1 ,  

 

we get 

𝐶3
2 + 𝐶4

2 = 𝐶1
2 + 𝐶2

2. 

 

By calculation we deduce that  

 

 𝜆4 + 𝑁1 𝜆
3 + 𝑁2 𝜆

2 + 𝑁3𝜆 + 𝑁4 = 0 

 

Where 

 

 𝜆 = 𝜔𝜌,    𝑁1 = 2 𝐵1 cos
𝜌𝜋

2
,      𝑁2 = 𝐵1

2 + 2 𝐵2 cos 𝜌𝜋 − 𝐵3
2,      𝑁3 = 2(𝐵1𝐵2 −

𝐵3𝐵4) cos
𝜌𝜋

2
,      𝑁4 = 𝐵2

2 − 𝐵4
2.  

 

Assume that   

 

(𝐺2):    𝑁4 < 0 

 

then equation (5.12) has at least one positive real root 𝜔0. Denote  

 

𝜏(𝑖) =
1

𝜔0
[arccos

𝐶1𝐶3+𝐶2𝐶4

𝐶1
2+𝐶2

2 + 2 𝑖𝜋]     𝑖 = 1, 2 ,3… 

 

Define 𝜏0 = min{𝜏(𝑖)}        𝑖 = 1, 2 ,3… 

 

To deduce the conditions for the occurrence of Hopf bifurcation, we propose the 

following hypothesis:  

 

(𝐺3): 
𝜉1𝜁1+𝜉2𝜁2

𝜁1
2+𝜁2

2 ≠ 0, 
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where  𝜉1, 𝜉2, 𝜁1, 𝜁2 are defined as 

𝜉1 = 𝐵4𝜔0 sin𝜔0 𝜏
0 + 𝐵3𝜔0

𝜌+1
 sin (𝜔0𝜏

0 −
𝜌𝜋

2
) 

𝜉2 = 𝐵4𝜔0 cos𝜔0 𝜏
0 + 𝐵3𝜔0

𝜌+1
 cos (𝜔0𝜏

0 −
𝜌𝜋

2
) 

𝜁1 = 2 𝜌𝜔0
2𝜌−1

sin 𝜌𝜋 + 𝜌𝐵1𝜔0
𝜌−1

sin
𝜌𝜋

2

+ 𝜌 𝐵3𝜔0
𝜌−1

sin (
𝜌𝜋

2
− 𝜔0𝜏

0)

− 𝐵3𝜏
0𝜔0

𝜌
cos (

𝜌𝜋

2
− 𝜔0𝜏

0) − 𝐵4 𝜏
0 cos𝜔0𝜏

0 

𝜁2 = −(2 𝜌𝜔0
2𝜌−1

cos 𝜌𝜋 + 𝜌𝐵1𝜔0
𝜌−1

cos
𝜌𝜋

2

+ 𝜌 𝐵3𝜔0
𝜌−1

cos (
𝜌𝜋

2
− 𝜔0𝜏

0)

+ 𝐵3𝜏
0𝜔0

𝜌
sin (

𝜌𝜋

2
− 𝜔0𝜏

0) − 𝐵4 𝜏
0 sin𝜔0𝜏

0) 

 

 

Lemma 5.1 Let 𝜆(𝜏) = 𝜑(𝜏) + 𝑖 𝜔(𝜏) be a root of the characteristic equation (5.12) 

near 𝜏 = 𝜏𝑖 meeting 𝜑(𝜏𝑖) = 0, 𝜔(𝜏𝑖) =  𝜔0, then the transversality condition 

𝑅𝑒 [
𝑑𝜆

𝑑𝜏
]|
(𝜏=𝜏0,𝜔=𝜔0)

≠ 0 holds. 

 

 

Proof. Differentiating both sides of (5.15) with respect to 𝜏, we get 

 

𝑑𝜆

𝑑𝜏
=

(𝐵3𝜆
𝜌+𝐵4)𝜆𝑒

−𝜆𝜏

2𝜌𝜆2𝜌−1+𝜌𝐵1𝜆𝜌−1+𝜌 𝐵3𝜆𝜌−1𝑒−𝜆𝜏−𝐵3𝜏𝜆𝜌𝑒−𝜆𝜏−𝐵4𝜏𝑒−𝜆𝜏
=

𝜉(𝜆)

𝜁(𝜆)
                                          (5.14) 

 

and   

 

                                           
𝜉(𝜔0𝑖)|𝜏=𝜏0 = 𝜉1 + 𝑖𝜉2
𝜁(𝜔0𝑖)|𝜏=𝜏0 = 𝜁1 + 𝑖𝜁2

}                                                                  (5.15) 

 

By computation, it can be derived from (5.14) that 

 

𝑅𝑒 [
𝑑𝜆

𝑑𝜏
]|
(𝜏=𝜏0,𝜔=𝜔0)

=
𝜉1𝜁1 + 𝜉2𝜁2

𝜁1
2 + 𝜁2

2 ≠ 0 

 

This completes the proof. 
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Theorem 5.3 If assumptions (𝐺1)- (𝐺3) hold then the endemic equilibrium 𝑌2 of the 

system (5.3) is locally asymptotically stable for 𝜏 ∈ [0, 𝜏0) and it undergoes Hopf 

bifurcation at 𝑌2 when 𝜏 = 𝜏0. 

 

 

5.5 Numerical Simulations 

 

 

To confirm the viability of the theoretical analysis on system stability and 

bifurcation, we investigate the system with the parameters used in (A. Kumar & Nilam, 

2019), 𝜎 = 11, 𝛼1 = 0.005, 𝛼2 = 0.005, 𝛽 = 0.003, 𝛿1 = 0.03, 𝛿2 = 0.04, 𝛿3 =
0.001, 𝛾1 = 0.02, 𝛾2 = 0.02,  we get the unique endemic equilibrium 𝑌2 = (82.0164, 

110.576) and the basic reproduction number 𝑅0 = 4.266. 

 

 

We now analyse the stability and Hopf bifurcation outcomes. First, we 

observe the effect of different fractional orders on the endemic equilibrium point of 

the system when there is no impact of latency delay i.e. 𝜏 = 0. Figures 5.1 and 5.2 

clearly show that the as the order of the fractional derivative decreases, the system 

accelerates its convergence to a steady state. Figure 5.3 demonstrates the influence of 

cure rate on infectives; as the cure rate grows, the number of infectives decreases 

significantly until it reaches a stable state. Figure 5.4 shows that as the constraint in 

treatment availability increases, so do infections, which is due to society's restricted 

resource availability. 

 

 

Next, we investigate how the latency period delay (𝜏) affects the system's 

dynamical characteristics. Here we fix the fractional order 𝜌 = 0.85. We obtain the 

critical values 𝜔0= 0.259347 and 𝜏0 = 4.3. Figure 5.5 and 5.6 shows that the endemic 

equilibrium 𝑌2 is asymptotically stable when 𝜏 = 3.5 < 𝜏0, which agrees with the 

theorem 5.1. Figure 5.7 and 5.8 shows that the endemic equilibrium 𝑌2 is unstable 

when 𝜏 = 4.5 > 𝜏0 and a Hopf bifurcation occurs. 

 

 

We also assess the effect of the fractional order 𝜌 on the system dynamics. 

While selecting, 𝜏 = 3.7, it can be seen from figures 5.9 and 5.10 that with the decrease 

of the fractional order 𝜌, the rate of convergence of the system speeds up. Setting, 𝜏 =
4.0 , system demonstrates an unstable behavior when fractional order 𝜌 = 1 and hopf 

bifurcation occurs, however the endemic equilibrium of the system is locally stable 

when 𝜌 = 0.8 or 0.9 (see Figure 5.11 and 5.12). This suggests that in a fractional order 

system, the unstable equilibrium of an integer order system could become stable. 

Figure 5.13 and 5.14 shows the effect of cure rate (𝛾1) and limitation rate (𝛾2) in 

treatment availability on infected population with various values of 𝛾1 and 𝛾2 at 𝜏 =
3.3. Figure 5.13 depicts the decline in the number of infected population as the cure 

rate rises, and it is seen that the higher the cure rate, the less time it takes to achieve 

the steady state. Figure 5.14 depicts that the system undergoes bifurcation and could 
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not achieve its steady state as the limitation in treatment raises, which is due to the 

restricted resources in society. 

 

 

Figure 5.15 shows that for fractional orders 𝜌 = 0.8 and 𝜏 = 3.3, when 

susceptibles adopt fewer preventive actions, the time to achieve steady state raises. 

The greater the number of people who take preventative measures, the more 

susceptible individuals are and lesser the infectives.  

 

 

 
Figure 5.1 Effect of varying fractional orders on 

susceptibles 

 
Figure 5.2 Effect of varying fractional orders on 

infectives 
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Figure 5.3 Effect of varying 𝛾1 on infectives when 

fractional order 𝜌 = 0.85 
 

 

 
Figure 5.4 Effect of varying 𝛾2 on infectives when 

fractional order 𝜌 = 0.85 
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Figure 5.5 Time series for susceptible population when 

𝜌 = 0.85, 𝜏 = 4.1 < 𝜏0 
 

 

 

 
Figure 5.6 Time series for infected population when 

𝜌 = 0.85, 𝜏 = 4.1 < 𝜏0 
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Figure 5.7 Time series for susceptible population when 

𝜌 = 0.85, 𝜏 = 4.5 > 𝜏0 
 

 

 

 
Figure 5.8 Time series for infected population when 

𝜌 = 0.85, 𝜏 = 4.5 > 𝜏0 
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Figure 5.9 Time series for susceptible population when 

𝜌 = 0.8, 0.9 and 1, 𝜏 = 3.7 
 

 

 

 
Figure 5.10 Time series for infected population when 

𝜌 = 0.8, 0.9 and 1, 𝜏 = 3.7 
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Figure 5.11 Time series for susceptible population 

when 𝜌 = 0.8, 0.9 and 1, 𝜏 = 4 
 

 

 

 
Figure 5.12 Time series for infected population when 

𝜌 = 0.8, 0.9 and 1, 𝜏 = 4 



118 

 

 

 

Figure 5.13 Effect of varying 𝛾1 on infectives when 

fractional order 𝜌 = 0.8 and 𝜏 = 3.3 
 

 

 

 
Figure 5.14 Effect of varying 𝛾2 on infectives when 

fractional order 𝜌 = 0.8 and 𝜏 = 3.3 
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Figure 5.15 Effect of varying 𝛼1 on susceptibles when 

fractional order 𝜌 = 0.8 and 𝜏 = 3.3 

 

 

5.6 Conclusion 

 

Many biological processes are more accurately modeled by utilizing 

fractional differential equations with time delay rather than classical order integer 

systems. We developed and assessed a Caputo fractional order Susceptible-Infectives-

Recovered epidemic model with a time delay, Crowley Martin functional type 

incidence rate, and Holling type II treatment rate. Time delay and fractional order 

contribute significantly to the model's stability and complexity. We determined the 

possibility of equilibria in the underlying model and investigated the presence of 

positive and bounded solutions. By examining the characteristics, some adequate 

conditions for asymptotic stability in terms of fractional order and time delay were 

derived. When the time delay approaches critical values, the model undergoes Hopf 

bifurcation. The transversality condition was obtained to confirm the existence of a 

Hopf bifurcation for various threshold parameter values.  

Furthermore, numerical simulations favouring the analytical work are 

achieved. As the fractional derivative represents long-term memory, different 

fractional orders result in varying rates of steady state stabilization. In addition, it is 

found that infection in society declines as the cure rate increases and the limitation in 

treatment availability decreases. Additionally, the findings demonstrate that 

incorporating non-integer order and time delays in the model substantially enhances 

the dynamics and enriches the model's stability requirement. By implementing time 

delays as a bifurcation point, one can infer that when time delays increase, the stability 

at equilibrium gets weakened and Hopf bifurcation develops. 
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CHAPTER 6 

 

BIFURCATION ANALYSIS OF A DOUBLE DELAYED SIQR 

FRACTIONAL ORDER MODEL INCORPORATING HOLLING 

TYPE-II TREATMENT RATE AND MONOD-HALDANE 

INCIDENCE RATE 

 

 

 

____________________________________________________________________ 

 

Fractional order and time delays are essential for biological systems with 

memory. A double delayed fractional order susceptible-infected-quarantine-recovered 

epidemic model with saturated incidence and treatment rates has been examined in this 

chapter. The model includes two time delays: one for the length of the incubation 

period, and another for the time delay caused by people's resistance to being placed 

under quarantine. Specifically, it is established that every solution is bounded and 

positive. Basic reproduction is computed first, and then the existence and stability of 

the endemic and disease-free equilibrium points are ascertained by examining the 

associated characteristic equations along with Hopf bifurcations. A Hopf bifurcation 

is seen in the model above the threshold parameters. The model experiences Hopf 

bifurcation when delays exceed critical values. The application of the acquired results 

is demonstrated by providing a few numerical simulation examples. Numerical 

simulations confirm that the dynamics and stability requirement of the epidemic model 

are improved by adding fractional order and time delays. 

____________________________________________________________________ 
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6.1 Introduction 

 

 

For many years, infectious diseases produced by pathogens posed a major 

threat to human health. Several epidemic models have been developed and examined 

to comprehend the mechanisms of disease spread and forecast future patterns. 

Kermack and Mckendrick, who are regarded as the pioneers of "compartment 

modeling," put forth a compartment epidemic model for the spread of the black death 

in (Kermack & Mckendrick, 1927), which provided fresh insight into the study of 

infectious illnesses. Subsequently, a number of compartmental models were carried 

out to investigate how different infectious diseases spread. To illustrate, the well-

known SIRS, SIS, and SIR models were developed initially in the 1980s (Li et al., 

2014; Wang et al., 2012; Wu & Fu, 2011), where S, I, and R stand for susceptible, 

infectious, and recovered people, respectively. Many studies have used SEIR models 

to explore the transmission process (Shu et al., 2012; Yi et al., 2009; Zhou & Cui, 

2011), taking into account the possibility that the disease may have minimal early 

symptoms and may remain dormant in the host for some time during the incubation 

period (E). Acute infectious infections, on the other hand, might also have symptoms 

that start appearing up immediately. Isolating affected individuals is one of the 

quickest and most efficient ways to prevent the infectious disease from progressing. 

To assess the efficacy of the quarantine strategy, a few SIQR compartmental models 

(Odagaki, 2021; Pinto & Carvalho, 2015)  were developed, in which Q stands for the 

infectious persons who have been placed under quarantine. 

 

 

Researchers have discovered through thorough study of the mechanisms 

underlying the transmission of certain infectious diseases that susceptible individuals 

do not become infectious instantaneously from contact with infected individuals; 

rather, a time lag must be taken into account to characterize the interval between 

contact with the infected and the onset of infectiousness (Li et al., 2012; J. Liu et al., 

2018). In fact, there will inevitably be a time lag during various stages of the 

transmission process, including the incubation and immunity recovery phases. Time 

delays are therefore crucial variables to consider when researching pandemic diseases. 

Fractional calculus theory has been extensively used in many fields in the last several 

decades, including electromagnetic field theory, biology, optical and thermal systems, 

materials science, mechanical mechanics, and more  (Agarwal et al., 2010; Alidousti 

& Ghaziani, 2017). It has been discovered that the laws and processes governing the 

evolution of certain natural science phenomena can be precisely described using 

fractional calculus. Moreover, it becomes apparent that fractional-order differential 

systems have the benefits of uncomplicated modeling, understandable parameter 

meaning, and precise characterization for certain materials and processes with memory 

and genetic properties (Alidousti & Ghahfarokhi, 2019; Auastasio, 1994; Laskin & 

Zaslavsky, 2006). As a result of this, fractional calculus has gained popularity among 

researchers as a new mathematical tool. Significant advancements have been made in 

this field, and the theory of fractional calculus is being introduced through an 
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increasing number of real-world problem-solving scenarios (Abdeljawad et al., 2017; 

Abdeljawad & Alzabut, 2018; Chen, 2008; Iswarya et al., 2019; Lin, 2007; Pratap et 

al., 2020; Rajchakit et al., 2019). 

 

 

An SIQR compartmental model with an incubation period delay was 

examined by the authors in(X. Zhou & Cui, 2011). This model measures the time 

interval between a susceptible person's meet with an infected person and the point at 

which the person becomes infectious. However, S. Liu, L. Lu and M. Huang in (S. Liu 

et al., 2020) studied another SIQR model with an additional time delay that quantifies 

how long it will take for the infected and quarantined people to recover. They 

investigated how time delays affected the spread of the disease. 

 

 

 

6.2 Formulation of Fractional order Mathematical Model 

 

Motivated by the research of (X. Zhou & Cui, 2011) and (S. Liu et al., 

2020), we examine the fractional-order SIQR model in this paper along with both time 

delays considering Monod-Haldane incidence and Holling Type II treatment rate. The 

Caputo derivative is described in definition 1in Appendix. We suggest the fractional-

order delayed SIQR infectious disease model as follows: 

 

𝐷0
𝐶

𝑡
𝜌
𝑆(𝑡) = 𝜔 − 𝜃1𝑆 −

𝛽𝑆(𝑡−𝜏1)𝐼(𝑡−𝜏1)

1+𝛼(𝐼(𝑡−𝜏1))
2

𝐷0
𝐶

𝑡
𝜌
𝐼(𝑡) =

𝛽𝑆(𝑡−𝜏1)𝐼(𝑡−𝜏1)

1+𝛼(𝐼(𝑡−𝜏1))2
− (𝜃1 + 𝜃2)𝐼 − 𝛿𝐼(𝑡 − 𝜏2) −

𝜎𝐼

1+𝜗𝐼

 𝐷0
𝐶

𝑡
𝜌
𝑄(𝑡) = 𝛿𝐼(𝑡 − 𝜏2) − (𝜃1 + 𝜃3 + 𝑞)𝑄

𝐷0
𝐶

𝑡
𝜌
𝑅(𝑡) =

𝜎𝐼

1+𝜗𝐼
+ 𝑞𝑄 − 𝜃1𝑅 }

  
 

  
 

                             (6.1) 

 

   
 

With initial conditions as: 𝑆(𝑡) = 𝜑1(𝑡), 𝐼(𝑡) = 𝜑2(𝑡) , 𝑅(𝑡) = 𝜑3(𝑡), 
𝜑𝑖(𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0] 
 

Table 6.1 Model parameters and variables 

 

Parameter/ Variables Description 

𝑆(𝑡) Susceptible population at time t 

𝐼(𝑡) Infected population at time t 

𝑄(𝑡) Quarantined population at time t 

𝑅(𝑡) Recovered population at time t 

𝜔 Recruitment rate 

𝛽 Rate of transmission 

𝜃1 Population's natural death rate 
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Parameter/ Variables Description 

𝜃2 Population's death rate from disease 

𝜃3 Class 𝑄 death rate due to disease 

𝛿 Rate of change from 𝐼 to 𝑄 

q Rate of change from 𝑄 to 𝑅 

𝛼 Cure rate 

𝜗 Limitation rate in the treatment availability 

𝜏1 Incubation period delay 

𝜏2 Time delay due to resistance in people for 

undergoing quarantine 

 

 

In addition to examining the presence and stability of the endemic and 

disease-free equilibriums, we also investigate how time delays and fractional order 

affect the spread of disease. With a fractional order derivative derived using Caputo 

sense, the memory effects in dynamical systems are characterized by a convolution 

integral with a power-law memory kernel for 0 < 𝜌 ≤ 1 (see Definition 6.2). The decay 

rate of the memory kernel (temporal correlation function) is dependent on the 

fractional order 𝜌. A lower 𝜌 value indicates that long memory (time-correlation 

functions) decays more slowly. After then, memory's influence diminishes as 𝜌 

approaches 1. 

 

 

 

6.3 Basic Properties of the Model 

 

 

Since model describes the dynamics of human population, therefore the 

system has non-negative solutions. Furthermore, it can be shown that all the state 

variables of the model are non-negative and bounded for all (t ≥ 0). Let ℝ+
3 : =

{𝑋 𝜖 ℝ3: 𝑋 ≥ 0 } and 𝑋(𝑡) =  (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))
𝑇
 on non-negative solutions, the 

lemmas needed to prove the theorem are mentioned in Appendix  

 

 

Theorem 6.1 All the solutions of the system (6.1) satisfying the initial conditions are 

non-negative and the solution will remain in region 𝑃 = {(𝑆, 𝐼, Q, 𝑅) ∈ 𝑅+
4 : 0 < 𝑆 +

𝐼 + Q + 𝑅 ≤ �̅� , �̅�  ≥ 𝐶𝐸
𝜔

𝜃1
} for 𝑡 ≥ 0. 

 

 

Proof. In order to prove the non-negativity of the system (6.1) it is assumed that there 

exist a 𝑡∗ > 𝑡0 such that 𝑆(𝑡∗) = 0 and 𝑆(𝑡) < 0 for 𝑡 ∈ (𝑡∗, 𝑡1] where 𝑡1 is sufficiently 

close to 𝑡∗. If 𝑆(𝑡) = 0, 𝐷𝑡
𝜌
𝑆(𝑡∗) = 𝜔 , thus one obtains , 𝐷𝑡

𝜌
𝑆(𝑡) > 0 for all 𝑡 ∈ [𝑡∗, 𝑡1] 

and 𝐷𝑡
𝜌
𝑆(𝑡) > 𝜖 𝑆(𝑡) where 𝜖 > 0. Hence one derives 𝑆(𝑡) > 𝑆(𝑡∗)𝐸𝜌(𝜖(𝑡 −

𝑡∗)
𝜌), 𝑡 ∈ [𝑡∗, 𝑡1] where 𝐸𝜌(𝑧) = ∑

𝑧𝑘

𝛤(𝜌𝑘+1)

∞
𝑘=0  is the Mittag Leffler function, which 
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contradicts the assumption. Hence 𝑆(𝑡) > 0 for any 𝑡 > 𝑡0.  In the same manner 

𝐼(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are non-negative. Now we prove boundedness of solutions.  

Adding all the equations of the model (6.1), we obtain: 

 

𝐷𝑡
𝜌
𝑁(𝑡) =  𝜔 − 𝜃1𝑁(𝑡) − 𝜃2𝐼(𝑡) − (𝜃1 + 𝜃3)𝑄(𝑡) 

 

Where 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡).  As  𝐼(𝑡)and 𝑄(𝑡) ≥ 0, we have 

 

𝐷𝑡
𝜌
𝑁 ≤  𝜔 − 𝜃1𝑁  

 

Now consider the initial value problem 𝐷𝑡
𝜌
�̅� =  𝜔 − 𝜃1�̅�, �̅�(0) = �̅�0. Using 

comparison principle (Lu & Zhu, 2018), we obtain the following inequality: 

 

𝑁(𝑡) ≤ �̅�(𝑡) for all 𝑡 ≥ 0. 

 

Now applying Laplace transform to the initial value problem we obtain  

 

𝑠𝜌𝐿[�̅�(𝑡)] − 𝑠𝜌−1�̅�0 =
ω𝜌

𝑠
− 𝜃1𝐿[�̅�(𝑡)] 

 

⇒ 𝐿[�̅�(𝑡)] =
𝑠𝜌−1�̅�0
𝑠𝜌 + 𝜃1

+
𝜔𝜌𝑠−1

𝑠𝜌 + 𝜃1
 

 

Using Lemma 3, we obtain 

𝐿[𝐸𝜌,1(−𝜃1𝑡
𝜌)] =

𝑠𝜌−1

𝑠𝜌 + 𝜃1
 

 

𝐿[𝑡𝜌𝐸𝜌,𝜌+1(−𝜃1𝑡
𝜌)] =

𝑠−1

𝑠𝜌 + 𝜃1
 

 

Applying inverse Laplace transform in the above two equations, we get 

 

�̅�(𝑡) = �̅�0𝐸𝜌,1(−𝜃1𝑡
𝜌) +  𝜔𝑡𝜌𝐸𝜌,𝜌+1(−𝜃1𝑡

𝜌), 

 

using 𝐷𝑡
𝜌
𝑁 ≤  𝜔 − 𝜃1𝑁 we have  

 

𝑁(𝑡) ≤ 𝑁0𝐸𝜌,1(−𝜃1𝑡
𝜌) +  𝜔𝑡𝜌𝐸𝜌,𝜌+1(−𝜃1𝑡

𝜌), 

 

By Lemma 4, we obtain 

 

|𝑁(𝑡)| ≤
𝑁0𝐶𝐸

1 + 𝜃1𝑡𝜌
+

𝜔𝑡𝜌𝐶𝐸
1 + 𝜃1𝑡𝜌
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Where 𝐶𝐸 is constant given in Lemma 4. Hence, as 𝑡 → ∞, we have 

𝑁(𝑡) ≤ �̅� with �̅� ≥ 𝐶𝐸
𝜔

𝜃1
. Thus, the solutions are bounded and will remain in region P 

for 𝑡 ≥ 0. Therefore, theorem 6.1 is proved and solution remains in ℝ+
4 .       

 

6.4 Mathematical analysis of the model 

 

                                                                                                                                       

6.4.1 Stability Analysis and Hopf Bifurcation 

 

 

We examine the existence and stability of the disease-free equilibrium 

point in this section. Furthermore, we study how fractional order and time delays affect 

the dynamics of the disease.  

 

 

6.4.1.1 Existence and Stability Analysis of Disease Free Equilibrium 

 

 

System (6.1) always has a disease-free equilibrium, which is easily 

determined by direct computation, 𝐸0 = (𝑆0,0,0,0), where 𝑆0 =
𝜔

𝜃1
. Utilizing the next-

generation matrix approach (Van Den Driessche & Watmough, 2002), the basic 

reproduction number is given by   

 

𝑅0 =
𝛽𝜔

𝜃1(𝜃1+𝜃2+𝛿+𝜎)
                                                 (6.2) 

 

Now we study the local stability of disease free equilibrium point. The characteristic 

matrix associated with system (6.1) is given by: 

 

∆(𝜆) =

[
 
 
 
 
 
 −𝜃1 − 𝜆 −

𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 0 0

0
𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 − (𝜃1 + 𝜃2) − 𝛿𝑒

−𝜆𝜏2 − 𝜎 0 0

0 𝛿𝑒−𝜆𝜏2 −(𝜃1 + 𝜃3 + 𝑞) 0
0 0 𝑞 −𝜃1]

 
 
 
 
 
 

 

 

The corresponding characteristic polynomial at disease-free equilibrium 𝐸0 (
𝜔

𝜃1
0,0,0)  

is  

 

(𝜃1 + 𝜆
𝜌) (−

𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 + (𝜃1 + 𝜃2) + 𝛿𝑒

−𝜆𝜏2 + 𝜎 + 𝜆𝜌) (𝜃1 + 𝜃3 + 𝑞 + 𝜆
𝜌)(𝜃1 +

𝜆𝜌) = 0                                                                                                                    (6.3) 
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Case 6.4.1.1.1 𝜏1 > 0 and 𝜏2 = 0, equation (6.3) can be written as  

 

(𝜃1 + 𝜆
𝜌) (−

𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 + (𝜃1 + 𝜃2) + 𝛿 + 𝜎 + 𝜆

𝜌) (𝜃1 + 𝜃3 + 𝑞 + 𝜆
𝜌)(𝜃1 + 𝜆

𝜌) =

0                                                                                                                               (6.4) 

 

Three of the roots of the characteristic equation are given by 

 

𝜆1 = −𝜃1 ,  𝜆2 = −(𝜃1 + 𝜃3 + 𝑞) ,  𝜆3 = −𝜃1 

 

and the other roots are the solution of the equation 

 

−
𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 + (𝜃1 + 𝜃2) + 𝛿 + 𝜎 + 𝜆

𝜌 = 0                                                           (6.5) 

 

Suppose the above equation has a purely imaginary roots 𝜆 = 𝑖𝜔,𝜔 > 0, then 𝜔 

satisfy 

(𝑖𝜔)𝜌 + (𝜃1 + 𝜃2 + 𝛿 + 𝜎) −
𝛽𝜔

𝜃1
 𝑒−(𝑖𝜔)𝜏1 = 0 

 

𝜔𝜌 (cos
𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
)+(𝜃1 + 𝜃2 + 𝛿 + 𝜎) −

𝛽𝜔

𝜃1
(cos𝜔𝜏1 − 𝑖 sin𝜔𝜏1) = 0 

 

Separating the real and imaginary parts of the above equation 

 

𝜔𝜌 cos
𝜌𝜋

2
+(𝜃1 + 𝜃2 + 𝛿 + 𝜎) = 

𝛽𝜔

𝜃1
 cos𝜔𝜏1 

𝜔𝜌 sin
𝜌𝜋

2
= −

𝛽𝜔

𝜃1
  sin𝜔𝜏1 

 

Squaring and adding both sides, we get 

 

𝜔2𝜌 + 2(𝜃1 + 𝜃2 + 𝛿 + 𝜎) cos
𝜌𝜋

2
𝜔𝜌 + (𝜃1 + 𝜃2 + 𝛿 + 𝜎)

2(1 − 𝑅0
2) = 0          (6.6) 

 

It is evident that equation (6.6) has no positive root if 𝑅0 < 1, however equation (6.6) 

has a positive root if 𝑅0 > 1. Hence equation (6.5) has no purely imaginary roots for 

𝑅0 < 1 and 𝜏1 > 0. From (Z. Wang & Wang, 2018) the disease free equilibrium 

point 𝐸0 is asymptotically stable for 𝜏1 > 0 and 𝜏2 = 0. 

 

Case 6.4.1.1.2 𝜏1 = 0 and 𝜏2 > 0 , equation (6.3) can be reduced to 

 

−
𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 + (𝜃1 + 𝜃2) + 𝛿𝑒

−𝜆𝜏2 + 𝜎 + 𝜆𝜌 = 0                                                  (6.7) 

 

Suppose the above equation has a purely imaginary roots 𝜆 = 𝑖𝜔,𝜔 > 0, then 𝜔 

satisfy 

 



128 

 

 

(𝑖𝜔)𝜌 + (𝜃1 + 𝜃2 + 𝜎) + 𝛿𝑒
−𝑖𝜔𝜏2 −

𝛽𝜔

𝜃1
 = 0 

 

𝜔𝜌 (cos
𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
)+(𝜃1 + 𝜃2 + 𝜎) + 𝛿(cos𝜔𝜏2 − 𝑖 sin𝜔𝜏2 ) −

𝛽𝜔

𝜃1
= 0 

 

After separating the real and imaginary parts we obtain 

 

𝜔𝜌 cos
𝜌𝜋

2
+(𝜃1 + 𝜃2 + 𝜎) = 

𝛽𝜔

𝜃1
− 𝛿 cos𝜔𝜏2 

 

𝜔𝜌 sin
𝜌𝜋

2
= 𝛿 sin𝜔𝜏2 

 

Squaring and adding both sides, we get 

 

𝜔2𝜌 + 2(𝜃1 + 𝜃2 + 𝜎) cos
𝜌𝜋

2
𝜔𝜌 + (𝜃1 + 𝜃2 + 𝜎)

2 − ((
𝛽𝜔

𝜃1
)
2

+ 𝛿2 −

2
𝛽𝜔

𝜃1
𝛿 cos𝜔𝜏2) = 0                                                                                                (6.8) 

 

Since 𝜔𝜌 > 0, cos
𝜌𝜋

2
> 0 and the assumption 

 

𝐶1 : ((
𝛽𝜔

𝜃1
)
2

+ 𝛿2 − 2
𝛽𝜔

𝜃1
𝛿 cos𝜔𝜏2) < (𝜃1 + 𝜃2 + 𝜎)

2 

 

imply that equation (6.8) has no positive real solutions. Furthermore, we can infer that 

equation (6.7) has no purely imaginary roots for 𝜏2 > 0. From (Kashkynbayev & 

Rihan, 2021) the disease free equilibrium point 𝐸0 is asymptotically stable for 𝜏1 = 0 

and 𝜏2 > 0. 
 

 

Case 6.4.1.1.3 𝜏1 > 0 and 𝜏2 > 0 , equation (6.3) can be reduced to  

 

                         −
𝛽𝜔

𝜃1
 𝑒−𝜆𝜏1 + (𝜃1 + 𝜃2) + 𝛿𝑒

−𝜆𝜏2 + 𝜎 + 𝜆𝜌 = 0                              (6.9) 

 

Suppose the above equation has a purely imaginary roots 𝜆 = 𝑖𝜔,𝜔 > 0, then 𝜔 

satisfy 

 

(𝑖𝜔)𝜌 + (𝜃1 + 𝜃2 + 𝜎) + 𝛿𝑒
−𝑖𝜔𝜏2 −

𝛽𝜔

𝜃1
𝑒−𝑖𝜔𝜏1  = 0 

 

𝜔𝜌 (cos
𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
)+(𝜃1 + 𝜃2 + 𝜎) + 𝛿(cos𝜔𝜏2 − 𝑖 sin𝜔𝜏2 ) −

𝛽𝜔

𝜃1
(cos𝜔𝜏1 −

𝑖 sin𝜔𝜏1 ) = 0 

 

Separating the real and imaginary parts we get 
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𝜔𝜌 cos
𝜌𝜋

2
+(𝜃1 + 𝜃2 + 𝜎) = 

𝛽𝜔

𝜃1
cos𝜔𝜏1 − 𝛿 cos𝜔𝜏2 

 

𝜔𝜌 sin
𝜌𝜋

2
= 𝛿 sin𝜔𝜏2 − 

𝛽𝜔

𝜃1
sin𝜔𝜏1 

 

Squaring and adding both sides, we get 

 

𝜔2𝜌 + 2(𝜃1 + 𝜃2 + 𝜎) cos
𝜌𝜋

2
𝜔𝜌 + (𝜃1 + 𝜃2 + 𝜎)

2 − ((
𝛽𝜔

𝜃1
)
2

+ 𝛿2 −

2
𝛽𝜔

𝜃1
𝛿 cos𝜔(𝜏2 − 𝜏1)) = 0                                                                                  (6.10) 

 

Since 𝜔𝜌 > 0, cos
𝜌𝜋

2
> 0 and the assumption  

 

𝐶2 : ((
𝛽𝜔

𝜃1
)
2

+ 𝛿2 − 2
𝛽𝜔

𝜃1
𝛿 cos𝜔(𝜏2 − 𝜏1)) < (𝜃1 + 𝜃2 + 𝜎)

2 

 

imply that equation (6.10) has no positive real solutions. Furthermore, we can infer 

that equation (6.9) has no purely imaginary roots for 𝜏2 > 0. From (Kashkynbayev & 

Rihan, 2021) the disease free equilibrium point 𝐸0 is asymptotically stable for 𝜏1 >
0 and 𝜏2 > 0 . 
 

 

Case 6.4.1.1.4 𝜏1 = 0 and 𝜏2 = 0 , equation (6.3) can be changes to  

 

(𝜃1 + 𝜆
𝜌) (−

𝛽𝜔

𝜃1
 + (𝜃1 + 𝜃2 + 𝛿 + 𝜎) + 𝜆

𝜌) (𝜃1 + 𝜃3 + 𝑞 + 𝜆
𝜌)(𝜃1 + 𝜆

𝜌) = 0    

(𝛿1 + 𝜆
𝜌)((𝜃1 + 𝜃2 + 𝛿 + 𝜎)(1 − 𝑅0) + 𝜆

𝜌)(𝜃1 + 𝜃3 + 𝑞 + 𝜆
𝜌)(𝜃1 + 𝜆

𝜌) = 0               

                                                                                                                               (6.11) 

 

It is clear that all the roots of the equation (6.11) will have negative real parts if  𝑅0 <
1. Then, 𝐸0 is locally asymptotically stable if  𝑅0 < 1 and 𝜏1, 𝜏2 = 0. 

 

 

Theorem 6.2 Disease free equilibrium is locally asymptotically stable if assumptions 

𝐶1, 𝐶2 are satisfied and 𝑅0 < 1 and unstable if 𝑅0 > 1 for 𝜏1, 𝜏2 ≥ 0. 
 

 

6.4.1.2 Existence and Stability Analysis of Endemic Equilibrium Point 

 

 

The endemic equilibria 𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗) of the system (6.1) can be deduced by the 

following equations. 
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𝜔 − 𝜃1𝑆
∗ −

𝛽𝑆∗(𝑡)𝐼∗(𝑡)

1+𝛼𝐼∗(𝑡)2
= 0

 
𝛽𝑆∗(𝑡)𝐼∗(𝑡)

1+𝛼𝐼∗(𝑡)2
− (𝜃1 + 𝜃2)𝐼

∗ − 𝛿𝐼∗(𝑡) −
𝜎𝐼∗

1+𝜗𝐼∗
= 0

𝛿𝐼∗(𝑡) − (𝜃1 + 𝜃3 + 𝑞)𝑄
∗ = 0

𝜎𝐼∗

1+𝜗𝐼∗
+ 𝑞𝑄∗ − 𝜃1𝑅

∗ = 0 }
 
 

 
 

                                                 (6.12)      

 

Which gives  

 

𝑆∗ =
𝜔(1 + 𝛼𝐼∗2)

𝛽𝐼∗ + 𝜃1(1 + 𝛼𝐼∗
2)
, 

 

𝑄∗ =
𝛿𝐼∗

(𝜃1 + 𝜃3 + 𝑞)
, 

 

𝑅∗ =
𝜎𝐼∗(𝜃1 + 𝜃3 + 𝑞) + 𝑞𝛿𝐼

∗(1 + 𝜗𝐼∗)

𝜃1(1 + 𝜗𝐼∗)(𝜃1 + 𝜃3 + 𝑞)
 

 

And 𝐼∗ is the positive solution of the equation given below: 

 

𝑀0 +𝑀1𝐼
∗ +𝑀2𝐼

∗2 +𝑀3𝐼
∗3 +𝑀4𝐼

∗4 +𝑀5𝐼
∗5 = 0                                           (6.13) 

 

Where  

 

𝑀0 = 𝜃1(𝜃1 + 𝜃2 + 𝛿 + 𝜎)(𝑅0 − 1) 
𝑀1 =  𝛽𝜔𝜗 − (𝜃1 + 𝜃2 + 𝛿)𝛽 −  𝜗𝜃1 − 𝜎𝛽 

 

𝑀2 =  𝛽𝜔𝛼 − (𝜃1 + 𝜃2 + 𝛿)𝜗𝛽 − 2𝜎𝛼𝜃1 − 2(𝜃1 + 𝜃2 + 𝛿)𝛼𝜃1 

 

𝑀3 = 𝛼𝛽(𝜔𝜗 − (𝜃1 + 𝜃2 + 𝛿) − 𝜎) − 2(𝜃1 + 𝜃2 + 𝛿)𝛼𝜗𝜃1 

 

𝑀4 = −𝜃1𝛼
2(𝜃1 + 𝜃2 + 𝛿 + 𝜎) − (𝜃1 + 𝜃2 + 𝛿) 𝜗𝛽𝛼 

 

𝑀5 = −(𝜃1 + 𝜃2 + 𝛿) 𝜗𝜃1𝛼
2 

 

 

Using Descartes’ rule of sign, the existence of a unique positive real root  𝐼∗ of equation 

(6.13) is required to satisfy any of the following conditions:  

 

 

i. 𝑀1 > 0,𝑀2 > 0 and 𝑀3 < 0 

 

ii. 𝑀1 > 0,𝑀2 < 0 and 𝑀3 < 0 

 

iii. 𝑀1 < 0,𝑀2 < 0 and 𝑀3 < 0 
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After getting the values of 𝐼∗, we can obtain the values of 𝑆∗, 𝑄∗ and 𝑅∗. Hence a 

unique endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗)  exists if any of the above condition 

holds true. Assume that  

 

(ℋ1):  𝑅0 =
𝛽𝜔

𝜃1(𝜃1 + 𝜃2 + 𝛿 + 𝜎)
> 1 

 

Now to explore the local stability of  𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗) ,we linearize the system  (6.1) 

at endemic equilibrium point 𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗) and  obtain the following Jacobian 

matrix 

 

𝐽(𝐸∗) =

[
 
 
 
 
−𝑛1 − 𝑛2𝑒

−λτ1 −𝑛3𝑒
−λτ1 0 0

𝑛2𝑒
−λτ1 𝑛3𝑒

−λτ1 − 𝑛4 − 𝑛5𝑒
−λτ2 − 𝑛6 0 0

0 𝑛5𝑒
−λτ2 −𝑛1 − 𝑛7 0

0 𝑛6 𝑞 −𝑛1]
 
 
 
 

 

 

Where 𝑛1 = 𝜃1, 𝑛2 =
𝛽𝐼∗

1+𝛼𝐼∗2
 , 𝑛3 =

−𝛽𝑆∗(1−𝛼𝐼∗
2
)

(1+𝛼𝐼∗2)2
,  𝑛4 = 𝜃1 + 𝜃2, 𝑛5 = 𝛿, 𝑛6 =

𝜎

(1+𝜗𝐼∗)2
  

and 𝑛7 = 𝜃3 + 𝑞 

 

The characteristic equation is  

 

[(λ𝜌 + 𝑛1 + 𝑛2𝑒
−λτ1)(λ𝜌 − 𝑛3𝑒

−λτ1 + 𝑛4 + 𝑛5𝑒
−λτ2 + 𝑛6) + 𝑛2𝑛3𝑒

−2λτ1] × (λ𝜌 +

𝑛1 + 𝑛7)(λ
𝜌 + 𝑛1) = 0                                                                                         (6.14) 

 

Suppose that 𝜏1 = 𝜏2 = 0 then the above equation (6.14) reduced to  

 

[λ2𝜌 + (𝐴1 + 𝐴3)λ
𝜌 + (𝐴2 + 𝐴4)] × (λ

𝜌 + 𝑛1 + 𝑛7)(λ
𝜌 + 𝑛1) = 0                  (6.15) 

 

Where 

 

𝐴1 = 𝑛1 + 𝑛4 + 𝑛5 + 𝑛6 

 

𝐴3 = 𝑛2 − 𝑛3 

 

𝐴2 = 𝑛1(𝑛4 + 𝑛5 + 𝑛6) 
 

𝐴4 = 𝑛2(𝑛4 + 𝑛5 + 𝑛6) − 𝑛1𝑛3 

 

Given that 𝑛1 and 𝑛7 are positive constants, we must take the first factor of (6.15) into 

account. Suppose that  

 

(ℋ2): (𝐴1 + 𝐴3) > 0,  (𝐴2 + 𝐴4) > 0, then by the Routh-Hurwitz criterion we have- 

 

 



132 

 

 

Proposition 6.1 For 𝜏1 = 𝜏2 = 0 , if assumptions (ℋ1) and (ℋ2) are satisfied, then the 

roots of (12) are real and negative. Therefore, the Endemic Equilibrium point 

𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗) is locally asymptotically stable. 

 

 

Case 6.4.1.2.1 𝜏1 > 0 and 𝜏2 = 0 

 

 

Since variables 𝑄 and 𝑅 are not included in the first two equations of the system (6.1) 

and the eigen values corresponding to 𝑄 and 𝑅 are λ𝜌 = −𝑛1 − 𝑛7 and λ𝜌 = −𝑛1, 

therefore we can consider the following subsystem that consists of the first two 

equations. 

 

𝐷𝑡0
𝐶

𝑡
𝜌
𝑆(𝑡) = 𝜔 − 𝜃1𝑆 −

𝛽𝑆(𝑡−𝜏1)𝐼(𝑡−𝜏1)

1+𝛼𝐼(𝑡−𝜏1)2

𝐷𝑡0
𝐶

𝑡
𝜌
𝐼(𝑡) =

𝛽𝑆(𝑡−𝜏1)𝐼(𝑡−𝜏1)

1+𝛼𝐼(𝑡−𝜏1)2
− (𝜃1 + 𝜃2)𝐼 − 𝛿𝐼(𝑡 − 𝜏2) −

𝜎𝐼

1+𝜗𝐼

}                               (6.16) 

 

Obviously (𝑆∗, 𝐼∗) is the unique positive equilibrium point of system (6.1) when 𝑅0 >
1 and the characteristic equation (6.14) has the following form  

 

[(λ𝜌 + 𝑛1 + 𝑛2𝑒
−λτ1)(λ𝜌 − 𝑛3𝑒

−λτ1 + 𝑛4 + 𝑛5 + 𝑛6) + 𝑛2𝑛3𝑒
−2λτ1] = 0  

 

Which can be written as  

 

                          λ2𝜌 + 𝐴1λ
𝜌 + 𝐴2 + 𝐴3λ

𝜌𝑒−λτ1 + 𝐴4𝑒
−λτ1 = 0                                (6.17) 

 

Let 𝜆 = 𝜔𝑖(𝜔 > 0) be a root of (14) then we have  

 

𝜔2𝜌(cos 𝜌𝜋 + 𝑖 𝑠𝑖𝑛 𝜌𝜋) + 𝐴1𝜔
𝜌 (𝑐𝑜𝑠

𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
) + 𝐴2

+ 𝐴4(cos𝜔𝜏1 − sin𝜔𝜏1)

+ 𝐴3𝜔
𝜌(cos𝜔𝜏1 − sin𝜔𝜏1) (𝑐𝑜𝑠

𝜌𝜋

2
+ 𝑖 sin

𝜌𝜋

2
) = 0 

 

Separating the real and imaginary parts 

 

                                       
𝐵1𝑐𝑜𝑠ω𝜏1 + 𝐵2𝑠𝑖𝑛ω𝜏1 = −𝐵3
𝐵2 𝑐𝑜𝑠ω𝜏1 − 𝐵1𝑠𝑖𝑛ω𝜏1 = −𝐵4

}                                         (6.18) 

 

Where 𝐵1 = 𝐴3𝜔
𝜌𝑐𝑜𝑠

𝜌𝜋

2
+ 𝐴4, 𝐵2 = 𝐴3𝜔

𝜌𝑠𝑖𝑛
𝜌𝜋

2
, 𝐵3 = 𝜔

2𝜌𝑐𝑜𝑠𝜌 + 𝐴1𝜔
𝜌𝑐𝑜𝑠

𝜌𝜋

2
+

𝐴2, 𝐵4 = 𝜔2𝜌𝑠𝑖𝑛𝜌𝜋 + 𝐴1𝜔
𝜌𝑠𝑖𝑛

𝜌𝜋

2
 . 

 

It follows from (6.18) that 

 

𝑠𝑖𝑛ω𝜏1 =
𝐵1𝐵4−𝐵2𝐵3

𝐵1
2+ 𝐵2

2  , 𝑐𝑜𝑠ω𝜏1 = −
𝐵1𝐵3+𝐵2𝐵4

𝐵1
2+ 𝐵2

2 ,  by 𝑠𝑖𝑛2ω𝜏1 + 𝑐𝑜𝑠
2ω𝜏1 = 1, we get  
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𝐵3
2 + 𝐵4

2 = 𝐵1
2 + 𝐵2

2. 

 

By simple calculations, we deduce  

 

𝜁4 + 𝐶1𝜁
3 + 𝐶2𝜁

2 + 𝐶3𝜁 + 𝐶4 = 0, 
 

Where 𝜁 = 𝜔𝜌, 𝐶1 = 2𝐴1𝑐𝑜𝑠
𝜌𝜋

2
 , 𝐶2 = 𝐴1

2 + 2𝐴2𝑐𝑜𝑠𝜌𝜋 − 𝐴3
2 , 𝐶3 = 2(𝐴1𝐴2 −

𝐴3𝐴4)𝑐𝑜𝑠
𝜌𝜋

2
 , 𝐶4 = 𝐴2

2 − 𝐴4
2 

 

Assume that  

 

(ℋ3): 𝐶4 < 0, 

 

then (6.17) has at least one positive real root ω0. Denote  

 

𝜏1
𝑖 =

1

ω0
[𝑎𝑟𝑐𝑐𝑜𝑠 (

𝐵1𝐵3 + 𝐵2𝐵4

𝐵1
2 + 𝐵2

2 ) + 2𝑖𝜋] , 𝑖 = 0,1,2… 

      

Define the bifurcation point as 

 
𝜏1
0 = min(𝜏1

𝑖) ,     𝑖 = 0,1,2… 

                                                              

To derive the conditions for the existence of hopf bifurcation, we make the following 

hypothesis: 

 

(ℋ4): 
𝐸1𝐹1+𝐸2𝐹2

𝐹1
2+𝐹2

2 ≠ 0, 

 

The expressions of 𝐸1, 𝐸2, 𝐹1, 𝐹2 are as follows: 

 

𝐸1 = 𝐴3𝜔0
𝜌+1

sin (𝜔0𝜏1
0 −

𝜌𝜋

2
) + 𝐴4𝜔0  𝑠𝑖𝑛𝜔0𝜏1

0 

𝐸2 = 𝐴3𝜔0
𝜌+1

cos (𝜔0𝜏1
0 −

𝜌𝜋

2
) + 𝐴4𝜔0𝑐𝑜𝑠𝜔0𝜏1

0 

𝐹1 = 2𝜌𝜔0
2𝜌−1

𝑠𝑖𝑛𝜌𝜋 + 𝜌𝐴1𝜔0
𝜌−1

sin
𝜌𝜋

2
+  𝜌𝐴3𝜔0

𝜌−1
sin (

𝜌𝜋

2
− 𝜔0𝜏1

0)

− 𝐴3𝜏1
0𝜔0

𝜌
cos (

𝜌𝜋

2
− 𝜔0𝜏1

0) − 𝐴4𝜏1
0𝑐𝑜𝑠𝜔0𝜏1

0 

𝐹2 = −2𝜌𝜔0
2𝜌−1

𝑐𝑜𝑠𝜌𝜋 − 𝜌𝐴1𝜔0
𝜌−1

cos
𝜌𝜋

2
−  𝜌𝐴3𝜔0

𝜌−1
cos (

𝜌𝜋

2
− 𝜔0𝜏1

0)

− 𝐴3𝜏1
0𝜔0

𝜌
sin (

𝜌𝜋

2
− 𝜔0𝜏1

0) + 𝐴4𝜏1
0𝑠𝑖𝑛𝜔0𝜏1

0 
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Lemma 6.1 Let λ(𝜏1) = 𝜑(𝜏1) + 𝑖𝜔(𝜏1) be a root of the characteristic equation (6.17) 

near 𝜏1 = 𝜏1
𝑖  meeting 𝜑(𝜏1

𝑖  ) = 0, 𝜔(𝜏1
𝑖  ) = 𝜔0, then the transversality condition 

𝑅𝑒 [
𝑑λ

𝑑𝜏1
]|
(𝜏1=𝜏1

0,𝜔=𝜔0)
≠ 0 holds. 

 

 

Proof. Differentiating both sides of (6.14) with respect to 𝜏1, we get 

 
𝑑λ

𝑑𝜏1
=

λ(𝐴3λ
𝜌+𝐴4)𝑒

−λτ1

2𝜌𝜆2𝜌−1+𝜌𝐴1𝜆𝜌−1+𝜌𝐴3𝜆𝜌−1𝑒−λτ1−𝐴3𝜏1λ𝜌𝑒−λτ1−𝐴4 𝜏1𝑒−λτ1    ⬚
⬚ =

𝐸(λ)

𝐹(λ)
                  (6.19) 

 

and 

 
𝐸(𝜔0𝑖)|𝜏1=𝜏10 = 𝐸1 + 𝑖𝐸2

𝐹(𝜔0𝑖)|𝜏1=𝜏10 = 𝐹1 + 𝑖𝐹2
}                                                                                         (6.20) 

 

By straightforward computation, it can be derived from (6.19) that 

 

𝑅𝑒 [
𝑑λ

𝑑𝜏1
]|
(𝜏1=𝜏1

0,𝜔=𝜔0)

=
𝐸1𝐹1 + 𝐸2𝐹2

𝐹1
2 + 𝐹2

2 ≠ 0 

 

The proof is complete. 

 

 

Theorem 6.3. Suppose 𝜏2 = 0, if assumptions (ℋ1)- (ℋ4) hold, then :  

 

(i) The endemic equilibrium 𝐸∗ of system (6.1) is locally asymptotically stable 

for 𝜏1 ∈ [0, 𝜏1
0); 

 

(ii) System (6.1) undergoes hopf bifurcation at 𝐸∗ when 𝜏1 = 𝜏1
0. 

 

 

Case 6.4.1.2.2 𝜏1 = 0 and 𝜏2 > 0 then equation (6.14) becomes 

 

(λ𝜌 + 𝑛1 + 𝑛2𝑒
−λτ1)(λ𝜌 − 𝑛3𝑒

−λτ1 + 𝑛4 + 𝑛5𝑒
−λτ2 + 𝑛6) + 𝑛2𝑛3𝑒

−2λτ1 = 0      (6.21) 

 

Suppose that λ = ωi(ω > 0) is a root of (6.21), then it follows that  

 

𝜑1(λ) + 𝜑2(λ)𝑒
−λτ2 = 0                                                                                      (6.22) 

 

where 𝜑1(λ) = λ2𝜌 + (𝑎1 + 𝑎2)λ
𝜌 + 𝑎1𝑎2 , 𝜑2(λ) = 𝑎3λ

𝜌 + 𝑎2𝑎3 

 

𝑎1 = 𝑛4 + 𝑛6 − 𝑛3 

𝑎2 = 𝑛2 − 𝑛1 

𝑎3 = 𝑛5 
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Multiplying both sides of equation (6.22) by 𝑒λτ2, we have 

 

𝜑1(λ)𝑒
λτ2 + 𝜑2(λ) = 0                                                                                        (6.23) 

 

Substituting λ = ωi = ω(𝑐𝑜𝑠
𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
) (ω > 0) in equation (6.23) and separating 

the real and imaginary parts gives 

 

𝜑1
𝑅𝑐𝑜𝑠𝜔𝜏2 − 𝜑1

𝐼𝑠𝑖𝑛𝜔𝜏2 = 𝜑2
𝑅

𝜑1
𝐼𝑐𝑜𝑠𝜔𝜏2 + 𝜑1

𝑅𝑠𝑖𝑛𝜔𝜏2 = −𝜑2
𝐼 }                                                                          (6.24) 

 

where 𝜑𝑖
𝑅 , 𝜑𝑖

𝐼  are the real and imaginary parts of 𝜑𝑖, 𝑖 = 1,2 respectively, and  

 

𝜑1
𝑅 = 𝜔2𝜌𝑐𝑜𝑠𝜌𝜋 + (𝑎1 + 𝑎2)𝜔

𝜌𝑐𝑜𝑠
𝜌𝜋

2
+ 𝑎1𝑎2 

𝜑1
𝐼 = 𝜔2𝜌𝑠𝑖𝑛𝜌𝜋 + (𝑎1 + 𝑎2)𝜔

𝜌𝑠𝑖𝑛
𝜌𝜋

2
 

𝜑2
𝑅 = 𝑎3𝜔

𝜌𝑐𝑜𝑠
𝜌𝜋

2
+ 𝑎2𝑎3 

𝜑2
𝐼 = 𝑎3𝜔

𝜌𝑆𝑖𝑛
𝜌𝜋

2
 

 

It is easy to get 

 

𝑐𝑜𝑠𝜔𝜏2 =
−𝜑2

𝑅𝜑1
𝑅−𝜑2

𝐼𝜑1
𝐼

(𝜑1
𝑅)
2
+(𝜑1

𝐼 )
2 = 𝛷1(𝜔1)

𝑠𝑖𝑛𝜔𝜏2 =
−𝜑1

𝑅𝜑2
𝐼+𝜑1

𝐼𝜑2
𝑅

(𝜑1
𝑅)
2
+(𝜑1

𝐼 )
2 = 𝛷2(𝜔1)

}                                                                      (6.25) 

 

Based on (6.25), we obtain that 

 

𝛷1
2(𝜔1) + 𝛷2

2(𝜔1) = 1                                                                                         (6.26) 

 

Assume that equation (6.26) has at least one positive real root 𝜔1, then it follows from 

the first equation of (6.25) that 

 

𝜏2
𝑖 =

1

ω1
[𝑎𝑟𝑐𝑐𝑜𝑠𝛷1(𝜔1) + 2𝑖𝜋], 𝑖 = 0,1,2… 

 

Define the bifurcation point as 

 

𝜏2
0 = min(𝜏2

𝑖 ) ,     𝑖 = 0,1,2… 

                  

To derive the conditions for the existence of hopf bifurcation, we make the following 

hypothesis: 
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(ℋ5): 
𝑃1𝑄1+𝑃2𝑄2

𝑄1
2+𝑄2

2 ≠ 0, 

 

Where 𝑃1, 𝑃2, 𝑄1, 𝑄2 are defined as 

 

𝑃1 = 𝜔1
2𝜌+1

sin(𝜔1𝜏2
0 − 𝜌𝜋) + (𝑎1 + 𝑎2)𝜔1

𝜌+1
sin (𝜔1𝜏2

0 +
𝜌𝜋

2
) + 𝑎1𝑎2 sin𝜔1𝜏2

0 

𝑃2 = −𝜔1
2𝜌+1

cos(𝜔1𝜏2
0 + 𝜌𝜋) − (𝑎1 + 𝑎2)𝜔1

𝜌+1
cos (

𝜌𝜋

2
− 𝜔1𝜏2

0) − 𝑎1𝑎2 cos𝜔1𝜏2
0 

𝑄1 = 2𝜌𝜔1
2𝜌−1

cos (𝜌𝜋 + 𝜔1𝜏2
0)

+ (𝑎1 + 𝑎2)𝜔1
𝜌
cos (𝜔1𝜏2

0 +
𝜌𝜋

2
) + 𝜏2

0 𝜔1
2𝜌

⬚
cos(𝜌𝜋 + 𝜔1𝜏2

0)

+ 𝜏2
0 (𝑎1 + 𝑎2)𝜔1

𝜌
cos (

𝜌𝜋

2
+ 𝜔0𝜏1

0) + 𝑎1𝑎2 cos𝜔1𝜏2
0

+ 𝑎3𝜌𝜔1
𝜌−1

𝑐𝑜𝑠
𝜌𝜋

2
 

𝑄2 = 2𝜌𝜔1
2𝜌−1

sin (𝜌𝜋 + 𝜔1𝜏2
0)

+ (𝑎1 + 𝑎2)𝜔1
𝜌
sin (𝜔1𝜏2

0 +
𝜌𝜋

2
) + 𝜏2

0 𝜔1
2𝜌

⬚
sin(𝜌𝜋 + 𝜔1𝜏2

0)

+ 𝜏2
0 (𝑎1 + 𝑎2)𝜔1

𝜌
sin (

𝜌𝜋

2
+ 𝜔0𝜏1

0) + 𝑎1𝑎2 sin𝜔1𝜏2
0

+ 𝑎3𝜌𝜔1
𝜌−1

𝑠𝑖𝑛
𝜌𝜋

2
 

 

 

 

Lemma 6.2 Let λ(𝜏2) = 𝜑(𝜏2) + 𝑖𝜔(𝜏2) be a root of the characteristic equation (6.23) 

near 𝜏2 = 𝜏2
𝑖  meeting 𝜑(𝜏2

𝑖  ) = 0, 𝜔(𝜏2
𝑖  ) = 𝜔1, then the transversality condition  

𝑅𝑒 [
𝑑λ

𝑑𝜏2
]|
(𝜏2=𝜏2

0,𝜔=𝜔1)
≠ 0 holds. 

 

 

Proof. Differentiating both sides of (6.23) with respect to 𝜏2, we get 

 

𝑑λ

𝑑𝜏2
= −

λ𝜑1(λ)𝑒
λτ2

𝜑1
′(λ)𝑒λτ2 + 𝜏2𝜑1(λ)𝑒λτ2 + 𝜑2

′ (λ)
=
𝑃(λ)

𝑄(λ)
 

 

Where 𝜑𝑖
′(λ) are the derivatives of 𝜑𝑖(λ) (𝑖 = 1,2). 

 
𝑃(𝜔1𝑖)|𝜏2=𝜏20 = 𝑃1 + 𝑖𝑃2

𝑄(𝜔1𝑖)|𝜏2=𝜏20 = 𝑄1 + 𝑖𝑄2
}                                                                                                               (6.27) 

 

By straightforward computation, it can be derived from (6.23) that 

 

𝑅𝑒 [
𝑑λ

𝑑𝜏2
]|
(𝜏2=𝜏2

0,𝜔=𝜔1)
=

𝑃1𝑄1+𝑃2𝑄2

𝑄1
2+𝑄2

2 ≠0. 

 

This completes the proof. 
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Theorem 6.4 Suppose 𝜏1 = 0, if assumptions (𝐻1),(𝐻2) and (𝐻5)  hold, then :  

 

(i) The endemic equilibrium 𝐸∗ of system (6.1) is locally asymptotically stable 

for 𝜏2 ∈ [0, 𝜏2
0); 

 

(ii) System (6.1) undergoes hopf bifurcation at 𝐸∗ when 𝜏2 = 𝜏2
(0)

. 

 

 

Case 6.4.1.2.3   𝜏1 > 0 and 𝜏2 > 0  

 

Case (6.4.1.2.3  a) 𝜏1 > 0 and 𝜏2 > 0 and 𝜏1 ∈ (0, 𝜏1
0) 

 

For any 𝜏1 = 𝜏1̂ ∈ (0, 𝜏1
0), let λ = 𝑖𝜔(𝜏1̂, 𝜏2)(𝜔(𝜏1̂, 𝜏2) > 0) be a root of equation 

(6.14). Obviously λ = 𝑖𝜔(𝜏1̂, 𝜏2)(𝜔(𝜏1̂, 𝜏2) > 0) is also a root of  

 

[(λ𝜌 + 𝑛1 + 𝑛2𝑒
−λτ1)(λ𝜌 − 𝑛3𝑒

−λτ1 + 𝑛4 + 𝑛5𝑒
−λτ2 + 𝑛6) + 𝑛2𝑛3𝑒

−2λτ1] = 0                                                                                                                                                                                                                                                                    

                                                                                                                               (6.28) 

Rearranging equation (6.28) leads to  

 

f1(λ, 𝜏1̂) + f2(λ, 𝜏1̂)𝑒
−λ𝜏1̂⬚ + f3(λ, 𝜏1̂)𝑒

−λτ2 + f4(λ, 𝜏1̂)𝑒
−λτ1𝑒−λτ2 = 0              (6.29) 

 

Where 

 

f1(λ, 𝜏1̂) = λ
2𝜌 + 𝑏1λ

𝜌 + 𝑏2
f2(λ, 𝜏1̂) = 𝑏3λ

𝜌 + 𝑏4
f3(λ, 𝜏1̂) = 𝑏5λ

𝜌 + 𝑏6
f4(λ, 𝜏1̂) = 𝑏7 }

 

 

                                                                                                        (6.30) 

 

and 𝑏𝑖(𝑖 = 1,2, …7) are defined as 

𝑏1 = 𝑛1 + 𝑛4 + 𝑛6 

𝑏2 = 𝑛1(𝑛4 + 𝑛6) 
𝑏3 = 𝑛2 − 𝑛3 

𝑏4 = 𝑛2(𝑛4 + 𝑛6) − 𝑛1𝑛3 

𝑏5 = 𝑛5 

𝑏6 = 𝑛1𝑛5 

𝑏7 = 𝑛2𝑛5 

 

 

Multiplying both sides of (6.29) by 𝑒λτ2 , we obtain 

 

f1(λ, 𝜏1̂)𝑒
λτ2  + f2(λ, 𝜏1̂)𝑒

−λτ1𝑒λτ2  + f3(λ, 𝜏1̂) + f4(λ, 𝜏1̂)𝑒
−λτ1 = 0                      (6.31) 
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Suppose that λ = ωi(ω > 0) is a root of equation (6.31). Substituting it into (6.31) 

and separating the imaginary and real parts, we get  

 

Ω1cosωτ2 + Ω2sinωτ2 = −Ω3 

 

Ω4cosωτ2 + Ω5sinωτ2 = −Ω6 

 

where  

  

Ω1 = f1
𝑅 + f2

𝑅𝑐𝑜𝑠ω𝜏1̂ + f2
𝐼𝑠𝑖𝑛ω𝜏1̂

 Ω2 = −f1
𝐼 − f2

𝐼𝑐𝑜𝑠ω𝜏1̂ + f2
𝑅𝑠𝑖𝑛ω𝜏1̂

Ω3 = f3
𝑅 + f4

𝑅𝑐𝑜𝑠ω𝜏1̂ + f4
𝐼𝑠𝑖𝑛ω𝜏1̂

Ω4 = f1
𝐼 + f2

𝐼𝑐𝑜𝑠ω𝜏1̂ − f2
𝑅𝑠𝑖𝑛ω𝜏1̂

Ω5 = f1
𝑅 + f2

𝑅𝑐𝑜𝑠ω𝜏1̂ + f2
𝐼𝑠𝑖𝑛ω𝜏1̂

Ω6 = f3
𝐼 + f4

𝐼𝑐𝑜𝑠ω𝜏1̂ − f4
𝑅𝑠𝑖𝑛ω𝜏1̂ }

  
 

  
 

                                                                 (6.32) 

 

and fi
𝑅 , fi

𝐼 are the real and imaginary part of fi(λ, 𝜏1̂)(𝑖 = 1,2, … 6) are given as 

f1
𝑅 = 𝜔2𝜌𝑐𝑜𝑠𝜌𝜋 + 𝑏1𝜔

𝜌𝑐𝑜𝑠
𝜌𝜋

2
+ 𝑏2 

f1
𝐼 = 𝜔2𝜌𝑠𝑖𝑛𝜌𝜋 + 𝑏1𝜔

𝜌𝑠𝑖𝑛
𝜌𝜋

2
 

f2
𝑅 = 𝑏3𝜔

𝜌𝑐𝑜𝑠
𝜌𝜋

2
+ 𝑏4 

f2
𝐼 = 𝑏3𝜔

𝜌𝑠𝑖𝑛
𝜌𝜋

2
 

f3
𝑅 = 𝑏5𝜔

𝜌𝑐𝑜𝑠
𝜌𝜋

2
+ 𝑏6 

f3
𝐼 = 𝑏5𝜔

𝜌𝑠𝑖𝑛
𝜌𝜋

2
 

f4
𝑅 = 𝑏7 

f4
𝐼 = 0 

 

By simple calculation, we get 

 

cosωτ2 =
−Ω3Ω5 +Ω2Ω6
   Ω1Ω5 − Ω2Ω4

 

 

sinωτ2 =
−Ω3Ω4 + Ω1Ω6
   Ω2Ω4 −Ω1Ω5

 

 

Since 𝑐𝑜𝑠2 ωτ2 + 𝑠𝑖𝑛
2 ωτ2 = 1                                                                           (6.33) 

 

Assume that equation (6.33) has at least one positive real root 𝜔2, then it follows that 

𝜏3
𝑖 =

1

ω2
[𝑎𝑟𝑐𝑐𝑜𝑠 𝜔2τ2 + 2𝑖𝜋], 𝑖 = 0,1,2…       

 

Define the bifurcation point as 
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𝜏3
0 = min(𝜏3

𝑖 ) ,     𝑖 = 0,1,2… 

                

To derive the conditions for the existence of hopf bifurcation, we make the following 

hypothesis: 

 

(ℋ6): 
𝑀1𝑁1+𝑀2𝑁2

𝑁1
2+𝑁2

2 ≠ 0, 

 

Where 𝑀1, 𝑀2, 𝑁1, 𝑁2 are defined as 

 

𝑀1 = −𝑏3𝜔2
𝜌+1

cos (
𝜌𝜋

2
+ (𝜏1̂ − 𝜏3

0)𝜔2) − 𝜔2𝑏4 sin((𝜏1̂ − 𝜏3
0)𝜔2)

+ 𝜔2
2𝜌+1

sin(𝜌𝜋 + 𝜔2𝜏3
0) + 𝑏1𝜔2

𝜌+1
sin (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

+ 𝜔2𝑏2 sin𝜔2𝜏3
0 

𝑀2 = −𝑏3𝜔2
𝜌+1

cos(𝜌𝜋 + 𝜔2𝜏3
0) − 𝜔2𝑏4 cos((𝜏1̂ − 𝜏3

0)𝜔2)

− 𝜔2
2𝜌+1

cos(𝜌𝜋 + 𝜔2𝜏3
0) − 𝑏1𝜔2

𝜌+1
cos (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

− 𝜔2𝑏2 cos𝜔2𝜏3
0 

𝑁1 = 2 𝜌𝜔2
2𝜌−1

cos(𝜌𝜋 + 𝜔2𝜏3
0) + 𝜌𝑏1𝜔2

𝜌−1
cos (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

+ 𝜏3
0𝜔2

2𝜌
cos(𝜌𝜋 + 𝜔2𝜏3

0) + 𝑏1𝜏3
0𝜔2

𝜌
cos (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

+ 𝜏3
0𝑏2 cos𝜔2𝜏3

0 + 𝑏3𝜌𝜔2
𝜌−1

cos (
𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2)

+ 𝜏3
0𝑏3𝜔2

𝜌
cos (

𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2) + 𝜏3
0𝑏4 cos(𝜏3

0 − 𝜏1̂)𝜔2

+ 𝑏5𝜌𝜔2
𝜌−1

cos
𝜌𝜋

2
− 𝜏1̂𝑏3𝜔2

𝜌
cos (

𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2)

− 𝜏1̂𝑏4 cos(𝜏3
0 − 𝜏1̂)𝜔2 + 𝜏1̂𝑏7𝑐𝑜𝑠𝜔2𝜏1̂ 

𝑁2 = 2 𝜌𝜔2
2𝜌−1

sin(𝜌𝜋 + 𝜔2𝜏3
0) + 𝜌𝑏1𝜔2

𝜌−1
sin (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

+ 𝜏3
0𝜔2

2𝜌
sin(𝜌𝜋 + 𝜔2𝜏3

0) + 𝑏1𝜏3
0𝜔2

𝜌
sin (

𝜌𝜋

2
+ 𝜔2𝜏3

0)

+ 𝜏3
0𝑏2 sin𝜔2𝜏3

0 + 𝑏3𝜌𝜔2
𝜌−1

sin (
𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2)

+ 𝜏3
0𝑏3𝜔2

𝜌
sin (

𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2) + 𝜏3
0𝑏4 sin(𝜏3

0 − 𝜏1̂)𝜔2

+ 𝑏5𝜌𝜔2
𝜌−1

sin
𝜌𝜋

2
+ 𝜏1̂𝑏3𝜔2

𝜌
sin (

𝜌𝜋

2
+ (𝜏3

0 − 𝜏1̂)𝜔2)

+ 𝜏1̂𝑏4 sin(𝜏3
0 − 𝜏1̂)𝜔2 − 𝜏1̂𝑏7 𝑠𝑖𝑛𝜔2𝜏1̂ 

 

 

 

Lemma 6.3 Let λ(𝜏2) = 𝜑(𝜏2) + 𝑖𝜔(𝜏2) be a root of the characteristic equation (6.31) 

near 𝜏2 = 𝜏3
(𝑖)

 meeting 𝜑(𝜏3
𝑖  ) = 0, 𝜔(𝜏3

𝑖  ) = 𝜔2, then the transversality condition 

𝑅𝑒 [
𝑑λ

𝑑𝜏2
]|
(𝜏2=𝜏3

0,𝜔=𝜔2)
≠ 0  holds. 
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Proof. Differentiating both sides of (6.31) with respect to 𝜏2, we get 

 
𝑑λ

𝑑𝜏2
=
𝑀(λ)

𝑁(λ)
 

 

where 𝑀(λ) = (−𝑓1𝑒
λτ2 − 𝑓2𝑒

−λ𝜏1̂𝑒λτ2)λ 
 

𝑁(λ) = (𝑓1
′ + 𝜏2𝑓1 + 𝑓2

′𝑒−λ𝜏1̂ + 𝜏2𝑓2𝑒
−λ𝜏1̂)𝑒λτ2 + 𝑓3

′ + 𝑓4
′𝑒−λ𝜏1̂ − 𝜏1̂(𝑓2𝑒

λτ2

− 𝑓4)𝑒
−λ𝜏1̂ 

 

Where 𝑓𝑖
′(λ) are the derivatives of 𝑓𝑖(λ) (𝑖 = 1,2,3,4) 

 
𝑀(𝜔2𝑖)|𝜏2=𝜏30 = 𝑀1 + 𝑖𝑀2

𝑁(𝜔2𝑖)|𝜏2=𝜏30 = 𝑁1 + 𝑖𝑁2
}                                                                                                             (6.34) 

 

Where 𝑀1, 𝑀2, 𝑁1, 𝑁2 are the real and imaginary parts of 𝑀(λ) and 𝑁(λ).  
 

By straightforward computation we get  

 

𝑅𝑒 [
𝑑λ

𝑑𝜏2
]|
(𝜏2=𝜏3

0,𝜔=𝜔2)
=

𝑀1𝑁1+𝑀2𝑁2

𝑁1
2+𝑁2

2 ≠0. 

 

This completes the proof. 

 

Theorem 6.5 For any 𝜏1 = 𝜏1̂ ∈ (0, 𝜏1
0) if assumptions (ℋ1), (ℋ2) and (ℋ6)  hold, 

then:  

(i) The endemic equilibrium 𝐸∗ of system (6.1) is locally asymptotically stable 

for 𝜏2 ∈ [0, 𝜏3
0); 

(ii) System (6.1) undergoes hopf bifurcation at 𝐸∗ when 𝜏2 = 𝜏3 
0 . 

 

 

Case (6.4.1.2.3 b) 𝜏1 > 0 and 𝜏2 > 0 and 𝜏2 ∈ (0, 𝜏2
0) 

 

For any 𝜏2 = 𝜏2̂ ∈ (0, 𝜏2
0), let λ = 𝑖𝜔(𝜏1, 𝜏2̂)(𝜔(𝜏1, 𝜏2̂) > 0) be a root of equation 

(6.14). Obviously λ = 𝑖𝜔(𝜏1̂, 𝜏2)(𝜔(𝜏1̂, 𝜏2) > 0) is also a root of (6.31) 

 

Rearranging equation (6.31) leads to  

 

f1(λ, 𝜏1) + f2(λ, 𝜏1)𝑒
−λτ1 + f3(λ, 𝜏1)𝑒

−λ𝜏2̂ + f4(λ, 𝜏1)𝑒
−λτ1𝑒−λ𝜏2̂ = 0                (6.35) 

 

Where fi, 𝑖 = 1,2,3 and 4 are defined in (6.30) 

 

Multiplying both sides of (6.35) by 𝑒λ𝜏2̂ , we obtain 

 

f1(λ, 𝜏1)𝑒
λ𝜏2̂ + f2(λ, 𝜏1)𝑒

−λτ1𝑒λ𝜏2̂ + f3(λ, 𝜏1) + f4(λ, 𝜏1)𝑒
−λτ1 = 0                    (6.36) 
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Suppose that λ = ωi(ω > 0) is a root of equation (6.36). Substituting it into (6.36) 

and separating the imaginary and real parts, we get  

 

Ω7cosωτ1 + Ω8sinωτ1 = −Ω9 

Ω10cosωτ1 + Ω11sinωτ1 = −Ω12 

 

where  

 

  

Ω7 = f4
𝑅 + f2

𝑅𝑐𝑜𝑠ω𝜏2̂ − f2
𝐼𝑠𝑖𝑛ω𝜏2̂

 Ω8 = f4
𝐼 + f2

𝐼𝑐𝑜𝑠ω𝜏2̂ + f2
𝑅𝑠𝑖𝑛ω𝜏2̂

Ω9 = f3
𝑅 + f1

𝑅𝑐𝑜𝑠ω𝜏2̂ − f1
𝐼𝑠𝑖𝑛ω𝜏2̂

Ω10 = f4
𝐼 + f2

𝐼𝑐𝑜𝑠ω𝜏2̂ + f2
𝑅𝑠𝑖𝑛ω𝜏2̂

    Ω11 = −f4
𝑅 − f2

𝑅𝑐𝑜𝑠ω𝜏2̂ + f2
𝐼𝑠𝑖𝑛ω𝜏2̂

Ω12 = f3
𝐼 + f1

𝐼𝑐𝑜𝑠ω𝜏2̂ + f1
𝑅𝑠𝑖𝑛ω𝜏2̂ }

  
 

  
 

                                                                (6.37) 

 

 

By simple calculation, we get 

 

cosωτ1 =
−Ω9Ω11 + Ω8Ω12
   Ω7Ω11 − Ω8Ω10

 

sinωτ2 =
−Ω9Ω10 + Ω7Ω12
   Ω8Ω10 − Ω7Ω11

 

 

Since 𝑐𝑜𝑠2 ωτ1 + 𝑠𝑖𝑛
2 ωτ1 = 1                                                                           (6.38) 

 

Assume that equation (6.38) has at least one positive real root 𝜔3, then it follows that 

 

𝜏4
𝑖 =

1

ω3
[𝑎𝑟𝑐𝑐𝑜𝑠 𝜔3τ1 + 2𝑖𝜋], 𝑖 = 0,1,2… 

  

Define the bifurcation point as 

 

𝜏4
0 = min(𝜏4

𝑖 ) ,     𝑖 = 0,1,2… 

               

To derive the conditions for the existence of hopf bifurcation, we make the following 

hypothesis: 

 

(ℋ7): 
𝑅1𝑆1+𝑅2𝑆2

𝑆1
2+𝑆2

2 ≠ 0, 

 

Where 𝑅1, 𝑅2, 𝑆1, 𝑆2 are defined as 

 

 

𝑅1 = 𝑏3𝜔3
𝜌+1

sin (
𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3) + 𝑏4𝜔3 sin((𝜏2̂ − 𝜏4
0)𝜔3) + 𝑏7𝜔3 sin𝜔3𝜏4

0 
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𝑅2 = −𝑏3𝜔3
𝜌+1

cos (
𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3) − 𝑏4𝜔3 cos((𝜏2̂ − 𝜏4
0)𝜔3)

+ 𝑏7𝜔3 cos𝜔3𝜏4
0 

𝑆1 = 2 𝜌𝜔3
2𝜌−1

cos(𝜌𝜋 + 𝜔3𝜏2̂) + 𝜌𝑏1𝜔3
𝜌−1

cos (
𝜌𝜋

2
+ 𝜔3𝜏2̂)

+ 𝜏2̂𝜔3
2𝜌
cos(𝜌𝜋 + 𝜔3𝜏2̂) + 𝑏1𝜏2̂𝜔3

𝜌
cos (

𝜌𝜋

2
+ 𝜔3𝜏2̂)

+ 𝜏2̂𝑏2 cos𝜔3𝜏2̂ + 𝑏3𝜌𝜔3
𝜌−1

cos (
𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3)

+ (𝜏2̂ − 𝜏4
0)𝑏3𝜔3

𝜌
cos (

𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3)

+ (𝜏2̂ − 𝜏4
0)𝑏4 cos(𝜏2̂ − 𝜏4

0)𝜔3 + 𝑏5𝜌𝜔3
𝜌−1

cos
𝜌𝜋

2
− 𝜏4

0𝑏7𝑐𝑜𝑠𝜔3𝜏4
0 

𝑆2 = 2 𝜌𝜔3
2𝜌−1

sin(𝜌𝜋 + 𝜔3𝜏2̂) + 𝜌𝑏1𝜔3
𝜌−1

sin (
𝜌𝜋

2
+ 𝜔3𝜏2̂)

+ 𝜏2̂𝜔3
2𝜌
sin(𝜌𝜋 + 𝜔3𝜏2̂) + 𝑏1𝜏2̂𝜔3

𝜌
sin (

𝜌𝜋

2
+ 𝜔3𝜏2̂)

+ 𝜏2̂𝑏2 sin𝜔3𝜏2̂ + 𝑏3𝜌𝜔3
𝜌−1

sin (
𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3)

+ (𝜏2̂ − 𝜏4
0)𝑏3𝜔3

𝜌
sin (

𝜌𝜋

2
+ (𝜏2̂ − 𝜏4

0)𝜔3)

+ (𝜏2̂ − 𝜏4
0)𝑏4 sin(𝜏2̂ − 𝜏4

0)𝜔3 + 𝑏5𝜌𝜔3
𝜌−1

sin
𝜌𝜋

2
+ 𝜏4

0𝑏7 sin𝜔3𝜏4
0 

 
 

Lemma 6.4 Let λ(𝜏1) = 𝜑(𝜏1) + 𝑖𝜔(𝜏1) be a root of the characteristic equation (6.35) 

near 𝜏1 = 𝜏4
(𝑖)

 meeting 𝜑(𝜏4
𝑖  ) = 0, 𝜔(𝜏4

𝑖  ) = 𝜔3, then the transversality condition 

𝑅𝑒 [
𝑑λ

𝑑𝜏1
]|
(𝜏1=𝜏4

0,𝜔=𝜔3)
≠ 0  holds. 

 

 

Proof. Differentiating both sides of (6.36) with respect to 𝜏1, we get 

 
𝑑(λ, 𝜏2̂)

𝑑𝜏1
=
𝑅(λ)

𝑆(λ)
 

 

where 𝑅(λ) = (𝑓4𝑒
−λτ1 − 𝑓2𝑒

−λτ1𝑒λ𝜏2̂)λ 
 

𝑆(λ) = (𝑓1
′ + 𝜏2̂𝑓1)𝑒

λ𝜏2̂ + (𝑓2
′ + (𝜏2̂ − τ1)𝑓2)𝑒

−λτ1𝑒λ𝜏2̂ + 𝑓3
′ + (𝑓4

′ − τ1𝑓4)𝑒
−λτ1 

 

Where 𝑓𝑖
′(λ) are the derivatives of 𝑓𝑖(λ) (𝑖 = 1,2,3,4). 

 
𝑅(𝜔2𝑖)|𝜏2=𝜏30 = 𝑅1 + 𝑖𝑅2

𝑆(𝜔2𝑖)|𝜏2=𝜏30 = 𝑆1 + 𝑖𝑆2
}                                                                                                                (6.39) 

 

Where 𝑅1, 𝑅2, 𝑆1, 𝑆2 are the real and imaginary parts of 𝑅(λ) and 𝑆(λ) 
 

By straightforward computation we get  
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𝑅𝑒 [
𝑑λ

𝑑𝜏2
]|
(𝜏1=𝜏4

0,𝜔=𝜔3)
=

𝑅1𝑆1+𝑅2𝑆2

𝑆1
2+𝑆2

2 ≠0. 

 

This completes the proof. 

 

 

Theorem 6.6 For any 𝜏2 = 𝜏2̂ ∈ (0, 𝜏2
0) if assumptions (ℋ1), (ℋ2) and (ℋ7)  hold, 

then:  

 

(i) The endemic equilibrium 𝐸∗ of system (6.1) is locally asymptotically stable 

for 𝜏1 ∈ [0, 𝜏4
0); 

 

(ii) System (6.1) undergoes Hopf Bifurcation at 𝐸∗ when 𝜏1 = 𝜏4 
0 . 

 

 

6.5 Numerical Simulations 

 

 

In this section, numerical simulations are performed to verify our 

theoretical results of stability and bifurcation of system (6.1).  

We take 𝜔 = 0.009, 𝛽 = 0.009, 𝜃1 = 0.05, 𝜃2 = 0.01, 𝜃3 = 0.02, 𝛿 = 0.002, 𝑞 =
0.02, 𝛼 = 0.0007, 𝜗 = 0.002, 𝜎 = 0.02 and by simple calculations , we get the unique 

endemic equilibrium point 𝐸∗(𝑆∗, 𝐼∗, 𝑄∗, 𝑅∗) =
(75.3331, 103.8889, 2.3086, 35.3301). 
 

 

6.5.1  𝝉𝟏 > 𝟎 and 𝝉𝟐 = 𝟎 

 

 

First, we study the impact of the incubation delay 𝜏1 on the dynamical 

behaviours of the system. Here we fix the fractional order 𝜌 = 0.85. We easily obtain 

critical value 𝜏1
0 = 21.8372. Figures 6.1(i), 6.1(ii), 6.1(iii) and 6.1(iv) shows the 

endemic equilibrium 𝐸∗ is asymptotically stable when 𝜏1= 13.2 < 𝜏1
0 which agrees 

with Theorem 6.3. Figures 6.2(i), 6.2(ii), 6.2(iii) and 6.4(iv) shows that the endemic 

equilibrium 𝐸∗ is unstable when 𝜏1= 22. 3 > 𝜏1
0 and a Hopf Bifurcation occurs. 

 

We also evaluate the impact of the fractional order 𝜌 on the dynamics of 

the system. When choosing 𝜏1= 9, it can be seen from Figures 6.3(i), 6.3(ii), 6.3(iii) 

and 6.3(iv) that with the decrease of the fractional order 𝜌 can speed up the 

convergence rate of the system. Fixing 𝜏1= 12, system demonstrates an unstable 

behavior when 𝜌 = 1(i.e. system is when integer order system), however the endemic 

equilibrium of the system is locally asymptotically stable when 𝜌 = 0.7 or 𝜌 = 0.8 or 𝜌 
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= 0.9 (see Figures 6.4(i), 6.4(ii), 6.4(iii) and 6.4(iv)). This implies that the unstable 

equilibrium of an integer order system may become stable in a fractional order system. 

 

6.5.2  𝝉𝟏 = 𝟎 and 𝝉𝟐 > 𝟎 

 

 

Fixing 𝜌 = 0.85, we can get critical values 𝜔1 = 0.0534 and 𝜏2
0 = 20.77. 

Figures 6.5(i), 6.5(ii), 6.5(iii) and 6.5(iv) shows that state trajectories of the system 

converge to the endemic equilibrium 𝐸∗ when 𝜏2 = 15.5 < 𝜏2
0, while it can seen from 

Figure 6.6(i), 6.6(ii), 6.6(iii) and 6.6(iv) that the endemic equilibrium 𝐸∗of the system 

becomes unstable and a periodic solution bifurcates from a Hopf bifurcation when 𝜏2= 

26.2 > 𝜏2
0. These numerical results are consistent with Theorem 6.4. 

 

 

We also study how the fractional order 𝜌 affects the convergence rate of 

the system. Choosing 𝜏2 = 8, we find from figures 6.7(i), 6.7(ii), 6.7(iii) and 6.7(iv) 

that with decreasing the value of fractional order can accelerate the speed of the 

system. When fixing 𝜏2 =12 (i.e. the system is an integer order system), while it 

becomes locally stable if 𝜌 = 0.7, 0.8, 0.9 (Figures 6.8(i), 6.8(ii), 6.8(iii) and 6.8(iv)). 

This implies that the introduction of fractional order may convert an oscillatory system 

into a stable one. 

 

 

6.5.3  𝝉𝟏 > 𝟎 and 𝝉𝟐 > 𝟎 

 

 

6.5.3.1 𝝉𝟏 > 𝟎, 𝝉𝟐 > 𝟎 and 𝝉𝟏 ∈ (𝟎, 𝝉𝟏
𝟎) 

 

 

For the sake of convenience, we fix 𝜏1 = 𝜏1̂ = 9. Choosing 𝜌 = 0.85, we 

obtain 𝜏3
0 = 23.4. Our numerical simulations can verify theoretical results in Theorem 

6.7. To be more specific, Figures 6.9(i), 6.9(ii), 6.9(iii) and 6.9(iv) shows that the 

endemic equilibrium 𝐸∗ of the system is asymptotically stable when 𝜏2 = 18 < 𝜏3
0, 

while it becomes unstable and Hopf bifurcation occurs when 𝜏2 = 24.5 > 𝜏3
0 (see 

Figures 6.10(i), 6.10(ii), 6.10(iii) and 6.10(iv)). 

 

 

When the fractional order is chosen as 𝜌 =  0.6, 0.7, 0.8 and 0.9 with 𝜏2 =
13.5 , it can be seen from Figures 6.11(i), 6.11(ii), 6.11(iii) and 6.11(iv) that the 

decrease of the fractional order fasten the convergence rate of the system and the 

endemic equilibrium of system is unstable when fractional order reaches unity .Setting 

𝜏2 = 19.5 and choosing fractional order as 𝜌 =  0.7, 0.8, 0.85 and 0.86, we observe 

that decrease of the fractional order speed up the convergence rate of the system (see 

Figures 6.12(i), 6.12(ii), 6.12(iii) and 6.12(iv)). 

 



145 

 

 

 

6.5.3.2 𝝉𝟏 > 𝟎, 𝝉𝟐 > 𝟎 and 𝝉𝟐 ∈ (𝟎, 𝝉𝟐
𝟎)   

             

                                                                                                                                           

In the same way, we fix 𝜏2 = 𝜏2̂ = 18 ∈ (0, 𝜏2
0]. By setting 𝜌 = 0.85, we 

get 𝜏4
0 = 17.6. The endemic equilibrium of the system is asymptotically stable when 

𝜏1 = 9.1 < 𝜏4
0 (see Figures 6.13(i), 6.13(ii), 6.13(iii) and 6.13(iv)) and it becomes 

unstable and Hopf bifurcation occurs when  𝜏1 = 18.6 > 𝜏4
0 (see Figures 6.14(i), 

6.14(ii), 6.14(iii) and 6.14(iv)), which agrees with theorem 6.8. 

 

 

By choosing 𝜌 = 0.7, 0.8, 0.9 and 1.0 with 𝜏1 = 9, we find the similar 

impact of the fractional order on the convergence rate of the system (see Figures 

6.15(i), 6.15(ii), 6.15(iii) and 6.15(iv)). Setting 𝜏1 = 15 with fractional orders 𝜌 = 0.8, 

0.9 and 1.0, the endemic equilibrium of the system is unstable when fractional order 

𝜌 = 1 (i.e. the system is an integer order system), while it becomes asymptotically 

stable when 𝜌 = 0.7 or 0.8 (see Figures 6.16(i), 6.16(ii), 6.16(iii) and 6.16(iv)). 

 

 

 
Figure 6.1 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏1 = 13.2 < 𝜏1
0 
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Figure 6.1 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏1 = 13.2 < 𝜏1
0 

 

 

 

 
Figure 6.1 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏1 = 13.2 < 𝜏1
0 
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Figure 6.1 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏1 = 13.2 < 𝜏1
0 

 

 

 

 

 
Figure 6.2 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏1 = 22.3 > 𝜏1
0 
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Figure 6.2 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏1 = 22.3 > 𝜏1
0 

 

 

 

 
Figure 6.2 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏1 = 22.3 > 𝜏1
0 
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Figure 6.2 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏1 = 22.3 > 𝜏1
0 

 

 

 

 

 
Figure 6.3 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 9 
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Figure 6.3 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 9 
 

 

 

 
Figure 6.3 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 9 
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Figure 6.3 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 9 
 

 

 

 
Figure 6.4 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 12 
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Figure 6.4 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 12 
 

 

 

 
Figure 6.4 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 12 
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Figure 6.4 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏1 = 12 
 

 

 

 
Figure 6.5 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏2 = 15 < 𝜏2
0 
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Figure 6.5 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏2 = 15 < 𝜏2
0 

 

 

 

 
Figure 6.5 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏2 = 15 < 𝜏2
0 
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Figure 6.5 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏2 = 15 < 𝜏2
0 

 

 

 

 
Figure 6.6 (i) The time series of the system when 𝜌 =
0.85, 𝜏2 = 26 > 𝜏2

0 
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Figure 6.6 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏2 = 26 > 𝜏2
0 

 

 

 

 
Figure 6.6 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏2 = 26 > 𝜏2
0 
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Figure 6.6 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏2 = 26 > 𝜏2
0 

 

 

 

 
Figure 6.7 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 8 



158 

 

 

 
Figure 6.7 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 8 
 

 

 

 
Figure 6.7 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 8 
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Figure 6.7 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 8 
 

 

 

 
Figure 6.8 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 12 
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Figure 6.8 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 12 
 

 

 

 
Figure 6.8 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 12 
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Figure 6.8 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8, 0.9 𝑎𝑛𝑑 1, 𝜏2 = 12 
 

 

 

 
Figure 6.9 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 18 < 𝜏3
0 
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Figure 6.9 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 18 < 𝜏3
0 

 

 

 

 
Figure 6.9 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 18 < 𝜏3
0 
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Figure 6.9 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 18 < 𝜏3
0 

 

 

 

 
Figure 6.10 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 24.5 > 𝜏3
0 
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Figure 6.10 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 24.5 > 𝜏3
0 

 

 

 

 
Figure 6.10 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 24.5 > 𝜏3
0 
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Figure 6.10 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏1 = 9, 𝜏2 = 24.5 > 𝜏3
0 

 

 

 

 
Figure 6.11 (i) Time series for the susceptible 

population when 𝜌 = 0.6, 0.7 ,0.8 𝑎𝑛𝑑 0.9, 𝜏2 = 13.5 
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Figure 6.11 (ii) Time series for the infected population 

when 𝜌 = 0.6, 0.7 ,0.8 𝑎𝑛𝑑 0.9, 𝜏2 = 13.5 
 

 

 

 
Figure 6.11 (iii) Time series for the quarantine 

population when 𝜌 = 0.6, 0.7 ,0.8 𝑎𝑛𝑑 0.9, 𝜏2 = 13.5 
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Figure 6.11 (iv) Time series for the recovered 

population when 𝜌 = 0.6, 0.7 ,0.8 𝑎𝑛𝑑 0.9, 𝜏2 = 13.5 
 

 

 

 
Figure 6.12 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8 ,0.85 𝑎𝑛𝑑 0.86, 𝜏2 =
19.5 



168 

 

 

 
Figure 6.12 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8 ,0.85 𝑎𝑛𝑑 0.86, 𝜏2 = 19.5 
 

 

 

 
Figure 6.12 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8 ,0.85 𝑎𝑛𝑑 0.86, 𝜏2 =
19.5 



169 

 

 

 
 

Figure 6.12 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8 ,0.85 𝑎𝑛𝑑 0.86, 𝜏2 =
19.5 

 

 

 

 
Figure 6.13 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 9 < 𝜏4
0 
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Figure 6.13 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 9 < 𝜏4
0 

 

 

 

 
Figure 6.13 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 9 < 𝜏4
0 
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Figure 6.13 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 9 < 𝜏4
0 

 

 

 

 
Figure 6.14 (i) Time series for the susceptible 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 23 > 𝜏4
0 
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Figure 6.14 (ii) Time series for the infected population 

when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 23 > 𝜏4
0 

 

 

 

 
Figure 6.14 (iii) Time series for the quarantine 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 23 > 𝜏4
0 
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Figure 6.14 (iv) Time series for the recovered 

population when 𝜌 = 0.85, 𝜏2 = 18, 𝜏1 = 23 > 𝜏4
0 

 

 

 

 
Figure 6.15 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 9 
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Figure 6.15 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 9 
 

 

 

 
Figure 6.15 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 9 
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Figure 6.15 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 9 
 

 

 

 
Figure 6.16 (i) Time series for the susceptible 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 15 
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Figure 6.16 (ii) Time series for the infected population 

when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 15 
 

 

 

 
Figure 6.16 (iii) Time series for the quarantine 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 15 



177 

 

 

 
Figure 6.16 (iv) Time series for the recovered 

population when 𝜌 = 0.7, 0.8 ,0.9 𝑎𝑛𝑑 1.0, 𝜏1 = 15 

 
 

6.6 Conclusion 

 

 

This chapter examines a fractional order SIQR model that has two distinct 

time delays and a saturated incidence rate and treatment rate. We generalized the 

integer order system into a fractional order system, which more precisely captures the 

disease's process. We acquire the characteristics of the system. A number of adequate 

conditions have been determined based on the derived characteristics to ensure the 

stability of the endemic equilibrium points and the disease free equilibrium, as well as 

the existence of the Hopf bifurcation. We find that when the time delays cross the 

critical thresholds of 𝜏1
∗ and 𝜏2

∗, the model exhibits Hopf bifurcation.  

 

 

Some numerical simulations have been used to validate the theoretical 

results. Our numerical results confirm the theoretical work that the endemic 

equilibrium is locally stable when time delays are smaller than the critical value, and 

that the endemic equilibrium becomes unstable and undergoes Hopf bifurcation when 

the bifurcation parameter crosses the critical value. Additionally, numerical 

simulations suggest that because of the long run memory embodied by the fractional 

derivative, varying fractional orders result in different rates of steady state 

stabilization. The system's dynamics are improved by including memory in the model, 

which is represented by the fractional derivative and time delay.  
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CHAPTER 7  

 

 
CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

 

 

 

 

In this final chapter, we summarize the main outcomes of the thesis and 

present some potential directions for further research along with its social impact. 

 

 

7.1 Conclusion 

 

 

Compared to traditional integer-order models, the development of a 

fractional mathematical model for the dynamics of infectious diseases offers a more 

precise and adaptable method of simulating the spread of diseases. These models 

provide a more accurate representation of the dynamics of disease transmission in real 

life by capturing memory effects and more intricate interactions within a population 

using fractional-order derivatives. The accuracy and adaptability of epidemiological 

modeling for infectious disease dynamics are significantly enhanced by including time 

delay in the fractional mathematical model. By incorporation of fractional derivatives 

and time delays, the model covers more realistic disease spread than with classical 

models. Fractional derivatives represent the long-term memory and hereditary nature 

of the disease, while time delays may reflect real-world phenomena such as incubation 

periods, delayed immune responses or lags in applying social measures. The model 

formed by the amalgamation of these two phenomena reflects a more realistic 

mechanism of disease dynamics in time series and is thus better for forecasting about 

the diseases which will help suggest predictive measures, thereby supporting sensible 

planning etc., regarding public health interventions. 

 

 

In the thesis, we formulated and analyzed Caputo fractional order 

mathematical models to investigate the transmission and preventive mechanisms of 

infectious diseases with non-linear incidence and treatment rates. Models have been 

categorized based on the outbreak, transmission, and expansion of the disease by 

integrating numerous aspects, such as psychological impacts, population density of 

susceptible individuals, and constraints on treatment techniques. The model has also 

incorporated novel combinations of various non-linear incidence and treatment rates 

according to the disease's requirements. The infection incidence rates have a non-linear 

functional form that facilitates the required dynamics of transmission in a large 

population. It is demonstrated that the proposed models are epidemiologically valid. 

The model’s equilibrium analysis confirms and demonstrates the existence and 

uniqueness of equilibria. Numerical simulations were used to analyse and validate the 

equilibria's local and global stability characteristics. For each model, we have 
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determined the basic reproduction number 𝑅0,which serves as threshold value for 

assessing disease persistence in the endemic domain. Suitable incidence and treatment 

rates for different diseases can capture the various unknown aspects of the dynamics 

of the disease. Public health organizations may use the suggested combinations to keep 

an eye on the outbreak, better preventive suggestions and proper treatment planning to 

tackle the situation according to the severity of the condition. Therefore, a lot of 

precaution has been taken in choosing suitable form of incidence and treatment rates 

according to the need of the dynamics of a particular situation of the diseases. 

 

 

In chapter two, we explore the Caputo fractional order SIR epidemic model 

with Beddington-De Angelis incidence and Holling type II treatment rate for COVID-

19. The local and global stability of the disease free & endemic equilibrium points has 

been investigated. The results suggests that better convergence can be accomplished 

by reducing the order of fractional derivatives. Also, the rate of transmission decreases 

if there is less contact between susceptibles and infectives which could be achieved by 

taking adequate safety measures both by susceptibles and infectives, as well as 

imposing lockdown. Chapter three studies fractional order model using Caputo 

fractional derivative to analyse the effects of social media on mental health during 

COVID-19 considering Holling type II saturated cure rate and the Beddington-De 

Angelis incidence rate, discussing the stability behavior of local and endemic 

equilibrium points. It concludes that on reducing the fractional order, number of 

infectives decreases. Also, number of infectives decreases by optimum and control use 

of social media in case of any situation like COVID-19 where the possibility of panic 

is very high. From this study we suggest that as the infected individuals take more 

precautions such as switching to traditional media use, reducing online time, practicing 

yoga, exercise and meditation, appropriate use of social media etc, number of 

infectives decreases. Chapter four presents Caputo fractional derivative model for 

impact of awareness on infectious disease with Holling type III treatment rate and 

Monod-Haldane incidence rate and it has been discovered that increasing media 

awareness decreases the number of infected individuals and consequently reduces the 

peak of the epidemic.  In chapter five, we examine the dynamics of fractionally ordered 

delay differential Susceptible-Infectives-Recovered epidemiological model with 

Holling functional type II treatment rate and Crowley-Martin (CM) functional type 

incidence. To make ourselves acquainted with more practical understanding of the 

epidemic's dynamics, the incidence rate was delayed by the latency time, studies the 

sufficient requirements for steady-state stability and Hopf bifurcation in the presence 

of time delay. The model exhibits a Hopf bifurcation at the threshold parameters. When 

time delays exceed critical values, the model goes through Hopf bifurcation. 

Numerical studies demonstrate that combining fractional order with time delays in the 

epidemic model affects the behavior and improves the model's stability. Chapter six is 

an extension of chapter five. A double delayed fractional order susceptible-infected-

quarantine-recovered epidemic model with saturated incidence and treatment rates is 

examined in this chapter. The model includes two time delays: one for the length of 

the incubation period, and another for the time delay caused by people's resistance to 

being placed under quarantine. The model experiences Hopf bifurcation when delays 

exceed critical values. Our numerical results confirm the theoretical work that the 



181 

 

 

endemic equilibrium is locally stable when time delays are smaller than the critical 

value, and that the endemic equilibrium becomes unstable and undergoes Hopf 

bifurcation when the bifurcation parameter crosses the critical value. Additionally, 

numerical simulations suggest that because of the long run memory embodied by the 

fractional derivative, varying fractional orders result in different rates of steady state 

stabilization. The system's dynamics are improved by including memory in the model, 

which is represented by the fractional derivative and time delay.  

 

 

7.2 Future Scope 

 

 

We have solely suggested deterministic models for the spread of disease 

in this thesis. To account for randomness in disease transmission, fractional models 

can be coupled with stochastic processes as future research and directions. This will 

increase possibility of accuracy in forecast and may make the models more sensitive 

to real-world uncertainty. The inclusion of control theory can provide improved 

instruments for the control of infectious diseases.  

 

 

7.3 Social Impact 

 

 

Fractional models can be used to improve planning and response 

strategies, which will help society in better management of pandemics and minimize 

their overall effects. By offering more accurate predictions of disease spread and the 

effectiveness of interventions, fractional models may help in lessening the financial 

impact of infectious disease outbreaks by facilitating more effective resource 

allocation. By educating the public on the need of prompt actions, such as adhering to 

preventative measures, seeking treatment early, and the consequences of delays, the 

results of these models can help to mould into a society that is more informed and 

proactive even in more critical situation. 
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APPENDIX 
 

 

Definition 1(Podlubny, I. (1999)) “The Caputo fractional derivative of order 𝜌 of a 

function 𝑓(𝑡) ∈ 𝐶𝑛([𝑡0, +∞),ℝ) is defined as  

 

𝐷𝑡
𝜌
 𝑓(𝑡) =

1

𝛤(𝑛 − 𝜌)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝜌+1−𝑛
 𝑑𝜏

𝑡

𝑡0

 

 

Where  𝑡0 ≥ 𝑡, 𝛤.  is the Gamma Function and n is the positive integer such that 𝑛 −
1 < 𝜌 < 𝑛. When 0 < 𝜌 < 1, we have  

 

𝐷𝑡
𝜌
 𝑓(𝑡) =

1

𝛤(1 − 𝜌)
∫

𝑓′(𝜏)

(𝑡 − 𝜏)𝜌
 𝑑𝜏

𝑡

𝑡0

 

We have the following definition for the Riemann-Liouville case: 

𝐷𝑡
𝜌
 𝑓(𝑡) =

1

𝛤(𝑛 − 𝜌)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝜏)𝜌+1−𝑛 𝑓(𝜏)𝑑𝜏  
𝑡

𝑡0

" 

 

Lemma 1(Matignon & Matignon, 1996)  “Consider the fractional-order system 

𝐷𝑡
𝜌
 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))                                                                                               

with initial condition  𝑥(𝑡0) = 𝑥𝑡0where 𝜌 ∈ (0,1]. The equilibrium points of system 

are locally asymptotically stable if all eigenvalues 𝜆𝑖 of the Jacobian matrix 
𝜕𝑓(𝑡,𝑥)

𝜕𝑥
 

evaluated at the equilibrium points satisfy  |𝑎𝑟𝑔(𝜆𝑖)| >
𝜌 𝜋

2
 ” 

 

 

Lemma 2. “Generalized mean value theorem (Odibat & Shawagfeh, 2007) Let 

𝑓(𝑥) 𝜖 𝐶[𝑎, 𝑏] and 𝐷𝜌𝑓(𝑥) 𝜖 𝐶(𝑎, 𝑏] for 0 < 𝜌 ≤ 1. Then we have    

𝑓(𝑥) = 𝑓(𝑎) + 
1

𝛤(𝛼)
𝐷𝜌𝑓(𝜉) (𝑥 − 𝑎)𝜌   where 0 ≤ 𝜉 ≤ 𝑥 , ∀ 𝑥 𝜖 (𝑎, 𝑏]” 

 

 

Lemma 3 (El-Sayed et al., 2007) “Let 𝛼1 > 0, 𝛼2 > 0, 𝑎𝑛𝑑 𝑐 ∈ 𝐶. Define 𝑦(𝑡) =
 𝑡𝛼2−1𝐸𝛼1,𝛼2(±𝑐𝑡

𝛼1), where 𝐸𝛼1,𝛼2(z) denotes the two-parameter Mittag–Leffler 

function with parameters 𝛼1 and 𝛼2, then the Laplace transformation of y is given by 

𝐿[𝑦(𝑡)] =
𝑠𝛼1−𝛼2

𝑠𝛼1∓𝑐
 ”. 

 

 

Lemma 4 (El-Sayed et al., 2007) “Let 𝛼2 is an arbitrary real number. If 𝛼1 < 2, then 

there is a constant 𝐶𝐸 such that, for all z in the complex plane, |𝐸𝛼1,𝛼2(𝑧)| ≤
𝐶𝐸

1+|𝑧|
”. 
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