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ABSTRACT 
 

 Detection and identification of surface and subsurface objects has been an area 

of research for remote sensing experts. Globally, researchers have struggled to detect 

and identify subsurface buried landmines using remote sensing technologies. Despite 

several research and efforts, people still lose their lives from the explosion of hidden 

landmines near the border areas. India has also long been fighting insurgency along 

northern borders. Remote sensing technologies may be helpful in the detection and 

identification of all or some of these objects and targets, which may either be on the 

surface or buried. The Ability of all-time vision and penetration capability of 

Scatterometer (SCAT) and Synthetic aperture radar (SAR) makes them suitable for the 

detection of objects adverse weather conditions. In this research, improvement of 

detection of surface and subsurface objects has been has been studied through three 

objectives. All the three objectives are based on use of different microwave data and 

associated methodology to achieve the desired outcomes. 

 In the first objective, microwave remote sensing has been explored to detect 

buried targets (e.g., landmines). Although microwave-borne detection of shallow buried 

landmines is a safe option, it is a complicated and computationally profound process 

combining multiple parameters. This research uses data obtained in VV and HH 

polarizations and their fusion to minimize surface roughness for landmine detection. 

Therefore, in this objective, experiments have been carried out using a ground-based C- 

and X-band (VV and HH polarization) microwave scatterometer to detect landmines. A 

microwave transmitter setup was established on a 24x24 frame size (5 cm of each grid) 

to collect the backscatter data from a landmine buried under the dry sand. A wooden 

profile is used to vary the soil surface roughness from 1cm to 5 cm. Raw data is 
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subjected to various preprocessing steps: Calibration, deconvolution, and 

normalization. This objective involves processing under full-frame(24x24) and local-

frame (8x8) processing. In this task, the polarimetric characteristics of waves and 

interaction with buried landmines are critically evaluated through histogram, 

segmentation of images, and various statistical characteristics. Various numerical 

polarization fusion approaches have been assessed for their effect on landmine 

detection. In addition, a numerical polarization fusion approach ((HH+VV)- (VV-HH)) 

has been evaluated. At last, the performance of all approaches has been evaluated using 

entropy. The result indicates that multi-polarization fusion approaches minimize the 

surface roughness effects, further enhancing landmine detection. Analysis of multiband 

(C- and X-band) has been presented at the end to explore multiband data's capability to 

discriminate objects. 

 In the second objective of this research, polarimetric characteristics of SAR have 

been utilized to improve man-made and natural object detection. PolSAR image is 

decomposed with hybrid decomposition methods to reduce the value of cross-

polarization coupling of scattering components. The value of the overestimated 

(dominated) scattering component is evaluated by calculating the mean scattering power 

of single, double-bounce, and volume scattering components. A novel scattering 

component fusion of L- and C- band PolSAR image has been proposed and evaluated 

to reduce the effect of overestimation. In this approach, the double-bounce component 

of the L-band is fused with the C-band's single and volume scattering components. The 

principal component analysis (PCA) is employed for fusing the two data sets, and the 

result is evaluated through SVM classification of man-made and natural objects. 

 The third objective of this research focuses on image fusion of SAR and optical 

data. Sentinel-1A (SAR) and Sentinel-2A (optical) data have been downloaded from the 
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European Space Agency (ESA). This research also focuses on pixel-level SAR-optical 

fusion methods, fusion performance assessment, and applications. This objective 

explores an optimal combination of specific selected image fusion and image 

classification techniques to improve classification accuracy. Four fusion techniques, 

Brovey Transform, Hue-Saturation-Value (HSV), Principal component analysis (PCA), 

and Gram-Schmidt (GS) Transform, have been compared along with two classification 

methods, Support Vector Machine (SVM) and Maximum Likelihood (ML), have been 

explored. Improvement in five classes, urban, water, baresoil, forest, and vegetation 

agricultural, has been analyzed. The result indicates that the GS-ML combination gives 

superior classification accuracy than the GS-SVM combination. In contrast, PCA in 

combination with SVM provides superior accuracy compared to the combination of 

PCA-ML. 

 Based on the results of this research, the fusion of microwave data improves the 

surface and subsurface object detection in all three objectives. In the first objective, the 

research findings encourage the potential of multiband, multi-polarization fusion 

techniques for enhancing landmine detection capabilities. The second objective found 

that utilizing the polarimetric nature of SAR and the fusion of scattering components 

improves the result. The third objective finds that not all fusion techniques improve 

accuracy, and image fusion techniques influence the accuracy of classification methods. 

So, an optimal approach is needed to explore the capability of fusion techniques fully. 
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1 

Chapter – 1 

Introduction 

 

1.1 Motivation 

India, with a GDP (Gross domestic product) of 3 trillion US Dollars, is ranked 

5th in terms of GDP amongst world economies and aspires to be the world’s third-largest 

economy by the year 2030. Obviously, the country has to continue to evolve and adopt 

sustainable advanced technologies to realize this goal. India also became the 4th nation 

in the world to land on the moon on 23rd August 2023. This has given a tremendous 

boost to the space and remote sensing applications in the country. What is both 

interesting and intriguing is the fact that while humans have developed the capability to 

observe galaxies tucked miles away deep into space, we have still not been able to 

develop technologies to detect and identify subsurface objects buried barely meters 

below the surface of the earth. The recent tunnel collapse incident in Uttarakhand in 

India in November 2023 wherein 41 miners were trapped and almost all the technologies 

failed. Finally, it was the rat miners who dug a shallow tunnel with their hands to save 

precious lives. Similarly, globally researchers have been struggling to detect and 

identify subsurface buried landmines using remote sensing based far field technologies. 

The western and northern borders of India have experienced several wars, and 

landmines are still lying undetected in many places, which often results in the loss of 

precious lives. India has also long been fighting insurgency along northern and north-

eastern borders, sponsored by its adversaries through the training camps and hideouts 

located just across the borders. Most of these targets present a mix of surface and 

subsurface objects and necessitate technologies for detecting not only surface but 

subsurface objects as well. Remote sensing technologies may be helpful in the detection 
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and identification of all or some of these objects and targets, which may either be on the 

surface or buried. For example, microwave remote sensing may possibly have evolved 

indigenously for the detection of subsurface landmines and objects, particularly along 

the western borders of India, which have deserts and where it may be successful. 

 Similarly, hyperspectral sensors may aid in detecting objects that otherwise may 

be difficult to detect in multispectral data. Besides, many times, the fusion of optical 

and SAR image is also capable of aiding the detection and identification of many of 

these objects. There, however, appears to be a limited indigenous effort in the 

exploitation of various possibilities that exist with the satellite-based remote sensing 

image [1][2][3][4][5]. The motivation for this work comes from a desire to explore and 

develop various possible ways to detect and identify various surface and subsurface 

objects and targets. 

1.2 Remote sensing data types 

 Remote sensing is the discipline focused on obtaining data regarding a region, 

object, or occurrence without direct physical interaction. Objects at the surface either 

reflect a portion of the electromagnetic energy received from the sun or emit energy 

based on their temperatures. Remote sensing sensors record information about an object 

by measuring this reflected or emitted electromagnetic energy [6]. Since recording 

information at each wavelength of the electromagnetic spectrum is practically 

impossible, the sensors are often designed to record data in certain discrete bands only. 

However, data acquired in a few discrete wavelength bands always precludes accurate 

detection and identification of several surfaces and subsurface objects due to merging 

their reflectance with the background scene [6]. 

           Primarily, there are two types of sensors: optical and microwave. Examples of 

optical sensors are hyperspectral, multispectral, and panchromatic sensors, of which 
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multispectral sensors are the most common. All multispectral sensors, however, depend 

upon reflected solar radiation to record information about ground objects in the visible 

and near-infrared bands and hence are known as passive sensors. This form of remote 

sensing is known as optical remote sensing and has been actively employed in mapping, 

forestry, agriculture, and military surveillance. However, the usefulness of this data gets 

restricted in areas under shadow, fog, darkness, camouflage, etc., due to the inability of 

sunlight to illuminate and reflect from these otherwise accessible locations. A solution 

to this problem is the availability of data from active microwave remote sensing sensors, 

which have their energy source and are thus not dependent on sunlight.  Due to their 

longer wavelengths, microwave frequencies (1GHz to 30 GHz) can penetrate fog, 

clouds, vegetation, and even the top layer of soil. The requirement of active microwave 

remote sensing has usually been felt in obtaining images of sub-surface (both ground 

and underwater) materials and objects and in areas of thick foliage, forest, vegetation, 

or camouflage cover [6] [7].  

            There are two types of active microwave sensors: imaging and non-imaging. 

SAR is an imaging sensor with high-resolution imaging capability. Altimeters, 

radiometers, and SCAT, which collect data in a single linear dimension, are examples 

of non-imaging active microwave sensors. Radiometers record the microwave radiation 

scattered or emitted by the Earth's surface or atmosphere, providing information such 

as humidity, temperature, and surface characteristics. Altimeters measure elevation or 

height, and a SCAT measures the backscattered objects precisely. The backscattered 

value depends on the object's characteristics (e.g., dielectric constant and roughness) 

and the angle of incidence on the object. The ground-based SCAT can, however, also be 

used to record the backscatter to generate an image of the surface being imaged. 

Ground-based SCAT can be calibrated and validated more quickly than their satellite 
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counterparts. The proximity to the instrument allows for direct measurements of 

calibration objects, reducing calibration-related uncertainties.     

Remote sensing is being used extensively for the benefit of humanity through a 

variety of diverse applications, including forestry, land cover classification, agricultural, 

climate change and environmental monitoring, glacier and polar region mapping and 

monitoring, defence and security applications such as target/object detection, flood 

mapping, disaster management, and many more [8][9][10]. Remote sensing comes 

under the umbrella of Geoinformatics and is a multidisciplinary subject that has rapidly 

grown into a domain of interest across various disciplines. 

 Although, remote sensing has significantly aided in many applications but it has 

also resulted in several new challenges and issues depending upon the applications. 

These challenges can be in terms of specific data requirements, methodologies involved 

and the limitations of sensors etc. The focus in this work is on detection of surface and 

sub-surface natural and man-made objects wherein there are several challenges, 

however, the major challenge is detection and recognition of surface and subsurface 

objects with no or minimal a priori information [11]. These objects may be buried, 

shallow buried, or landscape surface objects. Specific requirements such as type and the 

object's location often dictate the selection of remote sensing data [12][13]. 

           Amongst various subsurface objects of interest, the detection of shallow buried 

landmines has occupied the significant interest of researchers due to its well-known 

implications on military interest [14][15]. The humanitarian benefit of preventing 

casualties and saving lives in impacted communities motivates research on landmine 

detection. In addition, it helps with post-conflict reconstruction, environmental 

preservation, and technological innovation. Landmine detection necessitates a 
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multidisciplinary strategy. The effectiveness, precision, and safety of landmine 

detection systems must be improved via ongoing research and development to 

contribute to the worldwide objective of eliminating and protecting landmines. 

           Detecting surface objects in remote sensing applications faces numerous 

challenges, including susceptibility to sunlight, weather conditions, and spatial, spectral, 

and temporal resolution limitations. While multispectral and hyperspectral data offer 

enhanced spectral resolution for surface object detection, their functionality is hindered 

by daylight dependence and the requirement for clear weather conditions. In contrast, 

microwave SAR sensors overcome these limitations by providing all-weather 

capabilities and higher spatial resolution. Though much work has been carried out with 

some success to detect and identify shallow buried landmines, however even with SAR 

data, uncertainty exists on many issues, such as modelling microwave scattering, 

surface roughness effects, soil moisture effects, and background clutter [16][17]. 

Microwave reflections or emissions from surface and subsurface objects do not exhibit 

a direct correlation with their counterparts in the visible or thermal segments of the EM 

spectrum [18]. Research on detecting buried objects in sand, soil of varying moisture, 

and snowpack using microwave remote sensing has been a subject of active research.  

 Researchers are increasingly motivated to explore the fusion of SAR and optical 

image by recognizing the complementary strengths of SAR and optical sensors [11][19]. 

This synergistic approach aims to leverage the advantages of both technologies, 

combining the detailed spectral information from optical sensors with the all-weather, 

high-resolution capabilities of SAR. Such fusion techniques could enhance the accuracy 

and reliability of surface object detection across various environmental and atmospheric 

conditions, addressing the shortcomings associated with individual sensor types [20]. 

Many remote sensing-related problems are handled by fusing data acquired from active 
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and passive remote sensors, which is impossible with a single sensor [21]. Fusion of 

multispectral (MS) images with SAR images or with high-resolution image data has 

been recommended for spatial-spectral analyses to enhance object identification 

capabilities. SAR and optical images carry complementary information, so the fusion 

of these data is a complex issue that further needs investigation.  

           Besides, microwave remote sensors are single-band data, thus lacking spectral 

resolution, sometimes limiting their operations. SAR microwave data is unable to 

characterize objects independently, so to increase the dimensionality of subjected data, 

a fusion of two or more sensors with different frequency bands and polarisation may 

enrich the information for the surface and subsurface object detection [22][23][24]. 

Further analysis of the relative scattering coefficients from different object types for 

different wavelengths and polarisations needs investigation.  

 Although the fusion of microwave data has been researched for several years, it 

has now acquired momentum due to the availability of multi-resolution image with 

lesser revisit time from various space agencies. 

1.3 Remote sensing for object detection 

 An object refers to a physical entity with a distinct and separate existence. It can 

be any entity that occupies space and has properties or characteristics. Objects can be 

categorized in terms of size, shape, and complexity and can be both natural or man-

made. The term object has been used in a variety of ways and has been referred to as 

targets, endmembers, or end products of specific processes, and sometimes even to refer 

to various classes [25][26]. In remote sensing, an object refers to a distinct feature or 

entity within an image with spatial and spectral characteristics different from its 

surroundings /background [27]. 
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1.3.1 Methods of object categorization  

The objects may be categorized in many ways [27][28], as summarised below - 

(i) Based on location:  

(a)  Surface (ground or water): Examples of objects in this category 

include urban structures, water pots, forests, and ships. 

(b)  Subsurface (buried): Objects in this category are situated beneath the 

surface, and examples include landmines, caves, and submarines. 

(c)  Air: Objects in the air, such as missiles and aircraft. 

(ii)  Based on condition: 

(a) Open/hidden camouflaged: Objects can be classified based on their 

condition, which may be open, hidden, or camouflaged. Examples in this 

category include cantonments, hideouts, and camouflaged tanks. 

(b)  Originated/Created: Objects are also classified based on their origin or 

creation. Examples of objects originating from minerals or bunkers, whether on 

the surface or subsurface, fall into this category. 

(c)  Buried (subsurface): The condition for object classification is whether they 

are buried beneath the surface. An example provided in this category is 

landmines and underground gas pipelines. 

(iii) Based on shape: 

(a) Point: Objects categorized as points but no spatial dimensions. Point 

objects include examples such as tree, vehicle, buildings, and bridges. It uses 

individual point coordinates to localize and recognize objects 

(b) Linear: Linear objects are characterized by their elongated form. Examples 

in this category include rivers, roads, and canals. 
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 (c) Area: Objects with an area-based shape cover a specific region. Examples 

provided are urban, village, agricultural vegetation, forest, and river. These are 

also known as landscape objects. 

(iv) Based on size 

(a) Group of Pixels: Objects falling into this category are characterized by 

more extensive pixel collections. Examples include towns, villages, and store 

dumps. 

(b) Pixel: Pixel-sized objects are more defined and distinct. Examples in this 

category comprise tanks, vehicles, and wells. 

(c) Sub-pixel: Sub-pixel objects are smaller and more detailed than regular    

pixels, including tanks, vehicles, and wells. 

 However, an appropriate categorization of the objects may be the first step in 

object detection since the object type may dictate the selection of appropriate remote 

sensing data and the processing technique. For example, optical remote sensing may not 

be suitable for detecting subsurface or camouflaged objects, which may require 

microwave remote sensing data [27]. 

 1.3.2 Challenges in object detection 

 Table 1.1 summarises various challenges reported by researchers during the 

process of remote-sensing object detection. Selection of remote sensing data, 

appropriate object detection methodology and surroundings clutters are vital challenges 

that limit object detection.   

1.4 Buried object detection using microwave data 

 When an electromagnetic (EM) wave interacts with buried objects, several 

phenomena occur that can provide information about the objects' properties and 
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characteristics. Reflection, scattering, and absorption are the three main events that 

occur during the interaction of an EM wave with the buried object. When an EM wave 

encounters a buried object, a part of it is reflected towards the surface. The reflected 

Table 1.1 Challenges in Object detection 

Challenges Description [6][18][27][28][29] 

Complex Surroundings It is challenging to distinguish objects from the background 

when the surroundings are cluttered with diverse elements. 

Object Occlusion Partial or complete occlusion of objects by other objects or 

natural features affects accurate detection. 

Scale Variation Objects in remote sensing data can vary significantly in size, 

requiring scale-invariant algorithms. 

Spectral Variability Objects of the same class exhibit spectral variations due to 

lighting conditions or inherent properties. 

Limited Training Data Obtaining high-quality labelled training data for object 

detection is time-consuming and costly. 

Class Imbalance Unequal representation of object classes in the dataset can 

result in biased predictions or poor performance. 

Computational Complexity Object detection in large-scale or high-resolution datasets 

can be computationally demanding. 

Generalization of model for 

Dataset 

Models trained on one dataset may need to generalize better 

to different datasets or domains. 

Data Variability 
Variations in sensor characteristics, acquisition parameters, 

and environmental conditions introduce variability. 

 

wave carries information about the object's size, shape, and composition. Analysing the 

phase and amplitude of the reflected wave makes it possible to infer the features of the 

buried object, such as its location, geometry, and material properties. Scattering occurs 
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when the EM wave interacts with the object's boundaries or discontinuities, causing 

changes in the direction and intensity of the wave. Some EM waves are absorbed by 

buried objects, reducing the intensity of the transmitted or reflected waves. The 

absorption depends on the object's composition and the frequency of the EM wave [30].  

 Imaging buried landmines beneath rough surfaces poses a complex inverse 

scattering challenge with numerous engineering applications. These buried devices, 

designed to detonate upon contact, present significant threats, causing harm and leaving 

enduring psychological impacts. 

 Landmines used on battlefields are illegal under international humanitarian law, 

which protects people who have left armed conflict or are not involved in it. Due to the 

lack of effort to clear landmines from affected areas, several years after a war/conflict 

has ended, buried landmines continue to threaten civilians. It was not only the security 

forces but also the insurgents and guerrillas who have used landmines as a weapon in 

civil wars and insurgencies for decades [31].  

           Landmine inspection systems that are reliable are in high demand. Challenges 

arise from the lack or unavailability of maps or data regarding landmine types and 

original placements, as well as the shifting of their locations due to environmental and 

physical factors. The diverse range of landmines and the substantial costs associated 

with their detection and removal further complicate the process. Moreover, individuals 

are at risk due to the sensitivity of landmines to detonate over time or in response to 

atmospheric variables. Table 1.2 summarises the currently available landmine detection 

techniques.         

 Several approaches for demining, or identifying and removing buried 

landmines, have been designed and developed. Depending on the explosion, soil and 
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type of landmine casing, each method is preferred for detection under certain conditions. 

Addressing the issue of landmine detection requires not only the development of 

techniques capable of meeting this formidable challenge but also the customization of 

these techniques to suit local conditions. Effectively applying any given technique is 

more feasible when there is a clear understanding of the nature of the mines, soil 

composition, and background clutter. It is unrealistic to expect a singular detection 

technology to fulfil all requirements, highlighting the necessity for a systems fusion 

approach to tackle the complexities of landmine detection effectively [32]. 

  Numerous landmine types and burial ground, such as fields, buildings, roads, 

forests, and deserts, complicate the detection problem [33]. The manual clearance of 

landmines remains a highly preferred method despite technological advancements due 

to its consistency, predictability, and reliability. However, a traditional method's 

shortcomings include its slowness and worker safety risks [34]. Over the years, much 

of the work has been done in retrieving buried landmines. The object's shape and 

orientation affect microwave scattering differently in different polarizations. Therefore, 

polarisation plays a significant role in determining the shape and orientation of the 

object. A neural network-based classifier was successfully employed to detect buried 

objects. The system detected and mapped pipes, cables, and anti-personnel landmines 

[11]. Using neural networks to detect dielectric cylinders distributed over an area has 

also been reported by Caorsi et al. (2005) [35]. Therefore, neural networks and other 

advanced computing techniques may extract various properties of buried objects, such 

as shape. 

 Microwave scattering is influenced variably by the shape and orientation of an 

target across different polarizations. Therefore, polarisation significantly influences the 
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shape and orientation of the target. Bhadouria et al. (2021) [11] successfully employed 

a neural network-based classifier to detect buried objects. The system successfully 

detected and mapped pipes, cables, and anti-personnel landmines. The use of neural 

networks for detecting dielectric cylinders distributed over an area has also been 

reported by Caorsi et al. (2005) [35]. Therefore, neural networks and other advanced 

computing techniques may extract various properties of buried objects, such as shape. 

Amiri et al. (2012) [36] aimed to investigate the extent of multi-frequency wave 

propagation in GPR. The findings are then applied to designing a new multi-band 

antenna with frequency-switching capabilities. The antenna's chosen operating 

frequencies fall between 0.5 and 5 GHz. A commercial program based on the Finite 

Integral Method simulates various ground penetrating radar (GPR) models. The 

simulation results show that the selected upper and lower bands offer a 

complementation between penetration, and range resolution. 

  A novel buried object detection method specifically designed for the detection 

of unexploded landmines is proposed by Bestagini et al. (2021) [14]. The suggested 

methodology uses a convolutional neural network (CNN) known as an autoencoder to 

analyse volumetric data obtained by GPR with various polarizations. This technique, 

GPR, collects the data in landmine-free regions to train the autoencoder within an 

anomaly detection framework. Landmines are then identified by the system as objects 

that differ from the soil that was used in the training phase. Most of the reported 

landmine detection research is focused on estimating dielectric variations near the 

buried landmine. However, these variations get severely diminished for various reasons, 

primarily the scattering due to surface roughness and the dielectric contrast at the air-

soil-landmine interface.  
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 The most frequent issue with buried landmine detection is the backscatter from 

the ground clutter that overrides the backscatter from buried landmines. To get around 

this, some researchers created polarimetric and multifrequency techniques to 

differentiate between the return and individual utilities [14][36][37]. There is ongoing 

research on the field of landmine detection, but still maximum approaches are the 

complex in working and require a large amount of data. As a result, it is currently 

necessary to reduce complexity and create a model for finding buried landmine objects.  

1.5  Surface object detection using SAR data 

Now-a-days, imaging radars are playing a crucial role in investigations related 

to the Earth and other celestial bodies. It can be done by analyzing data acquired from 

an overhead perspective by the transmission and reception of EM waves from the 

microwave spectrum. For this purpose, SAR has served humanity over the last several 

decades. In SAR, a satisfactory resolution in the azimuth direction is achieved by 

'synthesizing' a larger virtual aperture of the antenna. The radar antenna, which acts like 

a single array element of the antenna, is mounted on a moving platform. The platform 

motion moves this single element through successive element positions on a known 

trajectory to form the complete array.  

A pulse is transmitted at each element position along the path, and the scattered 

EM wave from the object is received. When the single element has travelled across the 

length of the complete array, the received backscattered signal from each element 

position is coherently combined to create the effect of a large phased array antenna. The 

SAR system thus synthesizes a virtual aperture equal to the length of a phased array 

antenna that is much larger than the physical length of the actual antenna. SAR imagery 

is a complex image having real (amplitude) and imaginary (phase) components. Based  
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Table 1.2 Landmine detection technique 

Landmine detection technique Cost, complexity False alarms Limitations 

Biological methods [38][39][40] 

 

Dogs, rodents, bees, plants, bacteria:  

• Dogs possess a strong sense of explosive 

smell and can detect various explosive 

degradation.  

• Rodents are trained with nourishment to 

point the presence of explosives by 

scratching. 

• Bees are trained to the odour of an explosive 

with food. 

• Genetically converted bacteria emit 

fluorescence in the presence of explosive 

materials. 

 

 

 

low 

 

 

low 

 

 

•  Dogs require maintenance and training, and 

performance decrease with time. 

• Rats are generally untrained and prone to tropical 

diseases. 

• Bees can work under only particular climate 

weather. 

• Highly sensitive to weather (bacteria). 

Ultrasound detection [41] 

• The Sensor emits sound wave of higher 

frequency into soil and records the signal 

after reflected from the interface of 

materials with dissimilar acoustical 

behaviour.  

• It is useful for both soft and hard ground and 

provides real-time monitoring. 

 

 

high 

 

Low 

 

• Penetrate a certain depth only; after that, they are 

attenuated by the soil. 
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Prodders approach [41] 

• In prodding, Physical manual prodding 

using nonmagnetic rods is used to penetrate 

the ground for landmine detection. 

• In the presence of a landmine, it exhibits 

vibration and produces sound or increased 

resistance. 

    low medium •  Risky as it involves proximity to landmine 

•  Limited coverage range 

•  Effective only for shallow-depth landmine 

 

Electromagnetic based method [42][43] 

• Metal detectors collect the disturbance of 

an emitted EM wave caused by metal 

components in the soil. 

• Magnetometers, exclusively for 

ferromagnetic objects, measure only the 

disturbance of the earth’s natural EM field. 

•   It scans a large area with an array of metal     

detectors. 

medium 

 

 

 

 

high 

medium 

 

 

 

 

medium 

• Can identify metallic objects but cannot 

differentiate them from debris.  

• Increasing sensitivity increases false alarm rates 

due to metal debris. 

• It cannot detect non-metallic landmines. 

• • X-ray backscattering entails directing X-

rays downward. Because of their higher 

electron density, materials with less atomic 

numbers—like plastics—disperse X-ray 

radiation more effectively. 

high medium • It is affected by background clutter during the 

detection process. 

• By using a two-dimensional array of 

electrodes positioned on the ground, 

electrical impedance tomography creates 

high medium • False alarm generated due to mine-like 

conducting objects. 
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a map of the conductivity distribution in 

which mines are identified as anomalies. 

Advance application of metal detector [43][44][45] 

▪ Impulse metal detectors Discriminates 

mines from metallic debris and reduce false 

alarm rates by comparing characteristic decay 

curve with curves stored in a library.  

▪ Based on eddy current frequency response 

over a large frequency band. 

▪ Meandering winding magnetometer is a 

square wave-winding conductor generating a 

spatial periodic EM field, the wavelength of 

which depends on the primary winding 

spatial periodicity.  

▪ Cavity detector locates nonconducting 

objects, or "cavities", relies on the theory that 

a sizeable nonconducting object locally alters 

the natural ground conductivity. 

high 

 

 

 

 

 

high 

 

 

 

 

 

high 

medium 

 

 

 

 

 

medium 

 

 

 

 

 

low 

• Response curve depends on the orientation of 

the metallic object, metal type, etc., and is 

effective only with objects whose decay curves 

are already known.  

 

• Suitable for objects with some metallic content 

 

 

• It can detect object shape, size, etc., but its 

application is still under investigation.  

 

 

• Large items are best detected by the cavity-

locating system in soils with strong conductivity 

by nature. 

Ground penetrating radar [14][35][36] 

• Radar detects landmines by transmitting and 

receiving reflected signals from objects 

using a wideband antenna. Reflection 

caused by dielectric variations are 

measured. 

• By moving the antenna and image 

processing, 3D representation generated.   

 

 

high low • Detecting smaller objects requires GHz 

frequencies, which Limit the soil penetration 

• False positives caused by other buried objects 
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Bulk explosive detection [33][41] 

Thermal neutron analysis (TNA) 

Neutrons are released in TNA, and when a 

nucleus absorbs one of them, gamma rays with 

an energy unique to that nucleus are released. 

high low • TNA system is complex, and soli penetration is 

10-20 cm only. 

High-energy neutrons are used in fast neutron 

analysis (FNA) to identify and classify gamma 

radiation at various energies. 

high medium • Relies on hydrogen nuclei also present in water, 

hence effective in dry environment. 

The same idea behind FNA is applied in pulsed 

fast neutron analysis (PFNA), which uses a 

pulsed neutron beam. 

high medium • Not effective in wet environment 

Pulsed fast thermal neutron analysis, uses 

continuous neutron beams. Its transportable 

construction and great dependability are its key 

benefits. 

high medium • The Process is complex and compelling only for 

dry soil penetration. 

Nitrogen nuclei in the explosive are excited by 

radio frequency pulses sent by nuclear 

quadrupole resonance (NQR), which creates 

an electric potential at a receiver coil. 

high medium • NQR difficult to adopt for mine detection 

Unmanned aerial vehicles [36] 

Drones equipped with sensors, such as cameras 

and thermal imaging, can survey and detect 

landmines from the air. 

high medium • Limited flight time and coverage area 

• Challenging detection in dense vegetation or 

uneven terrain 
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on these components, the analysis of SAR can be divided into two approaches: SAR 

backscatter analysis and polarimetry analysis [46][47].  

SAR backscatter analysis aims to understand and interpret the radar backscatter 

signals that the SAR system has detected. Analyzing data on the magnitude or strength 

of the backscattered value is necessary to learn more about the characteristics and 

features of the investigated objects. Radiometric calibration, backscatter signatures, 

backscatter coefficient, and backscatter modeling are vital aspects of SAR backscatter 

analysis [46]. 

 Polarimetry of any EM wave is the method of accessing, processing, and 

investigating the state of polarization. Polarimetric SAR (PolSAR) upgrades the 

capacities of SAR by introducing a polarimetry to it. However, to express the 

polarization state of an EM wave, two orthogonal polarization basis vectors are 

required. A fully polarimetric SAR system transmits two orthogonal polarizations and 

coherently receives by dual orthogonal polarized channels. Since the polarization 

information present in the backscattered wave is sensitive to the geometrical structure, 

orientation and shape of a given target, a PolSAR system greatly helps in extracting the 

significant information of the target or scatterer. PolSAR system involves transmitting 

and receiving SAR signals in multiple polarization states, such as (VV, VH, HV, and 

HH), to capture additional detail about the scattering mechanisms and attributes of the 

imaged objects. Here, ‘VV’ stands for vertically transmitted and vertically received, 

whereas ‘VH’ stands for vertically transmitted and horizontally received EM wave. 

Polarimetric decomposition, polarimetric parameters, target classification, and 

interferometry are vital aspects of polarimetric analysis [48]. 
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 SAR polarimetry allows for decomposing the complex polarimetric data into 

different scattering mechanisms techniques like Freeman and Durden decomposition 

(FDD), Yamaguchi, and Cloude-Pottier decomposition can separate the backscattering 

contributions from different types of scattering, such as surface, double-bounce, and 

volume scattering. SAR polarimetry provides several polarimetric parameters, such as 

coherency matrix elements, polarimetric entropy, anisotropy, and scattering power, 

which characterize the scattering properties of the imaged scene. These parameters help 

identify and discriminate between types of targets and surface conditions [48].  

 A pixel value in SAR imaging is the total of all the coherent reflections of the 

signal received from the targets. While polarization measurements collect surface 

characteristics, such as roughness and shading, they are frequently uncorrelated with 

SAR intensity imagery and offer information on the materials in the scene. PolSAR 

imaging depends on the electromagnetic properties of the objects in the image, such as 

their complicated permittivity and the object's roughness concerning the wavelength of 

the radar beam. Longer wavelengths are more effective at penetrating clouds and the 

ground. The wavelengths of L-band (20 cm) radar, for instance, are longer than those of 

C-band (6 cm), X-band (3 cm), and Ku band (2 cm).  

 In their study, Maleki Saeideh. et al. (2019) [49] introduced a semi-empirical 

technique that leverages eight images. These images were acquired across three 

different frequencies, polarizations, and incidence angles. The study evaluated the 

efficacy of various SAR configurations in distinguishing land cover classes using the 

Support vector machine (SVM) technique. The study considered the impact of 

wavelength, polarization, and incidence angle when combining these SAR images. 

Guida et al. (2015) [50] proposed a wavelet transform based approach and choose-max 

fusion approach for the fusion of S- and X-band data. The number of vanishing moments 
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and decomposition levels were to control the fusion parameter. Combining Daubechies 

wavelet transform with two vanishing moments, one decomposition level, and the 

choose-max fusion rule. 

 Availability of microwave sensors in a multiparametric mode, i.e., 

multifrequency/wavelength (P, L, S, C, X, and Ku band), multi-angle (10°-80°), multi-

polarisation, multi-resolution data (from cm to km) and multi-temporal data has 

provided researchers with a significant amount of diverse data The penetration depth of 

microwave sensors is inversely related to their frequency band; the higher the frequency 

lowers the penetration depth. The deep penetration depth of microwave sensors 

characterized the volume scatterers, like dry soil, sand, ice, and vegetation. The 

microwave sensor's wave polarisation (HH, VV, HV, and VH) is sensitive to the texture 

and orientation of objects, which therefore emphasizes various other features. The 

availability of multiband and multi-polarisation microwave datasets and their 

nonoverlapping properties opens a domain to combine this dataset with some image 

fusion algorithms to explore various Remote sensing applications. 

 Even if examining or studying these data is beneficial, there is a growing effort 

and interest in fusing multi-platform data to provide a fused image that contains more 

information than examining individual sensor data. Nevertheless, most of these 

initiatives have concentrated on combining data from several sensor —for example, 

optical imaging systems with SAR or LIDAR data with optical. Further research is 

required on exclusively combining multi-frequency, multi-polarization SAR data [50]. 

1.6  Remote sensing image fusion of microwave data  

 In optical image, the reflectance of an item within the detectors' spectral range 

is represented by its pixel value. On the other hand, microwave sensors lack spectral 
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resolution, limiting landscape surface object detection. Microwave SAR image is 

insensitive to spectral response, complicating data processing and interpretation. Due to 

the nonoverlapping nature of these constraints with optical images, SAR and optical 

imaging provide complementary information. The fusion of SAR and optical datasets 

enables the creation of a composite image rich in spatial and spectral data. All-season 

and penetration capability of SAR sensors make them better suitable for fusion with 

optical sensors. 

 The research by Amarsaikhan et al. (2010) [21] indicates that multi-source 

information from optical and SAR sensors enhances the interpretation and classification 

of land cover types. It is clear from their research that using optical and SAR images in 

tandem has several benefits since the complimentary information from both sources can 

make a certain feature visible on the microwave image that is not visible on the passive 

sensor images and vice versa. Various aspects of image fusion methods have been well 

addressed by Pohl et al. (1998) [9], Simone et al. (2002) [10], Amarsaikhan et al. (2011) 

[51] and Alparone et al. (2004) [52].  

 Image fusion is a process of merging two or more images in such a way as to 

achieve the desired result. The complexity and result achieved also depend on the 

processing level of fusion. If two images have been combined at the initial level, it is 

known as pixel-level fusion (PLF). If the fusion is done with features of images, it is 

known as feature-level fusion (FLF). The higher processing level of fusion is decision-

level fusion (DLF), used to combine the decisions of two or more approaches. PLF has 

the highest computation burden, as it is done on raw data, but contains the maximum 

amount of information. 

 The choice of image fusion method and evaluation parameters are subjective. It 

is a matter of research which fusion methodology and fusion evaluation parameter best 
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suits a particular set of microwave data and applications. Motivated by this aim, an 

intense literature review has been conducted for fusion and evaluation methodology for 

microwave data with optical data. 

1.6.1 Image fusion methods for microwave data 

Based on the literature review, image fusion may be categorized into five parts 

as shown below. All these categories are compiled with references in Table 1.3. 

Table 1.3 SAR-optical PLF methods 

SN Fusion 

Category 

Approaches Comments 

i) Component 

substitution 

PCA [21] [53[[54][55], GS 

[56], IHS [57][58][59][60], 

Ehler [61] [62] 

Less Computation and easier 

to perform. Highly dependent 

on correlation.  

ii) Numerical 

techniques 

HPF [62], BT [21][63], 

Modulation based 

Techniques [64]  

More spectral distortion. Not 

found much suitable for SAR-

optical fusion. 

iii) Multi-

Resolution 

Approaches 

Pyramidal decomposition 

[65], Wavelet [66][67], 

Directional Approaches: 

curvelet, contourlet [68] 

[69] 

Less Spectral distortion. 

Sometimes computationally 

complex 

iv) Model Based 

techniques 

Variational model [70], 

CNN based [71], cGAN 

[72][73] 

Less susceptible to 

registration errors.  

v) Hybrid 

Approaches 

NSCT+ HIS[74] , 

IHS/PCA + 

DWT/AWT[75][76][77], 

Modified BT[78], 

IHS+AWT+ EMD+ AWT 

+ IHS [79], weighted 

median filter + GS[80], 

PCA + curvelet transform 

[81] 

Reduce spatial and spectral 

distortion. 

Here in Table 1.3, GS- Gram-Schmidt; IHS-Intensity hue saturation; BT – Brovey 

Transform HPF- High pass filter; AWT -Adaptive Wavelet transform; DWT- Discrete wavelet 
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transform; HPF- High pass filter; cGAN -Conditional generative network; NSCT- 

Nonsubsampled contourlet transform; EMD-Empirical mode decomposition 

1.6.1.1 Component substitution techniques  

The component substitution (CS) fusion techniques are separated into three 

phases. First, forward transformation is applied to the optical bands after they have been 

registered to the SAR bands. Second, another component of the transformed data 

domain similar to the SAR image is replaced by the higher resolution band. Third, an 

inverse transform of the original space is used to construct the fused results.  

 Prominent methods in CS include Ehlers fusion, PCA, IHS, and Gram-Schmidt 

(GS). IHS is a method for extracting spectral and spatial information from MS bands. 

The intensity (I) component is substituted with the histogram-matched SAR band. To 

create integrated MS data, the rearranged I, Hue (H), and Saturation (S) components are 

translated inverted into the original domain. The limitation of IHS to three bands was 

overcome by Tu et al. (2004) [82], who created the generalized IHS. Researchers have 

proposed the adaptive IHS method to keep developing IHS-based results to overcome 

problems of poor spectral quality issues [5]. 

 To optimise the variance of the source image, PCA transforms an image by 

translating and rotating it into a new coordinate frame. This technique computes the 

PCs, then reassigns the high-resolution SAR data into the data space of the first PC and 

replaces it with PC1. Then, from PC1 to the original MS data, an inverse PC transform 

is accomplished. This technique adjusts SAR data to about the same data space as PC1 

before performing the inverse PC computation [83]. The first PC in Gram–Schmidt (GS) 

transform may be selected freely, and the other components are computed orthogonally 

to the first PC. The GS transform (GS) is used to convert MS and simulated SAR, and 

the resultant bands are utilized in the CS method. The statistically matched SAR 
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replaces the first GS band. The fused image is the output of the inverse GS transform 

[84]. 

 To enhance land cover mapping, Herold et al. (2002) [53] present a fusion of 

SAR and MS imagery utilising different layer additions and PCA techniques. After 

fusion with the SAR image, classification accuracy improves substantially. Harris et al. 

(1990) [58] utilise the IHS transform to combine radar and MS images. El-Deen et al. 

(2010) [85] evaluate PLF methods based on IHS, PCA and the Brovey (BT) for a PLF 

of MS and SAR images to enhance overall classification accuracy for seacoast shoreline 

extraction. Fusion based on IHS yields higher categorization accuracy. To enhance land 

cover categorization accuracy, Amarsaikhan et al. (2011) [51] suggested a combination 

of high-resolution SAR and MS bands. The multiplicative approach, IHS, PCA, and BT-

based PLF are used to fuse source images, and the outcomes are evaluated visually and 

based on overall accuracy. Abd et al. (2016) [56] evaluate IHS, BT, and GS transform 

optical and SAR image fusion techniques to enhance classification results while 

extracting shorelines. It has been discovered that using integrated images increases the 

precision of coastline extraction. These methods provide a fused output that is good with 

spatial information. Due to spectral dissimilarity in the bands of heterogenous images, 

there are pixel-level discrepancies between images being fused, that may develop 

significant spectral distortions in the integrated output [86][87]. 

1.6.1.2 Numerical fusion methods 

 Mathematical combinations of various images are amongst the most 

straightforward PLF techniques. They combine the digital numbers of the images fused 

at a pixel-by-pixel basis using mathematical operators such as sum, multiplication, 

subtraction, multiplication etc. Multiplication can be a powerful fusion method and 
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leads to perfect results for visual interpretation if optical and radar images are combined 

[98].  

 Fusion by multiplication enhances the contrast and joins MS with textural 

information from the SAR data. Selection of weighting and scale variables may enhance 

the fused image. The BT normalizes MS data, and the resultant channels are multiplied 

by the intensity channel.  It is not exactly a transform but a multiplication using a SAR 

band based on a normalization of the MS bands. A smoothing filter-based intensity 

modulation method modulates optical data by using a ratio between the SAR and its 

histogram image. It utilises modulation of an intensity channel with spatial detail to 

make it applicable to SAR fusion [64]. Color spectral sharpening expands the BT to 

accommodate for more than three input channels. The method standardises the input 

and divides the spectral space into color and brightness. It normalizes the data by 

multiplying every MS channel by SAR data and dividing it by MS input images. 

 The High pass filter (HPF) method collects high-frequency information, which 

is subsequently added to every MS band [9]. For the integration of SAR with MS, 

Chandrakanth et al. (2014) [65] use frequency domain high pass filtering. Misra et al. 

(2012) [88] offer a PLF method for merging low-resolution (LR) optical bands with a 

high resolution (HR) SAR data using the wavelet transform, a variation of the BT. 

1.6.1.3 Multi-resolution approach (MRA) 

 It is also called the multiscale decomposition method. The MRA relies on the 

insertion of spatial information that is acquired from the multi-resolution decomposition 

of the SAR band into the resampled multispectral images. In these techniques, the fused 

source images are first decomposed at various scales using an appropriate multi-
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resolution technique. Afterward, fusion methods are enforced to every decomposed part, 

and the fused bands are inverse transformed to generate the required data [86].  

 Wavelet-based techniques are classified into two categories. The first method 

involves swapping a LR sub-band for a HR sub-band. The second method is built on 

inserting information from HR sub-bands into LR sub-bands [89]. Another common 

MRA technique is the non-subsampled wavelet transform. Because of its shift-

invariance, this kind of multiscale transformation is ideal for multisensory data such as 

SAR and MS images. Abdikan et al. (2012) [55] compare component replacement and 

wavelet based fusion techniques. The HPF method and the wavelet-based techniques 

provide numerically comparable results, but the wavelet method yields aesthetically 

superior results. 

 Rahman et al. (2010) [5] compare CS methods to wavelet-based fusion methods 

for increasing sub-surface and surface aligning accuracy. Alparone et al. (2004) [52] 

offers an undecimated wavelet fusion technique of SAR, panchromatic (PAN), and 

optical bands to increase the spatial resolution of the optical band. To begin, PAN and 

MS bands are merged, then texture information from SAR bands is injected into a pan-

sharpened band to produce the resultant fusion output. Amarsaikhan et al. (2010) [21] 

utilise wavelet PLF to merge optical and HR-SAR data. The results are compared to BT, 

PCA and Ehlers fusion for improved landuse-landcover (LULC) categorization. It has 

been discovered that images merged using BT have a higher spatial resolution. This 

research also shows that using integrated satellite data increases accuracy. Lu et al. 

(2011) [68] combine optical and SAR data using curvelet decomposition. The results 

outperform IHS and the wavelet-based fusion technique. 

 Using a multiresolution transform adds computational complexity, but it results 

in improved fusion performance owing to simultaneous localization in the time and 
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frequency domains [86]. Wavelet-based techniques improve spectral resolution but 

introduce spatial distortion. 

1.6.1.4 Hybrid methods  

Hybrid techniques combine CS and MRA to make use of the benefits of both 

methods, resulting in improved spatial and spectral resolution. Hunag et al. (2005) [75] 

fuse SAR and MS image using the IHS and the DWT for better urban mapping. After 

transformation of MS bands to the IHS domain, the I-component and the SAR data are 

decomposed by a wavelet-based method. When this approach is compared to PCA, the 

suggested hybrid strategy outperforms PCA in terms of classification accuracy. Hong et 

al. (2009) [66] proposes a hybrid PLF technique that depends on the wavelet-based 

transform and IHS to merge a SAR data with MS data. The PLF method in this technique 

depends on the neighbourhood correlation between sensors images. The suggested 

hybrid technique is evaluated with traditional wavelet-based fusion and IHS methods. 

 Chibani Youcef (2006) [78] suggests modifying the BT to include SAR 

characteristics in MS images. MS bands are modified by a fraction of the new I-

component to the old I-component in this technique. The newer I-component is created 

by combining high frequency information derived from AWT bands with SAR and 

inserting them into the previous component. To fuse MS and SAR images, Han et al. 

(2010) [90] offers a hybrid method that depends on combining the adaptive wavelet 

transform and IHS. After converting the MS data to IHS space, AWT is used to dissect 

the I-component and SAR data. Applying statistical methods, the decomposed sub-

images are merged, and the merged sub-images are rehabilitated to give a merged I-

component, which is then inverse transformed to the initial MS domain [91].  

 Zhang et al. (2020) [92] examine several fusion techniques for a hybrid approach 

that includes IHS transformation and non-subsampled contourlet transform. The 
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intensity image contains spectral data, while the texture SAR image contains spatial 

data. To get the most spatial and spectral detail in the fused data, these two images are 

merged using the PCA technique. It has been discovered that the fused data improves 

sea-ice recognition. Hybrid techniques combine the benefits of both MRA and CS fusion 

procedures. It has been discovered that hybrid fusion techniques combining MRA and 

CS methods result in improved SAR-optical image fusion [62]. 

 1.6.1.5 Model-based techniques  

 Several model-based methods of fusing remotely sensed data had been 

suggested, and researchers also implemented them for PLF of SAR and optical images. 

Sparse representation-based techniques (SRBM) and the variational technique are two 

of the most used methods. 

 The variational fusion technique developed for PLF of MS and PAN bands were 

expanded for PLF of MS and SAR bands by Zhang et al. (2010b) [93] for improved 

comprehension of urban characteristics. The energy function is minimised in this fusion 

method, ensuring that colour detail from MS data and textural detail from SAR data are 

combined. Image fusion is approached as a restoration problem by sparse 

representation-based methods, which generate HR fused data from a linear integration 

of pixels drawn from an over-complete dictionary of HR and LR data. The sparse co-

efficient of the initial data are merged according to the PLF method, and the merged 

data is rebuilt adopting the aforementioned dictionary. For a better comprehension of 

urban characteristics, the variational fusion technique developed for a fusion of MS and 

PAN bands is extended for fusion of MS and SAR bands [79]. This fusion method 

minimises the energy function, ensuring that color details from MS bands and geometry 

details from SAR bands are combined. Image fusion is approached as a restoration issue 

by sparse representation-based methods, which create HR fused data from a linear 
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integration of pixels chosen from an over-complete dictionary of LR and HR bands. The 

sparse co-efficient of original images was fused, and a fused image was created using 

the same method. 

  For merging airborne SAR and optical data, Liu et al. (2016) [94] propose a 

joint non-negative sparse technique using IHS. To begin, an I-component is retrieved 

by applying the IHS transformation to MS images. The sparse coefficients of the I-

component are combined with the sparse coefficients of the SAR band. Fused data is 

produced by inverting the changed I-component. In certain cases, sparse representation 

methods outperform other techniques; nevertheless, dictionary creation and sparse 

coding are the main problems [95]. 

 It has been noted that hybrid fusion approaches are more attractive owing to 

their capability to manage the issue of spatial and spectral distortion and their lower 

complication when compared to sparse representation techniques. 

1.6.2 Fusion evaluation measures for microwave data 

 Image fusion has several applications, and no image fusion technique performs 

equally well in under every circumstance. To verify the fusion technique, the fused 

images were evaluated using three methods: objective, subjective, and comprehensive 

assessments [96]. Objective assessment has been done by quality measures (based on 

the presence or absence of reference data). The reduced resolution assessment is used, 

when reference image may not be available. 

1.6.2.1 Objective evaluation (quality metrics) 

 Jagalingam et al. (2015) [97] provide a comprehensive analysis of quantitative 

measures used to assess fused images. A few assessment measures are described below. 
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1.6.2.1.1 Metrics (when the reference data is available) 

When the of a reference image is available, quantitative measures such as 

correlation coefficient (CC), mean bias (MB), signal to noise ratio, mutual information 

(MI), Global Adimensional Relative Error of Synthesis (ERGAS), structural similarity 

index measure (SSIM), root mean square error (RMSE), spectral angular mapper 

(SAM), universal quality index (UIQI/Q) etc. are calculated for SAR-Optical fusion. 

Table 1.4 shows the evaluation metrics with references. SSIM evaluates structural 

preservation, ensuring that important spatial and textural details from source images are 

maintained in the fused output. CC measures the linear correlation between fused and 

source images, indicating how well the spectral content is preserved. Entropy quantifies 

information richness; higher entropy reflects better feature retention. 

1.6.2.1.2 Metrics that do not need reference data  

 Under the absence of a reference image, the quantitative measures such as 

entropy, cross entropy, standard deviation (SD), fusion quality index (FQI), mutual 

information, spatial frequency (SF), etc. Table 1.5 shows the objective evaluation 

measures (reference data not required). 

Table 1.4 Metrics (when the reference data is available) 

SN Measures References  Main points/Formula 

1. CC [55][66][69][70] 

[79][96] 

Calculate the spectral feature similarity betwee

n the integrated and reference. 

CC= 
∑ ∑ (𝑅𝑖,𝑗−𝑅)(𝐹𝑖,𝑗−𝐹)𝑛

𝑗=1
𝑚
𝑖=1

√∑ ∑ ((𝑅𝑖,𝑗−𝑅))2(𝐹𝑖,𝑗−𝐹)
2𝑛

𝑗=1
𝑚
𝑖=1

 

R and F are a reference, and fusion image, 

respectively and  𝑅 and 𝐹 are corresponding 

mean images. 
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2. SAM [96][98][99] Calculate angle between integrated and 

reference images. 

SAM = arccos ( 
∑ 𝐹𝑖𝑅𝑖

𝐵
𝑖=1

(∑ 𝐹𝑖
𝐵𝐵

𝑖=1 )1/2(∑ 𝑅𝑖
𝐵𝐵

𝑖=1 )1/2) 

B represents the number of bands. 

3. UIQI/Q4 

index 

 

[55][69][79][99] Calculates the amount of relevant information 

transform from reference to integrated images. 

UIQI = 
4𝜎𝐹𝑅𝐹𝑅

(𝜎𝐹
2+ 𝜎𝑅

2)(𝐹
2
+𝑅

2
)
 

 𝜎2 is variance. 

4. RMSE [66][79][100] Evaluate the variance in pixels to get the 

difference between the reference and integrated 

images. 

RMSE = √
1

MN
∑ ∑ (Rij − Fij)2N

j=1
M
i=1  

M and N are rows and columns. 

5. ERGAS [96][99][101] Calculates the attribute of the integrated data in 

perspective of the normalised error of individual 

processed image. Higher value, more distortion 

in the merged image. 

ERGAS = 100
s

m
(
1

B
∑ (

RMSE2

mean2)
N
i=1 )

1

2 

Where s and m are the SAR and multispectral 

image resolution, respectively. 

6. Mean 

Bias 

[55][100][102] 
Difference between mean of fused and reference 

image. 

Mean Bias =
MSmean−Fusedmean

MSmean
 

7. SSIM [66][100][102]  Compute the pixel patterns between the 

integrated and reference images locally.  

SSIM = 
(2μFμR+C1)(2σFR+C2)

(μF
2+μR

2 + C1)(σF
2+σR

2 + C2)
 

The variables C1 and C2 are utilised to stabilise 

the denominator where μ is average. 
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8. Relative 

SD 

[55][100] Compute Standard deviation (SD) difference 

between fused and reference data and divided by 

the mean of the reference images. 

Rel. SDD = 
Standard deviation(Reference −Fused band)

Mean MS band
 

 

1.6.2.2 Comprehensive Assessment:  

It is proposed that quality measures should not be the sole means of interpreting 

fused images. In a few applications, objective metrics analysis of an image with a low 

value may provide superior class accuracy. To enhance the assessment of the fusion 

outcome, the analysis may be built from the application perspective [75]. The fusion 

image may be assessed by comparing it to the various classification findings. Abdikan 

et al. (2015) [62] investigate the impact of fusion techniques on classification accuracies 

by comparing the Maximum Likelihood Classifier (ML), Support vector machines 

(SVM) and Random Forest (RF) as statistical models. Neetu and Ray (2020) [106] 

compared different fusion techniques and shows result visually, statistically, and 

through image classification for crops classification. Table 1.6 summaries the 

comprehensive assessment. 

 The research indicates that multi-source information from optical and SAR 

sensors can significantly improves the interpretation and classification of land cover 

types.  It is evident that a combined use of optical and SAR images will have number 

of advantages because a specific feature, which is not seen on the passive sensor images 

may be observable on the microwave image and vice versa because of the 

complementary information provided by the source. 
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Table 1.5 Objective evaluation measures (reference data not required) 

SN measures Reference Points 

1. Entropy [65][69][79][96] 

[101] 

 Measure the information content of resultant. 

Entropy = -∑ 𝑝𝑖 𝑙𝑜𝑔2𝑝𝑖
𝐿−1
𝑖=0   

L and 𝑝𝑖 are the total number of gray levels and corresponding normalized histograms, 

respectively. 

2. SD 

 

[55][79][96][10

1] 

measure the contrast of resultant 

SD = √∑ ∑ (𝐹 − �̅�)2𝑁
𝑗=1

𝑀
𝑖=1  

3. MI [103][104] compare the resemblance of reference and fused images 

MI = ∑ 𝐻𝑅,𝐹(𝑟, 𝑓)𝑅,𝐹 log [
𝐻𝑅,𝐹(𝑟,𝑓)

𝐻𝑅(𝑟)𝐻𝐹(𝐹)
] 

Where 𝐻𝑅(r) and 𝐻𝐹 (𝑓) represent the histogram of MS image R and the fused image F. 

𝐻𝑅,𝐹(𝑟, 𝑓) denote joint histogram of MS and Fused image. 

4. SF [101][105] measures the overall activity level  

SF = √∑ ∑ [{𝐹(𝑖, 𝑗) − 𝐹(𝑖, 𝑗 − 1)}2 − {{𝐹(𝑖, 𝑗) − 𝐹(𝑖 − 1, 𝑗)}2}]𝑁
𝑗=1

𝑀
𝑖=1  
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Table 1.6 Evaluation of fusion image with classification accuracy 

S. No. Classification 

Method  

References 

1. ML  [56][61][62][75][101][106][107][108] 

2. SVM [56][62][108][109] 

3. Random Forest [62][108][110][111] 

4. Fuzzy classification [108][112] 

5. Neural Network [56][113] 

  

1.7 Research gaps 

 A lot of researches are being conducted to develop newer technologies and 

methodologies for detection of buried subsurface landmine in view of its implications on 

human life. Several new method and technology have also been evolved, however there 

is still a lot of scope for further research in this area. From the preceding discussion so 

far, it may be evident that surface and subsurface(buried) object detection through 

microwave remote sensing is a possibility but it entails several issues.  For example, it is 

required to curtail the selection of objects of interest because of lack of availability of 

remote sensing data at a specified resolution, followed by a reasonable selection of 

detection techniques/models. In this research, landmines and landscape objects such as 

artificial structures, water bodies, and forests, have been consider for analysis.  

       Based on the Literature review, the following research gaps have been identified: 

i. Most of the work reported in the literature utilizes data in individual microwave 

bands or individual polarizations [10][108][67][71]. Various research has 

pointed out that microwave data is more suitable for estimation of depth of 

subsurface buried landmines. The penetration depth of microwave data 
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depends on the frequency band [6][18]. It is also reported that wave 

polarisation shows the diverse features of objects [47][49][50]. However there 

appears limited work to utilize the combination of two or more frequency bands 

and polarisations of microwave data to improve object detection. There appears 

merit in the exploration of fusion of multiband multipolarization microwave 

data for buried object detection.  

ii. The polarimetry SAR (PolSAR) data extracts surface, double-bounce, and 

volumetric scattering components. A lot of research has been reported to use 

the target decomposition theorem to detect manmade and natural objects. A 

common problem several researchers face is the cross-polarization power due 

to overestimation of one of scattering components [49]. Few works have been 

reported regarding this problem [48][114]. However, none of this works have 

utilized the combination of the respective dominant scattering components of 

two frequency bands. Thus, the Fusion of multi-band, multi-polarization SAR 

data appears to have scope in PolSAR decomposition for detecting artificial 

and natural objects.  

iii. There is ongoing research in the fusion of optical and microwave data 

[110][111] [113]. However not enough research appears to have taken place to 

explore all the aspects of image fusion and their evaluation in natural and man-

made object detection. It appears that improvement in fusion results is yet to 

be explored with comprehensive evaluation parameters. 

iv. There are a several fusion algorithms reported in the literature. However, the 

selection and formulation of the appropriate image fusion algorithm for a 

particular application has not been carried out [75].  
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1.8 Research objectives 

 This research aims to explore the improvement in object (surface or subsurface) 

detection using the fusion of multiband, multipolarization microwave data. The specific 

objectives are: 

(i) Detection of Subsurface Objects using Fusion of Multiband 

Multipolarization Scatterometer Data. 

(ii) Improvement in detection of surface objects using fusion of multiband and 

multipolarization SAR data. 

(iii) Improvement in detection of surface objects using fusion of optical and 

microwave data. 

1.9 Organization of the thesis 

 The thesis has been divided into five chapters. 

Chapter 1: Introduction 

This chapter will expound the complete theoretical background of the research along 

literature review, research gaps, and objectives followed by layout of the other chapters.  

Chapter 2: Detection of Subsurface Objects using Fusion of Multiband 

multipolarization Scatterometer Data 

This section will contain the terminology, methodology adopted for First objective along 

with the detailed discussion of implementation steps required to accomplish this research 

objective followed by outcomes of the research. 

Chapter 3: Improvement in detection of surface objects using fusion of multiband 

and multipolarization SAR data 



37 

This section will contain the terminology, methodology adopted for second objective 

along with the detailed discussion of implementation steps required to accomplish this 

research objective followed by outcomes of the research. 

Chapter 4: Improvement in detection of surface objects using fusion of optical and 

microwave data 

This section will contain the terminology, methodology adopted for third objective along 

with the detailed discussion of implementation steps required to accomplish this research 

objective followed by outcomes of the research. 

Chapter 5: Summary of results, major contribution, and future work 

This part will highlight the contribution with respect to individual objective. This will be 

based on the inferences of the results observed from each objective. Second segment will 

discuss about the limitations followed by future scope of the research. 
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Chapter – 2 

Improvement in Detection of Subsurface Buried Objects using 

Fusion of Multiband Multipolarization Scatterometer Data 

 

2.1 Introduction and problem definition 

 Several countries are affected by millions of buried landmines on their soil. These 

landmines have an extended lifespan and can cause catastrophic personal damage and 

economic disruption even after a battle has ended [15]. Landmines are exploding weapons 

with little to no metallic substance housed in tiny plastic canisters. They are designed to 

detonate upon pressure, incapacitating unaware enemies who step on them. Similar 

canisters are used against tanks and other vehicles rendering them inoperable as they pass 

over. These are referred to as antipersonnel (AP) or antitank (ATK) mines depending 

upon whether the target is a human/soldier or a tank/vehicle. Landmines are frequently 

placed flush at shallow depths to prevent quick visual detection and bypassing by enemy 

soldiers and tanks/vehicles. A metal detector is currently the most popular practical land 

mine detection tool. Unfortunately, this straightforward tool is barely helpful for finding 

non-metallic mines because most of them have no or very few metallic components. 

 Numerous novel approaches have been proposed and researched to address the 

issue of non-metallic mine detection [44]. They include various microwave-based 

methods (such as GPR), methods based on infrared imaging, chemical sensors, etc. 

However, these techniques are costly and unreliable, and necessitate working in 

proximity to buried landmines, making them extremely dangerous. On the other hand, 

microwave remote sensing-based approaches are less hazardous than land- or vehicle-
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based methods since they can be designed to scan the earth's surface from a standoff 

distance [11][33]. A detailed review of existing landmine detection techniques has been 

presented in Section 1.4. 

 Microwave remote sensor operates by emitting short bursts of EM energy into the 

ground and detecting reflections that occur when the energy encounters change in 

permittivity and conductivity [115]. These reflections are crucial for landmine detection, 

as they reveal variations in dielectric properties at air-surface-landmine interfaces. 

However, a significant challenge arises when the dielectric contrast at the air-surface 

interface overlaps with that of the soil-landmine interface. This overlap results in weak 

and indistinct backscattered signals, making the detection of landmines difficult. The 

difficulty lies in extracting landmine features from the diminished backscatter response, 

primarily because the sensor is typically situated some distance from the buried surface, 

and the dielectric constants of the landmine and the surface soil are often within the same 

range. Consequently, the extraction of landmine features within the cluttered soil 

environment poses the primary challenge in microwave remote sensing for landmine 

detection [17][41][103]. To address this issue, researchers worldwide have developed 

several models and signal-processing algorithms that leverage microwave detection 

techniques to detect landmines accurately [14][18][117].  

 This challenge is exacerbated by soil clutter caused by surface parameters and 

internal inhomogeneity. Researchers have been actively investigating EM scattering due 

to surface parameters and inhomogeneity structure, recognizing its significance in 

landmine detection. Despite extensive research, EM scattering remains a highly complex 

phenomenon. Various researchers have conducted detailed studies on different aspects of 
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EM scattering and have proposed models that account for other surface conditions 

[18][118].  

 Considering a particular emphasis on dielectric permittivity, Takahashi et al. 

(2014) [119] proposed a straightforward technique to model clutter from soil 

heterogeneity. The research experimented on one soil type with varied levels of 

heterogeneity to validate the methodology before applying it to three soil types (Laterite, 

magnetic sand, humus) for landmine detection testing. In a blind test, the study revealed 

a significant correlation between the radar system's performance and the clutter modeled 

based on soil heterogeneity. Notably, the research underscored how soil heterogeneity can 

profoundly impact radar performance, particularly at higher frequencies, leading to an 

increased likelihood of misidentification. 

 In the context of landmine detection, the primary goal is not necessarily to achieve 

precise calculations of the backscattering coefficient. Instead, the focus lies on enhancing 

mine-like features within an image to effectively distinguish between the background and 

potential landmines. Consequently, the perspective shifts towards exploring alternative 

approaches that can minimize the adverse effects of surface parameters and accentuate 

various mine-like characteristics in the image. The overarching aim is to enhance the 

ability to improve the detection of landmines without the need for an exhaustive 

determination of exact scattering coefficients, aligning more closely with the practical 

requirements of landmine detection applications. 

 The microwave backscatter intensity depends upon target and system 

characteristics. This target characteristic encompasses dielectric constants, scattering 

properties, orientation, surface roughness, and shape. On the other hand, system 

characteristics encompass wave frequency, polarisation, and incidence angle, each of 
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which plays a distinct role in influencing the backscatter characteristics [18]. Together, 

these characteristics comprehensively determine the observed backscatter intensity, with 

each element contributing uniquely to the overall result [120][41]. 

 The impact of surface roughness on buried object detection is a crucial 

consideration in fields such as geophysics, archaeology, and landmine detection. Smooth 

surfaces offer more predictable interactions with EM waves, potentially enabling greater 

penetration before encountering the buried object. On the other hand, rough surfaces 

scatter radar waves, resulting in reduced penetration depth and increased detection 

complexity. Moreover, variations in surface roughness within a detection area can add 

further complications [121]. While rough surfaces can pose challenges to detection 

efforts, it is imperative to comprehend these effects and employ appropriate detection 

technologies and processing techniques to ensure accurate and reliable buried object 

detection across diverse real-world scenarios. 

 In the study by Chmielewski et al. (2007) [122] introduces a two-step EM 

detection method for identifying buried objects, focusing on AP landmines in natural soil. 

It addresses surface clutter by estimating the roughness profile of the interface, an 

unknown parameter. The procedure effectively reconstructs surface profiles amid noise, 

emphasizing the importance of the estimated roughness profile in the inversion process.  

 The polarization information in the backscattered waves from a specific target 

plays a crucial role in delineating its geometric structure, orientation, and physical 

characteristics. This, in turn, significantly influences how a radar system perceives the 

object within its environment. It follows that manipulating the polarimetric response of a 

subsurface scatterer can either amplify or diminish its visibility [123].  Data in particular 
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polarisation do not have adequate discrimination capability, but each polarisation enhance 

diverse features of object. Numerous studies have showcased the effectiveness of utilizing 

information across various polarizations for detecting man-made targets amidst 

backgrounds characterized by natural clutter [18][60][124] [125].   

 Information obtained from two different polarizations provides an extra 

discriminant, enhancing the ability to differentiate and analyze data effectively. 

Consequently, scenes captured in orthogonal polarizations (such as VV and HH) exhibit 

variations in the intensity of detected backscatter contingent on the relative smoothness 

of targets within the scene. Moreover, it has been observed that smoother surfaces tend to 

display a higher ratio value for the difference between data in two polarizations (HH and 

VV) and their sum. This ratio has been applied in retrieving soil moisture in microwave 

X-band [126], demonstrating its effectiveness in mitigating the impact of roughness. The 

utilization of data across multiple polarizations also furnishes ample information for 

characterizing scattering mechanisms originating from diverse sources [127]. Despite 

this, exploring data from different polarizations for enhancing the detectability of buried 

targets, such as landmines, by minimizing surface effects still needs to be explored. The 

ultimate purpose is to evolve a model that takes input data in multiple polarisations and 

combines them into an image array capable of highlighting desired mine-like features.  

  The height deviations from the wavelength are compared to determine if a surface 

is smooth or rough. A single surface can be classified as rough or smooth depending on 

which microwave band is in question. Considering that wave penetration rises with 

wavelength. As seen in Fig. 2.1, there is also less backscattering and the surface appears 

smooth. However, the surface seems rougher at low wavelengths due to significant 

backscattering. 
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                           (a)                      (b) 

Fig. 2.1 Same surface appear (a) smooth for higher wavelength, and (b) rough surface 

for lower wavelength 

 The choice of microwave frequency band (such as L, S, C, X) in landmine 

detection impacts factors like penetration depth, resolution, sensitivity to environmental 

conditions, and equipment complexity [18].  It involves trade-offs, with lower frequencies 

penetrating deeper but offering less resolution and higher frequencies providing better 

resolution but requiring more sophisticated technology [128].  Multiband processing is 

sometimes showing significant improvement in landmine detection. In the paper [129], 

the Estatico et al. (2015) have extended an EM inverse scattering technique originally 

designed for single-frequency imaging to incorporate multifrequency processing. To 

validate this approach, the researchers conducted numerical simulations to reconstruct 

cylindrical scatterers within a homogeneous lossy medium. These simulation results were 

subsequently compared to outcomes achieved through standard single-frequency 

operating conditions.  

 A further concern in this context is the assessment of the minimization of surface 

roughness. Since there is limited literature exploring the data in multiband 

multipolarization to minimize surface roughness effects, no models or metrics are 

available to assess surface roughness minimization. However, surface roughness effects 

can be treated as the existence of uncertainty present in the image, preventing landmine 

discrimination from the background. The presence of error, inexactness, fuzziness, or 
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ambiguity within an image is denoted as uncertainty. Consequently, diverse measures of 

uncertainty can be employed to evaluate the impact of surface roughness effects. Within 

the array of uncertainty metrics, entropy measures, including log-energy entropy or 

different variations of entropy manipulations, are recognized as appropriate indicators of 

random effects in an image. They hence can be used to assess surface roughness 

minimization effects [130]. 

 Conducting a comprehensive analysis of data acquired through various multiband 

and polarization channels is expected to play a pivotal role in the near future, particularly 

in the context of minefield detection methods employing UAV drones or satellite-based 

technologies [6]. The objective of this is to investigate the capability of C- and X-band 

microwave SCAT data, specifically in the VV and HH polarizations. The objective  of 

this research is to explore synergistic approaches to enhance the effectiveness of landmine 

detection through minimization of surface roughness. 

 The research aims to achieve the following specific goals: 

• To develop a framework to improve landmine detection by mitigating the impact 

of surface roughness. 

• To evaluate the discrimination capability of VV and HH polarization and their 

fusion combination for improving buried landmine detection.  

• Exploring the discrimination capability of multiband (C- and X- band) SCAT 

microwave data for buried landmine detection. 

2.2 Data Set Description 

 As discussed in chapter-1, a SCAT is a complex instrument comprising several 

components that measure backscattered microwave radiation and derive valuable 

information about surface properties. A SCAT microwave system has been developed and 
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utilized for all the experiments of this research. Fig. 2.2 shows the SCAT experimental 

setup in the open field environment. A horn antenna and power meter are attached to a 

microwave transmitter through a circulator. An isolator with a 35-decibel isolation has 

produced an empirical dataset and polarizations. For the purpose of burying of mines, a 

wooden box sized 120x120 cm has been built and filled with dry sand. Microwave 

antennae has a base height of 100 cm from the ground. This arrangement can drive the 

antennas in both the horizontal and vertical directions. The horizontal stripes have been 

inscribed in 5 cm increments from 1 to 24 (Fig. 2.3). The antenna and circulator undergo 

lateral movement along the Y-axis, ranging between position 1 to 24, at each horizontal 

point along the X-axis, position between 1 to 24. The experiments have been carried out 

in the open ground exposed to sunlight.  

 

Fig. 2.2 Block diagram of SCAT system (L-PAD: min. loss matching pad) 

This study focuses on a live antitank (ATK) landmine that, although lacking a 

fuze, still has explosive material. This mine is deliberately buried at the central point of 

the configuration under investigation. The design parameter of experiments is given in 

Table 2.1. All the measurements of these experiments have been collected in far-field 

regions (Fig.2.3). A wooden profilier is used to vary the soil surface roughness from 1cm 

to 5 cm as  shown in Fig. 2.3 (a), (b) and (c). 
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   (a) open-field SCAT experimental setup 

  

(b) indigenous wooden profiler 

  

(c) rough surface - 2 cm (d) rough surface – 3cm 

   Fig. 2.3 SCAT setup with wooden profiler [131] 
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 A Live antitank has been placed at the center of experimental setup. Fig. 2.4 shows 

the dimension of live antitank mine. Table 2.1 summaries the design parameter of this 

study. This live landmine data has been taken from Indian Institute of Technology, 

Roorkee [131]. 

 

 

 

   

Fig. 2.4 Live Antitank Mine (weight:7 kg, height:0.07m, length: 0.25m, and width: 0.25m) 

 

 
Table 2.1 Design parameters of Experiments 

Design Parameters Details 

Frequency Band C- and X band 

Polarisation VV and HH 

Soil composition Dry sand 

Surface Texture Smooth and Rough Surface 

Surface roughness depth 1,2,3,4, and 5 cm 

 Mine placement Buried at the central point 

Type of Landmine Live antitank Mine 

2.3 Theoretical framework/model: methodology 

 Anti-tank mines come in multiple dimensions and shapes and can be encased in 

plastic, metal or wood. While microwaves have a relatively good penetration capability 

compared to other parts of the EM spectrum, the actual depth of penetration depends on 

the wavelength and condition of the object involved, such as the moisture content of the 

material, the density and composition of the material, and the roughness or texture of the 
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surface. Materials with high water content, such as wet soil or human bodies, can absorb 

and attenuate microwaves more effectively, reducing their penetration depth.  

       SCAT emit microwave pulses towards the Earth's surface and measure the 

backscattered radiation. The scattered signals contain information about the surface 

roughness and soil moisture. By analyzing the characteristics of the backscattered signals, 

SCAT can estimate the shape and range of buried object. Ground-based SCAT can be 

customized and optimized for specific research or application needs. The instrument 

parameters, such as the frequency, incidence angle, and polarization, can be tailored based 

on the desired measurements and the characteristics of the target environment. This 

flexibility allows for more focused and specialized observations [18].  

           The SCAT system consists of the components: Transmitter, antenna, receiver, 

oscillator, signal processor and data acquisition system. The polarization parameter of a 

SCAT refers to the polarization state of the transmitted and received microwave waves 

used in the measurement process. It characterizes the orientation and alignment of the 

electric field vector of the EM waves. The SCAT transmits and receives EM waves in 

Vertical and Horizontal polarization. By transmitting and receiving microwave signals 

with different polarizations, SCAT can analyze the backscattered radiation and extract 

information about surface properties. The polarization characteristics of the backscattered 

signals can reveal details about the surface roughness, soil moisture, and other parameters 

of interest. Polarization measurements provide additional information about surface 

characteristics, enabling more accurate retrievals and improved discrimination between 

different surface types [116]. 

 Based on a critical literature review and observation, a theoretical model has been 

presented in this section for improving landmine detection using SCAT data. The 
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proposed landmine detection model comprises five essential steps. The landmine feature 

extraction is the first step, relying on image processing methods. 

 Segmentation of a suspected area having a landmine after raw data preprocessing 

is the first step. Data preprocessing encompasses several image processing techniques 

that refine raw data, simplifying the extraction of the desired attributes from the resulting 

image. The efficient implementation of landmine feature extraction has been proposed 

for reducing false alarms. The second step involves a theoretical model for factors 

affecting backscatter from a landmine. The theoretical analysis would lead to minimizing 

the factors adversely affecting the landmine detection. Further, an approach to minimize 

affecting factors roughness has been proposed in the subsequent step. The data fusion 

approaches have been utilized as a prominent component for obtaining the desired 

outcome. Finally, the model has been evaluated through a rigorous evaluation parameter, 

followed by another validation using signal processing algorithms. Here, X- and C-band 

SCAT data of live antitank landmine has been taken for study. The landmine is buried 

under rough and dry sand at roughness depths of 1,2,3,4 and 5cm. Fig. 2.5 summaries the 

proposed theoretical model.  

2.3.1 Landmine Feature Extraction: Image Preprocessing and Segmentation 

 An advanced image processing technique is proposed to extract significant 

features related to the buried landmines from raw image data generated from the SCAT 

system. The extraction consists of two significant subtasks: image preprocessing and 

segmentation. The primary objective of this step is to classify SCAT data into landmine-

like or non-landmine-like, which further reduces the false alarms. 
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  Fig. 2.5 Proposed Theoretical framework 

 

 

2.3.1.1 Image Preprocessing   

 The monostatic SCAT system received backscatter power as linear convolution of 

impulse responses (of antenna, clutter, and landmine) with transmitted power [18]:  

𝑃𝑅(i) = 𝑃𝑇(𝑖) ∗ ℎ𝐴(𝑖) ∗ ℎ𝐶(𝑖) ∗ ℎ𝐿(𝑖) ∗ ℎ𝐶(𝑖) ∗ ℎ𝐴(𝑖)                                               (2.1) 

Here, ℎ𝐴(𝑖), ℎ𝐶(𝑖) 𝑎𝑛𝑑 ℎ𝐿(𝑖) are impulse responses of the antenna, clutter, and 

landmine, respectively, whereas 𝑃𝑅(i) and 𝑃𝑇(𝑖) are the received and transmitted power 

by the SCAT antenna. The Landmine impulse response is calculated by deconvolution of 

the received signal. Here, clutter reduction and its modelling are complex tasks.    

The preprocessing of SCAT backscatter requires the primary signal processing tasks: 

i. Calibration 

A calibration was performed on raw data using a ratio with a perfect reflector such 

as aluminum (reflectivity coefficient »1). An aluminum plate measuring the 

dimensions of the wooden sand frame has been laid down on the sandpit, and the 

backscatter value has been recorded. Calibration of raw data has been calculated 

from the following equation: 
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              𝐸𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 = 
𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒

𝐸𝐴𝐿
                                                                                         (2.2) 

         Where 𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒 is received observed backscatter value, whereas 𝐸𝐴𝐿 is 

backscattered power received from aluminum metal.    

ii.  Normalization 

Normalization brings all the data in the same range. The following equation would 

calculate the normalization of the calibrated data: 

   𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒 = 
𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒−𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚
                                                            (2.3) 

   Here 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚 are the maximum and minimum backscatter        

 values. 

iii.  Deconvolution  

 At the SCAT antenna receiver, deconvolution has been performed on normalized 

data. The specific choice of filter for this deconvolution step is intricately linked 

to the configuration and settings of the SCAT parameters [132]. A Convolution 

kernel filter has been applied to reduce the impact of scattered field overlap from 

adjacent pixels. It has been observed that the 5×5 convolution filter performs 

better for the X- and C-band SCAT systems. 

𝑊3×3  = [
1 1 1
1 2 1
1 1 1

]                                    (2.4)     

𝑊5×5 = 

[
 
 
 
 
1 1 1 1 1
1
1
1
1

1
2
1
1

2
3
2
1

1
2
1
1

1
1
1
1]
 
 
 
 

                           (2.5) 
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        The kernel deconvolution filter of window size 3×3 and 5×5 has been shown 

         into equation 2.4 and equation 2.5. 

 The physical size of a landmine is generally tiny, so the backscatter received from 

the buried landmine appears to be stretched over just a few pixels. As a result, two 

separate methods, full-frame and local-frame processing, have been evaluated. The SCAT 

system generated data within a 24x24 image elements frame, as discussed in Section 2.2. 

and this raw data is subsequently preprocessed in both full-frame (24x24) and local-

frame(8x8) configurations to enhance the extraction of the landmine feature. 

2.3.1.1.1 Full-frame Preprocessing 

 The complete raw data, which comprises a 24x24 matrix, is processed through a 

sequence of data preprocessing steps as previously outlined. The full-frame processing 

allows for analyzing the raw backscatter image without involving additional image 

manipulation tasks. One benefit of this approach is that it provides insight into the 

characteristics of the original data. 

 This full-frame preprocessing can occur because the preprocessing steps, such as 

filtering or normalization, could smooth or normalize the data, reducing the contrast 

between the landmine and its surroundings. Nevertheless, when dealing with buried 

landmines, where the backscatter from the landmine might not exhibit notable distinctions 

from its surroundings, full-frame processing could potentially result in the absence of 

critical landmine attributes. 

To address this limitation, researchers should take additional considerations into 

account. For instance, alternative approaches involve localized analysis or focusing on 

specific regions of interest rather than applying preprocessing to the entire image. 
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Targeting specific areas where the landmine is expected to be present makes it possible 

to preserve and enhance the relevant features associated with it, even if the overall 

contrast in the image is low. 

2.3.1.1.2 Local-frame preprocessing 

 Separating landmine-like attributes from non-landmine-like attributes in a 

heterogenous environment is necessary for landmine feature extraction. The formation of 

clutter in landmine detection can be attributed to several factors, including differences in 

dielectric properties at the interfaces between various materials, surface irregularities, and 

the small size of the landmines themselves. The limited variations in dielectric properties 

between the landmines and the surrounding medium also contribute to this issue. 

Processing in a local-frame may be more beneficial to identify pixels with landmine-like 

properties because the landmine backscatter in a SCAT measurement is typically localized 

to a small number of pixels alone. The local-frame processing can be implemented by 

generating the new image, dividing it into frames, transferring the frames, and applying 

data preprocessing steps. Table 2.2 exhibits the implementation steps for local-frame 

processing. 

Table 2.2 Implementation steps for local-frame processing 

Step 1: Generate a new image 

• Create an identity(I) matrix of 24x24 size as the raw data. 

• Multiply the identity matrix by the raw data's mean backscatter value. 

• Visualize the new data as a 3D plot, resulting in a plot where all data points lie on 

the same plane at a constant value, which is equal to the mean backscatter value. 
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• Scale down the new image by multiplying it with a fraction between 0.5 and 0.8.  

The precise value of the fraction is determined through the analysis of each 

experiment. 

Step 2: Divide the raw image into frames 

• Determine the optimal frame size based on landmine size, potential presence of 

other targets, and clutter. 

• In this case, an 8x8 pixel frame size is suitable because of the size of the target 

(landmine). 

• Divide the raw image into non-overlapping blocks of the chosen frame size. 

Step 3: Process each frame in the new image 

• Iterate over each frame in the raw image. 

• Transfer the frame to its corresponding location in the newly framed image. 

Step 4: Perform data preprocessing steps on the new image 

• Apply various image processing methods outlined earlier to enhance the image for 

landmine detection 

Step 5: Repeat steps 3 and 4 for all windows in the raw image  

 

2.3.1.2 Segmentation     

 Image segmentation is necessary for object detection to precisely locate and 

identify objects inside an image [133]. Dividing the image into several zones provides 

pixel-level masks that help define object borders and handle occlusion. Other benefits of 

segmentation are getting rid of unnecessary data, separating foreground from background 

elements, and reducing false positives. An image is segmented as a stage towards 

extracting a desired object or region. Depending on the application's requirements, level 
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subdivision should finish once the object of interest has been isolated. Extracting the 

pixels that make up the landmine is necessary for landmine detection, but they might need 

to be more readily available for various reasons. However, it might be conceivable to 

outline and divide a zone as closely as possible to the area the landmine covers. 

Thresholding can be used for automated segmentation of a suspected minefield-

containing zone, although this method calls for selecting a threshold value, such as 't' 

[134]. Selecting an appropriate threshold value, 't,' remains a daunting task, primarily 

since the landmine features within the data occupy a limited number of pixels and are 

further complicated by the potential overlap in backscatter intensities between the 

landmines and their immediate surroundings. Pare et al. (2020) [135][136] classified 

different thresholding approaches. The segmentation of images and thresholding 

approaches for image analysis are covered in Goh et al. (2017) [137]. This research 

examines the viability and effectiveness of the Otsu approach for image thresholding 

under different environmental conditions. The investigation results demonstrate that 

object position has no discernible impact on segmentation performance but that the 

intensity difference, object size, and noise level are the main factors that determine the 

effectiveness of image segmentation. Additionally, a verification utilizing real-image data 

is included in the research to show that the proposed conditions may correctly predict the 

image thresholding outcome. One clustering-based approach (Otsu thresholding [138]) 

has been selected for further data processing of SCAT data. Its goal is to select the 

appropriate threshold value that maximizes variance across the classes while minimizing 

variance within each class.  

The convoluted data has been subjected to thresholding using Otsu’s methods for 

identifying a suspected region buried with a landmine. The segmented region is expected 
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to contain the landmine, and the backscatter values in this region have been considered 

for further analysis 

2.3.2 Parameters affecting backscatter from landmine 

 The value of SCAT backscatter is subject to system parameters (incident angle, 

frequency band, and polarisation of microwave data) and target parameters (surface 

roughness, scattering phenomena, and dielectric constant). Among these system 

parameters, incident/viewing angle is fixed for the experiments. The system parameter 

that significantly adds to the information in the backscatter are the frequency band and 

polarization state of microwave data.  

(i) Scattering mechanisms 

Scattering mechanisms refer to how EM waves interact with surfaces, 

particularly how they are reflected or dispersed by rough and smooth surfaces. EM 

waves scatter from rough surfaces in various ways due to the imperfections and 

microstructures these surfaces possess. The two primary scattering mechanisms 

connected to rough surfaces are: Lambertian and Bidirectional reflectance. A 

lambertian surface is an ideal diffuser since it scatters EM waves evenly in all 

directions. Regardless of the incidence angle, wave is equally reflected in all 

directions when it hits a lambertian surface. These surfaces are simpler to model 

and analyse due to their predictable dispersion behaviour. The bidirectional 

reflectance scattering on real-world rough surfaces is not always uniform. Instead, 

they have different reflectance characteristics depending on the angle of incidence 

and observation. It describes the various angles at which an EM wave is scattered 

or reflected by a surface.  On a rough surface, the energy scatters evenly in all 
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directions, with a large amount returning to the radar. It causes radar images of 

rough surfaces to seem lighter. 

        Smooth surfaces, commonly referred to as specular surfaces, have a low 

degree of surface roughness, which produces more consistent and predictable 

reflection patterns. The primary scattering mechanisms connected to smooth 

surfaces is specular scatter. Smooth surfaces with some roughness but imperfect 

secularity is called glossy surfaces. Another wave scattering, known as volume 

scattering, results from independent elements of the medium if microwave 

radiation passes through the top surface of any objects (such as vegetation). The 

scattering of microwave energy within a volume or medium is known as volume 

scattering, and it typically entails many bounces and reflections from various 

components within the volume. The image's brightness may drop or rise 

depending on how much energy is reflected in the SCAT during volume 

scattering.In many situations, the behaviour of a surface can vary between smooth 

and  rough, and this variability is contingent on the frequency band of the incident 

waves. 

(ii) Multi-layer surface effect 

Microwave propagation under the surface (sand) involves the interaction of 

multilayer surfaces, and air-sand-landmine interfaces have been used in these 

experiments. Fig.2.6 shows the schematic representation of multilayer microwave 

propagation for buried landmine detection.  

The landmine is buried under dry sand at the depth of ‘H'. Here Ei is the 

incident electrical field transmitted from SCAT, and ER is the total backscatter 

signal received by SCAT. The backscatter available at the SCAT from a subsurface 
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landmine is on-linear integration of all the reflections, received clutters from 

multilayer interfaces, and scattering components. The ER received from scattering 

by the landmine-sand-air layers, reflection from the landmine, diffraction, and 

specular and volume scattering. The backscatter signal, as it is received, multiple 

layers, with each layer being distinguished by its unique dielectric constant. 

Which further limits the detection of buried landmine detection. 

 

            Fig. 2.6 Multilayer wave propagation and reflection in an air-soil-landmine interface 

(iii) Surface roughness 

      The target's surface roughness is made up by numerous small scatterers 

distributed across its surface. The quantity of backscatter accessible at the SCAT 

end is often primarily determined by the surface roughness. It regulates the 

interaction between the target surface and microwave energy. Surface roughness 

is described by root mean square (rms) height, which is represented in terms of 

EM wavelength. 

The statistical fluctuation of the random components of surface height in 

relation to the reference surface is described by the surface height standard 

deviation. A surface is categorized as "rough" when its height variances surpass 
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the wavelength, while it is classified as "smooth" when these variances do not 

exceed the wavelength. Surface roughness depth is another name for this RMS 

height. However, Charlton et al. (2006) [139] provide the surface roughness for 

both smooth and rough surfaces mathematically. 

         Rough Surface: 

ℎ >
𝜆

4.4∗sin𝛼
                                                                                                   (2.6) 

          Smooth Surface: 

ℎ <
𝜆

425∗sin𝛼
                        (2.7) 

where h = height of surface roughness, λ= wavelength, α=grazing angle. 

In general, it has been observed that surface roughness increases the 

backscattered intensity. In an S-band image with a wavelength of 7.5 to 15 cm, it 

seems dark when the surface roughness is of the order of 5 cm, but in an X-band 

image with a wavelength of 2.4 to 3.75 cm, the same surface appears bright due to    

increased backscattering [18]. 

(iv) Wave Polarisation  

      SCAT antenna usually transmits plane-polarized radiation. Its associated 

electric field oscillates in a single plane perpendicular to the direction in which 

the wave propagates. The electric field of the transmitted/received wave oscillates 

in the vertical or horizontal plane depending on how the antenna parameters are 

designed. The oscillations of the transmit and received waves can lead to several 

polarization mode combinations. In this experiment, the polarization modes used 

are VV and HH, with the transmitter and receiver being polarized vertically and 
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horizontally, respectively. Co-polarized waves share the same polarization in both 

the transmitting and receiving directions. Due to the instrument's power limit, this 

research did not consider cross-polarization mode (VH and HV). The backscatter 

value differs in different polarization and depends on the target orientation and 

incidence angle. The nature of the data collected in the various polarizations is 

very diverse, and the necessary landmine-like attributes might be embedded in 

either of the polarizations or extracted by combining them using a suitable 

approach. 

 Most scattered energy, typically accessible at the SCAT end, has the same 

polarization as the transmitted wave when a polarized wave is scattered by a rough surface 

like soil. The wave is repeatedly scattered at the interfaces of the two mediums, the air, 

and soil, when it passes through a surface, leading to a significant depolarization. Both 

horizontally and vertically transmitted waves incur varying degrees of depolarization 

[140]. Additionally, the levels of penetration are varied for waves with various 

polarizations. For instance, co-polarized (HH or VV) waves typically penetrate much 

further than cross-polarized (VH or HV) waves [120]. Depolarization thus varies 

depending on the polarization type, scattering, and penetration. Therefore, the microwave 

data gathered in various polarizations contains noticeably varying amounts of information 

about the target since the received polarization may differ from the transmitted 

polarization. Similar to this, depending on the smoothness of the surfaces, a scene 

captured in two orthogonal polarisations exhibits fluctuations in the intensity of observed 

backscatter. According to research by Singh D. et al. (2005) [126], the polarization 

discriminant ratio, which compares the differences in data between two polarizations, is 

typically higher for smooth surfaces.  
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  The backscattered wave can contribute to horizontal and vertical polarizations 

when a horizontally polarized wave strikes a target. A wave that is incident vertical is 

subject to the same rules. Therefore, each transmitted wave generates a different 

backscattered wave based on the target properties. As a result, the target response can be 

calculated from the microwave data in two polarizations utilizing two orthogonal 

polarizations, commonly VV and HH [141].   

2.3.3 Selection of parameters to be minimised  

 As already mentioned, the SCAT system's target and system parameters determine 

the backscatter intensity in microwave data. Most landmine detection techniques use 

dielectric differences between a landmine and its surroundings. Due to surface abrasion, 

dispersion, layered media, and other factors, these restricted variations are likely to suffer. 

As a result, all effects that reduce the return from the landmine, create a loss of dielectric 

fluctuations, or could lead to false alarms must be removed and are referred to as 

undesirable effects. Due to the complexity of mechanisms resulting in diminished 

backscatter, it takes work to model or eliminate their effects. Table 2.3 shows the 

dielectric constant value and surface roughness for X-band microwave data. It may be 

possible to minimize some of the effects. In the following subsections, an overview of the 

undesired effects which need to be minimized is discussed. 

              Table 2.3 Experiment parameter in X-band (λ = 3 cm, α= π/2) data 

Dielectric Constant 

Air 1 

Dry sand 3 to 5 

landmines 4 to 10 

Surface roughness(cm) 

Smooth surface h < 0.12  

Rough Surface h > 0.68  
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Multi-layered propagation effect 

  A smooth surface generates specular reflections, whereas a rough surface scatters 

equal refection in all directions [11]. The backscatter wave reflected from the buried 

landmine passes through multiple layers of distinct dielectric constants. EM wave 

propagation through different layers to and from buried landmines has been shown in Fig. 

2.6, which shows the multiple interactions at the medium interfaces. The backscatter 

available at the SCAT from a subsurface landmine is non-linear integration of all the 

factors mentioned with multilayer scattering. 

 Daniels J. et al. (2003) [115] introduced a model for estimating the electric field 

reflected from a target buried beneath a smooth surface has been adopted to estimate the 

backscattered electrical field from subsurface landmines buried under smooth surfaces. 

 Analyzing surface scattering and the multi-layered propagation effect is necessary 

for subsurface landmine detection, as mentioned in earlier section. Landmine detection 

will benefit from an accurate calculation of backscatter under these conditions, however 

modeling different components of scattering and the multi-layered propagation effect 

may be difficult and complex. On the other side, it is feasible to enable discriminating 

between the buried landmine and the background leading to its identification by reducing 

surface roughness and boosting landmine-like features. 

 The backscattering coefficient 𝜎(𝜃𝑖) of a surface(smooth/rough) can be 

represented in terms of dielectric and roughness function [18]. The mathematical 

representation of  𝜎(𝜃𝑖) is shown in equation 2.8. 

              𝜎(𝜃𝑖) = 𝐹𝑟𝑡(𝜖𝑠, 𝛳𝑖) ∗  𝐹𝑠(𝜌(𝜉), 𝜃𝑖)                                                                 (2.8) 

  Where 𝜃𝑖 denotes the incidence angle. The dielectric function 𝐹𝑟𝑡(𝜖𝑠, 𝛳𝑖) explains 

the backscatter coefficient's dependence on the surface's relative dielectric constant. The 
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roughness function 𝐹𝑠(𝜌(𝜉), 𝜃𝑖) explains the surface roughness dependence of the 

backscatter coefficient. 

 However, equation 2.8 only considers surface roughness and ignores the 

multilayer propagation effect. The difference between the theoretical and observed 

backscatter can be explained by scattering at the surface and the multilayered propagation 

effect, which are parameters represented by the undesired effects parameter. The 

backscattering coefficient can also be expressed according to dielectric constant of 

different media.       

 𝜎(𝜃𝑖) =  𝐹𝑟𝑡(𝜖1, 𝜖2, 𝜖3, 𝜃𝑖) ∗  𝑈𝑒𝑓𝑓𝑒𝑐𝑡𝑠                                                            (2.9) 

           𝐹𝑟𝑡(𝜖1, 𝜖2, 𝜖3, 𝜃𝑖)  is the dielectric function that includes the dielectric constants of 

air-soil-landmine multilayered interfaces. 𝑈𝑒𝑓𝑓𝑒𝑐𝑡𝑠 is a factor that includes all the 

parameters that may affect the backscatter value at the SCAT system. As surface 

roughness is dominating factor, so these are known as surface roughness effect. Therefore, 

the purpose of the research that follows is to investigate various approaches and provide 

a model to reduce all undesirable impacts and improve landmine attributes. 

2.3.4 Fusion approach of multipolarization data 

 The 𝜎𝑉𝑉
𝑜  (VV polarization backscatter value) and 𝜎𝐻𝐻

𝑜  (HH polarization 

backscatter value) polarization data in radar tell us about a target's shape, orientation, and 

composition by revealing how it interacts with radar waves of different polarizations. The 

dielectric properties of the target material play a vital role in this interaction. In essence, 

these data help us "see" and understand the physical characteristics of targets. Data from 

a single polarization in radar can be effective in detecting objects resembling landmines, 

especially when they are buried beneath smooth surfaces. However, when these 

landmine-like objects are hidden under rough or uneven surfaces, it becomes challenging 
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to identify or emphasize them, even after applying image preprocessing techniques. This 

difficulty arises from the adverse effects of surface roughness, as explained in the 

previous section. This further encourages combining or fusion of the 𝜎𝑉𝑉
𝑜   and 𝜎𝐻𝐻

𝑜  data 

may be better suited to reduce the effects of surface roughness.  

 As mentioned in Section 1.6, Fusion is merging or combining two or more data to 

achieve the desired response using some transformation and manipulation. The fusion of 

multipolarization data may also involve polarization subtraction and ratioing. The 

significance of polarization image subtraction and ratioing lies in their ability to suppress 

certain information while highlighting others. However, whether this leads to the 

enhancement of landmine-like features remains to be explored. Polarization 

discrimination ratio (PDR) is another popular image transform that has produced good 

results in soil moisture estimation in microwave remote sensing [126]. PDR can enhance 

specific concealed information that otherwise may not get improved. Thus, three primary 

polarization fusions approaches have been considered in the present chapter i.e., 

Polarization Ratio (𝜎𝑉𝑉
𝑜  /𝜎𝐻𝐻

𝑜 ), Polarization Subtraction (𝜎𝑉𝑉
𝑜  -𝜎𝐻𝐻

𝑜 ), and PDR ((𝜎𝑉𝑉
𝑜  -

𝜎𝐻𝐻
𝑜 )/( 𝜎𝐻𝐻

𝑜 +𝜎𝑉𝑉
𝑜 )).                                  

 The data from each polarization has been meticulously processed through well-

defined steps, as depicted in Fig. 2.7. This comprehensive preprocessing included 

calibrating the raw data, applying normalization techniques, and conducting convolution 

operations. The VV and HH data has been preprocessed and evaluated to identify a 

suspected region separately and then subjected to various fusion approaches. The process 

of fusion of polarization data is subsequently carried out on the convoluted data across 

all depths, and a thorough and detailed analysis has been performed. 
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2.3.5 Assessment of surface roughness minimization 

 The undesired effects in equation 2.9 can be modelled as uncertainty in an image. 

The uncertainty usually refers to an image's error, inexactness, fuzziness, and ambiguity. 

From information theory, uncertainty arises out of randomness and fuzziness is modelled 

using entropy model. Surface roughness effects can be measured by extending these 

entropy measurements. Entropy measures randomness, uncertainty instability, fuzziness, 

imbalance system disorder, etc. For a random variable X with N available events xi ϵ {x1, 

x2, …., xN} with corresponding probabilities pi ϵ {p1 ..., pN}; its Shannon entropy H(x) is: 

Entropy = H (x) = - ∑ 𝑝𝑖𝑙𝑜𝑔 (𝑝𝑖)
𝑁
𝑖=1                                                                 (2.10) 

 In this chapter, Shannon log energy entropy has been employed as a metric for the 

reduction of surface roughness [130].     

2.4 Implementation of Proposed model 

 The experimental data, as discussed in Section 2.2 earlier, has been acquired in 

C- and X-band with VV and HH polarizations. Implementation and analysis discussed in 

this section follows the theoretical framework proposed in the Section 2.3. The 

implementation model consists of two stages. Landmine feature extraction using image 

processing approaches is the first stage of the implementation. The second stage improves 

the probability of landmine detection in multipolarization data by minimizing surface 

roughness through numerical fusion and evaluating using entropy measures. Fig. 2.7 

depicts a flow diagram summarizing a set of image processing procedures defined for 

execution. Data preprocessing has been done in two ways: full-frame and local frame-

based preprocessing. In each instance, surface roughness minimization has been 

evaluated using an entropy-based approach after getting the transformations and 



66 

segmenting landmine-like features. Complete implementation of this chapter has been 

performed using MATLAB software. 

 

Fig. 2.7 Flow chart of this chapter 

2.5 Results and discussion 

 Improving the detection of buried landmines can be achieved by minimizing the 

parameters that affect the backscatter value of the landmine. Based on the discussion 

about the theoretical model (Section 2.3), it is considered that surface roughness is one of 

the crucial parameters affecting backscatter from a buried landmine, making its detection 

challenging. In this section, analysis has been carried out to evaluate surface roughness 

effects. Data produced in VV and HH have been subjected to multi-polarization fusions 

and fusion approach for enhancing the detection has been proposed. Multi-polarization 
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fusion analysis has been done with X-band SCAT data under smooth and rough surface 

conditions. The performance of approaches has been evaluated through data entropy.  

2.5.1 Effect of surface roughness (smooth and rough) 

 Surface roughness is one of the system parameters affecting the detection of 

landmines, discussed in section 2.3, and taken as an important element of this research 

work. Table 2.4 shows statistics assessing data generated by the X-band SCAT system 

under two distinct surface conditions: smooth and rough soil. Fig. 2.8 shows the visual 

representation of the data at a surface roughness depth of 1cm. The statistics directly 

provide valuable insights into the interaction of EM waves with both smooth and rough 

soil surfaces, enabling a better understanding of the scattering behaviour under these 

conditions.  

The evaluation of statistics parameters exhibits the following consequence: 

(i) The backscatter in VV polarisation (𝜎𝑉𝑉
𝑜 )  for smooth surfaces has been found to be 

higher than the HH polarisation (𝜎𝐻𝐻
𝑜 ). 

(ii) Rough surfaces have higher backscatter values in both HH and VV polarization, 

and this difference becomes greater as depth increases for both polarisations. 

(iii)  The difference in backscatter between rough and smooth surface has also been found 

to be comparatively higher for VV polarisation. The standard deviation has, however, 

been found to be lesser in the case of rough surfaces in both polarizations when 

compared with the smooth surface. Still, the standard deviation in VV polarization 

has always been higher than that of corresponding (i.e., smooth/rough surface) HH 

polarization. It indicates a loss of smaller backscatter values in favour of higher ones. 

This results in the loss of certain discriminating features in the case of rough surfaces, 
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which are essential in subsurface landmine detection because mine features are likely 

to appear as slight variations in backscatter values due to limited dielectric contrast 

between sand and landmine. It makes the task of landmine detection extremely 

difficult. 

      Table 2.4 Statistics assessment for live ATK landmine under smooth and rough surface 

condition 

Statistics Smooth Surface           Rough Surface 

VV HH VV HH 

Raw Deconvol Raw Deconvol Raw Deconvol Raw Deconvol 

Min 10.40 1.25 8.40 0 13.50 2.11 9.90 0.87 

Max 21.90 18.62 16.10 6.00 19.88 16.06 14.30 18.23 

Mean 14.55 7.93 11.47 0.73 15.41 7.93 14.51 6.53 

Skewness 1.34 0.93 0.46 2.61 0.45 0.70 1.26 1.07 

Kurtosis 4.92 3.58 4.85 3.10 3.07 2.22 4.19 4.09 

Std 

Deviation 

2.01 3.39 1.32 1.10 1.08 3.24 0.86 3.32 

 

(iv) The statistical moments, skewness and kurtosis are known to be outlier sensitive 

and hence may help indicate the presence of landmine in the data. Positive skewness 

suggests that the data exhibits a rightward skew. There is no change in the direction 

of skewness in both cases, i.e., smooth, and rough surface conditions, but the value 

changes marginally. On examining skewness at different depths, no pattern is 

observed. Similarly, no pattern is noticed in the case of kurtosis when the same is 

examined at different depths. A similar statistical and visual pattern is observed at all 

Surface roughness depths. Based on the above conclusion, further landmine detection 

analysis has been initiated, specifically focusing on the rough surface conditions. 
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 Smooth surface Rough surface 

 

 

VV 
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HH 
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VV 
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HH 
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Fig 2.8 Surf diagram of Smooth and Rough Surface data for ATK with 1.0 cm Roughness Depth 

(Image Dimensions: 24x24, Z-Axis Represents Backscatter Intensity 

 

2.5.2 Analyzing polarization impact on X-Band data at varied surface roughness 

depth 

 In this subsection, an examination is conducted on the analysis of SCAT data 

transmitted and received with VV and HH polarizations. The emphasis is placed on 
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statistically comparing the raw data captured through these two polarizations, as outlined 

in Table 2.5.  

 This comparison aims to uncover the intricate impacts of polarization on X-Band 

data, particularly regarding variations in Surface Roughness Depth (SRD). Through this 

analysis, one aims to gain a deeper understanding of how these polarizations affect the 

data and their significance in detecting buried landmine. 

The following observations have been made in Table 2.5: 

• Significant variation is visual in the backscatter value between VV and HH 

polarised SCAT data. 

•  The VV polarization generally has a higher backscatter value and standard         

deviation than HH polarization. 

• The standard deviation value also indicates that both the polarization has   some 

variation in their value irrespective of surface roughness depth. 

The Kurtosis and Skewness parameter also shows variations, but some significant 

changes are visual at a surface roughness depth of 2cm. There are multiple changes in the 

direction of skewness present mostly in HH polarization. 

This section concludes that raw VV and HH polarization data have some significant 

variation in backscatter value, which needs to be explored. The research indicates 

discernible differences in the amount of information contained within the VV and HH 

data sets. Given this divergence, it is imperative to investigate and implement a combined 

approach, such as fusion, to effectively augment the overall information content obtained 

from these data sources. This strategy can not only harmonize the disparate information 

but also contribute to a more comprehensive and integrated analysis. 
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Table 2.5 Comparative statistics of VV polarisation with HH polarisation for X-band data at 

different Surface Roughness Depth (SRD) 

  

2.5.3 Multipolarization fusion of X-band SCAT data 

 Based on the polarization analysis outcome, the VV and HH polarization data are 

combined through numerical fusion methods, as mentioned in Section 1.6. In this Section, 

three numerical polarization fusions of SCAT data have been analyzed for surface 

roughness minimization, and a novel polarization fusion method is proposed. All the 

results have been calculated under Full-frame data preprocessing and Local-frame data 

preprocessing to simplify evaluation work as discussed in the proposed theoretical model. 

 

SRD 

(cm) 

Band Minm Maxm Mean Medi- 

-an 

Std 

Devi. 

Kurt- 

-osis 

Skew- 

-ness 

1 HH 9.900 14.300 11.510 11.375 0.143 11.785 -0.24 

VV 13.500 19.88 15.405 15.132 0.148 3.373 0.225 

2 HH 1.300 15.700 11.733 11.300 0.267 4.020 -1.667 

VV 16.00 21.600 19.005 19.08 0.108 9.957 1.528 

3 HH 10.400 13.600 11.783 11.750 0.0875 1.7034 -0.357 

VV 13.80 22.200 16.558 16.525 0.164 2.483 -0.265 

4 HH 10.532 13.386 11.780 11.700 0.0855 1.832 -0.235 

VV 14.20 19.900 16.682 16.625 0.163 2.307 0.063 

5 HH 11.050 13.600 12.251 12.240 0.055 4.983 0.621 

VV 14.450 17.300 15.800 15.810 0.058 3.980 0.235 
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2.5.3.1 Analysis of Polarization Fusion with Full-frame image Preprocessing 

  The effect of polarization fusion has been investigated independently at all 

surface roughness depths to better understand their features and improve subsurface 

landmine detection. These are mentioned in succeeding paragraphs – 

2.5.3.1.1 Data preprocessing 

 The Full-frame (24 x 24) image of raw 𝜎𝑉𝑉
𝑜   and 𝜎𝐻𝐻

𝑜  has been subjected to the 

preprocessing stage to reduce clutter and noise, as outlined in theoretical framework 

(Section 2.3). As shown in Fig. 2.7, several preprocessing steps are used for preprocessing 

the VV and HH polarized data. To provide a visual representation of these preprocessing 

stages, we have included graphs for each step in Fig. 2.9. The charts for raw, calibrated, 

and convoluted data for HH polarization are displayed in Fig. 2.9 (a), (b), and (c). In 

contrast, the plots for VV polarization are shown in Fig. 2.9 (d), (e), and (f). The raw data 

in both polarizations is noticeably more congested, and no pattern is visible. In contrast, 

the deconvoluted image exhibits a noticeable pattern in both polarizations. The 

deconvoluted data from various surface roughness depths show similar patterns. It 

indicates that data preprocessing improves the landmine features extraction by 

minimizing noise/clutter and antenna overlap.  

Table 2.5 summarizes the statistics of data for live ATK data obtained in 𝑉𝑉 and 

𝐻𝐻 polarization under rough surfaces at a depth of 1.0 cm. It is worth noting that the 

standard deviation and mean of the data in VV and HH are not the same. Compared to 

HH polarization, VV polarization has higher backscatter values and a higher standard 

deviation. However, the deconvoluted data in each polarization reveals a decrease in 

backscatter values but an increase in standard deviation, indicating a better discriminating 

capability. The findings show that the VV and HH polarizations contain significantly 
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different amounts of information. Data preprocessing puts them into the same range and 

combines them into clusters that can be segmented. The results show the same trend at 

different surface roughness depths. 

 HH VV 

 

Raw 

image 

  

 (a) (d) 

 

Calibrat- 

-ed image 

  

 (b) (e) 

Convol- 

-uated 

 image 

  

 (c) (f) 

Fig. 2.9 Preprocessing for ATK with 1.0 cm Roughness Depth (Image Dimensions: 24x24, Z-

Axis Represents Backscatter Intensity) 

2.5.3.1.2 Evaluation of Fusion Approaches 

            The research findings highlight significant differences in the data obtained from 

two distinct polarizations, VV and HH, indicating that VV polarization contains more 
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distinguishing traits. The information content of the data would rise if the data from the 

two polarizations were integrated using appropriate fusion techniques, which would aid 

in the segmentation of landmine features.  Combining data from two polarizations using 

a fusion approach would boost the information content of the data, which could be 

valuable for landmine feature segmentation. As a result, a fusion approach must be 

developed that simultaneously adds the information content of data in both polarizations 

and eliminates or decreases noise/clutter from any source. 

Statistical Analysis 

 After preprocessing, the convoluted data has been processed to three polarisation 

fusion approaches as mentioned in Section 2.3.3 and the fundamental statistics parameters 

for the polarization fusion approaches have been obtained, as shown in Table 2.6. When 

the statistics parameters for the polarisation fusion data are compared to those for the 

deconvoluted data in Table 2.6, while the data's standard deviation (or spread) has 

increased, the mean backscatter value for the fused data has been severely shortened.  

          Table 2.6 Composite Statistics table for Antitank Mine at surface roughness depth of 1cm 

 

Statistics 

Data 

Raw 

HH 

Conv 

HH 

 

Raw 

VV 

decon 

VV 

Polarization 

Subtraction 

(VV-HH) 

Polarization 

    ration 

    VV/HH 

PDR Proposed 

Fusion 

Approach 

Mean 11.51 6.53 15.41 7.93 4.95 0.05 2.53 15.37 

Min 9.90 0.87 13.50 2.11 -1.32 -9.39 0.01 2.71 

Max 14.30 18.23 19.88 16.06 7.59 13.53 17.29 36.63 

Std Dev 0.86 3.32 1.08 3.24 1.51 3.96 3.29 7.39 

  

  Because the backscatter primarily comes from the sand surface, and the landmine 

is only likely to generate slight variations in backscatter, the preceding fusion approaches, 
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which result in dispersion further from the mean, may result in the loss of landmine 

characteristics. 

 Histogram Analysis 

 The resulting histograms for VV and HH polarisations and their combinations 

have been employed in additional analysis with the objective of differentiating landmine 

features from clutter. The histograms of the deconvoluted data in each polarization have 

been compared to the histograms of the polarization fused data. The histograms of the 

preprocessed image (deconvoluted) in VV and HH polarization are displayed in Fig. 

2.10 (a) & (b), while Fig. 2.10 (c), (d), and (e) show the histograms of the polarization 

fusion images (VV-HH, VV/HH, and PDR respectively). 

  (i)  Histogram of HH and VV polarisation 

  Fig. 2.10 (a) and (b) show that the backscatter intensities in HH and VV 

polarization are more widely dispersed. Backscatter intensities in VV polarisation are 

more widely distributed than in HH. The VV polarisation has higher discriminating 

features than HH, in the same line as concluded in Section 2.5.2. Variations in the 

backscatter induced by the buried landmines are likely to be identified in data where 

backscatter intensities are widely separated at smaller intervals due to low dielectric 

contrast. 

 As a result, in any data fusion, it is important to preserve and, if feasible, 

improve the discriminating property of the data that emerges in one of the two 

polarizations. 

(ii)     Histogram of VV-HH, VV/HH and PDR 

  Compared to the histogram of VV and HH data, the histogram of VV- HH 

(Fig. 2.10 (c)) demonstrates that it has fewer discriminating features since smaller 

backscatter values with only a few pixels appear to have been lost. 
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 The histogram for the ratio fusion VV/HH is shown in Fig. 2.10 (d); it can be 

observed that, while it is widely spread out and appears to have a significant 

discriminating capability, it only preserves backscatter intensities associated with 

a few pixels. 

 (a)  (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Fig. 2.10 Histogram ( x -axis shows the scaled backscatter intensities in the range of 0-255 and 

the y axis represents (a) the count of pixels for given backscatter value for VV, (b) HH, (c) VV-

HH, (d) VV / HH, (e) PDR and (f) Proposed fusion 

 

    Similarly, although the histogram of ((VV-HH)/(HH+VV), i.e., PDR looks to have 

the most discriminative features, it is concentrated in the left corner, indicating that it only 

contains pixels with low backscatter intensities. 
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       As a result, none of these three polarisation fusion approaches maintain all the 

discriminatory characteristics present in the original data. They do not eliminate surface 

roughness effects to the greatest extent possible.  

 Based on the above findings, a proposed fusion of polarisation data, i.e., 

[(𝑉𝑉 + 𝐻𝐻) − (𝑉𝑉 − 𝐻𝐻)], is likely to preserve the key distinguishing characteristics 

of the original data while reducing some of the surface roughness effects. Data 

segmentation using these proposed fusion approaches has also led to better outcomes, as 

shown in Fig. 2.9, compared to HH and VV polarisation. Therefore, it has been examined 

and compared to other techniques. This proposed fusion has the highest standard 

deviation, indicating that the data is widely dispersed and that most distinguishing traits 

from the original data have been preserved (Table 2.7). Fig. 2.8(f) shows the histogram 

of this proposed fusion, which offers higher information content and distinguishing 

features with backscatter values spread at substantially smaller intervals. It is backed up 

by the fact that the standard deviation is more heightened.  

Segmentation Analysis 

 The segmentation of this data using thresholding is also significantly better than 

that accomplished using data from either of the polarizations separately (Fig. 2.11). The 

improvement is probably due to the preservation of identifying characteristics and the 

reducing undesired surface roughness effects. Even though the above statistics 

demonstrate a significant improvement in detection, it still suggests the presence of an 

object in the segmented zone, as the number of pixels segmented is significantly more 

than that of a buried landmine. The most likely number of pixels segmented is 

substantially more than that of a buried landmine. 
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 This is most likely due to slight variations in backscatter intensities in the vicinity 

of a buried landmine. As a result, data preprocessing based on local images was employed 

for further analysis, and the proposed fusion has been applied.  

 

a 

 

b 

 

c 

Fig. 2.11 ATK landmine Feature Extraction using segmentation (a) HH (b) VV and (c) proposed 

fusion approach (horizontal and vertical axes are the dimensions of the image 24x24) 

2.5.3.2 Proposed polarization fusion with local-frame preprocessing 

  Local-frame processing has been utilized in this section, as discussed in Section 

2.3 to reduce the effect of clutter and noise received from background. This data 

preprocessing method aims to confine all image processing processes to a smaller frame 

so that modest variations in backscatter intensity emitted by subsurface landmines are not 

submerged in the stronger backscatter of the surroundings during data modification. 

Experiments have been carried to determine the appropriate frame size. As a result, only 

the data extracted in an 8x8 frame is preprocessed. Histograms for all polarization fusions, 

including the suggested ones, are shown in Fig.2.10. It's worth noting that the proposed 

polarization fusion contains the most discriminating features and backscatter values in 

the range of unprocessed data. The Fig. 2.12 shows the histogram analysis for local-frame 

processing. It also appears from histogram (Fig. 2.12 (e)), that proposed fusion approach 

has maximum discrimination capability. Fig. 2.13 demonstrates the segmentation 

accomplished using the Local-frame based preprocessing approach for polarization 

fusion. The segmentation achieved employing maximum entropy-based thresholding for 
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the proposed polarization fusion (Fig.2.13) appears to segment the landmine 

characteristics accurately. These results can be compared to those obtained utilizing the 

entire image data preprocessing method previously outlined. It's worth noting that the  

  (a)  (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig.2.12 Histogram of Local-frame processing of HH, VV, polarization fusions and 

proposed fusion data (X-axis shows the scaled backscatter intensities in the range of 0-255 

and 𝑌-axis displays the number of pixels for a given backscatter value) 
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Fig.2.13 Segmentation of HH, VV, polarisation fusions and Proposed fusion 

proposed polarization fusion method keeps both the more discriminating features and the 

backscatter in the original data's range. For the proposed fusion strategy, the segmentation 

performed using thresholding appears to segment the mine characteristics the most 

precisely, as shown in Fig. 2.13. 

2.5.4 Investigation of entropy-based surface roughness minimization  

 Entropy has been employed as a metric to assess the effectiveness of various 

multipolarization fusion approaches to minimize surface roughness. In Table 2.7, shows  

the entropy values corresponding to different polarizations and their respective 

multipolarization fusions across various surface roughness depths. Each distinctive 

colored bar within the graph corresponds to data derived from individual polarizations 

and multipolarization fusion approaches. This visual depiction elucidates the relationship 

between entropy values and the diverse polarization strategies employed in surface 
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roughness minimization. The entropy for VV and HH polarizations has consistently 

demonstrated disparity at all roughness depths. Specifically, in both HH and VV 

polarizations, the entropy derived from Fuse data consistently records values lower than 

the overall entropy within the dataset. This research underscores that each fusion method 

implemented successfully attains a certain degree of surface roughness minimization. 

 Moreover, it is noteworthy that the entropy associated with VV polarization 

consistently registers smaller values than its HH counterpart. In the context of VV 

polarization, it is observed that only the fusion technique ((HH+VV) - (VV-HH)) achieves 

a lower entropy compared to VV alone. This finding emphasizes the effectiveness of this 

particular fusion method in minimizing entropy and enhancing the characterization of 

surface roughness. 

Table 2.7 Entropy value for polarisation fusion approaches 

SRD  

Pol. Fusion 

 

1 cm 

 

2cm 

 

3cm 

 

4cm 

 

5cm 

HH 2856 2906 2950 2906 3006 

VV 1950 1676 2150 2706 2806 

VV-HH 2816 2646 2706 3178 2912 

VV/HH 2912 2506 2678 2832 2563 

𝑉𝑉 − 𝐻𝐻

𝑉𝑉 + 𝐻𝐻
 

2618 2506 3856 2106 2006 

(HH+VV) – 

(VV-HH) 

1312 1550 1332 1558 1588 
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2.5.5 Multiband (X- and C- band) SCAT data analysis 

 X-band and C-band microwave data have been generated from the SCAT system, 

as mentioned in Section 2.2. X-band wavelength varies from 2.4 to 3.75 cm, but in this 

experiment, it is 3 cm, whereas the C-band wavelength varies from 3.75 to 7.5 cm, but in 

this experiment, a 6 cm wavelength has been used. As mentioned in Section 2.3, the 

surface roughness and smoothness are also a function of microwave wavelength, which 

subsequently affects the landmine detection performance. This experiment is pivotal for 

refining the methodology and enhancing the accuracy of landmine detection techniques 

in diverse environmental conditions. Fig.2.14 shows the surf plot of raw and preprocessed 

C-band SCAT data. 

 This subsection explores the discrimination capability of the C- and X- bands to 

establish the multiband microwave approach for landmine detection. An experiment has 

been carried out, during which the SCAT recorded data in X- and C-microwave bands at 

surface roughness depths of 1, 2, 3, 4, and 5 cm for VV and HH polarizations. Further a 

comparative analysis of statistical parameters has been done at Table 2.7. 

  Table 2.8 presents a comprehensive statistical evaluation of raw VV-polarised C- 

and X-band microwave data, offering valuable insights into their backscatter 

characteristics. Notably, the backscatter values associated with C-band data consistently 

appear lower than those across various surface roughness depths of X-band data. 

 The C-band has a higher Standard deviation value than the X-band, except at a 

surface roughness depth of 3cm. A higher value of standard deviation indicates higher 

discrimination features. 
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Fig. 2.14   Surf plot of raw and preprocessed C-band data (raw, calibrated, deconvoluted, 

normalised) 
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Table 2.8 Comparison of statistics of VV polarisation C- and X-band data at different Surface 

Roughness Depth (SRD) 

SRD 

(cm) 

Band Min Max Mean Medi- 

-an 

Std 

Devi. 

Kurt- 

-osis 

Skew- 

-ness 

1 C 3.340 10.180 5.323 4.9200 0.432 3.524 3.524 

X 13.500 19.88 15.405 15.132 0.148 3.373 0.225 

2 C 4.500 8.700 6.667 6.625 0.112 10.602 10.610 

X 16.00 21.600 19.005 19.08 0.108 9.957 1.528 

3 C 3.500 8.300 5.923 6.200 0.118 2.482 2.482 

X 13.80 22.200 16.558 16.525 0.164 2.483 -0.265 

4 C 4 7.600 5.414 5.250 0.109 12.278 -1.559 

X 14.20 19.900 16.682 16.625 0.093 2.307 0.063 

5 C 3.780 7.920 5.401 5.222 0.109 4.175 0.316 

X 14.450 17.300 15.800 15.810 0.058 3.980 0.235 

         

 The statistical parameters of kurtosis and skewness play a pivotal role in assessing 

the distribution and shape of the data. In this context, the statistical analysis reveals that 

C-band data exhibits higher values for kurtosis parameters. At the same time, X-band data 

has a higher value of skewness. These parameters are outliner sensitive and indicate the 

distribution's shape and the asymmetry of the data. Higher values suggest a more peaked 

and asymmetric distribution, signifying a richer and more distinct information content in 

SCAT data. 

 Fig. 2.18 shows the plot of backscatter intensity of X- and C- band microwave 

data at each pixel index (24x24), a pattern is visible in the plot, which significantly 

contributes in improvement in landmine detection. 
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  Fig. 2.15 Scatter plot of backscatter value of X- and C- band SCAT data at SRD = 1,2,3,4, and 

5 cm (X-axis of plot is Pixel value whereas Y-axis indicates Pixel value (backscatter intensity)) 

The Following observations have been drawn from Fig. 2.15:  

• The value of backscatter intensity is higher for X-band SCAT data than for C-

band in both the VV and HH polarisation. The wavelength of the X-band is 

smaller than the C-band, so despite lower penetration depth, they exhibit higher 

backscatter due to less absorption at these surface roughness depths. 

• The gap of backscatter value between the X- and C- bands increases as the 

surface roughness depth increases, except at the VV polarisation wave at a 

surface roughness depth of 3 cm. It indicates that the microwave absorption 

increases as surface roughness depth increases.    

• For VV polarisation at surface roughness depth, the difference in backscatter 

value does not follow the same pattern as the 3cm wavelength taken for X-band 

SCAT data. It further enhances the discrimination capability. 

        Moreover, a key observation arises when considering the trade-off between spatial 

resolution and backscatter value. Despite the C-band data demonstrating lower 

backscatter values, the decision-making process is affected by the spatial resolution 
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factor. The information content alone may not be the sole determinant; the spatial 

resolution of the data is also a critical consideration. 

           It emerges upon integrating statistics and data visualization that X-band SCAT data 

apparently provides superior trade-off between spatial resolution and backscatter value 

for landmine detection applications. The amalgamation of higher information content, as 

reflected in kurtosis and skewness values, coupled with an optimal spatial resolution, 

positions X-band SCAT data as the preferred choice in this context. However, C- band 

microwave band data appears to have higher discriminating features.  

Unlike conventional single-band or single-polarization methods, the proposed 

multi-band, multi-polarization fusion significantly reduces surface roughness effects and 

improves detection sensitivity, especially for non-metallic mines. 

2.6 Conclusion  

This chapter explicitly addresses the primary motivation of enhancing the 

detection of buried subsurface objects, particularly landmines, in environments like 

India’s western borders, where traditional technologies have shown limitations.  

The study begins with an analysis of Surface roughness effects, which cause 

decreased backscatter from a subsurface landmine, have been studied in this chapter. 

Further, polarization fusion approaches and multiband SCAT data have been evaluated to 

reduce surface roughness and improve buried landmine detection. The proposed 

multipolarization fusion approach has been shown to maintain most of the distinguishing 

features of VV and HH polarizations while reducing undesired effects. The proposed 

fusion approach minimizes roughness-distortion while maintaining key polarization 

features, which is a crucial need for desert challenging terrain regions that are common 

in India's border regions. The fusion methodology gives the best consistent detection 
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results when SCAT backscatter is preprocessed using the local-frame oriented strategy 

and then applied to the proposed fusion approach. The results thus obtained when 

compared with the segmentation. The processed data is then subjected to thresholding for 

segmentation of landmine features. The results thus obtained when compared with the 

segmentation achieved using data in individual polarization indicate high segmentation 

accuracy. An analysis focused on minimizing surface roughness reveals improvements 

with all fusion approaches. Yet, to ensure proper segmentation accuracy, the fusion must 

yield an entropy value lower than the entropy observed in either polarization for surface 

roughness minimization to be considered acceptable. It is appears that the fusion of 

microwave data adds more information to buried landmine detection. Outcomes establish 

the effect of multiple polarization numerical fusion on buried landmine detection. 

 In the last part of this study, it is multiband SCAT data encompassing in both C- 

and X-bands have been evaluated. The primary aim was to investigate the potential for 

constructing a robust model for multiband fusion. A detailed statistical analysis of the 

multiband microwave scatterometer data showed that X-band data exhibits more 

pronounced and discernible features than C-band data. This analysis highlighted a 

significant tradeoff, revealing a careful balance between spatial resolution and backscatter 

value in multiband SCAT data. In essence, achieving a higher spatial resolution comes at 

the cost of sacrificing some backscatter information and vice versa. 

 The pivotal insight derived from our analysis leads to a significant conclusion: 

adopting a combined or fusion approach for multiband multipolarization microwave 

SCAT data significantly enhances the efficacy of landmine detection. This suggests that 

integrating information from different bands and polarizations provides a holistic view 

that surpasses the limitations of individual bands, thereby improving the accuracy and 
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reliability of landmine detection methodologies. This immediately supports the thesis's 

goal of developing domestic, remote sensing-based methods for detecting subsurface 

objects in challenging terrain. 
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Chapter-3  

Improvement in Detection of Surface Objects using Fusion of 

Multiband and Multipolarization SAR Data 

 

3.1 Introduction and problem definition 

 Measuring the parameters of both man-made and natural surface objects poses a 

formidable challenge, especially during adverse weather conditions like rain or fog. The 

SAR system is a fitting solution for these requirements, offering a reliable means to 

monitor Earth’s surface properties consistently and swiftly in all-weather situations. 

PolSAR is recognized as the most powerful tool for acquiring high-resolution microwave 

images by integrating the concept of SAR with the vector nature of polarized EM waves. 

The backscatter value is sensitive towards the incoming SAR wavelength and 

polarization, making it easier to extract physical and geometrical characteristics of objects 

through the polarimetry characteristics of SAR data. As discussed in Section 1.5, the 

interest in PolSAR data has increased during the last few decades, especially after the 

launch of several spaceborne missions equipped with polarimetric capabilities. With the 

advancement of PolSAR research, remote sensing of both reachable and unreachable 

regions has become achievable [48].  

 Polarimetric target decomposition (PTD) is used in PolSAR data analysis to 

understand the scattering mechanisms of different objects or materials within data. PTD 

exploit the polarimetric information contents of SAR images. PTD is used to decompose 

the SAR return signals into individual scattering components, providing information 

about the targets' physical properties and spatial distribution. The foundation of surface 

object detection is the accurate interpretation of the fundamental scattering mechanism, 
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as different kinds of natural and man-made objects involve different types of scattering. 

The three primary types of scattering processes are the single (surface), double, and 

multiple bounces (volume) scattering. Oceans, rivers, lakes, and bare soil have a single 

bounce. When a horizontal flat surface is close to a vertical surface, like buildings and 

other vertical structures, a double bounce can be seen between the adjacent surfaces; in 

forest canopies and vegetated zones, randomly oriented scatters inhomogeneous media 

result in a multiple-bounce scattering effect [142]. Fig. 3.1 shows the schematic 

representation of the surface, double-bounce, and volume scattering components.       

 

 

Fig. 3.1 Scattering components of PolSAR data [48] 

 PTD methods are further categorized based on available data, and work has to be 

done. Coherent target decomposition methods, including Freeman-Durden and Cloude-

Pottier techniques, are tailored for coherent polarimetric SAR data, preserving amplitude 

and phase details to delineate surface, double-bounce, and volume scattering mechanisms. 
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Incoherent decomposition approaches are less prevalent but find utility when coherence 

information is compromised, often due to speckle noise [48][143]. The model-based 

approach involves decomposing the calculated matrix of covariance or coherency into a 

linear combination of models representing various physical scattering phenomena. 

Model-based decomposition techniques are popular because of their straightforward 

mathematical methodology and intuitive physical interpretation [144] [145]. 

Nevertheless, a significant drawback of the model-based decomposition techniques is the 

appearance of negative power [145]. This issue arises from overestimating a scattering 

component at a particular pixel. It can lead to negative contributions from the remaining 

scattering components, ensuring the overall power or span is constant. So many works 

have been done by researchers to reduce the overestimation of scattering components 

[146][147][148]. 

              In the hybrid decomposition method proposed by Cloude et al. (2009) [149], the 

determination of volume scattering power is derived based on Freeman's scattering model. 

In addition, the single and double-bounce scattering powers are calculated using the 

information in the eigenvalue and eigenvectors. However, besides the cross-polarization, 

the power resulting from the interaction between surface and volume scattering 

mechanisms persists, necessitating its elimination for accurate interpretation of the 

scattering mechanisms. Maurya et al. (2018) [147] proposed a hybrid model aimed at 

enhancing the versatility of the hybrid Freeman decomposition model. This hybrid 

decomposition involves reducing cross-polarization power by employing deterministic 

matrix transformations. These transformations are applied by the predominant scatterer, 

aiming to eliminate a significant portion of the cross-polarization power generated by the 
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interaction between orthogonal states of polarization. The hybrid-based approach exhibits 

some results but still needs to find a way to remove cross-polarization coupling [147]. 

 The radar backscattering characteristics are closely tied to the structure of the 

target and its orientation relative to the radar illumination. In urban environments, 

specifically, oriented man-made structures contribute significantly to generating cross-

polarization power. This phenomenon introduces ambiguity in the interpretation of 

scattering mechanisms. Conventional model-based decomposition techniques, which 

attribute cross-polarization mainly to volume scattering, may inaccurately classify 

oriented urban structures as volume-scattering contributors. To address this challenge, a 

practical approach involves accurately modelling the cross-polarization power originating 

from urban areas [48].  

 The interactions between PolSAR wave and surface objects are complicated in 

nature, and specific SAR frequency and polarization combinations may produce different 

signals. The SAR wave can penetrate the upper canopy of vegetation at the C-band and 

primarily interacts with leaves and small branches. The backscatter of the C-band SAR is 

influenced by crown characteristics, including factors like leaf size, density, and 

orientation. Conversely, the L-band, with its deeper penetration into the canopy, may 

involve scattering from both the ground surface and tree trunks [152]. The occurrence of 

HV polarization at a specific frequency is closely associated with key forest parameters, 

such as biomass and height. In built-up areas, predominant scattering mechanisms often 

involve double-bounce interactions from vertical building walls and dihedral corner 

structures on the ground. On the other hand, ground-trunk backscattering, which has a 

strong echo like the ground-trunk backscattering in L-band, can occasionally be perceived 

as the double-bounce scattering mechanism. Fig.3.2 shows the schematic representation 
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of L- and C- band SAR wave with vegetation tree.  On the other hand, the C-band double-

bounce scattering component of man-made objects is weak. Because of this, it is 

challenging to distinguish between man-made and natural objects using single-frequency 

PolSAR. Therefore, to detect man-made targets, multiband PolSAR data needs to be 

explored [150][151]. 

 

(a)                                                                         (b) 

Fig 3.2 SAR interaction with vegetation [151], rays (1) surface-scattering, (2) double-bounce 

scattering, and (3) volume-scattering; a) L-band backscatter b) C-band backscatter  

 The single-frequency and single-polarisation PolSAR data limit the extraction of 

the composite physical and geometrical information [151]. With the availability of multi-

frequency and multi-polarization SAR data, extensive research is underway to leverage 

the diverse characteristics of these datasets. Several researchers found that utilizing the 

multiband SAR data, enhance the detection and classification of surface objects. The 

study by Lang et al. (2014) [150] shows that differential performance in sea-ice detection 

is caused by the different frequencies of the L-band and the C-band. Longer wavelengths 

enable the L-band to excel in surface-volume scattering, whereas the C-band demonstrates 

superior capabilities in identifying ground types close to object surfaces. Combining SAR 

data at different frequencies resolves detection ambiguities. Huang et al. (2018)[151] used 
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regression model on Sentinel-1 and ALOS decomposed images to improve ground 

biomass. Cross-polarized radar waves are more vulnerable to volume scattering from 

object features or depolarization carried with multireflection at corners. An object 

exposed to a multiband, polarization-varying microwave radar system produces various 

images with varying informational content. With the diverse capability of C- and L-band 

PolSAR, there is a need to explore the fusion of both datasets to remove the 

overestimation of scattering power. 

         Image fusion and its applications are in high demand in remote sensing nowadays 

to achieve desired results by harnessing the capabilities of multiple images, which were 

impossible with a single image. Image fusion techniques and their evaluation are 

discussed in Section 1.6. PCA is one of the most extensively used image fusion techniques 

based on dimension reduction capability and has been utilized in processing PolSAR data. 

Prior research has indicated the utility of both L- and C-band polarimetric quantities, 

whether employed independently or in conjunction. However, earlier studies concentrated 

on a set of polarimetric parameters, typically fusing multiple specific parameters [154]. 

 The selection of appropriate fusion parameter between two PolSAR image, is a 

matter of further research and needs further investigation L- and C- bands images are 

decomposed into surface, double-bounce and volume scattering through hybrid 

decomposition methods. Experiments have been done with L- and C- -band SAR images 

individually, and their ability to reduce cross-polarisation power has been assessed 

through the hybrid decomposition method. The dominant scattering component is selected 

based on the decomposed image of the PolSAR image; the man-made and natural objects 

are classified using the SVM classifier before and after the fusion of L- and C-band San 

Francisco city data. 
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   Through an exploration of select polarimetric analysis results using the PTD 

theorem, this research aims to enhance the detection of both man-made and natural objects 

by fusing C- and L-band PolSAR data. This improvement is achieved by mitigating the 

issue of overestimation in scattering components. 

 This research aims to achieve the following specific objectives: 

• To evaluate the effectiveness of L- and C-band data in mitigating the 

overestimation of scattering components using a hybrid decomposition technique. 

• To explore the optimal fusion parameter for the C- and L-band PolSAR data based 

on their ability to reduce the cross-polarisation power. 

• To assess the fusion of L- and C-band data to enhance the accuracy in detecting 

man-made and natural objects. 

3.2 Study Site and Data set  

 The city of San Francisco (USA) has been taken as a study site for this research. 

Due to its prominence and dense population, numerous remote sensing applications have 

shown interest in San Francisco. The San Francisco area's C- and L- band data of 

Radarsat-2 and ALOS-1 PALSAR (VV. VH, HH, and HV) have been downloaded from 

the IETR portal [155]. Fig. 3.3 displays the raw image of the city of San Francisco, 

situated in North America. Established in the 1770s, the city experienced rapid growth, 

ultimately becoming the largest city on the west coast of the United States. Its original 

layout adhered to a grid pattern imposed on hilly terrain. 1906, a devastating earthquake 

led to the city's destruction, prompting a comprehensive reconstruction effort. Renowned 

for its meticulous urban planning, San Francisco boasts high population density and 

limited space for expansion. Notably, the city features the expansive Golden Gate Park in 
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its western region, covering an approximate area of 4.12 km2. The L-band ALOS-1 

PALSAR image (captured on 28th March 2009) and C-band RADARSAT-2 image 

(captured on 10th April 2010) of the San Francisco area are used for this study. The study 

area prominently includes urban buildings, forest, water, and vegetation. 

 
 

(a) (b) 

Fig. 3.3 Raw SAR data after multillooking (a) Radarat-2 and, (b) ALOS-PALSAR 

3.2.1 Radarsat-2 (5.406 GHz) Data 

 This study takes the C-band Radarsat-2 image over the San Francisco bay region 

in the fine quad-beam mode. Table 3.1 shows the data specification of the Radarsat-2 

sensor. The Pauli RGB of the San Francisco area is displayed in Fig. 3.2(a).  
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Table 3.1 Radarsat-2 data specification 

 

Specification Details 
Datatype Single Look Complex (SLC) 

Mode Fine Quad 9 (FQ9) 

Polarisation Quad Pol. (VV, VH, HV and HH) 

Orbit Ascending 

Date of Acquisition 09th April, 2009 

Revisit time 24 days 

Data format CEOS 

Swath Width 500 km 

Resolution 30 m 

 

3.2.2 L-band SAR Data 

 Table 3.2 shows the technical specification of the L-band ALOS PALSAR-1 

dataset. 

  Table 3.2 Technical specification of L-band ALOS PALSAR-1 dataset 

Specifications Details 

Datatype SLC 

Level 1.1 

Mode PLR 

Polarisation HH, HV, VV and VH 

Spatial Resolution (meter) 30 m 

Swath width 30 km 

Date of acquisition 11th Nov,2009 

3.3 Theoretical modelling 

3.3.1 Hybrid decomposition theorem 

 The scattering phenomenon at the target can be characterized by establishing a 

connection between the complex amplitude of the incident field (𝐄𝑖) and the 

backscattered field (𝐄𝑠), as expressed in eq. (3.1) [48] 
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      Es = [S] Ei                            (3.1) 

And, 

                    [S] = [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
]                                                                                                  (3.2) 

 Here, 𝑆𝑖𝑗 denotes the scattering coefficients. Notably, the diagonal elements of the 

scattering matrix pertain to 'co-polar' terms, signifying the same polarization between 

the scattered and incident waves. In contrast, the off-diagonal elements relate to the 

orthogonal polarizations and are called 'cross-polar' terms [48]. 

         In radar signal processing, the scattering matrix is commonly used to describe 

ideal scenarios with a single, pure target. In practical scenarios, distributed targets are 

more relevant, as illuminated by a fixed polarisation and frequency wave, backscattered 

returns lose coherence, resembling partially polarized waves. Analysing scattering from 

distributed targets is improved by describing the target through 2nd order moments of 

fluctuations, leading to polarimetric coherency and covariance matrices. A coherency 

matrix is a mathematical depiction of polarimetric characteristics used in radar. It is 

derived from the scattering matrix, which explains the interaction and dispersion of EM 

waves with a target in various directions. The fully polarimetric 3x3 coherency matrix 

[T] can be generated as [149] 

 [T] =    [

𝑇11 𝑇12 𝑇13

𝑇12
∗

𝑇13
∗

𝑇22

𝑇23
∗

𝑇23

𝑇33

] 

            =    [

1

2
|𝑆𝐻𝐻 + 𝑆𝐻𝑉|2

1

2
(𝑆𝐻𝐻 + 𝑆𝑉𝑉)(𝑆𝐻𝐻 − 𝑆𝑉𝑉)∗ (𝑆𝐻𝐻 + 𝑆𝑉𝑉)𝑆𝐻𝑉

∗

1

1
(𝑆𝐻𝐻 − 𝑆𝑉𝑉)(𝑆𝐻𝐻 + 𝑆𝑉𝑉)∗

𝑆𝐻𝑉(𝑆𝐻𝐻 + 𝑆𝑉𝑉)∗

1

2
|𝑆𝐻𝐻 − 𝑆𝑉𝑉|2

𝑆𝐻𝑉(𝑆𝐻𝐻 − 𝑆𝑉𝑉)∗

(𝑆𝐻𝐻 − 𝑆𝑉𝑉)𝑆𝐻𝑉
∗

2|𝑆𝐻𝑉|2
] 

               (3.3) 
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 The diagonal elements of the coherency matrix denote the correlation of 

components within the Pauli target vector. Consequently, these diagonal elements 

represent real values, representing the span or total power. On the other hand, the off-

diagonal elements of the coherency matrix depict various correlations between distinct 

components of the Pauli target vector. 

      The total power or span for coherency matrices is computed as: 

              𝑆𝑝𝑎𝑛 =  |𝑆𝐻𝐻|2 + 2|𝑆𝐻𝑉|2 + |𝑆𝑉𝑉|2 

                = T11+T22+T33                                                        (3.4)        

 The main reason for its matrix's extensive use in the literature is the ease of 

interpretation of the scattering phenomena via formulation of a target decomposition 

scheme through a coherency matrix. The PTD theorems establish a connection between 

PolSAR observations and the intrinsic properties of the scatterer being studied. The 

categorization of PTD theorems can be broadly divided into coherent and incoherent 

decomposition techniques. Coherent decomposition methods express the measured 

scattering matrix as a combination of canonical scattering mechanisms. Notable 

contributions in this category have been made by researchers. Pauli decomposition is the 

most frequently employed technique [149]. Coherent decomposition methods are mainly 

suitable for pure targets, relying on the decomposition of the measured scattering matrix. 

However, most targets in real scenarios are distributed, so incoherent decomposition 

methods prove more appropriate for effective decomposition [48]. Incoherent 

decomposition techniques leverage information inherent in the coherency matrix. These 

techniques can be categorized into two main groups: eigenvector-based and model-based 

decomposition [48]. Eigenvector decomposition methods involve quantitatively 

examining the eigenvalues and eigenvectors of the coherency matrix. Meanwhile, model-
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based methods entail decomposing the coherency matrix into a sum of physical scattering 

models. 

 Freeman and Durden initially introduced the model-based decomposition of 

PolSAR data through their three-component scattering model, commonly referred to as 

Freeman-Durden's decomposition (FDD) method [144]. Every resolution element or 

pixel in a PolSAR system is measured for the scattering matrix. This matrix fully 

determines the scattering process for deterministic or point scatterers. However, in the 

context of distributed scatterers, the scattering matrix remains no longer deterministic yet 

random because of the complexity of the scattering process, which is caused by the 

coherent nature of SAR systems. Typically, this random quality in SAR data is called 

speckle noise. As outlined in the literature on speckle filters for PolSAR data, various 

filtering options have been introduced and confirmed through validation. These 

alternatives aim to minimize or eliminate speckle noise in PolSAR data. 

        In most model-based decomposition techniques, the hostile scattering powers for co-

polarized scattering mechanisms (surface and double bounce) are mainly generated by 

overestimating the volume scattering contribution. In recent years, much literature has 

reduced the overestimation of scattering components by introducing new scattering 

models or proposing coherency matrix transformations. New scattering models reduce the 

overestimation of volume scattering contribution either by better characterization of 

vegetation or by modelling the cross-polarization power generated from sloped and 

oriented scatterers. In unitary transformations, the exaggeration of volume scattering is 

mitigated by rotating the coherency matrix through an angle determined through the 

minimization of cross-polarization power [156][157]. By using both methods, the number 

of overestimated pixels can be decreased.  
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           The adequate literature category where the primary concern is removing pixels 

having overestimation power belongs to hybrid decomposition. In the hybrid 

decomposition category, eigenvector and eigenvalue information are utilized together 

with the physical scattering models to overcome the overestimation problem. This 

category was commenced by Cloude et al. (2009) [149]. After that, many excellent works 

have been reported where the overestimation problem of the model-based decomposition 

method is targeted [158][159].  

 In 2010, Cloude et al. (2009) [149] proposed a hybrid three-component 

decomposition method. In this method, surface and dihedral scattering models are 

characterized by eigenvalues and eigenvectors of the coherency matrix. In contrast, the 

volume scattering matrix is the same as that of the FDD method. Claude's three-

component decomposition method can be described as  

[𝑇] =  [𝑇]𝑆  + [𝑇]𝑑 + [𝑇]𝑉                                                                                        (3.5) 

Here [T] represents the measured coherency matrix, while [𝑇]𝑆, [𝑇]𝑑, [𝑇]𝑉                                                                                         

denote the matrices corresponding to surface, double-bounce, and volume scattering 

mechanisms.    

[𝑇]𝑆 = 𝑚𝑠  [
                       𝑐𝑜𝑠2𝛼𝑆            𝑐𝑜𝑠𝛼𝑆 𝑠𝑖𝑛𝛼𝑆 𝑒

𝑗Ф𝑆   0

𝑐𝑜𝑠𝛼𝑆 𝑠𝑖𝑛𝛼𝑆 𝑒
𝑗Ф𝑆          

0
𝑐𝑜𝑠2𝛼𝑆

0
   
0
0

]                                    (3.6) 

 [𝑇]𝑑 = 𝑚𝑑  [
                       𝑐𝑜𝑠2𝛼𝑑            𝑐𝑜𝑠𝛼𝑑  𝑠𝑖𝑛𝛼𝑑  𝑒𝑗Ф𝑑   0

𝑐𝑜𝑠𝛼𝑑  𝑠𝑖𝑛𝛼𝑑  𝑒𝑗Ф𝑑          

0
𝑐𝑜𝑠2𝛼𝑑

0
   
0
0

]                                    (3.7) 

[T]v   = mv  [

1

2
0 0

0
0

1

4

0

0
1

4

]                                                                                                               (3.8) 
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   The coefficients of scattering power for surface, double-bounce, and volume 

scattering processes are denoted ms, md, and mv in the corresponding equations.  

 The  𝛼𝑆 and 𝛼𝑑 are function of angle of incidence and surface’s dielectric 

constants. Here Ф𝑆  and Ф𝑑 are the scattering phase for surface and double-bounce 

mechanisms, respectively [2]. The single and double-bounce scattering postulating 

orthogonality into equation 3.6 as 

       𝛼𝑆 + 𝛼𝑑 =
𝜋

2
 , and  Ф𝑑 − Ф𝑆 = ± 𝜋                                    (3.9) 

Now equation (3.5) can be reducing as  

       [𝑇] =  [𝑇]𝑠𝑑 + [𝑇]𝑣                                                                                                (3.10) 

where [𝑇]𝑠𝑑 is the combined matrix for single- and double-bounce scattering 

mechanisms, given by 

      [𝑇]𝑠𝑑= [
𝑚𝑠𝑐𝑜𝑠2𝛼 + 𝑚𝑑𝑠𝑖𝑛2𝛼                   𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 𝑒𝑗Ф(𝑚𝑑 − 𝑚𝑠) 0

𝑐𝑜𝑠𝛼𝑠 𝑠𝑖𝑛𝛼 𝑒−𝑗Ф(𝑚𝑑 − 𝑚𝑠)
0

        𝑚𝑑𝑐𝑜𝑠2𝛼 + 𝑚𝑠𝑠𝑖𝑛
2𝛼

0
     

0
0

]                         

                                                                                                                         (3.11) 

In hybrid Freeman decomposition method, mv is calculated first from (3.6) as  

       𝑚𝑣 = 4 𝑇33                                                                                                 (3.12) 

The other two scattering power coefficients md and ms, are given in (3.13) which can be 

computed as the eigenvalues of the remaining rank-2 coherency matrix left after 

subtracting the volume scattering contribution. 

𝑚𝑑,𝑠 = 
𝑇11 + 𝑇22−  3 𝑇33± √(𝑇11− 𝑇22− 𝑇33)2+4 |𝑇12|2

2
                                                         (3.13) 
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 The main objective behind this decomposition method is the removal of cross-

polarisation power [147].  

3.3.2 Scattering characteristic analysis of objects in L- and C-band PolSAR data 

        SAR penetrates the forest canopy and thus provides a signal from its physical 

structure, in contrast to multispectral sensors, which only offer information from the top 

of the tree cover. The surface objects' scattering mechanisms are significantly impacted 

by variations in the frequency and polarization of SAR signals. The interaction of SAR 

with natural objects such as agricultural vegetation and forests is a complex phenomenon, 

and a particular integration of frequency and polarisation may generate different 

information. Being a large wavelength, the L-band SAR can penetrate tree cover and 

gather backscattered from stem, trunk, and ground. L-band SAR interaction with man-

made and natural objects exhibits surface, double-bounce and volume scattering. 

However, the value of scattering components depends upon several reasons, including 

objects' roughness and dielectric characteristics. 

 However, SAR with wavelengths shorter than the C-band cannot penetrate 

through vegetation, including tree branches and leaves. Thus, when a C-band radar is used 

to scan a forest-cover, the upper leaves of the trees backscatter the SAR signal. In the C-

band, the vegetation area has high entropy processes. The scattering mechanism of the 

vegetation area is made up of volume scattering, odd-bounce scattering, and even double-

bounce scattering from ground-trunk or man-made targets because the L-band SAR signal 

can reach the ground. The L-band forest area comprises a combination of low and high 

entropy processes. (Fig.3.2). The C-band also exhibits significant sensitivity to soil 

surfaces, which exhibit greater roughness in the C-band compared to longer wavelengths. 
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Consequently, this results in a reduced contrast in backscatter between forest and non-

forest areas compared to L-band SAR [49]. 

 Nevertheless, interpreting SAR signals over distributed target regions is more 

challenging than optical signals. This ambiguity frequently leads to the erroneous 

detection of deforestation and degradation events in false alarm scenarios. Several 

research studies have exhibited the integration of C- and L-band SAR backscatter through 

image fusion approaches to reduce the ambiguity in the detection/classification of surface 

objects [160][161]. 

3.3.3 Image fusion of L- and C- band PolSAR data 

 Combining or fusing two remote-sensing images is a complex task and requires 

implementing several image preprocessing techniques. The selection of appropriate 

image fusion techniques requires a careful analysis. 

  Image fusion is a process that merges two or more sensor images to extract 

additional information [10]. PCA, HSV, Brovey Transform and GS Transform fusion 

methods are among the most reported image techniques; a detailed literature review has 

been discussed in Section 1.6 for remote sensing image fusion. The PCA technique has 

been chosen for this research due to its ability to perform well in large-size distributed 

remote sensing datasets. Image fusion has been evaluated by the capability of improving 

the classification accuracy of man-made structures and natural objects. Several image 

processing techniques to classify the image have been reported in the literature. SVM is 

one of the most reported methods for PolSAR data analysis, so it is taken in this research. 
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3.3.3.1 PCA 

 The PCA image fusion aims to exploit the variations present in the input images 

to create a fused image that maximizes the representation of essential features while 

minimizing noise and redundant information [162]. The PCA procedure takes a set of 

correlated multispectral bands and transforms them into a set of uncorrelated bands using 

the statistical properties of the imagery. A correlation matrix is used to derive eigen values 

and eigen vectors that transform the original correlated data set into an uncorrelated data 

set. The successive principal components are orthogonal and uncorrelated. PCA reduces 

the dimensionality of the highly correlated dataset, such as multispectral data. The 

component with the highest variance is principal component-1(PC1). The PC1 contains 

the complete information. The first three principal components contained over 95% of the 

total variance of the fused image and were taken for the fusion [9]. The SAR intensity is 

matched to the PC1 of the multispectral dataset and then replaced with the SAR 

component. After an inverse PCA transformation, a high spatial-resolution MS image is 

formed [163][164]. Fig. 3.4 shows the image fusion process. 

 

Fig. 3.4 Image fusion process 
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The process of classifying a given collection of data into groups according to the 

characteristics seen in the training set of data is called classification. SVMs, or support 

vector machines using a collection of labelled training data, the support vector machine 

(SVM) is a supervised learning technique that creates input-output mapping functions. 

The mapping function may take the form of a regression function or a classification 

function, which determines the category of the input data. 

3.4 Implementation 

 As discussed in Section 3.2, the experimental data has been collected in the C- 

and L-band with VV, VH, HV, and HH polarizations. The implementation and analysis 

discussed in this section follow the theoretical modelling in Section 2.3. The 

implementation model consists of three stages. Fig. 3.4 depicts a flow diagram 

summarizing a set of image processing procedures defined for execution and Fig. 3.6 

shows the flow diagram of hybrid decomposition. 

  

Fig. 3.5 Flowchart of research work 
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 Extraction of scattering components from C- and L-band image using hybrid 

decomposition techniques is the first stage of the implementation. The T3 matrix has been 

generated for both datasets. The decomposition techniques are evaluated by computing 

mean scattering power of surface, double-bounce and volume scattering of three 

preselected patches of man-made and natural objects. Here, man-made structures, 

vegetation and water are selected to evaluate scattering power components. All the 

processing has been done on both PolSAR data separately. 

 

Fig. 3.6 Hybrid Decomposition flow diagram 
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     The second implementation stage selects the appropriate scattering component 

parameters from C- and L-band data for fusion. The parameter selection has been done to 

address the overestimation of any scattering component to others.    

 The final implementation step is the image fusion of L- and C- -band PolSAR 

data. All the fusion processing has been done on decomposed images. Both data are 

preprocessed with the following preprocessing steps before fusion: 

(i) Speckle filtering 

(ii)  Multilooking 

(iii) Ellipsoid correction 

(iv) Reprojection to common coordinate 

(v) Coregistration of both datasets 

(vi) Subset of common area 

 The Lee-Sigma speckle filter of 5x5 window size has been used as a speckle filter. 

Two rows and one column are used for the multilooking of the dataset. In this research, 

PCA fusion techniques are used. The classification accuracy of man-made structures and 

natural objects has been taken as a factor of image fusion evaluation. SVM has been used 

to compute classification accuracy. 

3.5 Results and discussion 

 In this work, the experiments have been implemented on two different multi-

parametric PolSAR data of the same geographical region (San Francisco, U.S.A.). The 

first dataset is collected from L-band ALOS-1 PALSAR, and the second is from the C-

band RADARSAT-2 sensor. The improvement achieved by implementing the proposed 

fusion model is evaluated by overall classification efficiency by analyzing three different 

surface objects. The results of proposed fusion model have been discussed in this section.  
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3.5.1 Analysis of scattering components using hybrid decomposition method 

 Scattering component analysis is done separately on both datasets, and results are 

discussed in subsequent subsections. 

3.5.1.1 L-band data 

 The L-band San Francisco image contains man-made objects (such as buildings 

and roads) and natural objects (such as Water, Forest, and vegetation). Fig. 3.5 (a) displays 

the multilook (row =2, column =1) Pauli RGB composition of raw L-band data. The 

coherency matrix T3 has been generated, and its matrix elements T11, T12, T21, T22, 

T23, and T33 have been shown in Figs. 3.5 (b)-(g), respectively. The diagonal elements 

of T3 are representation of surface, double-bounce, and volume scattering components. 

Where off-diagonal elements representation of cross-polarisation coupling. Fig. 3.5 (b) 

highlights the man-made structure (urban); it is simply an indication of the cross-

polarization coupling of the T21 matrix element. 

 A study region is cropped from raw data of L-band PolSAR consisting of man-

made and natural objects to reduce computation complexity and storage. The study region 

mainly includes buildings, forests, dry grasslands, farmlands and water bodies. The 

hybrid decomposition approach (as mentioned in Section 3.3.1) is compared with FDD 

method to show the improvement in the reduction of overestimation of the polarisation 

scattering component. Fig. 3.6 shows the three-component hybrid decomposition of 

PolSAR data. For visualization, the FCC decomposed image of the research area by the 

hybrid decomposition method is shown in Fig. 3.7. The decomposed image (Fig. 3.6 b) 

shows a bright glow across the Golden Gate Bridge. It simply indicates dominant double-

bounce scattering in the double-bounce scattering component. It merely shows the cross-

polarisation of the T23 matrix element. Fig. 3.6 (b) shows a bright glow in urban areas, 
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(a) RGB (b)T11 (c) T12 (d) T13 (e) T22 (f) T23 (g) T33 

Fig. 3.7 Pauli composition and T3 matrix elements (T11, T12, T21, T22, T23, and T33) of L-

band Quad Pol. PolSAR data  

   

(a) Double-bounce scattering (b)Volume scattering 

component 

c)Surface scattering 

component 

Fig.3.8 Three component Hybrid decomposition of L-band San Francisco image 
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indicating the cross-coupling of double bounce scattering in the decomposed image of 

surface bounce. The matrix element T21 is overestimated inside Fig. 3.6 (b). It 

indicates the overestimation of the double-bounce scattering component at the expense 

of surface and volume scattering components. 

 

Fig. 3.9 FCC Hybrid three component decomposition image L-band ALOS image (red: double-

bounce scattering, green: volume scattering, blue: surface scattering) 

  

The quantitative analysis has been carried out in terms of normalized scattering powers 

mean for the three surface patches. The mean scattering power for three surface patches, 

forest (A), man-made structure (B), and water (C) are evaluated for both decomposition 

techniques (Fig. 3.7). The means of normalised power of surface scattering (𝑚𝑠), double-

bounce scattering (𝑚𝑑), and volume scattering (𝑚𝑣) are calculated and shown in Table 

3.3. 

Table 3.3 clearly indicated that hybrid decomposition reduces the overestimation of 

cross-polarisation coupling in comparison to freeman decomposition. Surface scattering 

power clearly dominated in patch C in both decomposition model, there is minimal 
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intermixing of cross polarisation scattering components, the Fig. 3.5 (b) also supports the 

clear dominance of surface scattering component.    

Table 3.3 Scattering power components for L-band SAR data 

Scattering 

component 

Decomposition  

Techniques 

Patch-A 

(vegetation) 

Patch-B 

(man-made 

structure) 

Patch-C 

(water) 

Surface Scattering 

(𝑚𝑠) 

FDD 0.2590 0.1750 0.9010 

Hybrid decomposition 0.2788 0.2155 0.9505 

Double-bounce 

Scattering (𝑚𝑑) 

FDD 0.3255 0.5325 0.0595 

Hybrid decomposition    0.3088 0.6755        0.0325 

Volume Scattering 

(𝑚𝑣) 

FDD 0.4155 0.2925 0.0395 

Hybrid decomposition 0.4124 0.1090 0.0170 

  

  Table 3.3 shows that patch B, intermixing of scattering component is clearly 

visible in FDD (volume scattering power 𝑚𝑣 mixed with 𝑚𝑠). This intermixing of 

component is significantly reduced by hybrid decomposition approach. In case of patch 

A, intermixing of scattering power components is maximum for both decomposition 

approach. However, the hybrid decomposition method shows better result in 

discriminating  𝑚𝑠, 𝑚𝑑 , and 𝑚𝑣  components. From Table 3.3, hybrid decomposition 

apparently improves the detection of man-made and natural objects. 

The hybrid PolSAR decomposition outperforms traditional Freeman-Durden or 

Yamaguchi models alone by combining their strengths, resulting in better scattering 

discrimination and classification accuracy. 

3.5.1.2 C-band radarsat-2 

 The C-band San Francisco image contains the same geographical area taken here 

to analyse improvement in detecting man-made and natural objects using polarimetric 
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decomposition, as presented in Section 3.5.1.1. Fig. 3.8 (a) displays the multilook (row=2, 

column=1) Pauli RGB composition of raw C-band data. The coherency matrix T3 has 

been generated, and its matrix elements T11, T12, T21, T22, T23, and T33 have been 

shown in Figs. 3.8 (b)-(g), respectively. From Fig. 3.8 (e), a double-bounce element T22 

is coupled with T23. An overestimation of volume scattering is visible in the T11 element. 

 A study region is cropped from raw data of C-band PolSAR consisting of man-

made and natural objects to reduce computation complexity and storage. The hybrid 

decomposition approach (as mentioned in Section 3.3.1) is compared with FDD to show 

the improvement in the reduction of overestimation of the polarisation scattering 

component. Fig. 3.9 shows the three-component hybrid decomposition of PolSAR data. 

For visualization, the FCC decomposed image of the research area by the hybrid 

decomposition method is shown in Fig. 3.10. 

 Fig. 3.9 (a) indicates the double-bounce scattering dominance in the golden-gate 

bridge region; it simply shows the existence of a man-made object. In Fig. 3.9(b), the 

volume scattering component is coupled with double-bounce scattering, simply indicating 

cross-polarisation coupling of T23 element. The overestimation of double-bounce is 

visible in C-band data. 

 The quantitative analysis has been carried out in terms of normalized scattering 

powers, similar to Section 3.5.1.1 and for the three surface patches. Table 3.4 shows the 

value of scattering power for all three components used in this research.  

Table 3.4 shows that both decomposition methods compute water bodies (patch 

C). Like L-band analysis, hybrid decomposition reduces the overestimation and cross-

polarisation of scattering components. Table 3.4 shows a cross-polarization coupling at 

patch B. An overestimation of T12 and T32 is computed into patch B. Patch A, vegetation, 
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indicates the cross-polarization coupling of surface and double bounce scattering at 

volume scattering. In urban environment, the polarization orientation shift is instigated by 

the presence of oriented man-made structures. The term Real(T23) is linked to these shifts 

in polarization orientation.  

    
(a) Pauli 

Composition 

(b) T11 (c) T12 (d) T13 

   

 

(e) T22 (f) T23 (g) T33  

Fig. 3.10 Pauli composition and [T3] matrix elements [T11, T12, T21, T22, T23, and T33] of C-

band Quad Pol. PolSAR data 
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(a) Double-bounce scattering (b)Volume scattering component c) Surface scattering 

component 

Fig.3.11 Three component Hybrid decomposition of C-band San Francisco image 

 

Fig. 3.12 C-band FCC Hybrid three component decomposition image 

 Similar to analysis of L-band decomposition, the hybrid decomposition model 

significantly reduces the overestimation of scattering components in all three patches in 

comparison to the FDD method. Hence, the hybrid decomposition method apparently 

improves the detection of man-made and natural objects. 

3.5.2 Selection of fusion parameters of L- and C-band data 

 From Table 3.3 and Fig. 3.7, decomposed L-band data is affected by 

overestimating surface and volume scattering. A coupling of cross-polarisation surface 

and volume scattering power appears. However, double-bounce scattering component 
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power dominates the result. An overestimation of double-bounce scattering components 

appears in patches B and C. 

Table 3.4 Scattering power components for C-band SAR data 

Scattering 

component 

Decomposition  

Techniques 

Patch-A 

(vegetation) 

Patch-B 

(man-made 

structure) 

Patch-C 

(water) 

Surface 

Scattering (𝑚𝑠) 

FDD 0.2060 0.3170 0.9125 

Hybrid decomposition 0.2144 0.3125 0.9550 

Double-bounce 

Scattering (𝑚𝑑) 

FDD 0.3225 0.4385 0.0395 

Hybrid decomposition 0.2542 0.4515        0.0175 

Volume 

Scattering (𝑚𝑣) 

FDD 0.4715 0.2445 0.0480 

Hybrid decomposition 0.5314 0.2335 0.0270 

          

  In contrast to the L-band, the surface and volume scattering power dominates in 

the analysis of decomposed C-band data, as seen in Table 3.4 and Fig. 3.10. Patch A is 

the cross-polarisation coupling of surface and volume scattering. At the same time, 

patches B and C have less cross-polarisation coupled. 

 As surface and volume scattering of the C-band are dominated in the hybrid 

decomposition image, this result supports the theoretical model due to the short wave of 

the C-band. The volume scattering component is prominently dominant in the 

decomposed images. As the C-band PolSAR image has fewer negative power pixels (as 

two scattering components dominate), two scattering components, i.e. surface scattering 

component and volume scattering component, have been taken as fusion parameters. In 

the L-band, only double-bounce scattering components dominate the results. Hence, only 

the double-bounce scattering component has been selected as a fusion parameter. 
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3.5.3 Analysis of fusion of C-band and L-band PolSAR data 

 As discussed in Sections 3.5.1 and 3.5.2, the hybrid decomposition of PolSAR 

data improves the detection of man-made and natural objects. But it is also reported that 

there is cross-polarisation of scattering components; to reduce this cross-coupling of 

scattering components, fusion of L- and C- bands is done.   

           Both hybrids decompose images and are preprocessed before the fusion. All the 

preprocessing steps are mentioned in Section 3.4. The PCA fusion algorithms are utilized 

here to fuse the double-bounce component of the L-band with the surface and volume 

scattering component of the C-band data. Fig. 3.11 displays the outcome of the PCA 

fusion approach. 

 

 

 

 

   

                                     Fig. 3.13 PCA fusion image of L- and C- band image 

           To show the improvement after the fusion, ALOS, RADARSAT-2, and fusion 

images are SVM classified for detecting three surface classes, i.e. man-made structure, 

vegetation, and water body. Fig. 3.12 shows the classified images of (a) L-band, (b) C-

band, and (c) PCA fusion image. All the images use the same set of training pixels; Fig 

3.12 (d) shows the pixel cluster used for this study. 
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                      (a)  ALOS 

 

                  (b) RADARSAT-2 

             

                 (c) Fusion image 

 

           (d) Training cluster 

 
Fig. 3.14 SVM classification of Man-made structure, vegetation, and water (a) L-band, (b) C- 

band, (c) Classification of PCA fusion image of L-and C-band, and (d) SVM colormap cluster 

(white- manmade structure, green- vegetation and, blue- water bodies) 

 Table 3.5 summarises the classification outcome of all the images here. The 

accuracy of the L-band PolSAR image is less for vegetation (volume scattering) and water 

body (surface scattering) than the C-band image. The accuracy of the C-band is less for 

man-made structures in contrast to the L-band image. The fusion image has higher 

accuracy in all three classes than the L- and C-band images. Fusion image reduces the 

cross-polarization coupling, improving all three scattering components. The SVM 

classification shows that a fusion of L- and C- band images enhance the detection of man-

made and natural objects. 
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Table 3.5 SVM Classification accuracy (%) of L-band, C-band and, PCA fusion image 

Image Vegetation Man-made 

structure 

Water 

L-band 94.50 95.74 98.40 

C-band 97.28 93.08 99.85 

Fusion image 98.75 98.27 100 

3.6  Conclusion  

This chapter points out the detection and categorization of surface-level man-

made and natural targets, which are essential for surveillance, border control, and 

environmental monitoring in cluttered environments.  This study is based on surface 

scattering components and their decomposition to improve the detection of man-made 

and natural objects. A hybrid PTD theorem has decomposed the L- and C- band images 

into surface, double-bounce and volume scattering. The separation of three scattering 

components has been taken in this study toimprove man-made and natural object 

detection. This improvement is achieved by mitigating the issue of overestimation in 

scattering components. It is found that a significant cross-polarization coupling among 

the three components exists. Experiments have been done with L- and C- band SAR 

images individually, and their ability to reduce cross-polarisation power has been assessed 

through the hybrid decomposition method. The dominant scattering component is 

selected based on the decomposed image of the PolSAR image and mean power scattering 

values.  

A fusion approach is proposed in this study to remove the overestimation of 

scattering components. The surface and volume scattering of C-band data and a double-

bounce component of L-band data are fused with the PCA algorithm. The man-made and 
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natural objects are classified using the SVM classifier before and after fusing L- and C-

band San Francisco city-data. The result shows that the fusion approach enhances the 

detection of man-made and natural objects.  

Therefore, this chapter has an important  contribution to make toward the ultimate 

goal of designing next-generation detection methods from remote sensing, which can be 

effectively applied in real-world applications – like border monitoring, camouflage hide-

out, infrastructure mapping, and monitoring enemy terrain – where accurate 

discrimination of surface characteristics is of critical significance. 
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Chapter-4 

Improvement in Detection of Surface Objects using Fusion 

of Optical and Microwave Data 

 

4.1 Introduction and problem definition 

 In recent decades, multi-sensor satellite image fusion has received considerable 

attention in remote sensing applications ranging from surface object detection, urban 

mapping, change detection, military applications, flood mapping, and agricultural 

applications [7][9]. Multi-sensor image fusion strategies focus on exploiting the image 

from different regions of the EM spectrum to achieve the desired result, which is 

impossible using an individual sensor in terms of detection and identification accuracy 

[10] [165][166]. Multi-sensor fused data are also used to improve various image 

processing steps such as geo-registration, image sharpening, feature extraction, image 

segmentation, image change detection, and distinguishing natural and man-made objects 

[10][167]. With recent research advancements and the availability of airborne and space-

borne remote sensing images, multi-sensor data fusion is increasingly being emphasised. 

4.1.1 Multi-sensor fusion 

 Many remote sensing-related problems are being addressed by fusing data 

acquired from active and passive remote sensors, which otherwise was impossible using 

either of the sensors [98]. Microwave remote sensing (especially SAR) exhibits all-time 

all-weather characteristics, which makes them suitable for combining with other diverse 

datasets, such as Multispectral, Hyperspectral, Lidar, etc., to embed the complementary 

information into the dataset [9][10].  
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 Optical images contain details about the reflecting and emissive properties of 

surface objects, whereas microwave images contain information about the texture, 

roughness, and dielectric characteristics of objects [3] [23]. Two differently constituted 

objects may look similar in Optical imagery despite difference in their spectral 

characteristics. However, SAR imagery which is not sensitive to spectral characteristics 

but is capable of assessing other object parameters such as its dielectric constant, texture 

etc may help distinguish the two objects. Similarly, optical imagery is frequently affected 

by adverse climates and absence of sunlight during night-time. In contrast, SAR imagery 

is capable of detecting the physical attributes of the viewed scene.  

 At the same time, optical data is considerably simpler for human operators to 

understand and generally offers more information [53]. SAR data, however, includes 

amplitude and phase information, allowing for a high-precision assessment of 3D 

topography and deformations. Due to the non-overlapping nature of these constraints, 

SAR and Optical imaging provide complementary information. The fusion of these 

datasets enables the creation of a composite image having high spatial and spectral 

information. Various researchers have exhibited the benefits of fusing an optical image 

with a SAR image [21][92].  

 The complementary nature of these two data types is hypothesized to provide 

enhanced information on landscape objects. For example, optical energy reflected by 

vegetation is dependent on leaf structure, pigmentation and moisture. In contrast, SAR 

data energy scattered by vegetation depends on the size, density, orientation and dielectric 

properties of elements comparable to the size of the radar wavelength. 

 Optical products are commonly available as multispectral images consisting of 

multiple bands of data, which can offer different information on land properties based on 
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its spectral reflectance, as well as be used to accentuate land cover through various 

indices. In contrast, radar signals are typically only generated at a single wavelength and 

interact with structural land properties.  

4.1.2 Issues in surface object detection using optical and SAR images 

 Multisensory image fusion aims to combine complementary information in one 

image that provides a better understanding of the objects observed. Integrating SAR and 

optical data is an essential example of utilizing complementary sensor information 

[94][95][96]. While SAR-optical fusion can provide enhanced information and improve 

data interpretation, several challenges and issues are associated with this fusion process 

[168]. Table 4.1 summarises the few prominent issues faced by researchers during the 

fusion of SAR and Optical data. 

 Table 4.1 Key issues of SAR and Optical image fusion [9][10][96][98][102] 

Fusion Issues Details 

 

Data availability 

For fusion, both sensors' data should be of the same time/day. 

Generally, limited data (especially open source) is available for 

fusion which affects the research for limited applications. 

Sensor-specific 

characteristics 

SAR and optical sensors have specific characteristics, such as 

speckle noise in SAR images and atmospheric effects in optical 

images. These characteristics must be adequately addressed 

during the fusion process to ensure accurate and reliable results. 

 

Heterogeneous data 

SAR and optical images have fundamentally different 

properties, such as resolution, scale, and spectral characteristics. 

Integrating these heterogeneous data sources can be challenging 

and requires careful calibration and pre-processing. 
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Co-registration 

SAR and optical images have differences in geometric and 

radiometric information, leading to misalignment or 

misregistration. This misregistration can introduce artifacts and 

affect the quality of the fused image. 

 

    Fusion algorithms 

SAR and optical fusion are implemented using PLF, FLF , and 

DLF techniques. The choice of the fusion algorithm can 

significantly impact the quality and effectiveness of the fused 

image. Selecting an appropriate algorithm for a specific 

application is a challenging task. 

 

Spatial and spectral 

resolution 

SAR images provide high spatial resolution but lack detailed 

spectral information, while optical images offer rich spectral 

information but lower spatial resolution. Balancing the 

preservation of spatial details and spectral fidelity in the fused 

image is a complex trade-off. 

 

Validation and 

evaluation 

Assessing the accuracy and quality of fusion results is a difficult 

task. Validating the fused image and comparing it with ground 

truth or reference data is essential to ensure the reliability of the 

fusion process. A composite evaluation of fusion data is still a 

critical issue.  

 

Computation Cost 

SAR and optical images often contain giant data sets. Which 

further increases the amount of data. Reducing this redundancy 

and computation cost while preserving relevant information is 

still critical to image fusion. 

Compatibility of 

Fusion algorithm and 

classification 

techniques 

Classification algorithms are sometimes embedded with the 

fusion of images. Performance of parametric/nonparametric 

methods and supervised/unsupervised methods are also 

application dependent and therefore the performance may vary 

significantly.   
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 Addressing these challenges requires domain knowledge, advanced algorithms, 

selection of evaluation metrics and carefully selected pre-processing techniques. Ongoing 

research aims to improve the fusion methods and develop robust models for SAR and 

optical image fusion in various applications, such as land cover classification, agricultural 

monitoring, change detection, and surface and subsurface object detection and 

recognition [9][11].   

 The concurrent availability of SAR and optical data can vary depending on the 

specific satellite missions and data acquisition schedules. SAR and optical sensors operate 

on different principles and have distinct advantages and limitations, which can affect their 

availability together. Due to the different imaging capabilities and operating principles, 

SAR and optical data are often acquired independently. They may be available at different 

times for a specific location. However, there are efforts to coordinate satellite missions to 

acquire SAR and optical data in close temporal proximity to facilitate complementary 

analysis and fusion of the datasets. In recent years, European Space Agency's (ESA) 

Sentinel-1 and Sentinel-2 missions, are designed to acquire SAR and optical imagery over 

the same geographic areas in a coordinated manner. While they may not capture data 

simultaneously, the temporal resolution between acquisitions is usually 12 days. In 

addition, temporal resolution and open-source data availability are the key advantages of 

the moderate spatial resolution Sentinel SAR and optical mission satellite. Hence, SAR 

Sentinel-1A and Optical Sentinel-2A have been utilized in this study to extract man-made 

and natural objects [10][11].  

 Pre-processing of SAR data is an essential principal step of the fusion process. 

Speckle reduction filtering and co-registration are two key pre-processing steps for 

fusion. SAR data are corrupted due to coherent backscattered signals, i.e., speckle noise. 
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Speckle is generated by the constructive or destructive interference of the coherent returns 

scattered from terrain elements. Speckle, though a radiometric feature of the imaged 

object, appears as multiplicative noise statistically independent of the image intensity and 

as spatially correlated. Speckle noise can be modelled as multiplicative random noise in 

the spatial domain. A speckle reduction filter can increases the signal-to-noise ratio while 

preserving the textural information of image. Traditionally, two approaches have been 

employed for speckle reduction, multi-look processing and adaptive spatial filtering. 

Multi-look processing entails incoherent blending of multiple looks during SAR image 

production while adaptive spatial filtering is based on evaluating the local statistics 

around a specific pixel [165]. The most acclaimed filters in this category are the Lee filter, 

Refined-Lee filter, Enhanced Frost filter, and many more. Non-local filter algorithms, 

gaussian denoising [9], and block matching utilizing a 3D filter comprised of non-local 

filters are recent advances in speckle reduction [10]. Some studies [71] used a CNN 

technique to filter the SAR and found significant results. The speckle filter window can 

be any size between 3×3 and 33×33, with an odd number of cells arranged in both 

directions [98]. Depending on how complicated the filter's algorithm is, a larger filter 

window means a larger portion of the image will be used for calculation, which takes 

more time. Important details will be lost due to oversmoothing if the filter window is too 

large. Conversely, speckle reduction could not work well if the filter window was too 

tiny. In the conditions under consideration, a 3×3 or a 7×7 filter window typically 

produces good results but needs to be explored. 

 The technique of geometrically aligning SAR and optical images is known as co-

registration. Chen et al. (2020) [81] presents a review of image registration methods used 

in remote sensing. SAR and optical sensor co-registration are challenging tasks and 
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another significant source of fusion errors. Though georeferenced, images captured with 

different sensors suffer from an issue of poor alignment since the data captured at the 

instant of two satellites are different, they only sometimes trend differently [81]. 

Generally, image fusion techniques can be divided into three different processing levels: 

the pixel level, the feature level and the decision level [9]. Pixel-level fusion (PLF) is 

performed at the lowest processing level on a pixel-by-pixel basis. Feature-level fusion 

requires extracting features depending on their surroundings, such as the intensities of 

pixels, textures, and shapes. Decision-level fusion combines information at a higher 

interpretation level, merging the results from multiple algorithms to yield a final fused 

decision [10]. Despite computationally hectic and time-consuming tasks, PLF contains 

the maximum information available in raw SAR and Optical data. 

 Evaluating the quality and performance of SAR-optical PLF techniques is an 

essential aspect of assessing the effectiveness of the fusion process. The authors have 

extensively reviewed the available literature and discovered a general need for literature 

encompassing all essential elements of SAR-optical PLF methods and quality 

assessments, i.e., subjective, objective, and comprehensive evaluation. Even now, the 

comprehensive evaluation needs to be explored more to evaluate fusion methods, which 

leads to further investigation. Therefore, a pivotal study and analyze PLF methods and 

evaluation methodologies in all three domains (subjective, objective, and comprehensive) 

for SAR and optical images are needed [9].  

 Classification of fused SAR and optical data can be challenging due to the 

increased complexity of the data. The fusion process aims to extract complementary 

information from both data sources, which can provide more discriminative features for 

classification. However, handling the increased dimensionality and finding appropriate 
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classification algorithms that can effectively utilize fused data remains challenging. The 

analysis of fused data helps in the knowledge and interpretation of the observed region 

[86]. The performance of fusion and image classification algorithms influence each other, 

which needs to be explored. 

 For surface object distinction, several classification methods are available, each 

with a unique statistical strategy, benefits, and drawbacks. Therefore, it is imperative to 

examine which classification method can manage the high volume of features that arises 

from introducing an ideal mix of picture fusion with surface/landscape object 

detection/classification and the non-normal distribution characteristic of SAR data. 

 The fusion procedure has been usually embedded into the classification procedure 

in different machine learning methods that fused the SAR and optical data differently. 

Komiel et al. (2015)[169], investigated the assessment of image classification techniques 

when combined with an image fusion technique for detecting changes in surface water. 

The proposed approach given by Komiel et al. (2015)[169], shows significant 

improvement in the detection of change in surface water after fusing multitemporal 

Landsat optical images. The quality and nature of extracted information from the SAR 

and Optical fused data are vigorously impacted by the classification techniques attributes 

[169]. Various researchers presented and evaluated the separate investigation of image 

fusion algorithms and image classification techniques, and significant results have been 

achieved [165]. Much research focuses on the performance of image classification 

techniques and image fusion algorithms separately [170], so a combined approach of 

image classification methods and image fusion algorithms can be explored.  

 Based on the preceding literature review, the following specific objectives have 

been considered: 



130 

(i) To assess the impact of speckle filtering algorithm and their window size on 

the fusion of SAR and optical data.  

(ii) To assess the fusion techniques through a subjective, objective, and a proposed 

comprehensive approach for SAR and optical fusion data. 

(iii) To Explore the impact of image fusion on image classification techniques. 

(iv) To explore the various combinations of fusion and classification techniques 

to achieve an optimal combination for accuracy improvement in classification. 

4.2 Data Set and study area  

4. 2.1 Study site 

 The Mathura-Agra Region of Uttar Pradesh, India, has been chosen as a study 

site. The Indian government has selected Mathura as a heritage city under a heritage 

development plan. Mathura city has landscape coordinates at 27⁰29’33’’N 77⁰40’25’’ E, 

and its elevation is around 174 meters (571 feet) above sea level. The Yamuna River 

flows through the city of Mathura and its surroundings. This region is also the centre of 

attraction for environmental enthusiasts for its proximity to Keoladeo National Park, 

Bharatpur. Keetham Lake and Sur Sarovar Bird Sanctuary are other significant 

environmentally rich sites in this study area. Mathura Petroleum Refinery is a significant 

man-made industrial establishment in this region. The climate of Mathura has a humid 

subtropical climate. There are several issues that the region is facing nowadays due to 

rapidly increasing urbanization. Farming, barren, and forest land have quickly diminished 

daily because of urbanization. The district of Mathura is being selected as a study site 

because of free, open-source data availability, and the region is familiar to the author. This 

study includes free access to SAR sentinel-1A and optical sentinel-2A images for man-
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made and naturals landscape objects. Fig. 4.1 shows the landscape view of the Mathura-

Agra region used for this research. 

4.2.2 Sentinel-2A Optical data 

 The Sentinel-2A is a part of the two-satellite constellation program of the 

European Space Agency (ESA) [171]. The Sentinel-2A multispectral image is freely 

available through Copernicus open-access hub. A Sentinel-2A, level 1C, top-of-

atmosphere image is taken for this study. The Sentinel-2A was captured on October 07, 

2017(ESA Sentinel-2A). The Sentinel-2A Multispectral (MS) sensor provides 13 bands 

in the optical, NIR, shortwave-infrared (SWIR) parts of the electromagnetic band, out of 

which Band-1, Band-9, and Band-10 have a 60-meter resolution, Bands-(5, 6, 7, 8A, 11) 

and Band-12 have a 20-meter resolution, Bands-(2,3,4) and Band-8 have a10-meter 

resolution. Fig. 4.1a shows a false-color composite of sentinel-2A multispectral image 

utilizing Band-3 (Green), Band-4 (Red), and Band-8 (NIR). The followings are the 

specifications of the Sentinel-2A image: 

           Data Format = JPEG 2000 

           Revisit Time=10 days 

           Swath Width = 290 km 

           Radiometric Resolution= 12 bits per pixel 

           Data mode= Push-broom mode 

4.2.3 Sentinel-1A SAR data set  

 The SAR Sentinel-1A C-band (5.405 GHz) image is taken as the microwave dataset for 

this study (ESA Sentinel-1A). The Sentinel-1A is also available freely through 

Copernicus open-access hub program. Table 4.2 summarises the details of Sentinel-1A 

SAR dataset. 
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(a)                                                    (b) 
Fig. 4.1 (a) Study area of Agra-Mathura region (Optical image) (b) VH polarized SAR image 

 

  Table 4.2   Specification of sentinel data [171] 

Specification Sentinel-1A SAR Sentinel-2A Optical 

Captured Date 03rd October,2017 07th October,2017 

Operating mode Interferometric Wide swath 

(IW) mode 

- 

Frequency, Wavelength 5.405 GHz, 5.4 cm 13 bands 

Polarisation mode VV and VH - 

Revisit Time 12 days 10 days 

Swath width 250 km 290 km 

Radiometric Resolution 16- bit 12-bit 

4.3 Theoretical background  

4.3.1 Image pre-processing 

 Satellite images must be pre-processed before further utilization in remote sensing 

applications to enhance image quality, reduce noise, and prepare the data for subsequent 

analysis tasks. SAR and optical images are separately pre-processed before fusion. The 

following pre-processing steps have been carried out on the SAR image to enhance 

feature extraction and make it suitable for fusion with optical data [98][165]. 
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• Radiometric calibration:  SAR data is often affected by radiometric distortions 

caused by variations in antenna gain, system noise, and other factors. Radiometric 

calibration corrects these distortions to ensure consistent brightness values across 

the image. It converts a digital number to sigma naught backscatter. The inverted 

image is now mapped with map data. The equation of radiometric calibration has 

been given as follows:  

 𝜎𝑜 = 10 𝑙𝑜𝑔10 ( 
𝐷𝑁

𝐺
 ) + β                                                               (4.1) 

 Where σo is calibrated backscatter, DN is the digital number received by 

the unprocessed SAR image, G is the gain or calibration factor, and β is the offset 

term. The bias and calibration terms are calculated using reference objects such 

as panels and corner reflectors with known backscatter values.  

• Multilooking: SAR images are typically formed by combining multiple radar 

pulses (looks) to improve the signal-to-noise ratio. Multilooking involves 

averaging neighbouring pixels to reduce speckle noise while sacrificing spatial 

resolution. The image pixel size is half of the SAR instrument resolution. 

• Speckle Filtering: Speckle is a multiplicative noise inherent in SAR imagery, 

which appears as a white patch. Speckle filtering techniques aim to preserve image 

details while reducing noise. Common approaches include Lee, Frost, and 

Gamma-MAP filters. 

• Terrain Correction: SAR signal can be affected by terrain variations leading to 

radiometric and geometric distortions -Terrain-induced artifacts removed by the 

Digital Elevation Model (DEM). 

 Optical data is generally required atmospheric correction and resampling before 

further analysis. Atmospheric correction compensates for the influence of the Earth's 
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atmosphere on satellite images. It removes atmospheric effects such as scattering and 

absorption to retrieve surface reflectance values. Various models and algorithms are used 

for atmospheric correction, such as dark object subtraction or atmospheric and 

topographic correction. 

4.3.2 Speckle filtering algorithms 

 SAR images gain a granular look with random spatial variations from speckle. 

Rather of being noise, speckle is a scattering phenomenon. Because of the great diversity 

of the SAR-speckled response, comparing intensity to a set threshold for the purpose of 

discriminating between different natural media typically results in many inaccuracies. 

[9][10][98].  

           Standard speckle filters, including Boxcar, Median, Lee, and Gamma, are 

frequently employed in image processing. Each of these speckle filters does the filtering 

using either the adequate equivalent number of looks (ENL) of a SAR image to estimate 

the local noise variance or local statistical data provided in the filter window to determine 

the noise variance within the filter window. After that, the amount of smoothing required 

for each speckle image is determined using the predicted noise variance. If an area's 

intensity is consistent, the noise variance computed from the local filter window is more 

appropriate [172].  

Boxcar averaging filter 

 It enhances the signal-to-noise ratio by moving an averaging filter over a set of 

neighbourhood pixels (window). This filter calculates the average value of pixel 

intensities within the window. Furthermore, it replaces the pixel value at (x, y) with the 

computed average. It reduces the high-frequency components of the speckle noise, which 

can result in blurring the image and reducing fine details. For each pixel: 
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 Filtered Image I (m, n) = 
1

𝑁2
∑∑ 𝐼(𝑥, 𝑦)                             (4.2)           

 Where (x, y) represents the filter window coordinates, x= 0,1,2,3…...N-1 and y = 

0,1,2, 3..…..N-1. 

Median filter 

 The Median filter is more effective than the convolution filter when the goal is to 

reduce noise and preserve edges simultaneously. It replaces each pixel value of image 

I(m,n) with the median value of its surrounding pixels. It preserves the fine details and 

edge better than the Gaussian and mean filters. 

Gamma map filter 

 The Maximum A Posteriori (MAP) filter is employing multiplicative noise model 

with nonstationary mean and variance parameters. It merge geometric and statistical 

characteristics to compute the values of the pixel and the average of neighbouring pixels 

using moving windows. It utilizes a maximum a posteriori estimation to reduce speckle 

noise. It operates by estimating the image's statistical properties (such as mean, variance, 

etc.) using a kernel. The filter assumes that the original DN value lies between the DN of 

the pixel of interest and the average DN of the moving kernel. 

           Moreover, many speckle reduction filters assume a Gaussian distribution for the 

speckle noise. The estimated statistical properties are then used to compute the weights 

for filtering each pixel. Naturally, vegetated areas are more appropriately modelled as 

having a Gamma distributed cross-section [172]. The Gamma-MAP filter is governed by 

the following equation:       

 E [I (m, n)] 3 – 𝐼 ̅(x, y) E [I (m, n)] 2 +σ (E [I (m, n)] - DN) = 0                       (4.3) 



136 

 Where, 

  E [I (m, n)] = Expected pixel value 

  I(̅x, y) = Local average pixel value 

           σ = Variance of noisy image 

                   DN = Intensity (Digital number) of noisy image 

Lee filter 

 It is based on local statistics to reduce speckle noise. The specific operation used 

is a weighted average of the image pixels. The weight is calculated based on the local 

statistics of the image[172]. Equation 4.3.3 is used to calculate filtered image: 

     E(τ) = 𝐼(𝜏)̅̅ ̅̅ ̅ – W (τ) (I(τ) - 𝐼(𝜏)̅̅ ̅̅ ̅ )                                                                      (4.4) 

 Here, E(τ) is estimated value of the filtered image 

 I(τ), 𝐼(𝜏)̅̅ ̅̅ ̅  are the noisy image and its mean value respectively 

 W(τ) is the weighting function. 

  W(τ) = 
𝑣𝑎𝑟 (τ)

 (I(τ))
2
𝜎2 +𝑣𝑎𝑟 (τ)

                                                                                  (4.5) 

 And  𝑣𝑎𝑟 (τ) =  
𝜎𝑙

2+𝜇𝑙
2

𝜎2+1
− 𝜇𝑙

2                                                                         (4.6) 

 Where var(τ) is the variance of the pixel being filtered, 𝜎2 is the global variance 

of the noisy image, 𝜎𝑙
2 and 𝜇𝑙 are local variance and local mean respectively. 

Lee- Sigma 

 It is a nonlinear adaptive filter based on a two-sigma PDF of speckle noise. It 

estimates the mean, variance, and standard deviation of the noise in a local neighborhood 
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of each pixel. The filter then replaces the value of each pixel with a weighted average of 

the pixel value and the mean of the speckle noise in the neighborhood. The adaptive 

weight is the tradeoff between noise reduction and noise variance. 

 Filtered value = Local mean + W (τ) * (original value – local value)              (4.7) 

 W (τ) = 1 – (noise variance/local variance)                                                      (4.8) 

 Lee-sigma filter is simple in implement and effective in reducing speckle noise. 

4.3.3 Image fusion algorithms 

 Image fusion is a process that merges two or more sensor images to extract 

additional information [10]. This paper merges the Sentinel-1 SAR image with a Sentinel-

2 Multispectral image. PCA, HSV, Brovey Transform and GS Transform fusion methods 

have been used to detect surface objects/classes. PCA fusion method is discussed in 

Section 3.3.3, so the rest of the fusion techniques are discussed here[9][81][98]. 

HSV fusion  

 HSV is an empirical merging technique for researchers to fuse multispectral and 

panchromatic imagery and SAR. HSV incorporates the transformation of the RGB bands 

of the image into HSV colour space. This algorithm divides spectral (hue and saturation) 

and spatial component (value) data from an optical image. In this algorithm, RGB bands 

of optical images are transformed into Hue (colour contribution), Saturation (purity of 

colour), and Value (brightness or intensity) bands, respectively. In the next step, firstly, 

the histogram of the SAR image and Value band is matched so that both bands' variance 

and mean are equal. Then, the Value band of HSV is replaced with the SAR band to 

incorporate spatial information. The inverse transformation is accomplished to get the 

resultant fused optical imagery from HSV bands. The fundamental restriction of the HSV 
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transform is that it can only change the three bands of the MS image. However, the higher 

number of multispectral bands can be incorporated by doing multiple HSV 

transformations [9][173]. 

Brovey Transform (BT) 

 BT uses arithmetic combinations of bands to normalize multispectral bands used 

for colour display. The resulting normalized bands are then multiplied by the desired 

image (SAR) to fuse to the multispectral bands [9]. 

                                                           

       𝐵𝑇1 =  
𝐷𝑁𝑀𝑆1

𝐷𝑁𝑀𝑆1+𝐷𝑁𝑀𝑆2+𝐷𝑁𝑀𝑆3 
𝐷𝑁𝑆𝐴𝑅               

 

       𝐵𝑇2 =  
𝐷𝑁𝑀𝑆2

𝐷𝑁𝑀𝑆1+𝐷𝑁𝑀𝑆2+𝐷𝑁𝑀𝑆3 
𝐷𝑁𝑆𝐴𝑅                                                                    (4.9) 

 

       𝐵𝑇3 =  
𝐷𝑁𝑀𝑆3

𝐷𝑁𝑀𝑆1+𝐷𝑁𝑀𝑆2+𝐷𝑁𝑀𝑆3 
𝐷𝑁𝑆𝐴𝑅 

 

                                                      

  BTi is Brovey fused bands, are multispectral bands, and is the SAR image utilized 

for fusion with multispectral image, which incorporates spatial information multispectral 

image. The BT method is relatively easy to compute; however, literature reported that 

using the method for pixel-level fusion applications did not return desired results. 

Gram-Schmidt (GS) Transform 

 This GS transform is much like the PCA algorithm approach. Initially, SAR 

intensity imagery is a histogram matched to the lower spatial resolution optical bands. So 

is achieved by equating the bands of the optical data set. Now, GS orthogonalization is 

achieved on the matched SAR band and the optical bands, where a simulated SAR image 

has been employed as a primary band of transform [174]. After that, the SAR image is 

replaced by the first GS transform band. At last, the reverse GS transformation is 

accomplished to achieve the fused multispectral image [175].  
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4.3.4 Image classification  

 Satellite image classification is the process of categorizing satellite images into 

different classes or categories based on the content or features present in the images. 

Extract relevant features from the satellite images that can differentiate between different 

classes. These features can be spectral, textural, or structural attributes derived from the 

image pixels or regions of interest (ROIs). Manually label a subset of satellite images to 

create a training dataset. The training dataset should contain representative examples from 

each class to classify. The labeled images should be paired with their corresponding class 

labels. SVM and maximum likelihood (ML) algorithms classify natural and man-made 

classes. Table 4.3 shows the class definitions of various classes utilized in this research. 

                                Table 4.3 Class definition 

Class Description 

Man-made structure Human made structure (buildings, bridges, roads, impervious 

surfaces etc.) 

Water Water bodies (Ocean, lakes, pond, rivers etc.) 

Agri. Veg. Low vegetation (natural grass, pastures, crops etc.) 

Forest Wood veg. (Coniferous forests, dense shrubs etc.) 

Bare soil Planes devoid Veg. (rocks, karst plains, soil etc.) 

 

4.4 Methodology 

 The following image processing tasks must be executed to accomplish the 

objectives of this research: collection of SAR and optical images, pre-processing of SAR 

and optical images, speckle filtering of SAR data, reprojection to common coordinates, 

implementation of fusion algorithms, detection/classification of surface objects and 
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validation and assessment of accuracy. Fig. 4.2 shows the workflow of this research from 

image pre-processing to validation and assessments. 

4.4.1 Preprocessing of Satellite Imagery  

 SAR and optical images have been downloaded from the Sentinel mission of the 

European Space Agency (ESA). In further data processing, preprocessing of the SAR and 

optical images has been initially conducted separately, followed by reprojecting both 

images onto the same coordinate system. 

4.4.1.1 SAR imagery preprocessing 

 Due to the complex nature and physical properties of SAR images, SAR image 

processing is one of the most critical steps for further processing of data. The following 

pre-processing steps are implemented: calibration, speckle noise reduction, and terrain 

correction [176]. 

4.4.1.2 Optical image preprocessing 

 Optical image pre-processing was performed to get bottom of atmospheric (BOA) 

Level-2 optical image from the Sentinel-2 level-1C top of atmospheric (TOA) data. 

Atmospheric correction is being performed on the SEN2COR platform developed by the 

European Space Agency. Green, Red and NIR bands have been used in this research. The 

nearest neighbour-based resampling of 10x10 meter-square has been implemented to 

multispectral bands.  

 Before fusion, SAR and multispectral bands have been terrain-corrected using a 

30m SRTM digital elevation model and reprojected to WGS-84, UTM zone- 43. 
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Fig.4.2 Flow diagram showing the methodology 

4.4.2 Speckle filter 

 After preprocessing, impact of speckle filter on image fusion algorithms has been 

evaluated. To evaluate speckle filtering, various statistical parameter has been calculated 

[177]. Fig. 4.3 shows the workflow of the task for the speckle filtering impact evaluation 

to fusion image. 

In this study, the statistical assessment parameters that are used to evaluate the 

speckle filter are variance, mean value, standard deviation, and equivalent number of 

looks (ENL). In composite analysis, the effect of speckle filtering has been analysed 

before and after fusion and a conclusion has been drawn based on this task. This study 
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evaluated the influence of various speckle filtering methods (with different window sizes) 

for SAR and optical image fusion. Box car, Median filter, Gamma map filter, Lee filter 

and Lee Sigma (with window sizes 5×5 and 7×7) have been evaluated for SAR and 

optical fusion. These fives speckle filters have been applied to Sentinel-1A SAR images 

before fusion. All SAR speckle-filtered images have been subjected to fusion with optical 

images. 

 

Fig. 4.3 Flowchart for Speckle filter impact analysis 

4.4.3 Image fusion methods 

 The one of the aims of this research is to evaluate various established classification 

and fusion algorithms and explore the impact of fusion techniques on image classification 

techniques. Four established fusion techniques, H-S-V fusion, Brovey Transform, PCA, 

and GS Transform, have been performed on the SAR optical dataset. As the accuracy of 

MS image is quite good, and interpretation of MS image is much easier than SAR image, 

the MS image has been selected for reference image for the fusion process. 

 SAR is single band data with VV and VH polarisation. The VV-SAR image 

highlights the linear features and VH-SAR image highlights Volume features. Ability to 



143 

discriminate prominent features of surface objects, VH-SAR image has been taken for 

fusion with optical image. 

  In this study, HSV transformation is being performed on three MS bands (Green, 

Red, and NIR) and the VH polarized SAR image. In GS transformation, three bands 

(Green, Red, and NIR) of MS and VH-polarized SAR data are utilised.  In PCA, the first 

PC is replaced by VH polarized SAR images, and all other parameters are default values. 

Brovey transform is used as a mathematical combination of multispectral and SAR 

images. Here fused band was reconstructed with the multiplication of VH polarized SAR 

image and normalized MS bands. 

4.4.4 Evaluation of SAR-optical fusion image  

 SAR is a complex image, and its fusion with optical data leads to more 

complicated data processing. The fusion quality evaluation is an important task, and 

numerous researchers exhibit various models to evaluate the fused image. An evaluation 

of the quality of the fusion image is assessed through two approaches, i.e. subjective and 

objective assessment. In this research, a comprehensive (application-based) method is 

proposed and evaluated. The selected evaluation metrics such as Structural Similarity 

Index (SSIM), Correlation Coefficient (CC), and Entropy, have been chosen to 

objectively assess the quality and effectiveness of image fusion. 

            All fused images are evaluated using objective quality metrics: correlation 

coefficient (CC), universal quality index (UIQI), structural similarity index measure ( 

SSIM), and mean bias require a reference image, whereas entropy, standard deviation 

(SD), and mutual information (MI) do not require a reference image. 
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           The comprehensive assessment of fusion methods using SVM classification and 

the outcome of the assessment in terms of kappa coefficient and accuracy has been taken. 

surface objects (man-made structures, water, forest, Barren land, and veg. agriculture) 

have been included in the experiment. 

4.4.5    Influence of image fusion approach on image classification techniques 

 In this subsection, the SVM, Maximum likelihood classifier (ML) methods have 

been implemented to extract man-made and natural objects. Five landscape/surface 

objects (Man-made structure, Water, Forest, Barren land, and Veg. Agriculture) have 

been taken for evaluation of fusion and classification combination. Table 4.4 shows the 

number of testing and training pixels selected for each class. The training pixels have 

been selected from optical image with the help of field data observation and google earth 

imagery. The same sets of testing and training pixels are selected from the SAR and fusion 

images to demonstrate the improvement in results after fusion. The influence of image 

fusion on the image classifier is evaluated by the overall accuracy and kappa coefficient 

for all the possible combinations of fuser and classifier. Supervised classification ML and 

SVM have been implemented to the resultant fusion methods outcome. Here, Brovey, 

GS, PCA and HSV fusion techniques has been implemented. For SVM, the penalty 

parameter was set to 100, and a default value (i.e., 0.143) was set for Gamma in the kernel 

function. The pyramid parameter of SVM was set to zero. A total of eight combinations 

of Fuser and Classifier have been evaluated for extracting the surface Objects/classes. 

The combinations are: (i) HSV-SVM (ii) Gram-Schmidt – SVM (iii) PCA- SVM (iv) 

Brovey- SVM (v) HSV-ML (vi) Gram-Schmidt – MLC (vii) PCA – ML and (viii) 

Brovey- ML. 
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Table 4.4 Class-wise training and testing pixels used for evaluation 

Class Map color Training Pixel Test Pixel 

Man-made structure  857 662 

Water  927 827 

Forest  983 832 

Barren land  1070 913 

Veg. Agriculture  956 638 

4.5 Results and discussion 

 Sentinel-1A SAR images have been pre-processed (calibration, speckle filtering 

and terrain correction) with sentinel application platform (SNAP) software, whereas 

sentinel-2A optical image is pre-processed on the SEN2SOR processor of ESA. SAR 

data's radiometric and terrain calibration is performed earlier in the composite study area 

for further processing, whereas atmospheric correction is performed for optical data. The 

results of this research are further discussed in subsections to address each sub-objective 

of this research.  

4.5.1 Impact of speckle filtering and its window size on the fusion  

 This subsection shows the performance of speckle filtering algorithms and their 

window size to reduce the speckle effect of SAR image, which is subjected to fusion with 

optical data. A subset of Fig. 4.1 has been chosen for speckle filtering experiments to 

reduce computation time and storage. The impact of filtering is evaluated before and after 

the fusion of SAR image. Experiments are performed on the subset of the study area with 

man-made objects (such as settlements, roads, and rail lines) and natural objects (forests 

and vegetation). Five established speckle filtering algorithms: box-car, median, gamma-

map, Lee, and lee-sigma filter algorithms have been taken for this study. In addition, the 
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5x5 and 7x7 filter window sizes are taken for the experiments. Fig. 4.4 shows the impact 

of speckle filtering algorithms on the SAR image before the fusion.  

 An effective speckle-reducing filter does not significantly impact the average 

intensity in a homogeneous area. Smooth shrink and image de-blurring have been visual 

in the box-car and median filters. Lee-sigma and gamma map filters maintain image 

sharpness and capture details, effectively suppressing speckle noise compared to 

conventional low-pass smoothing filters. Spatial and multi-look filtering smooths the 

image and minimizes speckles at the expense of resolution. Table 4.5 shows the measures 

of statistical parameters of filtered images. 

 Lee-sigma operates by filtering based on the local statistical value provided in the 

filter window to compute the noise variance within that window or by estimating the local 

noise variance using the appropriate equivalent number of looks (ENL) for the study area.  

Window size 

 

Filter 
5×5 7×7 

Box-car 

  

Median 

  



147 

Gamma map 

  

Lee 

  

Lee Sigma  

  

Fig. 4.4 Implementation of speckle filter algorithms on SAR image 
     

    The lee-sigma filter with a window 7x7 size has shown the highest ENL value. The 

gamma map filter has the highest standard deviation value, indicating a higher 

discrimination value. The gamma map filter is more sensitive towards the lower 

backscatter values. Compared to a window size 7×7, a 5×5 window size has a higher 

standard deviation value.    

 Fig. 4.5 offers the performance of speckle filtering algorithms when evaluated 

with fusion with an optical image. Here, experimental results are presented using 

Sentinel-1 SAR image fusion with the optical image employing PCA fusion algorithms. 

In continuous statistical outcomes, lee-sigma and gamma-map filtered fused images show 

a less deblurred effect than others. Box car, median and Lee filters produce few 

intermixing of man-made structures with barren land. In contrast, the lee-sigma filter 

shows promising results by discriminating man-made structures from barren land. 
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Compared to the 7×7 window size, the 5×5 size preserves textural information.  Before 

fusion, the Lee-sigma and Gamma-map filter with a 7×7 window size gave the best 

statistical outcomes, whereas, after fusion, the Lee-sigma filter with a 5×5 window size 

gave better results. Fusion techniques can affect the outcome of speckle filtering. The 

fusion image indicated that the Lee-sigma filter handled the inherent speckle noise well 

after the fusion. So, the Lee Sigma filter is used for the rest of the research. 

Table 4.5 Statistical measure of Speckle filter 

 

Filter Window 

size 

Mean ENL STD Variance 

Box car 5×5 31.15 0.0004 103.15 44.66 

7×7 33.35 0.0008 96.15 38.55 

Median 5×5 32.33 0.0003 109.15 42.15 

7×7 34.56 0.0005 114.15 39.15 

Gamma 

map 

5×5 38.15 0.0014 122.33 36.55 

7×7 39.85 0.0020 116.25 32.15 

Lee 5×5 -198.15  115.19  

7×7 -35.27  102.13  

Lee-Sigma 5×5 37.18 0.0018 119.33 42.15 

7×7 39.17 0.0022 116.55 35.67 

  

4.5.2 Assessment of image fusion techniques  

 An evaluation of the quality of the fusion image is assessed through two 

approaches, i.e. subjective and objective assessment. In this research, a comprehensive 

(application-based) method is proposed. Experiments have been conducted for SAR and 

optical fusion with four fusion techniques: PCA, HSV, BT, and Gram–Schmidt fusion. 

Here, three bands (NIR, Red, and Green) of Sentinel-2 A multispectral image are being 

fused with a VH-polarized Sentinel-1A SAR image. The results of these assessment are 

given in this subsection.    
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PCA fusion 

of Box Car 

filtered 

image 
  

PCA fusion 

of Median 

filtered 

image 
  

PCA fusion 

of Gamma 

map filtered 

image 
  

PCA fusion 

of Lee 

filtered 

image 
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Fig. 4.5 SAR and optical image fusion of various speckle filtered images 
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4.5.2.1 Subjective Assessment 

 The subjective (visual) results of PCA, HSV, BT, and GS approaches demonstrate 

that PCA fusion delivers the best fused output of all the investigated methods (Fig. 4.6). 

The visual findings show that the use of BT and GS fusion methods has resulted in 

significant spectrum distortion. The findings also show that some texture information 

accessible in the SAR data is fed into the fused output. The visual findings of HSV fusion 

show that the outcomes are visually superior to the GS and BT techniques. Some details 

in the HSV technique are sharper than in PCA, GS, and BT techniques, and Visually, 

HSV fusion produces a superior fused output. However, simple GS and HSV-based 

methods have enough room for enhancement, resulting in a spectral mismatch between 

SAR and optical image distortion. 

4.5.2.2 Objective Assessment 

 Tables 4.6 and 4.7 present the evaluation of some widely used objective metrics. 

All fused images are evaluated using metrics: CC, UIQI, SSIM, and mean bias require a 

reference image (Table 4.6), whereas entropy, SD, and MI do not require a reference 

image (Table 4.7). As evaluated, PCA and GS methods show better results. Among all 

the methods considered, BT achieved the worst consequences. The CC value of all fusions 

has little difference. PCA and GS fusion methods result in better metrics values. In the 

absence of high-resolution reference images, metrics are evaluated using the Wald 

protocol at reduced resolution [98]. 

4.5.2.3 Comprehensive Assessment  

 The visual effect is subjective in nature and vary from researcher to researcher. 

Objective assessment also shows some ambiguity in feature extraction due to intermixing 

some classes. To determine the composite evaluation of SAR optical image fusion, 
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(a) FCC of MS image 

 

(b)   PCA (c)    HSV 

  

 

(d)  Brovey 

 

(e)   GS  

    Fig. 4.6 SAR-optical fusion of S1A and S2A   

 Comprehensive assessment (application-based) is introduced, revealing some 

promising results here. Fig. 4.7 shows the comprehensive assessment of fusion methods 

using SVM classification, and the outcome of the assessment in terms of kappa coefficient 

and accuracy is shown in Table 4.8. Surface objects (man-made structures, water, forest, 

Barren land, and veg. agriculture) have been included in the experiment. The HSV fusion 

provides maximum accuracy of 83.3521%, and BT gave the worst accuracy. The outcome  
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Table 4.6 Experimental results of objective measures (reference data required) 

Parameter Fusion 

method 

Fused images Mean 

Value 

Ideal 

value Green Red NIR 

 

CC 

PCA 0.665 0.676 0.710 0.683 1 

GS 0.555 0.555 0.610 0.573 1 

BT 0.056 0.076 0.272 0.134 1 

HSV 0.445 0.445 0.552 0.481 1 

 

 

UIQI 

PCA -0.045 0.082 0.025 0.021 -1 to 1 

GS -0.069 -0.055 0.210 0.029 -1 to 1 

BT -0.049 -0.022 -0.028 -0.033 -1 to 1 

HSV -0.015 -0.045 0.030 -0.01 -1 to 1 

 

 

SSIM 

PCA 0.570 0.550 0.258 0.459 -1 to 1 

GS 0.462 0.380 0.376 0.406 -1 to 1 

BT 0.250 0.183 0.190 0.208 -1 to 1 

HSV 0.444 0.418 0.276 0.379 -1 to 1 

 

Mean 

Bias 

PCA 0.260 0.220 0.240 0.240 0 

GS 0.000 0.001 0.002 0.001 0 

BT 0.816 0.803 0.595 0.738 0 

HSV 0.304 0.266 0.188 0.249 0 

  

of comprehensive assessment adds some significant contribution, which is not available 

in subjective and objective evaluation. 

4.5.2.4 Computational cost 

 Computational cost is nowadays a crucial part of analyzing the performance of 

fusion methods. Here, the processing time of each fusion method is being computed. Even 

though it is vital to compare in terms of computational costs (processing time, storage), it 

was difficult as the approaches depended on processing parameters. In this study, the 
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Table 4.7 Experimental results of objective measures (reference data not required) 

Parameter Band Initial 

Value 

Fusion method 

PCA GS BT HSV 

 

Entropy 

Green 4.520 4.750 5.455 4.002 4.650 

Red 4.725 4.730 4.995 3.990 4.854 

NIR 5.445 5.556 5.766 4.206 5.485 

 

SD 

Green 124.540 85.224 110.56 17.820 113.35 

Red 140.578 85.442 106.34 24.110 142.54 

NIR 154.660 162.57 168.577 72.340 168.54 

 

MI 

Green 9.486 9.210 8.824 4.324 9.256 

Red 9.540 9.846 9.276 4.540 9.664 

NIR 10.048 11.324 10.667 6.548 10.424 

 
 Table 4.8 Classification outcome evaluation of SAR-optical image fusion method 

  

Accuracy 

Class (percentage)  

Overall 

Accuracy 

 

Kappa 

Coeff. 

Man-

made 

structure 

Barrenland Water Forest Veg. 

agriculture 

SAR 

only 

Prod Acc. 70.21 23.72 65.62 38.55 67.32  

39.7121 

 

0.2666 User Acc. 73.62 52.33 78.06 79.42 45.73 

Optical 

only 

Prod Acc. 93.45 87.19 95.34 74.48 66.52  

78.1531 

 

0.6835 User Acc. 75.66 81.24 92.89 81.70 72.80 

 

  PCA 

Prod Acc. 71.46 99.81 100 46.27 87.46  

82.6276 

 

0.7817 User Acc. 86.90 96.50 96.76 99.74 49.21 

 

GS 

Prod Acc. 96.66 97.49 65.84 50.48 86.52  

79.1190 

 

0.7175 User Acc. 73.73 83.34 90.89 91.70 62.80 

 

BT 

Prod Acc. 90.63 3.72 5.62 44.35 89.50  

39.4871 

 

0.2778 User Acc. 77.82 43.01 53.06 89.56 20.70 

HSV 

Prod Acc. 96.67 92.01 100 39.66 89.50  

83.3521 

 

0.7926 User Acc. 81.53 84.76 96.86 77.10 69.04 
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same data set and pre-processing steps have been used for all algorithms. In the pixel 

level approach, the three bands of optical images have been fused with VH polarised SAR 

image. Table 4.9 shows the processing time for examined fusion methods. So based on 

computational costs, the BT fusion had the lowest processing time, followed by GS. The 

results clearly show a trade-off between accuracy and computational cost. 

Table 4.9 CPU processing time for fusion methods (Intel i5, 8GB RAM) 

 PCA GS BT HSV 

Processing Time 30 min 50 sec 29 min 05 sec 02 min 30 sec 30 min 15 sec 

 

The SAR-optical fusion involves moderately high computational complexity due to 

multi-dimensional data processing and advanced feature extraction. To optimize for real-

time or near-real-time applications, following may be undertaken: 

• Algorithmic simplification through reduced-rank decomposition and lightweight 

feature selection helps lower processing loads without a major loss in accuracy.  

• Parallel processing using GPUs or parallel computing frameworks can 

significantly speed up matrix operations and classification tasks.  

• Furthermore, edge computing and onboard processing enable the deployment of 

optimized models directly onto UAVs or mobile platforms, allowing real-time, 

in-situ data analysis with minimal latency. 

•  Machine learning optimization techniques, such as employing efficient classifiers 

like linear SVM or shallow neural networks.  

4.5.3 Impact of image fusion on image classification techniques 

 

This research shows the performance of integration of SAR and optical fusion and 

image classification techniques and exhibits accuracy in term of overall accuracy (OA) 
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and kappa coefficient. Table 4.10 exhibits the comparison of SVM & ML classifier for 

different image fusion methods. Table 4.11 compares class accuracies achieved through 

various combinations of image fusion and classification methods. The analysis of results 

is presented in a subsequent subsection. 

 

  

(a)  classification of PCA fused (b) classification of GS fused 

 

  

(c) classification of Brovey fused (d)  classification of HSV fused 

 

 Fig. 4.7 Comprehensive assessment of SAR-optical fusion with SVM classification 
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     Table 4.10 Comparison of SVM & ML classification for different image fusion techniques 

  Classifier 

 

     Fusion 

SVM 

 

 ML 

Overall 

Accuracy 

Kappa 

Coefficient 

 Overall 

Accuracy 

Kappa 

Coefficient 

SAR only 39.7121 0.2666  35.4141 0.2431 

MS only 78.1531 0.6835  77.5431 0.7012 

HSV 76.1190 0.6975  74.7641 0.6802 

Brovey 39.4871 0.2778  76.4094 0.7021 

Gram-Schmidt 84.3521 0.8026  87.5635 0.8431 

PCA 82.6276 0.7817  82.5635 0.7711 

 

4.5.3.1 Impact of fusion techniques on maximum-likelihood classification 

 Fig. 4.8 shows the ML classification outcome of all four fusion techniques (HSV, 

Brovey, Gram-Schmidt, and PCA). The following observations have been observed from 

Table 4.10 for ML classifier: Overall classification accuracy of 77.5431% and kappa 

coefficient of 0.7012 have been obtained from the MS. Overall accuracy of 35.4141% 

and kappa coefficient of 0.2431 have been achieved from the SAR band. Compared to 

the SAR image, which lacks spectral information, the MS image has more spectral 

contents, improving accuracy.  

The OA is 76.4094 (kappa coefficient 0.7021) for Brovey Fusion and 74.7641 

(kappa coefficient 0.6802) for HSV fusion. A pattern of class intermixing has been 

observed from Brovey and HSV fusion (Fig. 4.8). BT and HSV methods have been 

resultant in a reduction in OA by 01.1337% and 02.0341%, respectively. As a result, BT 

and HSV approaches do not appear to be promising for enhancing classification 

accuracy. The GS fusion has been the best among all the fusion techniques, as it produced 

the highest OA of 87.5635% and kappa coefficient of 0.8431, an improvement of 
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10.0204% in OA and 0.1019 in kappa coefficient, as compared to the MS band only. For 

PCA technique, the OA is 82.5635 % (kappa coefficient 0.7711), an improvement of 

about 5.0204% (kappa coefficient 0.0699) in OA over the MS image. Man-made 

settlement and barrenland have been classified accurately by the PCA technique. All the 

fusion methods extracted water and forest feature accurately. Thus, GS and PCA fusion 

methods significantly improve the accuracy of MS images by fusing with SAR images. 

Confusion between man-made structure, forest, and veg. agriculture have been reduced 

in the GS-ML combination.  

  Table 4.11 Comparison of class accuracies for image Fusion and Classification Combinations 

 

Combinations Man-

made 

structure 

Barrenland Water Forest Veg 

agri 

SAR only-SVM 93.66 10.00 15.60 12.15 24.48 

SAR only-ML 92.50 25.00 25.60 28.40 90.32 

MS only-SVM 80.15 90.15 72.12 48.12 85.15 

MS only-ML 80.15 90.68 74.15 42.15 84.12 

HSV-SVM 85.65 99.63 63.57 41.59 89.81 

HSV-ML 82.48 99.44 62.70 43.27 83.70 

Brovey-SVM 90.17 10.05 15.06 46.15 94.20 

Brovey-ML 98.49 98.42 60.00 42.31 84.64 

GS-SVM 98.04 93.68 100 37.86 92.32 

GS-ML 96.68 100 100 52.88 94.52 

PCA-SVM 71.45 99.81 100 46.27 87.46 

PCA-ML 70.12 98.15 100 44.15 85.15 
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Fig. 4.8 Classified image of combined fusion with classifier (a) PCA with ML (b) Gram-

Schmidt with ML, (c) Brovey with ML and (d) HSV with ML 

4.5.3.2 Impact of fusion techniques on support vector machines classification 

 Fig. 4.9 display the influence of four subjected image fusion algorithms on the 

SVM classification. An overall SVM classifier accuracy of 78.1531% (0.6835 kappa 

coefficient) for MS image and 39.7121% (0.2666 kappa coefficient) for SAR image has 

been calculated. The overall accuracy is 39.4871(kappa coefficient 0.2778) for BT Fusion 

and 76.1190 (kappa coefficient 0.6975) for HSV algorithm.  A pattern of class 

intermixing has been observed from BT and HSV algorithm. These two fusion methods 

  

 

 

 

 

 

 

 

 

 

         (a)   PCA with ML                                           (b)    Gram-Schmidt with ML 

  

           (c)  Brovey with ML           (d)   HSV with ML 
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(BT and HSV) have been resultant in a reduction in OA by 38.6660 % and 02.0341%, 

respectively. Whereas in the case of the BT fusion algorithm result is worst, and the 

classes have been intermixed. This poor performance is somehow contributed by speckle 

interference and the heterogeneous nature of SAR image. GS and PCA fusion enhance 

the classification accuracy by 06.1990 % and 04.4745%, respectively. GS and PCA fusion 

preserve the spectral information and embed spatial information into the fused image. 

4.5.4 Optimal combination of fusion and classification  

 In the case of single sensor performance, the outcomes of the SVM classifier 

outperform the ML classifier for both the SAR and MS image. The SVM classification 

resulted in higher accuracies for HSV and PCA fusion method than the ML classification, 

whereas lower for BT and GS fusion techniques. HSV and BT fusion algorithms could 

not enhance the accuracy assessments (OA and kappa coefficient) of surface objects/ 

classes compared to single sensor multispectral image. However, the combination of SAR 

with optical with Gram-Schmidt and PCA improves the feature extraction of surface 

objects using both classifiers.  

In the horizontal comparison of Table 4.10, HSV, the PCA fusion method 

provides higher accuracy with the SVM classification method than ML. Table 4.10 

summarizes all eight combinations of Fusion and classification methods. The GS-ML 

combination gives the highest overall accuracy, 87.5635, and kappa coefficient 0.8431, 

whereas the BT-SVM combination provides the worst accuracy. The best result has been 

achieved with the following combinations: HSV fusion with SVM classifier, Gram-

Schmidt fusion with Maximum Likelihood classifier, PCA fusion with SVM classifier, 

and Brovey Fusion with Maximum Likelihood classifier. The accomplished outcomes 

demonstrate the supremacy of the GS fusion to PCA, HSV, and Brovey fusion images in 
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distinguishing and discriminating dense man-made settlements with barren land. Like 

statistics, visual interpretation of the GS transforms to other fusion outcomes highlight 

the discrimination of forest with agricultural vegetation. Other studies [159][169] that 

studied the influence of image fusion on classification techniques (for the fusion of PAN 

and Multispectral images) also found that GS fusion has been significantly improved the 

overall accuracy and brovey fusion reduced the accuracy.  

  

 

 

 

 

 

 

 

 

 

 

 

         (a) PCA with SVM                                              (b) GS with SVM 

  

         (c) Brovey with SVM                                                  (d) HSV with SVM 

Fig. 4.9 Classified outcome of Integration of pixel level fusion with SVM classifier (a) PCA 

with SVM (b) Gram-Schmidt with SVM, (c) Brovey with SVM and (d) HSV with SVM 

  

The achieved results indicate the performance of integration of SAR-optical 

fusion and image classification techniques. Table 4.10 gives a comparison of SVM and 
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ML classification methods when different Fusion techniques are used. The achieved 

results show that mapping can be improved by fusing SAR images with MS images. 

However, every fusion method doesn't need to improve classification accuracy. The  

classification accuracy is being affected by the way heterogenous images are fused, 

incredibly complex SAR images. SAR image is corrupted by Speckle noise, which also 

affects the accuracy of the resultant. Inaccurate Pixel-to-pixel image registration is also a 

reason for poor accuracy. These processing errors in SAR data sometimes dominate the 

composite fused image and resulting in poor accuracy. The intermixing of barren land 

and man-made objects has been a common error also reported by various studies. It may 

be observed that SVM performs better than ML in the case of HSV and PCA fusion 

techniques in addition to SAR only and optical data. However, ML performs better than 

SVM in two fusion techniques, i.e., BT and Gram-Schmidt. One full image optical 

component was replaced by SAR image in the case fusion using PCA and HSV. However, 

in the case of BT, it utilizes the formula given in equation no. 4.9. Hence the fusion is 

carried out at the level of pixels. In the Gram-Schmidt transform, though PCA-type 

component substitution is carried out, SAR is done after histogram matches with lower 

resolution optical bands and orthogonalization. 

 It appears that both the Brovey and Grams-Schmidt transform lead to a fused 

image in which the statistical relationship between its pixels is better captured by ML, 

which is a parametric approach. SVM, which is a non-parametric approach, is not able to 

retain the original statistical relationship. The SVM support vectors change after fusion, 

but it is not possible to predict how these would move/change after fusion. Hence, it is 

difficult to comment whether, after fusion, the performance of SVM will continue to be 
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better. Similarly, in the case of a different set of data, it is difficult to predict how the 

changes after fusion manifest in the SVM support vectors. 

4.6 Conclusion  

 This chapter follows the thesis motivation by applying SAR and optical data 

fusion to improve subsurface and surface object detection and classification in real-world 

scenarios, including border regions and terrain observation. The availability of open-

source SAR and optical data has enhanced the study of multisensory image fusion and its 

application in the remote sensing domain for several years. Recent research and launch 

of SAR sensors (specially ESA’s Sentinel-1 and Sentinel-2) opens several new trends in 

SAR-optical fusion in many dimensions. Because SAR and optical images provide 

complementary details, this kind of fusion is the way forward for a variety of applications, 

despite the challenges (spatial/spectral distortions, computational complexity and 

misregistration). The preprocessing of SAR image is one of the key factors that affects 

the performance of fusion, particularly speckle filtering. The experiment has been 

conducted to evaluate the speckle effect present in SAR imagery. Speckle filtering of 

Sentinel-1 C-band has been evaluated with different filters and window sizes. The Lee-

sigma and gamma-map filter with window 5x5 size has given the best statistical outcome. 

Ten de-speckled SAR resultant have been used to fuse with Optical images to find the 

suitable filter, which preserve the fine feature of SAR data. The fusion image indicates 

that the lee-sigma filter has handled significantly with inherent speckle filter, so taken for 

further processing. 

  This study investigates fusion methods employing PCA, BT, GS, and HSV 

algorithms. Researchers commonly utilize subjective and objective assessments to 

evaluate the quality of fusion methods. The visual effect is subjective and may vary 
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among researchers. Objective assessment requires greater clarity in feature extraction due 

to the intermixing of some classes. To establish a composite evaluation of SAR optical 

image fusion, a comprehensive assessment (application-based) is introduced and 

scrutinized, revealing promising results. The result also established the trade-off between 

computation-time and accuracy of the fusion techniques. 

 Another major task of this research focused on the effect of optical and SAR 

fusion techniques on the image classification approach. Here, image classification 

accuracy outcomes are taken as evaluation indices of image fusion techniques. The four 

image fusion approaches (Brovey, HSV, Gram-Schmidt, and PCA) were applied to SAR 

and optical images. Image fusion outputs have been utilized for two established image 

classification techniques (SVM, maximum likelihood). Conventional accuracy 

assessment parameters overall accuracy and Kappa coefficient have been used for 

classification assessment. The Analysis indicates some pixel-level image fusion methods 

(GS and PCA) improved the classification accuracy of SAR optical fusion, whereas some 

fusion techniques (Brovey, HSV) haves poor classification accuracy. Here, eight 

combinations of fusion and classification techniques have been evaluated, and results 

indicate that SVM performs better than ML in the case of HSV and PCA methods in 

addition to SAR only and Multispectral (MS) data. However, ML performs better than 

SVM in two fusion techniques, i.e., Brovey and Gram-Schmidt. It is concluded that not 

all fusion techniques improve accuracy, and image fusion techniques influence the 

accuracy of classification methods. 

 With the launch of new SAR satellites with higher resolution, SAR and optical 

fusion remains an active research field that will be useful for a wide range of remote 

sensing applications. Recent findings indicate that SAR-optical PLF development is 

moving toward deep learning, big data, and cloud computing. Furthermore, the chapter 
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highlights the compromise between fusion accuracy and computational time and sheds 

light on practical matter of sacrificing improved performance against need for real-time 

processing in mass surveillance applications, such as border surveillance and emergency 

response. 
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Chapter- 5  

Conclusions, Major Contributions, Limitations and Future 

Work 

 

 In this research, detection of surface and subsurface objects has been explored 

using Optical data (multispectral), microwave data (real-aperture i.e scatterometer and 

synthetic aperture radar i.e. SAR) and fusion (SAR and Optical) under three objectives. 

• The first objective of the research is to explore improvement in the detection of 

buried  subsurface objects (live antitank mine) by utilising multiband 

multipolarisation fusion of X- and C-band scatterometer microwave data having 

VV and HH polarisation. 

• The second objective presents the research on improvement of man-made and 

natural object detection using a fusion of scattering components of C-and L-band 

Polarimetric SAR data.        

• The third objective of this research is to explore improvement in the detection of 

surface objects using the fusion of optical (Sentinel-2A multispectral image) and 

microwave (Sentinel-1A SAR) data.    

 Conclusions arrived after this study have been summarised in the subsequent 

section followed by research contribution, limitations, and future scope.   

5.1 Conclusions 

 Detection and classification of surface and subsurface (buried) objects using 

remote sensing data has been a point of research for several years. The capability of all-

time, all-weather vision of microwave data makes a natural choice for detecting surface 
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and subsurface buried objects. The motivation for the research, issues in object detection, 

and the introduction of microwave remote sensing and image fusion methods have been 

presented in Chapter 1 of this thesis. Chapter 1 summarises the introduction of the 

research, the research gaps, objectives, and a critical literature review. In Chapter 1, the 

image fusion techniques were summarised into five categories. At the end of Chapter 1, 

the layout of this thesis has been presented. The subsequent three chapters explore the 

research under the three objectives. Some of the major conclusions drawn concerning 

each of the objectives are summarised here.      

• The research explored the use of microwave remote sensing to detect buried 

landmines. The landmine detection has been carried out with X- and C-band 

SCAT data generated through experiments to detect live antitank mines buried 

under smooth and rough surfaces at different surface roughness depths of 1, 2, 3, 

4, and 5 cm. By leveraging VV and HH polarizations and their fusion, a reduction 

in surface roughness effects, enhancing the accuracy of landmine detection has 

been observed. Various numerical polarization fusion approaches have been 

evaluated and polarization discrimination ratio  has been found to yield minimum 

entropy signifying that it results in maximum reduction in surface roughness 

effects which in turn means that it enhances detection of buried mine.  Backscatter 

and statistical analysis of C- and X- band shows the lower backscatter value of C- 

band. Also, it appears that C-band data discriminate small backscatter value. The 

research findings underscore the potential of multiband, multi-polarization fusion 

techniques for enhancing landmine detection capabilities.      

• Multi-band data enhances accuracy for both metallic and non-metallic mines with 

minimal false alarms. 



167 

• In the second research objective, the polarimetry capability of PolSAR data has 

been utilised to improve the detection of man-made (urban structures) and natural 

objects (water and forests). The multiband (C-band Radarsat-2 data and L-band 

ALOS-1 PALSAR) SAR data were decomposed using incoherent and hybrid-

based decomposition algorithms. Based on the mean scattering power of three 

identified man-made and natural object patches, the dominant scattering 

components were selected. The research proposes a novel approach to the fusion 

of the dominant volume scattering component of the L-band with the surface and 

double bounce scattering component of C-band PoLSAR data. The model is 

evaluated through PCA fusion technique, and it concluded that PCA fusion 

technique significantly improve the results of detection of man-made and natural 

objects.  

• The third objective i.e. fusion of SAR and optical data has several issues and 

detection of objects is mostly affected by the presence of speckle noise. Mitigating 

speckle noise by selecting the appropriate filter and window size is a significant 

challenge in SAR image processing. The work presented evaluated the speckle 

filtering of Sentinel-1 C-band data with different filters of 5x5 and 7x7 window 

sizes. Ten de-speckled results of data of SAR and optical image fusion has been 

presented. Before fusion, the Lee-sigma and Gamma-map filter with a 7x7 

window size gave the best statistical outcomes, whereas, after fusion, the Lee-

sigma filter with a 5x5 window size gave better results. Fusion techniques can 

affect the outcome of speckle filtering. The fusion image indicated that the Lee-

sigma filter handled the inherent speckle noise well after the fusion. 



168 

• This objective examines fusion techniques based on PCA, BT, GS and CN 

spectral sharpening (CN) PLF. Fusion techniques based on CS are less 

computationally demanding and more accessible to implement. Numerical-based 

methods are less complex but offer severe spectral and spatial distortion. MRA 

methods reduce spatial and spectral distortion. Model-based methods have greater 

computational complexity but outperform them in terms of performance. Hybrid 

techniques combine the benefits of CS and MRA methodologies, resulting in a 

superior fused outcome than separate methods. 

• In this research, a comprehensive assessment of image fusion techniques were 

presented and evaluated with established objective and subjective evaluation. The 

application-based comprehensive assessment provided a significant result. To 

show the assessment, SVM was used for the experimental outcomes of PCA, 

HSV, GS and BT fused images for land-cover classification of the man-made 

objects (settlement) and natural (agri. Vegetation, water body, and forest) class. 

• This research also focuses on the effect of optical and SAR fusion techniques on 

the image classification approach. In this research, image classification accuracy 

outcomes serve as evaluation indices for image fusion techniques. The four image 

fusion approaches (Brovey, HSV, Gram-Schmidt, and PCA) were applied to SAR 

and optical images. Image fusion outputs have been utilized for two popular image 

classification techniques (SVM, Maximum Likelihood). The analysis indicate that 

some pixel-level image fusion methods (GS and PCA) improved the classification 

accuracy of SAR optical fusion. In contrast, some fusion techniques (Brovey, 

HSV) have poor classification accuracy. 
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• In the research, eight combinations of fusion and classification techniques were 

evaluated, and result indicated that SVM performs better than ML in the case of 

HSV and PCA methods in addition to SAR only and Multispectral (MS) data. 

However, ML performs better than SVM in two fusion techniques, i.e., Brovey 

and Gram-Schmidt. It appears that not all fusion techniques improve accuracy, 

and image fusion techniques influence the accuracy of classification methods.  

• Computational cost (Table 4.9) is nowadays a crucial part of analysing the 

performance of fusion methods. Here, the processing time of each fusion method 

has been computed.  Even though it is vital to compare in terms of computational 

costs (processing time, storage), it is difficult as the approaches depended on 

processing parameters. Based on computational costs, the BT fusion appears to 

have lowest processing time, followed by GS. The results show a trade-off 

between accuracy and computational cost. 

• SAR-optical fusion improves surface feature detection under varying 

environmental conditions, supporting disaster response and environmental 

monitoring. 

These methods are scalable, adaptable, and suitable for integration into defence, 

disaster management, and environmental monitoring systems. 

5.2 Research contributions  

Based on the preceding conclusions, the major contributions of this research are 

summarised below- 

• In this research, an alternative model using multiband, multipolarisation 

microwave data has been uexplored for buried landmine detection. This model 

leads to the minimization of surface roughness effects and highlighting various 
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mine-like features in an image without getting too intricately involved in the 

complexities of modelling the EM scattering phenomena and layered media effect. 

• In this research, the effect of speckle filters and their window sizes has been 

analysed on pixel-level SAR-optical image fusion data. The result brings out a 

new approach for speckle filter evaluation and impact on SAR data processing. 

• The results of third objective establishes that optimal combinations of the SAR-

and optical image data improves surface object detection. 

• This work evaluates the performance of SAR and optical fusion through objective, 

subjective, and comprehensive parameters. Evaluating SAR and optical image 

fusion on a comprehensive (application based) scale is a contribution of the paper.  

5.3 Limitations 

Some of the limitations of this research which may have a bearing on the results are 

summarised below- 

• The landmine detection experiments have been restricted to dry sand only, which 

may be extended to soil with varying moisture conditions. 

• Microwave scatterometers and PolSAR systems may have limited penetration 

depth in wet or highly conductive soils, reducing detection reliability for deeply 

buried objects. 

• Landmine detection experiments have been considered for like-polarisation (VV 

and HH) data, which should be extended for cross-polarisation (VH and HV) data 

as cross-polarisation data are sensitive to volume scattering. 

• Non-availability of Temporal C- and L- band data of same dates restricts its the 

in detection of man-made and natural objects.  
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• The seasonal sensitivity of natural objects such as water and forests and man-

made objects such as buildings could not explored in this work. The objects 

selected have been those which had minimal seasonal effects. 

• Detection performance can be affected by soil moisture variations, vegetation 

cover, and surface roughness, particularly in real-world landmine detection using 

microwave data. 

• Optical data fusion is affected by cloud cover and lighting conditions, which may 

reduce availability and consistency. 

• Some fusion and classification methods require significant processing power, 

posing challenges for real-time or onboard implementation without hardware 

optimization. 

5.4 Future scope 

To build upon the results of this research. Following aspects may be considered for 

future research: 

• With the recent advancement of the UAV and drone technology, further research 

may be carried out to develop a model for landmine detection techniques 

irrespective of soil conditioning using drones.  

• The development of real-time or near-real-time landmine detection systems for 

deployment in critical areas like conflict zones or post-conflict regions is a 

significant challenge. Future research can focus on creating portable and 

autonomous systems that can operate in dynamic environments. 

• Large-scale landmine detection can be achieved by deploying multi-polarization 

microwave techniques using UAVs or mobile platforms across vast desert or 

border areas. 
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• Future research can explore more sophisticated data fusion techniques that 

incorporate additional polarimetric channels and frequency bands. This could 

enhance the discrimination between landmines and clutter even further. 

• Combining microwave data with data from other sensor modalities, such as 

thermal imaging or ground-penetrating radar, can provide a comprehensive 

approach to landmine detection. Multi-sensor fusion can potentially reduce false 

alarms and improve detection rates. 

• The multiband SAR image fusion gets momentum with the availability of 

multiband Spaceborne SAR sensors on a single platform, in view of upcoming 

open-source NISAR project.  
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