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ABSTRACT

According to the 2030 Agenda for Sustainable Development, disaster risk reduction is essen-

tial to social and economic development. Storms and floods are among the most impactful

natural disasters, contributing significantly to their frequency, the number of affected in-

dividuals, and economic losses. Storms and floods in coastal areas are mainly caused by

tropical cyclones in tropical and subtropical parts of the globe. Approximately 0.8 million

people lost their lives, and a financial loss of US$ 1407.6 billion was caused by tropical

cyclones in the last 50 years. The atmospheric and oceanic causative components are multi-

dimensional in nature and have a complicated non-linear connection, making any estimation

effort linked to tropical cyclones (TCs) difficult. Estimating the TC’s radius of maximum

wind, intensity, and track is the primary focus of study on tropical cyclones. The major-

ity of the operational models that are now in use are statistical and numerical in nature.

The numerical techniques need a lot of work and time. Complex non-linear interactions

between several causative elements with geographical and temporal dimensions cannot be

captured by statistical approaches because they are too simplistic. Numerous deep-learning

research has been published recently that successfully address several kinds of estimation

issues related to tropical cyclones.

This research work tries to answer various estimation problems related to a TC. Starting

from the radius of maximum wind (RMW) of a TC over the North Indian Ocean, a region

with frequent and intense TC activity, the first work proposes a model to estimate the RMW
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using historical data and mathematical correlations between the latitude coordinate of the

TC center, estimated pressure drop at the center up to 12 hectopascals, and RMW. The

accuracy of the approach is determined using statistical metrics, including error percentage,

t-test, and root mean square error (RMSE) compared to existing methods. An ensemble

machine learning model has been developed, further refining RMW estimation, taking in-

put from existing methods, and targeting the data provided by the India Meteorological

Department. In order to address the issue of accurately estimating the track of TC, the

second work proposes a neural network method. The neural network takes the result of

three traditional methods and targets the data provided by the IMD. It is trained using

56 TCs and tested on 6 TCs from 2014 to 2024. In this work, we didn’t use any satellite

images. The accuracy of the approach is determined using statistical metrics, including

error percentage and RMSE. The third works explore the Satellite Consensus (SATCON)

algorithm for estimating TC intensity using infrared and microwave sensor-based images,

analyzing the performance for pre-monsoon and post-monsoon TC as well as for intensity-

based TC categories. In the fourth work, we develop a neural network model to estimate

the intensity of TC. As discussed in the second work, satellite images weren’t used; instead,

results from three state-of-the-art methods were used as the input, with the targeting of the

data provided by the IMD.

The first work is a traditional method for estimating the RMW over the NIO. It achieves

a mean absolute error percentage ranging from approximately 6% to 32%, whereas the other

studies have a mean absolute error range of 13% to 128% concerning IMD best track data.

Following this, our ensemble machine learning model has an RMSE of 10.63 nautical miles

and an error percentage of 17.00 %, which are lower than other methods. In the second work,

our neural network model achieves an RMSE of 0.14 knots and an error percentage of 0.41%,
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lower than the alternative methods. In the third work, we demonstrate that SATCON is

more effective in the post-monsoon across the West Pacific basin than in the pre-monsoon.

Also, the ability of the algorithm to estimate intensity is determined to be rather excellent

for mid-range TCs. In the fourth work, the RMSE of 5.71 knots and an error percentage of

10.07%, lower than existing methods.
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Chapter 1

Introduction

“Nature is written in mathematical language”

– Galileo Galilei

The introduction provides an overview of the fundamental principles related to the dy-

namics, structure, and impact of tropical cyclones. In this initial chapter, we summarize

numerous critical concepts and observations, many of which lay the groundwork for the

analyses and discussions presented in subsequent sections of this work. We also incorpo-

rate key components of meteorology, climatology, and related physical processes, ensuring a

comprehensive basis for understanding these phenomena. Before starting the thesis’s main

body, the reader may use this chapter as a primer or review. Later on, it might be a use-

ful reference for definitions and notation that are used in the other chapters. Finally, the

chapter contains the motivation and plan of the work carried out in the thesis.
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1.1 Introduction

Between 1970 and 2019, natural disasters contributed about 74% of all the economic losses,

with 2.06 million reported deaths (Wallemacq and CRED, 2018; Douris and Kim, 2021).

During this time, natural disasters caused US$ 3.6 trillion in financial losses.

During the 50-year period, US$ 202 million in damage occurred on average every day.

Economic losses due to weather, climate, and water extremes have increased sevenfold from

the 1970s to the 2010s. The reported losses from 2010 – 2019 (US$ 383 million per day on

average over the decade) were seven times the amount reported from 1970 – 1979 (US$ 49

million).

According to the World Bank country classification, 82% of deaths have occurred in low

and lower-middle-income countries, and most of the economic losses (88%) have occurred in

upper-middle and high-income countries.

Worldwide, 44% of disasters have been associated with floods (riverine floods 24%, gen-

eral floods 14%), and 17% have been associated with tropical cyclones (TCs). TCs and

droughts were the most prevalent hazards with respect to human losses, accounting for

38% and 34% of disaster-related deaths from 1970 to 2019, respectively. In terms of eco-

nomic losses, 38% were associated with TCs, while different types of floods account for 31%,

riverine floods (20%), general floods (8%) and flash floods (3%).

Of the top 10 disasters, the hazards that led to the largest human losses during the

period have been droughts (6, 50, 000 deaths), storms (5, 77, 232 deaths), floods (58, 700

deaths) and extreme temperature (55, 736 deaths). With regard to economic losses, the top

10 events include storms (US$ 521 billion) and floods (US$ 115 billion). All the storm events

2
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Figure 1.1: Economic and human loss caused by natural disasters globally

Figure 1.2: Economic and human loss caused by natural disasters in Asia

3
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positioned in the top 10 categories in terms of both deaths and economic losses were TCs

(Fig. 1.1, 1.2). Three of the top 10 disasters in terms of economic losses occurred in 2017:

Hurricanes Harvey (US$ 96.9 billion), Maria (US$ 69.4 billion), and Irma (US$ 58.2 billion).

These three hurricanes alone accounted for 35% of the total economic losses of the top 10

disasters worldwide from 1970 to 2019.

According to the Sendai Framework for Disaster Risk Reduction 2015−2030, minimizing

disaster losses is essential for successfully implementing the 2030 Agenda for Sustainable

Development Goals (SDGs). In coastal regions worldwide, TCs are a leading cause of floods

and storms. Early warning systems are crucial in reducing the economic and human losses

caused by TCs. Working in this direction, in this thesis, we try to answer the TCs related

to various estimation problems using mathematical and machine learning techniques.

1.2 Tropical Cyclones

The term “cyclone” is globally known for a tropical weather system with wind speeds equal

to or greater than a minimum of 34 knots. The term ‘cyclone’ was coined by British

meteorologist Henry Piddington in 1848. It is derived from the Greek word “kuklos”, i.e.,

the snake coils that the storm’s airflow resembles.

A TC is a warm-cored, intense cyclonic atmospheric vortices that develops over warm

tropical oceans. It has a horizontal scale typical of hundreds of 1000 km. Its vertical

extension is about 10 to 15 km. An intense mature TC generally consists of an eye with weak

subsidence near its center surrounded by a rapid swirling flow where a deep convective ring

slopes radially outward with height. TCs derive energy primarily from evaporation from the

ocean and the associated condensation in convective clouds concentrated near their center.

4
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TCs are significantly influenced by the underlying ocean surface over which they form and

propagate. As long as the cyclone remains over warm water, highly humid Equatorial and

Maritime Tropical systems evolve through a life cycle that includes the successive stages of

a tropical depression and tropical storm.

TCs are seasonal phenomena. Most tropical ocean basins have a maximum frequency

of cyclone formation during the late summer to early autumn. This is associated with

the period of maximum sea surface temperature (SST). However, other factors are also

essential, such as the seasonal variation of the Intertropical convergence zone (ITCZ) or

monsoon trough location.

1.3 Tropical Cyclones: A Global Overview

There are seven main basins for TC formation: the North Atlantic Ocean, the eastern

and western parts of the Pacific Ocean, the southwestern Pacific, the southwestern and

southeastern Indian Ocean, and the North Indian Ocean (NIO). Worldwide, an average of

80 TCs occur each year.

• Northwest Pacific Basin:

– It is considered to be the active basin in the globe.

– Cyclones formation in this basin throughout the year- with a peak in frequency

from July to November.

– Cyclones in this basin generally move towards north/northwest after formation.

• Northeast Pacific Basin:

– Second Most active basin in the globe.

– Cyclones are formed in this basin frequently from mid-May to the end of Novem-

ber.

5
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• North Atlantic Basin:

– Cyclone formation in this basin about the beginning of June to the end of Novem-

ber.

– In this basin, the movement towards west and northwest after formation.

• North Indian Basin:

– Cyclone formation period is between April and December.

– Basically, these are the transitional periods between seasons.

– Cyclones in this basin tend to move northwards, and sometimes they may also

recurve northeastwards

• Southwest Pacific Basin:

– Cyclone formation peaks in late February and early March.

– Cyclones in this basin usually move westward.

• Southwest Indian Ocean and Southeast Indian Ocean:

– Cyclone formation period ranging from May to late October.

1.4 Physical Parameters favorable for the formation of Tropical cyclones

Numerous studies have identified environmental factors that are thought to influence TCs’

formation and intensification significantly .

• Sufficient ocean thermal energy [Sea Surface Temperature > 26.5◦ Celsius (C) to a

depth of 60 meter].

• Enhanced mid-troposphere (700 hPa) relative humidity.

• Conditional instability.

• Enhanced lower troposphere relative vorticity.

6
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• Weak vertical shear of the horizontal winds at the genesis site.

• Displacement by at least 5◦ latitude away from the equator.

Gray (1968) proposed that a higher SST above a threshold of 26.5◦ C is strongly asso-

ciated with the genesis of cyclones. However, the underlying cause of this threshold value

remains uncertain. Convective instability, characterized by the vertical gradient of equivalent

potential temperature between the boundary layer and the middle troposphere, is identified

as another critical factor favoring TC formation. This highlights the established connection

between upper tropospheric and lower tropospheric flow patterns via cumulus convection.

Conversely, low relative humidity in the middle troposphere inhibits cyclone formation due

to the influence of dry air, leading to reduced moisture convergence and subsequent latent

heat release.

Low-level cyclonic vorticity within developing clouds is significantly correlated with TC

intensification. Additionally, reduced vertical wind shear (ventilation factor) promotes more

vigorous disturbance development by increasing temperature and moisture through advec-

tion.

Gray et al. (1975) hypothesized that cyclones only form when these conditions deviate

from their regional climatological means, emphasizing the importance of focusing on the

conditions present during individual cyclone genesis.

Charney and Eliassen (1964) introduced the Conditional Instability of the Second Kind

(CISK) mechanism, which describes the interaction between cumulus convection and large-

scale motion in cyclone formation. This mechanism operates in weak vertical wind shear

areas, where cumulonimbus clouds warm the atmosphere through latent heat release, de-

creasing surface pressure and increasing horizontal convergence. This cooperative interac-

7
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tion between the large-scale environment and cumulus convection promotes unstable system

growth, potentially leading to TC formation under favorable moisture inflow conditions.

Montgomery and Enagonio (1998) and Möller and Montgomery (1999, 2000) demon-

strated that small-scale vorticity patches introduced into the flow field of larger-scale vor-

tices quickly become axisymmetrized, contributing to the energy of the vortex-scale flow.

This suggests that mesoscale convective systems developing outside the eye wall may aid in

intensifying the overall storm.

1.5 Life Cycle of Tropical Cyclones

Cyclones go through different stages from start to finish, which we call their “life cycle”

governed by various environmental factors. This cycle usually lasts about five days but can

be shorter or longer. They begin as groups of thunderstorms over warm ocean waters. When

these storms become more organized, they turn into a deep depression, then a tropical storm.

The conditions in the air and ocean decide how these stages happen. We have different

models to explain how cyclones change over time, but they generally have four main stages:

i) Formation, ii) Intensification, iii) Mature, and iv) Dissipation/Decay.

1.5.1 Formation

The formation of a TC depends upon several favorable environmental conditions, which are

frequently present in the ITCZ.

• Ocean water must be warmer than 26.5◦ C. The heat and moisture from this warm

water are ultimately the energy source for cyclones.

• High relative humidities in the lower and middle troposphere are also required for

8

Department of Applied Mathematics, Delhi Technological University



CHAPTER 1. INTRODUCTION Monu

cyclone development. These high humidities reduce the evaporation in clouds and

maximize the latent heat released because there is more precipitation.

• The vertical wind shear in a TC’s environment is also essential. Wind shear is the

change in the wind’s direction or speed with increasing altitude.

1.5.2 Intensification

Cyclone intensification is a process wherein the cyclone strengthens over time. During this

phase, the central pressure of the TC decreases while the maximum surface wind speed

increases. Suppose the conditions in the ocean and atmosphere remain favorable. In that

case, the cyclone may continue strengthening, forming a more circular cloud system with

a distinct eye at its center. The warm, moisture-laden air rising at the cyclone’s core

continues to ascend as long as the surrounding air remains cooler and denser, facilitating

the development of deep convective clouds. Additionally, the rising air in the cyclone’s core

draws in air from the surrounding atmosphere at altitudes of approximately 5 kilometers

(km). If this incoming air is sufficiently humid, it further fuels the intensification process.

Conversely, if the incoming air is dry, it may cause some of the water droplets within the

rising column to evaporate, leading to the cooling of the air compared to its surroundings.

This cooling effect triggers the formation of solid downdrafts, disrupting the upward motion

of air and hindering further intensification.

1.5.3 Mature

During its mature stage, a TC displays robust rotational circulation characterized by a

sizeable axisymmetric component, with well-organized clouds revolving around a central

area of low pressure. This phase represents the pinnacle of the cyclone’s life cycle, marked

9
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by the deepest central pressure within the eye. Maximum wind speeds reach their peak

intensity during this stage. A distinct eye, typically devoid of clouds due to descending dry

air, becomes evident. Surrounding the eye is an eyewall consisting of the most intense wind

speeds, and convective thunderstorms are formed. Spiral rain bands, separated by areas of

lighter precipitation, are commonly observed. However, they may sometimes be obscured

by a dense layer of cirrus clouds aloft, resulting from upper-atmospheric air divergence.

Fig. 1.3 illustrates the features of a mature hurricane. The genesis section describes the

processes leading to hurricane formation and emphasizes increased convergence by rotation

at the center, with intensification of the eye wall. This intensification occurs as air, unable to

reach the storm’s center, is compelled to concentrate around a ring encircling the center. The

mature stage is typically defined as the period of maximum potential intensity, determined

by the interaction between the ocean and atmosphere and the heating rate within the storm

system (Emanuel, 1988).

1.5.4 Decay

The TC begins to weaken when it encounters unfavorable environmental conditions, such

as a lack of moist tropical air from warm seas, dry land, strong vertical wind shear, and

unfavorable large-scale atmospheric flow. These conditions are crucial for the formation of

TCs.

Various physical processes occur to dissipate the cyclone, regardless of whether it’s over

land or water. As the cyclone moves over land or cooler water, it loses its primary energy

source, latent heat released from warm water. This leads to a decrease in upper-level diver-

gence, a drop in the mean temperature at the core, and an increase in central pressure. As a

result, the pressure gradient weakens, causing the eye wall to expand outward. Meanwhile,

10
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the cyclonic winds around the storm decrease rapidly due to the conservation of angular

momentum.

Without the warm moisture source, the remaining convection within the storm dries

out the surrounding air. This process continues until the pressure gradient aloft is wholly

diminished, ultimately weakening and filling the cyclone’s eye.

1.6 Naming of Tropical Cyclones

Various national warning centers or world meteorological organizations have named TCs

and subtropical cyclones to simplify the communication between forecasters and the general

public regarding forecasting, watching, and warnings. The names reduce confusion during

concurrent storms in the same basin. Once storms develop, maximum sustained wind speeds

of more than 33 knots (61 km/h; 38 mph), then names are generally assigned to them from

predetermined lists, depending on the basin in which they originate.

1.7 Physical Structure of Tropical Cyclones

TCs are characterized by a relatively low-pressure system in the troposphere, with the

most significant pressure disturbances happening at lower altitudes, closer to the Earth’s

surface. The area near the center of a TC is consistently warmer compared to its surrounding

environment across all altitudes. The physical arrangement of a TC is depicted in the Fig.

1.3.

Center/Eye of Tropical Cyclone: The eye is a central feature of intense storms. It

is a region of relatively calm weather found at the center of a TC. Winds are typically light

within the eye, and skies are often clear or partly cloudy. The eye is characterized by sinking

11
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Figure 1.3: The Physical Structure of Tropical Cyclones with concentric eyewalls

12
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air, resulting in lower atmospheric pressure and a notable absence of storm clouds. The size

of the eye can vary greatly, from just a few km to over a hundred km in diameter in the

largest TCs. It is surrounded by the eyewall, a ring of towering thunderstorms where the

strongest winds with the heaviest rainfall occur. In intense TCs, the eyewall may vary from

time to time in the eyewall replacement cycle.

Rainbands: Rainbands are a prominent feature of TCs, extending outward from the

storm’s center in spiral arms. These bands include intense rainfall and thunderstorms, often

producing heavy precipitation and gusty winds. Rainbands play a crucial role in rainfall

distribution within a TC, with the heaviest rainfall typically occurring near and within the

bands.

Two primary types of rainbands are associated with TCs, namely, the outer rainbands

and the inner rainbands. Outer rainbands are farther away from the storm’s center and

tend to be less intense, although they can still produce significant rainfall and occasionally

tornadoes. Inner rainbands, also known as the eyewall or primary rainband, are located

closer to the storm’s center and are characterized by the most intense rainfall and strongest

winds within the TC. These inner rainbands often form a ring around the eye of the storm

and are responsible for much of the destructive power associated with TCs.

Rainbands are essential indicators of a TC’s intensity and structure. They can also

influence the storm’s track and intensity as they interact with environmental factors such

as wind shear and SST. Studying rainbands and their dynamics is crucial for understanding

and predicting TCs’ behavior and issuing accurate forecasts and warnings to potentially

affected areas.

Wind Field: In the near-surface wind field of a TC, air moves swiftly in a circular

13
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Figure 1.4: The schematic representation of Tropical Cyclone showing eye, eyewall, and
rainbands.

motion around a central point of circulation while simultaneously moving inward. Towards

the outer perimeter of the storm, the air may seem almost still, yet due to the Earth’s

rotation, it maintains some angular momentum (refer to Fig. 1.4). As the air progresses

inward, it rotates cyclonically to preserve its angular momentum. At a closer distance to

the center, the air begins to ascend toward the upper levels of the troposphere.

Size: The size of a TC is determined by measuring the distance from its center of

circulation to the outermost closed isobar. The most commonly used method for measuring

TC size is through parameters like the “Radius of Outermost Closed Isobars” (ROCI) and

“the radius of vanishing wind”. Size is a significant factor in influencing the damage potential

of a storm. The size of a TC shows a weak correlation with storm intensity, radius of

maximum wind, latitude, and maximum potential intensity.

Intensity: TC’s Intensity is usually defined as the maximum wind speed or minimum

sea level pressure at the center of a TC, but the specific definitions of TC intensity vary

14
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in different oceanic zones, and there is no standard definition to date. It’s measured as a

1-minute or 10-minute average at the standard reference height of 10 meters. The selection

of the averaging period, along with the classification naming conventions for storms, varies

among forecast centers and ocean basins.

1.8 Tropical Cyclones as a Natural Hazard

As natural hazards, TCs threaten communities due to their destructive potential. These

intense storms are characterized by strong winds, heavy rainfall, and storm surges, which

can cause widespread devastation. Strong winds, often exceeding 100 miles per hour (160

km per hour), can result in structural damage to buildings, uproot trees, and cause power

outages. Heavy cyclone rainfall can lead to flooding, landslides, and crop damage, exacer-

bating humanitarian crises. Additionally, storm surges, which are elevated seawater levels

driven by the cyclone’s winds, can inundate coastal areas, causing coastal erosion, flooding,

and displacement of populations.

Moreover, TCs’ impacts extend beyond immediate physical damage. Disruption of es-

sential services, displacement of populations, and long-term socio-economic challenges often

follow these events. Environmental impacts are also profound, affecting ecosystems such as

coral reefs and mangrove forests and exacerbating biodiversity loss and habitat destruction.

Furthermore, the increasing frequency and intensity of TCs due to climate change add

complexity to the challenge. Rising sea levels and warmer ocean temperatures contribute

to more powerful storms and higher storm surges, amplifying risks for coastal communities

and ecosystems. Addressing these multifaceted risks requires a comprehensive approach

integrating disaster risk reduction, climate change adaptation, and sustainable development
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strategies. By investing in resilient infrastructure, promoting ecosystem-based approaches,

and strengthening early warning systems, communities can build resilience and mitigate the

impacts of TCs, ensuring the safety and well-being of vulnerable populations and ecosystems.

1.9 Classification of Tropical Cyclones:

The terminology used to describe different stages of TCs varies significantly. The World

Meteorological Organization (WMO) convention advocates for measuring 10-minute average

surface wind speeds, while the United States follows a 1-minute averaging method. In the

NIO, the India Meteorological Department (IMD) employs a 3-minute averaging approach.

These differences in wind averaging times contribute to confusion, as countries inconsistently

use 1-minute, 3-minute, and 10-minute averages. Consequently, a tropical system may

receive a name or number in one country but not another despite meeting the same wind

criteria but using different averaging times.

In the Indian region, categorizing low-pressure systems relies on two primary factors:

maximum sustained wind speed and the number of closed isobars associated with the system.

The pressure criterion is applied when the system is over land, while the wind criterion is

used over the sea.

A low-pressure system is identified if a single closed isobar is present within a 2-hectopascal

(hPa) interval. If two closed isobars are observed, it is termed a depression; with three, it

becomes a deep depression. The system is classified as a cyclonic storm when four or more

closed isobars are present. Further classification based on wind criteria is detailed in Table

1.1.

According to wind criteria, a system with wind speeds ranging from 17 to 27 knots
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Table 1.1: Classification of tropical cyclones formed over the North Indian Ocean used by
the IMD New Delhi

Phases T Number Maximum Wind Speed
Low pressure area (WML) T1.0 < 17 kts

Depression (D) T1.5 17-27 kts
Deep Depression (DD) T2.0 28-33 kts
Cyclonic Storm (CS) T2.5-T3.0 34-47 kts

Severe CS (SCS) T3.5 48-63 kts
Very Severe CS (VSCS) T4.0-T4.5 64-89 kts

Extremely Severe CS (ESCS) T5.0-T6.0 90-119 kts
Super CS T6.5-T8.0 > 120 kts

(8.7-13.9 m/s) is labeled as a depression. A low-pressure system with maximum sustained

3-minute surface winds between 28 and 33 knots (14.4-17.0 m/s) is termed a deep depression.

Finally, a system with maximum sustained 3-minute surface winds of 34 knots (17.4 m/s)

or higher is categorized as a cyclonic storm.

1.10 Frequency of Cyclones over the Indian Ocean:

The Indian sub-continent stands as one of the world’s most heavily impacted regions by

TCs, with a coastline stretching approximately 7516 km (5400 km along the mainland, 132

km in Lakshadweep, and 1900 km in the Andaman and Nicobar Islands). Nearly 10% of

the world’s TCs affect this region. Thirteen coastal states/Union Territories, comprising 84

coastal districts, bear the brunt of cyclones. Particularly vulnerable are four states (Andhra

Pradesh, Odisha, Tamil Nadu, and West Bengal) and one Union Territory (Pondicherry)

along the East Coast and Gujarat along the West Coast. Approximately 40% of the total

population resides within 100 km of the coastline.

The average annual frequency of TCs in the NIO, encompassing the Bay of Bengal (BoB)

and the Arabian Sea (AS), accounts for about 5−6% of the global annual average. Of these,

approximately 35% of disturbances intensify into cyclonic storms, 16% into severe cyclonic
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Figure 1.5: Tropical cyclone trends in the Bay of Bengal and Arabian Sea during 1990 –
2022

storms, and 7% into very severe cyclonic storms. The typical lifespan of a TC in the NIO

is approximately 4 to 5 days. The monthly frequency of TCs in this region displays a bi-

modal pattern, with a primary peak occurring in November and a secondary peak in May.

Cyclones occurring during March-May and October-December tend to be severe, whereas

those developing during the monsoon months (June to September) are generally less intense.

The BoB experiences a higher frequency of cyclones than the AS, with a ratio of ap-

proximately 4 : 1 (refer to fig. 1.5). This discrepancy is attributed to the lack of seedling

disturbances and a relatively dry middle tropospheric environment in the AS. The northern

part of the BoB is known for its potential to generate dangerous high storm tides when as-

sociated with cyclonic storms, making it a hotspot for TC formation. Historical data from

1891 to 2013 reveals that out of 613 cyclonic disturbances formed in the Bay of Bengal, 54%

crossed India, 16% affected Bangladesh, 10% impacted Myanmar, 4% affected Sri Lanka,

while 17% dissipated over the sea without making landfall on any of these countries.
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1.11 Tropical cyclone Forecast

Various types of TC forecasts are available globally. Official forecasts, provided by Re-

gional Specialized Meteorological Centers (RSMCs) and Tropical Cyclone Warning Centers

(TCWCs), consist of human-generated predictions regarding TC genesis, track, intensity,

and seasonal frequency. These forecasts include additional storm attributes, such as radii

associated with different maximum wind speed thresholds.

Modern forecasting efforts utilize statistical methods to predict TC behavior. For exam-

ple, the Climate and Persistence (CLIPER) model predicts TC tracks (Heming and Goerss,

2010; Neumann, 1972) based on climatology and persistence, while the Statistical Hurricane

Intensity Forecast (SHIFOR) model (Knaff et al., 2003) forecasts intensity. Statistical-

dynamical models like the Statistical Hurricane Intensity Prediction Scheme (SHIPS) (De-

Maria et al., 2005) and its variants are also employed for intensity prediction. Statistical

Cyclone Intensity Prediction (SCIP) (Kotal et al., 2008) models also cater specifically to

TC intensity prediction in the Bay of Bengal region.

Numerical Weather Prediction (NWP) models, including global and regional systems

such as the Global Forecast System (GFS), the United Kingdom Met Office model, and the

European Center for Medium-Range Weather Forecasting (ECMWF) model, provide TC

forecasts (Heming and Goerss, 2010). Other models from agencies like the China Meteoro-

logical Administration and the Korean Meteorological Administration contribute to global

TC prediction efforts.

Mesoscale models, such as the Hurricane Weather Research and Forecasting (HWRF)

model and the Coupled Ocean-Atmosphere Mesoscale Prediction System for TCs (COAMPS-
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TC), offer tailored forecasts for TCs. Ongoing research focuses on developing new mesoscale

and global prediction systems for TCs and improving existing ones.

In addition to forecasting, as mentioned earlier, advancements in meteorological research

have led to the development of ensemble prediction systems for TCs. These systems utilize

multiple simulations with slight variations in initial conditions to account for the inherent

uncertainties in forecasting TC behavior. By generating a range of possible outcomes,

ensemble prediction systems provide valuable information about the uncertainty associated

with TC predictions, aiding decision-makers in risk assessment and disaster preparedness.

Furthermore, seasonal forecasting of TC activity has gained importance in recent years.

Forecasts made before the start of the TC season offer insights into the overall expected ac-

tivity, including the number of storms, their intensity, and tracks. These forecasts typically

take several months and rely on various approaches, including statistical methods, dynam-

ical General Circulation Models (GCMs), and hybrid approaches. While some seasonal

forecasting methods are already in operational use, others, such as multi-season forecasts,

are still in the research phase and require further validation before practical implementation.

Integrating soft computing techniques, such as neural networks and fuzzy logic, rep-

resents a promising avenue for enhancing TC forecasting capabilities. These techniques

leverage the power of artificial intelligence to analyze complex meteorological data and ex-

tract patterns that may not be readily apparent using traditional statistical or dynamical

methods. Research in this area aims to improve the accuracy and reliability of TC fore-

casts, ultimately enhancing our ability to mitigate the impacts of these devastating storms

on vulnerable coastal communities.

20

Department of Applied Mathematics, Delhi Technological University



CHAPTER 1. INTRODUCTION Monu

1.12 Previous Research on Tropical Cyclones:

1.12.1 Global Research on cyclones:

Globally, numerous studies have utilized various numerical models to simulate the structure,

intensity, and track of TCs (Willoughby et al., 1984; Harr and Elsberry, 1995; Braun, 2002;

Atlas et al., 2005; Krishnamurti et al., 2005). High-resolution mesoscale models have been

increasingly used for sensitivity studies of TCs’ structure, intensification, and movement,

incorporating different physical processes (Braun and Tao, 2000; Li and Pu, 2008). Fovell

and Su (2007) demonstrated that altering microphysical parameterization (MP) and cumulus

parameterization (CP) significantly influenced the track and landfall of Hurricane Rita using

the WRF model at 30 and 12-km resolutions. Although researchers have developed several

parameterization schemes, many have certain limitations for cyclone forecasts (Frank, 1983;

Emanuel, 2015; Zhang et al., 1994; Kou and Bresch, 1997).

Forecasting TC intensity remains challenging for operational and research communities

(Bender and Ginis, 2000; Krishnamurti et al., 2005; Rogers et al., 2006). Studies have shown

that maximum TC intensity is strongly influenced by environmental factors such as sea sur-

face temperature, moisture distribution, and vertical wind shear (Gray, 1968; Emanuel,

2015). Hill and Lackmann (2009) proposed that the structure of a TC is controlled by en-

vironmental relative humidity. This idea is supported by Kossin and Sitkowski (2009), who

demonstrated the importance of relative humidity in surface entropy flux through observa-

tional studies.

The primary energy source for TCs is the exchange of moist enthalpy between the air

and the sea surface through latent and sensible heat fluxes (Emanuel, 1986). The rapid
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intensification of TCs is driven by ocean surface warming via these heat fluxes (Davis and

Emanuel, 1988). Braun and Tao (2000) demonstrated that surface fluxes significantly in-

fluence the intensity of Hurricane Bob (1991) more than vertical mixing in the Planetary

Boundary Layer (PBL).

Several studies have also shown that the heat from rainbands affects the structure and

intensity of TCs (Wu et al., 2009; Moon and Nolan, 2010). Xu and Wang (2010b) investi-

gated the relationship between surface entropy flux and the activity of spiral rainbands in

simulated storms. They found that while entropy flux in the eye region minimally impacts

storm intensity, it reduces the radius of maximum wind. In contrast, surface entropy fluxes

under the eyewall substantially enhance storm intensity. Further outward, these fluxes are

vital for the storm’s inner-core size growth but can decrease storm intensity.

Xu and Wang (2010a) also found that the initial vortex and latent heat flux determine

TC size. They observed that strong outer winds in storms with a larger initial size generate

substantial entropy flux, promoting active spiral rainbands. However, Rozoff et al. (2012)

suggested that TC size is influenced by latent heating outside the primary eyewall, which

encourages secondary eyewall formation and the expansion of the outer wind field.

Stovern and Ritchie (2012) studied the impact of atmospheric temperature on TC size

in an idealized framework, adjusting the atmospheric temperature profile while maintaining

a constant 29◦ C SST. They concluded that a cooler atmosphere increases surface moisture

fluxes, higher potential vorticity, outer rainband generation, and a larger wind field.

Several studies have shown that global warming significantly impacts TC track and

intensity. Studies show that the western Pacific subtropical high expands as carbon emissions

increase, leading to a poleward shift in TC tracks (Feng et al., 2023). Rising sea surface
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temperatures also favor convections near the eyewall, increasing TC intensity (Pérez-Alarcón

et al., 2023). The Hurricane Maximum Potential Intensity (HuMPI) model projects a 9.5%

to 17% increase in TC intensity by the end of the twenty-first century under different climate

scenarios, with a 5-7% rise in maximum potential wind speed per degree of warming (Wehner,

2021). Historical data analysis and idealized modeling indicate that observed trends in TC

intensity distribution coincide with changes in the global temperature profile, with stronger

storms intensifying faster than weaker ones (Done et al., 2022). These findings collectively

highlight the complex interplay between global warming and TC behavior, emphasizing the

need for continued research and mitigation efforts.

Many studies have found that atmospheric temperature, SST, heat from rainbands,

relative humidity, climate change, and energy generated by the exchange of moist enthalpy

between the air and the sea surface impact the characteristics of TCs: intensity, track, the

radius of maximum wind, size, and structure but only a few are discussed above.

In the 21th century, the neural network is important in researching the TC’s character-

istics. Neural networks (NN) can determine complex patterns and relationships from vast

datasets and have become instrumental in refining our understanding of cyclone behavior.

Neural Networks, particularly Deep Learning (DL) models like LSTMs and GRUs, have

shown significant promise in various aspects of TC research. These models are utilized for

forecasting TC tracks, classifying TC evolution, and estimating TC intensity with improved

accuracy and efficiency (Hudozhnik and Windisch, 2023; Eusebi et al., 2023; Tian et al.,

2023a). Physics-Informed Neural Networks have also been proposed as a valuable alternative

for data assimilation in TC initial conditions, showcasing the potential for accurate recon-

struction of TC wind and pressure fields (Vosper et al., 2023). Moreover, the application of

Generative Adversarial Networks (GANs) and Variational Autoencoder GANs (VAEGANs)
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has been explored to increase the resolution of TC rainfall measurements, demonstrating

the ability to generate realistic TC rainfall fields with high accuracy, especially when trained

on a comprehensive observational dataset (Tian et al., 2023b). These advancements high-

light the effectiveness of neural networks in enhancing various aspects of TC research and

forecasting, but there is still room for improvement.

1.12.2 Previous studies on Cyclones over India:

In India, the initial forecasting of TCs combined half persistence and half climatology (Sikka

and Suryanarayana, 1972). Later, Mohanty and Gupta (1997) introduced multi-level primi-

tive equation models with parameterization of physical processes for cyclone track prediction.

Prasad and Rama Rao (2003) evaluated the Quasi-Lagrangian Model (QLM) for track fore-

casting. Numerous models and traditional methods have been developed to predict cyclone

positions, accurately enabling timely disaster management warnings. Accurately predicting

the track and intensity of TCs remains a challenging problem for the east coast of India and

Bangladesh (Pattanayak and Mohanty, 2008; Paul, 2010).

Over the past decade, mesoscale models have been employed for sensitivity studies on

TC structure, intensification, and movement (Trivedi et al., 2002; Mohanty et al., 2004; Rao

and Prasad, 2007; Srinivas et al., 2007; Bhaskar Rao et al., 2009; Pattanaik and Rama Rao,

2009; Shen et al., 2010).

In the last few years, the rapid advancement of high-performance computing has enabled

the use of high-resolution non-hydrostatic mesoscale atmospheric models, such as MM5 and

WRF, for forecasting the structure, intensification, and movement of TCs (Prasad and

Rama Rao, 2003; Mohanty et al., 2004; Trivedi et al., 2006; Reale et al., 2009; Pattanayak
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and Mohanty, 2010; Raju et al., 2012; Osuri et al., 2013).

Prater and Evans (2002) studied TC Irene (1999) using various convective parameteri-

zation (CP) schemes in the MM5 model and concluded that the Kain-Fritsch (KF) scheme

produced relatively accurate results compared to observations. Ming-Jen and Lin (2005)

found that combining the MRF scheme in the Planetary Boundary Layer (PBL) and the

Grell-Devenyi ensemble (GD) in CP with the Goddard Graupel scheme in cloud micro-

physics (MP) provided the best performance in their study of Typhoon Toraji (2001) using

the MM5 model.

Kumar et al. (2011) studied the impact of lateral and boundary forcing on predicting the

track and intensity of Cyclone SIDR. They found that reducing the domain size improved the

accuracy of the cyclone’s predicted track and intensity. Pattanayak et al. (2012) simulated

Cyclone MALA using different initial conditions in the Hurricane Weather Research and

Forecasting (HWRF) model. They demonstrated that a high-resolution inner nest domain

produced higher cyclone intensity. Mohanty et al. (2010) conducted a sensitivity study using

various initial and boundary conditions in the WRF model for five cyclones over the Bay of

Bengal. They concluded that the landfall error was smaller with Final Analyses (FNL) data

compared to Global Forecast System (GFS) data and National Centre for Medium-Range

Weather Forecasting (NCMRWF) data. However, the NCMRWF data better simulated the

cyclone’s intensity than the other data sources.

Global warming significantly impacts TCs over the NIO, particularly in the Bay of Ben-

gal and the Arabian Sea. Studies show that the warming climate influences the frequency,

intensity, and landfall patterns of cyclones in this region, with projections indicating an

exacerbation of storm intensity due to rising sea surface temperatures (Mukherjee and Ra-
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makrishnan, 2023; Singh and Panda, 2022). The sea surface temperature anomalies in the

Tropical Indian Ocean have been linked to the proportion of rapidly intensifying TCs over

the western North Pacific, suggesting a global warming amplification effect on cyclone in-

tensity (Gupta et al., 2019). Additionally, analyses of cyclonic disturbances data spanning

140 years highlight the vulnerability of coastal areas like India and Bangladesh to devastat-

ing cyclones, emphasizing the need for monitoring and disaster mitigation strategies under

probable warming scenarios (Gao et al., 2020). These findings underscore the importance

of understanding the relationship between global warming and TCs in the NIO for effective

disaster management and preparedness efforts.

In recent years, Neural networks, particularly artificial neural networks (ANNs) and Long

Short-Term Memory networks (LSTMs), have been extensively utilized in studying TCs over

the NIO. These networks have been employed for various purposes, such as intensity estima-

tion, track prediction, and parameter estimation. ANNs have been used to estimate cyclone

parameters like wind speed, pressure, landfall point, and time of crossing land, showing

promising results in predicting geophysical parameters (Ali et al., 2021; Kumar et al., 2021).

LSTMs have been applied for accurate track prediction of cyclones using variables like central

pressure, wind speed, latitude, and longitude, outperforming existing models regarding the

accuracy and prediction time (Steptoe and Xirouchaki, 2022). Additionally, deep learning

methods, including Generative Adversarial Neural Networks (GANs) and Recurrent Neural

Networks (RNNs), have been explored for nowcasting TCs, demonstrating the potential of

DL approaches in predicting cyclone development accurately (Chand et al., 2022). More-

over, machine learning algorithms have been used to estimate cyclone grade and maximum

sustained surface wind speed (MSWS) with high accuracy over the NIO, showcasing the

effectiveness of these models in cyclone intensity estimation.
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1.13 Scope and Outline of the Thesis:

According to previous studies, the forecasting of TCs is highly complex. It includes different

aspects of the TC, such as the structure, intensity, movement, associated weather, and the

storm surge that may occur when the system lands at the coast. The strong winds, heavy

rains, and large storm surges associated with TCs are the factors that eventually lead to loss

of life and property. This loss can be minimized by reducing the forecast error and estimated

error associated with the radius of the maximum wind, track, and intensity of the TCs to

provide more reliable warnings for TC disaster management. So, the principal objective

of the thesis is to estimate the TC’s characteristics, such as the radius of maximum wind,

track, and intensity, more accurately using mathematical methods and machine learning

techniques to reduce the loss of life and property.

To achieve the aforesaid objective, the following studies are carried out:

• Formulation and Evaluation of radius of maximum wind.

• Estimate the radius of maximum wind using machine learning technique.

• Estimate the track of tropical cyclones using machine learning technique.

• Analyze the SATellite CONsensus (SATCON) algorithm to estimate the tropical cy-

clone’s intensity.

• Estimate the tropical cyclone’s intensity using the machine learning technique.

To attain these objectives, the present work is divided into six chapters.

Chapter 1 briefly introduces TCs, covering their formation, physical structure, life cycle,

and classification. It also discusses the destruction caused by TCs. Additionally, it details
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forecasting methods and includes a literature review focusing on TCs that formed over the

North Indian Ocean. Finally, the scope and objectives of the current study are outlined.

We examine the radius of maximum wind over the North Indian Ocean in Chapter 2.

We proposed a relationship between the estimated pressure drop, the latitude coordinate

of the TC center, and the radius of maximum wind. There are four TCs for validation

and twenty-five TCs for model training in the dataset used in this study. Furthermore,

we point out the importance of latitude and estimated pressure drop in TC behavior and

intensity, identifying them as critical criteria for calculating the radius of maximum wind.

The relationship is limited to estimated pressure drops of 12 hPa or less.

Following this, we develop a neural network model to improve the estimate of the radius

of maximum wind by using the output of conventional techniques: one that we first presented

earlier in this chapter and the work of Willoughby et al. (2008) and Tan and Fang (2016).

In this work, sixty-one TCs were used for model training, and four TCs were used for

validation. We performed three statistical tests: error percentage, root square mean error,

and R-squared to comment on the accuracy of the proposed model.

Chapter 3 explains a technique for estimating the track of tropical storms in the North

Indian Ocean using a neural network. Instead of satellite images, the method uses results

from three different approaches: the automated rotational center hurricane eye retrieval

algorithm, the advanced Dvorak technique, and the satellite Consensus technique as inputs,

with data from the India Meteorological Department serving as the target for the neural

network.

In Chapter 4, we analyze the performance of the Satellite Consensus (SATCON) al-

gorithm to estimate the intensity of TCs over the West Pacific basin. We compare the

28

Department of Applied Mathematics, Delhi Technological University



CHAPTER 1. INTRODUCTION Monu

SATCON algorithm’s performance in pre-monsoon and post-monsoon. Further, we analyze

the performance according to different categories of TCs like tropical storms, severe tropical

storms, typhoons, very strong typhoons, and violent typhoons.

In Chapter 5, we develop a method for estimating the intensity of TCs in the North

Indian Ocean using a neural network. As discussed in Chapter 3, satellite images weren’t

used; instead, results from three state-of-the-art methods: the automated rotational center

hurricane eye retrieval algorithm, the advanced Dvorak technique, and the satellite Consen-

sus technique were used as inputs, with the target being data from the India Meteorological

Department.

Finally, the overall summary and conclusions, along with the future scope of the present

study, are given in Chapter 6.
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Chapter 2

Tropical Cyclone’s Radius of Maximum Wind

“Mathematics is, in its way, the poetry of logical ideas”

– Albert Einstein

In this chapter1, we examine the estimation of the radius of maximum wind (RMW)

of TCs over the NIO, a region particularly susceptible to these storms. We propose two

models; one is based on key TC parameters such as latitude and estimated pressure drop

at the center, and the other uses machine learning techniques to accurately estimate the

RMW, which is crucial for assessing TC intensity and impact. Using data from the India

Meteorological Department and various statistical tests, we validate the proposed methods

against established models (such as those by Willoughby et al. (2006) and Tan and Fang

(2018)). The results show that the proposed methods significantly reduce the average error

percentage and root mean square error (RMSE) compared to existing methods, especially

for TCs with estimated pressure drop at the center up to 12 hPa.

1 The content of this chapter is based on the following research papers:
Formulation and evaluation of the radius of maximum wind of the TCs over the North Indian Ocean basin,
Theoretical and Applied Climatology. DOI: 10.1007/s00704-024-04895-w. (SCIE index, IF: 2.8)
Estimation of Tropical Cyclone’s Radius of Maximum Wind using Ensemble Machine Learning Approach,
Journal of Earth System Science. DOI: 10.1007/s12040-024-02455-4. ( SCIE index, IF: 1.3)
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2.1 Introduction

TCs are powerful and destructive natural disasters impacting socio-economic conditions

and global human lives. (Guha-Sapir et al., 2019; Crunch, 2023). Driven by warm ocean

waters, these intense storm systems can unleash a devastating combination of high winds,

heavy rainfall, and storm surges, causing widespread damage to infrastructure, agriculture,

and coastal communities. The study of TCs leads to more accurate predictions of their

characteristics, thereby strengthening global disaster preparedness and response impacts.

Additionally, scientific research on TCs contributes to a deeper understanding of how these

extreme weather events are affected by climate change, helping us better adapt to the

challenges they pose in a changing world.

The NIO is important in this study due to its unique geographical location, where warm

sea surface temperatures provide ideal climatic conditions for TC formation. The region

comprises two important basins: the AS and the BoB, both susceptible to TC formation

(Rahaman et al., 2020; Jangir et al., 2021; Shenoi et al., 2002; Knutson et al., 2006). As

a result, many TCs form in the NIO each year. Warm sea water continuously provides

the energy needed for TCs to develop and grow rapidly. Under the increasing frequency of

marine heat waves (Sen Gupta et al., 2020; Gupta et al., 2024; Rathore et al., 2022), the

characteristic parameters of TCs may change and cause even more damaging impacts on

the coast.

Additionally, TCs in the NIO are notorious for their ability to influence extreme rainfall.

(Khouakhi et al., 2017). Among the components of a TC, wind significantly impacts the

behavior, formation, and air dynamics movement of TCs.
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Meteorologists and warning centers have been studying winds associated with TCs since

the 19th century, and there is still room for improvement in understanding and predicting

dynamic wind’s functionality (Tan and Fang, 2018). Accurate wind information is crucial

for minimizing the human and economic losses caused by TCs (Knapp et al., 2010). One

important wind-related parameter is the RMW (Hsu and Yan, 1998; Vickery and Wadhera,

2008). RMW is a crucial parameter in understanding the behavior of TCs. It is the distance

from the storm’s center to the location where the maximum sustained wind speed (MSW)

peaks.

Additionally, RMW is closely related to a TC’s size and structure. A smaller RMW indi-

cates a more intense and well-organized storm with more rainfall, while a larger RMW may

suggest a weaker or more disorganized system (Chavas and Knaff, 2022). Therefore, under-

standing the RMW is critical in assessing TCs’ behavior and potential hazards, ultimately

aiding in timely warnings and practical disaster response efforts in vulnerable regions.

Various studies have focused on predicting and estimating multiple aspects of TCs, in-

cluding “intensity, sea surface temperature, moisture, precipitation, pressure systems, and

cloud shapes;” only a few studies have centered on the RMW specifically over the Pacific

(Tan and Fang, 2018; Gross et al., 2004) and Atlantic basin (Tan and Fang, 2018; Hsu and

Yan, 1998; Quiring et al., 2011; Lajoie and Walsh, 2008). However, limited studies exist

over NIO basins (Tan and Fang, 2018; Willoughby et al., 2006). All these studies have an

extensive error range of −26% to 200% concerning the India Meteorological Department

(IMD) best track data, which needs to be reduced further.
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2.2 Literature Review

The RMW represents the radial extent from the cyclone’s center to the point where the

wind intensity peaks within the cyclonic circulation. This parameter serves as a primary

metric for measuring the spatial dimensions of cyclonic systems. Within the H10 model

equation framework, the RMW velocity is a critical determinant governing the pressure

distribution and wind profile characteristics. Given the scarcity and difficulty in obtaining

direct observational data on the RMW, empirical relationships derived from regional TC

datasets have often been employed. These relationships establish the relationship between

the RMW velocity and other cyclone parameters, which aid in the development of accurate

estimates using numerical modeling. Each empirical formulation is briefly introduced below.

2.2.1 Graham’s Empirical Formulation (1959)

In their study, Graham (1959) analyzed past TCs along the eastern coast of the United

States and in the Gulf of Mexico. They examined how factors like central pressure, latitude,

and the speed at which the cyclone moved affected the RMW speed. Based on their studies,

a method was described to represent these relationships:

RMW = 28.52× tanh[0.0873(θ−28)]+12.22×exp

(
Pc − 1013.2

33.86

)
+0.2×Vt+37.22 (2.1)

where the symbol θ stands for geographical latitude of TC’s center, Vt is the translation

speed, Pn denotes the peripheral environment pressure, and Pc the central pressure of the

TC. The unit for RMW is km, and the Pc unit is hectopascals (hPa).
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2.2.2 Vickery’s Empirical Formulation I

Vickery et al. (2000a) introduced a novel approach to evaluating hurricane risk in the United

States. They utilized a storm reconstruction technique to simulate the trajectory of hur-

ricanes from their formation over the ocean to their landfall. This method incorporates

the hurricane’s central pressure as dependent on the sea surface temperature. Its reliability

was confirmed through on-site measurements. By comparing the modeled results with data

gathered from two specific regions, one formulated in the form as:

RMW = exp(2.636− 5.086× 10−5(Pn − Pc)
2 + 3.94899× 10−2θ) (2.2)

where variables follow the prior definitions.

2.2.3 Vickery’s Empirical Formulation II

Vickery et al. (2000b) employed a dynamic model with a planetary boundary layer (PBL)

to compute hurricane wind patterns. These computations were calibrated using data from

aircraft detection and observations by the Hurricane Research Division (HRD). Following

this calibration, they conducted a statistical analysis of the defining characteristics of hur-

ricanes. Subsequently, they resolved a steady-state wind pattern across a series of nested

rectangular grids utilizing a finite difference scheme.

Their study encompassed modeling 1560 hurricanes, considering various parameters such

as the Holland B parameter within the range of 0.5 to 2.5, pressure differentials spanning

from 1 to 150 millibars, an RMW speed ranging between 8 and 150 km/h, and translational

velocities from 0 to 40 m/s. To refine their findings, they employed the Fourier fitting
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method in the final stage, resulting in the proposed formulation for the RMW:

RMW = exp(3.015− 6.291× 10−5(Pn − Pc)
2 + 0.0337θ) (2.3)

where variables follow the prior definitions.

2.2.4 Willoughby and Ryan’s Empirical Formulation

Willoughby and Rahn (2004) analyzed flight data from the U.S. NOAA Hurricane Research

Division (HRD) from 1977 to 2000. They used 493 records of flight-level measurements taken

during 606 instances of TC detection over the Atlantic and eastern Pacific Oceans. Their

analysis focused on fitting the Holland80 (H80) model to these data using least squares

analysis. They investigated how wind profiles correlate with various key parameter distri-

butions.

By examining a frequency distribution histogram of the RMW, they determined that

the RMW is a more suitable dependent variable for describing wind profiles. Additionally,

they employed a multivariate normal distribution to establish an exponential relationship

between the RMW and the maximum wind speed:

RMW = 51.6exp(−0.0223Vfmax + 0.0281θ) (2.4)

where the flight-level maximum wind speed Vfmax can be adjusted to a surface level

according to Powell and Black (1990) for study in this paper.
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2.2.5 Kato’s Empirical Formulation

Kato (2005) examined the average and standard deviation of the radius where wind speed

peaks, comparing it with past typhoon wind data. They also analyzed how this relates to

storm surges along the Japanese coast. Their findings revealed that when the central pressure

falls below 950 hPa, the RMW is 0.769×Pc− 650.55. In contrast, when the central pressure

exceeds 950 hPa, the radius is 1.633×Pc−1471.55. This relationship can be expressed more

simply as follows:

RMW = 80− 0.769(950− Pc) (2.5)

2.2.6 Powell’s Empirical Formulation

Considering data archives spanning from 1900 to 2002, including NOAA HRD’s surface wind

real-time analysis from 1995 to 2002, HDR’s aircraft observations from 1984 to 1987 along

the western coast of the U.S. and Mexico, and the National Hurricane Center’s best track

records from 1988 to 1999, Powell et al. (2005) undertook a comprehensive analysis. They

applied a multi-variable approach to investigate the logarithm of the observed RMW speed,

which exhibited a normal distribution pattern. Consequently, they proposed an empirical

formula linking Rm with pressure drop and latitude, expressed as:

RMW = exp[2.0633 + 0.0182(Pn − Pc)− 1.9008× 10−4(Pn − Pc)
2 + 7.336× 10−4θ2] (2.6)
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2.2.7 Knaff’s Empirical Formulation

Knaff et al. (2007) utilized data from the U.S. National Hurricane Center (NHC) and Joint

Typhoon Warning Center (JTWC) to analyze the radii of maximum wind speed observed

in various TC occurrences. They adjusted parameters within the modified ranking vortex

equation based on available data such as latitude, cyclone speed, maximum wind velocity,

and the CLIPER model, which calculates the RMW across different latitudes. The result-

ing formula includes three constants that adapt according to the latitude of the cyclone’s

location. The specific formulation applicable to our study area is as follows:

RMW = m0 +m1 +m2(θ − 25) (2.7)

where the three constants m0, m1, and m2 are 38, −0.1167 and −0.004, respectively.

2.2.8 Li’s Empirical Formulation

Due to the scarcity and irregularity of observational data collected along the Chinese coast-

line, particularly in non-standardized formats, statistical analysis is relevant in determining

typhoon parameters specific to the study region. This approach is vital due to its focused

and constraining nature. Li (2007) employed nonparametric statistical tests such as the Kol-

mogorov–Smirnov (K-S) and Chi-square tests to analyze the probability distribution of key

typhoon parameters. From this analysis, Li proposed the RMW for the typhoon-vulnerable

regions along the southern and eastern coasts of China.

RMW = exp[−0.163(Pn − Pc)
0.555] + 5.212 (2.8)
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2.2.9 Jiang’s Empirical Formulation

Atkinson and Holliday (1977) conducted a study spanning 28 years, examining wind speed

data collected from coastal and island stations across the western North Pacific. They

formulated an exponential connection between the central pressure of cyclones and their

maximum wind speeds. Building upon this framework, Jiang et al. (2008) explored TC oc-

currences between 1949 and 2002, as documented in the China National Typhoon Yearbook.

Jiang proposed a comparable relationship, with modified parameters presented in a power

exponential format inspired by the structure outlined by Atkinson and Holliday.

RMW = 1.119× 103(Pn − Pc)
−0.805 (2.9)

2.2.10 Lin’s Empirical Formulation

Lin and Fang (2013) analyzed data from 26 historical typhoon occurrences observed by

ground-based meteorological stations in Hainan province, China. Their study aimed to es-

tablish an optimal empirical relationship for calculating the B parameter within the H80

model. Additionally, they investigated the spatial distribution characteristics of this param-

eter across the Northwest Pacific region, enhancing the applicability of the H80 model in

China.

To facilitate the computation of the B parameter, which requires input on the RMW

speed, Lin and Fang compiled a dataset comprising 6426 records of TC events occurring

between 2001 and 2009. These records were sourced from the Joint Typhoon Warning

Center (JTWC). Subsequently, they identified a relationship between the RMW speed and
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pressure drop, expressed in a specific mathematical form:

RMW = −18.04× ln(Pn − Pc) + 110.22 (2.10)

2.2.11 FEMA’s Empirical Formulation

Vickery et al. (2000b) proposed a statistical model to utilize data on storms making land-

fall provided by the U.S. National Weather Service. This model aims to elucidate the

correlation between the RMW speed and the storm center’s central pressure and latitude.

Subsequently, the U.S. Federal Emergency Management Agency (FEMA) refined this statis-

tical model, introducing enhancements. The updated model offers a range of improvements

to the understanding of maximum wind radius for specific storms in the Atlantic basin, such

as Hurricane Mitch (1998), Brett (1999), Floyd (1999), and Gilbert (1988) (FEMA, 2018).

The empirical relationship formulated from the revised model can be expressed as follows:

RMW = exp[2.556− 5.026× 10−5(Pn − Pc)
2 + 0.042θ] (2.11)

2.2.12 Zhou’s Empirical Formulation

Zhou et al. (2018) aimed to predict storm surge levels along the Ningbo coast using a

comprehensive numerical model. This model combines tidal patterns with storm surge

effects caused by typhoons. They employed a nonlinear parameter determination technique

to refine maximum wind speed radius estimates, converging iteratively from various initial

values to a more accurate approximation. Their approach relied on a sparse dataset of

pressure profile observations, with the empirical relationship primarily considering central
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pressure, expressed as:

RMW = 29.178exp[0.0158(Pc − 900)] (2.12)

Apart from the empirical formulas to calculate the RMW, some machine-learning tech-

niques are also discussed in the literature. Those are briefly introduced below.

Lu et al. (2022) developed models using machine learning algorithms, including support

vector machine and general regression neural network, to identify TC size parameters. The

trained and optimized support vector machine models were proposed for the RMW and the

radii of 34 (R34) knot winds, while the general regression neural network models were used

for R50 and R64. The mean absolute errors for R34, R50, R64, and RMW were evaluated

and verified against aircraft observations and Joint Typhoon Warning Center best track

data. The mean absolute errors for R34 were 54 and 58 km, and the median errors were 39

and 46 km. The estimation accuracy for the RMW increased with the increasing intensity

of the TC.

Wang and Li (2023) developed a deep learning model for estimating TC wind radii from

geostationary satellite infrared imagery. It is based on a CNN architecture, specifically the

VGGNet, and contains convolutional, pooling, and fully connected layers. The model takes

both the original image and corresponding quadrant sub-images as input to capture the

asymmetric structure of the TC. The model is trained using the backpropagation algorithm

with a mean absolute error (MAE) loss function. The results show that the DL-TCR model

significantly improves the estimation of TC wind radii, achieving MAEs of 18.5 − 19.1

nautical miles for a 34 knot wind radius, 10.6 − 11.1 nautical miles for a 50-knot wind

radius, and 8.6 − 9.7 nautical miles for 64-kt wind radius. Factors such as the TC eye,
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cloud, and TC spiral structure influence the model’s performance.

Xu et al. (2023) proposed a deep learning-based model for estimating the size of TCs

by combining infrared and microwave satellite data. It uses a resnet-50 model as the basic

framework. It incorporates a convolution layer with a 55 convolution kernel on the shortcut

branch in its residual block for downsampling to avoid information loss. The model achieved

a mean absolute error of 11.287 nautical miles and a Pearson correlation coefficient of 0.907.

As we focus on the NIOs, there are only two studies in the literature that centered on

the RMW, which are as follows:

Willoughby et al. (2006) introduced an empirically derived model that describes the

structure of the hurricane vortex. Their study also provided an expression for determining

the RMW for the NIO basins.

The model’s estimation equation for RMW (km2) is:

RMW = 46.4× e(−0.0155Vmax+0.0169θ) (2.13)

where θ is latitude (degrees), Vmax is the maximum wind speed (kt), and RMW is the RMW

in km.

Tan and Fang (2018) focused on simulating wind fields of historical TCs using parametric

models using satellite data. Their study provided an expression for determining the value

of RMW for all seven basins.
2In this chapter, we first convert the RMW (km) into RMW (nautical miles) before using the Willoughby

et al. 2006 equation.
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The relation to determine the value of RMW (nautical miles) is:

RMW = −26.73× ln(1013.25− Pc) + 142.41 (2.14)

where Pc (hPa) is the estimated central pressure of TC

2.3 Data

This study evaluates a proposed method using the best track dataset obtained from the India

Meteorological Department (IMD), the Regional Specialized Meteorological Center for TCs

over the NIO. The India Meteorological Department (IMD) Best Track Data provides post-

season, quality-controlled datasets documenting the life cycle of TCs over the NIO basin,

encompassing the BoB and the AS. Each dataset entry includes TC center coordinates (lat-

itude and longitude), maximum sustained surface wind speed (typically in knots), minimum

central pressure (in hPa), and intensity classification following IMD’s operational categories

(e.g., Depression, Cyclonic Storm, Severe Cyclonic Storm). Earlier records (pre-1990s) gen-

erally offer 6-hourly observations, while more recent records are updated at 3-hour intervals.

The compilation integrates diverse observational inputs, including surface synoptic observa-

tions, ship and buoy reports, coastal Doppler radar imagery, and critically, satellite-based

estimates. Satellite data, essential over oceanic regions, primarily derives from geostationary

satellites like the INSAT-3D and INSAT-3DR, providing high-frequency visible, infrared, and

water vapor imagery. Supplementary data from polar-orbiting platforms such as NOAA’s

POES series, METOP, and NASA’s Terra and Aqua (MODIS instruments) contribute higher

spatial resolution observations, albeit at lower temporal frequency. Cyclone intensity assess-

ments rely heavily on the Dvorak technique, which systematically interprets satellite cloud
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patterns to estimate storm strength. Furthermore, scatterometer data (e.g., from ASCAT)

and passive microwave imagery (e.g., AMSR2, SSMIS) provide critical insights into surface

wind fields and inner-core structure. Collectively, these observation systems enable IMD to

reconstruct a detailed and internally consistent best track dataset, which forms a founda-

tional resource for climatological studies, operational forecasting validation, and long-term

cyclone trend analysis across the North Indian Ocean region (India Meteorological Depart-

ment (IMD), 2023; IMD, 2021).

The dataset consists of various metrics related to TCs, including the TC number, time

(year, month, day, and hour), TC center locations (longitude and latitude), estimated cen-

tral pressure (Pc), maximum wind speed (Vm), and estimated pressure drop at the center

(Pd). These metrics are recorded at 6-hour intervals (https://rsmcnewdelhi.imd.gov.

in/report.php?internal_menu=MzQ=). We use polynomial interpolation, i.e., Newton in-

terpolation, to find some missing values of RMW in the best track database. For example,

in the case of extremely severe cyclonic storm Tauktae, the value of RMW is available in

the best track database for 14 May at 06 UTC. Next is 15 May at 00 UTC, so we find the

values for 14 May at 12 and 18 UTC using Newton interpolation. To validate the proposed

method, we also compared it with the RMW data from IMD bulletins.

According to the Standard Operational Procedure for Cyclone Warnings in India released

by the IMD, there is no direct observation of RMW. Still, it can be calculated from the

satellite and radar. In radar, the radius of maximum reflectivity is considered as RMW. In

satellites, the radius of maximum reflectivity in visible imagery and the radius of the lowest

cloud temperature in IR imagery is considered RMW (IMD, 2021).
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2.4 Method

In this chapter, we propose two methods to estimate the RMW of the TC that formed over

the NIO basin: the empirical formula and the machine learning technique.

2.4.1 Method I

We formulate a method for calculating the value of the RMW based on the characteristics of

TCs, such as the latitude (Lat.) of the TC center, along with the estimated pressure drop.

The choice of latitude and pressure drop as the critical parameters for RMW estimation,

while excluding longitude, is grounded in empirical evidence and theoretical understanding

within the field of TC research. Latitude is a fundamental indicator of TC formation and

movement, with studies such as Camargo (2013) highlighting its role in determining TC

genesis and tracks across different ocean basins. On the other hand, the pressure drop is

closely linked to TC intensity, as discussed by Emanuel (2003). Conversely, while longitude

influences TC position, its direct impact on TC intensity is less pronounced, as demonstrated

by research such as Holland (1997) and Chavas et al. (2015), which emphasize the primary

role of factors like sea surface temperature and atmospheric conditions in determining TC

intensity. Therefore, this approach captures essential TC behavior and intensity aspects by

focusing on latitude and pressure drop as crucial parameters.

The values of RMW for some TCs did not exist in most historical records until observa-

tions became available in 2001 (Knapp et al., 2010). The empirical function of RMW to the

other TC variables, such as pressure drop at the center Pd and latitude, a rigorous analysis

of relevant variables, and their impact of RMW over the NIO region which exists in studies

of Agency (2012); Vickery and Wadhera (2008) is crucial. This analysis typically involves
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collecting and analyzing observational data on TCs in the NIO, including parameters such as

central pressure, wind speed, latitude, and RMW. Regression analysis is employed to iden-

tify the relationships between these variables. The analysis aims to quantify the influence

of pressure drop and latitude coordinate of the TC center on RMW and drive mathematical

equations that describe these relationships. Based on past studies over the NIO, the average

ambient pressure was set to 1013.25 hPa (Islam and Peterson, 2008).

This relationship allows us to determine the value of RMW for estimated pressure drops

(Pd) that are less than or equal to 12 hPa; it means that the atmospheric pressure at the

center of the TC has decreased by 12 hPa or less compared to the surrounding environment.

This pressure drop is often associated with increased cyclone intensity or strength.

Our design relationship for determining RMW (in nautical miles) is described as follows:

RMW = k × e(a
√
Pd+bϕ) + c (2.15)

Here, ϕ represents the latitude coordinate of the TC center, and Pd represents the esti-

mated pressure drop at the TC center.

These constants (k, a, b, and c) would be determined by taking a dataset of historical

data of TC that includes the value of RMW, Pd, and ϕ over the NIO. By the non-linear

least squares optimization method, we estimate the constants of the RMW equation (the

equation of RMW is a non-linear equation). By utilizing the ‘curve_fit’ function from

‘scipy.optimize’ (Virtanen et al., 2020), the code fits the experimental equation to the data,

optimizing the parameters through an iterative process. The ‘maxfev’ parameter is increased

to 10000, allowing for a higher number of function evaluations during the optimization
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process, thereby enhancing the convergence of the solution. The estimated constants (k, a,

b, and c) are then derived, providing insights into the underlying relationship between the

variables. The least squares optimization method ensures robust parameter estimation and

accurate modeling of the non-linear system. The graph visual of fitting the curve is shown

in Fig. 2.1 with an R-squared of 0.92.

Figure 2.1: Fitted Function vs. Observed Data Points

The Final equation for determining RMW is:

RMW = −36640.61× e(0.00029
√
Pd+0.000029ϕ) + 36732.39 (2.16)

This method provides a reliable means of calculating the RMW based on the given TC

characteristics. The relationship established in this study allows for accurate determination

of RMW as long as the value of Pd is less than or equal to 12 hPa.
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To validate the accuracy of the proposed method, three evaluation techniques were em-

ployed: error percentage, statistical t-test, and root mean square error. We can confidently

assert that the proposed approach outperforms alternative methods for determining RMW

in the NIO region by utilizing these methods. Willoughby et al. (2006) and Tan and Fang

(2018) also provided the RMW formula for the NIO region, as mentioned above in the lit-

erature. We compare our designed method with the models proposed by Willoughby et al.

(2006) and Tan and Fang (2018) to fit explicitly for NIO cases.

t-test:

The t-test is a statistical test used to compare the means of two population samples

to determine if there is a significant difference between them. In this paper, the t-test

has been conducted to compare the proposed method with the other approaches. When

the t-test indicates that one method is “statistically better" than another, the observed

differences in their outcomes are unlikely to have occurred by chance. In other words, the

differences are significant and not simply due to random variation. Null Hypothesis (Ho)

assumes that there is no significant difference between the means of the two groups being

compared. Alternative Hypothesis (Ha) is the opposite of the null hypothesis. To show that

our method is statistically better, a significance level of 0.05 is utilized. For this analysis,

we employed the Python language along with the numpy and scipy libraries to calculate the

t-test effectively.

Error Percentage:

Error percentage, also known as error rate or relative error, measures the relative differ-

ence between predicted and actual values. It quantifies how far off the model’s predictions
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are from the ground truth. The error percentage can be calculated as follows:

Error percentage =

(
| Predicted Value − Actual Value |

Actual value

)
× 100

A lower error percentage indicates a more accurate model, which signifies that the model’s

predictions are closer to the actual values.

Root Mean Square Error (RMSE):

RMSE is a widely used metric to assess the accuracy of regression models. It measures

the average magnitude of the errors between predicted and actual values. The RMSE is

calculated as follows:

RMSE =

√
1

n
×

∑
(Predicted Value − Actual Value)2

A lower RMSE indicates that the model’s predictions are, on average, closer to the actual

values. It represents the standard deviation of the model’s errors.

In practice, the error percentage and RMSE are used to evaluate the accuracy and per-

formance of machine learning models. While error percentage provides a relative measure of

accuracy, RMSE provides an absolute measure of the model’s predictive quality. Researchers

and practitioners consider both metrics to assess their models’ quality and make informed

decisions about their performance.
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2.4.2 Method II

Following this, we develop another approach for the computation of the value of the RMW

through machine learning techniques, alongside the evaluation of the results obtained from

the three methodologies such as Willoughby et al. (2006), Tan and Fang (2018), and resulting

empirical formula of the method I.

In our model, the input is taken as the results of the three formulas in the literature:

those by Willoughby et al. (2006), Tan and Fang (2018), and the resulting empirical formula

of the method I. The target variable for the model is the RMW data provided by the India

Meteorological Department.

Here is the whole process of our method (Flow chart of the proposed method is shown

in Fig. 2.2):

Data Preprocessing:

Standardization (Ioffe and Szegedy, 2015) of the experimental data is performed to ensure

that each feature follows a standard normal distribution. This is crucial for improving the

convergence speed and performance of the models.

k-fold cross-validation:

k-fold cross-validation is a robust technique used to evaluate machine learning models

by partitioning the dataset into k equal-sized folds, training the model on k − 1 folds, and

validating it on the remaining fold, repeating this process k times. This method ensures

each data point is used for training and validation, providing a comprehensive performance

estimate and reducing the risk of overfitting. In this model, we use the value of k equal to

5 (Nti et al., 2021; Pohjankukka et al., 2017).
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Start

Result of
Willoughby et
al. (2006) Result of Tan

and Fang (2018)

Result of Yadav
and Das (2024)

Target Variable: Best track data

Input

Data Preprocessing

K-fold cross-validation

Random Forest Regressor (RF)

Gradient Boosting Regressor (GB)

Neural Network Model (NN)

Output of RF

Output of GB

Output of NN

Final Output = (RF + GB + NN)/ 3

Figure 2.2: Flow-Chart of the Proposed Method for Estimating the Radius of Maximum
Wind of the Tropical Cyclone
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For Example, if k = 5, the dataset is divided into five folds. The model is trained on

four folds and validated on the remaining fold. This process is repeated five times, with

each fold serving as the validation set once.

• Iteration 1: Train on folds 2, 3, 4, 5; Validate on fold 1.

• Iteration 2: Train on folds 1, 3, 4, 5; Validate on fold 2.

• Iteration 3: Train on folds 1, 2, 4, 5; Validate on fold 3.

• Iteration 4: Train on folds 1, 2, 3, 5; Validate on fold 4.

• Iteration 5: Train on folds 1, 2, 3, 4; Validate on fold 5.

Model Construction:

Here is a detailed explanation of our model’s architecture, component by component:

(a) Random Forest Regressor (RF):

This ensemble learning technique constructs multiple decision trees during training

and outputs the average prediction of the individual trees. Random Forest (Breiman,

2001) helps to reduce overfitting and variance in the model by averaging the results

from different decision trees.

(b) Gradient Boosting Regressor (GB):

Gradient Boosting (Friedman, 2001) is an ensemble technique that builds a robust

model by combining multiple weak models. It sequentially adds predictors to an

ensemble, and each one corrects its predecessor’s errors. This method focuses on

reducing bias and improving overall predictive performance.

(c) Neural Network Model (NN):

The neural network is a deep learning model inspired by the structure of the human

brain. It consists of interconnected layers of nodes that process and transform input

data. In this model, a deep neural network is constructed using the Keras API (Chollet
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Figure 2.3: Architecture of Proposed Neural Network for Estimating the Radius of Maxi-
mum Wind

et al., 2015), consisting of multiple hidden layers with the rectified linear unit (ReLU)

activation functions (Agarap, 2018). Dropout layers are included for regularization to

prevent overfitting.

Here is a detailed explanation of the neural network’s architecture (Fig. 2.3), layer by

layer:

(i) Input Layer:

• The input layer has three nodes corresponding to the three features (experi-

mental results: the results of the three methods we mentioned above) being

fed into the network.

(ii) Dense Layer 1 (Fully Connected Layer):

• This layer consists of 512 neurons, each connected to all the nodes from

the input layer. The ReLU activation function is applied to introduce non-

linearity.

• Batch normalization is used to standardize the inputs to the next layer, which

helps stabilize and accelerate the learning process.

• Dropout with a rate of 0.5 is implemented to prevent overfitting by randomly

dropping half of the connections during each training step.

(iii) Dense Layer 2:
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• The second dense layer comprises 256 neurons using the ReLU activation

function and batch normalization.

• Dropout with a rate of 0.4 is applied.

(iv) Dense Layer 3:

• This layer consists of 128 neurons with ReLU activation and batch normal-

ization.

• Dropout with a rate of 0.3 is applied.

(v) Dense Layer 4:

• The fourth dense layer has 64 neurons with ReLU activation and batch nor-

malization.

• Dropout with a rate of 0.2 is applied.

(vi) Dense Layer 5:

• This layer contains 32 neurons with ReLU activation and batch normaliza-

tion.

• Dropout with a rate of 0.2 is applied.

(vii) Dense Layer 6:

• The sixth layer has 16 neurons with ReLU activation and batch normaliza-

tion.

• Dropout with a rate of 0.1 is applied.

(viii) Dense Layer 7:

• This layer consists of 8 neurons with ReLU activation and batch normaliza-

tion.

(i) Output:

• The output layer has one neuron representing the predicted value.

The neural network model is trained to minimize the mean squared error (MSE) loss

function using the Adam optimizer (Kingma and Ba, 2014). By configuring multiple

hidden layers with different activation functions and applying batch normalization and

dropout, the network can learn complex patterns in the data and generalize well to

unseen examples, thereby improving the overall predictive performance.
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(d) Training and Evaluation:

The models are trained using the provided experimental data (the results of the three

methods mentioned above), and the performance is evaluated based on the MSE be-

tween the predicted and actual experimental results. The training process involves

optimizing the model parameters through the backpropagation algorithm, minimizing

the loss function, and updating the model weights iteratively.

(e) Ensemble Prediction:

The final ensemble prediction is generated by combining the predictions from the Ran-

dom Forest, Gradient Boosting, and Neural Network models. This ensemble method

leverages the diverse forecasts from different models to improve the overall predictive

accuracy.

Combining these methodologies aims to enhance the predictive accuracy of experimental

results by leveraging the strengths of ensemble learning and deep neural networks alongside

traditional machine learning algorithms.

To check the accuracy of the designed model, we performed three statistical tests: er-

ror percentage, root square mean error, and R-squared. Section 2.4.1 provides a detailed

discussion of error percentage and root square mean error.

R-squared (R2):

R-squared (R2), also known as the coefficient of determination, is a statistical measure

that indicates the proportion of the variance in the dependent variable that is predictable

from the independent variables in a regression model. It provides insight into the model’s

goodness of fit (Chicco et al., 2021). The value of R2 ranges from 0 to 1, where:

• R2 = 1 indicates that the model explains all the variability of the response data around

its mean.
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• R2 = 0 indicates that the model explains none of the variability of the response data

around its mean.

• Negative R2 values can occur when the model is a poor fit and performs worse than a

horizontal line representing the mean of the dependent variable.

2.5 Result

2.5.1 Result of Method I

The proposed method (Emiripical formula) for determining the value of RMW was evaluated

using seven TC cases, namely: Extremely Severe Cyclonic Storm Tauktae (ESCS Tauktae),

Cyclonic Storm Gulab (CS Gulab), Severe Cyclonic Storm Mandous (SCS Mandous), Severe

Cyclonic Storm Asani (SCS Asani), Cyclonic Storm Sitrang (CS Sitrang), Cyclonic Storm

Jawad (CS Jawad), and Very Severe Cyclonic Storm Yaas (VSCS Yaas). These specific

cases were chosen to assess the proposed method’s effectiveness accurately. Furthermore,

Table 2.1 provides details regarding the category of each of these selected TCs, along with

the corresponding periods.

Table 2.1: Category of selected TCs and period across the NIO basin

S. No. Name Category Time Period
1 Tauktae Extremely Severe Cyclonic Storm 14 - 19 May,2021
2 Gulab Cyclonic Storm 24 - 28 September 2021
3 Mandous Severe Cyclonic Storm 6 - 10 December, 2022
4 Asani Severe Cyclonic Storm 07 - 12 May 2022
5 Sitrang Cyclonic Storm 22 - 25 October, 2022
6 Jawad Cyclonic Storm 02 - 06 December,2021
7 Yaas Very Severe Cyclonic Storm 23 - 28 May, 2021
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ESCS Tauktae

TC Tauktae, which formed in May 2021, was a powerful and destructive storm that primarily

affected the Arabian Sea (AS) region and the western coast of India. It intensified into ESCS,

boasting an MSW of 85−90 knots with gusts reaching 100 knots. This TC was extraordinary

in its path, causing widespread adverse weather conditions and damage across the entire

west coast, including states, Union Territories, and Lakshadweep, as it tracked parallel to

the west coast before crossing Gujarat. ESCS Tauktae experienced rapid intensification

over 24 hours, from the morning of May 16th (0530 IST/0000 UTC) to the morning of May

17th (0530 IST/0000 UTC), with MSW increasing from 65 knots to 100 knots. The TC’s

peak MSW reached 100 knots, gusting to 113 knots between 0530 IST (0000 UTC) on May

17th and 1130 IST (0600 UTC) on May 17th over the east-central AS. During this period,

the lowest estimated central pressure dropped to 950 hPa, representing a 50 hPa decrease

compared to the surrounding region (Division, 2021c).

Our study, in conjunction with the methodologies proposed by Willoughby et al. (2006)

and Tan and Fang (2018), as well as utilizing data sourced from the IMD, is visually pre-

sented in Fig. 2.4. This graphical illustration effectively conveys the significance of the

parameter denoted as RMW. Complementing this visual representation, Table 2.2 provides

a quantitative summary of the results obtained for the ESCS Tauktae.

Upon analyzing the average error across all cases concerning the IMD’s average RMW

of 41.28 nautical miles, our method demonstrates an error rate of 19.42%. In contrast, the

approaches by Willoughby et al. (2006) and Tan and Fang (2018) exhibit error rates of

25.99% and 54.85%, respectively. Detailed root mean square error (RMSE) values are in

Table 2.9.
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Table 2.2: Results of ESCS Tauktae, where E1 indicates the error percentage between
the proposed method and IMD, E2 represents the error percentage between
Willoughby et al.’s expression and IMD, and E3 represents the error percent-
age between Tan and Fang’s expression and IMD

Date/
Time

IMD’s
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

14/06 40 58.82 38.571 66.288 47.05 3.57 65.72
14/12 29 32.18 39.46 64.21 10.96 36.06 121.41
14/18 36 42.20 47.12 60.98 17.22 30.88 69.38
15/00 60 48.20 31.69 60.7136 19.66 47.18 1.18
15/06 60 44.123 29.65 58.30 26.46 50.58 2.83
15/12 32 35.92 25.785 53.10 12.25 19.42 65.93
15/18 32 31.24 24.207 50.4 2.37 24.35 57.5
Mean 41.28 41.81 33.78 59.14 19.42 25.99 54.85

Upon conducting a t-test, it is evident that our method is statistically better than the

other two approaches with α = 0.05, as the error percentage and RMSE are less.

CS Gulab

The formation of the cyclonic system known as “Gulab” occurred during the active phase of

the monsoon season over the Indian subcontinent. Several favorable atmospheric conditions

contributed to its development, including warm sea temperatures, the incursion of warm

and moist air into the core of the system, which was a favorable Madden Julian Oscillation

(MJO) phase, and relatively low to moderate vertical wind shear over the region (Division,

2021a).

Notably, the system had a shorter lifespan than the long-term average for cyclonic sys-

tems during the monsoon season over the Bay of Bengal. Specifically, its duration was

approximately 90 hours, while the long-term average span of the cyclone, based on the data

from 1990 to 2013, stands at 110 hours. Additionally, the peak intensity of Cyclone Gulab
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Figure 2.4: Graphical Representation of ESCS Tauktae’s value of RMW by proposed
method, Willoughby et al., Tan and Fang, and IMD

reached 45 knots, occurring between 0600 and 1200 UTC on the 26th September.

Our methodology, in conjunction with the techniques proposed by Willoughby et al.

(2006) and Tan and Fang (2018), and the utilization of data provided by the IMD, is

visually illustrated in Fig. 2.5, this graphical representation effectively demonstrates the

significance of the (RMW). Table 2.3 complements this visual representation by providing

a quantitative summary of the results for CS Gulab.

Upon analyzing the average error across all cases concerning IMD’s reference value for

the RMW at 32.12 nautical miles, our methodology yields an average error of 28.49%. In

contrast, Willoughby et al. (2006) and Tan and Fang (2018) methods exhibit average errors

of 41.37% and 128.62%, respectively. The RMSE values are detailed in Table 2.9.

Furthermore, a t-test analysis indicates that our proposed methodology statistically out-

performs the alternative methods, consistently yielding lower error percentages and RMSE

values.
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Table 2.3: Results of CS Gulab, where E1 indicates the error percentage between our method
and IMD, E2 represents the error percentage between Willoughby et al.’s expres-
sion and IMD, and E3 represents the error percentage between Tan and Fang’s
expression and IMD

Date/
Time

IMD’s
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

25/00 55 40.85 40.55 71.39 25.72 26.27 29.8
25/06 55 39.78 40.55 71.39 27.67 26.27 29.8
25/12 24 34.84 37.55 65.28 45.16 56.45 174.5
25/18 24 34.84 37.55 66.28 45.16 56.45 176.16
26/00 30 37.78 34.84 63.35 25.93 16.13 111.16
26/06 24 30.53 32.38 60.71 27.20 34.91 152.95
26/12 24 30.53 32.38 60.71 27.20 34.91 152.95
26/18 21 28.72 37.62 63.35 36.76 79.14 201.66
Mean 32.12 34.73 31.98 65.31 32.60 41.37 128.62
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Figure 2.5: CS Gulab’s value of RMW given by proposed method, Willoughby et al., Tan
and Fang, and IMD is graphically represented
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SCS Mandous

In December, the Bay of Bengal typically witnesses the formation of approximately 25 TCs,

including 15 SCS. Nine of these 25 TCs made landfall along the Tamil Nadu coast. One of

them initially started as depression, one as a CS, and the remaining seven as SCSs. Among

these, Mandous was one of the SCSs that made landfall.

Mandous followed a unique track. Initially, it moved in a west-northwest direction until

the evening of December 7th, at 1730 hours IST. Afterward, it changed its course to the

northwest until it made landfall. Following landfall, the system altered its trajectory to

move west-northwest until the morning of December 10th at 0530 hours IST, after which it

headed west-southwest.

This distinct movement pattern can be attributed to the influence of an anticyclone storm

raised in the northeast direction of the storm’s center in the middle and upper tropospheric

levels, which steered the system over the sea.

The duration of Mandous’s existence as a storm, from its initial formation stage to its

subsequent status as a depression, spanned approximately 96 hours, equivalent to 4 days.

This duration is closely aligned with the long-term average (1990−2013) for Severe Cyclonic

Storms in the Bay of Bengal during the post-monsoon season, which also stands at about

96 hours or four days. The system did not exhibit rapid intensification or weakening during

its life cycle. Mandous achieved its peak intensity of 50 knots at 1200 UTC on December

8th and maintained this strength until 0000 UTC on December 9th (Division, 2022c).

Our study incorporates a methodology, in conjunction with the methods proposed by

Willoughby et al. (2006) and Tan and Fang (2018), and utilizing data provided by the IMD.
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These approaches are visually illustrated in Fig. 2.6, presenting a graphical representation

highlighting the parameter’s significance (RMW). Furthermore, Table 2.4 offers a quantita-

tive summary of the results of SCS Mandous.

Upon calculating the average error for all cases concerning the IMD’s average RMW

of 40.46 nautical miles, our method exhibits an error rate of 29.63 %. At the same time,

Willoughby et al. (2006) and Tan and Fang (2018) methods exhibit error rates of 35.80%

and 79.23%, respectively. The Root Mean Square Error (RMSE) values are presented in

Table 2.9.

The t-test reveals that our proposed method demonstrates statistically superior perfor-

mance compared to the alternative methods, as evidenced by its lower error percentage and

RMSE.

Table 2.4: Results of SCS Mandous over BoB during 6− 10 December 2022, where E1 indi-
cates the error percentage between the proposed method and IMD, E2 represents
the error percentage between Willoughby et al.’s expression and IMD, and E3

represents the error percentage between Tan and Fang’s expression and IMD

Date/
Time

IMD
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

07/00 64 55.28 30.36 71.39 13.62 52.56 11.54
07/06 64 55.10 31.41 69.58 13.90 50.93 8.71
07/12 64 53.68 31.53 69.58 16.12 50.73 8.71
07/18 34 42.09 29.203 67.88 23.7 14.12 76.82
08/00 34 40.67 28.97 64.78 19.6 14.79 90.52
08/06 34 38.03 27.95 60.71 11.8 12 78.55
08/12 22 35.23 30.15 58.309 60.1 37.045 165.04
08/18 22 34.40 31.33 58.309 51.6 34.68 165.04
09/00 22 38.75 31.509 58.309 76.1 43.22 165.04
09/06 34 44.24 28.76 60.71 30.1 15.41 78.55
09/12 34 45.37 29.32 62.002 10.61 13.76 82.35
09/18 34 46.74 30.05 64.781 33.4 11.16 90.53
10/00 64 48.27 32.95 69.58 24.57 48.51 8.71
Mean 40.46 44.45 31.03 64.30 29.63 35.80 79.23
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Figure 2.6: SCS Mandous’s value of RMW given by proposed method, Willoughby et al.,
Tan and Fang, and IMD data are graphically represented

SCS Asani

On the morning of May 6th, 2022, a low-pressure area began to develop over the South

Andaman Sea and the adjoining Southeast Bay of Bengal (BoB). By the early morning of

May 7th, it had intensified into a well-marked low-pressure area over the Southeast BoB

and the adjacent South Andaman Sea. Favorable environmental conditions allowed it to

consolidate further, eventually becoming a depression around noon on the same day, May

7th, 2022. This system, named SCS “Asani,” transformed into a deep depression before

making landfall. Remarkably, it exhibited an unusually slow movement, crawling at 5 − 6

km per hour, significantly slower than the typical speed of 13 km per hour. This sluggish

pace kept it hovering within 50 km of the coastline from morning to evening on May 11th.

SCS “Asani” displayed multiple shifts in its trajectory. Most meteorological models had

initially predicted a change in its direction, veering from northwest to northeast near the

coast. It initially moved northward/northwestward and later shifted to a west-southwestward
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direction. This unexpected change was primarily influenced by the system’s response to a

short amplitude westerly trough in the middle and upper tropospheric levels approaching

from the west, causing it to deviate from the anticipated northeastward path near the coast

(Division, 2022b).

Our study introduces a novel methodology visually presented in Fig. 2.7, alongside

existing approaches proposed by Willoughby et al. (2006) and Tan and Fang (2018), and data

sourced from the IMD. This graphical representation effectively illustrates the significance

of the RMW. To complement this visual insight, Table 2.5 provides a quantitative summary

of the results on SCS Asani.

When comparing the average error of our method to the IMD’s average RMW value

of 40.71 nautical miles, our method exhibits an error percentage of 15.92%. At the same

time, the approaches presented by Willoughby et al. (2006) and Tan and Fang (2018) yield

error percentages of 19.25% and 59.15%, respectively. Additionally, Table 2.9 presents the

RMSE values for these methods. Statistical analysis using a t-test demonstrates that our

proposed method performs better than the alternative methods, consistently yielding lower

error percentages and RMSE values.

CS Sitrang

In the early morning of October, 20 2022, a low-pressure area developed over the North

Andaman Sea and extended into the South Andaman Sea and Southeast BoB. By the

evening of October 21, it had intensified into a well-marked low-pressure area, still situated

over the North Andaman Sea and the adjoining Southeast BoB. As favorable environmental

conditions persisted, this system gradually concentrated and formed a depression over the
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Table 2.5: Results of SCS Asani over BoB during 07− 12 May 2022, where E1 indicates the
error percentage between the proposed method and IMD, E2 represents the error
percentage between Willoughby et al.’s expression and IMD, and E3 represents
the error percentage between Tan and Fang’s expression and IMD

Date/
Time

IMD
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

07/12 55 57.05 35.303 64.78 3.72 35.81 17.78
07/18 55 56.52 35.66 63.35 2.76 35.16 15.18
08/00 30 41.63 33.31 60.71 38.76 11.03 102.6
08/06 30 35.61 28.86 56.10 18.70 3.8 87.01
11/00 30 33.03 30.98 56.10 10.10 3.26 87.01
11/06 30 38.18 33.51 58.30 27.26 11.7 94.36
11/12 55 49.40 36.309 60.71 10.18 33.98 10.38
Mean 40.71 44.48 32.41 60.01 15.92 19.25 59.15
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Figure 2.7: SCS Asani’s value of RMW given by proposed method, Willoughby et al., Tan
and Fang, and IMD is graphically represented
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Southeast and the neighboring east-central BoB, near the Andaman Islands, by the forenoon

of October 22, 2022.

This weather system, CS Sitrang, initially moved northwestward due to the influence of

southeasterly winds in the middle and upper tropospheric levels. This pattern continued

until the morning of October 23. Subsequently, a gradual change in its trajectory occurred

as it started to recurve north-northeastwards from the night of October 23. This shift was

attributed to a trough in the western direction and an anticyclone located to the east of

Myanmar.

On the 24th of October, CS Sitrang exhibited exceptionally rapid movement due to

several factors, including the influence of a westerly trough, an anticyclone over Myanmar,

and interactions with the land. The entire lifespan of this storm, from its formation as a

depression to another depression, lasted approximately 69 hours, which equates to 2 days

and 21 hours. This duration was shorter than the long-term average for cyclonic storms in

the Bay of Bengal during the post-monsoon season, about 88 hours or 3 days and 16 hours,

based on data from 1990 to 2013 (Division, 2022a).

Our methodology, in conjunction with the techniques introduced by Willoughby et al.

(2006) and Tan and Fang (2018), and utilizing data from the IMD, its characteristics are

visually presented in Fig. 2.8. This graphical illustration effectively demonstrates the sig-

nificance of the (RMW). Complementing this visual representation, Table 2.6 provides a

numerical summary of the results of the CS Sitrang.

Regarding the average error compared to IMD’s average RMW of 40.00 nautical miles,

our methodology yields an error rate of 15.21%. At the same time, the methods proposed

by Willoughby et al. (2006) and Tan and Fang (2018) exhibit error rates of 18.42% and
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Table 2.6: Results of CS Sitrang over the BoB during 22− 25 October 2022, where E1 indi-
cates the error percentage between the proposed method and IMD, E2 represents
the error percentage between Willoughby et al.’s expression and IMD, and E3

represents the error percentage between Tan and Fang’s expression and IMD

Date/
Time

IMD
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

23/00 64 44.87 36.48 75.43 29.88 43 17.85
23/06 64 43.00 36.87 73.33 32.80 42.39 14.57
23/12 34 41.14 38.55 71.39 21.01 13.38 109.97
23/18 34 40.10 36.92 69.58 17.96 8.58 104.64
24/00 34 37.09 31.66 66.28 9.10 6.88 94.94
24/06 34 34.42 30.87 66.28 1.26 9.20 94.94
24/12 34 32.99 29.55 66.28 2.95 13.08 94.94
24/18 34 31.71 30.29 66.28 6.70 10.91 94.94
Mean 41.5 38.16 27.11 55.48 15.21 18.42 62.679

62.67%, respectively. The RMSE values are detailed in Table 2.9.

Further statistical analysis using a t-test indicates that our proposed methodology signif-

icantly outperforms the other methods, as evidenced by lower error percentages and RMSE

values.

CS Jawad

In 2021, TC Jawad held the distinction of being the 5th TC observed over the NIO. Addi-

tionally, it marked the first TC occurrence during the post-monsoon season, which typically

spans from October to December. Interestingly, December had no recorded instances of a

TC making landfall in Odisha in the historical records. Instead, these cyclones typically

made landfall over the northern regions of Andhra Pradesh and south of West Bengal.

Even without landfall, Odisha experienced the impact of TCs in previous years, primarily

in heavy rainfall. The genesis of most TCs occurred over the southern BoB and the southern
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Figure 2.8: CS Sitrang’s value of RMW given by proposed method, Willoughby et al., Tan
and Fang, and IMD is graphically represented

Andaman Sea. When these occurrences reached a latitude beyond 15 degrees North in the

Bay of Bengal, they tended to alter their course, curving north-northeastward.

This pattern of CS Jawad was similarly observed in the case of other occurred TCs, and

it initially moved north-northwestward and began to recurve on the morning of the 4th day

(at 0530 hours IST/0000 UTC). The peak MSW of TC Jawad was recorded at 40 knots,

with gusts reaching up to 50 knots between the 3rd and 4th days (from 1200 UTC on the

3rd to 0000 UTC on the 4th).

On the 4th day at 0600 UTC, Dhamra Port reported south-southeastern winds with

an intensity of 32 knots, gusting to 35 knots. Subsequently, the cyclonic system began to

weaken due to unfavorable conditions, including enhanced wind shear, the incursion of dry

air into the core of the system, lower ocean thermal energy, interactions with land, and an

unfavorable Madden-Julian Oscillation index (Division, 2021b).

Our study incorporates a methodology and utilizes previously proposed approaches by

Willoughby et al. (2006) and Tan and Fang (2018) in conjunction with data sourced from
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Table 2.7: Results of CS Jawad over the BoB during 02−06 December 2021, where E1 indi-
cates the error percentage between the proposed method and IMD, E2 represents
the error percentage between Willoughby et al.’s expression and IMD, and E3

represents the error percentage between Tan and Fang’s expression and IMD

Date/
Time

IMD
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

03/00 69 53.76 36.26 77.71 22.08 47.44 12.62
03/12 42 48.23 32.23 73.33 14.83 23.26 74.59
03/06 42 45.22 33.21 75.43 7.66 20.92 79.59
03/18 42 44.80 32.45 73.33 6.66 22.73 74.59
04/00 42 44.48 31.62 73.33 5.90 24.71 74.59
04/06 42 46.21 31.37 75.43 10.02 25.30 79.59
04/12 55 57.05 35.53 77.71 3.72 35.40 41.29
Mean 47.71 48.53 33.23 75.18 10.12 28.53 62.41

the IMD. These elements are visually represented in Fig. 2.9, highlighting the significance

of the RMW. Supplementary to this visual representation, Table 2.7 provides a numerical

summary of the results of the CS Jawad.

When assessing the average error across all cases in comparison to IMD’s average RMW

of 47.17 nautical miles, our method yields an error rate of 10.12%, whereas the methods of

Willoughby et al. (2006) and Tan and Fang (2018) report error rates of 28.53% and 62.41%,

respectively. Table 2.9 presents the RMSE values.

Statistical analysis, specifically the t-test, indicates that our proposed method exhibits

statistically superior performance compared to the alternative methods, demonstrating lower

error percentages and RMSE values.
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Date/Time
03/00 03/06 03/12 03/18 04/00 04/06 04/12
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Figure 2.9: CS Jawad’s value of RMW given by proposed method, Willoughby et al., Tan
and Fang, and IMD is graphically represented

VSCS Yaas

Four days after the landfall of ESCS Tauktae dissipated over the Arabian Sea, TC Yaas

emerged in the BoB. This occurrence of consecutive or simultaneous TCs in the BoB and

the AS is not uncommon. When we examine the statistical data from the past decade

(2010 − 2020), we find instances of similar back-to-back or simultaneous appearances of

VSCS over both the Bay of Bengal and the Arabian Sea in the years 2020, 2019, 2018, 2016,

2015, 2013, and 2010.

TC Yaas had a relatively minor impact on the affected regions compared to Tauktae.

It brought adverse weather conditions to the Andaman and Nicobar Islands, Odisha, and

West Bengal until the 26th May, followed by cyclonic disturbances in Jharkhand, Bihar, and

East Uttar Pradesh after making landfall. The TC followed a straight north-northwestward

trajectory. TC Yaas exhibited MSW to 75 knots during its peak intensity period, gusting

to 85 knots. This intense phase occurred from 0230 IST on the 26th to 1130 IST on the
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same day, situated in the northwest Bay of Bengal. At its most potent, the cyclone’s central

pressure reached an estimated low of 970 hPa, indicating a 28 hPa drop in pressure compared

to its surrounding environment (Division, 2021e).

Interestingly, TC Yaas experienced rapid weakening after landfall, with its intensity

decreasing by 35 knots in a mere nine-hour span. Remarkably, the system maintained

VSCS intensity even after landfall for 12 hours, lasting from 0600 to 1800 UTC on the 26th.

Our approach, in conjunction with methodologies introduced by Willoughby et al. (2006)

and Tan and Fang (2018), and data sourced from the IMD, is visually represented in Fig.

2.10. This graphical representation effectively illustrates the significance of RMW. Comple-

menting this visualization, Table 2.8 provides a numerical summary of the findings of the

VSCS Yaas.

In assessing the average error across all cases concerning the IMD’s average RMW at

53.28 nautical miles, our method yields an error rate of 24.45%. In contrast, the methods

proposed by Willoughby et al. and Tan and Fang result in error rates of 38.17% and 29.10%,

respectively. Table 2.9 presents the RMSE values.

Statistical analysis through a t-test demonstrates that our proposed method exhibits

superior performance compared to the alternative methods, as evidenced by lower error

percentages (Table 2.10) and RMSE values (Table 2.9).

As we discussed above, the seven selected TCs over the NIO were used to examine the

accuracy of our method with other methods. We perform three tests (error percentage,

t-test, and root square mean error) to support the idea that our method for determining

the RMW is better than the existing methods. Our method performs significantly better

than previously available; even if it still has a relatively high error rate, it may represent
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Table 2.8: Results of VSCS YAAS over the BoB during 23 − 28 May 2021, where E1 indi-
cates the error percentage between the proposed method and IMD, E2 represents
the error percentage between Willoughby et al.’s expression and IMD, and E3

represents the error percentage between Tan and Fang’s expression and IMD

Date/
Time

IMD
RMW
(nau-
tical
miles)

Proposed
RMW
(nautical
miles)

Willoughby
et al.
RMW
(nautical
miles)

Tan and
Fang
RMW
(nautical
miles)

E1

(%)
E2

(%)
E3

(%)

23/18 85 50.67 39.13 60.71 40.38 53.96 28.57
24/00 58 46.31 35.309 48.309 20.15 39.13 16.70
24/06 58 44.26 32.74 26.103 23.68 43.56 54.99
24/12 58 39.97 30.67 50.06 31.06 47.12 13.68
24/18 38 36.22 28.63 52.17 4.68 24.65 37.28
25/00 38 29.77 27.68 48.74 21.65 27.15 28.26
25/06 38 26.77 25.98 47.18 29.55 31.63 24.15
Mean 53.28 39.13 40.35 42.15 24.45 38.17 29.10

Date/Time
23/18 24/00 24/06 24/12 24/18 25/00 25/06

0

20

40

60

80

Radius of Maximum Wind

Very Severe Cyclonic Storm, Yaas

IMD
Proposed

Willoughby

Tan and Fang

Figure 2.10: VSCS Yaas’s value of RMW given by proposed method, Willoughby et al., Tan
and Fang, and IMD is graphically represented
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Table 2.9: The RMSE value of Our Method with respect to (w.r.t.) IMD, Willoughby et al.
w.r.t. IMD, and Tan and Fang w.r.t. IMD

Name of
TC

Our Method
w.r.t. IMD

Willoughby et
al. w.r.t. IMD

Tan and Fang
w.r.t IMD

Tauktae 10.75 17.14 21.84
Gulab 10.06 12.37 34.69
Mandous 15.9 18.17 32.37
Asani 6.33 12.74 21.73
Sitrang 10.67 14.01 29.68
Jawad 6.73 16.63 28.71
Yaas 17.01 24.91 17.59

Table 2.10: The Mean Absolute Error Percentage value of Our Method with respect to
(w.r.t.) IMD, Willoughby et al. w.r.t. IMD, and Tan and Fang w.r.t. IMD

Name of
TC

Our Method
w.r.t. IMD

Willoughby et
al. w.r.t. IMD

Tan and Fang
w.r.t IMD

Tauktae 19.42 25.99 54.85
Gulab 32.60 41.37 128.62
Mandous 29.63 35.80 79.23
Asani 6.33 12.74 21.73
Sitrang 15.21 18.42 62.679
Jawad 10.12 28.53 62.41
Yaas 24.45 38.17 29.10
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progress. This improvement signifies a significant step in understanding and predicting TC

behavior in the NIO region. Additionally, if the method is adopted, it should be viewed as

a starting point, with opportunities for further enhancement and error reduction.

2.5.2 Result of Method II

We present a comprehensive analysis of the performance of various methodologies for es-

timating the RMW in the context of three specific TCs: Severe Cyclonic Storm Mandous

(SCS Mandous), Severe Cyclonic Storm Sitrang (SCS Sitrang), and Extremely Severe Cy-

clonic Storm Mocha (ESCS Mocha). Our study evaluates these methods by comparing their

error percentages and RMSE based on the data obtained from the IMD.

Table 2.11: Details of Selected Tropical Cyclones for validation

Name of TC Category Time period
Mandous Severe Cyclonic Storm (SCS) 06th˘10th December, 2022
Sitrang Severe Cyclonic Storm (SCS) 22th − 25th October, 2022
Mocha Extremely Severe Cyclonic Storm (ESCS) 9th − 15th May, 2023
Remal Severe Cyclonic Storm (SCS) 24th − 28th May, 2024

SCS Mandous

The Mandous Cyclone (Table 2.11), a disturbing meteorological phenomenon known for its

intense winds and significant impact on coastal regions, served as a primary case study for

our analysis (Division, 2022c). It followed a unique track illustrated in Fig. 2.11. Employing

our proposed method, we achieved an error percentage of 10.33% (refer to Table 2.12)

compared to the RMW data obtained from the IMD. In contrast, the error percentages

for the traditional methods, including Yadav and Das (2024c), Willoughby et al. (2006),

and Tan and Fang (2018), were recorded at 31.24%, 31.13%, and 79.23%, respectively.

Similarly, the RMSE values associated with our method were notably lower at 5.61 (refer
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Figure 2.11: Track of the Selected Tropical Cyclone
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Date/Time
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Figure 2.12: Graphical Representation of Mandous Cyclone value of RMW by our method,
Yadav and Das, Willoughby et al., Tan and Fang, and IMD

to Table 2.16) compared to the respective RMSE values of 14.35, 18.82, and 26.82 derived

from the traditional methods.

The graphical representation in Fig. 2.12 illustrates the comparison between the IMD

and all other model’s results. The relative similarity or decrease in error rates between the

two datasets is apparent, indicating our model’s performance compared to other methods

concerning the IMD data.

The R2 value (Table 2.18) of 0.88 suggests that the proposed model is highly effective

and explains most of the variance in the data. However, the R2 value of 0.27 indicates a

weak model that only explains a small portion of the variance, with room for significant

improvement. The negative R2 values of −0.32 and −1.68 are concerning, as these models

perform worse than a simple mean prediction.
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SCS Sitrang

The Sitrang Cyclone (Table 2.11), characterized by its complex atmospheric dynamics and

profound influence on regional climate patterns, presented an equally crucial case study in

our investigation (Division, 2022a). The track of the TC is illustrated in Fig. 2.11. Our

method demonstrates an error percentage of 10.83% (refer to Table 2.13) compared with

the RMW data from the IMD for the Sitrang Cyclone. Conversely, the error percentages

associated with the Yadav and Das, Willoughby, and Tan and Fang methods were determined

to be 19.62%, 18.42%, and 78.34%, respectively. Correspondingly, the RMSE values for our

method were computed at 7.25 (refer to Table 2.16), highlighting its superior precision

compared to the RMSE values of 9.52, 14.01, and 29.682 associated with the traditional

methodologies.

Fig. 2.13 compares the IMD results to other models’ outcomes. The relative similarity

or decrease in error rates between the two datasets highlights our model’s performance

compared to other methods when considering IMD data.

The R2 value (Table 2.18) of 0.66 suggests that the proposed model is fairly effective,

explaining a substantial portion of the variance in the data. The R2 value of 0.46 indi-

cates a moderate model that captures less than half of the variance, implying the need for

improvement. The negative R2 values of −0.16 and −4.22 are concerning, indicating that

these models perform worse than a simple mean prediction. These negative values suggest

that the models are not capturing the important relationships in the data and may require

significant modifications or complete reevaluation.
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Figure 2.13: Graphical Representation of Sitrang Cyclone value of RMW by our method,
Yadav and Das, Willoughby et al., Tan and Fang, and IMD

ESCS Mocha

ESCS Mocha (Table 2.11), the initial cyclonic storm of 2023, made landfall on Myanmar’s

coast (track of Mocha is shown in Fig. 2.11) with an MSW of 100 knots on May 14th, 2023.

Analyzing the climatological data from 1965 to 2022 reveals that out of approximately 200

cyclonic storms in the BoB, 61 crossed the coasts of Bangladesh and Myanmar during this

period. Comparing recent events, the last Extremely Severe Cyclonic Storm (ESCS) to

impact Myanmar before Mocha was “ESCS GIRI” in 2010. Historical records from the

Indian Meteorological Department show that the most intense storm in the BoB was the

1999 Odisha Super Cyclone, reaching a peak MSW of 140 knots, followed by several others

with peak MSWs ranging from 125 to 130 knots. Mocha Cyclone was not the most intense

cyclonic storm in the Bay of Bengal based on available historical data (Agency, 2012).

Our proposed methodology for determining the RMW yielded an error percentage of

29.84% (refer to Table 2.14), as contrasted with the RMW data acquired from the IMD. In
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stark divergence, traditional approaches, namely those of Yadav and Das, Willoughby, and

Tan and Fang, exhibited error percentages of 38.43%, 53.79%, and 84.66%, respectively.

Likewise, the RMSE values associated with our approach were markedly lower at 19.05

(refer to Table 2.16) compared to the corresponding RMSE values of 23.89, 31.28, and 35.00

derived from conventional methodologies.

The graph in Fig. 2.14 compares the results from the India Meteorological Department

(IMD) with those from other models. Our model performs similarly or with less error than

the others when considering the IMD data.

The R2 value (Table 2.18) of 0.56 suggests that the proposed model is moderately effec-

tive, explaining over half of the variance in the data but still leaving a substantial portion

unexplained. The R2 value of 0.31 indicates a weak model, explaining less than one-third of

the variance and pointing to the need for significant improvement. The negative R values

of −0.61 and −0.46 are concerning, as they indicate that these models perform worse than

simply using the mean of the dependent variable, suggesting fundamental issues with the

model’s ability to capture the data’s underlying patterns.

SCS Remal

The Remal Cyclone, characterized by its complex atmospheric dynamics and profound in-

fluence on regional climate patterns, presents a crucial case study in our investigation (Table

2.11). The track of the TC is illustrated in Fig. 2.11.

Our method demonstrated an error percentage of 20.58% compared to the RMW data

from the IMD for the Remal Cyclone (Table 3.11). In contrast, the error percentages

associated with the Yadav and Das, Willoughby, and Tan and Fang methods were 28.02%,
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Figure 2.14: Graphical Representation of Mocha Cyclone value of RMW by our method,
Yadav and Das, Willoughby et al., Tan and Fang, and IMD

35.73%, and 36.68%, respectively.

The Root Mean Square Error (RMSE) values for our method were computed at 20.75,

underscoring its superior precision compared to the RMSE values of 27.56, 32.00, and 22.93

associated with the traditional methodologies (Table 2.16).

Fig. 2.15 compares the IMD results to the outcomes of other models. The relative

similarity or decrease in error rates between the datasets highlights our model’s improved

performance compared to other methods when evaluated against IMD data.

These results bear significant scientific implications. The consistent outperformance

of our machine learning technique across all the case studies: Mandous, Sitrang, Mocha,

and Remal Cyclones underscores its robustness in estimating RMW in real-world TCs.

Compared to traditional methods, the remarkable reduction in error percentages and RMSE

values substantiates the efficacy of data-driven approaches in meteorological research.

Moreover, these findings emphasize the urgent need for modernizing the field of TC
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Figure 2.15: Graphical Representation of Remal Cyclone value of RMW by our method,
Yadav and Das, Willoughby et al., Tan and Fang, and IMD

analysis, harnessing the potential of advanced computational techniques to enhance our

understanding and predictive capabilities. Our results underscore the promise of machine

learning in revolutionizing the accuracy of RMW estimation, with far-reaching implications

for TC forecasting, disaster preparedness, and climate research. This study contributes

to the evolving landscape of meteorological research, highlighting the potential for innova-

tive methodologies to advance our comprehension of these dynamic and complex weather

phenomena.

The R2 values (Table 2.18) provide insight into the performance of the models. The value

of 0.30 indicates a weak fit, explaining only a small portion of the variance in the data. The

value of 0.15 suggests an even weaker fit, with most of the variability unexplained. The

negative R2 values of −0.22 and −0.65 are particularly concerning, indicating that these

models perform worse than simply using the mean of the dependent variable.

Upon the analysis, we observe that excluding Willoughby’s formula for RMW from the

ensemble increases the error percentage and the root square mean error. This suggests that
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Table 2.16: Root Square Mean Error of all methods concerning IMD

Name Our Method w.r.t. ARCHER w.r.t. ADT w.r.t SATCON w.r.t.
of TC Best Track Best Track Best Track Best Track

Mandous 5.61 14.35 18.82 26.82
Sitrang 7.25 9.52 14.01 29.68
Mocha 19.05 23.89 31.28 35.00
Remal 20.75 27.56 32.00 22.93
Mean 13.16 18.83 24.02 28.60

Table 2.17: Error percentage of all methods concerning IMD

Name Our Method w.r.t. ARCHER w.r.t. ADT w.r.t SATCON w.r.t.
of TC Best Track Best Track Best Track Best Track

Mandous 10.33 31.24 31.13 79.23
Sitrang 10.83 19.62 18.42 78.34
Mocha 29.84 38.43 53.79 84.66
Remal 20.58 28.02 35.73 36.68
Mean 17.89 29.32 34.76 69.72

despite the discrepancy in RMW value, Willoughby’s formula significantly improves the

accuracy of the overall model. So, we have included Willoughby’s formula in the model to

get a more accurate result.

The study of the RMW holds strong implications for research and operational purposes

in TC forecasting and disaster management. Accurate estimation of the RMW is integral

to various applications. In the interest of research, it provides invaluable insights into

the dynamics of TCs, allowing for a deeper understanding of their structure, intensity,

and behavior. By uncovering the complex relationships between the RMW and various

meteorological parameters, researchers can refine existing models and develop new ones

that better capture the complexity of these phenomena.

From an operational perspective, the RMW is a critical parameter for forecasting agencies

and disaster response teams. It directly impacts the intensity and extent of wind and

storm surge hazards associated with TCs, making it a key input for operational models and

forecasts. Accurate RMW estimates enable improved predictions of storm tracks, intensities,
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Table 2.18: Detail of R-squared of all cases

Name Our Method w.r.t. ARCHER w.r.t. ADT w.r.t SATCON w.r.t.
of TC Best Track Best Track Best Track Best Track

Mandous 0.88 0.27 − 0.32 − 1.68
Sitrang 0.66 0.46 − 0.16 − 4.22
Mocha 0.56 0.31 − 0.61 − 0.46
Remal 0.30 − 0.22 − 0.65 0.15

and potential impacts, enhancing the ability to issue timely warnings and advisories. This

is particularly important for vulnerable coastal regions, where even minor changes in the

RMW can have significant implications for preparedness and mitigation measures.

2.6 Conclusion

This chapter focuses on determining the value of RMW across the NIO. There is a lack of

literature addressing RMW in the NIO, which is globally recognized as highly susceptible to

TCs. Through an analysis of historical observations, we investigate the relationship between

the position of the TC’s center (latitude) and the estimated pressure drop Pd to develop a

relation for calculating RMW.

To evaluate the accuracy of our proposed approach, we employ three statistical methods:

error percentage, t-test, and RMSE. By examining various TC cases within the NIO, we find

that our method performs well compared to other methodologies: Willoughby et al. (2006);

Tan and Fang (2018) as observed from reduced mean errors (Table 2.10) and RMSEs (Table

2.9), where t-test favored their method as well. However, it is important to note a limitation

of our method, which is that the value of Pd must be less than or equal to 12 hPa, and no

specific conditions are imposed on the latitude of the TC center within the NIO basin.

After that, we extend this to improve the accuracy using machine learning techniques
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such as neural networks. We take the input as the results of three methods: Willoughby

et al. (2006); Tan and Fang (2018); Yadav and Das (2024c) and target the IMD-provided

RMW data. to evaluate the accuracy of the neural network model, we used two statistical

methods: error percentage and root square mean error. We observed the reduction in error

percentage (Table 2.17) and root square mean error (Table 2.16). So, we can say that the

neural network model estimates the RMW more accurately than the other method.
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Chapter 3

Tropical Cyclone’s Track

“Life is a math equation. In order to gain the most, you have to know how to convert
negatives into positives”

– Albert Einstein

In this chapter1, we explain a technique for estimating the track of tropical storms in the

NIO using a neural network. Instead of satellite images, the method uses results from three

different approaches: the automated rotational center hurricane eye retrieval algorithm, the

advanced Dvorak technique, and the satellite Consensus technique as inputs, with data from

the India Meteorological Department serving as the target for the neural network.

1 The content of this chapter is based on a research paper “Estimating Tropical Cyclone Track with
Neural Network Algorithms: A Data-Driven Approach” (Submitted).
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3.1 Introduction

TCs, formidable atmospheric phenomena characterized by low-pressure systems and orga-

nized convection, traverse vast expanses of open ocean, posing significant risks to coastal

regions. These cyclones’ trajectory, or track, is a fundamental aspect of their dynamics,

influencing their intensity, structure, and ultimate impact upon landfall. Advancements in

meteorological sciences have underscored the critical importance of accurately predicting TC

tracks. These forecasts are pivotal in informing disaster management strategies, facilitating

early warnings, and implementing evacuation protocols (Emanuel, 2003).

Tracking TCs is imperative for mitigating the potentially catastrophic consequences of

their landfall. Authorities can strategically allocate resources, implement evacuation mea-

sures, and enhance overall disaster preparedness through precise track predictions. The

track is the most important in understanding the complex interactions between the cyclone

and its environment, influencing the storm’s intensity, size, and evolution (Kossin et al.,

2014). As a result, advancements in track prediction methodologies directly contribute to

more effective risk assessment and management.

The interdependence between the TC track and its other characteristics is complicated.

Changes in the track can induce alterations in the environmental conditions encountered by

the storm, thus impacting its development and intensity (Emanuel, 2005). The radius of

maximum wind, a key parameter defining the spatial extent of solid winds within the cyclone,

is closely tied to the track as variations in trajectory influence the distribution of wind forces.

Intensity, storm eye, and storm size also exhibit intricate connections with the track; for

instance, shifts in the track may lead to changes in the cyclone’s core structure, affecting

the development and maintenance of the storm eye. Therefore, an accurate understanding
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of the track is essential for comprehending and predicting the dynamics of these additional

characteristics, offering a holistic view of the TC system.

While considerable progress has been made in TC track prediction, limitations persist

in current methodologies. Various authors have identified challenges such as uncertain-

ties in initial conditions, inaccuracies in modeling atmospheric processes, and the inherent

complexity of the dynamic systems involved (Emanuel, 2003; Knapp et al., 2010). These

limitations underscore the ongoing need for innovation in tracking methods to enhance pre-

dictive accuracy and reliability.

In the past two decades, numerous researchers have significantly contributed to advancing

our understanding of TC tracks and associated characteristics. Emanuel (2003) explored the

thermodynamic control of hurricane intensity, shedding light on the intricate relationship

between track and intensity. Kossin et al. (2014) conducted comprehensive analyses of the

poleward migration of TC maximum intensity, providing insights into how tracks influence

the spatial distribution of storm intensity.

Zhang et al. (2019) explored the application of deep learning for TC intensity estimation,

showcasing the potential of artificial intelligence in refining our understanding of cyclone

characteristics. Chen et al. (2020) extended this work by applying deep learning approaches

to hurricane track forecasting, demonstrating the ability of neural networks to capture the

complexities of cyclone dynamics.

Knapp et al. (2010) contributed to improving the International Best Track Archive for

Climate Stewardship (IBTrACS), enhancing our access to high-quality historical cyclone

data for research and analysis. These studies collectively highlight the complicated na-

ture of TCs and underscore the ongoing efforts to improve predictive capabilities in track
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forecasting.

Recent strides in meteorological research have witnessed the increasing incorporation of

artificial intelligence, particularly neural networks, to improve the accuracy of TC charac-

teristics prediction. Neural networks (NN), with their ability to determine complex patterns

and relationships from vast datasets, have become instrumental in refining our understand-

ing of cyclone behavior. Research employing neural networks in TC tracking has shown

promising results, but still room for improvement exists, indicating the potential for these

technologies to enhance predictive capabilities (Zhang and et al., 2019; Chen and et al., 2020;

Yadav and Das, 2022). These innovative approaches leverage neural networks’ adaptability

and learning capabilities, offering new avenues for more accurate and nuanced predictions

of cyclone tracks and associated features.

In this chapter, we develop an NN model to estimate the TC track over the NIO. The

NN model is trained with the input from experimental results of three methodologies to

capture complex patterns and relationships inherent in TC movements in this region. The

significance lies in its potential to enhance forecasting accuracy, aiding meteorologists and

authorities in making more informed disaster preparedness and response decisions. This

research contributes to advancing predictive capabilities crucial for mitigating the impact

of TCs in the NIO. We emphasize the NIO as a conducive environment for forming TCs.

Despite this, the NIO comprises only 7% (Mohapatra et al., 2014; Shaji et al., 2014) of the

world’s total TCs, approximately five per year (Mohapatra et al., 2014; Yadav and Das,

2023a). Specifically, four of these TCs occur in the Bay of Bengal (Mohapatra et al., 2014;

Yadav and Das, 2023a; Vissa et al., 2013; Rajasekhar et al., 2014), while one occurs in

the Arabian Sea (Mohapatra et al., 2014; Yadav and Das, 2023a; Rajasekhar et al., 2014;

Rajeevan et al., 2013).
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3.2 Literature Review

This section briefly explains the methods used to forecast the tracks of TCs. In the literature,

many methods and groups of methods are used to determine the track of TCs, but only a

few are discussed in this section. In practice, these methods often involve a combination of

techniques. We have therefore chosen to group the various methods according to the main

techniques. The main techniques are discussed below:

• Averaging across occurrences.

• Statistical forecasting techniques.

• Techniques based on satellite image interpretation.

• Techniques using artificial neural networks.

3.2.1 Averaging across occurrences

This technique, also called extrapolation, uses the recent movement of a cyclone (usually

the last 6 to 12 hours) to predict where it will go next. It is the simplest way to forecast

a cyclone’s path. In this method, we assume that all factors influencing the cyclone’s

movement stay the same, so it continues moving as it has been (Holland, 2015). The

accuracy of the forecast depends on how accurately we choose the cyclone’s recent positions

and direction. Extrapolation can work well for short-term forecasts (12 to 24 hours), but

it’s not good enough for longer forecasts (Jeffries and Miller, 1993).

Extrapolation (XTRP) is a method of averaging used by the Joint Typhoon Warning

Center (JTWC) in Hawaii, USA. They used this technique from 1970 for about 20 years

to predict cyclones in the Northwest Pacific region. Since each cyclone-prone area has its
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distinct climate and geography, forecasting techniques may perform differently in different

areas, even if similar.

3.2.2 Statistical forecasting techniques

Statistics forecasting methods primarily rely on regression analysis. Over time, various

techniques for statistically predicting TCs have emerged. These methods can be categorized

into five main types.

• climatologically-aware forecasting techniques

• climatology and persistence forecasting techniques (does not include synoptic data)

• statistical synoptic techniques

• steering airflow determination, and

• statistical-dynamical techniques.

Statistical techniques can create short-term (24-hour) and long-term (72-hour) forecasts

by analyzing data sources such as current storms, past storm data, synoptic analysis, and

numerical simulations. These methods are advantageous because they can consider differ-

ent parameters from the available data and require relatively low computational resources

compared to other forecasting techniques.

However, there are drawbacks to using statistical methods. Forecasts generated through

statistical regression tend to represent the average behavior of storms within the data set

used. They perform best when the current synoptic conditions align closely with the typical

climatology of the area. Additionally, these techniques rely heavily on having sufficient and

accurate data to reliably identify trends in cyclone tracks.
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Statistical forecasting may produce unreliable results in sparse or poor historical track

data regions. Errors can occur, especially when:

• Forecasting suggests a northward and eastward movement at low latitudes.

• Forecasting indicates a southward and eastward movement above the subtropical ridge.

• Forecasting predicts the cyclone will stall or exhibit looping motion near the northern

or southern subtropical ridges.

• Major synoptic features deviate significantly from their usual positions.

• Cyclone formation occurs outside the typical cyclone season for the region.

3.2.3 Techniques based on satellite image interpretation

Cyclones usually travel long distances across tropical oceans before reaching land. Since

they spend most of their time over these oceans, gathering detailed information about them

using ground-based observations is hard. However, it’s crucial to understand their formation

and movement patterns to forecast their tracks and landfalls accurately. Satellite images

are critical in providing this information (Goerss and Hogan, 2006; Goerss, 2009; Kidder

et al., 2000; Le Marshall, 1998). While many forecasting techniques rely on satellite images

alongside other data sources, some primarily use satellite images for cyclone track forecasts.

A few examples of techniques based on satellite image interpretation are: Dvorak (1973);

Weir (1982); Mautner et al. (1992); Goerss and Hogan (2006); Goerss (2009); Dvorak (1984).

3.2.4 Techniques using artificial neural networks

Satellites are one of the most important for keeping track of cyclones. They help gather info

about the cyclone and its surroundings. But it’s tough to spot cloud changes and analyze
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all the data from different sensors. This makes it hard for traditional forecasting methods to

predict cyclones accurately. These old methods are complicated, need powerful computers,

and can mess up if they don’t start with the right info. Plus, satellite data is big and often

has a lot of noise.

Because of all this, scientists are looking into new ways to process satellite images and

forecast cyclones. One promising idea is using ANNs. These are simpler and might do a

better job of handling the complex data from satellites.

Artificial neural networks are relatively new in cyclone forecasting compared to other

methods. They’re still being developed and need significant effort to create and train, so

they’re not as commonly used as other techniques. A few examples of techniques based on

the artificial neural networks are: Zhang and et al. (2019); Chen and et al. (2020); Chen

et al. (2018, 2019); Lee et al. (2019); Combinido et al. (2018); Pradhan et al. (2017); Higa

et al. (2021); Chen and Yu (2020); Zhang et al. (2021); Varalakshmi et al. (2023).

3.3 Data and Method

In this section, we have discussed the data used to train and validate the model and the

technique of the proposed model in detail.

3.3.1 Data

The data for this study has been collected as results from three different modeled members

(ARCHER, ADT, and SATCON), which are the input to our model, collected from their re-

spective websites ( ARCHER “https://tropic.ssec.wisc.edu/real-time/archerOnline/

cyclones/”, ADT “https://tropic.ssec.wisc.edu/misc/adt/info.html”, and SATCON
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“https://tropic.ssec.wisc.edu/real-time/satcon/”) for 2014-24. The study primar-

ily focused on the NIO regions for training and validation. To ensure comprehensive data

acquisition, the best track data has been collected from the official websites of the RSMC

for the NIO, which is also known as IMD (https://rsmcnewdelhi.imd.gov.in/) for 2014-

24. We collected the data from 56 TCs (details of TCs are given in Table 3.1) for training

purposes and 6 TCs (details of TCs are given in Table 3.2) for validation purposes.

Our study does not utilize satellite images to estimate the TC track. Instead, our

approach relies on output data generated by three contemporary state-of-the-art track esti-

mation models: ARCHER, ADT, and SATCON. The deliberate exclusion of satellite images

is acknowledged, highlighting our dependence on the pre-existing outputs produced by these

well-established models.

3.3.2 Method

The primary aim of this chapter is to develop a model alongside the results obtained from

the three methodologies (ARCHER, ADT, and SATCON) to obtain a single result. The

proposed model estimates demonstrate a remarkable improvement over individual member-

provided estimates and a simple arithmetic mean of those estimates. This improvement is

substantiated by rigorous scientific analyses, revealing the model’s ability to discern patterns

and synthesize information more effectively than individual estimators. Notably, the model’s

performance is on par with established traditional methodologies. The brief descriptions of

the current members in our model are as follows:

• ARCHER (Automated Rotational Center Hurricane Eye Retrieval):

The ARCHER estimates TC characteristics using the ATMS-derived MSLP anomaly,

TC eyewall vigour, and the inner core Tb gradient (maximum of either channel 8 or
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Table 3.1: Details of Tropical Cyclone for training purpose

S. No. Name of Tropical Cyclone Category Time period
1 Depression Depression 04 - 07 January 2014
2 Depression Depression 21 - 23 May 2014
3 Nanauk Cyclonic Storm 10 - 14 June 2014
4 Deep Depression Deep Depression 03 - 07 August 2014
5 Hudhud Very Severe Cyclonic Storm 07 - 14 October 2014
6 Nilofar Very Severe Cyclonic Storm 25 - 31 October 2014
7 Deep Depression Deep Depression 05 - 08 November 2014
8 Ashobaa Cyclonic Storm 07 - 12 June 2015
9 Komen Cyclonic Storm 26 July - 02 August 2015
10 Deep Depression Deep Depression 09 - 12 October 2015
11 Chapala Extremely Severe Cyclonic Storm 28 October - 04 November 2015
12 Megh Extremely Severve Cyclonic Storm 05 - 10 November 2015
13 Deep Depression Deep Depression 08 - 10 November 2015
14 Roanu Cyclonic Storm 17 - 22 May 2016
15 Depression Depression 27 - 29 June 2016
16 Deep Depression Deep Depression 09 - 12 August 2016
17 Deep Depression Deep Depression 16 - 21 August 2016
18 Kyant Cyclonic Storm 21 - 28 October 2016
19 Depression Depression 02 - 06 November 2016
20 Nada Cyclonic Storm 29 November - 02 December 2016
21 Vardhah Very Severe Cyclonic Storm 06 - 13 December 2016
22 Marrutha Cyclonic Storm 15 - 17 April 2017
23 Mora Severe Cyclonic Storm 28 - 31 May 2017
24 Deep Depression Deep Depression 11 - 13 June 2017
25 Depression Depression 18 - 19 July 2017
26 Depression Depression 26 - 27 July 2017
27 Deep Depression Deep Depression 09 - 10 October 2017
28 Depression Depression 19 - 22 October 2017
29 Ockhi Very Severe Cyclonic Storm 29 November - 06 December 2017
30 Deep Depression Deep Depression 06 - 09 December 2017
31 Sagar Cyclonic Storm 16 - 21 May 2018
32 Mekunu Extremely Severe Cyclonic Storm 21 - 27 May 2018
33 Daye Cyclonic Storm 19 - 22 September 2018
34 Luban Very Severe Cyclonic Storm 06 - 15 October 2018
35 Gaja Very Severe Cyclonic Storm 10 - 19 November 2018
36 Fani Extremely Severe Cyclonic Storm 26 April – 4 May 2019
37 Vayu Very Severe Cyclonic Storm 10 – 17 June 2019
38 Hikka Very Severe Cyclonic Storm 22 – 25 September 2019
39 Kyarr Super Cyclonic Storm 24 October – 02 November 2019
40 Maha Extremely Severe Cyclonic Storm 30 October – 07 November 2019
41 Pawan Cyclonic Storm 02 - 07 December 2019
42 Deep Depression Deep Depression 03 - 05 December 2019
43 Amphan Super Cyclonic Storm 16 - 21 May 2020
44 Nisarga Severe Cyclonic Storm 01 - 04 June 2020
45 Gati Very Severe Cyclonic Storm 21 - 24 November 2020
46 Tauktae Extremely Severe Cyclonic Storm 14th-19th May, 2021
47 Yaas Very Severe Cyclonic Storm 23 – 28 May, 2021
48 Gulaab Cyclonic Storm 24 - 28 September 2021
49 Shaheen Severe Cyclonic Storm 30 September – 4 October 2021
50 Depression Depression 10 - 11 November 2021
51 Deep Depression Deep Depression 03 - 06 March 2022
52 Asani Severe Cyclonic Storm 07 - 12 May 2022
53 Depression Depression 12 - 13 August 2022
54 Depression Depression 14 - 16 August 2022
55 Sitrang Cyclonic Storm 22-25 October 2022
56 Deep Depression Deep Depression 14-17 December 2022
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Table 3.2: Details of Tropical Cyclone for Validation purpose

Name of Tropical Cyclone Category Time period
Michaung Severe Cyclonic Storm 01 - 06 December 2023

Tej Extremely Severe Cyclonic Storm 20 - 24 October 2023
Mandous Severe Cyclonic Storm 06 - 10 December 2022
Biparjoy Extremely Severe Cyclonic Storm 06 - 19 June 2023
Mocha Extremely Severe Cyclonic Storm 09 - 15 May 2023
Remal Severe Cyclonic Storm 24 - 28 May 2024

9) (Velden and Herndon, 2020).

• ADT (Advanced Dvorak technique):

The ADT is a computer-based algorithm meticulously crafted to estimate TC charac-

teristics by analyzing geostationary satellite infrared imagery. It is widely adopted by

operational TC analysis and forecasting centers across the globe to assist in gauging

TC intensity, particularly in oceanic regions where direct measurements are unavail-

able. Originating from the earlier versions introduced by Olander and Velden (2007),

the algorithm was initially designed to emulate the Dvorak technique closely. This

traditional method involves a trained analyst applying pattern-matching and clas-

sification schemes to satellite imagery for TC characteristic estimation. Over time,

the ADT algorithm has evolved into an operational tool endorsed and maintained by

NOAA/NESDIS. It has become a reliable resource for providing real-time, objective

TC characteristics guidance to operational TC centers worldwide.

• SATCON (Satellite Consensus):

The SATCON, crafted by CIMSS, integrates the ADT estimation derived from Geo-

stationary Satellites with other estimates obtained during polar-orbiting satellite over-

passes. This combination yields a comprehensive estimation of TC characteristics on

a global scale, as discussed in studies by Herndon et al. (2010); Velden and Herndon

(2014); Goyal et al. (2017); Velden and Herndon (2019, 2020); Ahmed et al. (2022);

Yadav and Das (2024a)

In Figure 3.1, the high-level flowchart of the applied methodology is given. Each of the

components depicted in Figure 3.1 is further analyzed in Table 3.3, while the architecture
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Figure 3.1: Flowchart of the proposed methodology

of our NN model is illustrated in Figure 3.2. Table 3.4 gives the NN’s layer details.

Our methodology employs a Neural Network training paradigm utilizing 1-minute in-

terval data paired with corresponding labels. For validation, we adopt 3-minute averages

of the data, computed by averaging values over three consecutive 1-minute intervals. Sub-

sequently, the trained NN generates predictions or classifications based on these 3-minute

averages. Performance evaluation entails comparing these predictions with the actual 10-

minute averaged data. Consistency in data preprocessing and meticulous handling of time

intervals are imperative considerations maintained throughout the training and verification
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Figure 3.2: Architecture of the Proposed Neural Network, where X1, X2, and X3 are input
and Y is the output
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Table 3.3: Whole process of proposed method

Section Explanation
Import Statements Libraries like NumPy (Harris et al., 2020), Ten-

sorFlow (Abadi et al., 2016), and Keras (Chollet
et al., 2015) are imported.

Placeholder Data Experimental and original values are defined as
NumPy arrays.

Data Combination
and Normalization

Experimental values are combined and normalized
using StandardScaler.

K-fold cross-
validation

To provide a comprehensive performance estimate
and reduce the risk of overfitting (Nti et al., 2021;
Pohjankukka et al., 2017).

NN Model Definition Sequential model with three hidden layers,
LeakyReLU activation, Batch Normalization, and
Dropout for regularization. The output layer has
one neuron for regression.

Layer Details Refer to the Table 3.4 for details on each layer in
the neural network.

Optimizer Definition Use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate = 0.001.

Model Compilation Compiles the model with mean squared error loss
and mean absolute error as metrics.

Model Training Trains the model with specified epochs=6000,
batch size=64, and verbose=0.

Model Evaluation Following training, the model is evaluated using
the trained neural network to predict the experi-
mental values. The mean absolute percentage and
root mean square errors are calculated to assess
the model’s accuracy and performance.

phases Yadav and Das (2024b).

To check the accuracy of our model, we use three statistical methods: t-test, error

percentage, and root mean square error. Using these statistical methods, we can say that

our model is more efficient and accurate than the three methods: ADT, ARCHER, and

SATCON. Section 2.4.1 provides a detailed discussion of the t-test, error percentage, and

root square mean error.
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Table 3.4: Layer Details of the Neural Network

Layer Details
Input Layer Dense(256, input_shape = (3, )): Input layer with

256 neurons and input shape of (3, ).
Activation Layer Leaky ReLU (alpha=0.3): Activation using Leaky

ReLU with a small negative slope (alpha=0.3).
Batch Normalization
Layer

BatchNormalization(): Normalizes inputs for sta-
bility.

Dropout Layer Dropout(0.4): Dropout layer with a 40% dropout
rate for regularization

Hidden Layer 2 Dense(512): The second hidden layer contains 512
neurons.

Activation Layer LeakyReLU(alpha=0.3): Leaky ReLU activation.
Batch Normalization
Layer

BatchNormalization(): Batch normalization layer.

Dropout Layer Dropout(0.4): Dropout layer with a 40% dropout
rate.

Hidden Layer 3 Dense(256): Third hidden layer with 256 neurons.
Activation Layer LeakyReLU(alpha=0.3): Leaky ReLU activation.
Batch Normalization
Layer

BatchNormalization(): Batch normalization layer.

Dropout Layer Dropout(0.4): Dropout layer with a 40% dropout
rate.

Output Layer Dense(1): Output layer with a single neuron for
regression.

3.4 Discussion of Results

In this study, we conduct a comprehensive analysis to assess the effectiveness of various

methodologies for estimating the TC track within the specific TCs: Severe Cyclonic Storm

Michaung (SCS Michaung), Extremely Severe Cyclonic Storm Tej (ESCS Tej), Severe Cy-

clonic Storm Mandous (SCS Mandous), Extremely Severe Cyclonic Storm Biparjoy (ESCS

Biparjoy), Extremely Severe Cyclonic Storm Mocha, and Severe Cyclonic Storm Remal (SCS

Remal) (details of the time period of selected TC is given in Table 3.2). Our evaluation

encompasses a comparative study of error percentages and RMSE concerning the data ob-

tained from the IMD. Additionally, we incorporate the t-test results to provide a statistical
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measure of the significance of observed differences between the methodologies.

SCS Michaung

The sixth cyclone with a maximum sustained wind speed (MSW) of ≥ 34 knots (≥ 62

kmph) occurred over the NIO in 2023. Over the past 33 years (1990-2022), approximately

13 cyclones formed over the Bay of Bengal (BoB) in December. Michaung did not exhibit

rapid intensification or weakening throughout its life cycle. The system reached its peak

intensity of 55 knots (100-110 kmph) at 1200 UTC (1730 IST) on December 4th, 2023, with

an estimated central pressure of 986 hPa and a pressure drop of about 16 hPa. Subsequently,

it weakened slightly at 1800 UTC on December 4th, 2023, upon entering an area with a

slightly lower sea surface temperature.

The cyclone Michaung followed a track with two recurvatures during its existence. Ini-

tially, it recurved from a west-northwestward movement to northwestwards around 1730

hours IST/1200 UTC on December 2nd, 2023. Another recurvature occurred when it

changed its track from northwestward to north-northwest/northward from the evening of

December 4th, 2023 (Division, 2023b).

Applying the suggested methodology resulted in an error rate of 0.78% for latitude and

0.37% for longitude (refer to Table 3.5), compared to the TC track data obtained from IMD.

In contrast, traditional approaches such as ARCHER, ADT, and SATCON exhibited higher

error rates (see Table 3.12) with 1.34%, 1.40%, and 1.40% for latitude, and 0.79%, 0.86%,

and 0.86% for longitude, respectively. Additionally, the proposed method demonstrated

significantly reduced RMSE values at 0.13 and 0.38 for latitude and longitude, respectively

(see Table 3.13), compared to the corresponding RMSE values of 0.23, 0.26, and 0.26 for
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Figure 3.3: The result of the proposed method for calculating the tropical cyclone track of
the SCS Michaung with other methods is shown graphically.

latitude and 0.66, 0.76, and 0.76 for longitude from conventional methods. The visual

representation of these findings is presented in Fig. 3.3.

ESCS Tej

In 2023, the initial cyclone of the post-monsoon season and the second cyclone occurred

over the Arabian Sea (AS). This event marked the third cyclone to land in Yemen since

1965, following Very Severe Cyclonic Storm (VSCS) Luban and Cyclonic Storm (CS) Sagar

in 2018. Notably, from October 20 to October 24, 2023, two cyclones named “Tej” and

“Hamoon” simultaneously developed over the Arabian Sea and the BoB.

The simultaneous formation of cyclones in both basins is considered a rare phenomenon.

Climatologically, the AS witnessed the development of approximately 66 TCs with a Maxi-

mum Sustained Wind (MSW) of 62 km/h from 1965 to 2022. Tej followed a west-northwestward

trajectory until the afternoon of October 21, 2023 (1430 hours IST/0900 UTC). Subse-

quently, it altered its course to move northwestward until 0000 UTC of October 23, 2023,
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Figure 3.4: The result of the proposed method for calculating the tropical cyclone track of
the ESCS Tej with other methods is shown graphically.

followed by a north-northwestward movement until landfall at 2100 UTC on October 23,

2023. After landfall, TEJ continued its trajectory, nearly moving westwards (Division,

2023a).

By implementing the proposed methodology, we achieved error percentage metrics of

0.57% and 0.20% for latitude and longitude, respectively, as detailed in Table 3.6, compared

to the TC track data obtained from the IMD. In contrast, traditional approaches such as

ARCHER, ADT, and SATCON exhibited higher error rates, as indicated in Table 3.12,

with latitude errors of 1.67%, 1.02%, and 1.02%, and longitude errors of 1.14%, 0.51%, and

0.51%, respectively.

Furthermore, the proposed method demonstrated notably reduced RMSE values at 0.10

and 0.15 for latitude and longitude, respectively, as illustrated in Table 3.13. This contrasts

sharply with the corresponding RMSE values for latitude (0.26, 0.18, and 0.18) and longitude

(0.68, 0.31, and 0.31) obtained from conventional methods. The visual representation of

these findings is presented in Fig. 3.4.
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SCS Mandous

Cyclone Mandous was a severe cyclonic storm that formed over the Bay of Bengal in Decem-

ber 2022. Making landfall in Tamil Nadu, India brought heavy rainfall and strong winds to

the region. The cyclone caused significant damage to property and infrastructure, affecting

the lives of thousands. Due to its slow movement, Mandous dumped copious amounts of

rain, flooding several areas. While no major loss of life was reported, the economic impact of

the cyclone was substantial, particularly for the agricultural sector (Yadav and Das, 2024c).

Our proposed methodology significantly outperformed traditional methods (ARCHER,

ADT, and SATCON) in estimating TC tracks. As detailed in Table 3.7, our method achieved

remarkably low error rates of 0.84% and 0.11% for latitude and longitude, respectively,

compared to IMD TC track data. Conversely, traditional approaches displayed substantially

higher error percentages (Table 3.12). Furthermore, our method exhibited significantly

lower RMSE values for latitude and longitude (Table 3.13) than conventional methods. The

graphical comparison of these results is provided in Fig. 3.5, clearly demonstrating the

superiority of our approach.

A t-test analysis reveals that our model performs better than the other approaches.

ESCS Biparjoy

Cyclone Biparjoy was a powerful and erratic TC that formed over the Arabian Sea in June

2023. A significant weather event caused substantial damage in India and Pakistan. Biparjoy

was notable for its long lifespan and rapid intensification. Despite causing disruptions and

loss of life, extensive preparedness and evacuation efforts helped mitigate the overall impact.
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CHAPTER 3. TROPICAL CYCLONE’S TRACK Monu

Figure 3.5: The result of the proposed method for calculating the tropical cyclone track of
the Mandous cyclone with other methods

The cyclone served as a reminder of the increasing frequency and intensity of such weather

events due to climate change.

Our proposed methodology significantly outperformed traditional methods (ARCHER,

ADT, and SATCON) in estimating TC tracks. As detailed in Table 3.8, 3.9, our approach

achieved error percentages of only 0.62% for latitude and 0.20% for longitude, compared

to substantially higher error rates from conventional methods (Table 3.12). Moreover, our

method yielded significantly lower Root Mean Square Error (RMSE) values of 0.16 for

latitude and 0.10 for longitude (Table 3.13), underscoring its superior accuracy. These

results are visually depicted in Fig. 3.6.

A t-test-based statistical analysis shows that our recommended approach betters the

other approaches.
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Figure 3.6: The result of the proposed method for calculating the tropical cyclone track of
the Biparjoy cyclone with other methods

ESCS Mocha

Cyclone Mocha was an extremely severe cyclonic storm that wreaked havoc in the Bay of

Bengal in May 2023. Originating as a low-pressure area, it rapidly intensified into a powerful

cyclone and landed between Myanmar and Bangladesh. Known for its destructive winds

and heavy rainfall, Mocha caused significant damage to infrastructure, agriculture, and

livelihoods. The cyclone displaced thousands and resulted in numerous casualties. Despite

early warnings and evacuation efforts, the storm’s intensity and rapid intensification made

it a challenging disaster to mitigate. Mocha is a stark reminder of the increasing threat of

extreme weather events due to climate change.

Our proposed methodology significantly outperformed traditional methods (ARCHER,

ADT, and SATCON) in estimating TC tracks. As detailed in Table 3.10, our method

achieved remarkably low error rates of 0.62% and 0.09% for latitude and longitude, re-
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Figure 3.7: The result of the proposed method for calculating the tropical cyclone track of
the Mocha cyclone with other methods

spectively, compared to IMD TC track data. In contrast, traditional methods exhibited

considerably higher error rates, as shown in Table 3.12.

Furthermore, our method demonstrated superior performance in terms of RMSE, with

values of 0.15 and 0.10 for latitude and longitude, respectively (Table 3.13). These results

are substantially lower than those obtained from conventional approaches. Fig. 3.7 provides

a graphical comparison of these findings.

The approach we propose is better than the other approaches, according to statistical

analysis using a t-test.
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SCS Remal

Cyclone Remal was a severe cyclonic storm that struck the coastlines of West Bengal, India,

and Bangladesh in May 2024. It was an early and unexpectedly strong cyclone, causing

widespread damage and disruption in the region. Remal brought heavy rainfall, strong

winds, and storm surges, leading to significant loss of life and property damage. The cy-

clone’s impact was particularly severe in Bangladesh, where it was considered the costliest

TC in the country’s history. The rapid intensification of Remal highlighted the increasing

unpredictability of extreme weather events in the region.

Our proposed methodology significantly outperformed traditional methods (ARCHER,

ADT, and SATCON) in estimating TC tracks. As detailed in Table 3.11, our approach

achieved error percentages of only 0.45% for latitude and 0.24% for longitude, compared

to substantially higher error rates from conventional methods (Table 3.12). Moreover, our

method yielded significantly lower Root Mean Square Error (RMSE) values of 0.11 for

latitude and 0.25 for longitude (Table 3.13), underscoring its superior accuracy. These

results are visually depicted in Fig. 3.8.

A t-test analysis reveals that our model performs better than the other approaches.

Traditional methods in TC forecasting often rely on simplistic linear or statistical models

that may struggle to capture the complex, non-linear relationships inherent in TC behavior.

These methods typically involve manual feature selection and may lack the adaptability to

handle the sheer volume and diversity of data available in modern meteorological datasets.

In contrast, an NN-based model trained on three experimental results, ARCHER, SATCON,

and ADT of the TC track can provide more accurate estimation than traditional methods

due to its ability to handle non-linear relationships, process large and varied datasets, adapt
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Figure 3.8: The result of the proposed method for calculating the tropical cyclone track of
the Remal cyclone with other methods

to changing conditions, and generalize well to unseen data.

3.5 Conclusion

The study of the TC track represents a critical frontier in meteorological research and disas-

ter management. The track of these powerful atmospheric phenomena is intricately linked

to various characteristics, including intensity, storm eye, storm size, and the radius of max-

imum wind, collectively influencing the potential impact on the coastal regions. Accurate

estimation of the TC track is essential for effective disaster preparedness, resource allocation,

and timely evacuation measures.

Recent advancements in meteorological sciences have seen the integration of artificial

intelligence, particularly neural networks, to enhance the accuracy of estimation of TC

characteristics.
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Our study proposes an NN-based model to estimate TC tracks, emphasizing the NIO.

The methodology we employed is informed by a variety of scientifically validated practices

in the field of machine learning and neural network optimization. Specifically, we employed

normalization techniques, such as StandardScaler, to stabilize the learning process by en-

suring all input features contribute proportionally, as discussed by Ioffe and Szegedy (2015).

Including Leaky ReLU activation functions addressed issues like the vanishing gradient prob-

lem, a concern raised by Nair and Hinton (2010). Dropout layers, inspired by Srivastava

et al. (2014), prevented overfitting by randomly dropping neurons during training. Consid-

ering the findings of Goodfellow et al. (2016), we optimized training parameters to balance

convergence and computational efficiency. Our use of evaluation metrics, like error percent-

age and RMSE, was guided by statistical learning theory (Hastie et al., 2009), providing

comprehensive insights into model performance. Visualization techniques outlined by Hertz

et al. (1991) offered invaluable aids for interpreting and validating our model’s predictions

and training progress. Our adherence to these scientifically grounded principles ensures our

NN-based model’s robustness, accuracy, and generalization capability.

Our model exhibits superior performance compared to individual traditional methodolo-

gies. We conducted three statistical tests to show that our model was more accurate: t-test,

error percentage analysis, and RMSE. The results presented in Table 3.12 demonstrate a

reduced error percentage, while Table 3.13 highlights a lower RMSE, providing evidence of

the model’s enhanced accuracy.
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Table 3.12: Detail of error percentage of both cases

Name of
tropical
cyclone

Component
of Track

Proposed
Method
w.r.t. Best
Track

ARCHER
w.r.t. Best
Track

ADT w.r.t
Best Track

SATCON
w.r.t. Best
Track

Michaung Latitude 0.78 1.34 1.40 1.40
Michaung Longitude 0.37 0.79 0.86 0.86
Tej Latitude 0.57 1.67 1.02 1.02
Tej Longitude 0.20 1.14 0.51 0.51
Madous Latitude 0.84 4.12 1.65 1.65
Mandous Longitude 0.11 0.63 0.20 0.20
Biparjoy Latitude 0.62 0.91 0.93 0.94
Biparjoy Longitude 0.13 0.23 0.27 0.27
Mocha Latitude 0.62 1.20 0.94 0.91
Mocha Longitude 0.09 0.14 0.17 0.18
Remal Latitude 0.45 1.00 0.88 0.93
Remal Longitude 0.24 0.48 0.44 0.45
Mean - - 0.41 1.13 0.68 0.70

Table 3.13: Detail of root square mean error of latitude of both cases

Name of
tropical
cyclone

Component
of Track

Proposed
Method
w.r.t. Best
Track

ARCHER
w.r.t. Best
Track

ADT w.r.t
Best Track

SATCON
w.r.t. Best
Track

Michaung Latitude 0.13 0.23 0.26 0.26
Michaung Longitude 0.38 0.66 0.76 0.76
Tej Latitude 0.10 0.26 0.18 0.18
Tej Longitude 0.15 0.68 0.31 0.31
Mandous Latitude 0.10 0.72 0.20 0.20
Mandous Longitude 0.12 0.58 0.22 0.22
Biparjoy Latitude 0.16 0.20 0.28 0.28
Biparjoy Longitude 0.10 0.20 0.34 0.34
Mocha Latitude 0.15 0.21 0.25 0.24
Mocha Longitude 0.10 0.16 0.20 0.22
Remal Latitude 0.11 0.29 0.21 0.21
Remal Longitude 0.25 0.45 0.41 0.42
Mean - - 0.14 0.38 0.30 0.31
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Chapter 4

Analyze the SATCON Algorithm to Estimate the

Tropical Cyclone’s Intensity

“Mathematics is not about numbers, equations, computations, or algorithms: it is about
understanding”

– William Paul Thurston

In this chapter1, we analyze the performance of the Satellite Consensus (SATCON)

algorithm to estimate the intensity of typhoons over the West Pacific basin. We compare the

how well SATCON algorithm’s performance in pre-monsoon and post-monsoon. Further,

we analyze the performance according to different categories of TCs like tropical storms,

severe tropical storms, typhoons, very strong typhoons, and violent typhoons.

1 The content of this chapter is based on a research paper “Analyze the SATCON algorithm’s capability
to estimate tropical storm intensity across the West Pacific basin”, Journal of Earth System Science, SCIE,
IF: 1.3.
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4.1 Introduction

Typhoon observation by meteorological satellites has largely reduced the challenge of detec-

tion. A constellation of geostationary (GEO) and polar-orbiting platforms regularly scans

the tropics, and sensors with better spatial and spectrum sampling are used. Numerous

types of multispectral photography can be used to qualitatively track and record typhoons’

location, genesis, occurrence, and dissipation. Estimating the present typhoon intensity

from space-based platforms is a little more complicated. It is possible to perform subjective

analysis of typhoon cloud patterns using infrared (IR) images employing trained analysts

and empirically supported guidelines. To analyze the CI and anchor typhoon intensity

catalogs (or “best tracks”) in the absence of in situ intensity observations, operational ty-

phoon centers have depended extensively on the time-tested Dvorak technique (Dvorak,

1975, 1984) for many years. As crowdsourcing techniques demonstrate, even inexperienced

analysts can accurately estimate the CI (Hennon et al., 2015). The inherent subjectivity

in the interpretation of the images and restrictions on the capacity to detect structured

convective structure beneath the normally massive and dense typhoon cirrus canopy, how-

ever, pose difficulties to IR-based cloud pattern recognition techniques (Velden et al., 2006;

Knaff et al., 2010). Techniques that make use of cloud-penetrating microwave (MW) sensors

(Brueske and Velden, 2003; Demuth et al., 2004; Bankert and Cossuth, 2016; Jiang et al.,

2019) can be helpful in this area, but they also have drawbacks.

Obtaining accurate CI estimations is crucial for various reasons: The operational typhoon

forecast process begins with the CI; it is one of the key input variables required to initialize

both dynamical and statistical typhoon forecast models; and it is crucial for understanding

typhoon climatologies and trends to have precise best-track intensities (Velden and Herndon,
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2020). Forecasters (or best-track analysts) frequently struggle with the issue of competing

satellite-based CI estimations with significant spread/uncertainty. Taken as a solution, a

common conservative strategy is to average the estimations (simple consensus). A “smarter”

consensus procedure, depending on the situational performance of each consensus attribute,

is preferred since it further minimizes the CI estimate uncertainty.

Multiple satellite-fitted sensor-response data-based observation techniques are combined

into an ensemble model, SATCON, created by the Cooperative Institute for Meteorological

Satellite Studies (CIMSS). Below are basic explanations of SATCON’s methodology.

Each attribute has situational strengths and weaknesses, represented by their separate

intensity estimation error distributions, from which the individual attribute weights utilized

in the SATCON process of finding a CI are created. Therefore, each attribute’s performance

behavior can be categorized into situational bins. For example, using the IR images of the

scene type, the ADT technique (Olander and Velden, 2019) estimates the typhoon’s intensity.

When the eye scene is clear, it provides the best estimation; nevertheless, if it is not clear,

the estimation is poor, or the outcome may be compromised. To best weight all of the

available intensity estimates into a single, superior consensus estimate, SATCON uses this

situational information. The typhoon intensity measurements, Mean Sea Level Pressure

(MSLP), and Maximum Sustained Wind (MSW) have distinct performance traits, leading

to various SATCON weighting algorithms for each metric.

Sharing information between sensors is another aspect of the SATCON process. Each

SATCON attribute contains distinctive parametric data that the other coinciding attribute

might use to evaluate the situational bins and modify the intensity estimates. For example,

when an eye is observable in the IR, ADT generates typhoon eye size estimations (Kossin
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et al., 2007).

Additional input sources to the SATCON process can come from operational TC centers

via the Automated Tropical Cyclone Forecasting System (ATCF; Sampson and Schrader

(2000)). These sources can include storm motion and the environmental pressure used in

the pressure > wind. For storms that significantly differ from an average typhoon motion

of roughly 11 kts (1kts ≈ 0.51ms−1), the methodology from (Schwerdt et al., 1979) can be

used to make minor modifications to the final predicted MSW values.

4.2 Data and Methodology

We verified the “SATCON” output data by comparing it to the data provided by RSMC,

Tokyo, of typhoon intensity for all typhoons between 2017 and 2021 over the West Pa-

cific (particularly considering these storms that affect Japan). The SATCON algorithm’s

data collects from UW-CIMSS (http://tropic.ssec.wisc.edu/misc/satcon) and RSMC

provided data collected from the RSMC, Tokyo (jma.go.jp/jma/jma-eng/jma-center/

rsmc-hp-pub-eg/RSMC_HP.htm), to determine the optimal track parameters for typhoons.

The number of typhoon cases included in the study is listed in Table 4.1 (Tokyo, 2017, 2018,

2019, 2020, 2021). 26 typhoons are therefore investigated in the current study. While there

were additional typhoons within this timeframe, we have chosen to exclude them from our

consideration.

In this paper, we examine three-hour observation data as a single case. For example,

during Typhoon’s lifetime, we collected eight three-hourly daily observations and considered

these data as eight different cases.

Multiple satellite-fitted sensor response data-based observation techniques are combined
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Table 4.1: In this study, the following typhoons were considered over the West Pacific Basin

SI. No. Typhoon Season Date Maximum Wind Classification
Name Speed (knots)

2021
1 Surigae Pre-Monsoon 12-30 Apr. 120 kts Violent Typhoon
2 IN-FA Pre-Monsoon 15-30 Jul. 85 kts Typhoon
3 Chanthu Post-Monsoon 05-20 Sept. 115 kts Violent Typhoon
4 Rai Post-Monsoon 11-21 Dec. 105 kts Very Strong Typhoon

2020
1 Vongfone Pre-Monsoon 08-18 May 85 kts Typhoon
2 Maysak Post-Monsoon 27 Aug.-07 Sept. 95 kts Very Strong Typhoon
3 Haishen Post-Monsoon 30 Aug.-10 Sept. 105 kts Very Strong Typhoon
4 Goni Post-Monsoon 26 Oct.-06 Nov. 115 kts Violent Typhoon
5 Molave Post-Monsoon 22-29 Oct. 90 kts Very Strong Typhoon

2019
1 Nari Pre-Monsoon 24-28 Jul. 35 kts Tropical Storm
2 Danas Pre-Monsoon 14-23 Jul. 45 kts Tropical Storm
3 Lekima Post-Monsoon 02-15 Aug. 105 kts Very Strong Typhoon
4 Wutip Post-Monsoon 08 Feb.-02 Mar. 105 kts Very Strong Typhoon
5 Hagibis Post-Monsoon 04-14 Oct. 105 kts Very Strong Typhoon
6 Halong Post-Monsoon 01-10 Nov. 115 kts Violent Typhoon

2018
1 Jelawat Pre-Monsoon 24 Mar.-01 Apr. 105 kts Very Strong Typhoon
2 Prapiroon Pre-Monsoon 28 Jun.-05 Jul. 65 kts Typhoon
3 Maria Pre-Monsoon 03-13 Jul. 105 kts Very Strong Typhoon
4 Shanshan Post-Monsoon 02-11 Aug. 70 kts Typhoon
5 Trami Post-Monsoon 20 Sept.-03 Oct. 105 kts Very Strong Typhoon
6 Kong-Rey Post-Monsoon 28 Sept.-07 Oct. 115 kts Violent Typhoon

2017
1 Noru Pre-Monsoon 19 July-12 Aug. 95 kts Very Strong Typhoon
2 Talim Post-Monsoon 08-22 Sept. 95 kts Very Strong Typhoon
3 Sanvu Post-Monsoon 26 Aug.-06 Sept. 80 kts Typhoon
4 Lan Post-Monsoon 15-23 Oct. 100 kts Very Strong Typhoon
5 Hato Post-Monsoon 19-24 Aug. 75 kts Typhoon

into an ensemble model known as SATCON. The studies of the Geostationary-based Ad-

vanced Dvorak Technique and the Passive Microwave signal-based advanced sounding and

imaging unit designed by the CIMSS. It provides a consensus intensity estimation of ty-

phoons across all the basins. It uses a statistically determined weighting system that max-

imizes (minimizes) to evaluate consensus intensity for various typhoon structures (weak-

nesses). The intensity computation is built from a series of formulae dependent on the
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number of attributes available, and the SATCON weights are proportional to the RMSE

attribute values for the selected scenarios.

The three-part equation for SATCON (Velden and Herndon, 2020) is

SATCON =
W1W2(W1 +W2)E3 +W1W3(W1 +W3)E2 +W2W3(W3 +W2)E1

W1W2(W1 +W2) +W1W3(W1 +W3) +W3W2(W3 +W2)

where En is the attribute n’s intensity estimations and Wn is the attribute n’s weight

(RMSE). The weights of attributes 1, 2, and 3 are W1, W2, and W3, and the intensity

estimations of attributes 1, 2, and 3 are E1, E2, and E3.

The situational RMSE values for each attribute used to calculate the intensity estimate

are known as attribute weights. The SATCON weighting structure’s composition is in-

tended to give more weight to a situational-dependent attribute with the highest efficiency

(among the available attributes). For instance, the equation above shows how higher RM-

SEs (weights) of E1 and E2 are added to E3. Thus adding greater weight to the specific

estimation E3, if E3 is the best-performing attribute in a given context. For those more

uncertain estimates, less weight (relatively smaller RMSEs) is to be allocated (E1 and E2)

(Velden and Herndon, 2020).

One of the finest methods for estimating the typhoon intensity over the Atlantic and

NIOs is the SATCON (Ahmed et al., 2022).

To evaluate the accuracy of the intensity forecasting and the effectiveness of the CIMSS-

SATCON algorithm, 26 typhoons are used to validate the method (table 4.1). Comparison

of RSMC, Tokyo (jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm)
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provided intensity estimation data with SATCON intensity estimates.

Between the estimation of estimated central pressure (ECP) and Vmax based on RSMC,

Tokyo provided data, and SATCON calculation, various variables, which are root mean

square difference (RMSD), actual mean difference (bias), and mean absolute difference

(MAD), are determined. These variables are estimated for the various stages of a typhoon’s

“T” number, as specified in the RSMC, Tokyo-provided intensity data, inside each three-

hourly observation that is at 00, 03, 06, 09, 12, 15, and 21 UTC throughout the whole period

of a typhoon. The mean MAD, RMSD, and bias of intensity estimations across the West

Pacific basin are estimated for various “T” numbers during the seasons and the entire year

based on all typhoons considered. The student’s t-test is used to determine whether there

are any significant differences between the mean values over the West Pacific basin during

the pre- and post-monsoon seasons.

Compared to the information provided by RSMC, Tokyo, the capability of SATCON has

also been evaluated for various stages of typhoons. Table 4.2 displays the various typhoon

stages used in RSMC, Tokyo.

Table 4.2: Different stage of typhoons with maximum sustained wind used in RSMC, Tokyo

Stage Maximum Sustained Wind (knots; kts)
Tropical Storm 34-48 kts

Severe Tropical Storm 48-64 kts
Typhoon 64-85 kts

Very Strong Typhoon 85-105 kts
Violent Typhoon 105-130 kts
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4.3 Results and discussion

In this section, we discuss the performance of the SATCON algorithm throughout the year,

considering different time periods (pre-monsoon and post-monsoon), various typhoon cate-

gories, and a range of “T” numbers. The focus is primarily on typhoons that made landfall

in Japan within the West Pacific basin.

4.3.1 For entire year, the capability of the “SATCON” algorithm over Japan

(West Pacific)

This subsection discusses the year-round performance of the SATCON algorithm, consid-

ering different typhoon categories, cloud patterns defined by the Dvorak technique, and a

range of “T” numbers.

Capability of the SATCON algorithm for various “T” number stages

Table 4.3 compares the capability of SATCON typhoon MSW and MSLP calculation to

intensity estimation data provided by RSMC for typhoons across the West Pacific basin

during 2017–2021. The bias progressively declines as the “T” number rises, but it gradually

rises after T5.5, being roughly 16–10 knots (kts) for T2.0-T2.5, approximately 6–4 kts for

T3.0-T5.0, and about 2 kts for T5.5. Due to the small sample size, the results for T6.0-

T7.0 bias increasing with an increase in T number from roughly 8 to 21 kts may not be

indicative. According to the student’s t-test for the “T” numbers T2.0-T5.5 and T6.0-T7.0,

the difference is significant with a 99% confidence level.

During this initial phase, accurately capturing the typhoon’s traits using satellite sensors
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proves difficult due to their less distinct features and smaller size. Consequently, estimat-

ing the intensity of these weaker systems can result in more pronounced errors. As these

typhoons progress and intensify into the moderate to strong category (T3.0-T5.0), their

more defined structures and larger sizes facilitate the satellite sensors in acquiring pertinent

data. This increased availability of reliable data and the heightened organization of these

typhoons culminate in reduced intensity errors. Extremely powerful typhoons (T6.0-T7.0)

are characterized by exceedingly high wind speeds and intense convective activity. These

formidable systems may display swift fluctuations within their inner core and eyewall, pos-

ing challenges for satellite sensors and forecasting models to gauge their intensity precisely.

The SATCON algorithm reports elevated intensity errors for these cases.

After the T3.5, the MAD is approximately 10–14 kts, and the MAD is approximately

12–16 kts for T2.0-T.3.0 . Due to the small sample size, the higher MAD value in the T6.5

range could not be indicative. The MAD values for T5.0 and above across the west Pacific

(7–10 kts) are consistent with Herndon and Velden (2018); Velden and Herndon (2020)

observations.

Consequently, the intensity is estimated to be overestimated (negative bias) by approx-

imately 2 hPa for T7.0, approximately 2–5 hpa for T2.0-T3.5, and approximately 5–7 hPa

for more than T3.5. For the range of T2.0-T6.5, the underestimate is statistically significant

at a 99% level of confidence. For T2.0-T2.5, the MAD is approximately 5 hPa, and for

T3.0-T7.0, it is approximately 5–10 hPa. For T2.0-T3.0, the RMSD is about 6–7 hPa; for

T3.5-T7.0, it is approximately 8–11 hPa.
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Results of the SATCON technique for the various typhoon categories

The SATCON method and the intensity estimation data provided from the RSMC, Tokyo,

were used to analyze the average characteristics of tropical storms to violent typhoons over

the West Pacific basin between the years 2017–2021 in terms of the MSW (knots) and MSLP

(hPa). It demonstrates that as a typhoon goes to a higher category, the basis steadily reduces

from 14 to 10 kts for a tropical storm to a very strong typhoon but increases for a violent

typhoon, which is 12.21 kts, which may happen due to the small sample size (table 4.4).

Accordingly, the bias is reduced for stronger typhoons, except violent typhoons, which is

consistent with Herndon and Velden (2018); Velden and Herndon (2020) findings. Although

the MAD is for typhoons, severe typhoons, and tropical storms, approximately 9–12 kts, and

approximately 7–11 kts for very strong and violent typhoons (figure 4.1), the overestimation

is statistically significant for all typhoon categories at a 99 % confidence level.

Intensity errors in typhoons over the Pacific Ocean are closely tied to several factors.

The sensitivity of Pacific Ocean typhoons to sea surface temperatures (SST) is particularly

noteworthy. If SSTs are not accurately predicted, this can significantly impact the accuracy

of typhoon intensity forecasts.

Furthermore, typhoons in the Pacific Ocean frequently contact land masses, including

Mexico and Central America. These land interactions can disrupt the storm’s typical struc-

ture, often resulting in rapid weakening. Accurately predicting the extent and timing of

these disruptions poses a considerable challenge.

In addition to these land interactions, typhoons in this region exhibit diurnal variations

in intensity. Environmental factors like daytime heating and nighttime cooling drive these

daily fluctuations. Accurately forecasting these intensity changes remains a complex task,
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Figure 4.1: Compared the intensity estimation by SATCON and RSMC provided data for
all typhoons (state wise) over the west pacific basin from 2017-2021. B stands
for RSMC provided data, S stands for SATCON algorithm data, ViTY stands
for Violent Typhoon, VSTY for Very Strong Typhoon, TY for Typhoon, STS
for Severe Tropical Storm, and TS for Tropical Storm

further contributing to the challenge of predicting typhoon intensity in the Pacific Ocean.

The MAD value for typhoons and intense typhoons (8–10 kts) is consistent with Herndon

and Velden (2018); Velden and Herndon (2020) prior findings. A slight increase in MAD

intensity over the West Pacific basin is recorded for tropical storms, severe tropical storms,

and very strong typhoons compared with (Herndon and Velden 2018, 2020). For tropical

storms, severe tropical storms, typhoons, and very strong typhoons, the RMSD values over

the West Pacific are approximately 11–14, and for violent typhoons, they are less than 10 kts.

The Violent typhoon RMSD estimates across the West Pacific (<10 kts) are consistent with

(Herndon and Velden 2018, 2020) earlier observations. However, compared to (Herndon and

Velden, 2018; Velden and Herndon, 2020) findings, the RMSD values over the West Pacific

for the tropical storm, severe tropical storm, typhoon, and very strong typhoon categories
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are marginally greater (11–14 kts).

As a result, the intensity is understated (negative bias) in terms of MSLP by about −3

hPa for violent typhoons and 1–6 hPa for all other types of storms. The MAD is roughly

6 hPa for tropical storms, and for all other storm types, it is between 7–9 hPa. All storm

types have RMSD values between 7 and 11 hPa.

The performance of SATCON algorithm estimations for various cloud patterns

developed in the West Pacific Ocean as defined by the Dvorak Technique (Dvo-

rak, 1975, 1984)

The SATCON algorithm shows the overestimation of the intensity of typhoons during the

beginning stage of formation and up to T2.5; it may be seen from this. But after that, it

was discovered that its performance is fairly good in measuring the intensity of stronger ty-

phoons (more than Severe Tropical storms). The SATCON method creates a single estimate

from several typhoon intensity estimations derived from objective intensity algorithms. The

major component of the SATCON model, ADT 9.0, feeds continuous inputs into the model

every 30 minutes, whilst the microwave sounder satellite feeds irregular intensity inputs into

the model, which are then extrapolated to hourly estimations. The final SATCON estimate

is produced by combining these interpolated estimates with ADT estimates. An objective

method evolved from the original Dvorak Technique is used by the ADT to calculate in-

tensity. The cloud organization pattern is not specified until T2.5 in the first development

phase. Currently, the Dvorak Technique cannot comprehend the intricate details of cloud

patterns. Because of this, both the ADT 9.0 technique and SATCON overstate the inten-

sity estimations based on the methodology’s pre-defined fixed cloud pattern, primarily the

central dense overcast (CDO) and eye pattern, regardless of whether it is a curved band or
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shear pattern. The shear pattern typhoons have a maximum strength of T3.0, and most

typhoons over the West Pacific originate from shear patterns under the influence of monsoon

circulation. As a result, when the intensity is T2.0 or higher, the ADT 9.0 version and SAT-

CON are utilized globally. Additionally, the SATCON algorithm is reasonably good for T3.0

and more because typhoons whose intensity is more than T3.0 show clear cloud patterns,

i.e., either eye pattern or CDO. In addition, SATCON used the new ADT 9.0 methodology,

which integrates infrared sensor, short-wave infrared imaging sensor, visible imaging sensor,

and microwave images to find phenomena that the original Dvorak Technique was unable

to find, such as secondary eye-wall formation, double eyewall structure, the center in the

presence of cirrus canopy, coiling of convective clouds (in the presence of cirrus) around the

center, and eye-wall replacement cycle (Olander and Velden, 2019).

Given the foregoing, forecasters can utilize the SATCON technique to estimate intensity

in the case of stronger typhoons (T3.0 or more). As cloud organization patterns are not

clearly defined in the beginning stage, and the automated approach of ADT (an attribute of

SATCON) selects pre-established patterns, overestimating the intensity results, it is unsuit-

able for cyclogenesis and the beginning phase of typhoon formation. However, forecasters

can accurately estimate typhoon intensities based on SATCON data using the bias, RMSD,

and MAD calculated in this study.

4.3.2 Capability of SATCON algorithm in various seasons

This subsection discusses the session-wise (pre- and post-monsoon) performance of the SAT-

CON algorithm.
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The pre-monsoon season’s capabilities of the SATCON algorithm

SATCON typhoon MSW (kts) and MSLP (hPa) estimates’ capability in comparison to

RSMC Tokyo intensity estimate data for typhoons developed over the west Pacific during

the pre-monsoon are shown in tables 4.5 and 4.6. Except for very strong typhoons, the bias

value stays high during all phases of typhoons at roughly 11–18 kts. A very strong typhoon

has a bias value of less than 1 kts (fig. 4.2). The smaller sample size may cause the very

strong typhoon’s unrepresentative value. According to the student’s t-test for all types of

typhoons, the difference is significant at a 99% confidence level.

For tropical storms, severe tropical storms, and typhoons, the MAD is approximately

12–19 kts; for very strong typhoons, it is approximately 4 kts. The RMSD ranges between

13 and 19 kts for tropical storms, severe tropical storms, and typhoons and between 4 and

5 kts for very strong typhoons. This contradicts (Herndon and Velden, 2018; Velden and

Herndon, 2020) past findings.The average SATCON intensity, in turn, overestimates the

MSW in the pre-monsoon season by around 11 kts and underestimates the average MSLP

estimations by nearly 7 hPa, as demonstrated in Table 4.5.

The onset of the monsoon marks the beginning of the pre-monsoon season, charac-

terized by shifts in atmospheric circulation patterns. These changes introduce additional

uncertainty into typhoon movement predictions, diminishing their accuracy. The East Asian

monsoon strongly influences the North West Pacific basin, significantly altering atmospheric

circulation patterns. Consequently, the normal flow is disrupted, and predicting cyclone

tracks during the pre-monsoon period becomes more intricate.
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Figure 4.2: Compared the intensity estimation by SATCON and RSMC provided data for
pre-monsoon season. B stands for RSMC provided data, S stands for SATCON
algorithm data, VSTY for Very Strong Typhoon, TY for Typhoon, STS for
Severe Tropical Storm, and TS for Tropical Storm
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The post-monsoon season’s capabilities of the SATCON algorithm

Tables 4.5 and 4.6 show the capability of SATCON’s algorithm of typhoons MSW (kts) and

MSLP (hPa) estimations compared to RSMC, Tokyo provided data of intensity estimates

for typhoons developed across the west Pacific during the year 2017–2021’s post-monsoon.

When the strength rises, the bias steadily decreases between 2 and 7 knots for tropical

storms, severe typhoons, and typhoons, and between 11 to 13 knots for extremely strong

and violent typhoons (figure 4.3). The student’s t-test for all forms of typhoons indicates

that the difference is significant at a 99% level of confidence. The bias value for the typhoon

stage is consistent with Herndon and Velden (2018); Velden and Herndon (2020) research.

The MAD for a tropical storm is approximately 11 knots. For typhoon categories such as

severe tropical storms, typhoons, very strong typhoons, and violent typhoons, it is between

8 and 10 knots. The results of Herndon and Velden (2018); Velden and Herndon (2020)

are supported by the MAD values throughout the west Pacific for severe tropical storms,

typhoons, very strong typhoons, and violent typhoon stages (8–10 kts).

Moderate to strong typhoon intensities typically encompass tropical storms, severe ty-

phoons, and typhoons. These typhoons exhibit well-defined structures and sufficient size for

accurate data collection by satellite sensors. Enhanced data availability and improved fore-

casting models contribute to relatively minor intensity errors, usually between 2 to 7 knots,

as these models better grasp the typhoons’ dynamics. The predictability of atmospheric con-

ditions and interactions within this intensity bracket exceeds that of more extreme typhoon

categories.

On the contrary, very severe and violent typhoons are distinguished by their remark-

ably high wind speeds and intense convective activity. These cyclones’ intricate and rapidly
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shifting inner cores challenge satellite sensors and models in precisely gauging their strength.

Within this category, substantial intensity errors, ranging from 11 to 13 knots, arise due to

the complexities of capturing these formidable typhoons’ dynamic and exceptionally vari-

able processes. Elements like rapid oscillations in the eyewall structure interplay with the

surrounding environment and abrupt shifts in atmospheric conditions all contribute to these

inaccuracies.

However, compared to Herndon and Velden (2018); Velden and Herndon (2020) findings,

the MAD values for the tropical storm stage are slightly higher (11 kts). The RMSD

across the West Pacific is approximately 10–14 kts for all storm types. This contradicts

(Herndon and Velden, 2018; Velden and Herndon, 2020) earlier research conclusions. Table

4.5 demonstrates that the average SATCON intensity underestimates the average MSLP

estimates by around 5 hPa while overestimating the average MSW during the post-monsoon

season by nearly 9 kts.

4.4 Conclusion

The key takeaways from the results and discussions above are listed below.

Tropical storms, severe tropical storms, typhoons, very strong typhoons, and violent

typhoon types of typhoons were examined in terms of intensity (‘T’ number) estimates

across the West Pacific basin from 2017 to 2021 using data from RSMC, Tokyo, and the

SATCON algorithm. As typhoons progress through the initial development phase, the range

of overestimation of SATCON intensity estimation decreases. The result for T6.0-T7.0 may

not be representative due to the sample size.

When we compared the SATCON algorithm’s output with the data provided by the
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Figure 4.3: Compared the intensity estimation by SATCON and RSMC provided data for
the post-monsoon season. B stands for RSMC provided data, S stands for
SATCON algorithm data, ViTY stands for Violent Typhoon, VSTY for Very
Strong Typhoon, TY for Typhoon, STS for Severe Tropical Storm, and TS for
Tropical Storm
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Table 4.6: Compared the SATCON and RSMC, Tokyo provided data for typhoons (stage
wise) over the West Pacific basin as pre-monsoon and post-monsoon during the
year 2017-2021

Best Best Mean
Category Season Track Track SATCON SATCON BIAS Absolute RMSD

of typhoon interval MSW interval MSW(B1) (A-B) difference
(A1)

Violent Pre-Mon - - - - - - -
Typhoon Post-Mon 105-130 128.57 120-144 139.73 -11.16 8.68 13.34

Very Pre-Mon 80-110 126.03 90-120 125.30 0.73 4.26 4.92
strong Post-Mon 85-105 102.08 112-132 114.57 -12.49 9.52 14.19

Typhoon
Typhoon Pre-Mon 64-85 73.58 79-100 90.77 -17.19 18.44 18.24

Post-Mon 65-90 72.12 72-98 74.46 -2.34 8.24 10.18
Severe Pre-Mon 48-64 56.25 69-81 72.87 -16.62 16.54 17.08

Tropical Post-Mon 44-63 56.66 57-87 61.36 -4.69 9.24 12.47
Storm

Tropical Pre-Mon 34-48 42.01 16-70 54.11 -12.1 12.19 13.48
Storm Post-Mon 30-50 42.62 39-74 50.19 -6.92 10.58 12.84

RSMC, we found that during the pre-monsoon, the SATCON algorithm overestimated trop-

ical storms by about 13 kts, severe tropical storms by about 17 kts, and typhoons by about

19 kts. During the post-monsoon, the SATCON algorithm overestimated tropical storms

by about 11 kts and severe tropical storms, very strong typhoons, and violent typhoons by

about 9 kts.

By comparing the algorithm results, we demonstrate that SATCON is more effective in

the post-monsoon across the West Pacific basin than in the pre-monsoon.
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Chapter 5

Tropical Cyclone’s Intensity

“Mathematics is the most beautiful and most powerful creation of the human spirit”

– Stefan Banach

In this chapter1, we develop a method for estimating the intensity of TCs in the NIO

using a neural network with a hybrid activation function. As discussed in Chapter 3, satellite

images weren’t used; instead, results from three state-of-the-art methods, the automated

rotational center hurricane eye retrieval algorithm, the advanced Dvorak technique, and

the satellite Consensus technique, were used as inputs, with the target data from the India

Meteorological Department.

1 The content of this chapter is based on a research paper “Estimation of Tropical Cyclone Intensity
using Neural Network Approach” (Submitted).
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5.1 Introduction

TCs, characterized by their spiraling winds, are recognized as severe weather phenomena

accompanied by gales, rainstorms, and storm surges, substantially impacting global envi-

ronmental and socio-economic aspects. Estimating TC intensity is one of the most critical

steps in forecasting the TC (Chen et al., 2020; Jiang et al., 2023; Zhou et al., 2023). TC

intensity typically encompasses the maximum wind speed or minimum sea level pressure

at the center of a TC. However, this definition exhibits variations across different oceanic

regions, lacking a standardized, universally accepted definition thus far (Chen et al., 2020).

In fact, according to the definition, a TC’s intensity is the maximum wind speed for achiev-

ing realistic and practical forecast results. Since the TC life cycle mainly occurs over the

open ocean, satellite images become a significant source for estimating TC intensity. The

meteorological satellites can observe TCs and obtain satellite cloud images containing abun-

dant TC feature information. Although satellites cannot directly reflect the TC intensity,

it is beneficial for estimating the TC intensity (Jiang et al., 2023). Traditional meteorologi-

cal methods, such as Dvorak (1975), deviation-angle variance (DAV) (Piñeros et al., 2011),

and Advanced Dvorak Technique (ADT) (Olander and Velden, 2019), are based on cloud

patterns recognized from satellite images executed by meteorologists.

Dvorak (1973) proposed a Dvorak technique to estimate the TC intensity only based on

TC cloud features observed in visible light satellite images. This technique examines the

typhoon’s central region, including its eye area, and analyzes the cloud-type characteris-

tics within its eyewall and the distinctive spiral rain belt features encircling its periphery.

Nevertheless, the Dvorak method heavily depends on meteorological experts’ expertise and

intuitive judgment. With the development of infrared imaging technology, Dvorak (1975)
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introduced infrared satellite images to obtain the cloud-top brightness temperature of TCs

at night, which promoted the development of the Dvorak technique. In 1984, Dvorak (1984)

further improved the objectivity of the Dvorak technique. After that, Velden et al. (1998,

2006); Olander and Velden (2019); Olander et al. (2021) and others continuously optimized

the Dvorak technique and successively proposed Objective Dvorak Technique (ODT), ad-

vanced objective Dvorak technique (AODT), Advanced Dvorak Technique (ADT), artificial

intelligence enhanced advanced Dvorak technique (AiDT) algorithms, which further im-

proved the accuracy of the Dvorak technique and reduced its subjectivity and achieved the

automatic determination of TC intensity. In 2010, the Automated Rotational Center Hur-

ricane Eye Retrieval (ARCHER) algorithm was proposed by (Wimmers and Velden, 2010).

The algorithm can find the center of rotation using spirally oriented brightness tempera-

ture gradients in TC banding patterns in combination with gradients along the ring-shaped

edge of a possible eye. The Advanced Microwave Sounding Unit (AMSU) technique (Kid-

der et al., 2000) uses temperature anomaly profiles associated with the TC warm core to

estimate intensity. The SATCON (Velden and Herndon, 2020; Ahmed et al., 2022; Yadav

and Das, 2024a) technique ensembles estimations from various methods, including ADT and

Advanced Microwave Sounding Unit (AMSU), to achieve state-of-the-art estimation.

Goodfellow et al. (2016) is a foundational textbook that comprehensively covers deep

learning concepts, including neural networks, optimization, and generative models. It is

a key resource for researchers and practitioners in machine learning and artificial intelli-

gence. Pradhan et al. (2017) proposes a deep CNN using satellite image classification for

Typhoon intensity estimation using satellite images. This model achieves improved accu-

racy and lower root mean square error (RMSE) compared to traditional methods like the

Dvorak and deviation-angle variance techniques. Chen et al. (2018) introduces a novel
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dataset for Typhoon intensity estimation and proposes a CNN-based model incorporating

domain knowledge. Combinido et al. (2018) demonstrates that a CNN-based approach can

effectively estimate Typhoon intensity from infrared satellite images, achieving an RMSE

of 13.23 knots (kts). The model learns critical features like cloud organization and eye

formation, comparable to traditional feature-based techniques, highlighting the potential of

deep learning in meteorology. Lee et al. (2019) demonstrates that multi-dimensional CNNs

using multi-spectral satellite data improve intensity estimation. The optimized 2D-CNN

model achieved an RMSE of 8.32 kts, outperforming previous methods and confirming the

potential of deep learning in meteorological applications. Chen et al. (2019) presents a

deep-learning model using CNNs for intensity estimation from satellite imagery. The opti-

mized and smoothed CNN model demonstrates superior accuracy to traditional methods,

achieving an RMSE of 8.39 kts and promising future operational applications. Higa et al.

(2021) proposes a deep learning model for Typhoon intensity classification by integrating

meteorological domain knowledge. By utilizing VGG-16 with fisheye-preprocessed satellite

images, the model achieved a higher classification accuracy of 76.8%, outperforming previous

methods. The fisheye preprocessing enhanced key Typhoon features like the eye and cloud

distribution, improving interpretability. Chen and Yu (2020) introduces a novel tensor-based

(TCNN) for intensity estimation using multispectral satellite images. By integrating tensor

decomposition and deep learning, TCNN effectively captures typhoon structures, improving

intensity categorization and wind speed estimation. The proposed models, C-TCNN and

T-TCNN, outperform traditional and state-of-the-art methods in accuracy and efficiency.

Experimental results confirm TCNN’s potential for operational meteorological applications.

Zhang et al. (2021) proposes a novel deep learning approach, TCICENet, for intensity clas-

sification and estimation using infrared satellite images. The model consists of cascading
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CNN modules, achieving an RMSE of 8.60 kt and an MAE of 6.67 kt. Varalakshmi et al.

(2023) proposed a deep learning model that combines CNN architectures for feature extrac-

tion and machine learning models for regression to predict the intensity of TCs. Griffin et al.

(2024) presents two machine-learning methods, D-MINT and D-PRINT, utilizing infrared

and microwave imagery to predict short-term intensity changes in typhoons, demonstrat-

ing improved skill over traditional methods, particularly in the North Atlantic and western

North Pacific regions. Raynaud et al. (2024) introduces a CNN based on the U-Net architec-

ture for detecting Typhoon wind structures in high-resolution numerical weather prediction

(NWP) models. The model outperforms traditional heuristic methods, achieving an average

intersection-over-union metric of 0.8, particularly improving detection for weaker cyclones.

Additionally, it generalizes well to different domains and higher-resolution data, demonstrat-

ing its potential for operational forecasting. Yadav and Das (2024b) focuses on estimating

the radius of maximum wind (RMW) in typhoons, a crucial parameter for assessing cyclone

intensity and predicting impacts on climate and ecosystems. Using machine learning meth-

ods, they introduce an ensemble model combining random forests, gradient boosting, and

NNs, enhancing precision in RMW estimation over traditional techniques.

The structural characteristics of TCs, such as shear-relative composites and convective

cores, have not been comprehensively incorporated within NN-based models. Another cru-

cially overlooked aspect has been the neglect of rotational symmetry in satellite images

induced by TCs’ rotations.

Integrating multiple techniques becomes imperative when faced with the limitation of

individual methods in providing an accurate estimation of TC intensity. In this context, we

consider the three distinct methodologies: ADT, ARCHER, and SATCON, each yielding

less than optimal results independently and a straight average of those estimations. By
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harnessing the power of a neural network, we effectively merge the outputs of these three

methods into a single result. This combined approach minimizes errors and maximizes each

method’s strengths, attaining more accurate and reliable results than traditional approaches.

5.2 Data and Method

5.2.1 Data

We collected the 3-hourly data of the TC’s Intensity from three state-of-the-art inten-

sity estimation models, namely ARCHER “https://tropic.ssec.wisc.edu/real-time/

archerOnline/cyclones/,” ADT “https://tropic.ssec.wisc.edu/misc/adt/info.html,”

and SATCON “https://tropic.ssec.wisc.edu/real-time/satcon/.” We collected 3-

hourly data on 76 TCs, including deep and deep depressions, in which 69 TCs for training

and 7 TCs were used to validate the results from 2013-2024. The input of our Neural Net-

work model is the value of intensity from three models, and the target of our model is the

best track data released by the India Meteorological Department.

According to the Standard Operational Procedure for Cyclone Warnings in India 2021,

released by the India Meteorological Department (IMD), the system’s intensity is measured

in terms of 3-minute average MSW at the surface level (10 meters above ground level).

The maximum Wind is determined from Dvoark’s technique (IMD, 2021). However, the

following technique is followed for better accuracy:

• Wind reported by ships and buoys.

• Wind observed by scatterometry, i.e., OCEANSAT & ASCAT.

• Radar
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Figure 5.1: Steps involved in the determination of the Intensity of a Tropical Cyclone
(Source: IMD)

• CMV/AMV reduced to 10-meter Wind

Various steps involved in determining intensity by the IMD are shown in Fig. 5.1.

The study primarily focused on the NIO regions for training and validation. To ensure

comprehensive data acquisition, the Best Track data has been collected from the official

websites of the Regional Specialized Meteorological Center (RSMC) for the NIO (https:

//rsmcnewdelhi.imd.gov.in/) for 2013-24. We collected the data of 69 TCs (details in

Table 5.1) for training purposes and seven TCs (details in Table 5.3) for validation purposes.

Our analysis also includes consideration for depressions (details of all categories of cyclonic

disturbance with their respective wind speed in Table 1 of the reference paper (Yadav and

Das, 2023b)) that have not attained TC intensity.

Our study does not incorporate satellite images in estimating the intensity of TCs. In-

stead, our methodology utilizes output data from three state-of-the-art intensity estimation
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models: ARCHER, ADT, and SATCON. The absence of satellite images is a deliberate

choice, and we acknowledge the reliance on the pre-existing outputs from these established

models.

5.2.2 Method

The primary aim of this chapter is to develop an NN-based model alongside the results

obtained from the three methodologies to get a single result.

Here is the whole process of our method:

1. Preprocessing:

The three sets of experimental values are first combined and normalized using the

StandardScaler from scikit-learn (Pedregosa et al., 2011) to ensure that all the input

data are on a similar scale.

2. k-fold cross-validation: k–fold cross-validation is a robust technique used to eval-

uate machine learning models by partitioning the dataset into k equal-sized folds,

training the model on k − 1 folds, and validating it on the remaining fold, repeating

this process k times (Nti et al., 2021; Pohjankukka et al., 2017).

For Example, we have divided our data into 5 equal groups. To test a model, we use

4 groups for training and the remaining group to check how well the model performs.

We do this 5 times, using each group to check once.

• Iteration 1: Use folds 2, 3, 4, and 5 to train the model, then test it on fold 1.

• Iteration 2: Use folds 1, 3, 4, and 5 to train the model, then test it on fold 2.

• Iteration 3: Use folds 1, 2, 4, and 5 to train the model, then test it on fold 3.

• Iteration 4: Use folds 1, 2, 3, and 5 to train the model, then test it on fold 4.

• Iteration 5: Use folds 1, 2, 3, and 4 to train the model, then test it on fold 5.

3. Neural Network Architecture:
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Table 5.1: Details of selected tropical cyclones for Training process

S.No. Name Category Time period
1 Viyaru Cyclonic Storm 10 - 16 May 2013
2 Depression Depression 29 - 31 May 2013
3 Depression Depression 30 July - 01 August 2013
4 Phailin Very Severe Cyclonic Storm 08 - 14 October 2013
5 Depression Depression 08 - 11 November 2013
6 Depression Depression 13 - 17 November 2013
7 Helen Severe Cyclonic Storm 19 - 23 November 2013
8 Lehar Very Severe Cyclonic Storm 23 - 28 November 2013
9 Madi Very Severe Cyclonic Storm 06 - 13 December 2013
10 Depression Depression 04 - 07 January 2014
11 Depression Depression 21 - 23 May 2014
12 Nanauk Cyclonic Storm 10 - 14 June 2014
13 Deep Depression Deep Depression 03 - 07 August 2014
14 Hudhud Very Severe Cyclonic Storm 07 - 14 October 2014
15 Nilofar Very Severe Cyclonic Storm 25 - 31 October 2014
16 Deep Depression Deep Depression 05 - 08 November 2014
17 Ashobaa Cyclonic Storm 07 - 12 June 2015
18 Komen Cyclonic Storm 26 July - 02 August 2015
19 Deep Depression Deep Depression 09 - 12 October 2015
20 Chapala Extremely Severe Cyclonic Storm 28 October - 04 November 2015
21 Megh Extremely Severve Cyclonic Storm 05 - 10 November 2015
22 Deep Depression Deep Depression 08 - 10 November 2015
23 Roanu Cyclonic Storm 17 - 22 May 2016
24 Depression Depression 27 - 29 June 2016
25 Deep Depression Deep Depression 09 - 12 August 2016
26 Deep Depression Deep Depression 16 - 21 August 2016
27 Kyant Cyclonic Storm 21 - 28 October 2016
28 Depression Depression 02 - 06 November 2016
29 Nada Cyclonic Storm 29 November - 02 December 2016
30 Vardhah Very Severe Cyclonic Storm 06 - 13 December 2016
31 Marrutha Cyclonic Storm 15 - 17 April 2017
32 Mora Severe Cyclonic Storm 28 - 31 May 2017
33 Deep Depression Deep Depression 11 - 13 June 2017
34 Depression Depression 18 - 19 July 2017
35 Depression Depression 26 - 27 July 2017
36 Deep Depression Deep Depression 09 - 10 October 2017
37 Depression Depression 19 - 22 October 2017
38 Ockhi Very Severe Cyclonic Storm 29 November - 06 December 2017
39 Deep Depression Deep Depression 06 - 09 December 2017
40 Sagar Cyclonic Storm 16 - 21 May 2018
41 Mekunu Extremely Severe Cyclonic Storm 21 - 27 May 2018
42 Daye Cyclonic Storm 19 - 22 September 2018
43 Luban Very Severe Cyclonic Storm 06 - 15 October 2018
44 Gaja Very Severe Cyclonic Storm 10 - 19 November 2018
45 Pabuk Cyclonic Storm 04 - 08 January 2019
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Table 5.2: Details of selected tropical cyclones for Training process (Continue to table 5.1)

S.No. Name Category Time period
46 Fani Extremely Severe Cyclonic Storm 26 April - 04 May 2019
47 Vayu Very Severe Cyclonic Storm 10 - 17 June 2019
48 Hikaa Very Severe Cyclonic Storm 22 - 25 September 2019
49 Kyarr Super Cyclonic Storm 24 October - 04 November 2019
50 Maha Extremely Severe Cyclonic Storm 30 October - 07 November 2019
51 Bul Bul Very Severe Cyclonic Storm 05 - 11 November 2019
52 Pawan Cyclonic Storm 02 - 07 December 2019
53 Deep Depression Deep Depression 03 - 05 December 2019
54 Amphan Super Cyclonic Storm 16 - 21 May 2020
55 Nisarga Severe Cyclonic Storm 01 - 04 June 2020
56 Gati Very Severe Cyclonic Storm 21 - 24 November 2020
57 Tauktae Extremely Severe Cyclonic Storm 14th-19th May, 2021
58 Yaas Very Severe Cyclonic Storm 23 – 28 May, 2021
59 Gulab Cyclonic Storm 24 - 28 September 2021
60 Depression Depression 10 - 11 November 2021
61 Deep Depression Deep Depression 3 - 6 March, 2022
62 Depression Depression 12 - 13 August 2022
63 Deep Depression Deep Depression 18 - 22 August 2022
64 Mandous Severe Cyclonic Storm 6 - 10 December 2022
65 Deep Depression Deep Depression 14 - 17 December 2022
66 Mocha Extremely Severe Cyclonic Storm 09 - 15 May 2023
67 Biparjoy Extremely Severe Cyclonic Storm 06 - 19 June 2023
68 Depression Depression 09 - 10 June 2023
69 Deep Depression Deep Depression 31 July - 01 August 2023
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The model is designed using the Keras Sequential API (Chollet et al., 2015). It

comprises multiple layers, including densely connected layers with different activation

functions, batch normalization, and dropout layers, preventing overfitting. The model

architecture (Figure 5.2) promotes deep learning using three hidden layers: 256 neurons

with LeakyReLU activation function and a dropout rate of 0.4, 512 neurons with ReLU

activation function and a dropout rate of 0.3, and 256 neurons with Tanh activation

function and a dropout rate of 0.2.

Integrating LeakyReLU, ReLU, and Tanh activation functions across different layers

of an NN demonstrates a strategic approach to enhancing model accuracy through tai-

lored activation dynamics. By employing LeakyReLU in the initial layer, the network

mitigates the “dying neuron” problem while ensuring adequate gradient flow for both

positive and negative inputs, enabling robust feature extraction from diverse datasets.

In subsequent layers, ReLU capitalizes on its computational simplicity and sparsity-

inducing properties, focusing on the most relevant features and improving computa-

tional efficiency. Finally, adopting Tanh in later layers introduces a smooth, bounded

output that is particularly effective for capturing complex nonlinear relationships and

normalizing activations within a constrained range. This deliberate combination of

activation functions enhances the network’s ability to learn diverse patterns, stabilizes

training by reducing gradient-related issues, and demonstrates superior performance

on complex tasks, as evidenced by improved model accuracy in experimental results.

4. Training the Model:

The compiled model is trained using the Adam optimizer (Kingma and Ba, 2014) with

a reduced learning rate of 0.00001, optimizing the mean squared error loss function.

To enhance the model’s learning process, a substantial number of epochs, 10, 000 in

this case, are executed during the training process. The batch size is set to 128, and

the training progress is tracked for analysis.

5. Model Evaluation:

Following training, the model is evaluated using the trained neural network to predict

the experimental values. The mean absolute percentage and root mean square errors

are calculated to assess the model’s accuracy and performance.
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Figure 5.2: Architecture of the Proposed Neural Network

In our approach, we train the NN using 1-minute interval data and corresponding labels.

We use 3-minute data averages for verification purposes, where each average is computed

for three consecutive 1-minute intervals. The trained NN then makes predictions or classi-

fications based on these 3-minute averages, and we evaluate its performance by comparing

the predictions with the actual 10-minute averaged data. Maintaining consistency in data

preprocessing and appropriately handling time intervals throughout the training and verifi-

cation processes is essential.

To check the accuracy of our NN-based model, we use three statistical methods: t-test,

error percentage, and root mean square error. Section 2.4.1 provides a detailed discussion of

the t-test, error percentage, and root mean square error. Using these methods, we confidently

say that our NN-based model is more efficient and accurate than the three methods: ADT,

ARCHER, and SATCON.
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5.3 Result

The proposed NN-based model for estimating the TC intensity has been evaluated using

three cases, namely: Severe Cyclonic Storm Asani (SCS Asani), Cyclonic Storm Sitrang

(CS Sitrang), Severe Cyclonic Storm Shaheen (SCS Shaheen), Extremely Severe Cyclonic

Storm Tej (ESCS Tej), Severe Cyclonic Storm Remal (SCS Remal), Cyclonic Storm Asan

(CS Asan), and Severe Cyclonic Storm Dana (SCS Dana). For further insight into these

TCs, Table 5.3 provides details regarding the category of selected TCs, along with the

corresponding periods.

Table 5.3: Details of selected tropical cyclones for Validation process

Name Category Basin Time Period
Asani Severe Cyclonic Storm NIO 07-12 May, 2022

Sitrang Cyclonic Storm NIO 22-25 October, 2022
Shaheen Severe Cyclonic Storm NIO 30 September - 4 October, 2021

Tej Extremely Severe Cyclonic Storm NIO 20-24 October, 2023
Remal Severe Cyclonic Storm NIO 24-28 May, 2024
Asan Cyclonic Storm NIO 25 August - 02 September, 2024
Dana Severe Cyclonic Storm NIO 22-26 October, 2024

5.3.1 SCS Asani

On the morning of May 6, 2022, a region of low pressure commenced forming over the South

Andaman Sea and the neighboring Southeast Bay of Bengal. By the early morning of May,

7 had strengthened into a well-defined area of low pressure located over the Southeast Bay

of Bengal and the adjacent South Andaman Sea. The favorable environmental conditions

facilitated its further consolidation, developing into a depression around noon on the same

day, May 7, 2022. This system, dubbed SCS “Asani,” progressed into a deep depression

before reaching the coast. Notably, it exhibited an unusually sluggish movement, creeping
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at a pace of 5-6 km per hour, considerably slower than the usual speed of 13 km per

hour. This slow progression resulted in its lingering within 50 km of the coastline from

morning to evening on May 11. SCS “Asani” demonstrated multiple shifts in its path. Most

meteorological models had initially forecasted a change in its course, veering from northwest

to northeast along the coast. It initially moved in a northward/northwestward direction and

subsequently altered its course to a west-southwestward direction. This unforeseen deviation

was primarily influenced by the system’s response to a short-amplitude westerly trough in

the middle and upper levels of the troposphere approaching from the west, leading it to veer

away from the anticipated northeastward trajectory near the coast (Division, 2022b).

Our method, along with the existing methods such as ARCHER, ADT, SATCON, and

Best track data provided by the respective RSMC, is graphically shown in Fig. 5.3. This

graphical representation estimates the TC intensity. Table 5.4 has the numerical result of

our method and other results of existing methods for SCS Asani. When comparing the

mean error of our method to the Best track data provided by the RSMC’s average TC

intensity value of 48.16 knots, our method has an error percentage of 15.52%. On the

other hand, other approaches like ARCHER, ADT, and SATCON have 20.14%, 34.53%,

and 25.41%, respectively. RMSE (Table 5.11) also favors our proposed method compared to

other approaches. Statistical analysis using a t-test says that our proposed method performs

better than the alternative methods.

Figure 5.3: A representation of the research results of the SCS Asani graphically
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5.3.2 CS Sitrang

On October 20, 2022, a low-pressure area formed over the North Andaman Sea, extending to

the South Andaman Sea and Southeast Bay of Bengal (BoB). By October 21, it developed

into a well-marked low-pressure area over the north Andaman Sea and southeast BoB. Under

favorable conditions, it concentrated into a depression over the southeast and adjoining east-

central BoB near the Andaman Islands on October 22. Moving northwest, it intensified into a

deep depression over west-central BoB on October 23 and further developed into the cyclonic

storm “Sitrang” on October 23 evening. The storm shifted its course to the north-northeast,

making landfall on the Bangladesh coast between Tinkona and Sandwip near Barisal on

October 24. It weakened into a deep depression over northeast Bangladesh on October 25

in the early hours, followed by a depression over interior Bangladesh on the same day’s

early morning, and eventually regressed into a well-marked low-pressure area over northeast

Bangladesh and adjoining Meghalaya by October 25 forenoon (Division, 2022a).

Our model, depicted alongside other methodologies such as ARCHER, ADT, and SAT-

CON and complemented by Best-track data sourced from the respective RSMC, is visually

illustrated in Fig. 5.4. This graphical representation provides insight into the estimated TC

intensity. For a detailed quantitative summary of the CS Sitrang results, refer to Table 5.5.

When evaluating the mean error based on the TC intensity data provided by the RSMC,

where the reference intensity is at 40.90 knots, our model exhibits an error rate of 4.82%,

outperforming alternative approaches. Specifically, ARCHER, ADT, and SATCON demon-

strate error rates of 7.46%, 6.17%, and 8.35%, respectively. The values of the RSME for

this case are presented in Table 5.11.
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Figure 5.4: Representation of the results of the CS Sitrang in graphical form

5.3.3 SCS Shaheen

On the morning of September 29, the remnants of CS Gulab transitioned into a well-defined

low-pressure area over the southern Gujarat region and the adjacent Gulf of Khambhat,

confirmed by the 0830 hours IST observation. Favored by favorable environmental conditions

and sea states, this system further concentrated into a depression over the northeastern

Arabian Sea and adjoining Kutch by 0530 hours IST on September 30. Continuing on a

west-northwest trajectory, it intensified into a deep depression over the same region by the

midnight observation at 2330 hours IST on September 30. Progressing westward, the system

evolved into CS “Shaheen” off the Gujarat coast by the morning of October 1. After a brief

westward movement, it changed to west-northwest, reaching severe cyclonic storm status by

the evening observation at 1730 hours IST on October 1. It sustained this trajectory until

the evening observation at 1730 hours IST on October 2, when it shifted west-southwestward.

It made landfall on the coast of Oman between 0030 and 0130 IST on October 4, exhibiting

wind speeds of 95-105 kmph, with gusts reaching 115 kmph (Division, 2021d).
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Figure 5.5: Representation of the results of the SCS Shaheen in graphical form

Our model, combined with complementary methodologies including ARCHER, ADT,

SATCON, and the utilization of Best Track data from the respective RSMC, is visually

depicted in Fig. 5.5. This graphical representation illustrates the estimated TC intensity.

Table 5.6 offers a quantitative summary of the outcomes for SCS Shaheen.

Upon evaluating the mean error based on TC intensity data provided by RSMC, where

the intensity is recorded at 55.0 knots, our model exhibits an error rate of 9.89%, surpassing

other methodologies such as ARCHER, ADT, and SATCON, which exhibit error rates of

13.32%, 17.24%, and 16.53%, respectively. The corresponding values of RMSE for this

scenario are presented in Table 5.11. A t-test analysis reveals that our model performs

better than the other approaches.

5.3.4 ESCS Tej

Tropical Storm Tej was an extremely severe cyclonic storm that formed in the Arabian Sea

in October 2023. It rapidly intensified and moved northwestward, making landfall in Yemen,

causing significant damage and loss of life. This event was notable for its coexistence with

another tropical storm, Hamoon, in the Bay of Bengal, a rare occurrence.
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Figure 5.6: Representation of the results of the ESCS Tej in graphical form

Figure 5.6 compares the proposed typhoon intensity estimation method with ARCHER,

ADT, and SATCON, based on Best Track data from IMD. Results for Tropical Storm Sanba

are summarized in Table 5.7.

The proposed method shows a percentage error of 3.47%, much lower than ARCHER

(13.12%), ADT (9.92%), and SATCON (14.98%). RMSE values in Table 5.11 confirm its

improved accuracy, supported by a t-test analysis.

5.3.5 SCS Remal

Tropical Storm Remal, a severe cyclonic storm, struck West Bengal and Bangladesh in late

May 2024. Originating in the Bay of Bengal, it made landfall near the border, bringing

heavy rainfall, strong winds, and a significant tidal surge. This event resulted in widespread

damage, including loss of life, destruction of homes, and infrastructure disruption. Large-

scale evacuations were implemented in coastal areas to minimize casualties.

Figure 5.7 shows how our proposed method for estimating TC intensity is doing well

compared to other traditional methods: ARCHER, ADT, and SATCON, concerning the
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Figure 5.7: Representation of the results of the SCS Remal in graphical form

Best track data provided by the IMD. Table 5.8 provides a quantitative summary of the

results for SCS Remal.

Our proposed method shows an error rate of 3.25%. This is better than the error rates

of other methodologies: ARCHER (8.62%), ADT (13.97%), and SATCON (9.84%). The

RMSE values for this case are listed in Table 5.11. Statistical analysis using a t-test indicates

that our proposed method performs better than the other methods.

5.3.6 CS Asna

Tropical Storm Asna was a cyclonic storm that affected parts of India and Pakistan in late

August and early September 2024. It formed as a deep depression over land, intensified into

a cyclone, and then moved into the Arabian Sea.

It brought heavy rainfall to Gujarat, Rajasthan, Madhya Pradesh in India, and Sindh

in Pakistan. This heavy rainfall led to widespread flooding, causing significant damage to
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Figure 5.8: Representation of the results of the CS Asna in graphical form

infrastructure, property, and agricultural lands. The cyclone resulted in fatalities in both

countries.

It is notable for its unusual formation over land before intensifying into a cyclone and

moving into the Arabian Sea.

Figure 5.8 highlights the effectiveness of our proposed method in estimating TC inten-

sity, outperforming traditional techniques such as ARCHER, ADT, and SATCON when

benchmarked against Best Track data from the IMD. Table 5.9 provides a detailed quan-

titative analysis for CS Asna. Our method demonstrates a remarkably low error rate of

4.94%, significantly better than ARCHER (6.51%), ADT (9.19%), and SATCON (17.21%).

The RMSE values associated with these results are summarized in Table 5.11. A t-test

analysis further substantiates the superior performance of our method over the conventional

approaches.
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5.3.7 CS Dana

Tropical Storm Dana was a cyclonic storm that impacted the states of West Bengal and

Odisha in India in late October 2024. It formed in the Bay of Bengal and made landfall

near the border of the two states.

It brought heavy rainfall, strong winds, and a storm surge, resulting in significant dam-

age, including loss of life, destruction of homes, and infrastructure disruption. Large-scale

evacuations were conducted in vulnerable coastal areas to minimize casualties.

It highlighted the importance of preparedness and disaster relief efforts in coastal regions

vulnerable to TCs.

Figure 5.9 demonstrates the better performance of our proposed method for estimating

TC intensity when benchmarked against traditional techniques such as ARCHER, ADT,

and SATCON, using the Best Track data provided by the IMD as a reference. Table 5.10

quantitatively summarizes the results for the case of CS Dana. Our method achieved an

exceptionally low error rate of 2.69%, significantly outperforming ARCHER (13.27%), ADT

(8.32%), and SATCON (5.92%). The RMSE values for these methods are reported in

Table 5.11. Additionally, a rigorous statistical evaluation using a t-test confirms that the

performance of the proposed method is statistically superior to the conventional approaches,

further underscoring its accuracy and reliability.

5.4 Conclusion

In this chapter, we design an NN-based model to estimate TC intensity, primarily focusing on

the NIO. The model demonstrates superior performance compared to traditional individual
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Figure 5.9: Representation of the results of the CS Dana in graphical form

methodologies. We employ three statistical tests to validate its effectiveness: t-test, error

percentage, and root mean square error (RMSE), all of which show consistent improvements.

Notably, our model achieves a reduction in both error percentage (Table 5.12) and RMSE

(Table 5.11), confirming its enhanced predictive accuracy.

A key thing in our model is incorporating a hybrid activation function in the early

layers of the neural network. Specifically, the first hidden layer uses the ReLU function to

introduce nonlinearity while maintaining computational efficiency, the second layer employs

Leaky ReLU to prevent the “dying ReLU” problem by allowing a slight gradient for negative

inputs, and the third layer utilizes the tanh function to center activations around zero and

enhance learning in later stages. This combination of diverse activation functions allows

the model to capture a broader range of nonlinear patterns in the data, which contributes

directly to the observed performance gains. The hybrid approach enhances the depth and

representational power of the network without overfitting, as evidenced by the improved

statistical metrics.
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The implications of our model are significant when estimating various characteristics of

tropical cyclones, including the radius of maximum winds and rapid intensification events.

The core architecture and modeling strategy remain broadly consistent across these appli-

cations, requiring only training data updates and minor output configuration adjustments

to adapt to new forecasting targets.

Accurate estimation of TC intensity not only aids in a deeper understanding of cyclone

behavior but also plays a crucial role in risk mitigation, potentially reducing the socio-

economic losses caused by severe tropical storms.

Table 5.11: Detail of root square mean error of both cases

Name
of TC

Our Method
w.r.t. Best Track

ARCHER w.r.t.
Best Track

ADT w.r.t
Best Track

SATCON w.r.t.
Best Track

(knots) (knots) (knots) (knots)
Asani 8.59 10.81 17.44 12.66
Sitrang 2.34 4.22 3.07 3.84
Shaheen 6.21 8.17 10.13 9.54
Tej 3.30 13.30 9.35 15.39
Remal 1.74 5.60 8.53 5.27
Asna 2.00 3.28 4.68 6.88
Dana 1.74 7.23 5.04 3.22

Table 5.12: Detail of error percentage of both cases

Name
of TC

Our Method
w.r.t. Best Track

ARCHER w.r.t.
Best Track

ADT w.r.t
Best Track

SATCON w.r.t.
Best Track

Asani 15.52 20.14 34.53 25.41
Sitrang 04.82 07.46 06.17 08.35
Shaheen 09.89 13.32 17.24 16.53
Tej 3.47 13.12 9.92 14.98
Remal 3.25 8.62 13.97 9.84
Asna 4.94 6.51 9.19 17.21
Dana 2.69 13.27 8.32 5.92
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Chapter 6

Conclusions, social impact and suggestions for future

research

This thesis presents significant advancements in estimating TC characteristics using math-

ematical and machine learning techniques, addressing challenges associated with TC, and

improving the accuracy of predictions. The research spans multiple aspects of TCs, includ-

ing intensity, track, and radius of maximum wind (RMW), primarily focusing on the North

Indian Ocean (NIO) region. The following sections provide an in-depth discussion of the

findings, implications, and future directions.

Enhancing RMW Estimation

The RMW is a critical parameter in understanding the structure and impact of TCs.

The NIO, encompassing the Bay of Bengal and the Arabian Sea, is particularly vulnerable

to TCs, yet literature addressing RMW in this region is sparse. This research bridges this

gap by developing a method to calculate RMW based on historical observations, specifically

analyzing the relationship between the TC center’s latitude and the estimated pressure drop

(Pd).
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Our proposed method performed better than existing methodologies, such as those devel-

oped by Willoughby et al. (2006) and Tan and Fang (2018). We employed three statistical

methods to validate our approach: error percentage, t-test, and root mean square error

(RMSE). The results indicated reduced mean errors and RMSE, highlighting the accuracy

of our method. However, a notable limitation is that the Pd value must be less than or equal

to 12 hPa, with no specific conditions imposed on the latitude of the TC center within the

NIO basin.

Building on this, we incorporated machine learning techniques to enhance RMW es-

timation further. We achieved even greater accuracy by inputting results from multiple

traditional methods into a neural network model. The neural network model significantly

reduced error percentage and RMSE, indicating its potential for precise RMW estimation.

Advancing TC Track Estimation

Accurate TC track estimation is crucial for disaster preparedness, resource allocation,

and evacuation planning. A TC’s track influences its intensity, storm eye, size, and RMW,

collectively affecting its potential impact on coastal regions. Our research developed a neural

network-based model for TC track estimation in the NIO.

Established practices in machine learning and neural network optimization informed

the model’s methodology. We employed normalization techniques like StandardScaler to

stabilize the learning process, ensuring proportional contributions from all input features.

Leaky ReLU activation functions addressed the vanishing gradient problem, while dropout

layers helped prevent overfitting. These scientifically grounded principles and evaluation

metrics, like error percentage and RMSE, ensured our model’s robustness, accuracy, and

generalization capability.
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Our model’s performance was evaluated using three statistical tests: t-test, error per-

centage analysis, and RMSE. The results showed a reduced error percentage and lower

RMSE than traditional methodologies, demonstrating the model’s enhanced accuracy. This

improvement is crucial for effective disaster management, as precise track predictions allow

for better planning and response to TC threats.

Evaluating the Satellite Consensus (SATCON) Algorithm

In addition to developing new models, our research evaluated the performance of the

SATCON algorithm, which estimates TC intensity using infrared and microwave sensor-

based images. We analyzed 26 typhoons over the West Pacific basin from 2017 to 2021,

comparing SATCON estimates to best track parameters provided by Tokyo’s Regional Spe-

cialized Meteorological Centre (RSMC).

The findings revealed that SATCON performs well for mid-range typhoons and is more

effective during the post-monsoon season than during the pre-monsoon season. This season-

specific performance underscores the importance of adjusting TC estimation models based

on temporal factors. By highlighting SATCON’s strengths and limitations, our research

contributes to the ongoing refinement of TC intensity estimation techniques.

Improving TC Intensity Estimation

Accurately estimating TC intensity is vital for understanding other TC characteristics

and minimizing the damage caused by these powerful storms. Our research developed a

neural network-based model with a hybrid activation function that integrates inputs from

three traditional methods: the automated rotational center hurricane eye retrieval algorithm,

the advanced Dvorak technique, and the satellite Consensus technique.

The model was trained using cases from the NIO and tested on additional cases from
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the same region. The results indicated a significant improvement in accuracy, with a root

mean square error (RMSE) of 5.71 knots and an error percentage of 10.07%. These metrics

were considerably lower than those of existing methods, highlighting the effectiveness of our

approach.

The implications of this model are far-reaching. Accurate intensity estimation not only

aids in understanding the current state of a TC but also informs predictions of its future

behavior, including potential rapid intensification. This information is critical for issuing

timely warnings and mitigating the impact of TCs on affected regions.

Social Impact

This research contributes significantly to public safety and disaster preparation by ad-

vancing our understanding of tropical cyclones, namely their severity and wind structure.

The research improves the accuracy of tropical cyclone forecasting via the development and

assessment of advanced methods, including satellite data analysis and machine learning

methodologies. Enhanced forecasting enables authorities to provide timely alerts, organize

evacuations, and mitigate the danger of injury, fatalities, and property damage.

The study focuses on the radius of maximum wind, an essential element in determining

the most dangerous section of a cyclone. This enhancement in estimation methods for the

North Indian Ocean and West Pacific basins immediately facilitates more accurate storm

impact evaluations. This is particularly advantageous in heavily populated coastal areas,

where timely and accurate information may greatly enhance disaster response and recovery

efforts.

This study is essential for enhancing climate resilience as both the intensity and fre-

quency of cyclones change because of global warming. It provides enhanced protection for
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individuals who are at risk, especially in developing countries, via scientifically informed

planning and early warning systems. The study supports humanitarian objectives and sus-

tainable development by mitigating the economic and social impacts of extreme weather

events.

Implications and Future Directions

The advancements presented in this thesis have significant implications for meteorology

and disaster management. The neural network-based models developed for RMW, track,

and intensity estimation provide more accurate and reliable predictions, which are crucial for

mitigating the impact of TCs. These models enable better forecasting, resource allocation,

and evacuation planning, ultimately enhancing the resilience of vulnerable regions.

Future research will extend these models to other TC basins, incorporating a broader

range of TC cases to improve their accuracy and generalization. Additionally, advancements

in machine learning techniques, such as integrating more sophisticated neural network archi-

tectures and using real-time data, will continue to enhance the performance of TC estimation

models.

Another promising direction is the exploration of ensemble learning techniques, where

multiple models are combined to improve prediction accuracy. This approach could be

particularly beneficial for addressing the inherent uncertainties in TC behavior and providing

more robust estimates.

Moreover, integrating additional data sources, such as high-resolution satellite imagery,

oceanographic data, and atmospheric conditions, could refine TC characteristic estimations.

Leveraging advancements in remote sensing technologies and data assimilation techniques

will enable more comprehensive and accurate models.
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