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Non-Coding RNAs in Autoimmune Disorders: 

Therapeutic Potentials and Integrative Network-

Based Computational Insights 
 

ABSTRACT 

 

The recent breakthrough in the discovery of therapeutic applications of RNA have established 

oligonucleotide-based drugs as a promising therapeutic modality for targeting diverse diseases 

including the autoimmune ones- a group of complex immunological disorders resulting from a 

breach of tolerance. The current treatment approaches for rely on symptom management with 

the use of non-specific broad immunosuppressants which have their own associated adverse 

effects. This calls for the need of precise and target specific therapeutics. With recent progress 

in deciphering their molecular pathogenesis, have allowed the application of RNA based 

therapeutic strategies for their treatment. This thesis explores the different types of RNA 

therapeutics- antisense oligonucleotide (ASO), splice switching oligonucleotide (SSO), RNA 

interference based and aptamers, describing their mechanism of action and their applicability 

as therapeutic modalities, further investigating their potential for treatment of autoimmune 

disorders. A curated set of dysregulated microRNAs from five exemplar autoimmune 

diseases—rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren’s syndrome 

(SS), Type 1 diabetes mellitus(T1DM), and autoimmune thyroid disease (AITD)—were taken 

for construction of miRNA–gene interaction networks in miRNet. Network-topology metrics 

pinpointed a small set of high-degree “master-regulator” miRNAs that control 

disproportionately large gene sets across multiple diseases. Downstream KEGG pathway 

enrichment of the shared targets revealed a conserved signalling core—PI3K–Akt, MAPK, 

JAK–STAT, and the canonical Pathways in cancer module—highlighting a molecular 

intersection between autoimmunity and oncogenic signalling. These computational insights 

guide target identification which can be acted upon by the RNA therapeutics. Finally, it 

addresses the hurdles that limit clinical applicability and propose strategies to accelerate bench 

to bedside journey of RNA therapeutics in autoimmune disorders. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

Autoimmune disorders- are a class of immunological diseases characterized by breach of 

immune tolerance. They encompass a broad spectrum of conditions resulting from aberrant 

activation of autoreactive B and T cells, which target the body’s own tissues through various 

effector mechanisms, leading to inflammation, tissue destruction, and organ dysfunction. To 

date, over 150 autoimmune disorders have been identified—some organ-specific, others 

affecting multiple organ systems—highlighting the complexity and diversity of immune 

dysregulation. Once considered rare, epidemiological data now indicate a significant global 

burden, making autoimmune diseases a growing concern in both public health and 

pharmaceutical research sectors [1]. Owing to a rather limited understanding of the underlying 

complex mechanisms involved in autoimmune disorders, there is no definite cure available till 

date. Currently available therapeutic strategies typically focus on managing the symptoms, 

using non-specific, broad range immunosuppressive agents, which suppress the immune 

system, as a whole, to modulate uncontrolled inflammation. They are not very successful in 

heterogeneous patient populations and are associated with systemic side effects, including 

infection, allergy, malignant disease, and incomplete disease remission. This underlines the 

urgent need for advanced therapeutic options with fewer undesirable effects and improved 

efficacy.[2] With the increasing understanding of the pathogenesis, numerous biological drugs 

are being developed to treat autoimmune diseases. Recent advances in molecular medicine 

have established RNA therapeutics as a novel class of treatment. Given the number of roles 

RNA plays in biological processes, RNA therapeutics leverage the ability of RNA molecules 

to regulate gene expression. Functional studies reveal the implication of dysregulation of a 

spectrum of ncRNAs in the pathogenesis of multiple autoimmune diseases, which exert their 

effects by modulating the key pathological mechanisms underlying autoimmunity. The 

identification of ncRNAs as pivotal regulators of gene activity, along with their abnormal 

expression patterns in various diseases, has sparked interest in utilizing them as therapeutic 

targets. Oligonucleotide-based inhibitors and mimics have shown promise in modulating 

activity of non-coding RNAs in vitro. These therapeutic agents have also exhibited partial 

efficacy in preclinical models, thereby, advancing development of innovative treatments 

hoping for their successful clinical trials in autoimmune diseases.[3] They can be designed to 

target even the genes considered to be undruggable by conventional approaches. In addition, 

they offer several advantages over conventional drugs. Computational approaches involving 
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miRNA networks and KEGG enrichment analysis help identify such hub miRNAs and targets 

that control convergent inflammatory circuits, whose simultaneously targeting by RNA 

therapeutics can theoretically revert dysregulated edges across the disorders. This is currently 

an emerging area. In the wake of their success in clinical trials in various other diseases like 

DMD, SMA, RNA therapeutics are being put forward as a potential therapeutic for autoimmune 

diseases as well. 
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CHAPTER: 2 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Types of RNA Therapeutics 

 
2.1.1 Antisense oligonucleotides (ASO) 

 

ASOs are short, synthetic strands of nucleic acid that bind specifically to target RNA sequences, 

thereby modulating protein expression.[1] This can be achieved via distinct mechanisms. Once 

delivered into the body, these ASO bind to the target mRNA, forming an RNA-DNA hybrid. 

One of the mechanisms involves binding of ASO at translation initiation site acting as a stearic 

block for the assembly of translation machinery and hence leading to translational arrest.[1] 

Another mechanism involves RNase H which acts to cause degradation of mRNA in RNA-

DNA hybrid as depicted in figure 2.1.1[2–4]. ASO based therapies target the source of 

pathogenesis of the disease, thus are relatively more successful over other therapies targeting 

downstream pathways.[5] Fomivirsen (1998) was the first FDA approved ASO drug designed 

for-HCV-induced retinitis in HIV patients.[6, 7] Mipomersen was the second one to be 

approved by FDA. Its subcutaneous administration targets apolipoprotein B-100 mRNA to treat 

familial hypercholesterolemia.[8] A wide range of ASOs of different generations are under 

clinical trials aimed at treatment of different diseases. 
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2.1.2 Splice switching oligonucleotides 

 

Pre-mRNA transcripts from most protein-coding genes can undergo alternative splicing, 

resulting in multiple isoforms from a single gene. Splicing is regulated by a combination of 

cis- & trans-acting elements that influence splice site selection. These regulatory factors can 

either enhance or suppress splicing at specific sites. Splicing enhancers are sequence elements 

that facilitate the inclusion of nearby exons when bound by their corresponding proteins. In 

contrast, splicing silencers inhibit splicing at particular sites. These enhancers and silencers 

may be present within exons or introns.[9] Several diseases are attributed to aberrant RNA-

splicing and inclusion of pseudo exons (eukaryotes) leading to non-functional proteins.[10] 

Provided the crucial role splicing plays in regulating gene expression and its widespread 

dysregulation in several diseases, there is rising interest in development of drugs that can 

precisely modulate splicing in ways that can help alleviate disease symptoms.[9] This concept 

paved the way for the development of a distinct class of RNA-based therapeutics known as 

splice-switching oligonucleotides (SSOs). They act to restore the production of functional 

proteins by modulating the splicing patterns of pre-mRNA from defective genes by interfering 

with the interactions between protein and RNA that direct splicing. [11] These molecules are 

engineered to bind their target RNA sequences with high affinity, effectively obstructing and 

redirecting spliceosome activity through steric hindrance. This can occur via exon skipping, 

Figure 2.1.1: Mechanism of action of ASO. 

Under normal conditions DNA is transcribed into single stranded mRNA which is then translated into 

protein product. In the presence of ASO which is complementary to the target mRNA, a double stranded 

DNA-RNA hybrid is formed, which is acted upon by RNase H to cleave RNA component of the hybrid, 

thereby inhibiting translation. 
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exon inclusion and, exon shuffling, intron retention, alternative splice site selection, shifting of 

polyadenylation and promoter sites.[11] The mechanism of action of exon skipping and exon 

inclusion is depicted in figure 2.1.2. The SSOs are chemically modified to prevent recruitment 

and action of RNase H on pre-mRNA-SSO complex.[9] SSOs have been successfully designed 

and used as therapeutic agents for DMD and SMA. 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Aptamers  

Aptamers are single stranded 20-100 nucleotides long oligomers that adapt complex well 

defined 3-D structures that enabling their highly specific interaction with protein targets, 

typically achieving nM- to pM binding affinities as depicted in figure 2.1.3.[12] First described 

in 1990, they are analogous to antibodies in a sense that both of them function as affinity 

reagents and bind specifically to their target via induced fit mechanism.[13] However aptamers 

offer an edge over antibodies as they have low manufacturing costs, short generation time, low 

or no batch to batch variability, better thermal stability, higher modifiability and target 

potential.. Thereby providing a highly consistent, cost-effective, and easily modifiable 

alternative to antibodies.[14] They can be used for therapeutic purposes in a manner similar to 

mAbs. Aptamer-based therapeutics are based on one of the following strategies: 

Figure 2.1.2: Mechanism of action of splice switching oligonucleotides. 

Normally, splicing is regulated by splicing factor A (stimulatory, green) binding to the ESE to promote exon 

inclusion, while splicing factor B (inhibitory, red) binds to the ISS to inhibit it. SSOs can modify these 

interactions to control splicing. In stimulation, the SSO binds to the ISS, blocking factor B and allowing factor A 

to bind the ESE, leading to exon inclusion. In inhibition, the SSO binds to the ESE, preventing factor A from 

binding and enabling factor B to bind the ISS, resulting in exon skipping. 
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● Antagonist aptamers interfere with the interaction between disease targets (protein-

protein/ receptor-ligand interactions).[14]. 

● Agonist aptamers serve to stimulate or positively influence the function of target 

receptors.[14] 

● Cell type-specific aptamers functions to deliver other therapeutic--agents to the targeted 

cells or tissues. [15] 

The standard methodology for generating aptamers, virtually against any protein is SELEX 

(systematic evolution of ligands by exponential enrichment). It is a iterative process which 

consists of repeated binding, partitioning, recovery, and re-amplification steps.[9] Macugen 

(pegaptanib), was the first aptamer approved by US-FDA for AMD. It is a 27nt chemically 

stabilized RNA oligomer which blocks VEGF-receptor-induced neovascularization.[16, 17]  

 

 

 

 

 

 

 

2.1.4 Therapeutic RNA Interference 

Small non-coding RNAs have revealed RNAi as a key regulatory mechanism for post 

transcriptional gene silencing, which has significant therapeutic implications. [18–20] It 

interferes with gene expression in multiple ways, including, endonucleolytic cleavage of target 

mRNA and/or by recruitment of de-adenylation / de-capping enzymes.[21] Non-coding RNAs 

including miRNA, circRNA, lncRNA and siRNA are the mediators of RNAi, which can 

theoretically silence any gene (disease associated) in a sequence-specific manner making them 

a promising therapeutic modality.[22] Owing to the slight differences, they have different roles 

in pharmaceutical practice, but converge into the RISC (RNA induced silencing complex),[23] 

which binds to complementary sequences in target mRNAs, thus causing mRNA 

destabilization, degradation and eventually translational inhibition.[24] siRNA is typically 

Figure 1.1.3: Mechanism of action of aptamers 

Long oligonucleotide sequence, adapt 3-D configuration to form functional aptamers which specifically 

recognizes and binds to the target molecules, thus inhibiting or enhancing signal transduction. 
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more efficient at triggering more specific gene silencing, as compared to miRNA, which can 

target several genes simultaneously, owing to complete and partial complementarity of siRNA 

and miRNA respectively.[22] The detailed mechanism of siRNA and miRNA action is 

described in figure 2.1.4. Two common strategies are used by these non-coding RNA targeted 

therapeutics based on whether the target ncRNA expression needs to be downregulated or re-

introduced to restore the normal function. These two strategies are inhibition and 

replacement.[25] Inhibition involves suppression of the action of endogenous ncRNAs 

involved in disease pathogenesis and replacement involves restoration of the function of the 

endogenous ncRNA by introduction of synthetic ncRNAs (mimics) to activate the target gene 

expression. The replacement approach is especially beneficial when an autoimmune disorder 

arises due to the insufficient expression of a specific ncRNA.[25, 26] ‘Patisiran’, the first FDA 

approved siRNA drug to be commercialized.[27] Next was, ‘Givosiran’, approved for acute 

hepatic porphyria. Then came other candidates, Nedosiran, Vutrisiran, Inclisiran, Teprasiran, 

Fitusiran, Cosdosiran, and Tivanisiran, which are in stage 3 clinical trials.[28] miRNA mimics 

are being currently explored in preclinical development as putative therapeutic agents.[29] To 

mention a few, drug named MRG-110, which inhibits Mir-92a, (implied in development of 

cardiovascular diseases and delayed wound healing), has shown safety and efficacy in phase 1 

clinical trials in humans.[30] Another drug, RGLS8429, inhibitor  of miR-17 is a promising 

candidate for polycystic kidney disease. [31] Another miRNA drug, MRG-201 (miR-29 mimic) 

is being explored for the treatment of keloid and fibrous scar formation.[32] 

 

 

 

 

 

 

 

Figure 2.1.4: Mechanism of action of RNA interference 

miRNA gene is transcribed into Pri-miRNA, which undergoes processing by enzyme ‘Drosha,’ to form Pre-miRNA, which is 

translocated to the cytoplasm by exportin 5 transporter. In the cytoplasm, dsRNA and pre-miRNA are acted upon by ‘Dicer’ 

to form siRNA and miRNA respectively. These ds-siRNA/miRNA associate with ‘argonaute-2’ endonuclease to form RNA 

induced silencing complex. The passenger strand is then released to form activated RISC. The RISC with guide strand, goes 

and binds to the target complementary RNA. siRNA being fully complementary to target mRNA, promotes cleavage by AGO-

2, whereas miRNA containing loops and bulges prohibit cleavage by AGO-2 but alter stability and causes translational 

repression. 
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2.2  Non coding RNAs in autoimmune disorders 

 
2.2.1 Rheumatoid arthritis (RA) 

RA is a persistent autoimmune condition primarily affecting synovial joints. It is characterized 

by chronic inflammation, synovial hyperplasia, and the generation of autoantibodies such as 

rheumatoid factor and anti-citrullinated protein antibodies. The disease progression involves 

immune-mediated bone and cartilage, often resulting in significant pain, disability, & systemic 

complications if left untreated.[33]  

Current therapies for rheumatoid arthritis (RA) aim at early detection and inflammation control 

to prevent joint damage. Common treatments include NSAIDs, corticosteroids, and DMARDs, 

which target inflammatory pathways but often cause adverse effects and show limited efficacy 

in many patients. Biologics like monoclonal antibodies (adalimumab, infliximab) and JAK 

inhibitors (tofacitinib, baricitinib) offer targeted relief but are costly and require frequent 

dosing. Despite these advances, RA remains incurable, highlighting the need for improved 

therapies. Emerging targets such as interleukins, ROS, and notably non-coding RNAs 

(ncRNAs), offer promise for novel, RNA-based therapeutics that could enable precise gene 

silencing with fewer side effects. [34] 

Emerging research has revealed that ncRNAs, especially microRNAs (miRNAs), are 

intricately involved in regulating immune responses in RA. For instance, miR-146a is often 

found upregulated in T lymphocytes of RA patients but fails to sufficiently regulate its 

downstream targets TRAF6 and IRAK1, leading to persistent TNF-α signalling and 

exacerbated inflammation.[35, 36] Pauley et al. through his in vitro experiments, demonstrated 

that normalizing miR-146a levels can suppress TNF-α production, indicating a regulatory role 

in inflammation control.[36, 37] Other dysregulated miRNAs include miR-223,  overexpressed 

in CD4+ naive T-cells [36, 38] and miR-346, which indirectly enhances IL-8 production in 

synovial fibroblasts [36, 39]. Among the most extensively studied is miR-155, which is also 

elevated in peripheral monocytes, synovial fluid, & tissue. [36, 40] Pauley et al., first reported 

the link between miR-155 expression and autoimmune diseases, showing that PBMCs of RA 

patients had significantly elevated levels of miR-155.[26, 37] It inhibits Jarid2(DNA binding 

protein), which is involved in repression of pro-inflammatory genes and thus leading to 

defective Th17 cell function.[26, 41] In addition, reduced miR-155 leads to an increased PU.1 

expression and suppressed BCR induced antibody production, highlighting its role in 

regulating activation of B-cell in RA.[26, 42] Mice deficient in miR-155 also exhibited lesser 
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local bone destruction in Collagen induced arthritis (CIA), emphasizing its role in RA 

pathology.[26, 43] Level of miR-221/222, miRNA-23b show positive correlation with clinical 

indicators such as CRP, ESR,  disease activity score, anti-citrullinated protein antibodies, and 

rheumatoid factor making them potential biomarkers for RA.[44, 45] Additionally the 

expression of miR-223 & miR-16  vary in RA patients from healthy individuals.[34, 46] 

Various RNAi-based strategies have been explored in RA models. In 2005, Schiffelers et al. 

showed that intra-articular delivery of siRNA targeted to TNF-α reduced joint inflammation in 

CIA models.[47, 48] Khoury et al. further reported that siRNA-mediated TNF-α silencing led 

to over 70% reduction in TNF-α levels and substantial remission of arthritic symptoms with 

weekly dosing. In a separate study.[49] In yet another study Chen et al. used short hairpin RNA 

(shRNA) targeting TLR7, resulting in downregulation of inflammatory mediators and 

amelioration of disease symptoms in treated mice.[48, 50] TNF-α silencing, thus presents a 

prospective approach for treating arthritis and TNF-α-mediated chronic inflammation. Another 

important molecular target is BTK (Bruton's tyrosine kinase), which is expressed in 

macrophages and B cells. BTK-specific siRNA therapy in CIA mice significantly reduced joint 

inflammation.[51] Instead of monotherapy with miRNA or siRNA, their combination therapy 

with specific drug treatments was proposed to be a better approach with greater efficacy.[51] 

A study investigating the co-delivery of methotrexate and indomethacin along with MMP-9-

targeting siRNA in a macrophage cell line demonstrated effective downregulation of 

inflammatory cytokines, as well as MMP-9.[51] On administration in arthritic mice, the 

synergistic action of siRNA and chemical drugs in the formulation significantly alleviated joint 

swelling and lowered TNF-α, MMP-9, and IL-6 in the knee joint and ankle fluid, restoring 

near-normal ankle joint morphology, enhanced anti-inflammatory effects and improved 

cartilage integrity.[51, 52] Macrophages produce a wide range of pro-inflammatory mediators 

involved in RA, which can be efficiently targeted by RNA therapeutics thus representing a 

powerful anti-rheumatic strategy.[53] Injection of anti-IL-6, -IL-18 or -IL-1β siRNA lipoplexes 

were found to abrogate joint swelling alongside cartilage and bone destruction, with IL-6 

targeting proving to be most effective. However, a combination of all three siRNAs (IL-1, IL-

6, and IL-18) gave most significant therapeutic benefits by comprehensively reducing 

pathological features of CIA, and improving overall parameters. [53] Intra-articular 

administration of shRNA against B-cell activating factor (BAFF) achieved local gene silencing, 

alleviating inflammation & joint damage in CIA mouse by particularly targeting DCs from 

ankle joint and impairing Th17 cell expansion and B cell function [34, 54]. 
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2.2.2 Systemic lupus erythematosus (SLE) 

SLE is a complex, chronic autoimmune disorder that can affect almost every organ system, 

thus, often presenting with a broad range of clinical manifestations ranging from mild 

mucocutaneous symptoms to severe multiorgan and central nervous system involvement. 

These symptoms can range from mild mucocutaneous lesions to severe complications 

involving the central nervous system, kidneys, and other vital organs, making diagnosis and 

treatment challenging. The underlying mechanism involves the generation of autoreactive B 

cells producing autoantibodies owing to defects in both innate and adaptive immunity, leading 

to. These antibodies bind to self-antigens to form immune complexes that accumulate in 

tissues, leading to inflammation and tissue injury via complement activation and immune cell 

recruitment.[55]  

Therapeutic management of SLE focuses primarily on preventing organ damage and 

maintaining remission. Treatment plans are personalized based on the severity and organ 

involvement. Mild cases are typically managed with NSAIDs, antimalarials like 

hydroxychloroquine, & immunomodulatory agents. However, more severe manifestations 

often require potent immunosuppressants such as corticosteroids, cyclophosphamide, or 

azathioprine. Prolonged use of these agents carries risks of adverse effects, including bone 

marrow suppression, hepatotoxicity, and increased susceptibility to infections. Although 

biological therapies like rituximab (targeting CD20) and belimumab (targeting BAFF) have 

shown modest success, many B cell-directed therapies have failed to yield favourable clinical 

outcomes due to safety limitations. Consequently, the development of safer, more effective 

therapies remains a high priority.[56] 

Recent advances in transcriptomic studies have uncovered substantial dysregulation of non-

coding RNAs, especially microRNAs (miRNAs), in SLE. These miRNAs play pivotal roles in 

modulating immune responses and have emerged as key players in the disease’s 

pathophysiology. In one study, Dai et al. profiled miRNA expression and identified seven 

downregulated miRNAs (miR-196a, miR-383, miR-17-5p, miR-184, miR-409-3p, miR-141, 

and miR-112) and nine upregulated miRNAs (miR-21, miR-198, miR-61, miR-299-3p, miR-

142-3p, miR-78, miR-189, miR-342, and miR-289) in SLE patients compared to healthy 

individuals.[57, 58]  miR-146a has been shown to be downregulated in SLE and is closely 

linked to the activation of the type I interferon (IFN) pathway—a hallmark of SLE pathology. 
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Its diminished expression fails to control signalling through TRAF6 and IRAK1, thereby 

amplifying inflammatory responses. [59] Similarly, miR-21 is markedly upregulated in 

multiple autoimmune disorders, including SLE. It exerts its pathogenic effects by targeting and 

downregulating several genes such as PDCD4, SMAD7, and BCL2, collectively contributing 

to an exaggerated immune response. Experimental studies in mouse models have demonstrated 

that inhibiting miR-21 ameliorates disease symptoms, suggesting its therapeutic relevance.[26]  

In this context, Regulus Therapeutics has developed RG-012, a single-stranded antisense 

oligonucleotide that targets miR-21. This compound has progressed into Phase II clinical trials, 

reinforcing the potential of miRNA-targeted therapies for SLE. Additional preclinical 

investigations involving miRNA knockdown and gene knockout strategies have shown 

promising improvements in disease markers in SLE mouse models.[60–62] Beyond miRNA-

based strategies, aptamer-based therapies are also being explored for SLE. One potential target 

is the G6-9 anti-DNA autoantibody, which binds to nuclear antigens. An RNA aptamer with 

high affinity for this autoantibody has been engineered, providing opportunities for diagnostic 

and therapeutic applications.[63, 64] Moreover, chemokines such as CCL2 and its receptor 

CCR2 are involved in the recruitment of inflammatory cells in lupus nephritis. Aptamers 

targeting this axis could potentially disrupt immune cell infiltration in the kidneys. One such 

compound, mNOX-E36–Spiegelmer, is a CCL2-specific RNA aptamer that has demonstrated 

efficacy in mice model for lupus nephritis. Treatment with this aptamer reduced monocyte 

migration from bone marrow and decreased renal macrophage and T-cell infiltration. It has also 

successfully completed Phase I clinical trials without inducing immunostimulatory side 

effects.[64–66]. Overall, both miRNA- and aptamer-based therapeutic strategies offer 

considerable promise for the treatment of SLE. Their ability to precisely modulate pathogenic 

molecular pathways, combined with their favourable safety profiles, makes them attractive 

candidates for future clinical application in autoimmune diseases like lupus.[64] 

 

2.2.3 Sjögren’s syndrome 

Sjögren’s syndrome (SS) is a systemic autoimmune disease primarily characterized by exocrine 

gland dysfunction, which results in symptoms such as dry eyes (xerophthalmia) and dry mouth 

(xerostomia). The condition arises due to the infiltration of autoreactive lymphocytes into 

salivary and lacrimal glands, leading to apoptosis of the secretory epithelial cells and 

consequent glandular hypofunction.[67] SS is clinically classified into two types: primary SS 
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(pSS), which occurs as an isolated autoimmune disorder[68], and secondary SS (sSS), which 

coexists with other autoimmune diseases such as rheumatoid arthritis or systemic lupus 

erythematosus. [69] 

The management of primary Sjögren’s syndrome (pSS) focuses on symptom relief and 

management of systemic complications, as no single treatment effectively addresses both 

aspects. Current options include secretagogues like pilocarpine and symptom-based treatments 

such as saliva and tear substitutes. For severe systemic cases, corticosteroids and 

immunosuppressants are used, though their efficacy remains limited and unproven. 

csDMARDs like methotrexate are used empirically but lack formal approval or strong evidence 

of benefit. Hydroxychloroquine is commonly prescribed, yet its effectiveness is modest. The 

absence of targeted therapies and the limited success of conventional immunosuppressive 

agents underscore the pressing need for more effective treatment options.[70] 

Recent studies have highlighted the involvement of non-coding RNAs—particularly 

microRNAs (miRNAs)—in the pathogenesis of SS. These molecules regulate gene expression 

post-transcriptionally and have been implicated in key pathological mechanisms of the disease. 

Wang et al. conducted microarray profiling of labial salivary gland biopsies and reported 

significant downregulation of miR-181a and miR-16 in SS patients compared to healthy 

controls. These miRNAs are believed to influence immune responses through their interactions 

with intracellular ribonucleoproteins La/SSB and Ro/SSA, which are major autoantigens in SS. 

Although a direct mechanistic link has not been fully established, these associations suggest a 

regulatory role in disease progression. [71, 72]  Further research by Carvajal et al. investigated 

the expression of hsa-miR-513c-3p and hsa-miR-424-5p in labial salivary gland tissue from 

pSS patients.[73] Their findings revealed an upregulation of hsa-miR-513c-3p and a 

downregulation of hsa-miR-424-5p. Notably, the target genes of hsa-miR-513c-3p—XBP-1s 

and GRP78—were found to be downregulated in patient samples, while the targets of hsa-miR-

424-5p—activating transcription factor 6α (ATF6α) and protein SEL1 homolog 1—were 

upregulated. These findings suggest that altered miRNA expression may disrupt the unfolded 

protein response (UPR) and endoplasmic reticulum (ER) stress pathways, both of which are 

implicated in autoimmune disease pathology.[72, 73] Gallo et al. in his microRNA expression 

studies in patients with varying salivary flow rates, revealed significant dysregulation of 126 

miRNAs, among which, four (miR-106a, miR-20a, miR-18b, and miR-146b) were 

upregulated, while two (miR-635, miR-372) were downregulated.[72] Overexpression of 

certain other miRNAs like miR-17/92, miR-200, miR-30, and miR-let-7 families was also 
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observed in pSS patients. Pathway analysis revealed their role in mucin-type O-glycan 

biosynthesis. miR-let-7 overexpression notably led to the downregulation of GALNT1(N-

Acetylglucosaminyltransferase), which encodes MUC7(mucin 7), a key salivary protein 

responsible for oral lubrication.[72, 74] Since glycosylated mucins are crucial for saliva 

composition, disruptions in this biosynthetic pathway can lead to the symptoms observed in SS 

patients.[75] miR-181d-5p regulate downstream genes involved in the mucin-type O-glycan 

biosynthesis pathway. It additionally regulates other pro- and anti-inflammatory pathways 

along with the ones involved in ER stress and TNF-α. [72, 76] ‘miR-181d-5p’ was reported to 

be inversely related to TNF-α expression by Castro et al. The dysregulation of glandular 

function and morphological alterations observed in pSS patients were attributed to the increase 

in TNF-α that resulted from downregulation of miR-181d-5p.[72, 77] This association 

establishes hsa-miR-181d-5p as a novel therapeutic target in Sjögren’s syndrome.[76] 

Pauley et al. explored a novel strategy to preserve secretory function in SS by developing a 

conjugate of a siRNA targeting caspase-3 and carbachol, a muscarinic receptor agonist. 

Carbachol being a secretagogue, facilitates secretion by binding to muscarinic receptors and 

undergoes receptor-mediated endocytosis, enabling targeted delivery of the siRNA specifically 

to muscarinic receptor-expressing cells such as salivary acinar cells. The conjugate was 

reported to successfully reduce caspase-3 gene/protein expression, indicating effective cellular 

uptake. Additionally, it inhibited cytokine-induced apoptosis, critical for maintaining fluid 

secretion, in epithelial cells.[51, 78] These findings suggest that this siRNA-based silencing 

approach may help protect secretory acinar cells from apoptosis, maintaining their secretory 

function and improving the quality of life in SS patients. 

 

2.2.4 Type 1 Diabetes Mellitus 

Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune condition characterized by the 

selective destruction of insulin-producing β-cells in the pancreatic islets of Langerhans. This 

destruction results in a lifelong dependency on exogenous insulin and a progressive decline in 

endogenous insulin secretion.[79] Irrespective of age of occurrence, insulin deficiency 

manifests itself as low/undetectable levels of plasma C peptide.[80] The disease is associated 

with several immune markers particularly autoantibodies targeting pancreatic β-cell. 

Current treatment regimens for T1DM are centered on glycemic control through insulin 

therapy, relying on lifelong administration of exogenous insulin combined with strict dietary 
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management. While modern humanized and genetically modified insulin analogues offer 

improved glycemic control, they still fall short of mimicking natural insulin function and carry 

risks such as hypoglycemia, insulin resistance, and dependency. Islet transplantation offers a 

promising alternative, but its use is limited by donor shortages and challenges in 

xenotransplantation. These limitations highlight the pressing need for innovative therapies that 

can restore natural glycemic control and reduce reliance on insulin.[81] 

MicroRNAs (miRNAs) play a crucial role in pancreatic homeostasis, regulating β-cell 

function, survival, and insulin secretion. Given their significant involvement in pancreatic 

biology, they are potential therapeutic targets for type 1 diabetes mellitus. RNA interference-

based strategies aimed at modulating specific ncRNAs could thus provide novel approaches 

to, preventing autoimmunity, and improving glycemic control in T1DM patient. Emerging 

research has shed light on the pivotal role of non-coding RNAs (ncRNAs), particularly 

microRNAs (miRNAs), in regulating immune responses associated with T1DM.[82] 

Upregulation of miR-21 is associated with disruption of β-cell development in T1DM animal 

models.[26, 83] Its overexpression causes an increase in caspase-3 level, eventually  leading 

to increased apoptosis of β-cell, by specific targeting of bcl-2 gene expression.[84, 85] miR-

29 is another miRNA implicated in β-cell dysfunction. Its overexpression in pancreatic islets 

was found to impair glucose-induced insulin secretion.[26] It was also found to promote β-

cell apoptosis thereby leading to pancreatic cells dysfunction in the early stages of disease 

development. This occurs by targeting of the antiapoptotic protein myeloid cell leukemia-1 

(Mcl1), which is essential for β-cell survival. The downregulation of Mcl1 leads to increased 

β-cell death, exacerbating insulin deficiency.[26, 86] The upregulation of miR-181 in T1DM 

patients show a negative correlation with levels of SMAD7 and C-peptide, suggesting its 

significant role in pancreatic β-cell dysfunction.[87, 88] The overexpression of miR-7 and 

miR-124 negatively regulates differentiation of pancreatic α- and β-cell via different 

mechanisms, thus  negatively impacting B-cell differentiation.[89, 90] In diabetic mice, 

elevated levels of miR-34a were linked to reduced B lymphocyte production by inhibiting 

Foxp1 gene expression, a key regulator of B lymphopoiesis. This suppression weakens 

pancreatic islet defence, increasing susceptibility to damage.[91, 92] The increased 

expression of miR-23, miR-590, and miR-98 has been associated with enhanced generation 

of autoreactive CD8+ T cells that specifically attack pancreatic islet antigens. This effect is 

mediated through the downregulation of critical apoptotic regulators such as RAIL (TNF-

related apoptosis-inducing ligand), FAS, and FAS ligand, suggesting a gene-silencing 
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mechanism that contributes to the initiation of autoimmune responses in T1DM.[93, 94] In 

addition to these, miR-375 and miR-143 are recognized for their involvement in the 

regulation of insulin secretion, lipid metabolism, and adipocyte differentiation, pointing to 

their role in maintaining metabolic homeostasis. miR-29b, which shows elevated expression 

across multiple autoimmune disorders, has a prominent role in modulating inflammatory 

cytokine production. It achieves this either by directly targeting Eomes and T-bet, or via the 

Sp1–NFκB–HDAC–miR-29b regulatory axis, highlighting its contribution to immune 

response regulation and inflammation. 

Beyond diagnostic potential, therapeutic strategies targeting miRNAs in T1DM are currently 

under preclinical development. RNA-based therapeutics—such as antagomirs (miRNA 

inhibitors) and miRNA mimics—offer the possibility of restoring immune balance and 

protecting β-cells by modulating miRNA activity. For example, Therapeutic application of 

miR-29b has demonstrated promise in mitigating diabetic nephropathy by dampening the Th1-

mediated immune response and attenuating both renal inflammation and fibrosis. A synthetic 

miR-29b mimic, known as ‘MRG-201’, has been developed by ‘miRagen Therapeutics’ and is 

currently undergoing clinical evaluation.[26] Since excessive glucagon secretion is a 

contributing factor to hyperglycemia in individuals with T1DM, glucagon receptor antagonists 

offer a potential therapeutic approach to help manage blood glucose levels.[95, 96] Building 

up on this strategy, Vater et al. engineered a 39-nucleotide anti-glucagon DNA/RNA 

Spiegelmer, termed NOX-G15. This molecule features 2'-O-modifications on the sugar 

backbone and 5'-end PEGylation to enhance stability against nucleases. NOX-G15 was shown 

to bind glucagon with high affinity and inhibit glucagon-induced cAMP production in CHO-

K1 cells expressing the human glucagon receptor. [64, 97] If successful in diabetic patients, 

this Spiegelmer could potentially eliminate the need for frequent glucose monitoring and 

insulin injections. [64, 98] 

 

2.2.5 Autoimmune thyroid disease 

Autoimmune thyroid disorders or AITD are a group of, organ specific disorders, affecting 

thyroid gland,  arising due to breakdown of immunological tolerance to self-antigens such as 

thyroglobulin, thyroperoxidase and the thyrotropin receptor, triggering an infiltration of B and 

T cells, autoantibody production and, eventual onset of clinical symptoms.[99] Autoimmune 
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thyroid diseases primarily include Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), 

both of which are more prevalent in women. [99] 

Recent research highlights the involvement of non-coding RNAs, particularly microRNAs 

(miRNAs), in the immunopathogenesis of AITDs. Several studies have reported the differential 

expression of multiple miRNAs in PBMCs, serum, plasma, and T cells of AITD patients. In a 

study conducted by Liu et al., a total of 16 miRNAs were found to be differentially expressed 

in PBMCs of individuals with Graves' disease (GD) compared to healthy controls. Among 

them, miR-154, miR-376b, and miR-431 were notably downregulated.[99].In related work, 

Bernecker et al. reported upregulation of miR-146a in PBMCs of GD patients. In contrast, they 

observed a reduction in miR-155 levels in CD8+ T cells from both GD and Hashimoto’s 

thyroiditis (HT) patients. Since miR-155 plays a crucial role in the development of regulatory 

T cells (Tregs) and the differentiation of Th17 cells, its downregulation may contribute to 

immune imbalance. The same study also identified reduced expression of miR-200a-1 and 

miR-200a-2 in both CD4+ and CD8+ T cells from GD and HT patients, which are linked to 

enhanced production of pro-inflammatory Th1 cytokines. [99, 100]  Additional insights from 

microarray analyses of plasma samples from GD patients revealed five significantly altered 

miRNAs. Four—miR-16-1-3p, miR-221-3p, miR-122-5p, and miR-762—were elevated, 

whereas miR-144-3p showed decreased expression. In the case of HT, elevated levels of six 

distinct miRNAs were identified in peripheral plasma, including miR-375, miR-451, and miR-

500a, which showed a strong correlation with thyroid-stimulating hormone (TSH) 

concentrations. Additionally, miR-20a-3p levels were inversely associated with thyroglobulin 

antibody (TgAb) levels, suggesting a potential role in disease monitoring.[99, 101] A 

comprehensive profiling study by Wang et al., focusing on mRNA and miRNA expression in 

regulatory T cells, validated increased expression of miR-519, miR-181, miR-636, miR-155, 

and miR-30a, along with decreased expression of miR-146a and miR-19 in GD patients 

compared to healthy controls.[99, 102] In another investigation, Hiratsuka et al. examined the 

relationship between circulating miRNA levels and clinical activity in Graves’ disease. Their 

analysis revealed increased serum levels of miR-92a-3p and miR-23b-5p, along with decreased 

levels of miR-339-5p and let-7g-3p, when comparing GD patients to those with persistent 

positivity for TSH receptor antibodies (TSH-R-Ab).[99, 103] Zheng et al. also reported 

significant changes in serum levels of miR-155, miR-146a, and miR-210 in GD patients. These 

alterations were positively correlated with clinical parameters such as thyroid gland size, free 

thyroxine levels, and TSH-R-Ab titres, indicating their potential involvement in disease 
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severity and progression.[99, 104]  One of the earliest investigations into miRNA expression 

in thyroid tissue of HT patients was conducted by Dorris et al., who observed reduced 

expression of miR-141. This reduction was associated with disruptions in the TGF-β1 

(transforming growth factor beta 1) signalling pathway, a known contributor to HT 

pathogenesis.[99, 105] In a separate study, Zhu identified dysregulation of 39 miRNAs in HT. 

Among them, miR-142-5p was found to target claudin-1, a tight junction protein. 

Downregulation of claudin-1, mediated by this miRNA, may compromise epithelial barrier 

integrity, potentially facilitating autoantigen exposure and chronic glandular inflammation in 

HT.[106, 107] 
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CHAPTER 3 

 

MATERIALS AND METHOD 

 

 

 

 

3.1 Software and Tools Used: 

1. NCBI-PubMed- This was used to review the available literature in to curate a list of 

dysregulated miRNAs in all the five autoimmune disorders considered for the study. 

2. miRNET 2.O- This was used to make miRNA gene networks using the list of 

dysregulated miRNAs obtained above, to identify the hub miRNAs which are central 

to disease regulation. It which integrates experimentally validated interactions from 

databases such as miRTarBase, TarBase. 

3. KEGG- The pathways enriched in respective diseases were identified using miRNet's 

integrated enrichment tool. 

4. Microsoft Excel: This was used to sort and filter KEGG pathway enrichment results 

according to p-value and FDR value. 

 

3.2 Data Collection 

Dysregulated microRNAs specific to five autoimmune disorders— Sjögren’s syndrome (SS), 

rheumatoid arthritis (RA), autoimmune thyroid disease (AITD), systemic lupus 

erythematosus (SLE), and type 1 diabetes mellitus (T1DM)—were curated from recent 

literature and datasets. A consolidated list of disorder-associated miRNAs served as the input 

for network and enrichment analyses.  
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Table 3.2: Dysregulated (especially upregulated) miRNAs in respective autoimmune disorders taken 

for network analysis[108–112] 

Dysregulated miRNAs (upregulated) 

Rheumatoid 
arthritis[108] 

Systemic lupus 
erythematosus[109] 

Sjogren 
syndrome[110] 

Type 1 
Diabetes 

mellitus[111] 

Autoimmune 
thyroid 

disease[112] 

miR-24  miR-21 miR-106a miR-181a miR-146a  

miR-125-5p miR-152-3p miR-20a miR-21 miR-16-1-3p 

miR-21 miR-155 miR-18b miR-29a miR-221-3p 

miR-146a  miR-30a miR-146b miR-7  miR-122-5p 

miR-126 miR-188-3p miR-181a  miR-124 miR-762 

miR-125b miR-126 miR-200b  miR-34a  miR-519 

miR-155 miR-142-5p miR 223  miR-23 miR-181 

miR-221  miR-124a miR-181a  miR-590 miR-636 

miR-19 miR-142-3p miR-16  miR-98  miR155 

miR-203 miR-342 
 

miR-204  miR-30a  

miR-338  
   

miR-142–5p 
 

 

3.3 miRNA–Gene Network Construction via miRNet 

Disease-specific miRNA–gene interaction networks were constructed using the online 

platform miRNet2.0, which integrates experimentally validated interactions from databases 

such as miRTarBase, TarBase. For each disorder, input miRNAs were mapped to their target 

genes, generating bipartite interaction graphs.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: miRNET interface 
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3.4 Hub miRNA Identification 

Within each miRNA–gene network, hub miRNAs were identified based on node degree 

centrality. Nodes ranking within the top 5% of the degree distribution were considered hubs, 

given their extensive regulatory influence over gene targets.  

  

3.5 KEGG Pathway Enrichment Analysis 

The gene targets of hub miRNAs from each disease-specific network were subjected to 

KEGG pathway enrichment analysis using miRNet's integrated enrichment tool. Significant 

pathways were identified based on adjusted p-values (FDR < 0.05), with results collated and 

compared across the five autoimmune conditions to identify common and disease-specific 

regulatory circuits. 
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CHAPTER 4 

 

RESULTS 

 

 

 

 

4.1 Disease specific miRNA-gene networks and hub identification.  

miRNA-gene interaction networks were constructed for all of the five diseases under 

consideration using miRNET as shown in fig 1-5 (Nodes in pink represent target genes, and 

blue nodes represent dysregulated miRNAs.), and hub miRNAs were identified for each.  

o RA: hsa-miR-21-5p and hsa-miR-155-5p (Fig 1) 

o SLE: hsa-miR-124-3p and hsa-miR-155-5p (Fig 2) 

o SS:  hsa-miR-146a-5p and hsa-miR-155-5p (Fig 3) 

o T1DM: hsa-miR-21-5p and hsa-miR-34a-5p (Fig 4) 

o AITD: miR-122-5p and miR-155 (Fig5) 

 

  

 

 

 

 

 

 Figure 4.1.1: miRNA–gene interaction network 

for Rheumatoid Arthritis constructed using 

miRNet. Prominent hub miRNAs such as hsa-

miR-21-5p and hsa-miR-155-5p are highlighted 

due to their high degree of connectivity, 

indicating their central regulatory roles in RA-

associated gene expression. 

Figure 4.1.2: miRNA–gene interaction network 

for Systemic Lupus Erythematosus, constructed 

using miRNet showing key hub miRNAs such as 

hsa-miR-124-3p and hsa-miR-155-5p central to 

extensive regulatory interactions. 
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4.2 Identification of shared regulatory nodes and cross disease target overlap 

Four miRNAs emerged as universal hubs and were dysregulated across more than 2 

autoimmune disorders as indicated in table 2. These can be typically targeted using RNA based 

therapeutics. 

 

 

 

Figure 4.1.3: miRNA–gene interaction network 

for Sjögren’s Syndrome highlighting hub 

miRNAs such as hsa-miR-146a-5p and hsa-miR-

155-5p, which exhibit extensive target 

connectivity and are central to extensive 

regulatory interactions. 

Figure 4.1.4: miRNA–gene interaction network 

for Type 1 Diabetes Mellitus showing key hub 

miRNAs such as hsa-miR-21-5p and hsa-miR-

34a-5p, central to extensive regulatory 

interactions. 

Figure 4.1.5: miRNA–gene interaction network 

for Autoimmune thyroid disease showing key 

hub miRNAs such as miR-122-5p and miR-155, 

central to extensive regulatory interactions. 
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Table 4.2: miRNAs shared across autoimmune disorders. 

 

 

 

 

 

4.3 KEGG Enrichment Identifies Conserved Immune Pathways 

Hub targets were significantly enriched in NF‑κB, JAK‑STAT and Th17 differentiation 

pathways—processes consistently dysregulated across all five disorders indicating that 

dysregulated miRNAs tap into conserved immunological cascades that underlie autoimmunity. 

KEGG pathway enrichment results for each disease are in the tables below. 

 

Table 4.3.1: Top 10 KEGG enriched pathways in RA in an increasing order of Pval 

Rheumatoid Arthritis 

Pathway Total Expected Hits Pval FDR 

Pathways in cancer 310 42.5 97 8.51E-17 8.51E-15 

Pancreatic cancer 69 9.47 34 1.03E-12 5.15E-11 

Chronic myeloid leukemia 73 10 32 2.38E-10 7.93E-09 

Prostate cancer 87 11.9 34 2.64E-09 5.68E-08 

Colorectal cancer 49 6.72 24 2.84E-09 5.68E-08 

Chagas disease  89 12.2 34 5.29E-09 8.82E-08 

Epstein-Barr virus infection 91 12.5 34 1.03E-08 1.45E-07 

Apoptosis 83 11.4 32 1.16E-08 1.45E-07 

Neurotrophin signaling pathway 123 16.9 39 1.60E-07 1.78E-06 

HTLV-I infection 199 27.3 54 2.44E-07 2.44E-06 

 

Table 4.3.2: Top 10 KEGG enriched pathways in SS in an increasing order of Pval 

Rank miRNA Degree Betweenness Diseases Involved 

1 miR-146a 94 0.108 RA, SLE, SS, AITD, T1DM 

2 miR-155 89 0.097 RA, SLE, SS, AITD 

3 miR-21 77 0.085 RA, SLE, AITD, T1DM 

4 miR-29b 71 0.072 SLE, AITD, T1DM 

Sjogren Syndrome 

Pathway Total Expected Hits Pval FDR 

Pathways in cancer 310 20.9 48 1.81E-08 1.81E-06 

p53 signaling pathway 68 4.58 18 2.87E-07 1.44E-05 

Glioma 65 4.38 16 3.81E-06 0.000127 

Bladder cancer 29 1.95 10 1.05E-05 0.000262 

Influenza A 107 7.2 20 2.18E-05 0.000436 

Pancreatic cancer 69 4.64 15 3.82E-05 0.000637 

Prostate cancer 87 5.86 17 5.04E-05 0.00072 

Chagas disease  89 5.99 17 6.83E-05 0.000851 

Chronic myeloid leukemia 73 4.91 15 7.66E-05 0.000851 

Endocytosis 101 6.8 18 0.000108 0.00104 
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Table 4.3.3: Top 10 KEGG enriched pathways in SLE in an increasing order of Pval 

 

 

Table 4.3.4: Top 10 KEGG enriched pathways in T1DM in an increasing order of Pval. 

Type 1 Diabetes Mellitus 

Pathway Total Expected Hits Pval FDR 

Alcoholism 166 23 65 1.42E-16 1.42E-14 

Pathways in cancer 310 43 88 3.06E-12 1.53E-10 

p53 signaling pathway 68 9.43 33 5.26E-12 1.75E-10 

Apoptosis 83 11.5 36 3.48E-11 8.55E-10 

Cell cycle 124 17.2 46 4.60E-11 8.55E-10 

Pancreatic cancer 69 9.57 32 5.13E-11 8.55E-10 

Toxoplasmosis 93 12.9 36 1.64E-09 2.34E-08 

Prostate cancer 87 12.1 33 1.45E-08 1.81E-07 

Colorectal cancer 49 6.8 23 2.13E-08 2.23E-07 

Small cell lung cancer 80 11.1 31 2.23E-08 2.23E-07 
                                         

 

Table 4.3.5: Top 10 KEGG enriched pathways in AITD in an increasing order of Pval 

Autoimmune Thyroid Disease 

Pathway Total Expected Hits Pval FDR 

Pancreatic cancer 69 10.4 34 1.52E-11 1.52E-09 

Pathways in cancer 310 46.6 90 4.85E-11 2.43E-09 

Colorectal cancer 49 7.37 26 4.95E-10 1.65E-08 

Chronic myeloid leukemia 73 11 32 2.65E-09 6.62E-08 

HTLV-I infection 199 29.9 57 3.75E-07 7.50E-06 

Neurotrophin signaling 

pathway 

123 18.5 40 6.47E-07 1.08E-05 

Glioma 65 9.78 26 7.61E-07 1.09E-05 

Prostate cancer 87 13.1 31 1.35E-06 1.69E-05 

Focal adhesion 200 30.1 55 2.50E-06 2.78E-05 

Apoptosis 83 12.5 29 4.67E-06 4.67E-05 

Systemic Lupus Erythematosus 

Pathway Total Expected Hits Pval FDR 

Pathways in cancer 310 77 154 1.08E-22 1.08E-20 

Chronic myeloid leukemia 73 18.1 48 1.21E-13 6.05E-12 

Prostate cancer 87 21.6 52 2.99E-12 9.97E-11 

Pancreatic cancer 69 17.1 44 6.38E-12 1.60E-10 

Neurotrophin signaling pathway 123 30.5 64 4.69E-11 9.38E-10 

HTLV-I infection 199 49.4 89 3.21E-10 5.35E-09 

Non-small cell lung cancer 52 12.9 34 6.28E-10 8.97E-09 

Small cell lung cancer 80 19.9 45 1.46E-09 1.82E-08 

Colorectal cancer 49 12.2 32 2.13E-09 2.37E-08 

ErbB signaling pathway 87 21.6 47 3.80E-09 3.80E-08 
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4.4 Cancer‑Related Pathway Enrichment Suggests Broader Therapeutic Utility 

Pathways in cancer and multiple tumour‑associated signalling cascades (e.g., p53, PI3K‑Akt) 

were also significantly enriched (FDR < 0.05) across the autoimmune hub‑target gene sets, as 

evident through the fig 3.  This observation is consistent with epidemiological links between 

chronic inflammation and oncogenesis and implies that RNA therapeutics designed to 

normalise these miRNA hubs may possess dual benefit in certain cancers.  Dedicated functional 

studies are still required to validate this translational opportunity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Heatmap depicting KEGG pathways shared across three or more autoimmune diseases based on 

miRNA-target enrichment analysis. Each row represents a pathway, and each column represents diseases. A filled 

cell (value = 1) indicates significant enrichment of the pathway in the corresponding disease. Notably, “Pathways 

in cancer,” “Pancreatic cancer,” and “Prostate cancer” were enriched across all five disorders, highlighting shared 

regulatory mechanisms. 
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CHAPTER 5 

 

DISCUSSION AND CONCLUSION 

 

 

 

 

5.1 Integrated view of RNA therapeutics with autoimmunity 

The therapeutic landscape for autoimmune disorders is not convincing enough. The 

conventional therapeutics involves the use of immunosuppressants, which lacks 

specificity and suppresses the immune system as a whole, often resulting in severe side 

effects. The review component of this thesis presents oligonucleotide-based drugs 

including ASO, SSO, aptamers and RNAi based drugs as potential alternatives, which 

offer unmatched target flexibility and molecular specificity. Moreover, these agents can 

modulate pathogenic gene transcripts, that are beyond the reach of small molecules or 

biologics 

5.2 Systems-biology contribution of this study 

The bioinformatic workflow of this thesis goes beyond the predominantly descriptive 

literature on RNA therapeutics in autoimmunity by supplying a quantitative network 

perspective. By compiling experimentally validated, dysregulated miRNA from 5 

prototypical diseases—rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s 

syndrome, type 1 diabetes, and autoimmune thyroid disease and constructing miRNA-

gene interaction maps, a conserved master-regulator set—miR-155-5p, miR-21-5p, 

miR-146a-5p, miR-29b was identified. These hubs scored highest in degree, 

betweenness, and clustering metrics, marking them as critical control points in 

autoimmune transcriptional networks.  KEGG enrichment of the shared target pool 

revealed PI3K–Akt, MAPK, and JAK–STAT cascades as the most persistently over-

represented pathways, rooting long-standing cytokine- and kinase-oriented 

immunology in an ncRNA framework. Notably, the frequent enrichment of the broad 

“Pathways in cancer” module aligns with epidemiological observations that chronic 

inflammation predisposes to malignancy. 
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5.3 Therapeutic implications 

• Prioritization of targets- Network analysis yielded a group of miRNAs which 

play central role in autoimmune cascades. These key miRNAs are potential 

targets for RNA based therapeutics and they can be efficiently silenced using 

different types of RNA based drugs. Besides this, genes regulated by these hub 

miRNAs were also identified. These genes also represent potential targets for 

silencing using ASOs or RNAi based drugs. 

• Cross disease indication potential- Interestingly similar miRNAs and pathways 

were found to be involved in five clinically distinct autoimmune diseases. This 

suggests that one well-designed RNA drug could work for multiple autoimmune 

diseases, especially those with common immune features. 

• Repurposing opportunities- Some RNA-based treatments are already being 

developed for cancer. Because these same miRNAs are also involved in 

autoimmunity, these existing drugs could be repurposed for autoimmune 

diseases shortening the time-to-clinic, with fewer regulatory hurdles. 

• Supporting Preclinical Evidence- Animal studies and lab experiment already 

show promising results for RNA-based treatments in autoimmune models. 

These findings support moving forward with clinical trials and real-world 

applications. 

5.4 The intersection between autoimmune and oncogenic pathways uncovered in this thesis 

broadens both research and clinical horizons, suggesting shared biomarkers and 

repurposable therapeutics. 

 

5.5 Collectively, the literature synthesis and computational insights provide a roadmap for 

prioritising and advancing RNA-based interventions, moving the field closer to precise, 

durable, and safer treatments for patients afflicted by autoimmune disorders. 
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