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REPURPOSING ANTICANCER DRUGS FOR ALZHEIMER’S DISEASE: A 
COMPUTATIONAL INTELLIGENCE   PERSPECTIVE” 

Mugdha Sharma (23/MSCBIO/67) 

ABSTRACT 

Aim:- Alzheimer’s disease remains an urgent as well as unsolved neurological disorder of our time. It 
continues to be a worldwide health challenges as it is a progressive neurodegenerative disease that 
predominantly affects memory and cognitive function, marked by neronal death and tissue loss that span 
throughout the brain. Discovering therapeutic drugs for this disease is often complex due to it’s intricate 
mechanism and rapid progression over patient's lifespan. Traditionally developing pharmaceuticals for 
AD often take prolonged development process, excessive cost, have high failure rate, off atrget delivery. 
Thus, drug repurposing, a promising approach to accelerating drug development is the inferring new 
therapeutic uses for existing drugs, which are already approved for incorporation into medication. 
Especially the role of, anticancer drugs and their potential in modulating several overlapping molecular 
mechanisms implicated in both cancer and AD. 

This paper covers the recent advancement in AI, ML algorithms that accelerate the drug discovery and 
repositioning process to combat Alzheimer’s Disease and identifying novel therapeutic target. In addition 
to improving early-stage drug development, these technologies also make it possible to repurpose existing 
drugs, such as anticancer agents, for Alzheimer's treatment. 

Result: -As computational frameworks advance with revolutionary invention of “Artificail 
Intelligence”(AI) and “Machine Learning”(ML), the process of identifying, prioritizing, and validating 
such repurposable candidates has been revolutionized. This review highlights the transformative role of 
AI/ML in mining multi-omics data, predicting drug-disease associations, and evaluating therapeutic 
efficacy in silico. Key computational platforms, models, and case studies are discussed, with a focus on 
anticancer agents repositioned for AD. The findings underscore the synergistic potential of integrating 
computational intelligence with biomedical insights to both diseases provide an opportunity to somehow 
invent novel, precise and accurate therapies against them.  

Conclusion:- The convergence of oncology and neurodegeneration has opened a promising frontier in the 
search for therapies for Alzheimer’s disease (AD). Drugs such as Palbociclib, Tomoxifan, Dastainib, 
Niraparib, and Tofacitinib, etc originally developed for treating malignancies, have demonstrated 
potential neuroprotective function in AD models. With the advancement of computational frameworks, 
AI, ML and many other deep learning models have proved to be a saviour in hastening the drug 
developement process 
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1. INTRODUCTION 

 

Alzheimer’s disease (AD) is a complex and progressive neurodegenerative condition marked by the 
buildup of amyloid-beta (Aβ) plaques and the abnormal phosphorylation of tau proteins, which results in 
neurofibrillary tangles, neuronal loss, and gradual cognitive deterioration.. It primarily affects memory 
causing dementia, cognitive impairment, major tissue loss that spans throughout the brain. As a result, the 
brain shrinks dramatically, declining the health and quality of life of patients suffering from AD. AD 
cases continues to rise exponentially with an estimate of nearly 510 million individuals worldwide being 
affected by 2050.[1] poses a dooming threat on our healthcare system. Especially in India and other 
developing country, this burden is further exacerbated by lack of resources, lack of access to health care, 
and financial constraint. Discovering therapeutic drugs for AD is often complex due to the intricate 
mechanism and rapid progression of AD throughput patient's lifespan. Out of the ongoing 187 clinical 
trials for AD drug until 2023, only 78% are concentrated on drugs involved in disease modifying 
therapies, rest of them lacking even a proper drug target against AD.[2] These limitations highlight the 
need for innovative therapies and identification of novel drug and target against AD. 

A growing approach in therapeutic development is drug repurposing, which involves finding alternative 
medical applications for established drugs—especially those, like anticancer agents, that already have 
well-documented safety profiles. This approach significantly reduces the time, cost, and error rate 
associated with conventional drug discovery pipelines. In addition to being anti cancerous, these drugs are 
believed to reduce neuroinflammation, exhibit neuroprotective function that can modulate the 
dysregulated cellular or genome activity in AD patients. Hence, anti-cancerous drugs are an excellent 
alternative used to treat AD. 

There are often several obstacles associated with drug discovery and designing process like time 
consumption, excessive cost, off target delivery, low efficacy etc. Additionally, the large set of databases 
associated with AD like data from clinical trials, gene expression data, microarray, proteomics, genomics 
and from online repositories hamper the process of drug development making it a very complex and 
tedious task. Drug discovery process has been revolutionized by AI and ML algorithms. These models 
help in analyzing high dimensional data obtained from multiple sources, prediction of drug target 
interaction, identification of novel drugs and their respective targets and aid in many more processes. 
These advanced computational models play a key role in facilitates prediction of drug target pair with 
extreme precision, pharmacokinetic properties, network pharmacology, molecular docking, virtual 
screening etc. [3] 

The convergence of AI, ML has created a paradigm shift in biomedical field of research and open up new 
avenues to analyze “Big Data” and identify potential anti cancerous drug with neuroprotective properties. 
Big data here refers to enormous piece of data that is difficult to analyze with traditional software and 
tools. One of the most important characteristics of big data in biomedical domain is size. Other 
characteristics associated with it are volume, variety and velocity, where volume refers to the magnitude 
of the data, variety refers to the heterogenicity of the dataset, velocity refers to the rate of generation of 
data and it’s analysis.It is also defined by three key attributes: volume, variety, and velocity. Volume 



 

indicates the sheer amount of data, variety reflects the diverse nature of data sources and formats, while 
velocity describes how quickly data is generated and processed.[4][5]. AI has devised new dimension 
reduction techniques for nonlinear data.  

In the realm of drug discovery, pinpointing new therapeutic targets remains a fundamental yet challenging 
step due to the high costs and complexity associated with experimental validation. Currently, fewer than 
400 human genes are known to serve as targets for FDA-approved drugs, highlighting the limited scope 
of traditional approaches[6]. To overcome these limitations, computational strategies have emerged as 
essential tools for predicting novel drug-target interactions. Drug repositioning, the practice of identifying 
new uses for existing drugs, offers a strategic advantage by leveraging compounds with known safety 
profiles, thus bypassing early-stage toxicity studies.[3] Among repositioning techniques, activity-based 
screening has yielded promising results, particularly in repurposing non-oncology drugs for cancer 
treatment. 

There are some emerging evidences that strongly claim towards the overlap in molecular markers of 
cancer and AD. Although the two fatal diseases stand at the opposite spectrum of cell cycle [7], the 
former is marked by uncontrolled cell proliferation while the latter results in neuronal death. Yet the two 
diseases share common genetic and molecular pathway and markers, these common factors play a key 
role in identifying anti cancerous drugs that also modulate neurodegenerative pathway and works against 
AD.  

AI, or Artificial Intelligence comprises of a broad field that is capable of forming systems that are 
efficient at performing tasks that typically requires human intelligence. It can be trained on the past data 
and large datasets to improve it’s task performing ability like problem solving decision making, 
deciphering natural language. The main aim of AI is to simulate human cognitive process and mimic the 
patterns that form in human brain during these processes like learning, problem solving etc. On the other 
hand, another subset of AI is known as” Machine Learning“(ML). ” Deep learning“(DL) is a type of 
machine learning that takes advantage of” artificial neural networks“(ANN) with multiple layers to 
analyse databases. [9] 

The incorporation of these advanced computational model in field of medicine is in two ways, either 
virtual or physical. Virtual application here refers to use of ML/ DL to leverages complex mathematical 
algorithms to improve learning through experience. Machine learning (ML) techniques are increasingly 
applied in biomedical data analysis, typically falling into three main categories first is “unsupervised 
learning”, which identifies inherent structures or patterns in unlabeled datasets; “supervised learning” 
comes after that, which uses labeled data to train models for tasks like classification and prediction; and 
lastly, “reinforcement learning”, which involves learning optimal actions through feedback in the form 
of rewards or penalties over time[10] 

This review aims to recapitulate these above mentioned advanced databases that constantly being 
integrated to renew the field of drug repurposing and unlocking novel drugs and their potential interaction 
with target. 

2. Pathophysiology of Alzheimer’s 

Clinically AD manifests as a gradually progressive form of dementia, accompanied by structural and 
functional form of brain alterations such as cerebral atrophy, neuronal cell death, reduces synaptic 



 

integrity, neuroinflammation etc. The main hallmark of AD is the accumulation of extracellular toxic 
amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). [11] 

The development of β-amyloid plaques is due to a mutation in amyloid precursor protein (APP) gene, 
which is linked with cerebral amyloid angiopathy (CAA) and haemorrhage, lead to inconsistent 
enzymatic cleavage of APP, a transmembrane protein, by β secretases (BACE1) and γ-secretases.[12]This 
persistent cleavage leads to the formation of Aβ peptides, which are 38 to 43 amino acid long, accumulate 
extracellularly and aggregate into senile plaques.Deposition of these plaques in between the nerve cell 
blocks transfer of signals from one cell to other cell at synapse and activates immune system cells, as a 
repercussion of this disturbance inflammation happens that ultimately kills cell.Hence the amyloid 
cascade hypothesis emerged, according to which Aβ accumulation initiates a pathological cascade that 
activates hyperphosphorylation of tau protein that causes NFTs to form (also called the tombstone of dead 
and dying neurons), and onset of this cascade ultimately leads to neuroinflammation and neuronal death. 
Tau normally supports microtubule assembly and stabilization through reversible phosphorylation, it is an 
axonal microtubule associated protein (MAP), but in AD, its dysregulation leads to insoluble filamentous 
deposits that compromise neuronal function. [13][1] 

This is followed by astrogliosis and microglial cell proliferation. A key regulator for activation of 
microglial cells is “Triggering receptor expressed on myeloid cells 2 (TREM2)”. The mutation in TREM2 
leads to late onset of AD (LOAD). Therefore, this could be a potential target in future therapies.[14].  

Mainly there are two enzymes associated with hyperphosphorylation of tau, cyclin dependant kinase 
(Cdk5) and glycogen synthase kinase 3 (GSK-3), hence inhibitor of these two enzymes also can be used 
to treat AD. 

Furthermore, the presence of Aβ plaques enhances the acetylcholinesterase (AChE) activity, this causes 
rapid breakdown of acetylcholine (ACh) causing neurotransmitter deficit. AChE may also interact 
directly with Aβ peptides causing it to alter its conformation and promoting its aggregation into 
plaques.[15][16]. Therefore, acetylcholinesterase inhibitors are widely used to treat AD symptoms like 
rivastigmine [17] ,donepezil [18], galantamine[19]and memantine [20].  

 

3. Crosstalk between cancer and Alzheimer’s 

 

Cancer and Alzheimer’s have become two of the leading causes of death in the world. Although there 
appears to be dispartate mechanism involved in both diseases, but Oncogenesis and Neurodegeneration 
often share salient connection between them. Cancer and Alzheimer’s stand at opposite end when it 
comes to behaviour of cells in these abnormal conditions: cancer is marked by uncontrolled cell 
proliferation, that is, escape of cell from the regulated cell cycle, and evade apoptosis, hence are 
considered immortal. Conversely, in AD there is rapid neuronal loss due to accumulation of toxic plaques 
and overstimulation of immune system. Therefore, these two fatal diseases are considered to be at the 
opposite end of the spectrum, cancer due to evasion of cell death and AD due to frequent cell 
death.[21][7],[22]. In sum, it can be said that cancer is caused due to gain of function mutation like, proto-



 

oncogene transform into oncogene and drives normal cell to become a cancer cell. Meanwhile AD is 
caused by due to loss of function mutation that causes loss of cells.[23] 

 

3.1 Epidemiological Inverse association 

Countless studies have supported the theory that AD and cancer share an inverse relationship with each 
other. For instance, if a person suffers from AD, his risk of developing cancer gets halved. Similarly, if a 
person has a history of cancer, there are very few chances of them suffering from AD and onset of 
dementia, in a meta report analyses the chances might be 11-35% lower. The chances of AD patients 
developing tumor is as low as 61% than non-AD patients. [22]. Therefore, it can be inferred that there is 
mutual protection in the cases of these diseases, i.e., molecular mechanism favoring cell proliferation and 
survival might play a key role in protection against neurodegenerative disease. This important piece of 
information forms the basis of repurposing anti cancerous drugs to unlock their neuroprotective 
mechanism.  

Since the seminal updates on hallmarks of cancer by Hanahan and Weinberg, it can be inferred that many 
of these biomarkers might be overlapping in the molecular mechanism of the two diseases and make the 
patient more susceptible to the development and progression of the other disease. [24], [25] 

 One of the key markers to be noted here is dysregulation of Protein Kinases. PKs are classified under 
oncoproteins responsible for development and progression of cancer, and coincidentally their 
dysregulation is also observed in AD, especially in the abnormal hyperphosphorylation of tau protein, 
which leads to the formation of NFTs and consequently lead to the development of AD.  

The “Wnt signaling” pathway, named after the integration site of the “wingless-type murine mammary 
tumor virus”, plays a pivotal role in numerous cellular processes such as embryonic patterning, cell 
orientation, organogenesis, and the preservation of stem cell pluripotency. Interestingly, while its 
abnormal activation is commonly observed in various cancers, promoting tumor growth, the same 
pathway is often found to be suppressed in neurodegenerative conditions like Alzheimer’s and 
Parkinson’s diseases, where it typically offers neuroprotective effects[26], [27] 

Another enzyme that has been oppositely regulated is Pin1, it is a signalling molecule, it causes 
confirmational change in target molecule to alter their function. It plays a key role in regulating proline 
directed phosphorylation. Hence it helps in the regulation of cell cycle. In AD, Pin 1 is downregulated 
which results in impaired APP cleavage and accumulation of NFTs and amyloid beta. Meanwhile this 
enzyme is overexpressed in cancer cells and leads to tumorigenesis and proliferation. [28][29] 

 

While this narrative of AD and cancer being inversely associated is popular, some studies have also 
shown that there might be several biological and pathological similarities which run parallel in both the 
diseases. For example, both diseases are prone to develop with increasing age factor. It is considered one 
of the main governing factors for onset of both diseases. [30]With aging the cell repair processes slow 
down and ultimately halt, which manifests in mitochondrial damage and dysfunction, cell death, 
transformation of normal cell into cancer cells, ROS accumulation, cellular senescence and inflammation 
due to telomere shortening.[31] 



 

There are several shared comorbid factors like diabetes and metabolic dysfunction.[32], [33]Other shared 
factor that equally contribute to theonset includes, environmental and behavioural factors, markedly 
micronutrient status, dietary habits, exposure to sunlight, tobacco use, physical activity levels, and contact 
with heavy metals etc.[34]On the other hand, there are several genetic factors that are also dysregulated in 
both cancer and LOAD, like expression level and function of microRNA. [35] 

3.2 Genetic Overlap 

The most noteworthy genetic overlap in these two diseases is by the tumour suppressor gene p53 or TP53. 
It is a master regulator of cell cycle and apoptosis and is often called the “guardian of genome” by Lane, 
D. The loss of function mutation of this gene is a hallmark of oncogenesis. However, in case of AD, 
expression of p53 is upregulated in the neurons in proximity of the amyloid plaques, hence it could be 
said that th gene is not mutated but dysregulated. [36]This upregulation is caused by increase in 
transcription of p53 due to APP and Aβ. Due to this damage in p53 gene and the cell machineryfailing to 
keep the genomic integrity intact, the cells re-enter the cell cycle to recover the excessive damage. This 
re-entering of cells into the cell cycle is a hallmark of AD pathophysiology. In AD, p53 forms aggregates 
and interacts with the tau protein, this compels interaction mediates DNA damage in neuronal cells. Due 
to the characteristic disruption of tau protein in AD pathology, inhibits the activation of downstream 
target for p53 and impedes its nuclear translocation.[37] Thedisruption of microtubular network is 
responsible for this mislocalization of p53. The damaged tau proteins fail tomaintain the integrity of the 
nuclear membrane and leads to accumulation of p53 outside the cells which is observed in many AD 
brain scans.[38][39] 

Amyloid precursor protein (APP) plays a significant role in promoting the aggressiveness of various 
malignancies such as lung, breast, colon, pancreatic, thyroid, and prostate cancers, as well as acute 
myeloid leukemia. It enhances cellular behaviors including proliferation, migration, and invasion by 
activating signaling cascades like AKT and ERK [45][46]while it might downregulate pathways like 
Notch signaling and MAP kinase phosphatase which leads to expansion of tumour growth in 
tissue[40][41]while it might downregulate pathways like Notchsignaling and MAP kinase phosphatase 
which leads toexpansion of tumour growth in tissue.[42] 

Interestingly, the cleavage pattern of APP in neurodegenerative disorders such as Alzheimer’s disease 
differs from its processing in cancers. In particular, insulin-like growth factor 1 (IGF-1) modulates APP 
and APLP2 cleavage by upregulating α-secretase activity, which influences their functional outcomes in 
both disease contexts[43]Therefore, targeting drugs that block IGF-1 can be a key modulator in cancer.  

 

A gene that strongly contributes to the development of LOAD is APOE4 (Apolipoprotein E) that is often 
found in cells of central nervous system (CNS). It is a lipoprotein, that plays a key role along with its 
isomers in lipid homeostasis and cholesterol transport in cells, by acting as a ligand for binding with Low 
density lipoprotein receptors (LDL).[44] It has three isoforms, ApoE2, ApoE E3, and ApoE4 coded by 
alleles APOE ε2, ε3, and ε4 respectively and out of these three isoforms ApoE4 pose a big threat for 
development of AD. Hence it plays a monumental role in being a target for development of anti-amyloid 
drugs.[45][46], [47]There are also several observations that APOE might hamper the Wnt signaling, 
which is responsible for its neuroprotective function in AD.[48] 



 

Although APOE4 was never suspected to play a role in cancer, its hidden influences were discovered later, 
that it influences both diseases by targeting lipid metabolism as well as immune response. In AD, APOE4 
is responsible for the modulation of Aβ accumulation and clearance, while in cancer it directly targets 

immune response and alter availability of lipid. For instance, in prostate cancer, secreted APOE can 
induce senescence of infiltrating neutrophils, contributing to an immunosuppressive 
microenvironment. Meanwhile, in ovarian cancer, overproduction of APOE is linked to more 
aggressive and metastatic form of cancer, with APOE potentially inducing senescence in 
neutrophils. [47], [49] The APOE ε2/ε4 isoforms are associated with more advanced disease and higher 
cellular cholesterol retention.[50]In breast cancer, APOE ε2 might play a protective role against cognitive 
decline as a side effect of the chemotherapy received by the patients, while APOE ε4 carriers may be at 

greater risk of declining cognitive abilities and eventually developing AD. [47], [51] 

Overall, it can be concluded that APOE has a more direct influence in AD, and it is heavily 
genetically driven in AD than in cancer. While its role in cancer is rather context driven affecting 
the immunoregulation.  

 

3.3 Shared Molecular Pathways 

Despite the accumulating evidence of AD and cancer being inversely related, they share many key 
regulatory pathways which are often disrupted in opposite direction. 

Redox imbalance contributing to Oxidative stress, affects both diseases in distinct ways. ROS are a 
byproduct of aerobic metabolism and are generated in mitochondria during the electron transport chain 
(ETC). [52]However oncogenesis is marked by mitochondrial dysfunction, and exponential increase in 
amount of enzymes associated with ETC, i.e., NADPH oxidase, Cytochrome P450, Xanthine oxide etc, 
consequently the additional ROS are found in the cell, leading to tumour generation and 
proliferation.[53]Cancer cells not only damage the cellular cycle and escape checkpoints by modulating 
the genetic factors and growth cycle but by also creating a peculiar microenvironment around them that 
triggers immune responses, like hypoxia and inflammatory reactions, that leads to generation of more 
ROS. The excessive accumulation of reactive oxygen species (ROS) contributes to oxidative stress, which 
can induce genetic alterations in proto-oncogenes. Over time, this oxidative damage may initiate the 
transformation of healthy cells into malignant onesWhile progression of AD is marked by damage caused 
to neuronal cells by elevated levels of ROS, causing genetic instability and neuronal death. It is also 
found to impair the cell repair mechanism, so once the neurons get damaged there is no other way to 
revive them then halting their growth process and ultimately killing them. Like cancer, in AD an 
elevation of ROS is observed again due to mitochondrial dysfunction, but in this disease the 
manifestations are different. Generation of elevated level of ROS causes mitochondrial DNA to mutate, 
damage the ETC, disrupt the membrane permeability by damaging polyunsaturated fatty acids spanning 
the membrane, impaired stress resistance, metabolic flexibility, enhanced oxidative phosphorylation etc. 
[55], [56]The inconsistent expression of a cell cycle protein called Cyclin dependent kinase-5 (Cdk5) 

causesROS accumulation, the main culprit of DNA damage and mutation. [57] 



 

Another hallmark of pathophysiology associated with AD is the extracellular deposition of amyloid 
plaques, intracellular tau proteins in which form an arbitrary mass of fibres, NFTsand sometimes α-
synuclein, these clusters of protein further aggravate oxidative stress and inflammation.[58]Due to 
reoccurring hypoxia and inflammation, the calcium homeostasis in mitochondria gets disrupted. The 
combinatory effect of ROS and accumulation of toxic byproducts causes frequent death of neurons.[59] 

Unchecked and uncontrolled cell cycle is a characteristic feature in both diseases, although the former 
caused rapid, unchecked proliferation of cells and latter invokes premature death of cells. Cell cycle 
comprises of 4 phases, G1 marked by cells preparing for growth, followed by S phase, which is 
dominated by DNA synthesis, G2 phase which is preceded by the actual division phase called the M 
phase. The engines that drive the progression of these stages are a series of protein complexes called: 
cyclin and cyclin dependant kinases (CDKs). Neurons in AD brains show an augmented attempt to 
increase these kinases (CDKs), oxidative and metabolic stress might be the possible trigger for these 
elevated levels. Meanwhile, cancer cells inactivate cell‐cycle checkpoints, due to loss of function 
mutation in tumour suppressor genes to bypass these checkpoints and multiply unchecked. Thus, 
dysregulation of cell cycle is noted in both diseases. This paradox may arise because post‐mitotic neurons 
cannot complete division, so cell‐cycle re‐entry triggers apoptosis via p53/p21 signalling. This ectopic re-
expression of cell cycle proteins has let to this hypothesis of aborted re-entry disruption of cell cycle in 
particularly G2/M phase of cell cycle, of damaged neurons in AD. Regulatory proteins such as cyclins are 
essential for the timely transition between cell cycle phases[60]The key genes, AβPP, Presenilin 1, and 
Presenilin 2 (PS1/2) which are the main culprit in NDDs are also involved in cell cycle dysregulation.[61] 

A signalling pathway that is considered to be the underlying mechanism to regulate cell growth, 
proliferation and apoptosis is the PI3K/Akt signalling pathway.[62]Due to metabolic stress or oxidative 
stress, the PI3K/Akt gene gets activated it leads tosubsequent activation of mTOR which is a kinase and 
considered as a central regulator of cell metabolism, protein synthesis and translation, autophagy, cell 
growth and survival. Hyperactivation of PI3K/Akt causes mTOR inhibition, which leads to accumulation 
of toxic compounds, plaques, peptides, misfolded proteins and causes neurodegeneration.[7], [63] 

Autophagy which is termed as programmed cell death or cellular “self-cleaning” is another dysregulated 
process that an attribute of these two pathologies. In AD, elevated level of Aβ and tau is due to 
inactivated autophagy. By contrast, cancer cells often exploit autophagy for survival under stress.  
Therapeutically, promoting autophagy helps clear aggregates in AD models, whereas inhibiting 
autophagy can sensitize cancer cells to treatment. In sum, autophagic flux is a critical node: its failure in 
neurons drives AD pathology, while its modulation in tumours affects cancer growth.[7] 

4. Application of AI, ML databases in drug discovery 

Identification of pharmacologically active substance, in drug discovery pipeline, that has the ability to 
modulate the disease-causing target and combat the disorder, is the most daunting step. Historically, 
pharmaceutical research and development have concentrated on creating orally bioavailable small-
molecule therapeutics that target well-characterized, druggable proteins. The foundation of this approach 
is encapsulated by Lipinski’s Rule of Five (Ro5), established in 1997 through analysis of the 
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comparison of differential gene expression between diseased and normal conditions, and then 
identification of dysregulated genes and signalling pathways that might include this identified therapeutic 
targets. Shortlisting of these target candidate is based upon the fulfilment of multiple criteria like 
specificity towards a certain disease, expression dynamics in both diseased and normal cell, potential 
druggability, toxicity, responsiveness to drug candidates etc.[69] Another gene expression data 
repositories include The “Cancer Genome Atlas (TCGA), [70]Arrayexpress etc.[71] These online 
repositories also offer extensive transcriptomic datasets applicable to various disease contexts.  

In parallel, Genome-Wide Association Studies (GWAS) provide a complementary strategy for elucidating 
the genetic expression data of complex diseases. GWAS facilitates in analysing th whole genome of an 
individual, to observe whether certain genetic variants with associated diseases are recurring. In other 
words, GWAS scans the entire genome of the organism and identify the position of single nucleotide 
polymorphism (SNPs).  Analysing this data gives us an insight on the genetic pattern of inheritance of the 
disease target gene, and the future risk of an individual of inheriting that gene.[72]Databases like GWAS 
Central [73]and the NHGRI-EBI GWAS Catalog[74]aggregate and curate genomic variant data, allowing 
researchers to associate specific loci with disease susceptibility. These loci often highlightgenes that can 
be considered as a functional target in disease development, therefore offering an avenue to target and 
modulate the expression of that loci by drug candidate thereby facilitating advancements in personalized 
medicine.[9] 

An example of AI-driven innovation in this domain is PandaOmics, which is a computational platform 
designed to integrate multi-omics datasets and literature mining to identify novel drug targets. In a recent 
application to idiopathic pulmonary fibrosis (IPF), PandaOmicsidentified USP1 (ubiquitin specific 
peptidase 1) as a previously unrecognized yet disease-relevant target. This discovery, which emerged 
from AI-based inference rather than conventional knowledge, exemplifies the power of artificial 
intelligence in uncovering hidden biological associations. The identification of USP1 ultimately led to the 
development of a novel small-molecule inhibitor (INS018_055), which entered clinical evaluation in 
2023. [75] 

The identification of such disease-related genes is largely enabled by the analysis of high-throughput 
genome and exome sequencing data. Public databases like the Sequence Read Archive (SRA) (NCBI 
SRA) serve as a central repository for raw sequencing data generated through next-generation sequencing 
(NGS), supporting comprehensive exploration of genetic alterations relevant to disease pathophysiology. 
Cancer-focused genomic resources, such as the “Genomic Data Commons (GDC)” and “The Cancer 
Genome Atlas (TCGA)”, [76]offer curated sequencing datasets that enable researchers to identify 
oncogenic mutations and dysregulated pathways with potential therapeutic implications. Similarly, 
traditional  repositories such as PubMed (https://pubmed.ncbi.nlm.nih.gov) provide extensive access to 
peer-reviewed biomedical literature, facilitating data mining for target validation and pathway analysis 
and ChEMBL (https://www.ebi.ac.uk/chembl) offers a vast collection drug like compunds, annotated 
with pharmacokinetic, pharmacodynamic, and toxicological data. DrugBank (https://go.drugbank.com) 
integrates molecular data on drugs, their biological targets, mechanisms of action, and clinical use, 
supporting drug repositioning and interaction analyses. 

Structural biology tools are equally critical in modern drug discovery. The Protein Data Bank (PDB) 
(https://www.rcsb.org) provides open access to experimentally determined three-dimensional structures of 



 

biomolecules such as proteins, DNA, and RNA, which are extensively used to study protein–ligand 
interactions and guide rational drug design through structure-based approaches. Integrating the cancer 
genome research and ML database, a DriverML (https://github.com/HelloYiHan/DriverML) tool was 
developed, based on supervised learning it helps in accessing cancer driving genes and identifying them 
as a potential target.[77] A brand new AI model called BenevolentAI has been created to construct 
knowledge graph to identify and concentrate the desired area of drug-target interactions to identify drug 
candidates especially Janus kinase inhibitors (JAK) in this case, that can be repurposed. This AI model 
has been used to identify novel drugs that target SARS COV-2 virus. However, with the continuous 
evolving nature of these AI platforms it can be applied to find targets in AD, Cancer etc. [78], [79] 

For Alzheimer’s disease (AD), several disease-specific omics repositories have been established to 
advance target identification. The AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org) 
offers high-quality multi-omics data (genomic, transcriptomic, proteomic) from human brain tissues and 
animal models, generated under NIH-funded initiatives. AlzData (http://www.alzdata.org) integrates 
multi-omics information to support target prioritization, pathway mapping, and prediction of drug-gene 
interactions in AD.Additionally, AlzGPS (https://alzgps.lerner.ccf.org) combines multi-omics data with 
protein interactome networks and drug repurposing frameworks to uncover therapeutic strategies for AD.  

Artificial intelligence (AI) is increasingly transforming the landscape of drug development. Currently, 
more than 150 drug candidates powered by AI technologies are undergoing either the discovery phase or 
preclinical evaluation across various therapeutic areas. This trend highlights the expanding role of 
computational methods in streamlining target identification and optimizing drug development 
pipelines.[80] 

 

4.2 Target Prioritization 

Target prioritization refers to the process of evaluating and ranking potential biological targets (like genes, 
proteins, or pathways) that are involved in the pathology of a disease, in order to decide which ones are 
the most promising for therapeutic intervention. Not all discovered targets are: druggable, relevant to the 
disease, safe while being accessible to molecules at the same time. In order to combat this we usetarget 
prioritization to narrow down the list by evaluating features like: it’s biological relevance ,Druggability 
whether modulating it can have therapeutic effects,  Genetic support like it should have strong association 
with disease in GWAS and other gene expression analysis studies, Safety profiles, Expression of the 
selected target in relevant tissues, for relevance brain tissue here. Machine learning models accelerate this 
process by: - Integrating heterogeneous data (genomics, omics, literature, pathways) from multiple 
platforms, Predicting gene-disease relationships, Scoring and ranking targets, learning patterns from 
known successful/failed targets.[67] 

There are many softwares and programmes for target discovery and prioritisation like iCLUE &ASK™, 
developed by Standigm. It is an AI platform that is employed in prioritize protein targets for diseases by 
constructing and evaluating a graphical database to rank targets based on various relevant categories. 



 

As the demand for novel drug targets increases, the experimental validation of candidate targets remains a 
resource-intensive and time-consuming challenge. To address this, AI and ML methodologies have been 
employed to facilitate the prioritization of high-potential targets for downstream validation. For instance, 
a Support Vector Machine (SVM)-based classifier integrating multi-omic data such as DNA copy number 
variations, mRNA expression profiles, mutation frequencies, and protein–protein interaction (PPI) 
networks, was developed to predict and rank candidate targets specific to breast, pancreatic, and ovarian 
cancers. [81] 

An alternative strategy for target prioritization involves integrating multiple networks of gene interactions 
and utilizing a kernel-driven machine learning approach to rank genes according to disease-related MeSH 
annotations..[82] 

Further advancing this area, data from the online repositories is extracted to train a semi-supervised 
neural network model, which facilitated the identification of previously unrecognized therapeutic targets. 
[83]Additionally, biomedical literature resources such as Medline have beenutilized for predictive 
modelling; the tool DigSee employs natural language processing (NLP) and Bayesian classification to 
extract disease–gene relationships from textual data and ranks them based on evidential strength. [84]In 
another approach, implemented three positive-unlabelled learning algorithms are used to predict and 
prioritize over 3,000 genes potentially implicated in human aging.[85]Their model incorporated binary 
gene features derived from 11 human biological databases to assess the relevance of each gene in the 
context of age-related processes.  AI-powered knowledge graphs are employed to integrate diverse 
biomedical data sources, enabling efficient prioritization of genes related to the immune system for AD 
research. This accelerated the evaluation of 54 genes from several weeks to days, facilitating faster 
identification of potential drug targets for laboratory testing.An AI-driven, network-based approach 
combines genome-wide association study (GWAS) findings, multi-omics datasets, and the human protein 
interaction network to identify potential drug targets influenced by genetic variants linked to Alzheimer’s 
disease.. It identified 103 AD risk genes validated through various levels of pathobiological evidence, 
providing a robust set of targets for therapeutic development.. [86] 

Insilico Medicine has developed PandaOmics, an advanced artificial intelligence and machine learning 
(AI/ML)-based platform for therapeutic target discovery. This system is designed to analyze gene 
expression dysregulation and pathway alterations across heterogeneous datasets associated with 
amyotrophic lateral sclerosis (ALS). By integrating over 20 distinct ML and bioinformatics models, 
PandaOmics ranks potential therapeutic targets based on parameters such as disease association strength, 
druggability, developmental maturity, and tissue specificity. [75] 

A distinguishing feature of PandaOmics is its application of “graph-based neural networks” (GNNs), 
which offer advantages over traditional architectures. Unlike non-graph models, GNNs can natively 
incorporate biological network topologies, allowing the model to learn node embeddings that encapsulate 
relational and contextual information within protein or gene interaction graphs. This facilitates accurate 
biological inference by analyzing connectivity patterns in cellular systems (Hamilton et al., 2017). 

Protein-protein interactions (PPIs) are central to nearly all cellular processes, as proteins rarely act in 
isolation but instead form dynamic and complex networks of interactions. Understanding these PPIs is 
critical for elucidating cellular function and disease mechanisms. Computational methods offer a time- 



 

and cost-efficient alternative to experimental approaches in PPI prediction, especially when leveraging 
structural and sequence-level protein data. 

In a notable study, a graph-based deep learning approach combining “Graph Convolutional Networks” 
(“GCNs”) for predicting PPIs. The authors constructed residue-level protein graphs using three-
dimensional atomic coordinates derived from Protein Data Bank (PDB) files. Each node in the graph 
represents an amino acid residue, and an edge is defined if atoms from two residues are within a pre-
specified distance threshold. Node features were extracted using pre-trained protein language models, 
which convert the primary protein sequence into contextual embeddings for each amino acid.[87] 

Their methodology was validated using PPI datasets from Homo sapiens and Saccharomyces cerevisiae, 
achieving superior performance relative to previous state-of-the-art methods. These findings highlight the 
potential of GNN-based frameworks in biological network modelling and their application in AI-driven 
drug discovery workflows. 

 

4.3 Target Protein Structure Prediction 

Accurate prediction of protein structures plays a pivotal in drug discovery, as the 3-D conformation of a 
protein dictates its function and interaction with potential therapeutic drugs.Conventional techniques such 
as X-ray crystallography and cryo-electron microscopy offer high accuracy but typically require 
significant time and resources to carry out. Recent advancements in artificial intelligence (AI) have 
revolutionized this domain, offering rapid and reliable computational approaches to predict protein 
structures, thereby accelerating the drug development process.[88] 

AlphaFold, an artificial intelligence tool created by DeepMind (a subsidiary of Google), has 
revolutionized protein structure prediction. This system, particularly AlphaFold 2 introduced in 2020, set 
a new benchmark in accuracy during the CASP14 evaluation, reaching a median Global Distance Test 
(GDT) score of 92.4—approaching the precision of experimental methods. Its impact has been profound, 
dramatically increasing the number of known protein structures. Today, the AlphaFold Protein Structure 
Database contains structural data for more than 200 million proteins, covering much of the known protein 
space[94] , achieving a median Global Distance Test (GDT) score of 92.4 across all targets, indicating 
near-experimental accuracy. This advancement has significantly expanded the structural coverage of the 
protein universe, with the AlphaFold Protein Structure Database now encompassing over 200 million 
protein structures. [67], [89]. By combining AlphaFold's structural predictions with AI-driven drug design 
platforms based on the evolutionary, physical and geometrical constraints of the protein, they achieved 
the goal within a remarkably short timeframe.  

AlphaFold predicts the three-dimensional structure of proteins from their amino acid sequences and 
aligned homologous sequences. It combines the power of biological data with advance AI models and 
deep learning algorithms to predict accurate structures. This is achieved through the integration of two 
primary strategies: first, the extraction of conserved, co evolutionary sequence domains from multiple 
sequence alignments to infer spatial proximity between amino acid residues, and secondly, the application 



 

of deep neural networks (DNNs) to model these co-evolutionary dependencies and translate them into 
protein-specific statistical energy landscapes.[67], [90] Among ab initio structure prediction methods, 
AlphaFold hasdemonstrated unprecedented levels of accuracy, often approaching experimental resolution. 
Moreover, AlphaFold 3, the latest iteration, extends its predictive capabilities to encompass protein 
interactions with DNA, RNA, and small molecules, thereby providing a comprehensive framework for 
modelling complex biological systems and facilitating structure-based drug design. [89], [91] 

Apart from AlphaFold, other AI based tools like I-TASSER (Iterative Threading ASSEmbly Refinement) 
are also being used to predict the structural features of a protein, it adopts a hierarchical protocol 
combining threading, ab initio modelling, and atomic-level structural refinement to forecast both protein 
conformation and functional annotation[92]RoseTTAFold, created by the Baker Lab, utilizes a ”three-
track neural network” design that concurrently processes sequence data, spatial distances, and atomic 
coordinates[93] 

A DeepFragLib, a fragment library was developed by integrating the strengths of AlphaFold and DL 
algorithms, to fine tune the protein structure prediction.[93]Despite these advancements in protein 
structure prediction, challenges persist in accurately modelling intrinsically disordered regions, 
conformational flexibility, and post-translational modifications. Future research aims to enhance the 
dynamic modelling of proteins, integrate multi-omics data, and improve the prediction of protein-ligand 
interactions to further refine drug discovery processes. 

 

4.4 Target Evaluation 

Target evaluation comprises of careful and confident assessment of whether a biological molecule is a 
good candidate for drug development. In the process of target discovery, assessing the druggability of a 
biological target, defined as its potential to be modulated by small-molecule therapeutics, is pivotal. 
[94]A viable drug target must exhibit specific biophysical attributes that enable effective binding to drug-
like molecules. The integration of machine learning algorithms has significantly advanced drug 
evaluation process, particularly in discriminating between functional classes such as druggable versus 
non-druggable proteins. A wide array of algorithms—including SVMs, decision trees etc—have been 
widely utilized for these tasks. 

The availability of high-quality "omics" datasets, coupled with improvements in computational 
methodologies, has led to the proliferation of ML-based predictive models for target prioritization and 
evaluation. Given the long, costly, and low-success nature of drug development, achieving high-
confidence validation at early stages is imperative. Early identification and prioritization of promising 
targets are crucial to enhancing the overall success rate of drug discovery pipelines. In recent years, 
pharmaceutical industries have increasingly incorporated computational models—particularly machine 
learning frameworks—at the initial stages of drug development. These models exploit features such as 
sequence composition, biological network connectivity, structural characteristics, gene expression 
profiles, and subcellular localization to capture the essential attributes of successful drug targets and 
predict novel candidates with analogous properties. 



 

An example of integration of ML, is the SCREEN (Surface Cavity REcognition and EvaluatioN) web 
server. [95]which utilized a Random Forest (RF) classifier trained on the geometric, structural, and 
physicochemical properties of protein cavities known to either bind or not bind small molecules. These 
analyses demonstrated that the surface cavity size and shape are among the most influential factors in 
determiningdruggability. Subsequent studies expanded the use of ML techniques, including Support 
Vector Machines (SVMs), for predicting druggable proteins based on various sequence-derived 
physicochemical features. Dezső and Ceccarelli, for instance, developed RF-based models specifically for 
oncology targets,and then to shortlist drygs based on their similarity score. [96] 

4.5 Target Validation 

Following the identification of a potential drug target, it is crucial to validate its functional role within the 
disease context. Traditionally, antisense technology has been extensively utilized for this purpose. In this 
method, short single-stranded oligonucleotides are designed to complement specific sequences within the 
target messenger RNA (mRNA), thereby binding to it and disrupting translation, ultimately inhibiting the 
synthesis of the corresponding protein. Conditional knock-out strategies provide another important tool 
for target validation. Unlike conventional knock-outs that often result in embryonic lethality and 
developmental defects, conditional knock-outs allow for temporal and tissue-specific gene inactivation, 
minimizing associated risks and offering a refined approach to study gene function. 

Target validation involves confirming that the identified biomolecule—whether a gene, protein, or 
nucleic acid—directly contributes to the disease mechanism and can be modulated effectively by 
therapeutic agents. Several strategies are employed in this process, including structure-activity 
relationship (SAR) studies of small-molecule analogues, knockdown or overexpression 
geneticexperiments, and monitoring alterations in downstream signalling pathways influenced by the 
target. While validation using disease-relevant cellular and animal models provides critical evidence of a 
drug candidate’s efficacy and toxicity, the definitive assessment of target validity is ultimately determined 
through clinical trial outcomes.[97] 

4.6 Hit Identification and Structural Insights in Drug Design  

Following the validation of a therapeutic target, the subsequent phase in the drug discovery pipeline 
involves the identification of hit compounds—defined as chemical entities that demonstrate the intended 
biological effect in a screening assay. A variety of methodologies are employed for hit discovery, among 
which High Throughput Screening (HTS)remains a prominent experimental approach. It enables the 
rapid assessment of extensive compound libraries, containing millions of drug like compounds, against 
the target of interest. Screening may be carried out using biochemical assays, where purified target 
proteins are utilized, or cell-based assays, especially when target modulation leads to detectable cellular 
responses and to identify ligand receptor affinity. A critical prerequisite for these strategies is the 
establishment of biologically relevant assays to evaluate compound efficacy. Once initial hits are 
identified, a conventional downstream strategy involves co-crystallization of the candidate compound 
with the target protein. The resulting X-ray crystallography data provides high-resolution structural 
insights into the protein-ligand interaction, particularly the architecture of the binding pocket. These 



 

insights form the basis for structure-based drug design and hit-to-lead optimization.Additionally, drug 
repurposing, also called drug repositioning, is as a viable strategy to uncover novel therapeutic 
applications for existing approved drugs. This approach significantly reduces the developmental timeline 
and associated risks. In support of rational drug design, network-based models have been widely applied, 
integrating various biological and pharmacological datasets.[97] 

4.7 Identification of lead and Hit to Lead optimization 

A chemical lead refers to a molecule that is synthetically accessible, stable, and exhibits drug-like 
propertiesFor instance, Khan et al. gathered ~2,500 AChE inhibitors (2,037 actives, 501 inactives from 
ChEMBL) and generated PubChem fingerprints. They trained RF, SVM and neural‐network models 
using cross‐validation, finding that the RF classifier outperformed SVM with former having 94.1% 
accuracy, MCC=0.85 and the laterbeing  90.1% accurate . The RF model was then used to screen a 
51K‐compound library (Maybridge), yielding 922 candidates with >90% predicted activity. These hits 
were further filtered by molecular docking to AChE, and top-scoring compounds were subjected to MD 
simulations. This RF/SVM model aided the screening process of almost 1000s of drug candidate scored 
by ML and further filtered them out by molecular docking to give 4 promising lead compounds. [98] 

A ligand‐based ML pipeline to find Aβ fibril binders was built for hit identification. They used a three-
step workflow comprising of property filter + 2D descriptor model + 3D field-point models which 
screened ~698 million ZINC compounds. Out of all 100 predicted binding leads, 46 were tested, yielding 
5 novel Aβ ligands with Kd = 20–600 nM (hit rate ~10.9%). This study combined a simple ML regressor 
with 3D shape models, demonstrating ML’s power to identify entirely new scaffolds against AD 
pathology.[99] 

Similar ligand-based ML approaches have been applied to BACE1, tau aggregation, etc. For example, 
Das et al. (2023) used an AI-driven tool (PyRMD) to virtually screen ZINC compounds for 
tau‐aggregation inhibitors. This reflects the broader trend of integrating AI with docking and MD to 
prioritize hits. [100]Beyond in silico screening, ML is transforming experimental HTS workflows. 
Traditional HTS tests large libraries blindly which generally has hit rates less than 1%, but incoporating 
ML can make this process easier and more efficient. A prominent strategy is iterative (active-learning) 
screening  in whicha small subset out of a large sample of compounds is screened experimentally, and a 
model like RF/SVM/LGBM/GNN is trained on those results. And this is repeated with another small 
subset. 

Svensson et al. (2021) found out that even with as little as 35% of a library screened, iterative ML 
recovery of known actives was ~70% . Screening 50% of the library recovered ~80% of hits at a time. In 
other words, ML-guided screening found most actives with far fewer tests, saving time and cost. 
[101]Other ways ML can be used in HTS include hit triage and quality control. Many HTS hits might be 
false positives (assay artifacts, pan-assay interference compounds – PAINS). ML models can be trained to 
flag such frequent hitters. For example, AstraZeneca researchers built an ML classifier (using 2D 
descriptors) to predict Compounds Interfering with Assay Technology (CIATs). This model, trained on 
known CIATs vs non-CIATs, successfully identified artifact-prone molecules. Interestingly, the authors 



 

noted that “well-curated datasets can provide powerful predictive models despite their relatively small 
size”, underscoring that even limited quality data enables ML to improve hit triage. 

Finally, ML can extract hidden information from HTS data. In high-content imaging screens, ML has 
been used to repurpose assay readouts. In one study, features from a glucocorticoid‐receptor 
translocation screen were used to predict compound activity in unrelated assays. Remarkably, this 
repurposing via ML boosted hit rates by 60–250× compared to the original screens. Although not AD-
specific, this illustrates the potential of ML to turn large HTS data repositories into predictive tools, 
dramatically enriching for actives.[102]Datasets for AD targets might be small or imbalanced comprising 
of far fewer actives than inactives, which complicates model training. Imbalanced data require special 
handling like oversampling, adjusted loss, etcin order to avoid trivial classifiers. In practice, every ML 
“hit” must be experimentally validated and must be subjected to molecular docking to confirm it’s true 
activity against the target of our interest.  

4.8 Target Deconvolution 

Target deconvolution is also called as target fishing, it is a pivotal process in phenotypic drug discovery, 
aiming to identify the molecular targets responsible for observed biological effects. [67]In classical drug 
discovery this step is slow and resource‑intensive, often relying on chemoproteomics or knockout studies. 
However modern AI/ML approaches can rapidly narrow the search space. For predicting the target drug 
link knowledge garphs play a monumental role 

4.8.1 Structure based Predictive Modelling 

AI/ML models can directly predict drug–target interactions from chemical structure. Classic methods 
include similarity‐based and QSAR models. For instance, unsupervised self-organizing maps (SOMs) are 
applied to predict the macromolecular targets of compounds like de novo drugs, natural compounds, anti-
cancerous compound. Likewise, on chemogenomic fingerprints have been used to assign compounds to 
approximately 964 target classes in the WOMBAT (World Of Molecular BioAcTivity) chemogenomic 
database. [103] 

Application of Random Forest classifiers are also one way to develop model for target fishing. The 
RF‑QSAR target‐fishing server uses RF models to rank candidate protein targets for a query compound. 
[104]Beyond these, kernel- and tree-based ML methods are also emloyed to predict binding affinities: e.g. 
KronRLS (regularized least squares on drug–target kernels) and SimBoost based on gradient boosting on 
drug/protein features obtained from known drug–target pairs. [105]Hybrid tools like BANDIT use 
Bayesian inference to combine drug efficacy data, transcriptomic profiles, chemical structures, side 
effects and bioassays, yielding high-confidence target rankings.  [67]In sum, supervised ML on chemical 
and bioactivity features can generate ranked target lists for novel compounds. 

4.8.2 Network Based Interference 

Network models leverage biological and chemical interaction networks to infer targets from connectivity. 
Knowledge graphs (KGs) and PPI networks are employed to encode relationships between drugs, proteins, 



 

pathways and the diseases associated with them. Graph‐based AI can identifylikely drug–target edges and 
link prediction between them. For instance, in p53 ( a tumour suppressor gene) activation pathway 
protein-protein knowledge graphs (PPIKGs) were constructed which ultimately integrated AI with 
molecular docking technique. By application of these graphs the researchers narrowed down 1088 protein 
targets to just 35 candidates. [106]More generally, network pharmacology integrates compound‐target 
edges with disease gene networks in which targets that lie in network proximity to disease modules are 
prioritized. Network propagation algorithms (diffusing signals from known drug or disease genes through 
a PPI network) have shown strong performance in recovering true drug–disease associations. 
[107]Although examples in AD are still emerging, network-based ML has pinpointed key AD nodes. For 
instance, combined ML and network analysis of AD perturbation data recently highlighted mTOR 
(regulated neuronal autophagy and survival) BCL2 (regulates apoptosis) as central hub proteins in the 
disease network suggesting them as indirect targets.[108]In practice, network ML approaches can 
uncover multi-target effects of drugs and suggest indirect targets in a disease network. 

A deep convolutional neural network called AtomNet is designed for bioactivity prediction in structure-
based drug discovery, leveraging 3D structural information of protein-ligand complexes. It is a DNN 
based model that is used in QSAR and in bioactivity prediction.  

4.8.3 Omics Data Integration 

Modern ML can also harness high‐throughput omics (transcriptomics, proteomics, etc.) to deconvolute 
targets. A classic strategy is signature matching: comparing a compound’s gene expression “footprint” 
to those of known perturbations. For example, the LINCS Connectivity Map (CMap) approach assigns a 
compound to targets by finding gene‐knockdown or drug signatures that closely match the compound’s 
signature. All known targets of similarly-acting perturbagens can then be proposed as targets. In practice, 
newer methods like graph convolutional networks incorporate this idea. A SSGCN model that embeds 
compound‐induced and gene‐knockdown expression profiles onto the PPI graph, then predicts 
interactions by correlating these embeddings was built. [109]In benchmarks on eight cell lines, this 
method (SSGCN) achieved 70–84% top-100 target accuracy, outperforming raw CMap and other 
approaches. Similarly, ProTINA is a network-based method that ranks targets by their influence on 
differential expression. Such in silico tools have shown significant gains in predicting true targets from 
expression data [109] 

Xie et al. applied differential gene expression, weighted co-expression networks (WGCNA), single-cell 
RNA-seq and ML (LASSO, random forest, SVM‐RFE) to analyse Alzheimer’s datasets. This pipeline 
nominated “hub” AD genes (PLCB1, NDUFAB1, KRAS, ATP2A2, CALM3) as potential therapeutic 
targets.  [110]They further identified drugs like noscapine and kinase inhibitors that act on these genes. In 
oncology, deep learning models have been trained on multi-omics (mRNA, mutations, proteomics, 
metabolomics) plus PPI graphs to predict drug responses, an approach that could be adapted to target 
deconvolution by linking omics profiles to drug effects. In summary, ML models that fuse omics data and 
networks can infer drug–target interactions and highlight disease‐relevant targets from system-level data. 
[106] 



 

In a different approach, DRIAD, an ML framework that trains on lists of genes differentially expressed in 
human neurons treated with drugs, correlating them with AD Braak stage was developed. DRIAD scored 
80 FDA-approved or experimental drugs and found that JAK1/2 inhibitors (e.g. ruxolitinib rank among 
the top FDA approved hits) consistently produced signatures aligned with less severe AD pathology. 
[111] 

AI/ML accelerates target deconvolution by leveraging large datasets. These methods can reveal hidden 
multi-target or pathway effects that are hard to detect by intuition alone. For instance, ML classifiers and 
network models outperform naïve similarity searches and can recover both known and novel targets more 
efficiently. By integrating diverse data (chemical, genomic, phenotypic), ML approaches can prioritize 
targets with higher accuracy and speed than purely experimental screens [106]They also enable rapid 
repurposing of compounds: for example, ML-driven repurposing screens in AD can nominate candidate 
drugs ready for preclinical testing, potentially saving years of early drug discovery work. 

However, challenges remain. AI models depend on training data quality and coverage; gaps or biases in 
chemogenomic databases can lead to false positives or miss rare targets. If the model is trained on a 
biased dataset, with no hoolistic representation and lack of generalizability, these factors might lead to 
ineffective results. [105]Interpretability is also an issue: many ML predictions (especially deep nets) are 
“black boxes,” making it hard to understand why a target was chosen. Finally, computational predictions 
must be experimentally validated, since ML cannot capture all biological complexity (e.g. context-
specific protein expression, blood–brain barrier permeability in CNS). 

4.9 De Novo Drug Design 

In recent years, de novo drug design has undergone a paradigm shift, transitioning from conventional 
rule-based and experimental approaches to AI-driven generative models that offer improved scalability, 
chemical diversity, and predictive accuracy. Traditional methodologies, though foundational, often 
suffered from limitations such as complex synthesis routes and limited capacity to accurately predict the 
biological activities of novel compounds. [112]The first FDA-approved disease-modifying AD drug 
(lecanemab, 2023)[113] targets amyloid-β, but requires infusions and has safety limits. New targets (e.g. 
tau, neuroinflammation) and oral small-molecule or peptide drugs are urgently needed. [114]In contrast, 
AI-based de novo design can generate vast chemical libraries and simultaneously predict corresponding 
feasibility and pharmacological profiles across multiple optimization objectives.  [115]The first step in de 
novo drug designing in generating novel compounds that have the same chemical, physical, structural 
properties as their SMILES, 3-D conformers, molecular graphic networks etc. [116]There are many 
additional AI models that have been implemented for de novo drug designing like Recurrent Neural 
Networks (RNNs). It is a deep neural network that aid in generating novel molecule by training on 
SMILES and predicting new SMILES that is based on the similarities between the input data and the 
novel molecule. LSTMs are especially employed in this procedure. [117] “Generative Adversarial 
Network” (GANs) is a ML model that is based on two distinguished networks called the generator that is 
fed with input data to train the model and another is Discriminator , that as it name suggest is used in 
spotting difference between the output novel molecule and the input SMILES. Hence by training both of 
thses network in an adversarial way, de novo drug synthesis can be accelerated.[118] 



 

Latent space autoencoders like Variational autoencoders (VAEs) are ML models that is trained on dataset 
comprising of millions of drug obtained from online databases like ZINC, ChEMBL etc. Property-
conditioned VAEs or predictor–decoder hybrids can generate new compouns with our desired property 
based on the SMILES fed into the model. Based on this working a cognitive molecular design model was 
created called PED: Predictor-Decoder-Encoder. It gathers similar compounds and ranks them for 
elimination of effective and non effective drug candidates [119], [120] 

Another model which is based on PED is: RELATION. It is trained in such a way that it works generates 
drug molecules by extracting 3-D binding pocket interactions and structure in the respective protein 
ligand complex. It utilisesBiTL algorithm and Bayesian sampling to find inhibitors for two targets called 
AKT1 and CDK2 [114], [121] 

Generative Adversarial Networks (GANs) develops Adversarial models (e.g. WGAN, MolGAN) to train 
a generator-discriminator pair to create realistic SMILES or graph representations. GANs have been 
applied to generate drug-like molecule design. Another approach, DeepTarget, developed by the Sakurai 
group, bypassed the structural data entirely by using only protein amino acid sequences to guide molecule 
generation, showing strong performance on DRD2 and PARP1 datasets.[122] 

Policy-gradient or value-based Reinforcement Learning (RL) can optimize sequence or graph generators 
by rewarding desired properties like target affinity, drug likeness, cLogPetc. Early works used RL to bias 
RNNs toward dopamine receptor type 2 activity. In AD context, similar RL-guided fine-tuning can target 
AChE, BACE1, etc.[123] 

Graph Neural Network (GNN) architectures generate molecules node-by-node or motif-by-motif. These 
directly model the chemical graph and can incorporate valence rules. For example, the masked graph 
model (MGM) iteratively builds molecular graphs and can control specified properties. [124] 

Peptides and small proteins are increasingly considered as AD therapeutics (e.g. β-sheet breaker peptides, 
cell-penetrating neuroprotective peptides). The peptide space is vast (20^L sequences), so ML can greatly 
accelerate design. Deep generative models for peptides mirror those for small molecules: RNNs, VAEs, 
GANs and Transformer architectures have been applied to generate bioactive sequences.[125]Chaudhuri 
et al. described a Transformer-based generative model (“DeepTraPS”) for therapeutic peptides; such tools 
could be repurposed for AD targets. 

In AD, computational peptide design has focused on inhibiting Aβ or tau aggregation. For instance, 
classical in silico screens identified novel β-sheet breaker peptides (e.g. PVFFE, PPFYE, PPFFE) that 
bind and destabilize Aβ42 fibrils. [126]Deep learning could automate and expand such efforts: a 
generative model conditioned on Aβ-binding motifs could propose hundreds of candidate peptides. 

4.10 Virtual Screening 

Virtual screening refers to the computational process of identifying bioactive chemical entities (hits) from 
curated databases or commercially available compound libraries. This strategy significantly enhances the 
efficiency of early drug discovery by prioritizing promising candidates and eliminating compounds that 



 

do not effecientlyreat with the target and further rank them based on their score. [127]Traditional virtual 
screeningcomprises processes like molecular docking, pharmacophore modelling, which are often less 
accurate. 

Virtual screening can be classified into two types, Structure based virtual screening (SBVS), docking 
candidate compounds into a 3D target structure and Ligand based virtual screening(LBVS), using 
molecular descriptors or fingerprints of known active compounds. [128]Classical ML models like Naïve 
Bayes, k-nearest neighbours, etc, have both been employed to accelerate VS. These models are trained on 
known actives/inactives to distinguish binders from non-binders and then used to screen large libraries for 
novel hits. ML-based VS pipelines often combine several steps: data curation (removing 
duplicates/decoys), feature generation, model training/validation, and then screening with post-filters (e.g. 
docking or ADMET prediction). Each model requires careful validation (cross-validation or held-out test 
sets) and performance evaluation by metrics like ROC–AUC, accuracy, precision/recall, F1-score or 
Matthew’s correlation.[129], [130] 

Classical ML models play a pivotal role in VS but recently these models have been overpowered by the 
deep learning models. Typical workflow in using classical ML model is firstly,a set of compounds is 
curated from databases and they are segregated based on actives or inactives for AD then the model is 
trained on these compounds, followed by addition of compute molecular descriptors or fingerprints like 
SMILES etc, after curating all the datasets and filtering out relevant compounds a classifier like Naïve 
Bayes, kNN, SVM, Random Forest is trained to predict activity. The model must be validated to improve 
the efficacy of the whole procedure, and then it is applied to screen new compounds. For example, 
random forest (RF) and support vector machine (SVM)is often used in QSAR modelling for AD 
targets.[131] 

Deep learning provides more flexible representations with less manual feature design. Convolutional 
neural networks (CNNs) have been applied both in 3D structure-based scoring and in 2D image/graph-
like formats. For example, CNN-based scoring functions (like AtomNet or GNINA) take 3D protein–
ligand grids as input and automatically learn spatial features of binding.  Deep learning scoring functions 
for instance, AtomNet, DeepVS, Ragoza’s CNN, have matched or exceeded traditional docking scores. 
They prove to be more effecient than the traditional docking techniques by AutoDock[132] 

Structure-based VS (SBVS) uses a target’s 3D structure (e.g. Aβ oligomer models, BACE1 crystal 
structures) to dock and predict the binding pattern between drug and target and score the respective 
compounds. AI/ML complements SBVS by learning improved scoring functions or accelerating pose 
generation. For instance, ML scoring (RF-Score, NNScore) and CNN models (AtomNet, K_DEEP) have 
replaced empirical scoring, improving binding affinity prediction.[132], [133]DeepDocking pipelines use 
GNNs for ultra-fast affinity screening. Ligand-based VS (LBVS) relies on known ligands. AI/ML is used 
to perform similarity clustering and pharmacophore modeling of drugs. 
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5. AI, ML Resources for repurposing Anti Cancerous drugs for AD 

Drug repurposing—also known as repositioning or reprofiling—entails investigating approved drugs for 
their potential to treat other medical conditions. A major advantage of this approach is that these drugs 
already have established safety and pharmacokinetic data, reducing the uncertainty in their development 
for new uses.This hastens the process of drug development and reduces cost factors. This repurposing is 
possible as many drugs are believed to have various targets and these drugs act upon different target to 
result in different phenotype or genotype modulation. AI, ML revolutionizes the field of drug discovery 
by integrating multi omics complex datasets with established extensive protein-protein network to 
identify new drug candidates and repurpose the old drugs.  

AI models are employed in this repurposing in multiple ways, for instance one such integration is, 
identification of potential AD causing gene when mutated by application of Bayesian algorithm along 
with a network like system for gene and protein-protein interaction. After the shortlisting of the 
repurposed drug candidates, they are ranked according to their similarity score to the actual drug 
molecule. In final step the drug candidate can be analyzed by comparing with data obtained from various 
patients etc and testing it in in vitro condition. [136] 

In some studies, deep-encoder-decoder models are used for first inferring and comparing the known link 
between the AD target genes, disease and the drug and then after obtaining the prioritized targets, novel 
chemical entities or repositionable drug candidates can be tested along those target genes. [65]Resources 



 

like the Connectivity Map (CMap) and LINCS L1000 provide extensive drug-induced transcriptomic 
profiles that enable systematic drug repurposing.  

 Drug Gene Budger (DGB), Connectivity Map or CMap is a landmark database fordrug-induced gene-
expression profiles and its successor LINCS L1000 are widely used. It is an online tool that containsa 
large collection of transcriptomics data, based on these several drug induced gene expressions, the drug 
molecules can be prioritized.[137]Similarly another online tool that incorporates CMap is 
Gene2Drug,[138]that utilizes the data obtained from CMap, and then analyses approximately 1300 drug 
signatures and multiple pathway annotations to link AD-associated gene sets obtained from GWAS or 
single-cell studies of multiple cell lines, to candidate drugs.[139] 

One of the most unique ML framework models in the field of drug repurposing is DRIAD (Drug 
Repurposing in AD) ML framework, it ranks the differential gene expression due to treating of neural 
cells by almost 80 FDA approved drugs, top scoring drug emerges as the potential repositionable target 
candidates, whose expression profile correlated with AD Braak stage. This unbiased screening 
highlighted JAK inhibitors (baricitinib) and anticancer EGFR inhibitors (lapatinib, gefitinib) as top 
candidates against AD. Overall, CMap/LINCS-based pipelines can prioritize cancer drugs whose gene-
expression signatures oppose AD pathology.[111] 

5.1 Network based drug repurposing: -  

Network‐based approaches for drug repurposing construct protein–protein and disease–protein interaction 
maps to connect AD pathology to drug targets. For example, tools like STRING and STITCH integrate 
PPI and drug–target data to identify candidates, which can then be evaluated with platforms like CoDReS. 
STRING (string-db.org) which is a PPI database and MIST which provides data on genetic/protein 
interaction, supply drug–target neighbour information. By applying a database known as STITCH 
(http://stitch.embl.de/), these drug target interactions are evaluated. After obtaining these shortlisted drug 
candidates they are evaluated for their repurposing ability against AD targts. This is achieved by CoDReS 
tool (http://bioinformatics.cing.ac.cy/codres) [140]In a study conducted by Taubes et al. (2021), to 
conduct computational drug repurposing for Alzheimer's disease (AD), they applied a transcriptomics-
based perturbation analysis of compounds targeting the APOE4 pathway. Their study demonstrated the 
therapeutic potential of bumetanidealters the APOE4 linked pathways, a key genetic risk factor in AD 
pathogenesis. Building on transcriptome-level insights.[141], [142] 

A deep learning based model was constructed called DeepDR (Deep Drug Response). It substitutes for a 
graph neural network (GNN)-based architecture that integrates heterogeneous biomedical networks to 
generate high-dimensional embeddings of drugs and diseases, enabling accurate prediction of drug–
disease associations.[135] 

“DeepDrug”,is an AI driven drug repurposing model that built a heterogeneous biomedical graph and 
trained a graph neural network to select five-drug combos; one predicted combination included the cancer 
drug niraparib (PARP inhibitor) alongside others. DeepDrugrepresents operates by integrating 
knowledge about disease causing gene, genetic biomarkers, gene expression profiling, disease related 
molecular interactions etc, with its artificial intelligence (AI)-driven computational framework, thereby 



 

addressing the limitations inherent in purely data-centric methodologies. A core innovation of “DeepDrug” 
lies in its construction of a heterogeneous biomedical knowledge graph, which encodes diverse 
biomedical entities (nodes) and their interrelations (edges) within a unified topology. Unlike conventional 
approaches that depend exclusively on data-driven learning, “DeepDrug” incorporates critical AD-related 
biological pathways and mechanisms, surpassing earlier AD-specific biomedical graphs by incorporating 
node and edge weights as well as directed edges with positive or negative semantic values (e.g., activation 
or inhibition). Such enhancements allow the framework to capture the functional directionality and 
relative strength of biological interactions, leading to a more expressive and biologically faithful 
representation of Alzheimer’s-specific knowledge. To process and derive insights from this enriched 
graph, “DeepDrug” employs Graph Neural Networks (GNNs). This approach significantly departs from 
traditional network-based algorithms that are limited to simplistic metrics such as shortest path 
calculations. By leveraging domain-informed features, such as quantitative drug-target binding affinities 
and mechanistic annotations like activation or suppression, encoded through weighted and signed edges, 
“DeepDrug” enhances the fidelity of predictive modelling, thereby improving the prioritization of 
candidate compounds for repurposing in AD therapeutics.[143] 

In another application of “DeepDrug” model has generated the list of top repurposed drugs that can be 
used in treatment of AD. Among these, Tofacitinib, an FDA-approved Janus kinase (JAK) inhibitor, 
emerged as the leading candidate and was subsequently successfully validated in preclinical trial on AD 
mouse models. Notably, three of the top five candidates out of the resulting 15 drug candidates, were JAK 
inhibitors, highlighting their role in mitigating neuroinflammatory processes, a central hallmark in AD 
pathophysiology. The remaining two top-ranking compounds, Niraparib and Palbociclib—both 
approved anticancer agents—were proposed as AD repurposing candidates through their effects on 
autophagy modulation.[144], [145] 

Expanding this paradigm, Xu et al. (2022) proposed NETTAG, which leverages genome-wide 
association study (GWAS) signals and multi-omics datasets to identify AD-associated risk genes and 
prioritize therapeutic targets. This model incorporates a modified GNN capable of capturing topological 
sparsity and clustering within protein–protein interaction (PPI) networks. [134] 

“An AI based Drug Discovery Network called AI DrugNet” was built for identifying novel drugs. Pan et 
al. (2023) developed a graph-based deep-learning framework for Alzheimer’s drug repurposing. They 
first construct an Alzheimer’s-specific network of drug–target pairs (DTPs) and define “drug-target 
quartets” which signifies two drugs and their targets as potential combination therapies.[146]This model 
is based on a graph convolution network that is trained on the data of  interaction between drug-drug, 
drug-target as well as target targetDrugBank, disease specific synergistic information which is extracted 
from OptiCon and consequently forms a “DTP network”, in which the nodes represent “drug-target pairs” 
and the edges symbolize associations between drug- target pairs. This uniquesystem is created and 
evaluated to identify drugs that can be used in combinational therapy as well as multi-drug therapy 
against AD as well as drug candidates that can be repurposed and modulated to cater to supress and down 
regulate AD targets, like anti cancerous drugs etc. In this a “deep learning-based model DeepDTQ” is 
constructed to analysed drug target interaction to identify drug combination therapy for treating AD.[146] 



 

Rodriguez et al. (2021) describe “DRIAD (Drug Repurposing In AD)” as a machine-learning framework 
that correlates patterns of gene expression obtained from neuronal cells under effect of drug, with 
Alzheimer’s Braak stages.[111]It links drug-induced gene expression to AD severity; it ranked drugs 
like ”baricitinib” which is a JAK inhibitor and several EGFR-targeting cancer drugs like ”gefitinib, 
lapatinib” as top AD candidates.[149] 

Advani et al. used genomics and proteomics networks to link AD risk genes with drug targets.[140] They 
firstly queried DrugBank/TTD for approved cancer drugs that interact with these AD-related proteins and 
identified dozens of candidates. For example, several VEGF/FGFR inhibitors emerged as candidates, 
though only those meeting blood–brain barrier criteria were kept. Notably, some of the retained drugs 
have reported neuroprotective activity: for instance, gefitinib and erlotinib have been shown to improve 
memory function in AD models, imatinib reduced amyloid-β accumulation, and ”vandetanib" inhibits 
acetylcholinesterase. [140] 
In fact, Rodriguez et al. (2021) observed that their DRIAD pipeline ranked EGFR-targeting kinase 
inhibitors (like erlotinib) among the top repurposing candidates, aligning with the predictions of Advani 
et al. [147] 
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repurposing 
model; 
foundational for 
later AD work 

Xu et al., 2022 – 
NETTAG[134] 

GWAS & Multi-
Omics 
Integration 

Modified Graph 
Neural Network 
(GNN) 

GWAS + PPI 
networks + 
transcriptomic 
data 

Prioritized AD-
risk genes and 
druggable targets 

Pan et al., 2023 
– AI-
DrugNet[146] 

Drug–Target 
Pair Prediction 

GNN-based 
Drug 
Combination 
Predictor 

Drug–target pair 
networks 

Predicted effective 
drug combinations 
for AD 

Pan et al., 
2024[143], 
[145]DeepDrug 

Drug 
Combination 
Scoring & 
Prediction 

Hybrid GNN + 
Scoring 
Function 

Integrated from 
AI-DrugNet + 
biomedical 
features 

Identified top 
drugs: Tofacitinib, 
Niraparib, 
Palbociclib 



 

Table 2 : AI, ML models used in drug repurposing 

 
 
 

6. Potential Therapeutic targets for drug repurposing in AD  
 

Tyrosine Kinase Inhibitor (TKIs) are One of the most prominent inhibitors of tyrosine kinase is Nilotinib 
which was initially used for leukemia, has been used in NDDs like AD. It targets the root cause of the 
disease and combat symptoms AD by toxic clearance and enhancing autophagy. Hence it can be used as a 
potential candidate for drug repurposing. More broadly, targeting aberrant kinase signalling (including 
PI3K/Akt) might dampen both tumour growth and neuronal injury. 

RXR Antagonist Bexarotene, an anticancer retinoid X receptor agonist, markedly reduced Aβ burden in 
AD mouse models and improved behaviour. In one study, bexarotene rapidly cleared brain plaques; a 
related chemotherapeutic, “carmustine” also lowered Aβ generation. These findings spurred interest in 
bexarotene’s neuroprotective potential, although human trials have been mixed. Nevertheless, 
“bexarotene” exemplifies how lipid/cholesterol pathways (via APOE modulation) can be targeted in both 
diseases. [22] 

Microtubule Stabilizers likeTaxanes (e.g. “paclitaxel”) are cancer chemotherapies that stabilize 
microtubules. They have been proposed as AD treatments to counteract tau pathology. For example, 
taxanes rescued neuronal structure in AD models and hence are regarded as potential therapeutics for AD. 
Likewise, other anti-neoplastic drugs that affect tau phosphorylation or protein clearance for example, 
cerium oxide nanoparticles as antioxidants, are under investigation for AD. 

Autophagy and Redox radicles are the main agents for triggering neuroinflammation in AD. In cancer, as 
well, the amount of ROS is found to be upregulated. Autophagy is another cellular mechanism that is 
dysregulated in both AD and cancer. However, this programmed cell death is reoccuring in the former 
one while in later it is turned off. Hence autophagy and redox Modulator like drugs are used to combat 
both. Agents that boost autophagy like rapamycin or antioxidant defences like NRF2 activators may 
benefit both conditions differently: enhancing neuronal survival in AD and disrupting cancer cell 
homeostasis. Tailored antioxidant or metabolic drugs are under study to rebalance ROS and protein 
turnover.[149] 

Immunomodulation Strategies work by shifting the immune environment could have dual benefits. 
APOE-directed immunotherapies by mimetic peptides are being tested for AD and might also affect 
tumour immunity. Conversely, checkpoint inhibitors that mediates cancer immunotherapies are being 
evaluated for neuroinflammation control. In sum, insights into shared pathways are guiding novel 
interventions. Repurposing oncology drugs like “nilotinib”, “bexarotene”etc, offers one route as does 
targeting molecular hubs like p53 or PI3K/mTOR. Ultimately, understanding the molecular crosstalk 
between cancer and AD may yield treatments that tilt the balance toward cell survival in the brain without 
promoting malignancy or vice versa. 



 

7. Promising Anti-Cancerous repositionable drugs for AD 
 
The potential anti cancerous drugs that can be repositioned target both AD and Cancer can be classified in 
5 ways. The most prevalent and efficient one being tyrosine kinase inhibitor (TKIs). These are used for 
targeted therapy in cancer by blocking the activity of altered tyrosine kinase (essential for cell signalling 
and growth) activity in cancer cells, hence preventing them from proliferating. These small molecules of 
drug act as competitively inhibit ATP and prevent binding of ATP to tyrosine kinase enzyme. This blocks 
the cascade of down streaming pathway responsible for cell growth, survival and proliferation. These 
drugs combat NDDs by promoting amyloid clearance and reducing neuroinflammation and tau 
phosphorylation. Five TKIs are currently being tested in laboratories for AD. “Nilotinib”, reduces 
amyloid plaque deposition and reduces inflammation. “Dasatinib” eradicates senescent cells from the 
neighbouring microenvironment of amyloid plaques and inhibits amyloid-dependent microgliosis. 
Tyrosine-kinase inhibitor (TKI) are one of the major classes of repositionable drugs or AD. TKIs like 
“Bosutinib” is used to treat chronic leukemia. The mechanism underlying this drug is that it eradicated 
toxic amyloid plaques, reduce neuroinflammation, by inhibiting non receptor tyrosine kinase, AbI, and 
hence modulate the immune system of the central nervous system. These findings suggest that TKIs, 
particularly bosutinib, could be effective in treating early-stage Alzheimer's disease. [150], [151] 
Immunomodulatory Agents likeLenalidomide and thalidomide are being explored for their potential 
effect in cancer and NDDs, as they harbour the potential to either activate or supress the immune system. 
These agents can reduce pro-inflammatory cytokines, which are implicated in AD pathology. Another 
promising candidate is “Dasatinib”,it is an immunosuppressive agent. The application of this drug is 
usually in combination with quercetin as a senolytic therapy. This combination has successfully entered 
the clinical trials for treating symptoms of AD patients. The joint action of these two drugs can reduce the 
overproduction of cytokines as that might cause inflammation and alleviate cognitive disorder symptoms 
in AD mouse models by selectively removing senescent oligodendrocyte progenitor cells. Another 
popular class of anti-cancer drugs that can be repurposed are Retinoid X Receptor (RXR) Agonists. These 
are nuclear receptors that plays various roles in cell processes like cell growth, differentiation, apoptosis 
etc.Bexarotene and tamibarotene, which are RXR agonists, are under investigation. Bexarotene enhances 
Aβ clearance and reduces neuroinflammation in preclinical studies, though it has shown limited central 
nervous system (CNS) penetration in human trials.[23] 
Monoclonal Antibody likeDaratumumab, is being used to attenuate AD pathology. It targets cells 
exponentially expressing CD38 and promote their apoptosis in cancer. It’s mechanism is also relevant in 
neurodegeneration and neuroinflammation in many NDDs including AD. 
Drugs that alter the histone acetylase activity by targeting histone deacetylases (HDACs) enzyme that 
regulates gene expression by removing acetyl group from the histones around which DNA is wrapped are 
called Histone Deacetylase (HDAC) Inhibitor. For example, Vorinostat, an HDAC inhibitor, has the 
potential to restore synaptic plasticity and improve memory in NDD patients indicated by long term 
potentiation. HDACI have antiproliferative effect in cancer cells while amyloid clearance and reduction 
in tau pathology in AD. [152], [153] 
One of the most promising FDA approved drug that was repositioned is Tamoxifen, which is an 
oestrogen receptor modulator in breast cancer caused by hormonal imbalance. It acts by inhibiting the 
driving genes responsible for the apoptotic cell death pathway and hence said to have neuroprotective 



 

function as well. A study conducted on these results further confirmed these findings by noting that 
prolonged use of “tamoxifen” resulted in sparse chance of developing dementia in patients. [65] 

 
 

8. Bridging the gap: Translating AI/ML advances into clinical realities: 
Challanges and Opportunity 

As the NDD cases in the nation increase at an alarming rate, there is an urgent need to combat these 
disorders with a novel and unique approach.  

Drug repurposing emerges as a boon in present time. Repurposing already well known anti cancerous 
drugs whose pharmacokinetic and toxicological properties are known and reprofile them based on their 
likelihood to bind to the desirable target to develop a drug against AD. The incorporation of AI/ML in 
this repurposing provides a futuristicapproach to develop novel drug candidates as well as repurpose 
already known drug to hasten the process of drug development and reduce the costly procedures. 

The biggest challenge in incorporation of AI, ML in biomedical field is translating the findings to clinical 
settings. Although AI/ML models often exhibit high performance on training datasets but may fail to 
generalize to diverse clinical populations. This discrepancy arises due to differences in data distributions 
between research settings and real-world clinical environments. Ensuring that models are robust across 
various patient demographics and clinical settings is crucial for their successful implementation. Failure 
in interpreting AI, ML datasets handicap the purpose of their incorporation into clinical predictions. In 
another words, these deep learning models act like a black box, that creates a hurdle for general clinicians 
and practitioners to understand the generated  results. This creates a lack of transparency and trust and a 
reluctance to their integration into medical data to transform the field. This remains the biggest challenge 
till date. Another challenge that might be faced is the incorporation of heterogenous datasets from 
different sources and format to AL/ML algorithms. For optimum results and minimum discrepancy in 
data analysis, the data needs to be standardized. Standardized and High data quality are the key to avoid 
sub-par results. 

Apart from these struggles there are many data gaps and biases in AI,MLresearches like 
underrepresentation of diverse population. Datasets used to train AI models often lack diversity, leading 
to biases that can adversely affect underrepresented groups. For instance, models trained predominantly 
on data from specific ethnicities may not perform well on others, exacerbating health disparities. [154] 
Hence there is a pressing need to develop an inclusive approach to address these biases and extract high 
quality data from these models. This opens a floodgate of opportunity to develop personalised medicine 
and provideequitable opportunity to everyone without discrimination. Another challenge using thesse 
models is bias in data collection and labelling. While sourcing the data and labelling it, certain group of 
individuals might be overlooked creating a biased data. The biggest disadvantage of this biasness is that it 
leads to skewed datasets that affect the model’s performance and impairs the ability of the model to 
produce diverse and holistic results. Recognizing and mitigating these biases is critical for developing fair 
and effective AI systems. There are many Regulatory and Ethical Considerations also associated with this, 
like breach privacy and data security. The usage of health data of patients and their medical history might 
be considered invasive by many folks. Ensuring compliance with regulations like HIPAA and GDPR is 



 

essential to protect patient information. The results extracted from AI models might fail at the multilevel 
clinical trials, therefore to overcome such errors, thorough and meticulous validation of these drugs need 
to be done before putting these compounds through expensive clinical trials.  

In case of adverse outcomes placing responsibility and accountability becomes difficult while dealing 
with AI, ML models. Clear guidelines are needed to delineate accountability among developers, clinicians, 
and healthcare institutions, for ethical use of AI. Ethical considerations, including informed consent, 
transparency, and the potential for algorithmic bias, must be addressed to patients before using their data 
to ensure that AI applications align with societal values and do not inadvertently cause harm.  

9. Conclusion 

The convergence of oncology and neurodegeneration has opened a promising frontier in the search for 
therapies for Alzheimer’s disease (AD). AD and cancer – 2 prominent diseases in today's world, overlap 
due to the dysregulation of fundamental cellular processes, like cell cycle regulation, cellular proliferation, 
etc. This overlap is exploited by researchers in order to repurpose anticancer drugs for AD. This proves to 
be a highly strategic and cost-effective therapeutic avenue. Many anticancer agents target pathways such 
as cell cycle regulation, autophagy, stress caused by generation of ROS , and mitochondrial function, all 
of which are also implied in the pathophysiology of AD. Drugs such as Palbociclib, Tomoxifan, 
Dastainib, Niraparib, and Tofacitinib, etc originally developed for treating malignancies, have 
demonstrated potential neuroprotective function in AD models. Kinase Inhibitor, alkylating agents, 
antibodies etc are the major categories of drug that are being repurposed to reduce neuroinflammation and 
ultimately combat neurodegeneration in AD. With the advancement of computational frameworks, AI, 
ML and many other deep learning models have proved to be a saviour in hastening the drug 
developement process. Hence with the passage of time the drug discovery pipeline is shifting towards 
incorporation of these models to either develope novel drug candidates or repurpose the already approved 
drug by levaraging their safety profile, to combat many diseases like AD in this case. Thses advanced 
computational models achieve this by employing a range of different algorithms like graph neural 
networks (GNNs), deep auto encoder-based framework to deep reinforcement learning (DRL). These 
models have facilitated every step of the drug discovery process along with the efficient high throughput 
screening of vast online repositories and then finding the synergistic relation drug target relationships by 
these graph networks and shortlisting them etc. AI-driven platforms such as DeepDrug, AI-DrugNet, and 
DeepDR have not only expedited the discovery process but also enhanced accuracy, scalability, and 
reproducibility. These models have helped in finding the putative disease-causing targets and repurposing 
potential drugs against these targets. These tools are instrumental in deciphering complex omics datasets, 
predicting molecular targets, and tailoring personalized treatment strategies for multifactorial diseases 
like AD. Yet, the path forward is not laden without challenges. Transforming these computational 
findings into clinical drug trials requires leveraging the strengths of both biomedical sciences and 
computational intelligence. There are many ethical constraints associated with the use of AI, ML in 
biomedical field. Therefore, considerable measures need to be followed for thr incorporation of these 
models into datasets. As we stand at the crossroads of two major medical challenges—cancer and 
Alzheimer’s—the fusion of drug repurposing strategies with AI/ML presents a unique approach to 
combat two problems with one cumulative solution. Researchers must break down disciplinary silos to 



 

foster collaborative innovation, leveraging the strengths of both biomedical sciences and computational 
intelligence. Investment in high-quality, diverse datasets; transparent AI models; and supportive 
regulatory frameworks will be key to translating these technological advances into tangible health 
outcomes. AI platforms play a monumental role in inventing individualized drug therapy and in precision 
medicine that caters to a particular patient, in case of auto-immune or other complex disorders. This is 
done to improve the therapeutic efficacy of the treatment given and finely tailor the treatment according 
to the progression of the disease. 

In conclusion, the strategic repurposing of anticancer drugs for Alzheimer’s disease, empowered by AI 
and ML, is more than a hopeful possibility—it is a revolution in the field of biology. By embracing this 
interdisciplinary synergy, we can accelerate the development of effective treatments and bring renewed 
hope to millions affected by neurodegenerative disorders. The time to act is now, at the intersection of 
biology and data lies the future of medicine. 
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