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ABSTRACT 

 

           Image processing plays a vital role in various medical applications, including 

image-guided surgery, disease progression studies, medical diagnostics, and 

radiotherapy. Extracting clinically significant and useful information from medical 

images is crucial across these applications. Medical images provide unique insights 

into the internal organs of the body. However, the information obtained from a 

single-modality medical image is often limited and may not fully meet the needs of 

an accurate clinical diagnosis. To address this limitation, multimodal medical image 

fusion has emerged as a promising solution, offering information about an organ 

from different perspectives. Medical image analysis involves four key steps: 1. 

Filtering the image 2. Segmenting the relevant regions 3. Extracting features and 4. 

analyzing these features using a pattern recognition system or classifier. 

Image preprocessing is a critical step before fusing images from different modalities 

for reduction of unwanted noise to improve the visual quality of the image. Image 

denoising after fusion is also crucial for improving the quality, interpretability, and 

usefulness of the fused images in medical diagnostic and treatment planning. 

 The primary objective is to develop multimodal medical image fusion 

algorithms that enhance visual details for improved clinical diagnosis and 

to address the problem of requirement of large dataset and computational 

complexity. Hence, we developed Efficient image fusion models using 

Dense-ResNet on BraTs 2020 and innovative fusion rules on BraTs 2015, 

2018 and Harvard Medical School Brain Dataset. Also, the performance 

analysis of DWT based image decomposition has been done along with the 

proposed energy-based coefficient enhancement.  

 Denoising of medical images is an essential preprocessing technique for 

enhancing the performance of the fusion model. Hence, we developed 

AMT-DWT (Averaging of multiple technique–Discrete Wavelet 

Transform) based pre-processing. In order to increase the clinical 

applicability of medical images for diagnosis, custom CNN based denoising 

has been utilized after fusion. The proposed model is benchmarked against 

a recent CNN-based image fusion model, TDAN (Two Level Dynamic 

Adaptive Network), as well as several state-of-the-art image fusion models 

using the CT-MRI images from the Harvard Medical School Brain dataset. 

The proposed model outperformed the state-of-the-art image fusion models 

based on the performance metrics PSNR, RMSE, SSIM, MI, Entropy and 

QAB/ F. 

 



 
vii 

 Additionally, we developed an efficient brain tumor detection and 

classification model using EADF (Extended Anisotropic Diffusion 

Filtering), and ResNet-50 with proposed auto thresholding for the 

classification of medical images based on the specific structures or diseases 

using the datasets BR35H, BMI-I, BTI, BD_BT, and BraTs. Also, we 

proposed WMRESNET (Weight Modified Res Net) model for the detection 

and classification of breast cancer. Promising results with less 

computational costs indicates the efficacy of the suggested models.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

In medical science the multimodal image fusion is in rising demand on account of the 

availability of information for early diagnosis [1]. Fusion process amalgamate into 

images with more comprehensive information. Multisource image integration 

combines functional and structural data from different imaging modalities, providing 

enhanced visuals that assist physicians, thereby improving diagnostic efficiency [2]. 

In the present day of technological progress, diagnostic imaging plays a critical role in 

various medical applications, requiring high-fidelity images with expanded 

information for more precise and comprehensive diagnosis and treatment [3]. Early 

detection is critical in managing diseases more effectively, especially for the diseases 

like cancer and cardiovascular conditions. Disease identification based on the image 

of an organ obtained from a single source may not be sufficient enough to identify the 

hidden details. So, images are generated simultaneously by different imaging 

techniques and then combined together to get the fused image which in turn provides 

better particulars of an organ and is called Multimodal Medical Image Fusion (MMIF) 

[4], [5]. Advancements in medical research heavily rely on the progression of MMIF 

techniques [6]. Images captured by diverse sensors for various purposes such as X-

rays, MRI, CT-Scan, etc., are termed as modalities [7].  

 

1.1 Modalities of Medical Images 

 

Medical image fusion (MIF) mainly deals with Ultrasound, Mammography, X-Ray 

CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron 

Emission Tomography), SPECT (Single Photon Emission Computed Tomography) 

[8]. Table 1 illustrates different types of medical modalities. These modalities within 

a specific technology are further categorized based on sensor orientations, tilting, and 

exposure time [9]. Each modality captures distinct features crucial for disease 

diagnosis, for instance, 𝐹𝑙𝑎𝑖𝑟, 𝑇1, 𝑇2 and 𝑇1𝐶 are the different modalities of MRI 

images [10], [11]. MRI aids in diagnosing diseases in soft tissue body parts, especially 

within the brain, while CT scans are employed for detecting fractures and infections 

in relatively harder tissues like the skull and lungs [12], [13], [14]. X-rays are utilized 

for diagnosing ailments in even harder tissues such as bone fractures [4], [6]. The 

output images from these modality sensors are converted into digital format for further 

processing and storage by a computer [3]. Digital image processing, a field within 
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computer engineering, focuses on converting these two-dimensional spatial signals 

(images) into digital form for subsequent processing [5].  

 
Table 1.1 Various medical modality images with diagnostic uses [1], [4], [5] 

 

Medical Modalities Image Diagnostic Use 

MRI 

 

Soft tissue 

diagnosis 

CT –Scan 

 

Hard tissue 

diagnosis 

 

PET 

 

Functional 

Information 

SPECT 

 

Working 

information of 

organs 

Ultrasound 

 

Stomach and liver 

anatomy 

X-ray 

 

 

Bone Fractures 

Mammography 

 

Extra sensitive soft 

tissues of breast 
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     Figure 1.1 Brain MRI Modalities a. 𝐹𝑙𝑎𝑖𝑟 b. 𝑇1 c. 𝑇1𝐶   d. 𝑇2  e. 𝑇1𝐺𝐷 

 

MRI images can include sub-modalities such as 𝑇1, 𝑇2, 𝑇1𝐶, 𝐹𝑙𝑎𝑖𝑟, and 𝑇1𝐺𝐷, as 

depicted in figure 1.1. 𝐹𝑙𝑎𝑖𝑟 modality offers insights into central anatomy, such as 

tumors, while 𝑇1 and 𝑇1𝐶 modalities provide details of fluid in the brain in the form 

of grey information [1].  

Modality 𝑇2 reveals fine details around the edges of the brain whereas 𝑇1𝐺𝐷 images 

show anatomical details where fat appears bright and water appears dark [9].  In figure 

1.2 the block diagram of MMIF is illustrated.       

 

Figure 1.2 Multimodal Medical Image Fusion Methodology Design 

 

1.2   Feasibility of MMIF techniques 

There are several advantages for employing the MMIF technique in the realm of 

medical imaging and diagnostic science. Some of these advantages are outlined below: 

a. Fused images benefit from the addition of complementary details from both 

modalities (MRI and CT), is demonstrated in figure 1.3. 

b.  Only a single informative fused image needs to be saved, resulting in saved 

computer memory. 

c. Less image data is required to transmit via transmission lines in smart medical 

systems. 
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a.  CT                                b. MRI                    c. Fused Image 

Figure 1.3 Fusion of CT & MRI Brain Images 

 

Although a lot of publications are existing in MMIF field, attaining a fused image of 

high quality, characterized by minimal noise and minimal loss of source information 

while maintaining low computational cost remains a formidable challenge. 

 

1.3   Applications of MMIF 

 By amalgamating different medical imaging techniques like MRI and CT, doctors can 

get a clearer picture of a patient's condition [1]. This helps in diagnosing diseases such 

as tumors or fractures more accurately also in diagnosing issues like blockages or 

structural abnormalities [7]. It assists in locating the exact position and size of tumors, 

making it easier for doctors to plan treatment.  

   1.4   Image Denoisation 

Image denoising plays a critical role to reduce or eliminate noise from the image to 

make them more suitable for further analysis [15]. Noise can enter images due to 

various sources, such as poor lighting conditions, high ISO settings on cameras, 

imperfections in camera sensors, or environmental disturbances during image capture 

[15]. Such noise can negatively impact image clarity, obscure fine details, and diminish 

the effectiveness of tasks like object detection, segmentation, and other applications in 

computer vision. Denoising techniques seek to remove this noise while securing the 

image details, such as edges and textures. However, achieving this balance can be 

challenging, as aggressive denoising can blur essential features, while insufficient 

denoising leaves visible noise, impacting the image quality. 

 Conventional denoising methods, including spatial filters like Gaussian and median 

filters, are simple yet can struggle to retain details in high-noise settings [16]. More 

advanced methods, such as non-local means, wavelet-based techniques, and deep 

learning approaches, have shown improved performances. These techniques utilize 

statistical patterns and self-similarities within images [16].  

 Advancements in deep learning, with convolutional neural networks (CNNs) and 

transformer models, have significantly improved the performance of denoising [16]. 

By training on clean and noisy image pair dataset of large size, these models have 
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demonstrated impressive abilities to generalize noise patterns and restore high-quality 

images. Though various de-noising techniques are available in the literature, but de-

noising algorithms may be unprotected for adversarial attacks, for which small and 

delicate information perturbations can mislead the model.   

 Image denoising plays a pivotal role in medical imaging, enhancing the quality of 

images for accurate diagnosis and analysis. Image denoising has become increasingly 

important in fields such as medical imaging, remote sensing, and multimedia, 

highlighting its value and broad applicability in practical settings. 

 1.5 Medical Image Classification (MIC) 

 Image classification performs a vital task to categorise images with different classes, 

and is widely used in medical science to assist in diagnosis, therapeutic planning and 

health management. With the advancement of imaging technologies like ultrasound, 

MRI, CT, and X-rays, vast amounts of image data are generated daily [17]. Physical 

assessment of these images can be susceptible to errors as well as labour-intensive, 

emphasizing the need for effective automated classification systems. 

  The primary responsibility of MIC is to accurately recognise and label particular 

anatomical structures, tissues, or pathological conditions. This task requires 

sophisticated techniques capable of recognizing subtle patterns and variations within 

images, which can be difficult due to factors like low contrast, noise, and anatomical 

diversity among patients. Automated classification tools have the capability to 

improve the accuracy of diagnosis, aid decision-making, and lessen the burden on 

radiologists and other healthcare practitioners [17].   

 Traditional MIC methods typically rely on manually designed features and statistical 

models to differentiate between classes [18]. However, these methods could be 

deficient in capturing the intricate patterns needed for reliable real-world 

classification. Nowadays, deep learning, notably with convolutional neural networks 

(CNNs) and more complex architectures, has arisen as a powerful tool for MIC [18]. 

By realizing complex features from large datasets, these models have achieved notable 

accuracy in identifying diseases, segmenting organs, and classifying tissues. 

 The development of accurate and reliable classification models has significant 

implications across medical fields, including the early detection of status of 

cardiovascular diseases, neurological disorders and cancer. As healthcare continues to 

advance digitally, MIC systems are expected to play an increasingly vital role in 

improving patient outcomes, reducing diagnosis times, and making healthcare more 

accessible. 

   MIC plays a major role in identifying and diagnosing various medical conditions, 

including tumors, infections and fractures from MRI, CT, and X-ray scans. For 

instance, classification systems can aid radiologists in detecting lung cancer in chest 

X-rays or recognizing brain tumors in MRIs, enhancing diagnostic accuracy and 

efficiency. Automated classification tools are essential for early-stage cancer 

identification, including types such as breast, lung, and skin cancer. By distinguishing 
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between cancerous and non-cancerous areas, these classification models facilitate 

early intervention, which is crucial for improving patient outcomes. 

 1.6 Research Motivation 

    Efficient Multimodal medical image fusion with less computational cost is the main 

objective of this thesis. The problem addressed in this thesis are: 

 Medical images provide hidden insights of the internal organs of the body. However, 

the information obtained from a single-modality medical image is often limited and 

may not fully meet the needs of an accurate clinical diagnosis.  

 Denoising of medical images is essential for enhancing the performance of the fusion 

model. But obtaining a denoising process without losing important image details, such 

as edges, or small objects, is a significant challenge. Balancing speed and accuracy 

while handling complex noise pattern is a big challenge. Specially Rician noise is 

prominent in MRI images which arises due to the complex nature of the MRI signal 

acquisition especially in low signal to noise ratio (SNR) condition. Similarly, Pepper 

and Salt noise may appear at image acquisition, transmission or sensor failures in 

devices like X-rays and CT scans. 

 MIC faces many difficulties due to the intricate nature of medical images. Having an 

image classifier that can be trusted in clinical settings and adapted for use in high-

stakes situations, such as diagnosis and treatment planning, is of utmost importance. 

1.7 Problem Formulation 

  Huge efforts are being done to achieve an efficient image fusion model to increase 

diagnostic treatment and accuracy outcomes. The primary goal of this thesis is to 

achieve efficient multimodal medical image fusion outcome while minimizing 

computational costs. This thesis addresses the following problems: 

1. The MMIF technique mainly suffers from the problem of redundancy or loss of 

crucial information of source images. Different imaging techniques can generate 

images with varying levels of resolution, contrast, and noise. Effectively merging 

these diverse characteristics remains a significant hurdle. Various imaging modalities 

may introduce different levels of noise and artefacts. Developing techniques that 

minimize noise while maintaining key details from each source is crucial for 

producing high-quality output images. There is a necessity to create more efficient 

algorithms that lower computational complexity while maintaining image quality. 

Numerous current algorithms demand considerable processing time and resources, 

which may restrict their applicability in clinical environments. 

 2. In general, denoising techniques must effectively reduce noise while preserving 

important details in the images. Many advanced denoising algorithms require a lot of 

computational power, making them less practical for use in clinics. There is a need 

to boost up the performance of the denoising algorithm with minimal execution cost.  

 3. It’s important to know how classifiers reach their conclusions in healthcare. There 

is a gap in developing models that are easy to interpret, helping clinicians trust and 
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understand the reasoning behind predictions. Classifiers that perform well on one 

dataset might not work as effectively on others because of differences in patient 

demographics or imaging methods. More research is needed to create models that 

can generalize better across various populations and clinical scenarios. Achieving 

quick classification while maintaining high-accuracy is again a challenging task.  

 

1.8   Methodology 

In this thesis we discussed algorithms developed to address the problem of efficient 

MMIF, image denoisation, classification along with the performance analysis of 

existing image fusion models. 

 

Performance Analysis: 

The primary objective is to develop multimodal medical image fusion algorithms that 

enhance visual details for improved clinical diagnosis and to address the problem of 

requirement of large dataset and computational complexity. Hence, we developed the 

following: 

 

 We explored various image transformation methods, including Daubechies, Haar, 

and the Lifting scheme, to decompose different modality MRI images from the 

BraTS 2015 dataset. We then applied the mean-max [85] fusion rule to combine 

the corresponding coefficients. Employing performance indicators like PSNR, 

RMSE, MI, standard deviation, mean, FSIM, SSIM, and entropy, we evaluated 

and compared the effectiveness of these different transformation methods in 

MMIF. The results indicated that the Daubechies transform outperformed the 

others, achieving the lowest RMSE and highest PSNR values.  

 The proposed Energy-based Coefficient Enhancement (EBCE) method was 

applied to enhance medical images from the BraTS-2015, BraTS-2018, and 

Harvard Medical School Brain datasets and to fuse various imaging modalities. 

EBCE based enhanced images are fused with a well-suited fusion method  

(mean-max [85] or PCA [13]). The proposed EBCE method outperformed the 

traditional image fusion methods with Higher PSNR and lower RMSE. 

 

Image Denoisation 

 

 Image denoising enhances the quality and clarity of images by reducing noise, 

which consists of irrelevant data that can obscure critical details, allowing for a 

clearer view of areas of interest. To achieve this, we introduced the AMT-DWT 

(Averaging of Multi-Technique Discrete Wavelet Transform) image enhancement 

at the pre-processing stage, followed by an appropriate image fusion method 

(mean-max [85] or PCA [13]) using MRI and CT images from the Harvard 

Medical School Brain dataset [78]. The fused images were further refined with a 

custom CNN utilizing novel activation functions.  
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Efficient Image fusion model 

 

 The primary goal of this research was to develop robust multimodal medical image 

fusion algorithms that enhance fused image quality to support doctors in early 

diagnosis. To achieve efficient fusion, we designed a hybrid model, Dense-

ResNet, which combines the strengths of both Dense-net and ResidualNet. The 

strength of Dense-net is that it can extract the image feature in an efficient manner. 

The ResNet has a better performance speed due to its skip connection architecture. 

In the pre-processing phase, noise reduction was accomplished using Median 

filtering [15], followed by edge enhancement through ET-Net. The proposed 

fusion model showed superior results compared to existing image fusion models.  

 

 With the continuation of our earlier work, we created another fusion model that 

combines the Pelican Optimization Algorithm (POA) [20] with Dense-ResNet for 

the fusion of different modality medical images from BraTs 2020 dataset. Similar 

to our previous approach, we applied median filtering [15] for pre-processing, 

used DTCWT for image decomposition, and employed ET-Net for edge 

preservation. In this model, POA was specifically utilized to optimize the training 

process of the Dense-ResNet model. The results showed that our proposed model 

performed better than the earlier one, achieving lower MSE and RMSE values 

while delivering a higher PSNR. 

 Additionally, to mitigate unwanted artefacts and information loss during fusion, 

we introduced a set of image fusion rules specifically for fusing the corresponding 

decomposed multimodal medical image coefficients.  For performance evaluation, 

we used the BraTS-2015, BraTS-2018, and Harvard Medical School Brain 

datasets. The results showed that the proposed fusion rules outperformed state-of-

the-art image fusion models.  

 

Efficient Image classifier model 

 

 we proposed an image classifier model based on Enhanced Anisotropic Diffusion 

Filtering (EADF) combined with ResNet-50. The performance of the proposed 

classifier model outperformed several image classifier models. 

 Additionally, the proposed WMRESNET (Weight-Modified Residual Network) 

successfully classified breast and chest cancer images with high efficiency. The 

proposed classifier model has been compared with many image classifier models 

and it outperformed all of them. 

 

 

1.9   Major Contributions 

 

1. Performance Analysis of Multimodal Medical Image Fusion Algorithms: 

 

Explored and compared various image transformation techniques (Daubechies, Haar, 

Lifting) using the BraTS 2015 dataset, leading to the identification of the Daubechies 

transform as the most effective method for fusion, achieving superior PSNR and 

RMSE results. 
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2. Energy-Based Coefficient Enhancement (EBCE): 

 

Introduced the EBCE method, which effectively enhances medical images prior to 

fusion. The EBCE method demonstrated superior performance over traditional image 

enhancement techniques, providing higher PSNR and lower RMSE values in the 

fusion outcomes across multiple datasets, including BraTS-2015 and BraTS-2018. 

 

3. Image Denoising with AMT-DWT: 

 

Developed the AMT-DWT (Averaging of Multi-Technique Discrete Wavelet 

Transform) for image denoising, which significantly enhances image quality by 

effectively reducing noise before applying fusion techniques. This model out 

performed several existing denoising approaches, leading to clearer fused images for 

improved diagnostic clarity. 

 

4. Efficient Hybrid Fusion Model (Dense-ResNet): 

 

Designed a hybrid fusion model, Dense-ResNet, integrating the merits of Dense-net 

for efficient feature extraction and ResidualNet for rapid performance via skip 

connections. This model demonstrated remarkable improvements in fused image 

quality, surpassing conventional fusion techniques and several state-of-the-art models.  
 

5. Optimized Hybrid Fusion Model (Dense-ResNet): 

 

We developed an optimized image fusion model by utilizing the Pelican Optimization 

Algorithm (POA) with Dense-ResNet for the fusion of different modality medical 

images from BraTs 2020 dataset. The results showed that our proposed model 

performed better than the earlier one, achieving lower MSE and RMSE values while 

delivering a higher PSNR. 

 

6. Development of Custom Fusion Rules: 

 

Introduced a set of tailored image fusion rules specifically for the effective 

combination of decomposed multimodal image coefficients, minimizing the artefacts 

and information loss during the fusion process. These proposed fusion rules have 

shown to enhance the performance of the fusion outcomes significantly compared to 

traditional methods. 

 

7. Development of Image Classifier Models: 

 

Proposed an Enhanced Anisotropic Diffusion Filtering (EADF) approach integrated 

with ResNet-50 for efficient and rapid brain tumor detection, replacing tedious manual 

thresholding with an automated method, leading to improved classification accuracy. 

Developed the WMRESNet (Weight-Modified Residual Network) for classifying 

breast and chest cancer images, which exhibited high classification efficiency and 

outperformed numerous existing classifier models in accuracy. 
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1.10 Thesis Organization 

 
Chapter 1 Introduction: 

 

 This chapter introduces the role of multimodal medical image fusion (MMIF), 

highlighting its advantages and key applications. It delves into the motivation behind 

the research and outlines its objectives.  

 

Chapter 2 literature review and performance analysis: 

 

 In this chapter we reviewed the multimodal image fusion models for enhanced 

diagnosis. Different state-of-the-art models have been discussed. Also, various insights 

are derived, and gaps are systematically identified. This chapter also describes the 

performance analysis of MMIF after decomposing the source images by Doubechies, 

Haar and Lifting wavelet transform. This chapter further describes the performance 

analysis of MMIF by the proposed energy-based coefficient enhancement.  

 

Chapter 3 Image denoisation: 

 

This chapter outlines the performance of the MMIF model when combined with 

AMT-DWT-based pre-processing and custom CNN-based denoising. 

 

Chapter 4 Efficient image fusion: 

 

This chapter explores three efficient image fusion methods employing Dense-ResNet, 

optimized Dense-ResNetand the proposed fusion rules. 

 

Chapter 5 Texture based image classification: 

 

This chapter presents image classifier models based on anisotropic filtering and 

WMRESNET. 

 

Chapter 6 Conclusion and future scope: 

 

This section includes the conclusion part including the future scope of this research 

work. 
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CHAPTER 2 

 

LITERATURE SURVEY AND PERFORMANCE ANALYSIS OF 

IMAGE FUSION MODELS 

 

 

2.1   Literature Survey on Image Fusion 

 
The goal of the present study is to understand the problems of MMIF, its denoisation 

and image classification in medical field. In the literature, much work has been done 

on these topics. This chapter review those approaches connected or related to the work 

presented in this thesis. 

 

Medical imaging is a vital tool in healthcare, helping doctors diagnose, plan treatments, 

and monitor diseases [1]. Different imaging techniques provide unique details of an 

organ. However, no single method gives a complete picture because each has its own 

strengths and weaknesses. MMIF integrates images from different techniques into a 

single image that contains more relevant information [2]. By merging the strengths of  

CT and MRI  helps doctor to understand complex medical conditions in better way, 

leading to more accurate treatment plans after proper diagnoses. 

 

Over time, many MMIF techniques have been developed. Early methods, such as 

simple averaging, guided filtering, IHS, PCA [13] etc. often led to problems like 

missing important details [3]. Transform-based techniques, like wavelets, improved 

results by retaining more image details. Recently, artificial intelligence methods, 

including CNN and GAN models, have made fusion more accurate and automated [4]. 

Authors of [3] developed a MMIF model using guided filtering approach for securing 

the edge information of source images. By dividing each medical image into small-

scale components, large-scale components, and background components, two fusion 

strategies have been used to fuse them. The first strategy involves PCNN guided by 

the structure tensor, and the second strategy is based on a maximum-based approach. 

Finally, the fused sublayers are combined to generate a single, unified image. While 

the model efficiently integrates images from different modalities, its performance is 

entirely reliant on the filter size utilized. Authors of [4] developed a novel method for 

enhancing structural and spectral features in the NSST domain for MMIF. This 

research begins with the generation of two pairs of images by using HIS. The NSST is 

used to obtain low-frequency and high-frequency sub-bands. Structural Information 

(SI) fusion is used to the Low Frequency Sub-bands (LFSs) to enhance structural 

elements such as texture and background information. Subsequently, PCA [13] is used 

for the High Frequency Sub-bands (HFSs) to extract pixel-level information. Finally, 

the fused image is generated by applying the inverse NSST along with the IHS method. 
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Though the model can fuse multimodal medical images successfully, it suffers from 

loss of details information and color distortion.  

 

For sustaining the fine details, the authors of [5], [6], and [7] proposed image 

transformation-based models. Researchers of [5] introduced a two-stage MMIF 

approach that combines the Optimal DTCWT (O-DTCWT) and NSST to process 

distinct imaging modalities. The input images (Image 1 and Image 2) undergo 

decomposition using the O-DTCWT, separating them into high- frequency(HF) and 

low-frequency(LF) components. Fuzzy logic based fusion is used in HF components 

while the Maximum Rule is applied for the LF components and then reconstructed by 

inverse O-DTCWT. In the second stage, the reconstructed image is further 

decomposed using the NSST technique. Here, the HF components are fused through 

an Optimized Deep NN, while the LF components are merged using an averaging rule. 

At the end, images are merged with high efficiency, while with increased 

computational complexity. Researchers of [6] used DTCWT to make the model 

invariant of shifting as well as to acquire information regarding phase. The DTCWT 

have been utilized at different levels based on multiresolution principle and the 

complex wavelet coefficients are fused using max selection rule and five quality 

metrics have calculated to ensure the robustness of the model. This model can fuse 

three different modality medical images at higher computational cost and with higher 

noise sensitivity. Authors of [7] used the lifting scheme approach in the HW transform 

for fusing different modality X-ray images. This approach can’t handle the smooth 

detailed regions of the images due to its blocky approach. 

 

Researchers of [8] developed a new MMIF scheme based on discrete contourlet 

transformation for capturing edge details along curves. For the fusion process, pixel-

level and decision-level rules are used for LF and HF components respectively.  

Although the proposed method effectively captures curved information, it lacks shift 

invariance and exhibits high computational complexity. Singh and Gupta [9] 

introduced an innovative MMIF technique based on structural gradient-based 

decomposition, for effectively separating structural and textural components and 

different fusion rules have been used for fusing them. The fusion method is evaluated 

using an extensive dataset of neurological images. While the model effectively fuses 

multi-modality medical images, it may encounter a loss of detailed information due to 

the overlapping of structural and textural data within the frequency band. 

Ibrahim et al. [10] used NSCT in the decomposition stage and CNN based fusion for 

better edge and boundary details. Though this model is effective for grayscale images, 

its performance on color images has yet to be fully explored. Venkatesan et.al.[11] 

developed a concise overview of Multimodal Medical Image Fusion (MMIF). 

Padmavathi, Asha, and Maya [12] used a total variation (TV) decomposition-based 

image fusion model to enhance edge preservation, reduce noise, and achieve a smooth 

representation of homogeneous regions, making it effective in removing unwanted 

artefacts. While the model gives efficient fusion result, high computational complexity 

and tendency to produce extremely smoothed fused images are significant drawbacks. 

  

The authors of [13] come out with an innovative framework that combines the NSCT 

with sparse representation (SR). In this approach, each source image undergoes 

decomposition using NSCT into a LP and multiple HP sub-images. The LP sub-images 
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are fused using an SR-based method, where a special dictionary is generated by 

merging compact and informative sub-dictionaries. These sub-dictionaries are derived 

by PCA [13]. For the HP sub-images, a special morphological operation along with 

gradient operators are used to extract detailed gradient features effectively. Although 

it produces fusion image rich in source information, it has the drawback of high 

computational complexity due to the system's intricate design. 

 

Atwan et al. [14] provided comprehensive reviews on multimodal image fusion. 

Hussein et al. [15] and Fan et al. [16] represented their review works on image 

denoisation. Miranda et al. [17] and Tang et al. [18] presented their valuable review 

work on medical image classification. The authors of [19] introduced a modified 

Extreme Learning Machine (ELM) model by integrating the conventional CNN 

framework to mitigate the high computational cost of CNN-based image fusion 

models. However, the primary limitation of this model is its high sensitivity to noise. 

Genetic algorithms (GAs), are widely applied in MMIF to optimize tasks. Several 

researchers [20]– [27] have explored neural network-based image fusion techniques 

combined with genetic algorithms. Authors of [20] introduces a new optimization 

algorithm inspired by nature, called the Pelican Optimization Algorithm (POA). The 

POA is based on simulating how pelicans behave while hunting. In this method, the 

search agents represent pelicans looking for food. A mathematical model of the POA 

is developed to solve various optimization problems. Authors of [21] come out with a 

new MMIF approach that utilizes spatial domain quality assessment and genetic 

algorithms, integrating elements of both feature-level and pixel-level fusion. This 

method involves dividing the source images into blocks and selecting the 

corresponding blocks with higher quality assessment values to form the final fused 

image but with a system complexity. The authors of [22] presented a method aimed at 

generating precise fused images by employing DWT for securing features and GA for 

optimizing the fusion process. This technique gives better fusion result at the cost of 

computational complexity. 

The authors of [23] developed an innovative MMIF technique that integrates the 

Curvelet transform with a (GA). The inclusion of GA mitigates artefacts and noise by 

optimizing the fusion process's overall performance. Though the model effectively 

preserves data integrity and color fidelity, it suffers from the problem of increased 

computational time and high parameter sensitivity, which can slow convergence and 

impact performance quality. Authors of [24]- [29] utilized swarm optimization for 

obtaining the better fusion result. However, many of these algorithms face challenges 

with premature convergence and may get trapped in local optima. For better efficiency, 

boundary constraint handling adjusts candidate solutions at or beyond boundaries 

during iterations, increasing swarm diversity and reducing premature convergence. 

While the model effectively fuses multimodal medical images, its performance heavily 

relies on appropriate parameter selection. 

Authors of [30] introduces a cooperative neural fusion (CNF) algorithm for 

significantly minimizing the contrast information loss in the presence of blind 

Gaussian noise. But the utilization of multi stage fusion makes the system complex 

with higher computational cost. A survey on Image Fusion (IF) after enhancing the 
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edge details is explained by the authors of [31] and [32]. Bhaladhare et al. [33] worked 

on MMIF based on fractional calculus (FC) approach. Though the model can extract 

better image features, it suffers from the problem of high computational cost. He. et 

al. [34] introduced a new MMIF scheme using Fuzzy C-means (FCM) algorithm. 

Specific fusion strategies are applied to preserve regions and enhance edges, focusing 

on visual quality and texture details with a higher computational time. In [35], the 

authors presented a powerful multi-resolution image fusion to imitate the image 

recognition and interpretation processes of the human visual system. This technique 

effectively combines SPECT and MRI images, with its superior feature extraction 

capabilities. Though both the models are efficient for MMIF the increased complexity 

of the system design leads to a higher computational cost.  

Nowadays, hybrid methods are widely used for (MMIF) to incorporate the strengths 

of different approaches. Alseelawi et al. [36] come out with an approach of hybrid 

combination of DTCWT and NSCT. This method was tested on images from MRI, 

PET and CT scans. While this method produces a better fused image, it needs a lot of 

memory, which can make it difficult to use for real-time medical applications. Authors 

of [37] designed an MMIF scheme using DWT and Java technology for an efficient 

fusion and management of large medical image dataset. Ansari and Gupta [38] 

constructed MMIF model using wavelet Transform (WT), and worked for the 

reduction of computational cost. However, the introduced artefacts diminish the 

overall fusion effectiveness. The authors of [39] proposed an extensive review work 

of MMIF based on DWT. 

Authors of [40] designed a novel fusion technique using Anisotropic Diffusion 

Filtering (ADF) along with thresholding technique for the reduction of computation 

time and to ease the system implementation and used the visible and infrared images. 

Though the computational cost is low, this model faces the challenges of accurate 

parameter selection for achieving a good fusion result. 

GAN(Generative Adversarial Network) [41], [42] is widely used nowadays for its 

ability to produce higher quality outputs, with high efficiency even with a small 

dataset's but it might only create a small range of outputs instead of capturing the full 

variety of the target data. The authors of [43] come out with a MMIF scheme for the 

better reduction of noise. A new fusion rule is introduced for successful fusion of the 

important regions of the input images but with a high system complexity. The authors 

of [44] developed a new MMIF technique based on GAN. This method blends the 

CT’s hard tissue information with MRI’s soft tissue details. A generator combines data 

from both CT and MRI, while a discriminator learns to tell apart the fused image from 

the original one. It helps the generator to keep useful information from both images as 

possible. However, this method requires high computational power. Bhateja et al. [45] 

and Ramlal et al. [46] come up with hybrid model of NSCT and SWT. The authors of 

[45] introduces a framework that combines NSCT and SWT to fuse MRI with CT 

scans. Although this method efficiently fuses medical images, it struggles with the loss 

of spatial resolution and finer details from the source images.  



 

15 

 

In [46], the researchers proposed an improved hybrid fusion technique that also 

combines NSCT and SWT. Decomposition of the source images is done using NSCT. 

While this approach improves edge details, it comes with high computational costs. 

Researchers of [47] unite NSCT and PCNN in MMIF purpose. The visible image is 

first divided into IHS transform. Then, the luminance component and the infrared 

image are decomposed with NSCT to get: LF, pass band (PB) and HP coefficients. 

The LF sub-band is fused using a weighted-sum method, while the other sub-bands are 

fused with the PCNN method. But this model is affected by noise. Bhateja et al. [48] 

established a new method of fusion for multispectral images that combines shearlet 

transform with NSCT. They utilized the YIQ color space. The LF coefficients are 

refined using phase congruency (PC), and the HP coefficients are processed with 

directive contrast (DC) and Shannon entropy. Although this method works well for 

multimodal medical image fusion, its complexity can be a limitation. Authors of [52] 

come out with a MMIF method based on local energy in the curvelet transform domain 

that captures edge details effectively. Loss of global information may produce 

suboptimal result. 

In [53], the researchers developed a fusion framework using NSCT based image 

disintegration. Two fusion rules based on PC and DC are used for fusing the LF and 

HF components respectively. Though the model can capture curved information 

effectively, the computational cost of this circuit is very high. Researchers of [54] used 

SWT with fuzzy set theory in their model. The input images are broken down using 

SWT. Gaussian membership functions are used to create fuzzy sets, and local spatial 

frequency (LSF) is used to extract features from these sets. It gives good fusion results 

with higher complexity and computational cost. Most image fusion methods use down-

sampling (DS) to reduce the load of computation by decreasing the set of parameters 

to be trained. However, down-sampling can also cause some source information to be 

lost. For addressing this, Payel et al. [55] suggested an MMIF model that retrieves 

complementary and edge information without using down-sampling. They used a 

combination of Laplacian and Gaussian techniques, along with channel attention 

pooling. 

To tackle issues like blurry edges and reduced clarity caused by multiscale 

transformation-based fusion methods, the authors of [56] suggested a fusion approach 

using interval gradients with CNN. Although it gives good fusion result, some 

unwanted artefacts may appear due to the multi-stage fusion process. Kaur and Singh 

[57] introduced a medical fusion method that uses deep neural networks (DNNs) for 

automatically extracting image features. Their approach begins by decomposing the 

image into sub-bands in NSCT domain. The best attributes are selected by the modified 

version of the multi-objective evolution algorithm. The fusion functions are based on 

the energy loss and the coefficient of determination. However, this model may face 

the challenges with spatial distortion. Liang et al. [58] uses a (DCNN) to learn image 

attributes directly from the source images. This method suffers loss of spatial 

information even though it is effective for the reduction of noise. Manchanda and 

Gambhir [59] designed a fusion framework that uses wave atom transform to improve 

sparsity and time-frequency localization but the system performance is highly 

dependent on the system parameters. Researchers of [60] proposed an innovative 
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MMIF model based on two-channel non-subsampled filter banks which are not 

separable. They addressed filter design issues by introducing a mapping approach 

framework. The authors of [61], [62], and [63] reviewed MMIF models and the various 

performance parameters used in the field. 

.  

This review work explored different multimodal image fusion methods, highlighting 

their principles, advantages, challenges, and applications in medicine, while also 

discussing the latest advances and future potential in this area. 

 

2.2   Literature Survey on Image Denoisation 

Image preprocessing is a critical step before fusing images from different modalities 

for reduction of unwanted noise to ameliorate the image’s visual quality [65]. Image 

denoising after fusion is also crucial for increasing the visual performance, 

interpretability, and usefulness of the output images in medical diagnostic and 

treatment planning [66]. Table 2.1 gives a brief information of the research highlighted 

in the literature. The literature survey on image denoisation reveals that denoising can 

enhance source images and lead to better fusion results. In contrast excessive denoising 

may remove essential details, potentially degrading fusion performance. 

   

  
Table 2.1 Research works exist on image denoisation in the literature 

 
Ref. 

No. 

Author’s 

name/ 

year 

Approach Advantages Limitation/remark 

[65] Wangm 

Tiantian et al. 

(2024) 

Lightweight 

progressive residual 

with attention 

mechanism fusion 

network 

Preserve edge and 

texture information 

efficiently even 

after denoisation  

Over fitting problem 

[66] Rajesh Patil 

et al. (2023) 

Wavelet Transform Computational cost 

is very low, no 

training data is 

required 

Degradation of contrast 

level  

[67] 

 

Mukshimova 

et al. (2023) 

Transfer learning 

method 

Reduced 

computational cost 

- 

[68] 

 

Yuqin Li  

et al. (2021) 

Conditional GAN  Structural 

information can be 

preserved in a better 

way as training 

instability reduces 

- 

[69]

  

 

Size Li et al. 

(2021) 

Multiscale Fusion 

GAN 

Denoisation and 

super pixel 

reconstruction both 

can be performed 

efficiently 

Computational cost more 
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[70] 

 

Moran et.al. 

(2021) 

Neighbor-2-

Neighbor CNN 

(consists of a series of 

unsupervised and 

self-supervised 

models) 

Training instability 

reduces 

Vanishing gradient 

problem exist 

[71] 

 

Diego 

Valsesia  

et al. (2020) 

A denoising method 

using a Graph Neural 

Network works on 

data that is structured 

as a graph. 

The structure of a 

graph network can 

effectively model 

and fit complex 

noise distributions. 

An unstable dynamic 

topology weakens the 

network's ability to express 

features effectively. 

[72] Hepeng Qu et 

al. (2019) 

The Black Widow 

optimization 

algorithm uses tent 

mapping combined 

with multiple filters 

to enhance its 

performance. 

  Computational 

cost low 

Lack of gradient 

information 

[73] 

 

Moon T. et al. 

(2019) 

Residual network Vanishing gradient 

problem reduces 

Using too many 

connections in a neural 

network can cause 

overfitting problem. 

[74]  

 

Jingwen 

Chen et al. 

(2018) 

Generative 

Adversarial Network 

(GAN) followed by 

CNN 

This method can 

create realistic 

noisy images to 

address the problem 

of having too few 

training samples for 

the model. 

The network training is 

laborious to reach the 

optimal performance. 

[75] Kai Zhang et 

al. (2016) 

Modified VGG 

network 

Unknown noise 

called blind 

Gaussian noise can 

be removed with 

promising runtime 

by VGG 

implementation 

High computational cost 

 

The literature survey on image denoisation reveals that while denoising can enhance 

source images and lead to better fusion results, in contrast excessive denoising may 

remove essential details, potentially degrading fusion performance. 

 

 

2.3   Literature Survey on Medical Image Classification (MIC) 

 

Image classification refers to the process of classifying images based on their features 

or patterns [80-97]. A concise view of the research works exists in the literature is 

reported in table 2.2. Literature survey on medical image classification reveals that, 

many methods already exist in literature but obtaining a model with high classification 

accuracy with less computational cost is still a big challenge. 
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Table 2.2 Image classification techniques based on CNN exist in literature 
 

 

 

2.4 Chapter Summary and Gaps in the Study 

 

This chapter conducts a detailed examination of the challenges associated with 

(MMIF), accompanied by a comprehensive review of existing literature. Traditional 

fusion methods, both in the spatial and transform domains, have created a strong 

foundation, allowing simple ways to combine images with low computational costs. 

Nevertheless, these techniques often struggle to effectively preserve both spatial and 

spectral details and may inadvertently introduce noise or artefacts, which limits their 

application in more intricate medical contexts. 

 

In contrast, the AI domain of MMIF is notably versatile across various imaging 

modalities, capable of producing high-quality fused images. However, this advantage 

 

Ref  

 No. 

Author and 

Year 

      Technology used         Advantages       Dataset Used 

[98] Ganatra et 

al. 

(2024) 

 

CNN with auto 

encoder-based feature 

extraction followed by 

SVM based 

classification 

Successfully detect 

and classify the chest 

pneumonia and breast 

cancer images 

Ultrasound Breast 

cancer Images 

(USBI), and Chest 

X-ray images- 

[99] 

 

Hata et al. 

(2024) 

 

Probability Prediction 

model based on ML 

Interstitial lung 

abnormality detected 

successfully 

CT scan from 

patients in Boston 

Lung Cancer study 

[100] Bamber et 

al. 

(2023) 

Deep Learning Network Diagnosis and 

tracking of Alzheimer 

diseases 

OASIS-3 dataset of 

brain MRI images  

[101] Maurya et al. 

(2022) 

Anisotropic diffusion 

filtering with water 

shade algorithm 

Successfully detect 

the brain tumor  

Brain MRI images 

[102] Joshua et al. 

(2020) 

HE based 

preprocessing, and deep 

learning-based 

classification with 

opposition-based Crow 

search optimization 

Successfully detect 

brain tumor, lung 

cancer and Alzheimer 

diseases 

Brain MRI, Lung 

CT and Alzheimer 

MRI images 

[103] Joao et al. 

(2020) 

Low pass digital 

differentiator, 

anisotropic diffusion 

filtering with least 

square best fit algorithm 

for classification 

Can detect breast 

cancer successfully 

Breast 

mammography 

images which 

contain Benign and 

malignant cancer 

images 

[104]  Lai et al. 

2018 

Supervised learning 

with coding network 

and multi-layer 

perceptron  

Successfully classify 

different skin cancer 

images 

HIS 2018 and ISIC 

2017 

[105]  Jadav et al. 

(2019) 

Deep CNN (Transfer 

learning, VGG and 

SVM classifier) 

Chest Pneumonia 

detected successfully 

Chest X-ray dataset 

(normal, bacterial 

and virus images) 
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comes with increased system complexity and a substantial demand for large training 

datasets. Each domain presents distinct strengths and limitations, and the selection of 

a specific approach is primarily influenced by the particular needs of the medical 

imaging task, including considerations of speed, accuracy, and the accessibility of 

computing resources. 

In the field of image denoisation, enhancement the quality of images from techniques 

like MRI, CT, Ultrasound [1] etc. is very important. This survey looks at both 

traditional denoising methods, like spatial filtering and transform-based approaches, 

as well as newer methods using artificial intelligence, especially deep learning models. 

Traditional methods often struggle for the reduction of noise on keeping important 

details intact. In contrast, AI-based methods are highly effective but require huge 

datasets and a lot of computing power. 

MIC has made significant progress, driven by both traditional ML techniques and, 

more recently, DL models. Traditional methods, such as feature-based approaches like 

SVMs and decision trees, have provided valuable insights but often struggle with 

handling high-dimensional and complex data. Deep learning models like CNNs have 

transformed radically by attaining high precision in classifying various medical 

images, like X-ray, CT and MRI scans through automatic learning of features at 

different levels. However, these models result in computational overhead. 

An inclusive literature review reveals the challenges listed below: 

• The quality attributes of fused images, like the preservation of complementary 

information and anatomical details, are impacted by unwanted noise and a 

limited field of view. 

• Medical images can contain noise and artefacts due to various reasons such as 

movement of patients, scanner imperfections, or contrast agent issues. 

• Some models were unable to handle such noise and artefacts without 

compromising the quality of the fused images.  

• Numerous de-noising methods are discussed in research, but these techniques 

can be vulnerable to adversarial attacks. These attacks involve tiny changes to 

the data that can mislead the model.  

• Creating a high-quality fused image with minimal noise, minimal loss of 

original information, and low computational cost remains a significant 

challenge. 

 The main challenges in MIC are the high computational complexity and the 

need for large datasets. 

 

2.5 Objectives and Scope of the Work 

 

To achieve high-quality fused images with minimal loss of source information, 

minimal noise, and low computational costs, the following objectives were framed: 

1. Performance analysis of medical image fusion algorithms. 
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2. Design and development of efficient de-noising method to improve the image 

quality. 

3. Design and development of efficient multimodal image fusion approaches for 

medical images. 

4. Design and development of efficient classifier in the application of medical 

image processing. 

Our first objective is to review and analyse the existing work in the domain of MMIF. 

This objective provides background information on the topic MMIF, showing the 

current state of knowledge and where our research fits within the broader academic 

discourse. It helps to situate our work in the context of existing studies and theories.  

Our second objective is to denoise the source images as well as fused images to 

preserve information acquired from different modality medical images. The objective 

of denoising is to enhance the quality and clarity of the images for a better 

comprehensive view of the area of interest by reducing noise, which is any unwanted 

or irrelevant data that can obscure important details. 

 

Our third objective is to propose an efficient MMIF model that addresses the 

challenges encountered by current models. The development of an efficient MMIF 

aims to improve the diagnostic and therapeutic capabilities in medical imaging by 

amalgamating complementary information from multiple imaging modalities. 

 

The fourth objective is to develop an efficient classifier to analyze and categorize 

images based on the texture patterns within them.  

 

 

2.6 Performance Analysis 

 

With the extension of literature survey, the working of different MMIF algorithms has 

been analyzed and for this purpose the following methodologies have been used: 

 Evaluating through execution of different transform techniques for the 

purpose of MMIF (Daubechies [6], Haar [7] and Lifting scheme [7] with 

𝑇1 , 𝑇2, 𝑇1𝐶 and 𝐹𝑙𝑎𝑖𝑟 modality images from BraTs-2015 [76] dataset). 

 Performance analysis of MMIF with the proposed energy-based 

coefficient enhancement. 

 

2.6.1  Performance Analysis of different transform techniques for MMIF 

 

Different image transformation techniques (Daubechies [6], Haar [7] and Lifting 

scheme [7]) have been utilized to decompose the different modality source images. 

The detail description of these transform techniques is given below. The corresponding 
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coefficients of the decomposed coefficients have been fused by the mean-max fusion 

rule [85]. Different performance metrics [111], [112] have been calculated for weigh 

up the fused images achieved from different transform methods and the formulas used 

for this purpose, also have been represented in this section. 

 

Daubechies Wavelet Transform [6]: Daubechies contributed a lot in the analysis of 

wavelet transform. She has contributed the orthonormal and orthogonal wavelets 

popularly known as Daubechies family wavelets. According to her if a function is a 

wavelet function, then it must attractive properties like have a compact support for an 

interval, it has at least single non vanishing moment and it must translate in orthogonal 

way. Daubechies wavelets are selected for their maximal number of vanishing 

moments. The coefficients of Daubechies wavelet transform can be obtained from the 

digital representation of the image by filtering it with LPF (low pass filter) and HPF 

(high pass filter) and subsampling the outputs by a factor of 2. The recursive 

application of the above steps creates many subsamples at the output. The diagram of 

Daubechies wavelet transform is depicted in figure 2.1. 

 

 
Figure 2.1 Diagram of Daubechies filter banks  

 

Haar Wavelet Transform [7]:  Haar Wavelet (HW) transform is considered one of 

the most effective wavelet functions, particularly in MMIF, because of its simplicity 

and computational efficiency. It is primarily utilized for image compression purposes. 

The description of the Haar wavelet function is depicted in Figure 2.2 below. 

 

 
 

 
Figure 2.2 Haar Wavelet Function 
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Lifting Scheme [7]: The lifting scheme simplifies the DWT by breaking it into smaller 

steps called lifting steps. This process reduces the number of calculations by nearly 

half and makes it easier to handle the edges of signals. In the traditional discrete 

wavelet transform, multiple filters are applied to the signal separately. However, in the 

lifting scheme, the signal is split, and a series of operations are applied to the divided 

parts. The basic version of a forward wavelet transform in the lifting scheme is shown 

in Figure 2.3. The "P" represents the prediction step, where a high-pass filter is used 

to compute the wavelet function. The "U" is the update step, which produces a 

smoother version of the data. The lifting scheme offers several advantages: (1) 

Efficient memory usage, (2) The reverse of the forward transform, gives its inverse 

form (3) Subtraction is replaced with addition. The block diagram of a Lifting scheme 

in DWT is depicted in the figure 2.3 below. 

 

 
 

 

Figure 2.3 Diagram of Lifting Scheme 

 

2.6.2 Calculated Fusion performance metrics  

 

The analysis of different transform methods in the field of MMIF is done with the 

assistance of following metrics like [15], [111], [112].  

Mean Square Error: 

𝑀𝑆𝐸 =
1

𝑥𝑦
 (𝐼"(𝑥, 𝑦) −  𝐼 (𝑥, 𝑦))

2

                                                                         (2.1) 

 

Where,  𝐼"(𝑥, 𝑦) is the fused image and   𝐼 (𝑥, 𝑦) is the input image. 

 

Root Mean Square Error: 

 

𝑅𝑀𝑆𝐸 =√ MSE                                                                                                                             (2.2) 
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Peak Signal to Noise Ratio: 

 

(𝑃𝑆𝑁𝑅)𝐷𝐵  = (10 ×  𝑙𝑜𝑔10(𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒)2 )/𝑀𝑆𝐸                                                  (2.3) 

 

Here Peak value is 255. 

Structural Similarity Measure Index: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑥2) =
(2µ′

𝑥1   ×   µ′𝑥2  +  𝑣1 )(2ɤ𝑥1 ,𝑥2   + 𝑣2)

(µ′𝑥1
2+ µ′𝑥2

2+𝑉1 )(ɤ𝑥1
2+ɤ2

2+𝑉2)
                                                   (2.4) 

Where, 𝑥1 𝑎𝑛𝑑 𝑥2 are the input and the pre-processed image respectively, 𝜇′ and ɤ 

represent the mean and standard deviation respectively, and   𝑉 = (𝑅 × 𝑆) 2 ,  where 

‘𝑆 ' is a constant whose value is   <<1 and   ‘R ' is the dynamic range of an image. 

Mean Value: 

𝑀𝑒𝑎𝑛 =
1

𝑛
∑ 𝑥𝑗

𝑛

𝑗=1
                                                                                                             (2.5) 

Variance Value: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑛
∑ ((𝑥𝑖 − 𝑚𝑒𝑎𝑛((𝑥𝑖))2𝑛

𝑖=1
                                                                   (2.6) 

Standard Deviation: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒                                                                            (2.7) 

Mutual Information: 

𝑀𝐼( 𝑥1,𝑥2 ) = ∑ 𝑝(𝑥1 , 𝑥2 )𝑙𝑜𝑔𝑥1,𝑥2 

𝑝(𝑥1 ,𝑥2 )

(𝑝(𝑥1 ) × (𝑝(𝑥2 )
                                                       (2.8) 

 

Fusion Mutual Information: 

𝐹𝑀𝐼𝐹
𝑥1 ,𝑥2  =

1

2
(𝑀𝐼( 𝑥1,𝐹) +  𝑀𝐼( 𝑥2,𝐹))                                                               (2.9) 
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Quantity Assessment Based on Feature: 

 𝑄𝐴𝐵/𝐹 =
∑ ∑ (𝑄(𝑚,𝑛)

𝐴𝐹𝑁   
𝑛=1 𝑊(𝑚,𝑛)

𝐴𝐹 + 𝑄(𝑚,𝑛)
𝐵𝐹 𝑊(𝑚,𝑛)

𝐵𝐹 ) 𝑀
𝑚=1

∑ ∑ (𝑁   
𝑛=1 𝑊(𝑚,𝑛)

𝐴𝐹 + 𝑊(𝑚,𝑛)
𝐵𝐹 ) 𝑀

𝑚=1
                                                        (2.10) 

Where, 𝑄(𝑚,𝑛)
𝐴𝐹  , 𝑄(𝑚,𝑛)

𝐵𝐹  are the edge preservation value and  𝑊(𝑚,𝑛)
𝐴𝐹 , 𝑊(𝑚,𝑛)

𝐴𝐹  are their 

weights. 

 

Fusion Factor:  𝐹𝐹 =  𝐼𝐴𝐹 +  𝐼𝐵𝐹                                                                              (2.11) 

Where, 𝐼𝐴𝐹 and 𝐼𝐵𝐹 are the mutual information with respect to fused image  ‘F ' of the 

two source images ‘A’ and ‘B’.  
 

Fusion Symmetry:  𝐹𝑆 = 𝑎𝑏𝑠(
𝐼𝐴𝐹

𝐼𝐴𝐹+ 𝐼𝐵𝐹
 – 0.5)                                                     (2.12) 

Entropy: 𝐸 =  −𝑠𝑢𝑚(𝑝 × 𝑙𝑜𝑔2 (𝑝))                                                                        (2.13) 

Feature Symmetry Index: 𝐅𝐒𝐈𝐌 

𝑆𝑃𝐶 (𝑥) =
2𝑃𝐶1(𝑥)×𝑃𝐶2(𝑥)+𝑇1

𝑃𝐶1
2(𝑥)+ 𝑃𝐶2

2(𝑥)+ 𝑇1
  , where PC stands for phase congruency and represents 

the feature of an input image’ x’ at the point where the Fourier components are 

maximum in phase. 

 

𝑆𝐺 (𝑥)  =
2𝐺1(𝑥) × 𝐺2(𝑥)+𝑇2

𝐺1
2(𝑥)+ 𝐺2

2(𝑥)+ 𝑇2
, where  𝑆𝐺(𝑥)  represents the gradient magnitude of an 

image ‘x’.  
 

𝐹𝑆𝐼𝑀 = ∑
   𝑆𝐿 (𝑥) ×𝑃𝐶𝑚(𝑥)

∑ 𝑃𝐶𝑚(𝑥)𝑥€ Ω
𝑥€ Ω                                                                                  (2.14)  

 

Where, Ω represents the spatial domain image and  

 

 

 𝑃𝐶𝑚(𝑥) =  𝑚𝑎𝑥(𝑃𝐶1 (𝑥),  𝑃𝐶2(𝑥)) and  𝑆𝐿 (𝑥) = 𝑆𝑃𝐶 (𝑥)  × 𝑆𝐺 (𝑥) 
 
 
 
2.6.3 Results and Discussion 

The subjective comparison of different transformation techniques is represented in 

figure 2.4 and the quantitative comparison based on different performance metrics 

value is presented in table 2.3. 

 



 

25 

 

 

Figure.2.4 Fused images ( a’= 𝐹𝑙𝑎𝑖𝑟, b’= 𝑇1, c’=fused by Daubechies, d’=fused by lifting ,e’=fused by 

Haar ,f’= 𝐹𝑙𝑎𝑖𝑟, g’= 𝑇1𝐶, h’=fused by Daubechies, i’=fused by Lifting, j=fused by Haar, k = 𝐹𝑙𝑎𝑖𝑟, 

l’= 𝑇2,m’= fused by Daubechies , n’=fused by Lifting , o’=fused by Haar , p’= 𝑇1, q’= 𝑇1𝐶, r’= fused 

by Daubechies ,s’= fused by Lifting, t’=fused by Haar, u’= 𝑇1, v’= 𝑇2, w’= fused by Daubechies, 

x’=fused by Lifting, y’=fused by Haar, z’= 𝑇1𝐶aa’= 𝑇2, bb’= fused by Daubechies , cc’=fused by 

Lifting , dd’=fused by Haar) 

 

Table 2.3 Comparison of different transform methods in MMIF 

 

Performance Analysis Daubechies [6] Haar [7] Lifting [7] 

PSNR  28.22 25.75 25.59 

RMSE 9.9 13.45 13.57 

MI 1.27 1.309 1.25 

QAB/F
 0.89 0.861 0.919 

Mean 41.8 47.57 47.3 

Variance 1.9e+03 2.44e+03 2.46e+03 

medina 25 39 27 

St. Deviation 43.59 49.4 49.59 

FMI 0.93 0.933 0.928 

FF 3.48 3.84 3.387 

FS 0.05 0.042 0.016 

SSIM 0.91 0.87 0.912 

FSIM 0.93 0.92 0.965 
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Figure 2.5 Comparison of Daubechies, Haar and Lifting wavelet transform based on the PSNR Value 

 

The quantitative analysis revealed that the Daubechies wavelet transform outperforms 

the Haar and Lifting wavelet transforms in achieving higher PSNR values, however 

the result of the Haar wavelet transform is superior to the Lifting scheme. 

 

2.7   Performance analysis of MMIF with the proposed energy-based     

coefficient enhancement technique. 

In this research we have designed a methodology for image enhancement before 

fusion. This proposed work leverages DWT [22], [28], the novel Energy-based 

Coefficient Enhancement (EBCE), and the suitable fusion techniques (Conventional 

mean-max fusion rule [85] or Conventional PCA [13]). The EBCE technique surpasses 

several conventional image enhancement methods. Additionally, the suggested 

model's performance has been benchmarked against several cutting-age image fusion 

models, consistently outperforming them. 

 

2.7.1 Methodology 

The proposed MMIF model consists the following steps: 

 

Step-1:  Image decomposition by DWT [22]: 

At this initial step, the two different modality source images MRI and CT [78] are 

disintegrated into detailed coefficients and approximate coefficient by DWT [22]. 

Let’s the two source images are :  𝑀1  (𝑝, 𝑞)  and 𝑀2  (𝑝, 𝑞). After decomposition, we 

obtain 8 decomposed coefficients: (𝑎11  (𝑝, 𝑞), 𝑏11  (𝑝, 𝑞),𝑐11  (𝑝, 𝑞), 𝑑11  (𝑝, 𝑞)) and 

(𝑎22  (𝑝, 𝑞), 𝑏22  (𝑝, 𝑞) ,𝑐22  (𝑝, 𝑞), 𝑑22  (𝑝, 𝑞)). Among these coefficients, 𝑎11  (𝑝, 𝑞) 

and (𝑎22  (𝑝, 𝑞) are the approximate coefficients, and the remaining coefficients are 

the detail coefficients. 
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Step 2: Enhancement of coefficients: 

The energy of an image characterizes its localized changes [52] which may manifest 

in magnitude or color brightness over local areas of a pixel. In this research, the energy 

of each coefficient is calculated using its GLCM [87]. Each element (p ,q) in the 

GLCM represents the total occurrences of the pixel with value p lying horizontally 

next to the pixel with value q. The energy of GLCM [87] corresponds to the sum of 

the squares of each element, also known as its second angular moment. The flow layout 

of the calculation of energy components is represented in figure 2.6 whereas the detail 

description of the suggested enhancement process is represented in figure 2.7. 

 

 

Figure 2.6 Calculation of energy of decomposed coefficients from their GLCMs 

 

The Energy-based Coefficient Enhancement (EBCE) algorithm is elaborated below: 

 

(i) The energies obtained from the GLCM of each decomposed coefficient primarily 

signify their mean energies. Hence,  (𝑒𝑎1  , 𝑒𝑏1  , 𝑒𝑐1 , 𝑒𝑑1 ) and (𝑒𝑎2  , 𝑒𝑏2 , 𝑒𝑐2 , 𝑒𝑑2 )  

represent the mean energies of the decomposed coefficients.  

(ii) The mean energy of each source image is also calculated from their respective 

GLCMs. Thus,(𝑒1  and  𝑒2 )   represent the mean energies obtained from the two source 

images 𝑀1  (𝑝, 𝑞)  and 𝑀2  (𝑝, 𝑞) respectively. 

(iii) The mean energy of individual coefficient is added to the mean energy of its 

corresponding source image to compute the effective mean energy. For instance: 

(𝑒11 = 𝑒𝑎1 +  𝑒1  , 𝑒22 = 𝑒𝑏1 +  𝑒1  , 𝑒33 = 𝑒𝑎3 +  𝑒1 , 𝑒44 = 𝑒𝑎4 +  𝑒1 ) obtained 

from source image  𝑀1  (𝑝, 𝑞). And (𝑒55 = 𝑒𝑎5 +  𝑒2  , 𝑒22 = 𝑒𝑏1 +  𝑒2  , 𝑒33 =
𝑒𝑎3 +  𝑒2 , 𝑒44 = 𝑒𝑎4 +  𝑒2 ). 

(iv) The efficient or boosted coefficients are obtained through dividing the DWT 

decomposed components by their corresponding effective mean energies. Thus, the 

energy-efficient or energy-boosted coefficients are as follows: (𝑎111 = 𝑎11/ 𝑒11 ,  

𝑏111 = 𝑏11/ 𝑒22 , 𝑐111 = 𝑐11/ 𝑒33 , 𝑑111 = 𝑑11/ 𝑒44 ) and  (𝑎222 = 𝑎22/ 𝑒55 , 𝑏222 =
𝑏22/ 𝑒66 , 𝑐222 = 𝑐22/ 𝑒77 , 𝑑222 = 𝑑22/ 𝑒88 ) . 

The detail representation of the Energy-based Coefficient Enhancement algorithm is 

depicted in figure 2.7. 
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Figure 2.7 Detail representation of EBCE model 

 

Step-3: Fusion of energy-enhanced coefficients: In this phase, for the fusion of the 

enhanced coefficients, two different conventional techniques have been employed 

separately: Principal Component Analysis PCA [13] and the mean-max fusion rule 

[85]. The conventional mean-max fusion rule [85] exhibits superior performance 

parameters and is thus selected for fusion purposes. 

 

PCA method of image fusion [13]: In the PCA method, the source images are 

transformed into Eigen space. The principal component of an image contains its 

essential features with reduced noise corresponding to its major Eigenvalue. The 

boosted coefficients obtained from the previous stage are fused by the PCA [13] 

method. After fusion, only four coefficients ( 𝑎1111 ,  𝑏,  𝑐1111 ,  𝑑1111 ) are retained. 

The fusion process in the PCA method is governed by equations 2.15, 2.16, 2.17, and 

2.18 respectively: 

 

 𝑎1111 = 𝑃𝐶𝐴 (1)  ×  𝑎111  +  𝑃𝐶𝐴 (2)  × 𝑎222                                                  (2.15) 

 

𝑏1111 = 𝑃𝐶𝐴 (1)  ×  𝑏111  +  𝑃𝐶𝐴 (2)  × 𝑏222                                                   (2.16) 

 
𝑐1111 = 𝑃𝐶𝐴 (1)  × 𝑐111  +  𝑃𝐶𝐴 (2)  × 𝑐222                                                    (2.17) 
 

𝑑1111 = 𝑃𝐶𝐴 (1)  ×  𝑑111  +  𝑃𝐶𝐴 (2)  × 𝑑222                                                  (2.18) 
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The mean-max fusion method [85] combines the approximate coefficients of two input 

images by calculating their mean. For the detail coefficients, the fusion process selects 

the maximum value from the corresponding coefficients of the two images. This 

method is represented by equations 2.19, 2.20, 2.21, and 2.22, where equation 2.19 is 

dedicated to fusing the approximate coefficients, and equations 2.20, 2.21, and 2.22 

are utilized to fuse the detail coefficients. After mean-max fusion only four coefficients 

( 𝑎11111 , 𝑏11111 ,  𝑐11111 ,  𝑑11111 ) retains.  

 

 𝑎11111 = (𝑎111 + 𝑎222)/2                                                                                  (2.19) 

 

 𝑏11111 = 𝑚𝑎𝑥(𝑏111 , 𝑏222)                                                                                  (2.20) 

 

𝑐11111 = 𝑚𝑎𝑥(𝑐111 , 𝑐222)                                                                                    (2.21) 
                                                                                   
𝑑11111 = 𝑚𝑎𝑥(𝑑111 , 𝑑222)                                                                                   (2.22) 
 

                                                     

 

Step-4: The fused coefficients are processed through the IDWT [22], [28] to 

reconstruct the fused image in the spatial domain separately. The performance 

comparison of the two different fused images obtained from two different fusion 

methods is reported in table 2.4. 

The flow layout illustrating the suggested model is presented in Figure 2.8. 

 

 
Figure 2.8 Flow layout of the suggested Model 

 

2.7.2   Results and Discussion 

The suggested multi-modal medical image fusion model effectively integrates CT and 

MRI images from the dataset [78]. Various traditional image enhancement methods, 

including HE [113], AHE [114], and CLAHE [115], are well-documented in existing 

research. A comparative analysis between the proposed Energy-Based Coefficient 



 

30 

 

Enhancement (EBCE) method and these conventional techniques is provided in Table 

2.4, and the enhanced images are displayed in Figure 2.9. From Table 2.4, it is clear 

that the EBCE method outperforms traditional enhancement approaches, delivering 

better output values. 

 

 
 

Figure 2.9 Fused images after conventional image enhancement techniques and Proposed EBCE 

technique 

 
 

Table 2.4 Performance parameters obtained from different enhancement techniques and proposed 

EBCE technique from Harvard Medical School Brain data set [78] 

 

 

 

 

 

 

Conventional PCA [13] 

P    Performance 

parameters 

 

HE 

[113] 

AHE 

[114] 

CLAHE 

[115] 

Proposed 

EBCE 

PSNR 28.787 28.3187 28.35 31.801 

RMSE 9.3415 9.3502 9.347 6.776 

MI 1.06 1.05 1.01 1.164 

FMI 0.732 0.722 0.729 0.786 

FSIM 0.510 0.496 0.499 0.547 

Entropy 3.51 3.28 3.41 4.52 

Conventional [mean-max Fusion Rule [85] 

PSNR 30.45 30.28 30.34 33.527 

RMSE 7.49 7.40 7.45 4.099 

MI 1.09 1.06 1.07 1.169 

FMI 0.785 0.786 0.784 0.798 

FSIM 0.527 0.518 0.521 0.565 

Entropy 3.52 3.30 3.40 4.64 
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Figure 2.10 Comparison of fused images obtained from different image fusion models and 

Proposed Model (a1=GFF, a2=NSCT+SR, a3=NSCT+PCNN, a4=NSCT+LE, a5=NSCT+RPCNN, 

a6=NSST+PAPCNN, a7=DWT, a8=DWT+WA, a9=U-Net, a10=CNN, a11=ESF, a12=ESF+CSF, 

a13=Propose Model) 

 

Table 2.4 demonstrates that the mean-max fusion rule [85] gives superior performance 

compared to PCA [13] fusion. So, we mean-max fusion rule [85] based is finally used 

in this method. The suggested fusion model is evaluated against several existing image 

fusion models. The quantitative results are reported in Table 2.5, while the qualitative 

outcomes are illustrated in figure 2.10. 

 

 
Table 2.5 Performance parameters obtained from Proposed Model-II ([mean-max [85] fusion rule) 

and different existing image fusion models for image set-1(CT, MRI) from Harvard Medical School 

Brain Data set [78] 

 
Name of the Models Performance 

Parameters 
PSNR SSIM 

GFF [116] 31.1594 0.4865 

NSCT+SR [117] 29.5602 0.4825 

NSCT+PCNN [118] 31.2341 0.5043 

NSCT+LE [119] 31.6099 0.4861 

NSCT+RPCNN [120] 31.6844 0.5002 

NSST+PA-PCNN 

[121] 

32.9194 0.4914 

DWT [122] 31.972 0.4293 

DWT+WA [123] 30.9814 0.4875 

U-Net [124] 26.4196 0.3225 

CNN [125] 28.9646 0.4751 

ESF [126] 30.99 0.485 

ESF+CSF [127] 29.6479 0.6483 

Proposed Model 33.527 0.705 

 

The foundation of the proposed model lies in its pre-processing stage, where the EBCE  

method is applied to amplify the energy of decomposed coefficients, thereby enhance 

the fusion performance. A comparison between EBCE and traditional image 

enhancement techniques, as shown in table 2.4, reveals that EBCE achieves superior 

results by delivering higher PSNR and lower RMSE values. Figure 2.10 demonstrates 

that the fused images produced using EBCE retain more intricate details compared to 

those generated by conventional methods. This pre-processing step is critical for 

achieving higher-quality fused images. 
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In this fusion process, both the traditional PCA [13] technique and the mean-max 

fusion rule [85] were utilized. According to table 2.4, the mean-max fusion rule 

outperforms PCA [13] across key performance metrics, including PSNR, RMSE, MI, 

FMI, FSIM, and Entropy, when applied to the Harvard Medical School Brain dataset 

[78]. Table 2.5 reports a comparison between the suggested model and state-of-the-art 

fusion models, highlighting its outstanding performance in terms of PSNR and SSIM. 

Furthermore, Figure 2.10 illustrates that the fused images produced by the suggested 

model are sharper and preserve more detailed information compared to those produced 

by existing methods. The model is also highly efficient, requiring less than 2 seconds 

to fuse images from different medical modalities, demonstrating its computational 

effectiveness. The graphical representation of the comparison of the two different 

fusion rule is depicted in figure 2.11. 

 

 
 

     Figure 2.11 Comparison of Proposed EBCE and Conventional Image Enhancement Techniques 

for PCA [13] and mean-max fusion rule [85] of image fusion based on PSNR value. 

 

2.8   Conclusion 

Major progress has been achieved in MMIF, that merges complementary data from 

different imaging methods like PET, MRI and CT to enhance diagnosis and support 

clinical decisions. A thorough study of the research on image fusion, denoising, and 

classification shows that medical images typically contain intricate details and 

complex structures. Many such models are existing in literature but designing a model 

that can produce fuse image with all source information with low noise is still a big 

challenge. 

An evaluation of image transform techniques, including Daubechies [6], Haar [7], and 

the Lifting Scheme [7], indicates that the Daubechies method delivers the most 

effective results in MMIF. Additionally, implementing the proposed Energy-Based 

Coefficient Enhancement (EBCE) method, followed by multimodal image fusion, 

shows that the mean-max fusion rule [85] achieves superior performance on the 

Harvard Medical School brain dataset. 
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  CHAPTER 3 

 

IMAGE DENOISATION 

 

 

 

3.1   Introduction 

 
MMIF amalgamates information from multi-modality images to generate a single 

fused image, aiding in accurate, efficient and early diagnosis [15]. Preprocessing the 

images is a key step before fusion, as it helps reduce unwanted noise and enhances the 

visual quality [16]. Furthermore, applying image denoising after the fusion process is 

crucial for enhancing the quality, clarity, and clinical relevance of fused images, 

thereby supporting errorless medical diagnoses and treatment planning [16]. Medical 

image denoising involves eliminating unnecessary noise from medical images while 

preserving critical details. Noise can reduce image quality, making it harder for 

doctors to diagnose conditions or evaluate treatments accurately [69]. Good denoising 

is important to improve image clarity and ensure essential diagnostic information 

remains intact [70]. 

 

After reviewing research in this area, it is clear that unwanted noise and a limited field 

of view can impact the quality of fused images, potentially causing important details 

to be lost. While there are many denoising techniques, algorithms can still be tricked 

by small, subtle changes. Achieving a high-quality fused image with minimal noise, 

little loss of information, and low computational cost is still a challenge. 

 

To improve MIF, we suggested a multimodal fusion model. This model follows the 

important steps like: AMT-DWT-based image enhancement during preprocessing, 

DWT-based decomposition, PCA [13]-based image fusion, and custom CNN-based 

denoising. Each step helps reduce noise. Image filtering is a broad term that includes 

many ways to modify and improve images, while image denoising focuses specifically 

on removing noise. Both are important in improving image quality, and combining 

them leads to clearer source images. 

 

The proposed AMT-DWT method processes the same image in different ways to make 

it clearer. This helps to extract hidden features from the images, which is crucial for 

medical image analysis, as accurate feature extraction is key for detecting diseases. 

After enhancement, the images are fused using techniques like PCA [13] and the 

mean-max fusion rule [85]. Ensuring that input images are clear and free from 

unnecessary information helps the fusion process, as clean images contribute to a more 

detailed final image. 
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Improvement the source images before fusion can produce higher quality fused image. 

Since medical images often have a lot of data, where each pixel represents a feature, 

PCA [13] helps reduce the amount of data while keeping the most important 

information. This makes denoising easier and improves fusion accuracy. The custom 

CNN, with two special activation functions, is used to reduce White Gaussian Noise 

(WGN) from the fused image. This stage improves the fused image by removing 

random noise, resulting in clearer images with better anatomical details, helping 

doctors interpret the images more easily. 

 

The proposed activation functions work better than six well-known activation 

functions, and the fusion model shows better performance and efficiency compared to 

many advanced image fusion models.  

Hence for the denoisation we have developed the following: 

  AMT-DWT (Averaging of Multi Techniques- Discrete Wavelet Transform) 

based pre-processing with custom CNN based fused image denoisation has been 

proposed. 

 

3.2 AMT-DWT based pre-processing with custom CNN based fused image      

denoisation  

This research introduces a MMIF model to improve performance. The model combines 

key components, including AMT-DWT-based image enhancement in the pre-

processing stage, DWT-based decomposition, suitable image fusion methods (PCA 

[13] or [mean-max [85] fusion rule [85]), and a custom CNN-based denoising process. 

Each of these components helps reduce noise. While image filtering includes various 

techniques for improving images, denoising focuses specifically on removing noise. 

Both approaches are important for enhancing image quality and clarity. 

The enhanced images are then fused using the suitable technique of PCA [13] and the 

[mean-max [85] fusion rule [85]. For successful fusion, the input images must be 

reliable and free from irrelevant details, as clear images lead to more detailed fused 

results.Since the input images are enhanced before fusion, the obtained fused image is 

of higher quality. Medical images typically contain high-dimensional data, where each 

pixel represents a specific feature. PCA [13] helps reduce the image's dimensionality 

while preserving important information, which simplifies the denoising process and 

improves fusion accuracy. 

A custom CNN with two proposed activation functions is utilized to remove White 

Gaussian Noise (WGN) from the fused image. This stage enhances the fused image by 

minimizing random noise, resulting in clearer and more accurate anatomical 

representations, which assist healthcare professionals in interpreting the images. The 

proposed activation functions outperform six well-known ones, and the fusion model 

can give excellent fusion metrics value and computational efficiency compared to 
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several state-of-the-art models. Figure 3.1 shows the flow lay-out of the proposed 

model. 

 

Figure 3.1 Flow layout of the suggested model 

3.3   Methodology 

This research tackles the challenge of developing an effective image fusion model that 

balances performance metrics and computational efficiency. The major steps of the 

suggested MMIF are described below: 

Step 1: Intensity Enhancement (Proposed AMT-DWT): In the proposed method, 

the original image is processed through two parallel procedures. First, it is filtered 

using a median filter, while also passing through a Gaussian filter [3]. This dual-

filtering approach is used because each filter is effective at removing different types 

of noise, which leads to improved images through two separate pathways. These 

pathways are then further enhanced using CLAHE [115]. After this, each enhanced 

pathway undergoes post-processing with unsharp masking. The purpose of unsharp 

masking is to restore any sharpness lost during the application of the blur filters in the 

pre-processing phase. Sharpening high lights the intensity transition regions in the 

image. The mathematical model for sharpening images using unsharp masking [88] is 

shown in Figure 3.2, and the sharpened images are depicted in Figure 3.3. The steps 

for sharpening the original image with unsharp masking are outlined in the following 

algorithm. 
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Figure 3.2 Mathematical model used for image sharpening 

 

 

 

 

Figure 3.3 Sharpened source images along with AMT-DWT enhanced images 

 

1. Construct a blur image  𝐼′(𝑥, 𝑦) from the original Image 𝐼(𝑥, 𝑦).                          (3.1) 

2. From the original image, the blur image is subtracted to generate the mask 𝐼𝑚(𝑥, 𝑦) , represented by 

equation 3.2 as .  𝐼𝑚(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) −  𝐼′(𝑥, 𝑦)                 (3.2)                                                                 

3. The mask 𝐼𝑚(𝑥, 𝑦) is added to the original image to generate the sharpened image 𝐼𝑠(𝑥, 𝑦), given in 

equation 3.3 as :        𝐼𝑠(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝐼𝑚(𝑥, 𝑦)                                                        (3.3) 
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The reason for using different pathways is that each method has its own strengths, and 

combining their results can lead to better outcomes than using each one separately. 

CLAHE [115] is applied to prevent excessive contrast enhancement, while DWT [22], 

[28] helps preserve important image details and prevent noise from being amplified. 

A median blur filter reduces noise by replacing the centre pixel with the median value 

of the surrounding pixels. Additionally, a Gaussian blur, which uses a Gaussian kernel 

to assign different weights to neighbouring pixels, is applied to further reduce noise. 

Unsharp masking enhances the HF details of the image and make it sharper. 

 

The unsharp masked image is then averaged with the two previous processed images, 

resulting in an image that is improved compared to the original. The CLAHE [115] 

enhanced images have higher contrast and are brighter than the original, while the 

unsharp masked image, although having lower contrast, is sharper and has better 

contrast than the original. If we group the CLAH [115]-enhanced images and treat the 

unsharp masked image separately, they are averaged together in a 2:1 ratio during the 

fusion process. This balancing approach reduces the extreme contrast and brightness, 

creating an image that is less over-enhanced than the CLAHE [115] images but still 

better than the original. The final result is an image with improved contrast, brightness, 

and sharpness, without the over-enhancement seen in the CLAHE images. At the end 

of the enhancement process, IDWT is used to transform the image back to the spatial 

domain. 

 

Let the original image be denoted as I(p ,q). The image after applying median filtering 

[15], CLAHE [115], and unsharp masking is represented as I1(p, q). The image 

produced after Gaussian blurring, CLAHE, and unsharp masking is denoted as I2(p, 

q). The image resulting from direct unsharp masking of the original image I (p, q) is 

I3(p, q). After averaging I1(p, q), I2(p, q), and I3(p, q), the final image is I4(p, q). The 

components of I4(p, q) after DWT are [CA1, CH1, CV1, CD1], while the components 

of the original image I (p, q) are [CA, CH, CV, CD]. In the final step, the corresponding 

components of I (p, q) and I4(p, q) are fused using the conventional [mean-max [85] 

fusion rule [85], [116], meaning CA is fused with CA1, CH with CH1, and so on. 

 

The proposed AMT-DWT enhancement algorithm is applied on the dataset [78], and 

its performance is compared with existing image enhancement methods. The 

comparison results are shown in Table 3.2, and the qualitative comparison of images 

from different techniques is displayed in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

Algorithm of suggested AMT_DWT: 

 

 

 

 

Figure 3.4 Pictorial representation of the suggested AMT-DWT algorithm 

 

Step 1: Input the original image (I) and three other copies of input image have been generated. 

Step 2: Pass one copy through the Median blur filter and another copy through the Gaussian blur filter. 

Step 3: Apply CLAHE on each of the images obtained after completing step 2. Apply unsharp masking 

for each image. 

Step 4: Out of the remaining two copies of the original image, apply unsharp masking on one of them. 

Step 5: Apply image fusion for images formed from steps 3 and 4. The image fusion method adopted 

here is averaging. 

Step 6: Apply DWT to decompose the averaged image obtained from step 5 into [CA1 CH1 CV1 CD1]. 

Step 7: Apply DWT on the original image and decomposed components are [CA CH CV CD]. 

Step 8: Apply conventional [mean-max [85] fusion rule for the fusion purpose of 

corresponding decomposed coefficients i.e. the CA component fuse 

with CA1, CH is fused with CH1 and so on. 

Step 9: Apply IDWT to get the fused image in spatial domain.                    
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Step-2 (Discrete Wavelet Transform): In this stage, a two-dimensional DWT is 

applied to break down the intensity-enhanced images from different modalities (CT 

and MRI from the Dataset [78]) into four components, each in the frequency domain. 

DWT is an effective tool for reducing noise and is commonly used in image 

processing. It helps localize important features of the image at different scales, 

producing a sparse representation. The wavelet transform focuses on significant image 

features by creating large-magnitude coefficients, while noise and unnecessary details 

are captured in smaller-magnitude coefficients. This makes it easier to remove noise, 

resulting in a cleaner image. By using DWT in this stage, the image is decomposed 

into various components, which are then used in the next step. As a result, the 

decomposed components have less noise, offering a clearer and more informative 

image. 
 

Step-3 (Fusion of decomposed enhanced images): The corresponding components 

of the decomposed intensity-enhanced images are fused using appropriate fusion 

techniques, namely PCA [13] and the [mean-max [85] Fusion rule. The objective is to 

combine information from the two different modality images into one cohesive fused 

image. The fusion results of PCA method and the [mean-max fusion rule are reported 

in Table 3.3 and Table 3.4, respectively, with their quantitative representations shown 

in Figures 3.8 and 3.9. It is evident that conventional PCA yields better results than the 

[mean-max [85] fusion rule. This step is crucial for merging complementary 

information from the two modalities, improving the overall quality of the fused image. 

PCA is a technique that helps extract the principal components from a raw dataset, 

reducing its dimensionality. The computational steps followed in PCA are as follows: 

 

 

 

 

 

For two different modality images, ‘A’ and ‘B’, the PCA components are calculated 

as P(A) and P(B). The output image is then formed by merging P(A) and P(B). PCA 

acts as a de-correlation technique that transforms the dataset into the principal 

component domain, keeping only the most important components. This approach 

effectively eliminates noise and irrelevant details, making PCA a widely used method 

for image de-noising. By retaining the key components and discarding the less 

significant ones, PCA improves the overall image quality while reducing noise and 

unwanted artefacts. 

 

Step-4 (Inverse Discrete Wavelet Transform) IDFT: The four components obtained 

from the fused image in the previous step are combined using the IDWT, which 

restores the image to the spatial domain. 

 

Step-5 (De-noising CNN): Image de-noising is essential in medical imaging because 

it directly affects the diagnostic accuracy, with AWGN being one of the most common 

types. Research shows that CNN-based de-noising techniques are effective because 

Step 1: The raw image data is organized into columns. 

Step 2: The mean of each column is computed. 

Step 3: Subtraction of mean from each column and generation of covariance 

matrix. 

Step 4: Calculation of Eigen vectors and Eigen values for the covariance 

matrix. 

Step 5: Sorting the eigen vectors by corresponding decreasing eigen values. 
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CNNs can automatically identify and remove noise from image patches without human 

intervention. During training, they learn to de-noise images efficiently, and their ability 

to handle large datasets ensures consistent and reliable results. 

 

While increasing network depth is a common way to improve CNN performance, it 

also increases system complexity and computational costs. To address this, this paper 

proposes an alternative approach—improving CNN performance by using stronger 

nonlinear activation functions, without increasing the network depth, thus reducing 

both complexity and computational cost. The proposed CNN includes twenty 

convolution layers and eighteen batch normalization layers, specifically designed for 

image de-noising. In MATLAB, a ‘denoisingImageDatastore’ object is created using 

300 grayscale images at ten different noise levels. Random noise is added to image 

patches in each epoch, creating a ‘denoisingImageDatastore’ (imds) object with both 

clean and noisy image patches. The CNN is trained with fifty such patches. The 

specifications and structure of the proposed CNN are described in Table 3.1. 

 

Activation functions are crucial because they map a node’s output to a range between 

'0' and '1' or '-1' and '1,' depending on the function. While ReLU is often used for image 

de-noising, its performance drops when preserving negative input values is important. 

To solve this, a new activation function is introduced in this research by Equation 3.4, 

with its derivative in Equation 3.5. Figure 3.6 shows the proposed activation function 

and its derivative, which is used as the second activation function in the custom CNN. 

For performance comparison, six well-known activation functions—logistic, rectified 

linear, identity, tangent hyperbolic, derivative of tangent hyperbolic, and Gaussian—

were tested alongside the proposed ones. Figure 3.5 provides plots of these functions, 

and Tables 3.5 and 3.6 offer a quantitative and qualitative analysis of the de-noising 

performance, showing the improvements achieved by the proposed activation 

functions.  

 

      Table 3.1 Specifications of custom de-noising CNN 

 
SL. No. Name of the parameter 

1. Image Input Layer (number in use-1) 

2. Convolution Layer(3x3x1) (number in use-20) 

3. Activation Layer (Proposed Activation Functions)  

(number in use-19) 

4. Normalization Layer (number in use-18) 

(Batch Normalization) 

5. Output Layer (number in use-1) 

6. Learning Technique (Residual) 

7. Stride [1 1] 

8. No. of Epoch (number in use-5) 

9. Noise patches(number-50) 

10. Loss Function (MSE)  
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Algorithm used in De-noising CNN [121]: 

                  

 

Figure 3.5 Well known activation functions ((1) logistic function (2) rectified linear function (3) 

identity function (4) tangent hyperbolic function (5) derivative of tangent hyperbolic function (6) 

Gaussian function) 

 

 

Figure 3.6 Proposed activation functions 

 

y = 𝑒𝑥𝑝 ( 
(1−𝑡𝑒𝑚𝑝1)

(1+𝑡𝑒𝑚𝑝1)
 )                                                                                         (3.4) 

 

   

Were,  𝑡𝑒𝑚𝑝1 = 1 + 𝑐𝑜𝑠 (𝑥) 

 

The derivative of the proposed activation function-1(equation-1) is also calculated 

and is represented by equation 3.5. 

1. Considering the input image 𝐼(𝑖, 𝑗) 

2. Generation of noisy image  𝑌(𝑖, 𝑗) by adding 1% (AWGN) into 𝐼(𝑖, 𝑗). 

3. Prediction of Residual Image 𝐼′(𝑖, 𝑗), which is difference between  𝑌(𝑖, 𝑗) and  𝑉(𝑖, 𝑗) , 

Where   𝑉(𝑖, 𝑗) is cleaned image. 

4. Estimation of MSE (Mean Square Error) from the Residual Image 𝐼′(𝑖, 𝑗). 

5. Generation of De-noised Image by using MSE as Loss function. 
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𝑦1 = 𝑦 ×  
𝑠𝑖𝑛 (𝑥)

(2+𝑐𝑜𝑠(𝑥))
                                                                                          (3.5) 

 

3.4   Results and Discussion 

 The proposed denoising AMT-DWT method is compared with conventional image 

boosting techniques, including HE, AHE, and CLAHE. This comparison is performed 

using the Harvard Medical School Brain dataset, evaluating performance using metrics 

like PSNR, RMSE, and SSIM [111]. The results are shown in Table 3.2 (for image set 

1 to 8 for both MRI and CT) and Figure 3.7. 

 A higher SSIM value indicates better preservation of the image's structure, while a 

higher PSNR value and lower RMSE value show better noise reduction, leading to 

improved image quality. The assessment results highlight that the suggested denoising 

AMT-DWT method outperforms current techniques. 

 

 
Figure 3.7 Qualitative analysis of proposed AMT-DWT technique (with Harvard 

Medical School Brain dataset [78] with conventional image enhancement 

techniques (a) HE (b) AHE (c) CLAHE and (d) Proposed AMT-DWT) 
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Table 3.2 Quantitative result of the suggested AMT-DWT based enhancement technique on Harvard Medical School Brain dataset [78] 

 

Im
a

g
es

 

(I
-I

m
a

g
e 

se
t)

 PSNR value [112] RMSE value [112] SSIM value [112] 

AMT-

DWT 

method 

HE 

[113] 

AHE 

[114] 

CLAHE 

[115] 

AMT-DWT 

method 

HE 

[113] 

AHE 

[114] 

CLAHE 

[115] 

AMT-DWT 

method 

HE 

[113] 

AHE 

[114] 

CLAHE 

[115] 

I1 (MRI) 30.226 1.853 13.5988 20.49 7.856 206 65.725 24.084 0.976 0.765 0.876 0.904 

I1 (CT) 21.56 9.5778 13.5944 16.867 21.31 84.6548 65.595 36.574 0.987 0.745 0.843 0.912 

I2 (MRI) 26.27 7.4694 11.352 20.546 12.384 107.911 120.955 23.94 0.966 0.67 0.868 0.919 

I2 (CT) 20.25 8.306 11.318 18.463 24.78 98.00 120.9593 30.436 0.978 0.598 0.889 0.909 

I3 (MRI) 28.07 10.9387 12.91 21.966 10.066 72.377 91.523 20.3356 0.988 0.65 0.897 0.9156 

I3 (CT) 22.03 6.775 12.80 16.089 20.17 116.8939 91.200 40.003 0.995 0.76 0.945 0.9345 

I4 (MRI) 22.85 7.2027 9.744 20.84 18.36 111.277 84.31 23.13 0.979 0.745 0.879 0.9563 

I4 (CT) 21.59 6.0521 9.715 19.60 21.23 127.04 84.57 26.696 0.976 0.786 0.888 0.9236 

I5 (MRI) 20.93 12.45 9.778 18.109 22.90 60.7865 83.282 31.70 0.998 0.776 0.7999 0.9187 

I5 (CT) 17.21 9.388 9.7462 16.165 35.158 86.52 83.44 39.65 0.978 0.756 0.8998 0.976 

I6 (MRI) 16.36 5.5888 10.1633 15.73 38.67 133.998 65.149 41.678 0.969 0.769 0.8798 0.899 

I6 (CT) 19.65 8.99 10.1933 14.825 26.54 90.48 65.564 46.268 0.972 0.698 0.834 0.959 

I7 (MRI) 17.02 14.75 6.552 16.90 35.91 46.64 69.296 36.43 0.956 0.699 0.874 0.929 

I7(CT) 14.71 18.34 6.542 13.097 46.88 30.86 69.457 56.454 0.949 0.766 0.886 0.976 

I8 (MRI) 14.80 5.569 12.563 13.508 46.36 134.299 56.66 53.845 0.985 0.709 0.897 0.9129 

I8 (CT) 19.87 7.95 12.568 18.99 25.88 120.06 56.574 28.62 0.958 0.77 0.890 0.9185 

Average 

value 

20.83 8.825 10.8211 17.6366 23.706 101.74 79.64 43.99 0.9756 0.7288 0.877 0.9289 
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Figure 3.8 Fused images (PCA) [13] with the proposed AMT-DWT pre-

processing 

 
 

Table 3.3 Assessment of PCA [13] based image fusion with proposed pre-processing 

 

 

 

 

 

 

 

 

 

 

Images PSNR RMSE MI SD FMI FSIM SSIM Entropy 

Image set 1 16.655 37.454 1.0054 0.4563 0.7607 0.7327 0.7723 7.1746 

Image set 2 10.774 73.89 1.2 0.4862 0.834 0.7948 0.4149 6.1331 

Image set 3 8.5531 95.366 1.2181 0.4992 0.8060 0.4519 0.1748 7.0057 

Image set 4 9.184 88.676 1.1973 0.490 0.899 0.6282 0.4692 4.7045 

Image set 5 8.07 100.76 1.1337 0.4995 0.7456 0.3858 0.0344 6.4434 

Image set 6 14.995 45.358 1.216 0.4986 0.8310 0.5856 0.4539 3.3542 

Image set 7 7.6381 105.82 1.068 0.495 0.7012 0.3652 0.0574 6.4596 

Image set 8 16.35 38.89 1.095 0.4736 0.675 0.4586 0.4267 5.4694 
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Table 3.4 Assessment of[mean-max based image fusion [85], [116] with proposed pre-processing 

 

Images 
PSNR RMSE MI SD FMI FSIM SSIM Entropy 

Image set 1 13.6 5.662 1.057 0.282 0.8705 0.6553 0.4046 6.546 

Image set 2 11.35 6.9.376 1.186 0.487 0.8505 0.7095 0.4445 5.56 

Image set 3 12.874 6.356 1.135 0.4604 0.6915 0.4186 0.1667 6.7872 

Image set 4 9.743 8.336 1.187 0.4884 0.8744 0.6148 0.4817 4.7651 

Image set 5 9.781 8.444 1.1234 0.4925 0.7913 0.4556 0.0362 6.2463 

Image set 6 10.19 9.1361 1.2072 0.4964 0.869 0.6006 0.434 4.8468 

Image set 7 6.55 12.096 1.082 0.4969 0.706 0.3151 0.0362 6.3442 

Image set 8 12.58 6.566 1.084 0.415 0.4623 0.4046 0.4106 5.7093 

 

The fusion process is performed using both the conventional PCA [13] method and the 

mean-max [85] fusion rule. The results of these methods are shown in Figures 3.8 and 

3.9, with their corresponding performance metrics listed in Tables 3.3 and 3.4. It was 

found during experimentation that, when combined with the proposed pre-processing, 

PCA [13] produces better results than the mean-max fusion rule [85]-based fusions. 

 

 
 

Figure 3.9 Fused images of Mean Max fusion rule [85], [116] with the proposed AMT-DWT 

preprocessing 
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In the post-processing stage, a custom CNN is introduced for de-noising. The 

assessment of the suggested activation functions is done by comparing with existing 

ones. The improved results, both quantitative and qualitative, are shown in Tables 3.5 

and 3.6. The evaluation result confirms that the proposed framework improves the 

details of the fused image. 

 

The proposed model is compared with a recent CNN-based MMIF model, TDAN 

[128] as well as other existing image fusion models using CT-MRI images from the 

Harvard Medical School Brain dataset [78]. The comparative results are reported in 

Table 3.7, where the proposed model demonstrates higher SSIM and PSNR values. 

Additionally, Figure 3.10 presents a qualitative comparison of its image enhancement 

performance against various state-of-the-art methods. To assess the impact of 

denoising on SSIM at different noise levels, SSIM values were calculated at low (1% 

Gaussian noise), medium (10% Gaussian noise), and high (20% Gaussian noise) noise 

levels. Experimental results show that denoising significantly improved the SSIM of 

the fused image, particularly at the low noise level (from 0.915 to 0.975). There were 

also improvements at medium (from 0.85 to 0.90) and high (from 0.70 to 0.86) noise 

levels. This shows that as the noise level increases, the SSIM before denoising 

decreases, reflecting lower structural similarity. However, after denoising, SSIM 

values improve, demonstrating the effectiveness of the denoising process in restoring 

structural similarity. 
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Table 3.5 Evaluation of the proposed method in comparison with different activation functions 

 
Activation 

functions 

Proposed model with PCA [13] fusion method Proposed model with mean-max [85] fusion rule 

PSNR  RMSE MI SD FMI SSIM FSIM  Entropy PSNR RMSE MI SD FMI SSIM FSIM Entropy 

Logistic 50.5 0.285 1 0 0.814 0.933 0.87 5.278 49.22 0.355 1 0 0.77 0.905 0.912 4.407 

ReLu 50.52 0.806 1 0 0.822 0.932 0.86 4.21 49.32 1.057 1 0 0.77 0.91 0.943 3.21 

Identity 48.59 0.548 1.43 0.466 0.751 0.896 0.965 6.69 44.17 1.45 1.237 0.495 0.71 0.773 0.946 1.063 

Tangent 

Hyperbolic 

44.44 1.61 1.3834 1.57 0.806 0.868 0.961 6.95 54.67 0.295 1.223 0.497 0.704 0.976 0.938 6.044 

Derivative 

of Tangent 

Hyperbolic 

49.4 0.612 1.175 0.373 0.725 0.914 0.928 6.29 48.88 0.89 1.29 0.486 0.714 0.904 0.96 5.08 

Gaussian 50.52 0.608 1 0 0.822 0.932 0.91 4.64 49.22 0.76 1 0 0.77 0.91 0.95 3.611 

Proposed 

Activation 

function-1 

57.40 0.1704 1.39 0.459 0.742 0.9895 0.96 6.91 56.85 0.126 1.22 0.284 0.724 0.987 0.91 6.46 

Proposed 

Activation 

function-2 

56.22 0.2066 1.315 0.441 0.722 0.985 0.95 6.56 56.27 0.196 1.17 0.2535 0.7224 0.984 0.899 6.2 
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Table 3.6 De-noised output of the proposed model with different activation functions on Harvard Medical School Brain dataset [78] 

 

Images Fusion 

rule  

Fused 

image 

 

Logistic ReLu Identity Tangent 

Hyperbolic 

Derivative 

Tangent 

Hyperbolic 

Gaussian Proposed 

activation 

function1  

Proposed 

activation 

function2 

Image set 1 PCA  

         

Mean- 

Max   
    

 
  

Image set 2 PCA  

   
      

Mean- 

Max 
      

 
  

Image set 3 PCA  

     
    

Mean- 

Max 
         

Image set 4 PCA  
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Mean- 

Max 
    

     

Image set 5 PCA  

         

Mean- 

Max 
 

 
   

     

Image set 6 

 

PCA  

 
 

       

Mean- 

Max 
 

       
 

Image set 7 

 

PCA  

         

Mean- 

Max 
 

  
 

     

Image set 8 

 

PCA  

  
     

  

Mean- 

Max 
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Table 3.7 Performance evaluation of suggested fusion model with contemporary models 

 
Image fusion methods FMI SSIM PSNR (dB) 

GFF [116] 0.8664 0.6845 16.9681 

RPCNN [120] 0.8767 0.6375 16.0925 

LPCNN [107] 0.8771 0.6370 16.6865 

NSST+PAPCNN [121] 0.8734 0.6626 16.8626 

IFCNN [129] 0.8630 0.6856 17.0069 

PMGI [130] 0.8755 0.2060 11.6736 

U2fusion [131] 0.8577 0.4128 16.9593 

EWC [132] 0.8730 0.6868 17.6090 

Adapter [133] 0.8625 0.6619 17.3476 

EWC+ Adapter 0.8721 0.6827 17.7391 

OWM [134] 0.8773 0.6996 18.1964 

TDAN [128] 0.8797 0.7032 18.0048 

P
ro

p
o

se
d

 f
u

si
o

n
 m

o
d

el
s 

Proposed model (PCA [13]) with activation 

function-1 

0.742 0.9895 35.17 

Proposed model (PCA [13]) with activation 

function-2 

0.724 0.987 35.09 

Proposed model (mean-max [85]) with 

activation function-1 

0.722 0.985 34.99 

Proposed model (mean-max [85]) with 

activation function-2 

0.7224 0.984 35.00 

 

 

Figure 3.10 Output image of proposed image fusion model and existing models ((a) source 

image CT (b) source image MRI (c) GFF (d) RPCNN (e) LPCNN (f) NSST+PAPCNN (g) 

IFCNN (h) PMGI (i) U2 fusion (j) EWC (k) Adapter (l) EWC + Adapter (m) OWMI (n) TDAN 

(o) proposed model (PCA [13]) with activation function-1 (p) proposed model (PCA [13]) with  

activation function-2 (q) proposed model (mean-max [85]) with activation function-1 (r) 

proposed model (mean-max [8]) with activation function-2) 
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Based on MI, the suggested model is compared with the recently developed CNN-

based image fusion model CELM [19]. The results reflect that the suggested model 

defeats CELM and seven other image fusion models for MRI, CT images. As shown 

in Table 3.8, the proposed model achieves significantly higher MI values compared to 

CELM. The qualitative analysis of the fused images is reported in Figure 3.11. 

 

 
Table 3.8 Comparison of MI  

 
Fusion 

parameter 

 

CELM 

[19] 

Proposed model 

(PCA [13]) with 

activation 

function-1 

Proposed model 

(PCA [13]) with 

activation 

function-2 

Proposed 

model (mean-

max [85]) 

with 

activation 

function-1 

Proposed model 

[mean-max [85]) 

with activation 

function-2 

         MI 1.0553 1.39 1.315 1.22 1.17 

 

 

Figure 3.11 Output images of proposed model and CELM [19] ((a) CELM (b) proposed model 

(PCA [13]) with Ac func-1 (c) proposed model (PCA [13]) with Ac func-2 (d) proposed model 

(mean-max [85]) with Ac func-1 (e) proposed model ([mean-max [85]) with Ac func-2) 

 

The assessment of the suggested model is evaluated on comparison with the recently 

developed CNN-based image fusion model CSID [135] and several other existing 

CNN-based models. The assessment is based on fusion performance parameters, 

including entropy, FMI, and computational costs, using the Harvard Medical School 

Brain dataset of CT-MRI images [78]. The results are detailed in Table 3.9, while 

Figure 3.12 provides a qualitative representation of the output. As shown in Table 3.9, 

the suggested model attains a higher entropy value while maintaining a similar FMI 

compared to existing models, but with a significantly lower computational cost. 
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Table 3.9 Comparative evaluation of existing algorithms and suggested algorithm  

 

P
er

fo
rm

a
n

ce
 

P
a

ra
m

et
er

s 

N
S

S
T

-P
A

-P
C

N
N

 [
1

2
1

] 

C
S

R
 [

1
3

6
] 

C
S

M
C

A
 [

1
3

7
] 

C
N

N
 [

1
2

5
] 

C
S

ID
 [

1
3

5
] 

P
ro

p
o

se
d

 m
o

d
el

 (
P

C
A

 

[1
3

])
 w

it
h

  

a
ct

iv
a

ti
o

n
 f

u
n

ct
io

n
 -

1
 

 

P
ro

p
o

se
d

 m
o

d
el

 (
P

C
A

 

[1
3

])
 w

it
h

 a
ct

iv
a
ti

o
n

 

fu
n

ct
io

n
 -

2
 

 

P
ro

p
o

se
d

 m
o

d
el

 

 (
m

ea
n

-m
a

x
 [

8
5

])
 w

it
h

 

a
ct

iv
a

ti
o

n
 f

u
n

c
ti

o
n

-1
 

 

P
ro

p
o

se
d

 M
o

d
el

 

(m
ea

n
-m

a
x

 [
8

5
])

 w
it

h
 

a
ct

iv
a

ti
o

n
 f

u
n

c
-2

 

 

Image set 1 

  Entropy 6.95

51 

6.

48

71 

6.32

74 

6.75

41 

6.99

71 

7.0 6.96 6.846 6.89 

FMI 0.45

59 

0.

37

12 

0.47

51 

0.77

12 

0.97

81 

0.792 0.782 0.774 0.7724 

Time in sec 5.08

3 

24

.0

37 

76.7

00 

10.6

96 

4.06

5 

2.4 2.23 2.45 2.32 

Image set 2 

Entropy 7.72

78 

6.

08

67 

7.61

82 

7.84

21 

8.01

42 

6.78 6.54 7.23 7.22 

FMI 0.55

97 

0.

56

14 

0.57

28 

0.74

58 

0.88

50 

0.9465 0.7905 0.82 0.76 

Time in sec 5.14

4 

23

.4

41 

74.9

94 

10.4

47 

4.05

1 

2.50 2.56 2.36 2.45 

Image set 3 

Entropy 5.33

29 

5.

03

98 

5.00

64 

6.94

20 

7.59

70 

5.9531 6.267 6.5 6.2 

FMI 0.55

36 

0.

86

57 

0.46

79 

0.92

24 

0.97

44 

0.9105 0.7909 0.711 0.799 

Time in sec 5.09

0 

23

.3

39 

76.0

18 

9.58

1 

4.04

9 

2.33 2.45 2.98 3.1 



 

53 

 

Image set 4 

Entropy 5.05

98 

4.

76

95 

4.38

96 

5.17

48 

5.94

59 

7.2554 7.3041 5.99 5.676 

FMI 0.54

01 

0.

84

71 

0.49

39 

0.84

21 

0.98

14 

0.7899 0.6174 0.798 0.987 

Time in sec 5.23

2 

22

.9

98 

75.8

02 

10.1

13 

4.12

2 

2.47 2.49 2.78 2.98 

Image set 5 

Entropy 4.98

09 

5.

02

97 

5.93

3 

5.99

89 

6.28

74 

5.2513 6.4186 6.34 6.45 

FMI 0.73

60 

0.

69

97 

0.74

85 

0.86

97 

0.88

47 

0.7337 0.7979 0.767 0.799 

Time in sec 5.40

3 

23

.4

22 

76.1

12 

10.6

91 

4.04

1 

2.33 2.48 2.980 2.95 

Image set 6 

Entropy 4.90

38 

4.

45

97 

4.99

97 

5.27

79 

5.82

09 

6.8996 6.6778 7.2 6.21 

FMI 0.71

49 

0.

68

39 

0.80

97 

0.85

27 

0.88

17 

0.877 0.7027 0.743 0.766 

Time in sec 5.11

3 

23

.4

83 

76.7

72 

10.8

34 

4.04

7 

2.47 2.50 2.34 2.95 



 

54 

 

 

Figure 3.12 Output images of proposed model and existing image fusion models ((a) NSST-PA-

PCNN (b) SCR (c) CSMCA (d) CNN (e) CSID (f) proposed model (PCA [13]) with Ac func-1 

(g) proposed model (PCA [13]) with Ac func-2 (h) proposed model (mean-max [85]) with Ac 

func-1 (i) proposed model (mean-max [85]) with Ac func-2) 

The suggested method is also compared with recent CNN-based models [138], [139] 

using the performance metric mean value. The assessment results are depicted in Table 

3.10, and the corresponding images are depicted in Figure 3.13. 

 

 

 

Figure 3.13 Assessment of the suggested model with recent developed MMIF models [138], 

[139] (((a) (a’)) image fusion model [138] ((b) (b’)) image fusion model [139] ((c) (c’)) proposed 

model (PCA [13]) with Ac func-1 ((d) (d’)) proposed model (PCA [13]) with Ac func-2 ( (e) 

(e’)) proposed model(mean-max [85]) with Ac func-1 ((f) (f’)  proposed model (mean-max [85]) 

with Ac func-2) 

 

Table 3.10 Comparative analysis of MMIF model [138], [139] and the proposed model 

 
Image fusion model Mean value (M) 

Image set-1 Image set-2 

[138] 
      69.87    78.27 

[139] 
      103.3      72.066 

Proposed model (PCA [13]) with Activation function-1 
       99.57     95.29 

Proposed model (PCA [13]) with Activation function-2 
       98.65     93.76 
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Proposed model (mean-max [85]) with Activation 

function-1 
        99..47    94.2 

Proposed model (mean-max [85]) with Activation 

function-2 

97.6 92.4 

 

The performance of the suggested model is distinguished from the recently 

developed CNN-based MMIF model, ADAPTER [133], using the metric QAB/F. 

 

Table 3.11 Comparison of the suggested model based on QAB/F value with the model ADAPTER 

[133] 

 
 

Name of the image fusion model 

QAB/F value 

ADAPTER [133] O.678 ± 0.20 

Proposed model (PCA [13]) with Ac function-1 0.789 

Proposed model (PCA [13]) with Ac function-2 0.799 

Proposed model (mean-max [85]) with Ac function-1 0.765 

Proposed model (mean-max [85]) with Ac function-2 0.756 

 

Further the suggested method is distinguished from the MMIF model [140] based on 

the performance metric SSIM and QAB/F. The comparison values are reported in table 

3.12 whereas the images are illustrated in figure 3.14.  

 
Table 3.12 Comparison of proposed model with existing CNN based model [140] 

 

Name of the model SSIM value QAB/F value 

Image 

set-1 

Image 

set-2 

Image 

set-3 

Image 

set-1 

Image 

set-2 

Image 

set-3 

Fusion model [140] 0.499 0.6814 0.8423 0.3839 0.3575 0.3473 

Proposed model (PCA [13]) with 

Activation function-1 

0.9895 0.9899 0.998 0.789 0.76 0.78 

Proposed model (PCA [13]) with 

Activation function-2 

0.9896 0.98789 0.9976 0.799 0.768 0.786 

Proposed model (mean-max [85]) 

with Activation function-1 

0.985 0.9896 0.9961 0.765 0.765 0.791 

Proposed model (mean-max [85]) 

with Activation function-2 

0.984 0.9879 0.9957 0.756 0.759 0.784 
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Figure 3.14 Comparison of fused images of suggested model with recently developed MMIF 

model ((a) source image (CT) (b) source image (MRI) (c) output of fusion model [140] (d) 

proposed model (PCA [13]) with Ac func-1(e) proposed model (PCA [13]) with Ac func-2 (f) 

proposed model (mean-max [85]) with Ac func-1 (g) proposed model (mean-max [85]) with Ac 

func-2) 

 

 

 

 

Figure 3.15 Comparison of computational time required for proposed image fusion models and 

existing image fusion models ((1), (2), (3), (4), (5), (6), (7), (8), (9) are NSST-PAP-CNN, CSR, 

CSMCA, CNN, CSID, proposed model (PCA [13]) with Ac function-1, proposed model (PCA 

[13]) with Ac function-2, proposed model (mean-max [85]) with Ac function-1, proposed model 

(mean-max [85]) with Ac function-2 respectively). 
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Figure 3.16 Comparison of PSNR Value achieved from proposed image fusion models and 

existing image fusion models ((1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11), (12), (13), (14), (15), 

(16) are GFF,RPCNN,LPCNN,NSNT+PA-PCNN, IFCNN, PMGT, U2Fusion, EWC, Adapter, 

EWC + Adapter, OWM, TDAN, proposed model (PCA [13]) with Ac function-1, proposed 

model (PCA [13]) with Ac function-2, proposed model (mean-max [85]) with Ac function-1, 

proposed model (mean-max [85]) with Ac function-2 respectively) 

 

3.5 Conclusion 

  The proposed fusion model is systematically evaluated against several existing image 

fusion models using a range of performance metrics, including FMI, SSIM, PSNR, 

MI, entropy, mean value, and QAB/F. These metrics assess the fidelity of the de-noised 

images in comparison to their noisy counterparts, with particular focus on maintaining 

anatomical and physiological details essential for clinical accuracy. The results 

consistently show that the suggested model defeats existing methods across all these 

metrics.  This enhanced performance is attributed due to the combination of AMT-

DWT-based image enhancement and a custom CNN-based de-noising technique that 

incorporates a novel activation function. The AMT-DWT stage leverages multiple 

conventional image enhancement merits for the improvement the quality of source 

images. Although ReLU is commonly used for image de-noising, it may not be ideal 

in situations where preserving negative input information is important. To address this, 

a new activation function is introduced that produces highly de-noised images without 

increasing system complexity. The de-noised output effectively mitigates artefacts 

arising either from the imaging process or from image fusion, ensuring clearer, more 

accurate representations of the original images. 

    By using advanced techniques to analyze and learn complex patterns within medical 

images, the proposed model is able to generate more enhanced output compared to 

traditional methods, thereby improving both the clarity and clinical usefulness of 

medical image fusion. 
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CHAPTER 4 

 

EFFICIENT IMAGE FUSION 

 
 

 

4.1   Introduction 

 

In medical image processing, the demand for multimodal image fusion is increasing, 

as it provides valuable details for early diagnosis [17]. In literature, various fusion 

models are existing to enhance the hidden details present in images from different 

modalities. But these models often face challenges like incomplete information in the 

fused images, due to the presence of unwanted artefacts, and issues with texture 

distortion and gradient preservation, especially in affected regions. 

 

Currently, CNN-based MIF is used to rise the visual quality of images by automatically 

learning attributes from different sources [18]. Despite its advantages, this approach 

has some significant downsides, the above factors highlight the need for careful 

optimization of model parameters and training processes to balance performance and 

computational efficiency [18].  

 

To address these limitations, this research introduces a composite deep learning model 

called Dense-ResNet for MMIF. The Dense-ResNet model integrates the benefits of 

Dense-net and ResNET and performs better in the reduction of vanishing gradient 

problem with better feature extraction. Initially, images from three distinct modalities 

are collected and pre-processed individually using a median filter to reduce unwanted 

noise without losing edge information.  The pre-processed spatial domain images are 

then converted to the spectral domain through the DTCWT to make the system shift 

invariant. The transformed images are segmented using the Edge-Attention Guidance 

Network (ET-Net). Finally, the Dense-ResNet model is used to fuse the segmented 

images, achieving a superior multimodal fusion. The proposed model's performance is 

validated, showing that Dense-ResNet outperforms existing multimodal image fusion 

methods. It achieved a MSE of 0.402, RMSE of 0.634, PSNR of 47.136 dB. 

 

Building on our earlier work, we introduced a novel fusion model that integrates the 

Pelican Optimization Algorithm (POA) with Dense-ResNet to fuse multimodal 

medical images from the BraTs 2020 dataset. Inspired by the natural hunting behavior 

of pelicans, POA was deployed to optimize the training procedure of the Dense-

ResNet model. As in our earlier research, median filtering was applied for 

preprocessing, DTCWT was used for image decomposition, and ET-Net was 

employed for edge preservation. The evaluation results illustrate that the proposed 

model outperformed the previous one, achieving lower MSE and RMSE values along 

with a higher PSNR. 
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Several transformation techniques can decompose multimodal images. After special 

processing, the decomposed components are combined to achieve better information 

retention, reduced noise, and improved signal quality in the final image. In transform 

domain, achieving superior fusion results does not necessarily require a large dataset. 

Numerous fusion rules have been explored in the literature, with some, such as PCA 

[13] and mean-max [85], proving effective for fusing images from different modalities. 

However, these rules often suffer from spatial distortion, artifact introduction, and 

higher system complexity. 

 

To address these limitations, we suggested a new pair of fusion rules to merge the 

approximate and detail coefficients of multimodal medical images, resulting in higher 

fusion efficiency. This chapter discusses the methodology, work carried out, and the 

results obtained in developing an efficient image fusion model. In medical image 

processing, MMIF is in rising demand due to the availability of information for early 

diagnosis. In the recent past, different fusion approaches are used to intensify the 

hidden information present in different modality images. But insufficient information 

due to the existance of unwanted artefacts in the fused image remains a big challenge. 

The methodology, work-done, and results obtained in developing efficient image 

fusion model is discussed in details in this chapter. Hence for the efficient image 

fusion, we have developed the followings: 

 

  An efficient Dense-ResNet for multimodal image fusion using medical image 

 

  Multimodal fusion of different medical image modalities using optimized 

hybrid network 

     Proposed a pair of fusion rules which can denoise the fused image effectively. 

  

 

4.2  An efficient Dense-ResNet for multimodal image fusion using medical image 

 

The proposed (or suggested) approach presents a unique deep learning framework 

tailored for fusing medical images from multiple modalities. It begins by utilizing 

images from three different modalities, each subjected to distinct preprocessing 

techniques, including median filtering [15] to improve image quality. Subsequently, 

the preprocessed images are transformed into the spectral domain using DTCWT. 

These spectral domain images are then segmented through the Edge-Attention 

Guidance Network (ET-Net) [141]. The fusion is executed using a hybrid Dense-

ResNet model across three layers, effectively integrating all segmented images. For 

the assessment of the Dense-ResNet model, it is benchmarked against other 

multimodal image fusion methods. The evaluation demonstrates that the Dense-

ResNet model achieves a minimum MSE of 0.402, a RMSE of 0.634, and a maximum 

PSNR of 47.136 dB. 

 

 

 

 

https://link.springer.com/article/10.1007/s11042-024-18974-7
https://link.springer.com/article/10.1007/s11042-024-18974-7
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4.2.1 Methodology 

 

Development of the Dense-ResNet model for Multimodal Fusion: The proposed 

Dense-ResNet model facilitates the combination of medical images captured from 

three distinct modalities. Various medical images, such as 𝑇1, 𝑇1𝐺𝐷, and 𝑇2, are 

utilized for the fusion process. These images undergo separate preprocessing steps, 

including denoising via a median filter to mitigate inherent noise. The spatially filtered 

images are then transformed into the spectral domain using DTCWT [138] and 

segmented using ET-Net [141] for precise fusion evaluation. Subsequently, the 

resulting segmented images from the three modalities are fused using the designed 

Dense-ResNet model, which combines the architectures of Dense-net and Residual 

Net (Re sNet). 

 

 

Figure 4.1 A framework of designed Dense-ResNet for MMIF 

 

Image acquisition  

The images procured from three modalities in the database for MMIF are represented 

below: 

 ZA MMMMMM ,...,,...,, 321
                                    (4.1) 

where, the medical database taken for the MMIF is represented as M, the 
thA  Native 

(𝑇1) input image considered for the fusion process is signified as MA, and Z signifies 

the number of images available in the dataset as a whole. 
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Image pre-processing 

 

Image preprocessing is a vital step in the MMIF process, to enhance the quality of the 

images and make them appropriate for machine learning models [155], [156], [157]. 

The denoising of the selected 𝑇1 input image to remove naturally occurring noise 

occurs during the image pre-processing stage. In this phase, a median filter [158] is 

employed to preprocess the input image, utilizing statistical methods for effective 

noise removal. The median filter serves as a nonlinear technique that preserves crucial 

image information by transforming the original gray pixel values into median gray 

pixel values. This method effectively eliminates unwanted information (noise) with 

securing its edges. 

Median filtering [15] is utilized primarily for noise reduction. The expression for the 

median-filtered 𝑇1 input image is given as follows: 

 

 

𝑀𝑃 = 𝑀𝑒𝑑𝑖𝑎𝑛 ( 𝑀𝐴 )  𝑓𝑜𝑟  𝐴€ 𝑅𝑃                                                                     (4.2) 

                                                                                                       
 

 where the neighborhood sub-image is represented as PR  The selected 𝑇1 input image 

AM is pre-processed by utilizing a median filter to record the pre-processed output 

image 
pM . 

 
Image transformation 

The processed 𝑇1 input image is then exposed to image transformation to convert it 

into the spectral domain. In this step, the DTCWT [138] is applied to achieve a spectral 

domain representation. DTCWT is an advancement of the DWT that utilizes both low 

and high wavelet filters to derive wavelet coefficients with real and imaginary 

components. This transformation involves selective and directional shifting of the 

image across multiple dimensions, rendering the process invariant. 

The expressions for the DTCWT transformation are given as follows: 

 

     ljll ba                                             (4.3) 

     ljll ba                                          (4.4) 

In these equations, 𝑗 represents the imaginary term,   l denotes the complex wavelet, 

and  l  signifies the complex scaling function. Thus, the pre-processed 𝑇1 input 

image 𝑀𝑃  is transformed using DTCWT into a spectral domain 𝑇1 image MT, 

enabling the subsequent image segmentation process. 

 

Segmentation of medical image 

During the image segmentation phase, extracting the target area from the transformed 

𝑇1 image is crucial for achieving accurate and precise multimodal medical image 
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fusion. In this phase, the Edge-Attention Guidance Network (ET-Net) [141] is 

employed to extract the target area from the transformed images. ET-Net utilizes a 

specialized approach to extract primary regions while disregarding edge information 

to ensure accurate results. It leverages the representation of edge attention in encoding 

layers and transfers this information to multi-scale decoding layers for effective 

segmentation. 

 

Structure of ET-Net 

 

ET-Net works as an encoder-decoder network comprising an Edge Guidance Module 

(EGM) and a Weighted Aggregation Module (WAM). Its main role is to embed edge-

attention representation for image segmentation. Within ET-Net, the EGM preserves 

the characteristics of local edges at the encoding layer, while the WAM aggregates 

multi-scale side outputs. Specifically, ET-Net uses ResNet-50 network for the purpose 

of encoding, consisting of four encoding blocks. The input undergoes feature 

extraction through a stream of convolutional layers, culminating in the final output. 

ET-Net generates high-level features via residual connections. The decoder part 

consists of three decoding blocks for enhancing representation capability and 

managing high-level feature characteristic. The decoding blocks employ convolution 

based on the depth function to augment the representation of high and low features, 

followed by convolution to unite the total number of channels. Figure 4.2 illustrates 

the structure of ET-Net, where the transformed 𝑇1image undergoes segmentation via 

ET-Net to produce the segmented image output. 

 

 

Let  𝑀𝑆(1) denotes the segmented image output obtained when the transformed 

𝑇1 image 𝑀𝑇   is segmented using ET-Net. Similarly, the image pre-processing, image 

transformation, and segmentation using ET-Net are performed for the other two 

medical images, such as 𝑇1𝐺𝐷, and 𝑇2. Here, the segmented image output 𝑀𝑆(2)) is 

recorded for input 𝑇1GD medical image and 𝑀𝑆(3) input 𝑇2  medical image, during 

segmentation through ET-Net. The segmented image output obtained from input 

𝑇1 image, 𝑇1𝐺𝐷  image, and 𝑇2  image is allowed for multimodal image fusion using 

the designed Dense-ResNet model. 
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Figure. 4.2 Architecture of ET-Net 

 

 

Image fusion using Dense-ResNet model 

Image fusion in medical imaging is a critical technique aimed at integrating essential 

details from multiple modalities to give a clearer, more informative output. This 

process enhances diagnostic accuracy by blending images from different modalities, 

such as 𝑇1𝐺𝐷, 𝑇1, and 𝑇2, which each provide unique details about the underlying 

anatomy or pathology. The purpose is to synthesize this information into a single 

image that retains or enhances the details and clarity of the original images. 

In the suggested methodology, the segmented outputs from the input images 𝑀𝑆(1) 

(𝑇1), 𝑀𝑆(2) (𝑇1𝐺𝐷), and 𝑀𝑆(3) (𝑇2) are fused using a hybrid Dense-ResNet model. 

This hybrid model integrates the strengths of two powerful neural network 

architectures: Dense-net [73] and ResNet [41]. 

Dense-net provides efficient parameter utilization by ensuring that once features are 

learned, they are not redundantly relearned. This characteristic makes Dense-net 

highly efficient, requiring fewer parameters to process input data while preserving 

significant amounts of image information—an advantage particularly relevant to 

medical images where fine details must be preserved for accurate interpretation. 

ResNet, in contrast, excels at reducing error rates by allowing deep networks to learn 

efficiently through the application of residual connections. These connections help 
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reduce issues like vanishing gradients, resolve it possible to train deeper networks 

without a loss in performance. This contributes to better feature extraction and 

ultimately more accurate fusion of multimodal images. 

By combining these architectures, the hybrid Dense-ResNet model achieves an ideal 

alignment between performance and computational complexity, providing a robust and 

viable remedy for medical image fusion. Dense-net’s ability to preserve features 

complements ResNet’s capacity for deep learning, enabling the model to generate a 

more precise and enhanced fused image. This fusion process is crucial in medical 

imaging, as the resulting image integrates complementary information from different 

modalities, leading to improved visualization of anatomical structures or pathological 

regions. This, in turn, supports more accurate diagnosis and treatment planning. 

 

The hybrid Dense-ResNet model is formulated by employing regression modeling 

using Fractional Calculus (FC) [33]. It comprises three key modules: the Residual 

model, Dense-ResNet layer, and Dense-net model. The input medical images 

   3,2,1; kM kA
of dimension   qp  are allowed inside the residual model, which 

comprises ResNet. The dimensionality of the input image can be represented as

  kqp  , here k is the total input images. The resultant output achieved from the 

residual model and the segmented image output    3,2,1; kM kS  
are fed into the 

Dense-ResNet layer for fusion and regression. Here, fusion is carried out between the 

ResNet and Dense-net models to combine the images, and the relationship between 

the inputs is determined using regression modeling. Subsequently, the output of the 

Dense-ResNet model is fed into the Dense-net model for fusion. Figure 4.3 depicts the 

block diagram of the designed hybrid Dense-ResNet model. 

 

 

 

Figure 4.3 Block diagram of the designed hybrid Dense-ResNet model 
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Residual model 

The ResNet (Residual Network) architecture is highly regarded in deep learning, 

especially for image processing, due to its innovative approach to training very deep 

neural networks. It effectively addresses challenges such as vanishing gradients, which 

can occur in traditional deep networks. Here's an overall description the key 

components and features of the ResNet architecture: 

 

Convolutional layer 

This layer is utilized to minimize the number of parameters needed for training while 

improving performance through weight sharing and local receptive fields. It comprises 

kernels or filters arranged in sequence within a localized area to process the input data. 

Each filter moves across the input matrix, calculating dot products at each position 

concerning the kernel. The computational process in the convolutional layer can be 

reported as follows: 

 

 
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Here, the input image is indicated as, 𝑀𝐴(𝑘);𝑘=1,2,3the coordinates are represented as g 

and h, the kernel matrix of size w× 𝑤 is denoted as N. The index position of the kernel 

matrix is signified as r and s also, the operator used for cross-correlation without zero 

padding is given by . 

 

Average pooling layer 

This layer is essential for substantially decreasing the dimensions of the feature map 

when applied sequentially after the convolutional layers. Furthermore, it helps to 

alleviate overfitting concerns. The average pooling layer functions independently on 

each feature map by evaluating the average of the values within the receptive field. 

The pooling operation carried out in the average pooling layer can be expressed as 

follows: 

1



d

tB
B rin

out
                                                         (4.6) 

1



d

tH
H sin

out
                                        (4.7) 

Here, inH and inB  represents the height and width of a two-dimensional input matrix, 

where the corresponding output is given as outB  and outH  The term rt indicates kernel 

width and st denotes kernel height. 
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Activation function 

This component is crucial for capturing nonlinear features present in the database and 

determining the nonlinearity of the extracted attributes using a nonlinear activation 

function. Let 
)(kAM  represent the input feature. Typically, the ReLU is the widely 

utilized activation function, defined as follows: 

 

   

   
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M
LU                                                          (4.8) 

Batch normalization 

In the batch normalization phase, the training set is partitioned into mini-batches to 

make a balance between computational complexity and convergence. Batch 

normalization is then applied to normalize the input layers, reducing the shifting of 

internal covariates. This process adjusts the activation by improving reliability and 

training speed. 

 

Residual blocks 

Within residual blocks, a shortcut connection is established between inputs and 

outputs. In certain scenarios where both the dimensions of output and input are alike, 

the input is directly connected to the output. This connection is expressed as: 

 

  AA MMFX                                          (4.9) 

 

Here, when the dimensions are different, a matching dimension factor is typically 

devised to ensure alignment between the input and output dimensions. This matching 

dimension factor is expressed as: 

 

  AA MMFX                                                   (4.10) 

 

From the expression, input and output obtained from the residual block is represented 

as MA and X. Also, the mapping alliance of input and output is represented by the 

function F, and the matching factor is indicated as Ψ. 

Linear classifier: The classification results are determined with the help of the soft-

max function and fully interconnected layers in the linear classifier. Each neuron is 

interconnected from one to another using the principles of a multi-layer perceptron in 

the fully connected layer. The fully connected layer utilizes dot products, which is 

expressed as:   

 

  vuqpAvu yMX                                       (4.11) 

 

Here, the weight of the matrix with dimension vu is represented as vu , the input 

image with qp dimension is signified as  qpAM 
, also the bias is denoted by y , The 
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final output is determined by the fully interconnected layer and cannot obtain 

classification results directly. The soft-max function is utilized to normalize the input 

vector of the probability belonging to each class. The utilization of the soft-max 

function is given by the expression as follows, 

 


 





1

1

t

te

e
                                             (4.12) 

 

One of the output layer elements is indicated as l  and the output dimension is given 

as  . 

Regression layer: In regression tasks, the loss is obtained using the half-mean-squared 

error within the regression layer. This layer helps normalize the responses, which 

accelerates and stabilizes the training process in neural networks. Figure 4.4 

demonstrate the architecture of the ResNet layer, and the fused image produced from 

the convolutional layer is then employed in the fusion process. 

 

 

Figure 4.4 Architecture of Residual model 

 

Dense-ResNet layer 

Once the output is generated using the Residual model, it is input into the Dense-

ResNet model, along with the segmented image outputs, to analyze the relationships 

between the inputs. Regression modeling is integrated into the system, and regression 

is performed using Fractional Calculus (FC), [33]. FC is utilized to solve various 

integral and differential equations using the Laplace transform. The output from the 

Dense-ResNet layer is obtained by aggregating weighted features over different time 

intervals. The outputs from the Dense-ResNet layer can be demonstrated as follows: 
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The output of the Dense-ResNet layer at interval t is expressed as: 
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Here, the weight coefficient is denoted asW , and the segmented image input is 

represented as  kSM
 
,the total rows and columns indicated as x and y . Moreover, 

Dense-ResNet layer output obtained at  thk 1 interval is given by,
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here, 2h  represents the resultant output. At  thk 2 intervals, the Dense-ResNet layer 

output is given by, 
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Considering the concept of FC [33] for regression modeling, the expression is given 

by, 

              321
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Hence, applying the outputs obtained by the Dense-ResNet layer at various time 

intervals,  
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By substituting the value of 1z , 2z , and 3z , thus the equation becomes, 
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            (4.18) 

Here, the order of the derivative is represented by the term  , and the output obtained 

by the fusion of the Dense-ResNet layer is given as 2 . 

 

Dense-Net model  

Dense-net is prevalently used in deep learning classification tasks because it helps 

solve the problem of vanishing gradients. It creates direct links between each layer and 

all previous layers, which improves the flow of features and promotes feature reuse. 
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This approach reduces the overall number of parameters that need to be trained. The 

architecture of Dense-net consists of several key components:  

a. Convolutional Layers: These layers apply filters to the input data to extract 

relevant features. 

b. Dense-net Blocks: Within these blocks, each layer gets inputs from all former 

layers, advancing feature reuse and mitigating the vanishing gradient problem. 

c. Transition Layers: Positioned intermediate of dense-net blocks, these layers 

perform down-sampling operations, such as pooling, to reduce the extent of 

feature maps and manage the model's complexity.  
 

Throughout the architecture, ReLU activation functions are used to establish non-

linearity, while a Soft-Max function is introduced in the final layer to produce 

probability distributions for classification tasks. In reference to MMIF, the output from 

a Dense-ResNet layer can be fed into the Dense-net model to achieve comprehensive 

integration of details from various imaging modalities. 

 

Convolutional layer: In this layer, activation occurs through the application of filters 

to the input. The intensity of features at different positions within the input is 

represented by a feature map. To create these feature maps, multiple filters are 

employed, which are subsequently processed through an activation function. 

Typically, the filter size in the convolutional layer is smaller than that of the input data, 

and a dot product operation is performed to process the two components. The 

evaluation of the non-linear input can be expressed as: 
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where, 
j

UV
E indicates the non-linear input, the coordinates are signified asU and V , 

the kernel matrix of size ff  is indicated as  . The term C and D  are the index 

position of the kernel matrix,  is the operator used for cross-correlation without zero 

padding. The non-linearity assessed by the convolutional layer is given by the 

expression, 

 

 jj

UVUV
EF                                                  (4.20) 

Here,  is the parameter of the previous layer. 

Max pooling layer: The max pooling layer in CNN significantly lessen the 

dimensionality of the feature map. This layer runs a filter over the feature map, and 

the pooling filter is used to summarize the features within the region. Let us consider 

a feature map with dimension RQP  , which indicates the feature map height, width, 

and channels. The dimension of the feature map, once the max pooling is applied is 

expressed by, 
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here, ‘ ’ represents the filter size and ‘ ’ denotes stride. 

 

Dense-net layer: In the dense-net layer, neurons are dense-netly interconnected with 

neurons from the preceding layer. Inputs are received by the neurons of the dense-net 

layer and undergo matrix manipulation. This process is expressed as: 
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The variable M represents a matrix with dimension zw ,  is a matrix with a 

dimension w1 , and  is the parameter of the prior layer, which is modified using 

back propagation while training. The associated weights are given by the expression, 

 

jxjxjx T                                                                                 (4.23) 

jxjxjx T                                                                             (4.24) 

Where the associated weights of jx layer are represented as 
jx and the associated bias 

is signified as
jx , the rate of learning is indicated as  . The loss function partial 

derivatives are denoted as T and T , which is computed by using the chain rule 

given by, 
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 jxjxjx LcTITL ,                                                 (4.28) 

Here, the linear activation at jx layer is given by 
jxL , the non-linear function based 

on
jxL is represented as  jxLc ,

, and the non-linear activation function is indicated as 

jxI  
Transition layer: The transition layer in CNN is involved to effectively lessen the 

complexity of the model. It diminishes the sum of channels in the convolutional layer, 

thereby reducing the input height and width by half using stride 2 filters. The resultant 

fused multimodal image output obtained by the Dense-ResNet model is represented as 
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FM  , and the structure of the Dense-net model used for MMIF is portrayed in figure 

4.5.  

 

 

 

Figure 4.5 Structure of Dense-net 

 

4.2.2 Results and Discussion 

The outcomes obtained through the utilization of the Dense-ResNet model for fusing 

multimodal medical images are represented in this section. Additionally, this section 

delves into the discussion conducted to ascertain the superiority of the Dense-ResNet 

model in image fusion for medical applications. The various evaluation metrics, 

including MSE, PSNR, and RMSE, employed to assess the effectiveness of Dense-

ResNet in MMIF. Figure 4.6 showcases the experimental outcomes derived from the 

application of the Dense-ResNet model for MMIF. In figure 4.6 (a), the input 𝑇1, 

𝑇1𝐺𝐷, and 𝑇2 images utilized for MMIF are presented. The resultant images obtained 

during the filtration and segmentation process are illustrated in figure 4.6 (b) and 4.6 

(c), respectively. Finally, figure 4.6 (d) displays the resulting fused multimodal 

medical image. 

 

  
 

Figure.4.6 Experimental image results of Dense-ResNet model with 𝑇1, 𝑇1𝐺𝐷, and 𝑇2 images ((a) 

Input 𝑇1, 𝑇1𝐺𝐷, and 𝑇2 image, (b) Filtered 𝑇1, 𝑇1𝐺𝐷, and 𝑇2 image, (c) Segmented 𝑇1, 𝑇1𝐺𝐷, and 

𝑇2 image, (d) Fused multimodal image) 



 

72 

 

 

Figure.4.7 Experimental image results of Dense-ResNet model using 𝐹𝑙𝑎𝑖𝑟, 𝑇1, and 𝑇1𝐶 images ((a) 

Input 𝐹𝑙𝑎𝑖𝑟, 𝑇1, and 𝑇1𝐶 image, (b) Filtered 𝐹𝑙𝑎𝑖𝑟, 𝑇1, and 𝑇1𝐶 image, (c) Segmented 𝐹𝑙𝑎𝑖𝑟 , 𝑇1, 

and 𝑇1𝐶 image, (d) Fused multimodal image) 

 

The performance of the Dense-ResNet model designed for MMIF is analyzed by 

means of K-value and training data. 

 

By altering K-value 

 

Table 4.1 elucidates the analysis of the performance of Dense-ResNet using K-value 

for various evaluation indicators. In table 4.1(a), the analysis of MSE measured by 

Dense-ResNet for the epochs 20, 40, 60, 80, and 100 epochs are 0.885, 0.863, 0.574, 

0.147, and 0.058 for the K-value of 8. The evaluation of PSNR is shown in table 4.1(b). 

The Dense-ResNet obtained PSNR values of 37.105dB, 39.685dB, 43.885dB, 

45.897dB, and 47.872dB for 20, 40, 60, 80, and 100 epochs for the 8 K-value. table 

4.1(c) shows, the RMSE measured by the Dense-ResNet approach. For K-Value 8, the 

RMSE achieved by the Dense-ResNet is 0.940 for 20, 0.929 for 40, 0.757 for 60, 0.383 

for 80 and 0.240 for 100 epochs. 

 
Table 4.1 Performance evaluation of Dense-ResNet model using K-value (a) MSE, (b) PSNR, and (c) 

RMSE 

 

Metrics 

 

K-

Value 

Dense-net 

ResNet with 

Epoch20 

Dense-net 

ResNet with 

Epoch60 

Dense-net 

ResNet with 

Epoch80 

Dense-net 

ResNet With 

Epoch100 

 

(a) 

MSE 

5 0.865 0.572 0.145 0.056 

6 0.870 0.574 0.146 0.057 

7 0.881 0.574 0.147 0.058 

8 0.885 0.574 0.147 0.058 
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The performance of the Dense-ResNet technique by altering training data is displayed 

in table 4.2. Table 4.2(a) shows the evaluation of the Dense-ResNet technique using 

MSE, for 80% of training data, the MSE measured by the Dense-ResNet for epochs 

20, 40, 60, 80, and 100 is 0.815, 0.756, 0.671, 0.597, and 0.473. The PSNR measured 

by Dense-ResNet is given in table 4.2(b). For 80% training, the Dense-ResNet 

measured PSNR of 38.251dB for 20 epochs, 39.722dB for 40 epochs, 42.897dB for 

60 epochs, 43.001dB for 80 epochs, and 47.242dB for 100 epochs. The RMSE value 

of the Dense-ResNet is given in table 4.2(c), for 80% of training data, the RMSE value 

obtained by the Dense-ResNet are 0.903, 0.869, 0.819, 0.772, and 0.688 for here for 

epochs of 20, 40, 60, 80, and 100, respectively. 

 
Table 4.2 Performance analysis of Dense-ResNet model utilizing training data (a) MSE, (b) PSNR, and 

(c) RMSE 

 

9 0.887 0.574 0.147 0.058 

 

(b) 

PSNR 

(dB) 

5 30.481 35.553 39.558 41.502 

6 31.225 38.113 42.113 43.407 

7 32.762 41.567 43.571 45.211 

8 37.105 43.885 45.897 47.872 

9 41.199 45.085 47.099 50.395 

 

(c) 

RMSE 

5 0.930 0.757 0.381 0.238 

6 0.933 0.757 0.383 0.240 

7 0.938 0.757 0.383 0.240 

8 0.941 0.758 0.383 0.240 

9 0.942 0.758 0.384 0.240 

 

 

Metrics 

 

Learning 

Rate 

Dense-

ResNet 

With 

Epoch20 

Dense- 

ResNet 

With 

Epoch40 

Dense- 

ResNet 

With 

Epoch60 

Dense- 

ResNet 

With 

Epoch80 

Dense-ResNet 

With Epoch 

100 

 

(a) 

MSE 

0.50 0.756 0.736 0.623 0.563 0.472 

0.60 0.763 0.741 0.659 0.568 0.473 

0.70 0.766 0.746 0.664 0.581 0.473 

0.80 0.815 0.756 0.671 0.597 0.473 

0.90 0.822 0.767 0.682 0.622 0.492 

 

(b) 

PSNR 

(dB) 

0.50 30.858 32.825 35.202 36.254 39.309 

0.60 31.353 33.943 37.832 39.840 42.294 

0.70 34.233 35.058 39.422 41.422 45.288 

0.80 38.251 39.722 42.897 43.001 47.242 

0.90 42.118 45.956 47.439 49.571 51.176 

 

(c) 

RMSE 

0.50 0.869 0.858 0.789 0.750 0.687 

0.60 0.874 0.861 0.812 0.753 0.688 

0.70 0.875 0.864 0.815 0.762 0.688 

0.80 0.903 0.869 0.819 0.772 0.688 

0.90 0.906 0.876 0.826 0.789 0.701 
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Comparative discussion 

The results obtained from the experiment to analyze the efficiency of the designed 

Dense-ResNet for MMIF by comparing with prevailing fusion techniques are 

displayed in table 4.3. The MMIF using the Dense-ResNet approach achieved superior 

results than prevailing approaches. The results revealed that the designed Dense-

ResNet model achieved a minimum of 0.403 MSE, 0.635 RMSE, and a maximum of 

47.137dB PSNR than other techniques.  
 

Table 4.3 Comparative discussion  

E
v

a
lu

a
ti

o
n

 

p
a

ra
m

et
er

s 

Techniques 

D
ee

p
 T

L
 

m
o

d
el

 

G
A

N
 

C
N

N
-

H
O

D
 

G
-C

N
N

 

a
n

d
 f

u
zz

y
 

n
eu

ra
l 

n
et

 

w
o

rk
s 

M
A

R
T

 

C
E

L
M

 

D
en

se
-n

et
 

R
es

N
et

 

D
es

ig
n

ed
 

D
en

se
-

R
es

N
et

 

For K-value 

MSE 
1.221 1.086 0.894 0.724 0.680 0.651 0.639 0.612 0.443 

PSNR 

(dB) 37.421 39.534 44.145 44.153 40.988 39.568 43.654 44.259 46.155 

RMSE 1.105 1.042 0.945 0.851 0.825 0.807 0.800 0.782 0.665 

For training data 

MSE 1.110 0.987 0.812 0.658 0.618 0.592 0.581 0.556 0.403 

PSNR 

(dB) 38.217 38.332 45.085 45.092 40.185 41.026 41.259 44.098 47.137 

RMSE 1.053 0.994 0.901 0.811 0.786 0.769 0.762 0.746 0.635 

 

4.3 Multimodal fusion of different medical image modalities using optimized 

hybrid network 

This approach introduces a unique deep learning framework designed for fusing 

medical images from different modalities. This research work is the extension of our 

previous research work with the application of an optimization process at the training 

stage of the hybrid network. It starts with images from three modalities 𝑇1, 𝑇1𝐺𝐷 and 

𝑇2, each undergoing specific preprocessing steps like median filtering [15] to enhance 

quality. After preprocessing, the images are recasted into the frequency domain using 

the Dual-Tree Complex Wavelet Transform (DTCWT). Next, the spectral domain 

images are segmented using the Edge-Attention Guidance Network (ET-Net). The 

fusion process is carried out through a hybrid Dense-ResNet model.  

 

4.3.1 Methodology 

In this research, POA+Dense-ResNet is developed for multimodal image fusion. Here, 

the combination of ResidualNet and Dense-net, called Dense-ResNet, which is trained 

using the POA (Trojovský and Dehghani, 2022). The DTCWT is used to perform the 
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spatial domain to spectral domain transformation after the input images from various 

modalities have undergone pre-processing. The ET-Net segments these transformed 

images. The POA+Dense-ResNet achieve the fusion in the last stage. Figure 1 shows 

the block diagram of the POA+Dense-ResNet. The block diagram of the suggested 

model is depicted in figure.4.8. 

 

 

 

Figure. 4.8 Block diagram of the suggested model 

  

The Dense-ResNet is trained by the POA (Trojovský and Dehghani [20]) to improve 

the efficiency of Dense-ResNet. The POA is the natural hunting strategy of pelicans 

to perform optimization in a population-based framework. It uses mechanisms inspired 

by pelican behaviors for both local and global search, ensuring a balance between 

exploration and exploitation. POA has potential applications in a wide range of 

engineering fields, offering a novel and efficient approach to solving complex 

optimization problems. Pelicans exhibit unique hunting behaviors, such as cooperative 

hunting and diving to catch fish. The suggested algorithm models these behaviors to 

effectively explore and make use of the search space. The steps of POA are explained 

below: 

a. Initialization: The POA is a population-based optimization algorithm where the 

pelicans represent candidate solutions to the optimization problem. The 

position of each pelican in the search space corresponds to a set of values for 

the optimization problem’s variables. The initial positions of the pelicans are 

randomly generated within the specified bottom and top bounds of the 

problem’s variables. This ensures that the initial candidate solutions cover a 

broad area of the search space. The standard formula for initializing positions 

is given below: 

 

              𝑦𝑗,𝑘  =  𝑚𝑘  +  𝑟. (𝑢𝑝𝑘 – 𝑙𝑜𝑤𝑘), 𝑗 =  1, 2, 3, … … … . . 𝑛.                            4.29 

 

where the jth candidate solution in kth variable value is given as yj,k Here, ‘P’ is 

the entire population, n is the entire problem variables, random variable is 

denoted as r in [0, 1] interval, kth upper bound is denoted as upk, and kth lower 

bound is indicated as lowk. The population matrix is given below: 
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Here, row denotes the candidate solution and columns represent the problem 

variables proposed values. The population matrix is indicated as z and jth 

pelican is denoted as zj.  

           The objective function, is given as: 
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                                                                                 4.31 

where, O is objective function vector, and the jth candidate solution objective 

function value is given as Oj. The hunting process is done in the exploration 

and exploitation phases. 

b.  Exploration phase: in the exploration phase of the POA, pelicans move towards 

randomly generated prey locations within the search space. This phase is 

crucial for enhancing the exploration capabilities of the algorithm, ensuring a 

comprehensive search of the problem-solving space. The movement towards 

prey, combined with random perturbations, allows the pelicans to scan 

different areas effectively, avoiding local optima and increasing the likelihood 

of finding the global optimum. The formula is given as: 

             𝑍𝑗,𝑘
𝑄1 =   {

      𝑍𝑗,𝑘 + 𝑟. (𝑞𝑘 − 𝐽. 𝑍𝑗,𝑘), 𝑂𝑞 <  𝑄𝑗  

𝑍𝑗,𝑘 + 𝑟. (𝑍𝑗,𝑘 − 𝑞𝑘),       𝑒𝑙𝑠𝑒
                                           4.32 

where j indicates the random number, kth dimension prey is denoted as qk, and 

the updated status of kth dimension jth pelican is given as 𝑍𝑗,𝑘
𝑄1.  

A new position for a pelican is accepted if it results in a better objective 

function value compared to its current position. This ensures that each update 

leads to an improvement or maintains the current best solution. It is given as: 

𝑍𝑗 =   {
 𝑍𝑗

𝑄1 ,  𝑂𝑗
𝑄1 <    𝑂𝑗 ;

    𝑍𝑗 ,                     𝑒𝑙𝑠𝑒
                                                                    4.33 

where jth pelican updated status is denoted as ZQ1 and the exploration phase 

value of the objective function is given as OQ1. 
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c. Exploitation phase: in the local exploitation phase of the POA, pelicans 

refine their positions by conducting a local search around promising areas 

identified in the exploration phase. This phase mimics the behavior of 

pelicans spreading their wings to move fish upwards and collecting them, 

representing a focused search for good solutions to improve them further. By 

evaluating the objective function at neighboring points and accepting 

improvements, the algorithm enhances its exploitation ability, converging to 

better solutions within the search space. This two-phase approach of 

exploration followed by exploitation ensures a balance between global 

search and local refinement, leading to effective optimization and the 

formula for the same is: 

                                                                                

 𝑍𝑗,𝑘
𝑄2 =   𝑍𝑗,𝑘 + 𝐸 (1 − 

𝑖𝑡𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) . (𝑍𝑟 − 1). 𝑍𝑗,𝑘                                  4.34 

Where 𝑍𝑗,𝑘
𝑄2  denotes the exploitation phase kth dimension jth pelican’s 

updated status, the constant is given as E and the value for this is 0.2, iter 

counter exhibits the iteration counter and iter max is the maximum 

iteration. The effective updating is based on the rejection and acceptance 

of the new position of the pelican, which is given in the below equation, 

 

𝑍𝑗 =   {
 𝑍𝑗

𝑄2  ,  𝑂𝑗
𝑄2 <    𝑂𝑗 ;

    𝑍𝑗 ,                     𝑒𝑙𝑠𝑒
                                                                4.35                             

 

where the exploitation phase value of the objective function is given 

as: 𝑂𝑗
𝑄2. 

  The POA iteratively updates candidate solutions through exploration and 

exploitation phases, evaluates their objective function values, and tracks 

the best solution found so far. This process continues until the stopping 

conditions are satisfied. The algorithm for the POA is given below. 

 

 

Algorithm 4.1:  

Input of the problem 

Evaluation of maximum iterations itermax and population P 

Evaluation of objective function 

    For itercounter = 1: itermax 

      Random generation of prey 

       For J = 1: P 

           Phase 1: Exploration 

             For k = 1: n 

               Determination of updated status using equation (4.32) 

            End 

               Update population member by equation (4.33) 
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              Phase 2: Exploitation 

              For k = 1: n 

              Determination of updated status using equation (4.34) 

             End 

            Update population member by equation (4.35) 

         Update optimal candidate result 

End 

End 

 

4.3.2   Results and Discussion 

Our proposed hybrid model in section 4.2.1 defeats several existing image fusion 

models. Building on this, we introduced optimized hybrid model by incorporating the 

Pelican Optimization Algorithm (POA). By applying this optimization during training, 

the model's efficiency improved considerably, resulting in higher PSNR and lower 

MSE and RMSE values compared to the hybrid model presented in section 4.2. Table 

4.4 presents a comparison between hybrid model-1 (Dense-ResNet) and hybrid model-

2 (Dense-ResNet+ POA). While hybrid model-2 consistently outperformed hybrid 

model-1 across all K-values, Table 4.4 highlights the results for K-value 9 across 

different epochs. Hybrid model-2 outperformed hybrid model-1, which itself 

surpassed several state-of-the-art image fusion models. This demonstrates the leading 

performance of hybrid model-2. 

 

Table 4.4 Comparison of hybrid model-1 and hybrid model-2 for the K-value 9 

  

Model Epoch 

value-20 

Epoch 

value-40 

Epoch 

value-60 

Epoch 

value-80 

Epoch 

value-100 

MSE Value 

Hybrid model-1 0.887 0.865 0.574 0.147 0.058 

Hybrid model-2 0.851 0.830 0.855 0.141 0.056 

PSNR Value 

Hybrid model-1 41.199 43.058 45.085 47.099 50.395 

Hybrid model-2 43.809 43.852 45.634 48.294 51.547 

RMSE Value 

Hybrid model-1 0.942 0,930 0.758 0.384 0.240 

Hybrid model-2 0.923 0.911 0.743 0.376 0.236 
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4.4   A pair of image fusion rule that can denoise the fused image effectively 

In this research, we suggested two sets of image fusion rules. The first fusion rule is 

designed for fusing the Approximate coefficients. The second fusion Rule is designed 

for fusing the detail coefficients obtained from the DWT of two multimodal brain MRI 

images sourced from the BraTs-2015 [76], BraTs-2018 [77], and Harvard Medical 

School Brain Datasets [78]. The flow layout illustrating the suggested method is 

presented in Figure 4.9. 

 

Figure.4.9 Flow layout of Proposed image fusion model 

 

 

4.4.1   Methodology 

The steps utilized in the suggested model are represented here. 

 

Step 1: Two multimodal medical images from different datasets are first decomposed 

into approximate coefficients and detail coefficients using the DWT. DWT is selected 

for its effectiveness in enhancing image sparsity by minimizing noise [39]. For two 

input images, 𝐼1 and 𝐼2, the DWT decomposition results in four image components for 

each image: [𝑎1, 𝑏1, 𝑐1, 𝑑1] and [𝑎2, 𝑏2, 𝑐2, 𝑑2] where 𝑎1 and 𝑎2 represent the 

approximate coefficients, while the others are the detail coefficients. 
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Step 2: Two distinct sets of fusion rules are proposed and applied. The fusion of the 

approximate coefficients is governed by equation 4.29, while the fusion of the detail 

coefficients is determined by equations 4.30, 4.31, and 4.32, respectively. 

 

Step 3: After fusing the two images, the IDWT is applied for the recovery of the fused 

image. 

 

 

𝑎3(𝑝, 𝑞) = 𝑙𝑛 (𝑐𝑜𝑠ℎ(𝑎1(𝑝, 𝑞))  + 𝑐𝑜𝑠ℎ(𝑎2(𝑝, 𝑞)))                                                 (4.29) 

𝑏3(𝑝, 𝑞) = 𝑚𝑎𝑥 (𝑡𝑎𝑛ℎ(𝑏1(𝑝, 𝑞)) , 𝑡𝑎𝑛ℎ(𝑏2(𝑝, 𝑞)))                                                (4.30) 

𝑐3(𝑝, 𝑞) = 𝑚𝑎𝑥 (𝑡𝑎𝑛ℎ(𝑐1(𝑝, 𝑞)) , 𝑡𝑎𝑛ℎ(𝑐2(𝑝, 𝑞)))                                                (4.31) 

𝑑3(𝑝, 𝑞) = 𝑚𝑎𝑥 (𝑡𝑎𝑛ℎ(𝑑1(𝑝, 𝑞)) , 𝑡𝑎𝑛ℎ(𝑑2(𝑝, 𝑞)))                                              (4.32) 

 

Where,  𝑐𝑜𝑠ℎ(𝐼(𝑝, 𝑞)) =
eI+e−I

2
  and  𝑡𝑎𝑛ℎ(𝐼(𝑝, 𝑞)) =

eI−e−I

eI+e−I    for the image I. 

 

 

4.4.2   Results and Discussion 

 

In the literature, the commonly utilized image fusion rules in the frequency domain 

include Mean (Average), Max, and Min [85]. However, the Mean scheme often leads 

to contrast reduction, while the Max rule exhibits high sensitivity to noise [85]. 

Conversely, the Min rule tends to yield poor noise reduction. In our study focusing on 

denoising the fused image, we specifically compared the Mean and Max rules. Table 

4.4 shows the performance parameters derived from applying the Proposed 

Approximate Fusion rule for fusing approximate coefficients, alongside the 

conventional Max rule for fusing Detail coefficients. The details in table 4.5 exhibits 

that the suggested approximate fusion rule produces better denoising outcomes. 

Figures 4.10, 4.11 and 4.12 illustrate the fused images generated from the BraTs-1 

5[76], BraTs-18 [77], and Harvard Medical School Brain datasets [78], respectively.  
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 Figure. 4.10 Fused images of BraTs-2015 data set by proposed Approximate fusion rule and 

conventional max fusion rule. (a= 𝐹𝑙𝑎𝑖𝑟, b= 𝑇1, c=fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇1, d= 𝐹𝑙𝑎𝑖𝑟 r, 

e= 𝑇1𝐶, f= fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇1𝐶, g= 𝐹𝑙𝑎𝑖𝑟, h= 𝑇2, I=fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇2, 

j= 𝑇1, k= 𝑇1𝐶, l=fused image of 𝑇1 and 𝑇1𝐶, m= 𝑇1, n= 𝑇2, o=fused image of 𝑇1 and 𝑇2, 

p= 𝑇1𝐶, q= 𝑇2, r=fused image of 𝑇1𝐶 and 𝑇1) 

 

 

Additionally, we applied the proposed approximate fusion rule and detail fusion rule 

to fuse two multimodal images, comparing these results with the fusion obtained using 

the conventional Mean rule and proposed detail fusion rule, as presented in table 4.6. 

The resulting fused image exhibits higher PSNR coupled with lower RMSE values. 

The data presented in table 4.5 and table 4.6 demonstrate that the suggested 

approximate and detail fusion rules yield better results compared to the conventional 

fusion rules. 

 

 
 

 Figure 4.11 Fused images of BraTs-2018 data set by proposed Approximate fusion rule and 

conventional max fusion rule. (a= 𝐹𝑙𝑎𝑖𝑟, b= 𝑇1, c=fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇1, d= 𝐹𝑙𝑎𝑖𝑟 r, 

e= 𝑇1𝐶, f= fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇1𝐶, g= 𝐹𝑙𝑎𝑖𝑟, h= 𝑇2, I=fused image of 𝐹𝑙𝑎𝑖𝑟 and 𝑇2, 

j= 𝑇1, k= 𝑇1𝐶, l=fused image of 𝑇1 and 𝑇1𝐶, m= 𝑇1, n= 𝑇2, o=fused image of 𝑇1 and 𝑇2, 

p= 𝑇1𝐶, q= 𝑇2, r=fused image of 𝑇1𝐶 and 𝑇1) 
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Table 4.5 Comparison of Proposed Approx.- Conv. Mean and Conv. mean-max Fusion Rule [85] 

 

 

 

 

 

 

 

 

BraTs-2015 Dataset [76] 

 P Proposed Approximation and    Proposed Detail 

Fusion rule 

Conventional Mean and Proposed Detail 

fusion rule 

Name 

of 

source 

image 

Performance Parameters Performance Parameters 

PSNR RMSE MI FMI 

 

Entropy PSNR RMSE MI FMI Entropy 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1 

19.149 28.3 1.312 0.902 1.19 27.51 10.75 1.258 0.904 1.07 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1𝐶 

19.409 27.3 1.279 0.878 1.187 27.44 10.83 1.254 0.882 1.069 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇2 

18.93 28.84 1.306 0.877 1.185 24.61 15.0 1.2799 0.876 1.067 

𝑇1, 𝑇1𝐶 18.77 29.51 1.321 0.904 1.195 30.2 7.91 1.2897 0.899 1.072 

𝑇1, 𝑇2 18.91 28.96 1.282 0.89 1.186 23.7 16.66 1.2356 0.909 1.07 

𝑇1𝐶, 𝑇2 19.112 28.25 1.27 0.876 1.184 23.48 17.08 1.229 0.876 1.073 

Average 

Value 

19.046 28.526 1.295 0.888 1.187 26.156 13.04 1.259 0.891 1.047 

BraTs-2018 Dataset [77] 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1 

20.575 24.06 1.383 0.93 1.148 28.90 9.168 1.323 0.93 0.985 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1𝐶 

20.8 23.26 1.353 0.913 1.15 28.66 9.42 1.312 0.915 0.984 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇2 

20.6 23.78 1.367 0.912 1.154 27.47 10.79 1.336 0.908 0.985 

𝑇1, 𝑇1𝐶 20.13 25.26 1.387 0.927 1.146 32.21 6.27 1.344 0.923 0.983 

𝑇1, 𝑇2 20.42 24.42 1.356 0.921 1.142 25.63 13.33 1.293 0.927 0.982 

𝑇1𝐶, 𝑇2 20.58 23.85 1.34 0.908 1.15 25.17 14.05 1.285 0.91 0.982 

Average 

value 

20.517 23.96 1.364 0.918 1.153 28.00 10.5 1.315 0.919 0.983 

Images from Harvard Medical School Brain dataset [78] 

Image-1 16.197 39.51 1.24 0.8728 0.0023 16.425 38.48 1.2257 0.8738 0.001 

Image-2 17.35 34.61 1.262 0.855. 1.5196 22.41 19.33 1.25 0.8507 3.861 

Image-3 18.135 34.58 1.253 0.879 1.5698 17.66 33.37 1.225 0.8755 1.238 

Image-4 15.94 40.73 1.27 0.874 1.62 18.99 28.64 1.2415 0.876 1.2415 

Image-5 16.08 41.36 1.23 0.817 0.0493 17.76 32.97 1.196 0.8249 0.025 

Image-6 13.89 53.89 1.307 0.88 1.7017 13.98 50.97 1.233 0.88 1.257 

Image-7 13.178 57.13 1.148 0.819 0.332 16.32 38.97 1.1324 0.8199 0.1947 

Image-8 16.57 38.71 1.228 0.825 2.67 16.99 36.05 1.20 0.8239 1.9126 

Average 

Value 

15.92 42.56 1.656 0.837 0.862 17.567 34.84 1.212 0.857 1.217 
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Table 4.6 Comparison of proposed Approx.-Proposed Detail and conv. mean-max [85] Fusion Rule 

 

 BraTs-2015 Dataset [76] 

         Proposed Approximation and Detail Fusion 

rule 

Conventional mean-max Fusion 

rule [85] 

Name 

of 

source 

image 

Performance Parameters Performance Parameters 

PSNR RMSE MI FMI 

 

Entropy PSNR RMSE MI FMI Entropy 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1 

25.91 13.25 1.32 0.928 1.249 18.55 30.192 1.282 0.925 1.092 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1𝐶 

25.324 13.838 1.293 0.901 1.253 18.488 30.381 1.273 0.899 1.0918 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇2 

23.412 18.668 1.315 0.898 1.234 18.046 32.049 2.292 0.891 1.082 

𝑇1, 𝑇1𝐶 29.416 8.885 1.314 0.924 1.258 17.862 32.798 1.3025 0.925 1.099 

𝑇1, 𝑇2 21.13 22.408 1.285 0.915 1.232 17.192 35.674 1.214 0.9122 1.083 

𝑇1𝐶, 𝑇2 21.037 22.877 1.278 0.893 1.238 17.665 33.542 1.231 0.889 1.087 

Average 

Value 

24.37 16.66 1.32 0.91 1.244 17.95 32.39 1.432 0.906 1.082 

BraTs-2018 Dataset [77] 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1 

27.18 11.741 1.379 0.948 1.131 19.99 25.849 1.337 0.946 0.993 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇1𝐶 

26.075 12.684 1.355 0.932 1.1384 19.841 26.063 1.328 0.931 0.9934 

𝐹𝑙𝑎𝑖𝑟 

, 𝑇2 

25.778 13.961 1.369 0.924 1.134 19.927 26.588 1.347 0.921 0.998 

𝑇1, 𝑇1𝐶 30.79 7.688 1.375 0.944 1.153 19.085 28.54 1.352 0.942 0.999 

𝑇1, 𝑇2 22.923 18.314 1.354 0.935 1.133 18.55 30.61 1.289 0.939 0.0068 

𝑇1𝐶, 𝑇2 22.51 19.279 1.341 0.9199 1.141 19.067 28.631 1.298 0.922 0.0016 

Average 

Value 

25.876 13.54 1.352 0.931 1.141 19.134 27.52 1.28 0.932 0.665 

Images from Harvard Medical School Brain dataset [78] 

Image-1 15.523 48.68 1.252 0.887 0.0013 16.422 38.497 1.214 0.893 0.001 

Image-2 21.08 24.55 1.258 0.8734 3.7844 22.39 19.364 1.246 0.862 3.693 

Image-3 19.85 37.63 1.245 0.8992 1.1896 17.688 33.277 1.221 0.897 1.256 

Image-4 16.4 39.18 1.284 0.8895 1.569 19.012 28.575 1.241 0.887 1.2168 

Image-5 15.56 44.27 1.243 0.8405 0.028 17.75 33.03 1.1956 0.841 0.017 

Image-6 22.08 52.64 1.310 0.8955 1.652 13.988 50.95 1.23 0.8897 1.295 

Image-7 13.79 53.09 1.159 0.8378 0.2433 16.306 39.015 1.131 0.83 0.314 

Image-8 17.47 43.03 1.237 0.8441 2.553 16.98 36.074 1.198 0.834 1.802 

Average 

Value 

19.21 42.88 1.242 0.863 1.32 17.462 

 

 

24.36 1.203 0.87 1.198 
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     Figure 4.12 Fused  Images obtained from Harvard Medical School Brain data set [78] ({a, b 

source images and c is fused image of a and b}, {d, e source images and f is fused image of d and 

e}, {g, h source images and i is fused image of g and h}, {j, k source images and l is fused image 

of j and k}, {m, m source images and o is fused image of m and n}, {p, q source images and r is 

fused image of p and q},{s,t source images and u is fused image of s and t},{v,w source images 

and x is fused image of v and w}) 

 

 

4.5   Conclusion 

 

We have developed a hybrid Dense-ResNet model (hybrid model-1) to efficiently fuse 

medical images from three different modalities (𝑇1, 𝑇1GD and 𝑇2) of MRI images. 

In the preprocessing stage, we apply median filtering [15] for noise reduction and 

utilize ET-Net to preserve edge information. Our model evaluated against several 

contemporary image fusion models and exhibited superior performance due to its 

enhanced feature extraction capabilities. With the extension of this research work, we 

developed the optimized hybrid model. The POA based hybrid model outperformed 

the hybrid model -1 which itself out performed several contemporary image fusion 

models. This claims the better performance of the optimized hybrid model at the cost 

of computational efficiency. 

 

Additionally, we introduced different fusion rules for integrating the approximate and 

detail coefficients of medical images from two modalities. Performance comparisons 

with conventional fusion rules reveal that both proposed rules outperform the 

traditional methods, achieving higher PSNR and lower RMSE values, underscoring 

the effectiveness of our approach. 
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CHAPTER 5 

 

DEVELOPMENT OF EFFICIENT IMAGE CLASSIFIER 

 

 

5.1  Introduction 

Image classifiers utilize various algorithms and methodologies, with convolution 

neural networks (CNNs) being particularly effective in detecting patterns within 

images. During the image classification process, the model learns to recognize 

principal attributes of the images, like edges, colors, shapes, textures etc. which assist 

to distinguish one category from another.  

 

Training an image classifier usually involves providing it with a sufficient number of 

datasets of labeled images to optimize the hyper parameters. Constructively classifying 

the medical images is an essential function in support of clinical care and treatment. 

Deep learning algorithms often need huge amounts of labelled or inferred feedback 

data. On the other hand, deep learning models provide accurate and consistent results 

in comparison with the traditional methods. But there are challenges which includes 

manual annotation of medical images which is very time-consuming process and also 

there is a chance of oversight. Investigators are also exploring contrastive learning and 

transfer models for identifying diseases.  In medical image classification, Fine-tuning 

of the pre-trained models is important in achieving better performance. Studies shows 

that Data augmentation also benefitted in reduction of over fitting. 

Detecting, extracting and classifying several types of tumors (or several types of 

cancer) from MRI images is much needed in the field of medical exploration. Even 

though many classifiers are existing in the literature with promising results, many of 

them are suffering from computational complexity. To address this problem, this study 

dealt with how to improve the performance of the classifier with smaller datasets and 

with less computational load.  

 

 An efficient method for brain tumor detection and classification by Extended 

anisotropic diffusion filtering. 

 An efficient classifier for breast cancer classification by WMRESNET. 
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5.2   An efficient method for brain tumor detection and classification by 

Extended anisotropic diffusion filtering 

 

This research is based on the locating and classification of different types of brain 

tumors from the MRI images. Image categorization is an important area of research 

that is receiving increasing attention from the medical imaging community.  Even 

though many classifiers are existing in the literature with promising results, many of 

them are suffering from the computational complexity.  To overcome the   problem of 

computational complexity and the requirement of large number of datasets, a simple 

three-step process that consists of pre-processing, detection and classification is 

proposed. The suggested pre-processing stage includes Dark Channel Prior (Haze 

removal) Extended Anisotropic Diffusion Filtering (EADF) [87] followed by principal 

image generation, and Edge Enhancement. The accurate area of the tumor can be 

detected by the suggested auto threshold-based detection technique. By the utilization 

of preprocessing and all the stages up to the auto thresholding, the proposed model is 

successful to detect the tumor but it can’t classify different types of tumors. So, for the 

classification purpose, Resnet-50 [91] has been utilized. Thorough investigations are 

conducted on (BD35H, BMI-1, BTI, BTS, BD_BT dataset) [106] and BraTs-2018 

dataset [107]. With very less computational complexity as well as computational cost, 

the suggested model exhibits satisfactory performance in detection and classification. 

The flow layout of the proposed model is shown in figure 5.1. 

 

 

5.2.1 Methodology 

 

Different stages of the proposed methodology are described below: 

 

Stage 1: Pre-processing  

 

Biomedical instruments cannot always give satisfactory images. Often these images 

are vague and blurry. Researchers and medical practitioners face a lot of problems due 

to these artefacts. To rectify the quality of the image, different enhancement stages are 

used and are explained below. 
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Figure 5.1 Flow layout of Proposed Model 

 

a: Haze Removal 

According to [171], any haze image  𝐼 (𝑖, 𝑗)could be represented as 

 

 𝐼 (𝑖, 𝑗) = 𝐼"(𝑖, 𝑗) +  𝜒(𝑖, 𝑗) + µ(1 − 𝜒(𝑖, 𝑗))
 
                                                            (5.1) 

 

Where, 𝐼"(𝑖, 𝑗) is the haze-free image. 𝜒(𝑖, 𝑗) represents the transmission map, µ 

represents atmospheric light and (p, q) is the pixel position. Restoration of  𝐼"(𝑖, 𝑗)  is 

the main objective of haze removal technique. In this paper, the Dark Channel Prior 

(DCP) is used to remove the haze present in the input image. 
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𝐼𝑑 (𝑖, 𝑗) = 𝑚𝑖𝑛(𝑖,𝑗)∊∅(𝑖,𝑗)(𝑚𝑖𝑛𝑐∊∅(𝑅,𝐺,𝐵)(𝐼𝑐(𝑖, 𝑗)))                                                               (5.2) 

 

Where, Id represents the DCP of hazy image I and Ic is a color channel of I.  ∅(𝑖, 𝑗) 

Represents a local patch which is centered at (p, q). The DCP method encompasses 

two variations: Simple DCP and Approximate DCP. In the Simple DCP approach, haze 

estimation is performed on per-pixel basis, while quad tree decomposition is employed 

to determine the ambient light. In contrast, the Approximate DCP utilizes both per-

pixel and spatial blocks for haze estimation but forgoes quad tree decomposition. In 

this method, the dark channel at coordinates (p, q) is approximated to zero, hence the 

name. Table 5.11 presents the variation in detection efficiency, PSNR, and RMSE 

values across different haze removal techniques. The haze removal process enriches 

the intensity and contrast levels of the input image. Table 5.1 represents the detection 

efficiency with and without using haze removal technique. Table 5.12 represents the 

variation of detection efficiency according to the variation of haze removal percentage 

in different datasets. 
 

Table 5.1 Performance of EADF with and without haze removal technique 

 

Input Image EADF stage with only Haze removal stage EADF stage without 

Haze removal stage 

 
Approximate DCP 

With accuracy 80% 

Simple DCP 

With accuracy 76% 

PSNR 

(DB) 

RMSE PSNR 

(DB) 

RMSE PSNR 

(DB) 

RMSE 

Sample 

Image-1 

25.44 1.2 24.63 1.3 Can’t detect tumor 

Sample 

Image-2 

26.54 1.1 25.78 1.26 Can’t detect tumor 

Sample 

Image-3 

24.62 1.3 23.62 1.5 12.72 3.64 

Sample 

Image-4 

23.69 1.4 22.98 1.6 14.01 3.12 

Image-5 24.78 1.1 23.84 1.56 14.759 3.11 

Average 

Value 

25.014 1.25 24.17 1.28 14.07 3.33 

 
Table 5.2 Required % of Haze removal for detection accuracy 

 

Name of the Dataset 

 BR35H 

[106] 

BMI-I 

[106] 

BTI 

[106] 

BTS 

[106] 

BD_BT 

[106] 

BraTs 

2018 

[107] 

% Haze  

removal 

40% 30% 30% 50% 40% 1% 

Achieved 

Accuracy 

93% 93% 96% 90% 100% 97% 
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b: Extended Anisotropic Diffusion Filtering (EADF) 

Perona and Malik are the introducer of ADF [86]. ADF process is applied to minimize 

noise in the image. This filtering requires no prior information about regions or 

boundaries; instead, diffusion occurs selectively based on the conduction term 

generated from local computations [86]. Anisotropic diffusion computes the diffusion 

in every spatial location and then adds all to get the group diffusion. The mathematical 

representation of this filtering is described below: We all know that; diffusion is a 

physical process that brings the equilibrium of concentration difference without 

disturbing the mass. Fick’s law represents the mathematical formula of diffusion as: 

 

𝐽 = −𝐷. 𝛻𝑈                                                                                                             (5.3) 

 

The above equation describes that the concentration gradient ∇U generates a flux ‘J’ 

to reimburse this gradient. Here ‘D’ represents the diffusion function which defines 

the relation between J and ∇U. The function D is (+ve) where J and ∇U are parallel 

and is called Isotropic diffusion. D is (-ve) when J and ∇U are not parallel and is called 

Anisotropic diffusion [96]. The continuity equation tells that the diffusion can only 

transport mass but cannot destroy or create any mass, and is represented by equation 

5.4 as: 

 
𝜕

𝜕𝑡
𝑈 =  −𝛻𝐽                                                                                                             (5.4) 

 

Where, t signifies the time. Anisotropic diffusion is achieved by merging the continuity 

equation with Fick’s law and can be written as: 

 
𝜕

𝜕𝑡
𝑈 =  −𝛻(−𝐷. 𝛻𝑈)                                                                                              (5.5) 

 

After applying the Anisotropic diffusion in an image, equation 5.5 becomes equation 

5.6. 

 
𝜕

 𝜕𝑡
𝐼(𝑥, 𝑡) =  𝛻. (𝐷(𝑥, 𝑡). 𝛻. 𝐼(𝑥, 𝑡))                                                                         (5.6) 

 

Where I(x,0) is the initial unprocessed image, x is the image coordinate and iteration 

step is t in second. D (x, t) represents the diffusion function for image ‘I’ at time ‘t’. 

For the localization of edge, the gradient of the image is first calculated by (equation 

5.7). 

 

𝐸(𝑥, 𝑡) = 𝛻(𝐼(𝑥, 𝑡))                                                                                                                            (5.7) 

 

The gradient magnitude represents the conduction coefficient of diffusion and is given 

in (equation 5.8). 

 

𝐷(𝑥, 𝑡) = 𝑓(||𝛻(𝑥, 𝑡)||)                                                                                          (5.8) 

 

The edge preservation and sharpness depend on the selection of function f. As ‘D’ 
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monotonically decreases, according to Perona and Malik (founder of Anisotropic 

diffusion filtering) the diffusion function can be represented by equations 5.9 and 5.10. 

 

𝐷(𝑥, 𝑡) = 𝑒𝑥𝑝 (−(
||𝛻(𝑥,𝑡)||

𝑁
)2)                                                                                                            (5.9) 

 

𝐷(𝑥, 𝑡) =
1

1+(
||𝛻(𝑥,𝑡)||

𝑁
)2 

                                                                                                                          (5.10) 

 

Equation 5.9 enhances high-contrast edges but equation 5.10 enhances wide regions 

over small regions. N denotes the diffusion constant, and it is kept as 45 in our model. 

The differential relation after discretization can be represented as: 

 

𝐼𝑖,𝑗
𝑡+1 = 𝐼𝑖,𝑗

𝑡 + 𝛼(𝑁𝑐. 𝛻𝑁 𝐼 +  𝑆𝑐 . 𝛻𝑆𝐼 + 𝑊𝑐 . 𝛻𝑤𝐼 + 𝐸𝑐 . 𝛻𝐸𝐼)                                    (5.11) 

 

𝐼𝑖,𝑗
𝑡+1 = 𝐼𝑖,𝑗

𝑡 + 𝛼(𝑁𝑐 . 𝛻𝑁 𝐼 + 𝑆𝑐 . 𝛻𝑆𝐼 + 𝑊𝑐 . 𝛻𝑤 +   𝐸𝑐 . 𝛻𝐸 + 𝑁𝐸𝑐 . 𝛻𝑁𝐸 𝐼 + 𝑁𝑊𝑐 . 𝛻𝑁𝑊 𝐼 +

𝑆𝐸𝑐 . 𝛻𝑆𝐸𝐼 +   𝑆𝑊𝑐 . 𝛻𝑆𝑊𝐼)                                                                                                              (5.12) 
 

Equation 5.11 is for the Conventional Anisotropic diffusion filtering where 
conduction of diffusion is done in four directions Nc, Sc, Wc, Ec, and represents 
north, south, west and east directions respectively. The equation 5.12 represents 
EADF [87] with eight directions, where Nc, Sc, Wc, Ec, NEc, SEc, NWc and SWc 

are the directions of conduction of diffusion and represents north, south, west, east, 

north-east, south-east, north-west and south-west directions respectively and α 

represents the step size and is equal to 0.125s to take care of eight direction diffusion.  

The performance parameters of Conventional ADF and EADF on multiple datasets is 

reported in Table 5.3. 

 

           Table 5.3 Results after preprocessing with conventional ADF and EADF 

 

Datasets 

[116] 

Conventional 

ADF 

Accuracy 91% 

EADF 

Accuracy 93% 

PSNR 

(DB) 

RMSE PSNR(D

B) 

RMSE 

BR35H 29.97 0.892 32.69 0.812 

BMI-I 26.05 0.965 32.2 0.823 

BTI 26.052 0.970 26.81 0.915 

BTS 30.34 0.801 34.73 0.684 

BD_BT 19.144 1.0002 27.85 0.953 

BraTs 2018[107] 33.4 0.753 38.59 0.456 
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c: Detailed Image Generation 

After EADF, the preprocessed image is decomposed using DWT into detail and approximate 

coefficients. For subsequent processing, the detail coefficients are selected due to their lower 

noise content.  

 

d: Principal Image Generation 

The detailed image is processed through proposed Entropy based intensity 

enhancement stage and the principal image I′ (p, q) is produced by the equation 5.13. 

The further enhancement of the image detail to differentiate the target region from the 

detailed image is done efficiently in this stage. 

 

𝐼′(𝑖, 𝑗) =
𝐼(𝑖,𝑗)

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐼(𝑖,𝑗))
                                                                                                                                         (5.13) 

 

Suggested Entropy-based image enhancement has several advantages that make it a 

powerful technique for improving image quality. It corrects image contrast by 

modifying the values of the pixels. This makes the features in the image more 

distinguishable, particularly for images with poor lighting or low contrast. This method 

can enhance fine details without introducing significant artefacts. 
 

e: Edge Enhancement 

The stages of anisotropic filtering, detailed image generation, and principal image 

generation primarily serve the purpose of denoising. However, the denoising process 

tends to smooth image boundaries and reduce image contrast. To solve this issue, an 

edge enhancement of the principal becomes necessary. Here, an omnidirectional 

Kernel 𝑘, represented in equation 5.14 is convoluted with the principal image to 

preserve edge information in all directions. 

 

 

𝐾 = 𝐶 ∗  [
−1 −1 −1
−1 −1 −1
−1 −1 −1

]                                                                                                               (5.14) 

 

 (where c is a constant that is set to be 0.025 during experimentation) 

 

Stage 2:  Detection and classification Stage 

This stage consists of: 

 (1) Auto thresholding, morphological operation and bounding box representation to 

identify the location of the tumor. The auto thresholding can detect the tumor 

successfully but can’t classify the tumor. 

(2) ResNet-50 [102] is used to classify the detected tumor. 
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a: Proposed Intelligent Thresholding and bounding box generations 

Threshold based segmentation is one of the fastest methods among other existing 

segmentation techniques and it is widely used. Perhaps, selection of appropriate 

threshold value is the main challenge in the process of segmentation. To overcome the 

process of choosing the appropriate threshold value manually, auto thresholding 

method is proposed and is given in equation 5.15. The value of threshold is adaptive 

in nature as it is varying in accordance with the variance of the image along with 

minimum and maximum intensity of the target image. 

 

𝑡ℎ = 20 ∗ 𝑙𝑛(𝜎) +
𝑚𝑎𝑥(𝐼′(𝑖,𝑗))+𝑚𝑖𝑛(𝐼′(𝑖,𝑗))

2
                                                                                       (5.15) 

Here, σ is representing the standard deviation and has a very good impact on overall 

detection efficiency. Table 5.4 presents the identified threshold value for different data 

set by the proposed auto thresholding method with different σ values. As the color 

contrast is high in pseudo colour images, the threshold value is considered as twice the 

standard deviation. It has been seen that the detection of tumor from pseudo color 

images is more difficult than the normal color images. But the proposed model can 

detect tumor even from pseudo colour images in the BD_BT [106] dataset. 

Bounding box and morphological operation are utilized to highlight the absolute 

accurate location of tumor. Image erosion together with solidity function is utilized to 

map the tumor cell based on the estimation of area and density function. The 

subtraction of the eroded image from the principal image produced the bounding box 

around the tumor.  
 

b: ResNet-50 for Tumor Classification: 

Pre-trained ResNet-50 [41] classifier is used to classify the tumor category belongs to 

Glioma, Meningioma or Pituitary tumor. For the assessment, six different data sets 

namely (BR35H, BMI-1, BTI, BTS, BD_BT) [106] and BraTs-2018 [107] are used. 

Detail description of these data sets are given in the ‘Data Description’ section. 

 

5.2.2   Results and discussion 

In this study, we examined various MRI datasets to identify tumor regions within the 

images. We began by evaluating our model using the BR35H dataset. The initial phase 

of our suggested model includes a critical preprocessing step, particularly focusing on 

haze removal techniques This pre-processing stage has a very important role in this 

framework. The variations of different performance parameter values, without haze 

removal and with haze removal followed by EADF are given in table 5.12 to highlight 

the importance of haze removal in the pre-processing stage. In the process of haze 

removal, we have also done experimentation on both Approx. DCP and Simple DCP. 

The Haze removal has a very good impact on the detection result. We varied the 
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amount of the percentage haze removal to achieve a betterment in the results which is 

reported in table 5.2.  Even though higher PSNR was obtained after applying Approx. 

DCP, exact segmentation of tumor region was achieved by Simple DCP method and 

is highlighted in table 5.7. The output of proposed detection model with the absence 

of tumor is exhibited in figure 5.2. The suggested model is successful in detecting very 

small tumor with detection efficiency of 93% on BR35H [106] dataset. The qualitative 

and quantitative assessment of the suggested model for the dataset BR35H [106] is 

represented in table 5.8 and table 5.9 respectively. 
 

 

Table 5.4 Obtained threshold values (th) using the proposed auto thresholding from different 

datasets 

  
Dataset 

[106] 

BR35H BMI-I BTI BTS BD_BT BraTs 

2018[107] 

Sample 

Image-1 

90 70 75 110 58 150 

Sample 

Image-2 

91.2 80.99 75.21 109 149.1 149.1 

Sample 

Image-3 

90 75.2 78.3 107 145 145 

Sample 

Image-4 

85.4 76.5 79.1 127 168 168 

Sample 

Image-5 

89.6 87.4 71.4 113 187 187 

 

 

Table 5.5 Evaluation of the proposed preprocessing framework with different haze removal 

techniques on BR35H [106] dataset 

 

 

 

 

 

 

 

 

Input Image Approximate DCP 

Accuracy-93% 

Simple DCP 

Accuracy-93%ple DCP 

PSNR 

(DB) 

RMSE PSNR 

(DB) 

RMSE 

Sample Image-1 33.7 0.8789 32.16 0.921 

Sample Image-2 32.9 0.8991 32.44 0.912 

Sample Image-3 33.34 0.8690 32.94 0.902 

Sample Image-4 31.64 0.9312 30.67 1.012 

Sample Image-5 34.23 0.8560 34.00 1.122 

Average Value 33.162 0.8842 32.44 0.974 
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Table 5.6 Detection without using Detailed image and Principal image generation stage 

 

Detection without using Detailed image and Principal image generation stage 

 Input 

Image 

Haze 

removed 

Image 

Filtered 

Image 

Tumor 

alone 

Tumor 

outline 

Detected 

Tumor 

Sample 

Image-1 

      
Sample 

Image-2 

      

 
 

Table 5.7 Performance comparison of Simple DCP and Approx. DCP 

Detection with Simple DCP, Detailed image and Principal image generation on BR35H 

dataset [106] 
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Sample 
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Detection with Approx DCP, Detailed image and Principal image generation on BR35H [106] dataset 

Sample 

Image-1 

        
 

Sample 

Image-2 
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Table 5.8 Qualitative assessment of the suggested model with different datasets 

 

Tumor detection by proposed model (BMI-1 dataset [106]) 

 Input Image Haze removed 

Image 

Filtered Image Principal 

Image 

Edge 

enhanced 

image 

Bounding Box 

generation 

Segmented 

tumor 

Tumor 

outline 

Detected 

Tumor 

Sample Image-1 

     
    

Sample 

Image-2 

    
     

Tumor detection by proposed model (BTI Dataset [106]) 

Sample Image-1 

         

Sample 

Image-2 

   
      

Tumor detection by proposed model (BTS Dataset [106]) 

Sample Image-1 

   
      

Sample 

Image-2 
         

Tumor detection by proposed model (BD_BT Dataset [106]) 

Sample Image-1 

  
    

  
 

Sample 

Image-2 
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Tumor detection of pseudo color image by proposed model (BD_BT Dataset [106] ) 

Sample Image-1 

   
      

Sample 

Image-2 
   

      

 Tumor detection by proposed model (BRATS 2018 Dataset[107]) 

Sample Image-1 

  
 

     
 

Sample 

Image-2      
 

   

 

 

Table 5.9 Quantitative performance of the suggested model with different datasets 

Name of 

Image 

BMI-I [106] BTI [106] BTS [106] BD_BT [106] BraTs-2018[107] 

PSNR RMSE Accuracy PSNR RMSE Accuracy PSNR RMSE Accuracy PSNR RMSE Accuracy PSNR RMSE Accuracy 

Sample 

Image-1 

32.7 0.946  

 

 

 

 

 

 

93% 

32.37 1  

 

 

 

 

 

96% 

36.14 0.678  

 

 

 

 

 

80% 

32.97 0.987  

 

 

 

 

 

99% 

38.178 0.523  

 

 

 

 

 

97% 

Sample 

Image-2 

32.26 0.956 32.58 0.965 34.27 0.867 33.198 0.965 38.60 0.497 

Sample 

Image-3 

33.14 0.946 32.12 0.976 37.57 0.567 29.08 1.0006 38.24 0.456 

Sample 

Image-4 

31.64 0.997 32.64 0.955 34.10 0.854 28.59 1.0002 38.94 0.434 

Sample 

Image-5 

34.23 0.897 30.34 1.002 37.97 0.534 30.03 1.0001 38.01 0.521 

Average 

value 

32.79 0.566 32.01 1.0001 36.01 0.687 30.77 0.9998 38.594 0.486 
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Table 5.10 Result of Comparison of the suggested model with the existing CNN model [106] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to that, the suggested model is compared with the contemporary CNN 

based image classification model [106] on different datasets namely BMI-1[106], BTI 

[106], BTS [106] and BD_BT [106] and is mentioned in table 5.11. Table 5.10 depicts 

that the suggested model commensurate the contemporary CNN models. The 

performance of the suggested detection in terms of the computational cost, is compared 

with the existing classification model [107] and result is presented in table 5.12.  

 

 

 
Figure 5.2 The output when no tumor is present (BR35H dataset) 

 

 

 

 

 

 

 
 

Data Set Accuracy of 

the Suggested 

Model 

Accuracy of 

CNN based 

Model [106] 

BR35H [106] 93% - 

BMI-I [106] 93% 97.08% 

BTI [106] 96% 85% 

BTS [106] 90% 100% 

BD_BT [106] 100% 100% 

BraTs 2018 [107] 97% - 
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Table 5.11 Time taken in seconds to detect tumor by the suggested model on different datasets 

 

 

To assess the effectiveness of the suggested model in detecting and classifying brain 

tumors, we conducted a comprehensive comparison with several state-of-the-art 

models. The results, summarized in Table 5.12 and illustrated in Table 5.13 using 

dataset [108], indicate that our model consistently defeats the existing methods, 

achieving superior performance in both tumor detection and classification. 
 

 

Table 5.12 Performance comparison of suggested model with contemporary tumor classifier models 

 
Models Technology used Detection 

Accuracy in % 

Khaliki, et.al 2024 

[108] 

Efficient Net B4 97 

Inception V3 95 

VGG19 96 

VGG16 98 

CNN 91 

Shahajad et.al 2021 

[142] 

SVM 92 

Vankdothu et.al CNN 89 

Data Set [106] Sample 

Image-

1 

 

Sample 

Image-2 

Sample 

Image-

3 

Sample 

Image-

4 

Sample 

Image-

5 

Average 

time 

(proposed 

model) 

Average 

time for 

existing 

model 
[107] 

BR35H[106] 6.42 6.36 6.43 6.50 6.49 6.44 - 

BMI-I[106] 3.739 3.56 3.66 3.8 3.71 3.69 - 

BTI[106] 6.16 6.097 6.199 6.086 6.21 6.1504 - 

BTS[106] 8.722 8.9 8.8 8.69 8.75 8.77 - 

BD_BT[106] 6.488 6.51 6.46 6.33 6.34 6.426 - 

BraTs-2018 

[107] 

2.776 2.78 2.68 2.81 1.69 2.746 84 
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2022 [143] LSTM 90.02 

CNN-LSTM 92 

Srinivas et.al 2022 

[144] 

Inception V3 78 

VGG16 96 

ResNet50 95 

suggested model Suggested tumor detection framework 99 

Classification of Detected Tumor by ResNet-50 
(without Proposed Preprocessing framework) 

88 

Classification of Detected Tumor by ResNet-50 (with 
Proposed Preprocessing framework) 

100 

Our suggested model can detect tumors in medical images, but it is unable to classify 

different types of tumors without the ResNet-50 classifier stage. By incorporating the 

ResNet-50 [102] classifier at the final stage of the model, it can classify tumors with 

100% accuracy. This remarkable efficiency is made possible by the suggested pre-

processing stage. 

For a more thorough assessment, the proposed detection framework is compared with 

the ADF based brain tumor detection model [86].  PSNR and SSIM vales have been 

used to assess the performance of the suggested framework. The authors of [101] also 

utilized brain MRI images and its performance is compared with the suggested model 

which is reported in table 5.14.   

 
Table 5.13 Output of the suggested framework on dataset [108] 
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Table 5.14 Comparison of the suggested model with the existing ADF based model [101] 

 

 

 

 

  

 

 

Computational Load 

The computational load of the proposed model is evaluated against a CNN-based 

model using various datasets, including BR35H, BMI, BTI, BTS, BD_BT, and BraTs-

2018.Th ese datasets, consisting of images with different modalities and resolutions, 

were analyzed on an Intel i5, 1.8 GHz processor using MATLAB-2024 software and 

the result obtained is represented in table 5.11. A CNN-based model developed by 

Ranjbarzadeh, Ramin et al. [107], with the computational complexity mentioned as 84 

seconds for the data set BraTs-2018. In comparison, a significantly lower 

computational cost of 2.69 seconds for the same dataset was achieved by the proposed 

model. This substantial reduction in computational time highlights the efficiency of 

the suggested framework. 

 

  

5.3   An efficient classifier for breast cancer classification by WMRESNET 

 

This study presents an efficient breast cancer classification model, employing weight-

modified ResNeT-14 (WMRESNET) to extract features more accurately and rapidly, 

even with a small training dataset. The suggested model incorporates SVM classifier, 

that classifies different types of breast cancers based on the feature extracted by 

WMRESNET achieving a remarkable classification efficiency of 96% on Ultrasound 

Breast Cancer Images (USBI) dataset [109]. Pre-processing techniques such as 

Histogram Equalization and CNN-based denoising enhanced the feature extraction 

capability of WMRESNET during training. The aim of this research is to classify 

cancer images as malignant, benign or non-cancerous, crucial for appropriate treatment 

after early detection. 

 

5.3.1 Methodology 

 

The proposed model introduces a Weight Modified Residual Net to classify several 

types of breast cancer. Feature maps generated by the WMRESNET are utilized to 

train SVM classifier [142], culminating in the final classification outcome. 

Specifically, the model comprises 40 residual blocks, each consisting of two 

convolution layers and one pooling layer. The stepwise working of the proposed 

methodology is given below: 

Name of the Model PSNR (db) SSIM 

Maurya, R., et.al 2022 [101] 17.0195 0.96 

Proposed model 33.6 0,9834 
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Pre-processing Stage  
 

 To enhance feature information within the training images from dataset [109], a multi-

step pre-processing approach is adopted. 

 Firstly, the training images undergo Histogram Equalization, a technique aimed at 

standardizing image brightness and contrast, thereby enhancing visual clarity and 

feature discernibility. Following Histogram Equalization, the images are subjected to 

denoising using Convolutional Neural Network (CNN). 

 This denoising process aims to lessen image noise and to raise image quality, thus 

facilitating more accurate feature extraction during subsequent stages of network 

training. Figure 5.3 illustrates the transformation of images depicting different breast 

cancers from dataset [109] following this pre-processing regimen, showcasing the 

efficacy of these techniques in refining image quality and preparing them for effective 

network training. 

 

Figure 5.3 Different breast cancer images from dataset [109] after pre-processing 

 

WMRESNET based Image Feature Extraction 

 At this stage, the attributes of the training images have been extracted by 

WMRESNET, offering several advantages over conventional ResNet architecture. 

One crucial aspect of neural networks is the assignment of weights, as weight changes 

play a significant role in determining the network's overall performance. In Residual 

Net (ResNet), the output of a residual block is calculated by adding the output of the 

current node (F(I)) and the input of the previous node (I), which enhances network 

efficiency and performance. In the conventional ResNet architecture, both (I) and F(I) 

are assigned equal weights and is represented by equation 6.45. However, in Proposed 

WMRESNET, the weight of residual blocks is modified to significantly increase the 

learning efficiency compared to conventional ResNet and is represented by equation 

5.17. The building block of a conventional ResNet and the proposed WMRESNET is 

illustrated in figure 5.4. In WMRESNET, 14 such residual blocks are utilized for 

feature extraction. 
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Figure 5.4 Block diagram of conventional ResNet and proposed WMRESNET 

 

In Proposed WMRESNET, the input of the previous residual node (I) is varied 

exponentially, resulting in higher weights but only a fraction (40%) of the output of 

the current node (F(I)) is considered and is given in equation 6.88. This weight 

modification leads to a significant increase in learning efficiency, from 61% to 77%, 

and a corresponding rise in classification efficiency, from 85% to 96% for the (USBI) 

dataset [109]. 

 In general, higher learning efficiency increases the learning rate of the network at the 

cost of higher weights. However, excessively high learning rates may lead to increased 

training losses and erratic network performance. Therefore, in WMRESNET, weight 

adjustments are made incrementally to optimize learning rates without causing training 

errors. The examination of weights in a residual node (block) in conventional ResNet 

versus Proposed WMRESNET is pictorially represented in figure 5.5 with weight 

values detailed in table 5.15. While the actual weight in any residual node cannot be 

precisely determined, these visualizations and tables provide insight into the controlled 

increase in weights within WMRESNET, ensuring optimal learning rates and network 

performance. 

 

 (𝐼) + 𝐹(𝐼) = 𝐹𝑖𝑛𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡                                                                       (5.16) 

 

(𝐼) + 𝑃 ∗ 𝐹(𝑒𝑥𝑝(𝐼)) = 𝐹𝑖𝑛𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡                                                                 (5.17) 

         

Where P is a constant. The value of P is considered as 0.4 in this research. The variation 

of learning efficiency and classification efficiency with the variation of the value of 

‘P’ is represented in table 5.16. 
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Figure.5.5 Comparison of weights  

 
 

  Table 5.15 Generation of weight for different values of input 

 

SL. No. Conventional ResNet[102] WMRESNET 

1. 0.1 0.108 

2. 0.2 0.217 

3. 0.3 0.326 

4. 0.4 0.434 

5. 0.5 0.543 

6. 0.6 0.652 

7. 0.7 0.761 

8. 0.8 0.869 

9. 0.9 0.978 

10. 1.0 1.087 

 

         Table 5.16 Variation of learning and classification efficiency according to different value of ‘P’ 

 
SL. No.      Value of ‘P’ Learning 

 Efficiency of 

WMRESNET 

Classification 

Efficiency of SVM 

1. 0.3 70.99% 90% 

2. 0.4 77% 96% 

3. 0.5 72.25% 92% 

4. Conventional 

ResNet Equation 

61.8% 85% 
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       Formulation of the Proposed Weight Modified ResNet (WMRESNET) 

 

Forward Propagation 

𝐼𝑛+1 = 𝐼𝑛 + 0.4 ∗ (𝑓(𝑒𝑥𝑝(𝐼𝑛))                                                                                                      (5.18) 

 

Where n represents current residual block where n+1 represents its next block. 

Applying this formula recursively we get: 

 

𝐼𝑛+2 = 𝐼𝑛+1 + 0.4 ∗ (𝑓(𝑒𝑥𝑝(𝐼𝑛+1))                                                             (5.19) 

 

Substitute the value of In+1from equation.1. we get  

𝐼𝑛+2 = 𝐼𝑛 + 0.4 ∗ (𝑓(𝑒𝑥𝑝(𝐼𝑛)) + 0.4 ∗ (𝑓(𝑒𝑥𝑝(𝐼𝑛+1))                                       (5.20) 

So, equation 5.20 can be represented by its general form as in equation 5.21. 

𝐼𝑁 = 𝐼𝑛 + 0.4 ∗ ∑ (𝑓(𝑒𝑥𝑝(𝐼𝑗))𝑁−1
𝑗=𝑛                                                                         (5.21) 

 

In equation 6.50, (n) represents any previous layer where (N) represents its consecutive 

layer 

 
Backward Propagation 

The partial derivative of generalized Forward Propagation formula with respect to  

( In ) is represented by equation 5.22 as below 

 

:
𝜕𝛼

𝜕𝐼𝑛
=

𝜕𝛼

𝜕𝐼𝑁
.

𝜕𝐼𝑁

𝜕𝐼𝑛
=

𝜕𝛼

𝜕𝐼𝑁
 +

𝜕𝛼

𝜕𝐼𝑁
[0.4 ∗ ∑ (𝑓(𝑒𝑥𝑝(𝐼𝑗))]𝑁−1

𝑗=𝑛                                               (5.22) 

In the above formula (equation 5.22), the term (𝑓(𝑒𝑥𝑝(𝐼𝑗)) never becomes zero, so, the 

total gradient 
𝜕𝛼

𝜕𝐼𝑛
 , never can be vanished. The above equation proved that the proposed 

weight Modified Residual Net is able to remove vanishing gradient problem 

efficiently. The architectonic descriptions of WMRESNET are given in table 5.17. 

 
 

Table 5.17 Architectonic description of the suggested WMRESNET 

 

 

 

 

No. Of 

Residual 

Blocks 

Max 

Epoch 

Initial 

Learning 

Rate 

Initial 

Filter Size 

Initial 

Stride 

Polling 

Technique 

No. of 

Training 

Images [109]  

14 5 0.1 [5 5] [1 1] Max Polling 780 
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SVM Classifier 

 

The feature map generated by WMRESNET has been used to train the SVM [142] for 

image classification. SVM generates a hyper plane at the decision stage and can 

classify different category images. In the suggested model the SVM is used to classify 

different category breast cancers. The architecture of the proposed model is shown in 

figure 5.6. 

 

 

Figure 5.6 Architecture of the suggested model 

 

 

5.3.2   Results and Discussion 

 

The suggested image classifier is very efficient to classify different breast cancer 

(Malignant, Benign, and Normal) images with a classification efficiency of 96% with 

the dataset [109].  The classification efficiency [145] has been calculated by using 

equation 5.23.  

 

%𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 × 100                                            (5.23) 

 

For the assessment of the suggested model, we conducted assessment comparisons 

with many conventional CNNs with the dataset [109]. During the feature extraction 

stage, we substituted the proposed WMRESNET with traditional models including 

ResNet, VGG, and AlexNet individually, and recorded their respective outputs which 

are detailed in table 5.18 below. Table 5.18 clearly demonstrates that the proposed 

model outperforms conventional CNNs (like AlexNet, VGG, and ResNet) across 

learning efficiency, classification accuracy, and computational cost. 
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Table 5.18 Comparison of proposed model with different CNN models 

 
Name of the CNN 

ResNet VGG-16 AlexNet Proposed Model 
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The proposed model has been compared with state-of-the-art CNN-based Breast 

Cancer Classifier models [109], [146], [147], [148], [149], [150], [151], [152], and 

[153]. These models similarly utilized (USBI) to discern between benign and 

malignant cancers from normal images. The comparison is delineated in table 5.19 

below. 
Table 5.19 Comparison between suggested model and existing CNN based models 

CNN based 

model 

Year Classification 

Efficiency 

CNN model [109] 2023 90% 

ViT-patch [146] 2023 89.9% 

LeNet CNN [147] 2023 89.91% 

BUSIS model [148] 2022 90% 

BUViT Net model 

[149] 

2022 95% 

Pyramid Trip Deep 

feature generator 

[150] 

2022 88.67% 

Semi supervised 

GAN based model 

[151] 

2021 90.41% 

Variant Enhanced 

Deep learning model 

[152] 

2021 89.73% 

Transfer Learning 

model [153] 

2021 91.5% 

Proposed classifier 

model 

 96% 
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To check the proficiency of the suggested model, Lung-cancer image dataset [110] has 

been used and it has been observed that the training efficiency for this dataset increased 

from 66% to 76% and the overall classification efficiency increased from 87% to 96%. 

Different chest cancer images of the dataset [110], after pre-processing is represented 

in table 5.20.        

 
Table 5.20 Different chest cancer images from dataset [110] after preprocessing 

 
Squamous Cell Carcinoma 

 Sample 

image-1 

HE image   Denoised 

image 

Sample  

image-2 

HE image   Denoised 

image 

      

Large Cell carcinoma 

      

Adeno Carcinoma 

      

No cancer  

      

 

 

The authors of [154] - [158] employed lung CT images to differentiate between 

various lung cancer cells. Similarly, the proposed model utilized these CT images to 

assess its classification accuracy. The performance evaluation of the suggested model 

against contemporary image classifier models is presented in table 5.21 below. 

 
 

Table 5.21 Comparison between suggested model and contemporary CNN based model [110] 

 
 

Classification Model 

Year Classification Accuracy 

Deep learning ensemble 2D CNN model [110]   2023 95% 

Deep learning-based Support Vector machine [159] 2022 94% 

 

Ensemble of CNN model [160] 2018 87% 
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Machine Learning model [161] 2018 90% 

Deep CNN model [162] 

(Classified images based on Lung Cancer present or 

absent) 

2018 96% 

Multi view CNN model [163] 2016 94% 

Proposed Classifier model 

(Detected and classified three different types of Lung 

cancers and normal images) 

 96% 

 

It is clear from table 5.20 and table 5.21 that the proposed model is able to give better 

classification efficiency related to the contemporary CNN based models. 

 

Computational Complexity 

 

The model was experimented with MATLAB-18 software on an Intel Core i5 system. 

A relatively small number (780 images) from dataset [109] were utilized to train the 

WMRESNET, and the depth of the network was not excessively high. Consequently, 

the training process was completed in a short duration of only 30 minutes. 

Additionally, the average classification time per image was measured to be 30.36 

seconds, which is significantly lower compared to most CNN-based models, indicating 

the efficiency and speed of the proposed model in both training and classification tasks. 

During the feature extraction stage, we substituted the proposed WMRESNET with 

traditional models including ResNet, VGG, and AlexNet individually, and the time 

taken to train these models were comparatively higher compared to the proposed 

WMRESNET. The time needed to train these conventional methods were 35mins, 39 

mins and 34 mins respectively with the (USBI) [109] dataset. 

 

5.4   Conclusion 

Several image classifiers already exist in literature but development of a classifier that 

can detect and classify very small tumors with low computational cost is still a big 

challenge. To overcome this problem, we developed an image classifier model that 

combines Enhanced Anisotropic Diffusion Filtering (EADF) with ResNet-50. We 

introduced an automatic thresholding method for efficient and rapid detection of brain 

tumors. The suggested model can detect very small tumors and also can detect tumors 

from Pseudo colour images. ResNet-50 is used for classification, enabling the model 

to quickly and accurately differentiate between various types of brain tumors.. Our 

proposed classifier outperformed several existing image classifiers. 

Additionally, the proposed WMRESNET (Weight Modified Residual Network) 

achieved high classification accuracy on breast and chest cancer images. The Residual 

Network’s skip connection architecture was effectively modified to conquer the 

vanishing gradient problem significantly by enhancing both model speed and 

efficiency. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 
 

In medical imaging diagnosis, the technique of fusion in the MMIF domain has shown  

to be highly effective. As a result, instead of having to analyze two separate images, 

only one image is required, which speeds up diagnosis and reduces computer storage 

requirements.  

In this thesis, we addressed the challenges in MMIF and enhancement algorithms to 

improve the diagnostic and therapeutic approaches by adding information from 

multiple imaging modalities and produce more comprehensive images. By integrating 

data from sources like MRI, CT, 𝑇1, 𝑇2, 𝑇1C, 𝐹𝑙𝑎𝑖𝑟 and 𝑇1𝐺𝐷  image fusion provides 

a richer context, enhancing diagnostic accuracy and better targeted treatments. The 

proposed algorithms have been compared with contemporary methods and showed 

promising results when various parameters (included PSNR, RMSE, MI, Entropy etc.) 

were calculated for all algorithms. We used DWT, DTCWT for the decomposition of 

different modality source images and PCA [13], mean-max fusion rule [85], Proposed 

fusion rule etc. for fusing the corresponding coefficients. The addition of enhancement 

and denoising techniques further refines these fused images, making subtle features 

more discernible and adding clinicians in identifying potential abnormalities earlier. 

We also created classification models aimed at early disease detection. Early diagnosis 

not only saves lives is also crucial for maintaining a healthy life. 

 

6.1   Summary of the work done in the thesis 

 

We conducted a wide range review of current research in MMIF. Expanding this, we 

analyzed the performance of conventional transformation methods—Haar, 

Daubechies, and the Lifting scheme—using the BraTs-2015 dataset. This evaluation 

utilized various performance metrics, including PSNR, RMSE, MI, Mean, Std, FMI, 

and SSIM. Additionally, we introduced an energy-based coefficient enhancement 

(EBCE) technique, applied before the fusion with the suitable technique of PCA [13] 

and the mean-max [85] fusion rule. The EBCE-based enhancement demonstrated its 

effectiveness in boosting performance compared to several conventional image 

enhancement techniques. 

 

To reduce unwanted noise in fused images, we employed the proposed AMT-DWT 

(Average of Multi-Technique-Discrete Wavelet Transform) for preprocessing the 

source images. Following this enhancement, we applied the suitable technique ( PCA 

[13], mean-max fusion rule [85]) for the fusion of the enhanced images. A custom 

CNN with Proposed activation functions has been used for denoising, achieving the 

final refinement of the fused images. The denoising model’s performance was then 
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benchmarked against contemporary MMIF models, where our suggested model 

exhibited superior results. 

For efficient multimodal image fusion, we created a hybrid model, Dense-ResNet, 

which leverages the strengths of both Dense-net and ResidualNet and three different 

modality images of MRI (𝑇1, 𝑇1𝐺𝐷 and 𝑇2 ) have been fused together for the 

integration of more source information. During the preprocessing phase, noise 

reduction was achieved using Median filtering [15], followed by edge enhancement 

via ET-Net. The suggested fusion model gives enhanced performance when compared 

to existing image fusion models. Moreover, optimization of the above-mentioned 

hybrid model is achieved with the help of Pelican Optimization Algorithm (POA). The 

performance of the optimized model is better than the earlier one, achieving lower 

MSE and RMSE values while delivering a higher PSNR at the cost of computational 

time.  

 

Furthermore, to address issues related to unwanted artefacts and information loss 

during fusion, a set of fusion rules has been introduced for fusing decomposed 

multimodal medical image coefficients. These proposed rules consistently 

outperformed traditional image fusion techniques. 

We developed an image classifier model using Enhanced Anisotropic Diffusion 

Filtering (EADF) combined with ResNet-50. We introduced an automatic thresholding 

method, enabling efficient and rapid detection of brain tumors. In the final stage, 

ResNet-50 is used for classification, enabling the model to differentiate between 

various types of brain tumors shortly and accurately. 

Our proposed classifier model gives superior performance compared to several 

existing image classifiers. In addition, the proposed WMRESNET (Weight Modified 

residual Net) successfully classified breast cancer and chest cancer images with high 

classification efficiency. The skip connection architecture of the Residual Network has 

been efficiently modified to reduce the vanishing gradient problem, ultimately 

enhancing model speed and efficiency. 

 

6.2   Future Scopes 

 

As we explore the vast potential of MMIF techniques in disease detection, we are 

driven by the belief that the pursuit of knowledge and innovation is a dynamic and 

ongoing journey, requiring constant investigation, adaptation, and improvement. 

Many MMIF techniques rely on basic methods, and although issues like spectral 

distortion, overfitting, and feature extraction have been somewhat tackled, they are 

still ongoing problems. Creating new algorithms for MMIF continues to be a major 

challenge in this area. The implementation of innovative algorithms for MMIF 

continues to pose a major hurdle in this domain. In light of these challenges, the 

following directions represent key opportunities for future exploration: 

1. Difficulties in fusing multimodal images while eliminating background 

interference. 

2. Creating DL methods to address prolonged training times, model overfitting, and 

challenges in achieving stable convergence. 

3. Challenges in extracting and enhancing targeted regions in root images prior to the 

process of fusion. 

4. Challenges in removal of linear and non-linear geometric distortions. 
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DATA DESCRIPTION 

 

The experimentation for the presented research work was successfully conducted using 

MATLAB R2018a software on a system equipped with 8 GB RAM and a 3 GHz i5 

processor. The descriptions of the datasets are reported in table 6.1 and 6.2. 

 
 

Table 6.1 Detail description of the dataset used for image fusion and denoisation in this research 

 
SL. 

No. 

Data Set 

 

Type of MRI Images Number of Images Total No. of 

images 

1. BraTs-2015 [76] 𝑇1, 𝑇2, 𝑇1𝐶, 𝐹𝑙𝑎𝑖𝑟 4 x 274 1096 

2. BraTs-2018 [77] 𝑇1, 𝑇2, 𝑇1𝐶, 𝐹𝑙𝑎𝑖𝑟 4 x 285 1140 

3. Harvard Medical 
school Brain 
dataset [78] 

CT, MRI 2 x 8 16 

4. BraTs-2020 [79] 𝑇1, 𝑇2, 𝑇1𝐺𝐷, 𝐹𝑙𝑎𝑖𝑟 4 x 369 1476 

 
 

Table 6.2 Detail description of the dataset used for image classification in this research 

 
SL. 
No. 

Data Set 

 

Types of images Number of 
Positive Images 

Number of 
Negative 
Images 

Total No. of 
images 

1. BR35H 
[106] 

𝑇1 86 6 92 

2. BMI-I 
[106] 

𝑇1 86 85 171 

 3. BTI [106] 𝑇2 10 10 20 

4. BTS [106] 𝑇2 70 70 140 

5. BD_BT 

[106] 

𝑇2 671 - 671 

6. BraTs- 
2018 for 
classifier 

𝑇1, 𝑇2, 𝑇1𝐶,
 𝐹𝑙𝑎𝑖𝑟 

131 131 1048 
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[107] 

7. Dataset 
[108] 

MRI 2764 440           3204 

8. (Breast 
Cancer 

Ultrasound 
Images) 

[109] 

No. of Benign 
cancer Images 

No. of 
Malignant 

cancer images 

No. of normal 
images 

Total no. of 
images 

437 210        133    780 

9. Lung 
cancer CT 

Images 
[110] 

No. Of Normal 

images 

Adenocarcinoma 

cancer images 

Large Cell 

Carcinoma 

images 

Squamous 

Carcinoma 

Total 

no. of 

images 

59 322 368 314 1063  
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