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ABSTRACT
Most of the physical systems in nature are highly nonlinear. Such systems are characterized

by time-varying and complex behavior making it challenging to derive accurate models for

understanding their behavior. Further developing a controller for such systems becomes more

complex, rendering a conventional controller inadequate. Soft computing has become a viable

alternative method for system dynamics modeling. Artificial Neural Networks (ANNs), among

other methods, are notable for their exceptional capacity to approximate complex nonlinear

functions and dynamically adjust to the changing behavior of the system. This thesis explores,

the application of ANN-based methodologies for the identification and adaptive control of non-

linear dynamic systems. In this thesis, we have proposed several modifications to the existing

ANN structures to improve the capability of ANN to handle dynamic systems. In particu-

lar, we have modified the structure of Recurrent Neural Networks (RNNs) and trained them

using the back-propagation (BP) algorithm. The proposed design considered in this thesis is

independent of the order of the system. Building on the novel identification structure, this

work extends its application to design an adaptive controller for nonlinear dynamic systems.

The controller is developed to operate online, enabling simultaneous identification and control.

This ability makes the controller design robust enough to adapt in real time and capture the

changing dynamics of the plant effectively. The performance of an ANN is influenced by the

learning algorithm and structure. In this thesis, we have developed a constructive algorithm

with an adaptive learning rate to dynamically optimize the structures of Feed Forward Neural

Network (FFNN) and RNN. This approach enables efficient modeling and learning by facili-

tating dynamic growth of the network architecture. Furthermore, to optimize the parameters

of the ANN and enhance the performance of the BP learning algorithm, we have developed an

adaptive Particle Swarm Optimization (PSO)-based BP algorithm. The parameters of PSO

such as inertia weight (w) and hyperparameters (c1 and c2) are also dynamically updated to

improve the optimization capability of PSO. The proposed approaches are tested on various

nonlinear benchmark systems such as liquid-level systems, Mackey glass series prediction prob-
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lems, and various degrees of nonlinear plant equations. The stability and convergence of the

update weight equations are derived in the sense of Lyapunov stability principles. The pro-

posed approaches are evaluated in terms of Mean Square Error (MSE), Mean Absolute Error

(MAE), and Relative Mean Absolute Error (RMSE) against state-of-the-art neural structures

in the literature. The robustness of the proposed approaches is validated by using parameter

variations and disturbance. Detailed simulation analysis has been also carried out in the thesis

to evaluate the performance of the proposed approaches. The results demonstrate the effec-

tiveness of these approaches in accurately learning the dynamics of nonlinear systems.
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Chapter 1

Introduction

Modeling and control of complex nonlinear dynamic processes has been a long-standing prob-

lem for many engineering applications, particularly in automatic control applications. The

dynamic process often exhibits time-varying and complex behavior like chaos, bifurcation, and

limit cycles [1]. Due to their intrinsic complexity, developing model structures for robust control

and dynamic modeling or identification is both hard and challenging [2]. The dynamic models

can be derived using the direct approach, which involves studying the system’s interactions

for a while and applying physical laws but this method suffers from several drawbacks. The

resulting models are often highly complex and require detailed knowledge of the system. Such

models can also be very expensive and time-consuming. They take a lot of simulation time,

making them unsuitable for online applications [3]. Such models can also be incomplete or

inaccurate, deciding which effects to consider and which to neglect. Consequently, the result-

ing models are not the exact representation of the system. In contrast to the direct approach,

the system identification approach is an alternate way of developing dynamic models. This

approach derives models based on the observed input-output experimental data [4]. It uses

expert knowledge about the system to build a dynamic model that is well-suited for online

applications and adaptive control, which are widely used in process control. While system

identification still requires human expertise to satisfactorily construct models, they are much

better than the models derived using a direct approach [5]. The system identification approach

involves the following steps: firstly, the process involves choosing a model suitable for the appli-

cation. Secondly, input signals are designed, the identification is carried out and the resulting

model is validated. These steps allow the development of models that effectively capture non-

linear relationships between inputs and outputs, leading to accurate representations of complex
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systems [6]. The development of dynamic models using linear theories has been the primary

focus of most researchers. These have been successfully applied in many engineering applica-

tions and controls [7]. Despite their relative simplicity, the dynamic models created with linear

theories often require some assumptions and approximations to be considered during develop-

ment [8]. Real-life systems mostly show nonlinear dynamic behavior, and linear models often

fail to work efficiently. This is because (i) they assume the system operates within a narrow

range around the equilibrium point, and when a significant disturbance occurs, the model’s

accuracy declines (ii) In addition, the use of linear models necessitates the linearisation of non-

linear relationships by discarding higher-order interactions [9]. As a result, the linear model’s

capacity to accurately represent and regulate the dynamics of nonlinear processes in real-time

is limited. Therefore, this has led to the development of nonlinear system identification meth-

ods [10]. The system identification approaches are often classified based on the amount of prior

information available. White box models require adequate information regarding the system

interactions. Black-box models use no prior knowledge regarding the system and depend only

on the observed input-output data. Grey box models combine partial prior knowledge with

the experimental data [11]. Among these, black-box models are commonly used for nonlinear

system identification due to the challenges associated with obtaining prior knowledge about the

system interactions. Non-linear system identification can be represented using the state-space

approach or the difference equation (input-output representation) [12]. Unlike the state-space

approach, which uses internal state variables for identification, the input-output representation

focuses on the direct relationship between system inputs and outputs over time. For a general

non-linear system, the input-output relationship is given as follows:

yp(k) = f [yp(k − 1), .., yp(k − n), r(k), r(k − 1), .., r(k − m)] (1.1)

In Eq.(1.1), let r(k) denote the external input of the plant and yp(k) denote the present output

of the plant. The present output of the plant depends on both the present as well as past inputs

and past outputs of the plant. Here, n and m are the orders of the plant and to ensure causality

m ≤ n. Black box identification methods like block-structured models, Volterra series, and

Non-linear Auto-Regressive network with Exogenous inputs (NARX) models are useful for

non-linear identification. However, they suffer from some limitations, such as computational

complexity, and sensitivity to noise [13]. ANNs, fuzzy logic methods, and Genetic Algorithms

(GA) have emerged as useful tools for nonlinear system identification and control.
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1.1 Artificial neural networks for modeling and control

of nonlinear systems

The data-driven nature of ANNs and their capacity to approximate extremely complex, non-

linear functions have made them important tools. ANNs are ideal for black-box modeling

techniques since they don’t require explicit prior knowledge about the system. They have

been successfully used to solve many engineering and control challenges and are capable of

accurately representing nonlinear mappings [14], [15]. ANNs are non-parametric methods that

infer the characteristics of biological neurons. They consist of interconnected layers of neurons,

including hidden units, with associated weights. They quickly adapt to learn input-output

behavior through training and hence are widely used for nonlinear identification and control

strategies. ANNs possess many characteristics such as fault tolerance, robustness, and learning

adaptivity to uncertainties and noisy data [16]. They also possess more advantages over fuzzy

systems such as their ability to learn large and complex datasets by continuous training, which

makes them efficient in handling complex applications. Fuzzy logic uses rule-based reasoning

to model processes and might miss complex patterns [17]. These characteristics make ANNs

used widely to solve a variety of applications including image recognition, medical diagnosis,

control and identification, forecasting, and speech recognition [18], [16]. Among the various

ANN structures in literature, two major variants of ANN: FFNNs and RNNs are widely used

by researchers. FFNNs are structures that propagate information in a forward direction (input

to output layer). Multi-layer perceptron (MLP) and Radial basis function network (RBFN)

are two major types of FFNN. MLP consists of multiple layers of neurons, including one or

more layers of hidden units between the input and the output layers. The MLPs are generally

trained using a BP algorithm to globally optimize the weights of the networks [19]. Another

alternative to MLP is the RBFN. RBFN is a type of FFNN whose activation function is radial

basis function. The activation function is determined by calculating the Euclidean distance

between the input and neuron centres [20]. In dynamic systems, the current output depends

on the present and past values of input and output. FFNN structures being static connections,

cannot hold the information of past observations within them. The FFNN can be made dy-

namic by supplying temporal dynamics into its structure either by knowing the order of the

system in advance or by using Tapped-Delayed Lines (TDL) [21]. This makes the FFNN struc-

ture dynamic to handle nonlinear problems and when the order of the system is known, FFNN
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can use all the past inputs and outputs fed into them using TDL. For example, if the system’s

input order is ’n’, then the inputs of FFNN will be x(k − 1), x(k − 2), . . . , x(k − n). However,

practically the order of the system is not always known. During such scenarios, FFNN employ-

ing TDL structures possess limitations such as increased complexity, difficulty in capturing

long-term dependencies, and inefficiency in handling large sequences of data [22]. This has

led to the development of ANN with memory structures within them. RNNs are alternately

widely used ANN types to model and control nonlinear dynamical systems. The availability

of feed-forward and feedback connections creates a memory in the recurrent neural networks

by nature [23], [24], [25]. The RNN structure gives ANN a dynamic structure by linking the

current output state to a combination of network input and the previous state of the network.

Based on the feedback, the RNN is further classified into two broad categories Locally Con-

nected Recurrent Neural Network (LRNN) and Fully Connected Recurrent Neural Network

(FCRNN). FCRNN structure is one where all the neurons except the input layer are connected

with all others through a trainable weight. Hopfield neural network (HNN) [26] is a form of an

FCRNN where every output is connected to the input. The network is designed symmetric and

has no target to achieve as in supervised training, hence they suffer from memory limitation

and inefficiency in learning new patterns. Elman neural network (ENN) [27] and Jordan neural

network (JNN) [28] form the other types of FCRNN. To store the past outputs of the hidden

or output layer, a context layer is added to their structure. In ENN, the context layer is used

to feed the delayed outputs of the hidden layer as inputs, but in JNN, the context layer is

used to feed the delayed outputs of the output layer as inputs to the hidden layer. Traditional

ENN and JNN suffer limitations, with JNN structures becoming very large and experiencing

slow convergence when more outputs are involved, while ENN networks, though efficient due

to the addition of an extra input layer, are not suitable for online identification [29]. The

LCRNN [30], on the other hand, shares the same fundamental structure as the FFNN model

but also includes self-feedback, which plays an important role in retaining past information.

These structures have dynamic neurons unlike static neurons present in FFNN [31]. To im-

prove RNN models, many novel hybrid and improved variants of these networks continue to

be the point of research, to improve the network performance in dynamic environments [32].

Once trained, the network becomes a mathematical representation of the system, enabling it

to predict the system’s dynamics accurately.
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1.1.1 Adaptive control using ANN

In control applications, ANNs play a crucial role in handling nonlinear dynamics, where tradi-

tional control techniques such as Proportional-Integral-Derivative (PID) controllers, state-space

control, and gain scheduling may fail [33]. These applications require an intelligent control sys-

tem that depends on continuous feedback from the system. Adaptive control is one such control

technique that adjusts to the changing environment in real time [34]. ANNs are very effective

in managing nonlinear dynamics and therefore a perfect fit for adaptive control of nonlinear

systems. In [35], the author gave a foundation for an adaptive method with the development of

a Model Reference Adaptive Control (MRAC) scheme. In this, the controller parameters were

developed based on the reference model. However as the system exhibits complex behavior, the

traditional approaches were not able to model non-linearities, highlighting the need for flexible

techniques. With the development of ANN, it became evident that ANN can handle non-linear

relationships without a need for any explicit models [36]. Further, an indirect adaptive control

methods were developed and it was showed how the controller can be identified and updated

in real-time to adapt to changing environments in [37]. This also enhanced the controller’s

ability to capture dynamics and uncertainties. The adaptive control techniques are combined

with many other optimization techniques such as GA and PSO to improve the convergence

in adaptive control systems [38]. The RNNs were used for adaptive control of nonlinear sys-

tems, where the time-dependent dynamics in a system where temporal depends is critical was

modeled. Deep Neural Networks (DNN) are types of ANN that consist of more than two

hidden layers, allowing to modeling of complex relationships [39]. With further development

of DNN, adaptive control is revolutionized to handle high dimensional complex and nonlinear

systems. This has led to even more robust solutions even in real-time environments, though

challenges remain in computational complexity and the need for large training datasets [40].

These advancements highlight the transformative role of neural networks in adaptive control,

offering enhanced performance, robustness, and flexibility in managing nonlinear and uncertain

systems [41].

Adaptive control generates control inputs by taking the system’s slowly varying dynamics into

account and driving it to follow the desired control law , [42]. As a result, even in the presence

of disturbance, the controller performance is faster and more reliable. Generally, the adaptive

control approaches are of two types: direct and the indirect adaptive control scheme. In the
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direct control scheme the parameters of the controller are updated based on the controller error,

whereas in the indirect adaptive scheme, the controller parameters are updated online using the

identification error. The plant is identified parallel to update the controller parameters based

on the changing dynamics of the system. By updating the model continuously, this approach

shows improved stability and reliability in handling time-varying systems even in the presence

of disturbance [43].

1.2 Identification and control scheme using ANN

The effectiveness of indirect adaptive control depends on the accuracy of the system model. Any

inaccuracy in the identification of the model could affect the performance of the controller. The

knowledge about the dynamics of the plant under observation must be known at all times. In

scenarios where the knowledge about the system is limited or unavailable, system identification

becomes essential [44]. The process of identification involves choosing the model structure and

setting up the structure for ANN to approximate the unknown dynamic plant or system. The

nonlinear plant may belong to the Model 1 as given in Eq.(1.1) or can belong to any of three

models as below [45]:

Model 2:

yp(k + 1) =
n−1∑
i=0

aiyp(k − i) + g[r(k), r(k − 1), . . . , r(k − m + 1)] (1.2)

Model 3:

yp(k + 1) = f
[
yp(k), yp(k − 1), . . . , yp(k − n + 1)

]
+

m−1∑
i=0

bir(k − i) (1.3)

Model 4:

yp(k + 1) = f
[
yp(k), yp(k − 1), . . . , yp(k − n + 1)

]
+ g[r(k), r(k − 1), . . . , r(k − m + 1)] (1.4)

Model 1 described earlier in Eq.(1.1) is the general equation that is commonly used to describe

a dynamical system. Model 1, integrates both past outputs and inputs into a unified model,

providing a comprehensive approach to system identification. In Model 2, the relationship

between past outputs is linear and that of past and present inputs is nonlinear. While, in

Model 3, the relationship between the past outputs is nonlinear and that of present and past

outputs is linear. In Model 4, two separate nonlinear functions for past outputs and present

and past inputs, offer more flexibility in modeling the system dynamics is considered. The
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identification scheme for these models can be implemented in two modes: series-parallel and

parallel-parallel mode [46], [47].

1. Series-parallel identification scheme: In this mode, the output of the plant is fed to

the identification model for computing ANN output. Figure 1.1 shows the series-parallel

identification scheme for ANN.

2. Parallel-parallel identification scheme: In this mode, ANN uses its past values of

input to compute the output of ANN. Figure 1.2 shows the series-parallel identification

scheme for ANN.

Figure 1.1: Series-parallel identification scheme

Figure 1.2: Parallel-parallel identification scheme
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The parallel-parallel mode, while useful, does not guarantee stability, as the system stability

depends on the input stability. The series-parallel identification is found to perform with better

convergence and stability as compared to parallel-parallel-based identification [48]. Hence

series-parallel based identification is used for all models mentioned above. In this thesis, Model

1 is used for the identification and control of nonlinear dynamic systems.

1.3 Different learning approaches to optimize parame-

ters of ANN

Optimization algorithms play a major role in improving the performance of ANN for system

identification and control. These algorithms are used to fine-tune the ANN parameters such

as weights, and architecture to achieve better modeling and control of non-linear systems [49].

Gradient descent-based optimization is one of the most widely used optimization techniques

for training ANNs. It works by computing the gradient of the error with respect to the net-

work parameters to minimize the error [50]. In addition to gradient descent-based methods,

evolutionary algorithms, such as GA have also been successfully applied to optimize the ANN

architecture and weights. These population-based methods do not require gradient informa-

tion and can efficiently search large, complex solution spaces. They are particularly useful

when dealing with highly nonlinear and non-differentiable problems [51]. The next class of

optimization techniques that have been widely integrated with ANN are swarm intelligence

algorithms such as PSO. These algorithms are inspired by natural processes, such as the social

behavior of birds to find the optimal solution. They are particularly effective in optimizing

ANN parameters in high-dimensional and dynamic environments, offering advantages in terms

of speed, robustness, and avoiding local minima [52]. The limitations of individual optimization

techniques often motivate the development of hybrid methods, where two or more algorithms

are combined to optimize the parameters of ANN. Such optimization techniques have improved

the efficiency and performance of the training process. For instance, a combination of gradient

descent BP algorithm and GA is a commonly used hybrid approach. By combining the fast

convergence of gradient-based BP methods with the global search capabilities of GA, hybrid

algorithms can efficiently navigate the parameter space of an ANN to find better solutions

that would be difficult for each method to achieve alone [53]. Another popular approach uses

PSO and when combined with BP or GA, PSO can help ANN optimization algorithms more

8



Chapter 1. Introduction

effectively explore large and dynamic spaces, leading to faster convergence and better solutions.

PSO is often preferred over GA due to simpler implementation, faster convergence,and faster

exploring of search space, especially on high dimensional space. While GA can struggle with

complex high dimensional space due to tuning of mutation and crossover operations [54]. Thus,

hybrid optimization approaches not only enhance the performance of ANNs in system identifi-

cation and control but also offer greater flexibility and robustness in dealing with complex and

time-varying systems.

1.4 Literature Review

Research works on the identification-based control and modeling of nonlinear dynamic systems

are increasingly been carried out in past decades. Neural networks are being increasingly used

in the literature for the identification and control of nonlinear dynamic systems that cannot be

done using the conventional linear structures [55], [56]. The effectiveness of neural networks

for the identification of nonlinear dynamic systems is cited in various related works [57], [58],

[7]. In [31], [30], a Dynamic Recurrent Neural Network (DRNN) structure is proposed. The

structure resembles NARX and MLP with recurrent self-weighted hidden neurons. The results

show that DRNN performs better in terms of robustness and parameter variations due to

memory’s presence. FFNN models like MLP, RBFN, and functional link networks are some

of the universal architectures that are capable of identifying complex nonlinear systems as

suggested in the literature. In [59], another novel form of RNN, context layered local recurrent

neural network is proposed. An extra context layer is included in the existing RNN structure

and is trained with an adaptive learning rate. It has been found to retain past information and

improve the performance of the structure better than other RNN networks in the literature.

This structure is found to have rectified the drawback of FFNN making the network more

dynamic and stable for identifying complex dynamics. In [60], four structures based on adaptive

time-delay neural networks are proposed for the identification of different classes of nonlinear

systems. The proposed structures are found to use fewer adjustable parameters and less prior

information about the system over FFNN models. Four ANN structures namely ENN, modified

ENN, time-delayed ANN, and internal time-delayed RNN are proposed in [61]. All four selected

networks are trained using GA. The results show that the RNN structures such as ENN,

modified ENN, and the internal time-delayed RNN have better identification precision than
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static time-delayed ANN. In [62], the authors have evaluated the superiority of the GA over

the BP algorithm to train the modified ENN and JNN network against the standard ENN

and JNN structure by the addition of self-feedback connections for the context units with

weights fixed between 0 and 1. Though GA does not get trapped in local minima like the

BP algorithm yet updates weights on the entire population of a network. BP generally does

for one layer at a time instant. In [63], a novel RNN structure is proposed and implemented

using a series-parallel identification scheme. It is found to provide good mapping capabilities

for training and robustness for parameter variations of complex non-linear systems. In [64],

an Extended Kalman Filter (EKF) is used to update the weight equations. Though EKF

generates faster convergence than BP, but gets trapped in instability caused by initial conditions

during linearization. In [65], a multivalued connection weight depending on inputs involved

for a better performance of modified recurrent structure over others is proposed. The RNN

structures are widely used for different applications for modeling and identification of non-linear

dynamical systems such as fuel cells, DC motors, chemical processes, tank systems, and fault

detection [66]. In [67], a PID-based controller for automatic load frequency control of the power

system is developed. The combination of PSO and Gravitational Search Algorithm (GSA)

based recurrent HNN is used for the identification of the model and tuning of the parameters

of the controller. The weight update equations are derived and checked for stability using the

Lyapunov-based stability analysis. In [68], the author has proposed a Temporal Convolutional

Network (TCN) for the identification of dynamic systems. TCN is verified against MLP and

Long Short-Term Memory (LSTM). TCN and LSTM were found to give better results for

large data sets and non-white noise. In [69], the authors have proposed a hybrid combination

of JNN-ENN structure for a single input single output system. Online training and control of

the continuously stirred tank reactor plant is carried out and EKF is used as an optimization

algorithm. The performance of the proposed RNN is found to be better than FFNN. In this

paper [70], a modified ENN-JNN structure with GA as an optimization algorithm is used.

Optimization algorithms such as EKF, and GA though perform better than BP, yet suffer

long training times due to their confined search space. With the addition of white noise

into the system, the optimization method fails to predict accurate models. In [71], a Hybrid

ANN based on global clustering and local learning is proposed. The clustering algorithm is

used for updating model weights. Though this structure performs well, a good number of

input densities is required for cluster pairing and faster convergence. In [72], the authors have

10



Chapter 1. Introduction

proposed two new architectures introducing a hidden layer of morphological neurons instead

of a perceptron layer. Both the proposed architectures are trained using a stochastic gradient

descent algorithm. The result shows that morphological neural network structure requires

fewer learning parameters than perceptron structure. In [73], the authors have proposed a

cascaded FFNN with ENN for disease prediction The results were verified on six different data

sets and hybrid models are found to outperform single models efficiently. In [74], the author

has used FFNN, RBFN, Runge-kutta neural networks, and Adaptive Neuro-Fuzzy Inference

System (ANFIS) models for the identification of nonlinear systems. Runge-Kutta ANN has

shown better performance than feed-forward structures and ANFIS. In this work [75], the

authors have proposed a novel hybrid deep learning model for 1 hour-ahead solar forecasting.

A hybrid RNN model is designed and the proposed method is found to give better forecasting

results compared to standard MLP, and RNN models. The authors in [76], have proposed a

cascaded FFNN with ENN to predict six categories of diseases. The results demonstrate the

higher accuracy of the proposed method over other standard ENN models. In [77], ENN with

NARX is designed for system identification. The results once again show better performance

with hybrid models over single models. The twin-rotor multi-input multi-output system is

identified on modified MLP and ENN structure in [78]. In [79], a time delay recursive neural

network is used to develop an online-based direct adaptive controller. The proposed control

method can be easily generalized to the actual systems, which exhibit hysteresis behavior,

in contrast to those approaches established under the generic Lipschitz condition. A HNN-

based identifier is proposed to identify the system for the controller. It is found that the

suggested controller eliminates the performance effects caused by the direct adaptive controller’s

inaccuracy. In [80], RNN is used as a model to develop a model reference control method

for the rotary inverted pendulum. It incorporates paraconsistent annotated logic with two-

value annotations as an activation function for hidden layer neurons. The rotating inverted

pendulum is a perfect tool for applying and testing the RNN due to its non-linearity, two-

degree-of-freedom motion, and under-actuated system. Three RNN neural models are used to

develop a model reference controller: two of them are used to represent the arm and pendulum

angles, and the third one is used to operate the system while following a reference trajectory.

The proposed controller is compared with classical control methods. The proposed controller

is found to give better trajectory tracking capability and complexities. In [81], the authors

developed a stock price prediction model through the neural network to enhance the stock
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price prediction effect based on the enhanced PSO algorithm. To improve the global search

ability of the algorithm in the early stage of evolution and the local search ability in the later

stage of evolution, the adaptive adjustment of inertial weight is proposed, and the algorithm

is improved by combining it with a neural network. This approach is based on the idea of

avoiding particles falling into the same local solution as much as possible and always keeping the

particles with a certain diversity. In [82], the authors created a reduced-order RNN model for

distributed model predictive control of nonlinear processes utilizing feature selection techniques.

A subset of input characteristics that significantly affect the prediction of system output is

initially chosen using a filter, wrapper, and embedded feature selection approach. The creation

of reduced-order RNN models utilizing only the chosen input features after integrating the

feature selection techniques to capture the system dynamics. To stabilize the nonlinear system

at steady-state, the reduced-order RNN models are then included in sequential and iterative

distributed model predictive controls. In [83], a Lyapunov-based economic model predictive

control technique with RNNs is used for managing switched nonlinear systems. The initial RNN

structure is trained offline using operational data from the past and later updated to online

learning to enhance prediction accuracy. The proposed approach is applied to systems with

predetermined switching schedules. The results show its effectiveness in managing complex

dynamics. In [84], an iterative learning model predictive control for complicated nonlinear

systems based on a fuzzy neural network is proposed. A data-driven model is first created using

a dynamic linearization technique that solely uses input and output data. An FFNN is utilized

to analyze the disturbance in the established model since it has an unidentified disturbance term

that could affect the controller performance. The developed controller is found to be capable of

ensuring the stability of the closed-loop system while gradually reducing both modeling errors

and tracking errors over time. Finally, the experimental findings support the superiority and

efficacy of the developed controller. In [85], the data-driven robust optimum control approach

is suggested for the control of nonlinear complex systems. The proposed technique has three

advantages: To capture the relationship between the approximation errors and the control

variables, a data-driven assessment technique is first developed. After that, the nonlinear

system’s control performance indices can be determined inside uncertain disturbances. Second,

a co-evolution technique is used to construct a multi-objective resilient optimization algorithm.

The control performance can then be enhanced by obtaining reliable optimal control laws.

Third, a theoretical discussion of data-driven robust optimum control’s robust boundedness
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is presented. Analytical assurance of the control systems’ stability is then possible. Last

but not least, two multiple input multiple output second-order nonlinear systems are used to

demonstrate the efficacy of data-driven robust optimum control. In [86], to prevent accuracy

loss due to premature convergence without adding to the computational load, the authors

carefully examined the evolution of a PSO algorithm and used it to incorporate more dynamic

information into it. This creatively led to the development of a novel position-transitional

PSO algorithm. ANNs are suitable for modeling and control of any nonlinear system as they

can approximate any nonlinear function [87], [88]. Additionally, they have fast processing

capabilities, allowing them for real-time control. A self-recurrent wavelet neural network-based

control is proposed in [89] for the control of nonlinear dynamical systems. The modified

structure is trained using the gradient descent algorithm. Adaptive learning rates are used for

faster convergence. The simulation result shows the effectiveness of the suggested structure.

In [90], an indirect adaptive switch controller that switches online between PID and indirect

adaptive controller is proposed. The adaptation laws are developed using the gradient descent-

based method and the stability is analyzed using the Lyapunov function. The results show

that the proposed controller performs better than an indirect adaptive controller, and adaptive

switch controller. In [91], an adaptive control approach combining both the direct and indirect

adaptive scheme is proposed. The proposed controller convergence is proved by using the

Lyapunov function and the proposed controller is found to improve the tracking accuracy

of the controller. In [92], adaptive neural control is proposed for the control of dynamic

systems. Input-output linearization technique is used to convert the object’s model into a multi-

integrator system and for online training, the state observation technique is used. Further, in

[93], a modified adaptive controller is developed. The controller used is the backstepping control

and an adaptive algorithm was developed to find the states and deal with non-symmetrical

input. In [94], online adaptive control is developed with a policy iteration algorithm. The

optimal control laws are developed using the Ricatti equation. In [95], a gated RNN structure

such as a Gated Recurrent Unit (GRU) and LSTM for control of a stable nonlinear system is

proposed. Identification-based control was carried out and the stability was proven by using

incremental input and output state stability. The results show that the proposed controller

has better convergence over other controllers. In [96], the authors have designed a neural

controller with a dynamic surface control scheme to overcome the effect of uncertainties on

the system. A control law is proposed and is approximated using an RBFN. The stability is
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also analyzed using the Lyapunov function. In [97], a recurrent wavelet neural structure is

used to identify and control nonlinear systems. The parameters are updated using the back-

propagation algorithm and adaptive learning rates are designed to ensure fast convergence. In

[30], an LRNN-based adaptive control is proposed for identification-based control of nonlinear

systems, and the Lyapunov function is used for training the algorithm. The results show

better response than FFNNs. In [98], a comparative analysis of various FFNN and RNN-

based controllers for adaptive control of nonlinear dynamic systems is carried out. Dynamic

back propagation is used for updating the weights of the controller and the convergence of the

structure is also analyzed. Simulation results prove that the RBFN-based controller performs

better than NARX and FFNN-based controllers even in the presence of uncertainties. In [99],

the authors have designed an optimal controller using RNN, and learning of the structure is

done using reinforcement training. The controller is designed for both continuous and discrete-

time systems. The performance is analyzed for robustness. Though the results look promising,

the optimal controllers require the entire knowledge of the system to be known to compute

the Jacobian matrix. In [100], an adaptive back-stepping-based controller for a higher-order

nonlinear system is proposed. An RBFN-based time-delayed estimator architecture is designed

and controlled using a back-stepping controller. The controller model is designed off-line and

tested for efficiency by comparing the model with PID based controller and the original back-

stepping controller model-free approach. In [101], the authors have designed an RBFN-based

back-stepping controller for solving the tracking problem for quad-rotor systems. Though

RBFN is a memory-less structure in combination with the fuzzy controller, it is found to

increase the accuracy by taking into account the unmodelled dynamics. The performance is

compared with an MLP-based back-stepping controller. It is found to provide better tracking

performance. In another work [102], the author has analyzed the dynamic behavior of fractional

order chaotic systems with RBFN. The parameters of the system are computed with a Runge-

Kutta solver and designed with RBFN for various initial conditions of the Lorentz system.

Average mutual information techniques are used to evaluate the time delay pattern and the

performance of the proposed RBFN is found to be exceptionally high. In [103], an RBFN model

is developed based on the fuzzy responses and predictions. A squared error-based method is

used to estimate the fuzzy parameters and tuning constants. The performance of the proposed

Fuzzy RBFN is found to be effective in comparison to conventional fuzzy controllers. A fuzzy

RBFN-based SMC is used for control of nonlinear systems of varying degrees in this work [104].
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The proposed method does not require prior information about the system as the controller is

simulated online. The method was found to improve the final threshold stability and yielded

better performance than RBFN-based SMC. Further, the based adaptive controllers have found

numerous applications in real-time. In [105], the characteristics and progress of NN-based

adaptive control are tested on Nuclear power plants. The performance is compared with

ANN-based PID, self-tuning PID, and tested for efficiency with respect to disturbance. A

car driving-based simulator model based on adaptive and robust control with online learning

is designed in [106]. This RBFN structure-based adaptive control does not require system

information. In another work [107], an iterative learning control of a nonlinear system based

on ANN is designed. The controller update rule is updated by iterative training and the

updated rules were incorporated in the next trial process to achieve a zero error at convergence

even in terms of uncertainties. The update rules are further tested in servomechanism and

magnetic levitation applications. In [108], the author has studied the Lyapunov-kravoskii

theorem for global asymptotic and local exponential stability for a nonlinear delay-free system.

Point-wise dissipation rates are used. The proposed theorem is found to replace the use of

the Lipschitz property of the function describing the system, thus maintaining local and global

asymptotic stability. In [109], the author has studied a Lyapunov-kravovskii function for semi-

globally practical fixed-time stable systems. L’Hopital’s rule is used to determine the boundness

of the Lyapunov-kravoskii function and the signals are bounded within the integral function

range. This makes the tracking error converge into a small region around zero. Further, it

is extended to adaptive control of higher-order stochastic time-delay nonlinear systems. The

author in [110], has studied and proposed a kravoskii-based stability theorem for a model-based

reinforcement training framework. The changing dynamics of the system are captured using

feature extraction methods. A prime dual approach based Kravoskii theorem is used to derive

the Lyapunov function. The proposed approach is found to have applications in online control

of safety-critical systems such as robotic manipulators and locomotive tasks. Further in [111],

a novel l∞ input to state stability for infinite networks is proposed. Feedback for each agent

is established and an ISS-based Lyapunov function is developed for infinite networks. The

authors in [112] have discussed the various techniques that could effectively optimize the gain

in the Lyapunov function. The Hamilton energy as a suitable Lyapunov function is proved

against Lorentz and Chua oscillation in a chaotic state and the paper claims that the control

of energy flow when done completely can control chaos in a nonlinear system and improve
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stability.

1.5 Motivation

Based on the literature survey, many novel architectural modifications in artificial neural net-

works, particularly RNN are developed for specific applications. Despite these developments,

how the temporal nature of RNN influences and modifies the network behavior remains an area

of exploration. This gap in research motivates the need to examine how architectural changes

can improve RNN’s temporal learning capability and performance. For that, we have proposed

new modifications in the RNN structure and tested their efficiency over the state of art net-

works. The controller in many works is developed online without estimating the dynamics of

the plant online. This gap motivates the need to design a controller scheme that simultane-

ously identifies and controls a nonlinear dynamic system. The Generalisation capacity of ANN

depends on the size of training data, epochs, architecture of the network, no of hidden units,

and learning rate. Achieving the balance between the network size and generalization capacity

remains an open area of exploration, as large networks exhibit fault tolerance but may overfit,

while small networks have good generalization capacity but may require a lot of effort due to

their few processing elements. Both small and large networks possess their advantages and

disadvantages. An optimal architecture is large enough to learn the problem but small enough

to generalize well. Approaches such as constructive algorithms, which involve the addition of

hidden neurons or hidden layers to optimize model size still need to be explored. The third

motivation is to design a constructive approach to optimize the network structure. The learn-

ing rate is again another important hyperparameter that determines the performance of ANN.

Too small learning rate leads to slow convergence while too large leads to fluctuation around

the minimum or even diverge resulting in an unstable process. The role and impact of adaptive

learning rate still need exploration. The fourth motivation is to develop an adaptive learning

rate that would help in attaining faster convergence and better accuracy than existing state-of-

the-art methods. The major limitations of gradient descent algorithms and their variations are

slow convergence and getting stuck in local minima. There are many evolutionary optimization

algorithms in the literature for optimizing the parameters of ANN. However, these algorithms

do not ensure stability at all times. They also exhibit more computation time and complexities

in optimizing parameters. This has motivated us to explore and develop a novel hybrid learning
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algorithm that is simple, robust, and ensures the overall stability of the system. Further, in

most of the works in the literature, the robustness analysis for the proposed structure is not

carried out. In our work, we have considered the proposed approaches for robustness analysis

and tested them on various benchmark problems such as various degrees of nonlinear plant

equation, Mackey glass series prediction, liquid level prediction, etc.

1.6 Contributions of the thesis

The main contributions of the thesis are as follows:

• Novel architectural modifications for ANNs, particularly on RNN topologies, have been

developed to improve the network’s ability to capture temporal patterns and complex

dependencies.

• The modified architecture is used to design a simultaneous approach for online system

identification and control, enabling real-time system adjustments and improved system

adaptability.

• Lyapunov’s stability principles are applied to prove the stability of the weight update

equations and ensure network convergence.

• An adaptive learning rate (ALR) is developed to optimize algorithm performance, result-

ing in more efficient training processes.

• The structure optimization of ANN is explored. A constructive algorithm is developed

for dynamically designing a feed-forward and recurrent architecture, aiming to improve

the network’s performance and effectiveness.

• The study also focuses on optimizing the parameters of ANN. An adaptive PSO-BP

hybrid algorithm is developed to optimize the weights in feed-forward networks, aiming

to improve the performance of the network.

• A comprehensive comparative analysis of the proposed models is conducted with other

structures of ANN on various nonlinear problems to evaluate their relative effectiveness

• An elaborate robustness analysis to validate the ability of the proposed methods under

varying conditions is also performed.
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1.7 Organization of the thesis

The thesis is organized into seven parts; a brief description of the chapters is shown below,

• Chapter 2: The introduction was discussed in chapter 1. In this chapter, a novel modi-

fied Hybrid Elman-Jordan Neural Network (HEJNN) structure is proposed for the iden-

tification of unknown dynamics of nonlinear systems. The proposed recurrent structure

consists of internal feedback layers of adjustable weights which impart necessary mem-

ory properties to the structure and improve its ability to handle the dynamical systems.

The BP algorithm is used to derive the weight update equations of the proposed model.

The convergence of the proposed approach is proven in the sense of Lyapunov-stability

analysis. The results obtained from HEJNN are compared with other state-of-the-art

neural network models such as FFNN, ENN, JNN, and LRNN. Robustness analysis is

also performed to validate the efficiency of the proposed structure.

• Chapter 3: In this chapter, a novel hybrid Compound Recurrent Feed-Forward Neu-

ral Network (CFRNN) based on the combination of FFNN and LRNN is proposed for

the identification of nonlinear dynamical systems. BP algorithm is used to derive the

weight update equations and the stability of the proposed structure is also analyzed us-

ing Lyapunov-stability principles. The proposed model performance is evaluated and

compared with state-of-the-art neural models such as ENN, JNN, LRNN, and FFNN.

The results of the simulation demonstrate that, in comparison to other neural models,

the suggested structure has provided greater prediction accuracy, better performance in

the scenario of disturbance signals, and better response in the case of parameter variation.

• Chapter 4: In this chapter, an online simultaneous identification and indirect adaptive

control framework for the nonlinear dynamical systems is developed. Both the identifier

and adaptive controller utilizes the CFRNN structure developed in the previous chapter.

The indirect adaptive control scheme is represented as HFRNN. To derive the weights

update equations, we have applied the BP algorithm, and the stability of the proposed

learning strategy is proven using the Lyapunov stability principles. We also compared

the proposed method’s results with those of the Jordan Network-based Controller (JNC)

and the Local Recurrent Network-based Controller (LRNC) in the simulation examples.

The results demonstrate that our approach performs satisfactorily, even in the presence

18



Chapter 1. Introduction

of disturbance signals.

• Chapter 5: In this chapter, a novel hybrid constructive algorithm for FFNN and RNN is

developed and applied for identification of non-linear dynamical systems. The construc-

tive algorithm developed for FFNN is denoted as CFFNN and for LRNN as CLRNN. The

algorithm constructs starting from a minimum network with no hidden node and adds

a hidden node when the network fails to converge properly. The hidden nodes depend

on the effect of MSE on the validation dataset. To enhance the learning algorithm’s

performance, a novel Lyapunov’s stability-based ALR is also developed. BP with ALR

is used as the learning algorithm for growing both the networks. The proposed algo-

rithm’s effectiveness is demonstrated using two nonlinear systems examples. The results

of CLRNN and CFFNN with ALR are compared to those of standard fixed FFNN and

LRNN structures with Fixed Learning Rates (FLR), as well as CLRNN and CFFNN

structures with FLR. The experimental results show that the CLRNN and CFFNN with

ALR outperform the other selected neural models.

• Chapter 6: In previous chapters, a standard BP algorithm with and without ALR was

used to train ANNs. In this chapter, a novel hybrid APSOBP algorithm for training ANN

is proposed and is applied to FFNN for identification of nonlinear dynamical systems.

The proposed training algorithm begins by using PSO to optimize the network weights

of FFNN. Following this, BP is used to fine-tune the optimized weights, hence improving

the overall solution quality. To avoid early convergence, we dynamically adjust PSO pa-

rameters such as inertia weight (w) and hyperparameters (c1, c2) based on a performance

index ei mechanism. The performance index is calculated as the difference between the

fitness value of the global best solution of consecutive iterations. The proposed approach

is evaluated against three benchmark nonlinear problems to ensure its effectiveness. The

experimental results of training FFNN with the APSOBP algorithm are compared to tra-

ditional FFNN-PSO and FFNN-BP The results show APSOBP algorithm outperforms

the selected methods in terms of convergence, accuracy, and robustness.

• Chapter 7: Major conclusions and future directions This chapter presents the

conclusions of the major work carried out in the thesis and suggests some future directions

for the study.
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Chapter 2

Design of a Novel Robust Recurrent

Neural Network for the Identification

of Complex Nonlinear Dynamical

Systems

2.1 Introduction

Dynamic models are ones whose output behavior depends on over time. Identification of dy-

namic models is a fundamental step in designing an effective controller. However, most prac-

tical problems exhibit non-linear characteristics in nature making the selection of a nonlinear

model and computation of parameters difficult especially for tasks where no prior knowledge

about the system under consideration is available. Unlike linear approaches, soft computing

approaches offer a significant advantage in handling nonlinear systems. They can approximate

complex relations without knowing about the system. ANNs, which perform well in a range of

tasks, are commonly employed to approximate complex mapping functions. Because they can

capture temporal dependencies, RNNs are more effective than FFNNs at modeling dynamic

systems. The ENNs and JNNs are two of the most widely utilized RNN types in the field of

system identification and control of nonlinear systems. The ENNs are very efficient in cap-

turing state dependencies with the addition of a recurrent input layer. However, they are not

suitable for online identification as they cannot adapt in real-time [29]. In JNN, the hidden

layer receives the network’s delayed outputs as inputs. The output layer’s size determines the
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size of the context layer. In the presence of many outputs, the JNN grows quite massive and

exhibits sluggish convergence. To address the limitations, many works on combining ENN

and JNN structures are being proposed. These hybrid models utilize the advantages of both

networks to improve performance. This has motivated us to propose a novel modified hybrid

Elman-Jordan neural network in this thesis. The proposed structure is referred to as a Hybrid

Elman-Jordan Neural Network (HEJNN). It introduces an optimized additional layer between

input and output layer. This novel modification not only enhances the network’s adaptability

for identification but also improves the convergence speed. The proposed structure is validated

for its effectiveness by applying various degrees of nonlinear plant equations and disturbance

ability.

2.2 Mathematical structure of HEJNN

The proposed HEJNN structure is an enhancement of the hybrid Elman-Jordan neural network

with few modifications.

1. An additional trainable link has been introduced between the input layer and the output

layer, forming a robust fully recurrent neural structure.

2. The delayed state of the output layer also serves as one of the inputs to the output layer.

This is also made trainable.

The proposed HEJNN is shown in Figure 2.1. The HEJNN is implemented as a series-parallel

identification structure as shown in Figure 2.2. The function of each layer is as below:

1. Input layer: This layer 1 consists of the input signals and it distributes input signals

to the hidden layer neurons. The input vector X(k) = [x1(k), x2(k), . . . , xn(k)] consists

of ’n’ number of input signals. In this work, yp(k − 1) and r(k − 1) are used as inputs

for the HEJNN structure. The proposed structure uses a minimum number of inputs to

identify nonlinear dynamic systems.

2. Hidden layer: The input signals are further propagated to the hidden layer. To

calculate its output, each hidden layer neuron multiplies its signals of input vector

X(k), context layer 1 vector P (k) = [p1(k), p2(k), . . . , pn(k)], and context layer 2 vector

d(k) = [d1(k), d2(k), . . . , do(k)] by their respective weights. A tangent hyperbolic nonlin-

ear activation function is used. Wx(k) = [wx1(k), wx2(k), . . . , wxn(k)] represents the input
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layer’s weight vector, Wp(k) = [wp1(k), wp2(k), . . . , wpm(k)] represents the weight vector

of the context layer 1, and Wo(k) = [wo1(k), wo2(k), . . . , wom(k)] represents the weight

vector of the output layer.

3. Context layer 1: This is the additional input layer between input and the 1st hidden

layer. The size of the context layer 1 is similar to that of the hidden layer. Each neuron

stores the delay states of the corresponding self-connected hidden neurons. The feed-

forward connections are fixed, but the recurrent connections of this layer are trainable.

The feedback connections are multiplied by the context weight vector, Wp(k), before

being sent as input to the hidden layer.

4. Output layer: The output of the network is calculated by multiplying its hidden layer

vector S(k) = [s1(k), s2(k), . . . , sn(k)], context layer 2 vector d(k), and additional links

signals by their respective weight vector Wα(k) = [wα1(k), wα2(k), . . . , wαp(k)]. Wd(k)

represents the recurrent weight vector of the context layer 2. Each neuron of the output

layer is computed as a function of the linear activation function. Purelin is used as a

linear activation function.

5. Context layer 2: This layer has a local feedback. The context layer 2 is the same

size as the output layer. The delayed states of the output are stored in this layer.

The forward connections are fixed, but the recurrent connections are trainable. Before

reaching the hidden and output layers as input, the feedback connections are compounded

by multiplying with context layer 2 weight vector Wd(k).

6. An Additional weighted link: This study introduces an additional trainable layer

between the input and output layers. This new link transforms the structure into a fully

recurrent neural structure. To make the layer trainable, input signals are multiplied with

weight vector Wα(k) before reaching the output layer. The additional link layer has ’α’

number of inputs to be mapped with the output layer.

The hidden layer output Sn(k) is given as follows:

Sn(k) = g1

(
m∑

i=1
X(k − i)Wxi(k) + bx(k)Wb(k) + Pi(k)Wpi(k) + di(k)Wdi(k)

)
(2.1)

where the input bias vector is bx(k), and the weight vectors for the input bias and context layer

1 are Wb(k) and Wp(k). The tangent hyperbolic activation function is indicated by g1. The
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context layer 1 vector is denoted by P (k), the context layer 2 vector by d(k), and the context

layer 2 weight vector by Wd(k). Wxi(k) is the weight vector of input layer. The following is an

expression for the network’s output at time step k:

yhej(k) = g2

(
n∑

i=1
Sn(k)Woi(k) + bo(k)Wbo(k) + di(k)Wdi(k) + Wαi(k)X(k − i)

)
(2.2)

Where bo(k) is the output bias vector with the corresponding weight vector denoted as Wbo(k).

g2 denotes the purelin activation function, Wα(k) is the weight vector corresponding to the

additional link between input and output, and X(k − i) denotes the input vector.

Figure 2.1: Proposed HEJNN structure

2.3 Problem statement

Let us consider a non-linear plant with desired outputs such as yp(k−1), yp(k−2), . . . , yp(k−m)

and desired inputs such as r(k), r(k − 1), r(k − 2), . . . , r(k − n). f is the non-linear mapping
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Figure 2.2: Series-parallel identification model

function between them. The identification structure of the plant is :

yp(k) = f [yp(k − 1), .., yp(k − n), r(k − 1), .., r(k − m)] (2.3)

Here, f(.) can be a neural network, wavelet, or sigmoid function. In this study, a neural

network is considered for non-linear approximation. n and m are the orders of the plant. Now,

if HEJNN is selected as an identifier, with f̂ being the unknown non-linear and differentiable

function, the identification structure will be:

yhej(k) = f̂ [yp(k − 1), r(k)] (2.4)

where, yhej(k) denotes the output of HEJNN. The main objective is to approximate the non-

linear function f̂ ≃ f by keeping the error as low as possible and achieving the desired response

using ANNs such as HEJNN. By tuning the parameters of the identification model, the error

is reduced, i.e.:

lim
k→∞

|yp(k) − yhej(k)| ≤ ϵ (2.5)

where ϵ → 0. To reach the requirement as given in Eq.(2.5), the trainable network weights are

continuously updated using the standard BP algorithm
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2.4 Learning algorithm

To update the tunable parameters of HEJNN, a gradient descent-based BP algorithm is used.

All the network weights Wi(k) = [Wx(k), Wo(k), Wp(k), Wd(k), Wα(k)] are updated at every

epoch by applying the chain rule. To attain this, a cost function is defined in the first instance.

MSE is chosen as the cost function in this work. MSE is the average squared difference between

the predicted values and the actual values. It is expressed as:

E(k) = 1
2[e(k)]2 (2.6)

and

e(k) = yp(k) − yhej(k) (2.7)

where e(k) denotes the identification error. To update the weights of the output layer, the

gradient of error with respect to output weight is computed using the chain rule:

∂E(k)
∂Wo(k) = ∂E(k)

∂yp(k) × ∂yp(k)
∂V (k) × ∂V (k)

∂Wo(k) (2.8)

On simplification,
∂E(k)
∂Wo(k) = −e(k) × S(k) (2.9)

where S(k) indicates the output of the induced field and derived using Eq.(2.1). A linear

activation function such as purelin is considered in the output layer. Further, the output

weight Wo(k) is updated using the Stochastic Gradient Descent (SGD) formula as below:

Wo(k + 1) = Wo(k) − η
∂E(k)
∂Wo(k) (2.10)

i.e.

Wo(k + 1) = Wo(k) + ηe(k)S(k) (2.11)

where η is the learning rate and its range is considered between 0 to 1. To update the weights

of the input layer, the gradient of the error with respect to the input layer weight is computed

using the chain rule:
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∂E(k)
∂Wx(k) = ∂E(k)

∂yp(k) × ∂yp(k)
∂Z(k) × ∂Z(k)

∂S(k) × ∂S(k)
∂V (k) × ∂V (k)

∂Wx(k) (2.12)

where Z(k) and V(k) denote the induced field of the hidden layer and the induced field of the

output layer respectively. On simplification, we get:

∂E(k)
∂Wx(k) = −e(k)Wo(k)(I − S(k)2)Xi(k) (2.13)

Further using the SGD rule, the weight is updated as follows:

Wx(k + 1) = Wx(k) + η
∂E(k)

∂Wx(k) (2.14)

Similarly, the other weights such as Wp(k), Wd(k), and Wα(k) are updated as below:

Wp(k + 1) = Wp(k) + ηe(k)(I − S(k)2)Wo(k)P (k) (2.15)

Wα(k + 1) = Wα(k) + ηe(k)Xi(k) (2.16)

Wd(k + 1) = Wd(k) + ηe(k)d(k)Wo(k)(I − S(k)2) (2.17)

The various iterative steps followed in the execution of the HEJNN algorithm are as shown

in the flowchart in Figure 2.3. During the training, the network weights are updated every

epoch, and at each epoch, the MSE is calculated. This training continues until the cost

function converges to the minimum value. Once the terminating condition is met, additional

performance indices such as MAE and RMSE are used to calculate the model’s performance.

2.5 Lyapunov stability analysis

Stability is the main characteristic of a system’s behavior. According to the Lyapunov stability

criteria, if there is any energy measure in the system, then the rate of change of error derives

the stability of the system. This study involves declaring the weight update equations of the

structure and checking whether stability is achieved or not. The system is found to have

achieved stability when the Lyapunov-based error function is minimum and positive. The goal
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Figure 2.3: Flowchart indicating HEJNN structure training

is to minimize the Lyapunov function V (W ):

J = min(V (W )) (2.18)

where W denotes the weights of the network.

V (W ) > 0 for W > 0 V (W ) = 0 for W = 0 ∆V (k) ≤ 0 (2.19)

where V(W) is the Lyapunov function. For the discrete-time, the change in the Lyapunov

function is:

∆V (k) = V (k) − V (k − 1) (2.20)

To update weights using the SGD formula, it is given as follows:

Wi(k + 1) = Wi(k) − η
∂E(k)
∂Wi(k) (2.21)
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where η is the learning rate and E(k) is the error function. Assuming that the Lyapunov

function V (k) measures the error at each iteration, we can express it as:

V (k) = E(k) (2.22)

The change in the Lyapunov function becomes:

∆V (k) = E(k) − E(k − 1) (2.23)

Substituting the weight update from Eq.(2.21) :

E(k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) (2.24)

Now, substituting this back into the expression for ∆V (k):

∆V (k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) − E(k) (2.25)

∆V (k) = −η
∂E(k − 1)
∂Wi(k − 1) (2.26)

Conditions for stability: For the system to be stable, ∆V (k) < 0:

−η
∂E(k − 1)
∂Wi(k − 1) < 0 (2.27)

This condition is met when η is positive and small, and ∂E(k−1)
∂Wi(k−1) > 0. This indicates that the

Lyapunov function decreases as the error E(k) decreases, yet the system stays stable.

2.6 Simulation experiments

A total of three examples of Multi Input Single Output (MISO) nonlinear plant equations

are considered to illustrate the efficiency of the HEJNN identifier. The maximum number of

hidden neurons considered is 5 with a fixed learning rate of 0.001 for HEJNN, ENN, JNN, and

LRNN. FFNN takes 6 hidden neurons with a fixed learning rate of 0.001 to track the desired

model of the plant.
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2.6.1 Example-1

Consider a non-linear dynamic plant with a difference equation as given below [36]:

yp(k) = yp(k − 1)
1 + y2

p(k − 2) + r3(k − 1) (2.28)

The output of the plant, yp(k), depends on both its output and its prior input. The plant takes

the following identification structure :

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 1)] (2.29)

A variable input r(k) is fed to the plant as follows:

r(k)=



sin
(

πk
45

)
, for 0 < k ≤ 250

0.1 sin
(

πk
45

)
− 0.1 cos

(
πk
40

)
, for 250 < k ≤ 500

− sin
(

πk
20

)
, for 500 < k ≤ 900

(2.30)

The performance of HEJNN is compared with other network structures such as ENN, JNN,

LRNN, and FFNN in terms of performance criteria such as MSE, MAE, and RMSE.

The HEJNN is supplied with 2 inputs and the identification structure of HEJNN is as follows:

yhej(k) = f̂ [yp(k − 1), r(k − 1)] (2.31)

Similarly, the ENN, JNN, LRNN, and FFNN identifiers are supplied with the following inputs

below:

yENN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1)] (2.32)

yJNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1)] (2.33)

yLRNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1)] (2.34)

yF F NN(k) = f̂ [yp(k − 1), yp(k − 2), r(k), r(k − 1)] (2.35)

The identification process has been carried over 700 time steps. Figure 2.6 shows the compar-

ison of the response of the HEJNN identifier with other selected identifiers. Figure 2.4 shows
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the comparison of MSE curves obtained for selected identifiers. Figure 2.5 shows the compar-

ison of MAE curves obtained for selected identifiers. It is observed from these results that

the proposed identifier requires fewer inputs to give a better prediction accuracy over other

selected identifier structures. Table 2.1 shows the comparison of the response of all selected

structures. Hence, the performance comparison can be written as follows: HEJNN > ENN >

JNN > LRNN > FFNN.
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Figure 2.4: Comparison of MSE curves obtained for selected identifiers [Example-1]

Table 2.1: Comparison of performance of selected identifiers [Example-1]

S.No Structure No of Epochs No of hidden
neurons

No of samples
in each epoch

MSE MAE RMSE

1 HEJNN 600 05 500 1.20 × 10−5 0.0021 0.0037
2 ENN 600 05 500 0.0336 0.1848 0.1832
3 JNN 600 05 500 0.0043 0.0753 0.0656
4 LRNN 600 05 500 0.0042 0.0759 0.0646
5 FFNN 600 06 500 0.0143 0.1772 0.1195

2.6.2 Disturbance rejection test [Example-1]

To validate the performance of the HEJNN identifier, a sine wave as a disturbance signal, dis(k)

is

dis(k) = sin
(

2πk

15

)
, for 250 < k ≤ 450 (2.36)

is added in the above interval to the output of the network. Figure 2.7 illustrates the identifier’s

response to the disturbance signal. It can be seen that the identifier’s response first deviated
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Figure 2.5: Comparison of MAE curves obtained for selected identifiers [Example-1]
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Figure 2.6: Comparison of the identifier response at the end of the training [Example-1]
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from the desired response with an increase in the MSE value. However, after training, it is

found that the proposed identifier response once more starts to track the intended performance

and minimizes MSE to a minimum value. The comparison of the disturbance rejection ability

of HEJNN with other selected neural identifiers is also shown in Figure 2.8. HEJNN is found

to show better disturbance rejection ability among others.
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Figure 2.7: Recovering ability of the HEJNN on disturbance signal [Example-1]

2.6.3 Example-2

A difference equation of non-linear dynamic plant of degree 2 as given in [36] is considered:

yp(k) = 1.8398yp(k − 1) − 0.86070yp(k − 2) + 0.010688r(k − 1) + 0.0101r(k − 2) (2.37)

The identification structure of the plant is:

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.38)
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Figure 2.8: Comparison of recovering ability of selected identifier structures [Example-1]

A variable input r(k) is supplied to the plant as below:

r(k) =



sin
(

πk
45

)
, for 0 < k ≤ 250

0.1sin
(

πk
45

)
− 0.1cos

(
πk
40

)
, for 250 < k ≤ 500

−sin
(

πk
20

)
, for 500 < k ≤ 900

(2.39)

when HEJNN is selected as an identifier, the identification structure is as below:

yhej(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1)] (2.40)

when ENN, JNN, LRNN, and FFNN are selected as an identifier, they take the following inputs

as below:

yENN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.41)

yJNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.42)

yLRNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.43)

yF F NN(k) = f̂ [yp(k − 1), yp(k − 2), r(k), r(k − 1), r(k − 2)] (2.44)

The identification process has been carried over 700 time steps. Figure 2.9 shows the com-

parison of MSE curves obtained for selected identifiers. The comparison of the MAE curves
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obtained for particular identifiers is shown in Figure 2.10. The comparison of the HEJNN

identifier’s response with that of other chosen identifiers is displayed in Figure 2.11. The per-

formance comparison of all the chosen identifiers is displayed in Table 2.2. The results show

that the proposed identifier has better prediction accuracy over other selected structures with

fewer inputs.
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Figure 2.9: Comparison of MSE curves obtained for selected identifiers [Example-2]

Table 2.2: Comparison of performance of selected identifiers [Example-2]

S.No Structure No of Epochs No of hidden
neurons

No of samples in
each epoch

MSE MAE RMSE

1 HEJNN 600 05 500 1.83 × 10−5 0.0024 0.0043
2 ENN 600 05 500 0.0388 0.2266 0.1969
3 JNN 600 05 500 0.0011 0.0429 0.0339
4 LRNN 600 05 500 0.0012 0.0431 0.0340
5 FFNN 600 06 500 0.0105 0.1185 0.1026

2.6.4 Disturbance rejection test [Example-2]

A disturbance signal, dis(k) in the form of a sine wave is added at the output as a range of time

instants between 250 < k ≤ 450 to evaluate the robustness of the proposed HEJNN model.

dis(k) = sin
(

2πk

15

)
, for 250 < k ≤ 450 (2.45)
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Figure 2.10: Comparison of MAE curves obtained for selected identifiers [Example-2]
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Figure 2.11: Comparison of identifier response at the end of the training [Example-2]

Table 2.3: Comparison of Performance of selected identifiers [Example-3]

S.No Structure No of
Epochs

No of
Hidden
Neurons

No of Samples
in Each Epoch

MSE MAE RMSE

1 HEJNN 600 05 500 8.69 × 10−6 0.0024 0.0029
2 ENN 600 05 500 0.0127 0.1435 0.1128
3 JNN 600 05 500 0.0020 0.0569 0.0442
4 LRNN 600 05 500 0.0019 0.0558 0.0435
5 FFNN 600 06 500 0.0080 0.1112 0.0896
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Figure 2.12: Recovering ability of the HEJNN on disturbance signal [Example-2]
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Figure 2.13: Comparison of recovering ability of selected identifier structures [Example-2]
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Figure 2.14: Comparison of MSE curves obtained for selected identifiers [Example-3]
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Figure 2.15: Comparison of MAE curves obtained for selected identifiers [Example-3]
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Figure 2.16: Comparison of identifier response at the end of the training [Example-3]
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Figure 2.17: Recovering ability of the HEJNN on disturbance signal [Example-3]
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The corresponding response is shown in Figure 2.12. The proposed identifier is robust enough

to bring back the increased MSE to zero matching the desired plant response. The comparison

of the disturbance rejection ability of HEJNN with other selected neural identifiers is also

shown in Figure 2.13. The HEJNN shows better disturbance rejection ability among others.

2.6.5 Example-3

Consider the non-linear plant described by the difference equation as given in [36]:

yp(k) = 0.72yp(k − 1) + 0.025yp(k − 2)r(k − 1) + 0.001r2(k − 2) + 0.2r(k − 3) (2.46)

The identification structure of the plant will be:

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2), r(k − 3)] (2.47)

The above equation is supplied a variable input r(k), where

r(k) =



sin
(

πk
45

)
, for 0 < k ≤ 250

0.1sin
(

πk
45

)
− 0.1cos

(
πk
40

)
, for 250 < k ≤ 500

−sin
(

πk
20

)
, for 500 < k ≤ 900

(2.48)

Again, the HEJNN identifier will take the following identification structure as below:

yhej(k) = f̂ [yp(k − 1), r(k − 1)] (2.49)

where r(k − 1) and yp(k − 1) are two inputs used by the proposed identifier. The ENN, JNN,

LRNN, and FFNN take the following identification structure:

yENN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.50)

yJNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.51)

yLRNN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2)] (2.52)

yF F NN(k) = f̂ [yp(k − 1), yp(k − 2), r(k − 1), r(k − 2), r(k − 3)] (2.53)
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From the results, the proposed HEJNN model shows better performance and the performance

can be given in the following order: HEJNN > ENN > JNN > LRNN > FFNN. Figure 2.14

shows the comparison of MSE curves obtained for selected identifiers for this example. Figure

2.15 shows the comparison of MAE curves obtained for selected identifiers for this example.

Figure 2.16 shows the response obtained for the proposed identifier among others. Table 2.3

gives the comparison of the performance of HEJNN with other selected structures. It can be

seen from the results that the proposed identifier gives a better prediction accuracy as compared

to other considered structures with fewer inputs.

2.6.6 Disturbance rejection test [Example-3]

The HEJNN structure is validated for robustness by introducing a sine wave as a sudden

disturbance, dis(k) to the output of the network as

dis(k) = sin
(

2πk

15

)
, for 250 < k ≤ 450 (2.54)

The response of HEJNN for the introduced disturbance is as shown in Figure 2.17. The

proposed identifier though initially fluctuates, but is found to respond quickly and bring down

the increased MSE to zero, hence tracking the plant’s desired response. The comparison of

the performance of the disturbance rejection ability of HEJNN with other selected identifiers

is shown in Figure 2.18. HEJNN shows better disturbance rejection ability among others.

2.7 Conclusion

In this work, a novel recurrent neural network, known as the HEJNN model, is proposed

for the identification of complex nonlinear dynamical systems. The weights of the proposed

model are updated using the BP method. The convergence of the learning algorithm is proved

using the Lyapunov-stability analysis. A total of 3 simulation examples are considered in the

experimental study for testing the identification ability of the proposed model. The comparison

is done in terms of MSE, MAE, RMSE, the number of hidden neurons, the number of input

parameters, and the recovering ability of the identifier. From the results and simulation, it can

be seen that the proposed HEJNN performed better than the other selected structures for all

the considered examples. The ability of HEJNN to recover from any external disturbance is
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Figure 2.18: Comparison of recovering ability of selected identifier structures [Example-3]

also found to be faster than ENN, JNN, LRNN, and FFNN structures.

41



Chapter 3

A recurrent neural network-based

identification of complex nonlinear

dynamical systems: a novel

structure,stability analysis and a

comparative study

3.1 Introduction

A modified hybrid Elman-Jordan neural network (HEJNN) has been proposed in the previous

chapter for the effective identification of nonlinear dynamical systems. Based on simulations

and findings, the hybrid structure model is found to outperform other traditional neural net-

work topologies in terms of performance and noise recovery. However, in real-time scenarios

when simplicity is necessary, its complexity presents challenges. The HEJNN structure is found

to have a greater number of tunable weights and parameters. The computation time taken by

HEJNN is also large and has more layers before producing the output. To address this issue,

this chapter introduces another novel architecture simpler than HEJNN that retains effective

identification dynamics for nonlinear dynamic systems. We have proposed a hybrid Compound

Recurrent Feed-forward Neural network (CRFNN) structure. The proposed CRFNN structure

is a combination of FFNN and LRNN. FFNN is known to have a simpler architecture with good

static mapping ability and LRNN is known to have good temporal dynamic capturing ability.
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By combining these two structures, the proposed hybrid model combines the advantages of

both FFNN and LRNN. BP algorithm is used to derive the weight update equations and the

Lyapunov-stability principles are applied to test the stability of the proposed framework. The

proposed model is evaluated against the existing neural models, including the ENN and JNN

neural networks. The result shows that the performance of the proposed CRFNN outperforms

other neural structures with lesser inputs and complexity.

3.2 Mathematical structure of Hybrid CRFNN model

Figure 3.1 shows the structure of the proposed CRFNN. The network consists of an input

layer, a hybrid hidden layer that combines both FFNN and LRNN and an output layer. The

functions of the proposed CRFNN structure are as follows:

1. Input layer: The input layer generates the input signals and sends them to the hidden

layer. In this work, delayed external input r(k − 1) and output of the plant yp(k − 1)

are considered as inputs. The input vector is denoted as X(k) = [r(k − 1), yp(k − 1)].

The input signals are passed to the FFNN structure in the hidden layer through the

feed-forward weight connections Wif (k) and to the LRNN portion of the hidden layer

through the recurrent weight connections Wir(k).

2. Hidden layer: The output of the hidden layer is computed through two separate paths.

In the FFNN path, the output of the induced field is calculated from the received input

signals from the input layer, and in the LRNN path, the output of the induced field is

calculated from the received input signals from the input layer and the local recurrent

connections from the hidden neurons. Before being transferred to the output layer, the

two outputs are added together and sent through the non-linear activation function.

3. Output layer: The combined hidden layer output is sent to the output layer and is sent

through a linear activation function.

The induced field of the hidden layer is computed below:

Fj(k) = f1

(
n∑

j=1
X(k − j)Wif (k) + bfx(k)Wb(k)

)
(3.1)

Rj(k) = g1

(
m∑

j=1
X(k − j)Wir(k) + L(k)Wlr(k) + bfx(k)Wb(k)

)
(3.2)
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where f1 and g1 indicate the non-linear tangent hyperbolic activation function at the hidden

layer. The output of hybrid CRFNN is given by:

ycrfnn(k) = f

(
m∑

j=1
Fj(k)Wof (k) + boh(k)Wbh(k) + Rj(k)Wor(k)

)
(3.3)

Where Wof (k) and Wor(k) are the output weight vectors of FFNN and RNN respectively. boh

denotes the output bias vector and Wbh(k) is the corresponding weight vector. f is the linear

activation function used in the output layer.

Figure 3.1: Proposed CRFNN structure

3.3 Learning algorithm

A gradient-based backpropagation algorithm is used to train the CRFNN network. Now, the

first step will be to define a cost function. MSE is taken as the cost function. The MSE is

defined as:

E(k) = 1
2[e(k)]2 (3.4)

where, e(k) = yp(k) − ycrfnn(k) is identification error. The MSE is computed until the identi-

fication error reaches a minimum value or zero.
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3.3.1 Update weights between output layer and hidden layer

To update the output layer weights, the error is back-propagated from the output layer ycrfnn(k)

to the hidden layer of FFNN denoted as Fj(k) and RNN as Rj(k). The gradient of error with

respect to the weight of the FFNN wof (k) and that of RNN Wor(k) are calculated as below:

∂E(k)
∂Wof (k) = ∂E(k)

∂ycrfnn(k) × ∂ycrfnn(k)
∂Wof (k) (3.5)

∂E(k)
∂Wor(k) = ∂E(k)

∂ycrfnn(k) × ∂ycrfnn(k)
∂Wor(k) (3.6)

On further simplification:
∂E(k)

∂Wof (k) = −e(k) × Fj(k) (3.7)

∂E(k)
∂Wor(k) = −e(k) × Rj(k) (3.8)

where Fj(k) and Rj(k) indicates the induced fields of CRFNN.

3.3.2 Update weights between the hidden layer and input layer

To calculate and update weights of the input and hidden layer, the error is back propagated

further from the hidden to the input layer. The change of gradient error with respect to hidden

layer local weights Wlr(k), and input layer weights Wif (k) are calculated as below:

∂E(k)
∂Wlr(k) = ∂E(k)

∂ycrfnn(k) × ∂ycrfnn(k)
∂Rj(k) × ∂Rj(k)

∂Wlr(k) (3.9)

∂E(k)
∂Wif (k) = ∂E(k)

∂ycrfnn(k) × ∂ycrfnn(k)
∂Fj(k) × ∂Fj(k)

∂Wif (k) (3.10)

Further, the calculated gradients from Eq.(3.7) - Eq.(3.10) are used to update the weights using

the SGD formula. The weights Wlr(k), Wif (k), Wof (k), Wor(k) are updated as follows:

Wlr(k)(new) = Wlr(k)(old) − ηe(k) ∂E(k)
∂Wlr(k) (3.11)

Wif (k)(new) = Wif (k)(old) − ηe(k) ∂E(k)
∂wif (k) (3.12)

Wof (k)(new) = Wof (k)(old) − ηe(k) ∂E(k)
∂wof (k) (3.13)
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Wor(k)(new) = Wor(k)(old) − ηe(k) ∂E(k)
∂wor(k) (3.14)

Here η denotes the learning rate and the range considered is between 0 to 1.

3.4 Lyapunov stability analysis

This study involves declaring the weight update equations of the proposed structure and check-

ing whether stability is achieved or not. The system is found to have achieved stability when

the Lyapunov-based error function is minimum and positive. The goal is to minimize the

Lyapunov function V (W ):

J = min(V (W )) (3.15)

where W denotes the weights of the network.

V (W ) > 0 for W > 0 V (W ) = 0 for W = 0 ∆V (k) ≤ 0 (3.16)

where V(W) is the Lyapunov function. For the discrete-time, the change in the Lyapunov

function is:

∆V (k) = V (k) − V (k − 1) (3.17)

To update weights using the stochastic gradient descent formula:

Wi(k + 1) = Wi(k) − η
∂E(k)
∂Wi(k) (3.18)

where η is the learning rate and E(k) is the error function. Assuming that the Lyapunov

function V (k) measures the error at each iteration, we can express it as:

V (k) = E(k) (3.19)

The change in the Lyapunov function becomes:

∆V (k) = E(k) − E(k − 1) (3.20)
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Substituting the weight Update :

E(k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) (3.21)

Now, substituting this back into the expression for ∆V (k):

∆V (k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) − E(k) (3.22)

∆V (k) = −η
∂E(k − 1)
∂Wi(k − 1) (3.23)

Conditions for stability: For the system to be stable, ∆V (k) < 0:

−η
∂E(k − 1)
∂Wi(k − 1) < 0 (3.24)

This condition is met when η is positive and small, and ∂E(k−1)
∂Wi(k−1) > 0. This indicates that the

Lyapunov function decreases as the error E(k) decreases, yet the system stays stable.

3.5 Simulation experiments

In this section, the performance of CRFNN is evaluated. The proposed structure is compared

against neural models such as ENN, JNN, LRNN, and FFNN. Performance indices such as

AMSE, AMAE, and RMSE are selected as evaluation indexes to measure the efficiency of the

proposed structure. A fixed learning rate of 0.0001 is considered for all the simulation examples.

3.5.1 Example-1: A nonlinear plant with degree 3

A real-time nonlinear plant equation as in [36] is considered:

yp(k) = yp(k − 1)
1 + y2

p(k − 2) + r3(k − 2) (3.25)

where yp(k) is the plant equation. The plant’s output depends on both the present and past

input-output values. The plant takes the following identification structure:

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 2)] (3.26)
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Here, f is the nonlinear function that maps the inputs and outputs. The proposed structure

is applied with an external input r(k) = sin(2πk
100 ). When CRFNN, FFNN, LRNN, ENN, and

JNN are chosen as identifiers, the identification structure is as below:

ycrfnn(k) = f̂1[yp(k − 1), r(k − 1)] (3.27)

ylrnn(k) = f̂2[yp(k − 1), yp(k − 2), r(k − 1)] (3.28)

yffnn(k) = f̂3[yp(k − 1), yp(k − 2), r(k), r(k − 1)] (3.29)

yENN(k) = f̂4[yp(k − 1), yp(k − 2), r(k − 1)] (3.30)

yJNN(k) = f̂5[yp(k − 1), yp(k − 2), r(k − 1)] (3.31)

Where f̂1, f̂2, f̂3, f̂4, f̂5 are the nonlinear functions of the respective identifier. When f̂1, f̂2, f̂3, f̂4, f̂5 ≃

f , the identified model is said to behave like a plant model. About 900 samples are used for

training and 400 samples are used for validation. The training is conducted in offline mode for

about 900 time-epochs.

3.5.2 Parameter variation in testing phase [Example-1]

To validate the proposed structure, a new input r(k) is supplied as given below:

r(k) =



sin(πk)
40 , for 0 < k <= 250

0.09sin(πk)
45 −

cos(2πk)
40 , for 250 < k <= 450

0.3sin(2πk)
15 +

0.1sin(2πk)
320 +

0.6sin(2πk
40 , for 450 < k <= 900

(3.32)

Figure 3.2 shows the response obtained from all the selected identifier structures. Figure

3.3 shows the MSE curve obtained from all the selected identifier structures. Figure 3.4 shows

the MAE curve obtained from all the selected identifier structures. The proposed CRFNN

identifier is found to perform superior than other selected neural models. The error is also found

to decrease to a very minimum value with very little computational time. The performance
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Figure 3.2: Comparison of identifier response obtained for selected identifiers [Example-1]
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Figure 3.3: Comparison of MSE curves obtained for selected identifiers [Example-1]
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Figure 3.4: Comparison of MAE curves obtained for selected identifiers [Example-1]

of the identifiers is evaluated against major performance parameters such as AMSE, AMAE,

and RMSE. From the simulation results, it can be seen that the proposed CRFNN model is

capable of extracting the dynamics of the system.

3.5.3 Random sine wave noise injection test [Example-1]

Again to validate the efficiency of the proposed identifier, a random sine wave dis(k) = sin(2πk
15 )

was added to the network as a disturbance signal between the time interval 250 < k < 450.

Initially, the network fluctuated during this interval and deviated from the plant response. With

continuous training, the network managed to track back the plant response in a very short time.

The proposed network is found efficient in learning the input-output patterns and predicting

the similar unknown patterns supplied to them. The response of the proposed CRFNN under

the effect of random noise is shown in Figure 3.5. Table 3.1 gives the comparison of proposed

CRFNN with ENN, JNN, FFNN, and LRNN models. From the table, the proposed structure

is found to have better performance indices.

3.5.4 Example-2: A nonlinear plant with order 3

The proposed structure is further tested for identification ability by applying another nonlinear

plant equation of order 3. The plant equation is given below as in [36]:
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Figure 3.5: Effect of random sine noise [Example-1]

yp(k) = 0.72yp(k − 1) + 0.025yp(k − 2)r(k − 1) + 0.001r2(k − 2) + 0.2r(k − 3) (3.33)

The proposed structure is applied with an external input r(k) = sin(2πk
100 ). The plant equation

takes the identification structure as below:

yp(k) = g[yp(k − 1), yp(k − 2), r(k − 1), r(k − 2), r(k − 3)] (3.34)

Where g is the nonlinear function. When CRFNN, LRNN, FFNN, ENN, and JNN are selected

as identifiers, they take the following identification model as below:

ycfrnn(k) = ĝ1[yp(k − 2), r(k)] (3.35)

ylrnn(k) = ĝ2[yp(k − 2), r(k − 1), r(k)] (3.36)

yffnn(k) = ĝ3[yp(k − 2), yp(k − 1), r(k − 2), r(k − 3)] (3.37)

yENN(k) = ĝ4[yp(k − 2), r(k − 1), r(k)] (3.38)

yJNN(k) = ĝ5[yp(k − 2), r(k − 1), r(k)] (3.39)
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where ĝ1, ĝ2, ĝ3, ĝ4, ĝ5 are the nonlinear functions to be identified. The models are tested by

supplying about 900 samples in batch mode of identification. From the results, it can be seen

that the proposed method shows the best efficiency compared to other selected neural models.

3.5.5 Parameter variation in testing phase [Example-2]

During validation, a new input r(k) is supplied to the network as below:

r(k) =



sin(πk)
40 , for 0 < k <= 250

0.09sin(πk)
45 −

cos(2πk)
40 , for 250 < k <= 450

0.3sin(2πk)
15 +

0.1sin(2πk)
320 +

0.6sin(2πk
40 , for 450 < k <= 900

(3.40)
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Figure 3.6: Comparison of identifier response obtained for selected identifiers [Example-2]

Figure 3.6 shows the response obtained from all the selected neural structures. The error is

found to decrease with time to a very minimum value. Figure 3.7 shows the MSE curve obtained

from selected neural structures. Figure 3.8 shows the MAE curve obtained from selected neural

structures. From above simulation results, it can be concluded that the proposed CRFNN

model identifies better dynamics of the system.
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Figure 3.7: Comparison of MSE curves obtained for selected identifiers [Example-2]
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Figure 3.8: Comparison of MAE curves obtained for selected identifiers [Example-2]
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3.5.6 Random sine wave noise injection test [Example-2]

Again a random sine wave dis(k) = sin(2πk
15 ) as disturbance is supplied to the network between

250 < k < 450 time interval. The structure was initially found to fluctuate and deviate from

the plant’s desired trajectory, yet managed to track the desired plant trajectory after more

training. Figure 3.9 shows the effect of random noise on the network. Table 3.2 gives the

comparison of proposed CRFNN with other selected identifiers. The proposed model is found

to give better performance indices over ENN, JNN, LRNN, and FFNN.
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Figure 3.9: Effect of random sine noise [Example-2]

Table 3.1: Performance comparison of CRFNN with other selected identifiers [Example-1]

S.no Parameters CRFNN FFNN LRNN ENN JNN
1 No of input parameters 02 04 03 03 03
2 No of hidden neurons 04 06 04 04 04
3 No of tunable weights

(excluding bias weights)
10 4 6 7 7

4 Computation time 30 sec 76 sec 50 sec 32 sec 26 sec
5 AMSE 0.0139 0.0336 0.0366 0.0230 0.0389
6 AMAE 0.0940 0.1994 0.1867 0.1831 0.1641
7 RMSE 0.0107 0.2930 0.1203 0.0915 0.0239

3.5.7 Example-3: Mackey-Glass time series identification

Further, the proposed identifier is tested on the benchmark nonlinear times-series prediction

problem. The well-known Mackey-Glass identification problem differential equation is given
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Table 3.2: Performance comparison of CRFNN with other selected identifiers [Example-2]

S.no Parameters CRFNN FFNN LRNN ENN JNN
1 No of input parameters 02 04 03 03 03
2 No of hidden neurons 04 06 04 04 04
3 No of tunable weights

(excluding bias weights)
10 4 6 7 7

4 Computation time 41 sec 67 sec 43 sec 46 sec 37 sec
5 AMSE 0.0137 0.0459 0.0324 0.0174 0.0297
6 AMAE 0.1096 0.2045 0.1968 0.1268 0.1727
7 RMSE 0.0446 0.0851 0.1221 0.999 0.1112

below [30]:
dyp(t)

dt
= −β × yp(t) + α × yp(t − τ)

1 + y10
p (t − τ) (3.41)

The series is applied with parameter values such as α = 0.2 and β = 0.1. Symbol t denotes the

time-series sequence of the prediction. When τ ≥17, the time-series prediction is found to have

a chaotic behavior. Hence the value of the sampling rate is selected as, τ=17. The equivalent

difference equation is given below:

yp(k) = −β × yp(k) + α × yp(k − τ)
1 + y10

p (k − τ) (3.42)

Out of the 900 samples considered, 500 values were taken for training, and the remaining 400

values were taken for validation. The proposed identifier takes the series-parallel model form

as ycrfnn(k) = [yp(k), yp(k − 17)]. The problem is applied to all the selected neural structures.

Figure 3.10 shows the response obtained from all the selected identifier models. Figure 3.11

shows the MSE curve obtained from all the selected identifier models. Figure 3.12 shows the

MAE curves obtained from all the selected identifier models.

3.5.8 Random sine wave noise injection test [Example-3]

The problem was also introduced to a sudden disturbance of sine wave, dis(k) = sin(2πk
15 )

between the time interval 250 < k < 450 to test its recovering ability. Figure 3.13 shows

the effect of random noise on the network. The network is found to work superior and more

efficiently compared to other selected neural structures. The same can be concluded from the

results of Table 3.3. The overall performance parameters are also achieved minimum for the

proposed CRFNN structure.
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Figure 3.10: Comparison of identifier response at the end of training [Example-3]
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Figure 3.11: Comparison of MSE curves obtained for selected identifiers [Example-3]

Table 3.3: Performance comparison of CRFNN with other selected identifiers [Example-3]

S.no Parameters CRFNN FFNN LRNN ENN JNN
1 No of input parameters 02 04 03 03 03
2 No of hidden neurons 04 06 04 04 04
3 No of tunable weights

(excluding bias weights)
10 4 6 7 7

4 Computation time 47 sec 67 sec 43 sec 49 sec 41 sec
5 AMSE 0.0065 0.0324 0.0281 0.0072 0.0156
6 AMAE 0.0755 0.0852 0.1271 0.0852 0.1271
7 RMSE 0.0525 0.1778 0.1821 0.0653 0.0396
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Figure 3.12: Comparison of MAE curves obtained for selected identifiers [Example-3]
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Figure 3.13: Effect of random sine noise [Example-3]

57



Chapter 3. A recurrent neural network-based identification of complex nonlinear dynamical
systems: a novel structure,stability analysis and a comparative study

3.6 Conclusion

In this paper, CRFFNN is proposed for the identification of complex nonlinear dynamical

systems. The proposed structure is the hybridization of the LRNN and a single-layer FFNN

model that are combined to develop the proposed model. With the help of three benchmark

non-linear problems, the structure’s performance is evaluated and compared with other well-

known neural models. The AMSE and AMAE values obtained are far less than other selected

neural structures considered in this work. The structure also required only a lesser number

of inputs and tunable parameters as compared to other structures. This is also an indication

that the proposed structure is independent of the order of the plant. From the results of a

random noise injection test, it is evident that the proposed structure can recover quickly and

adjust itself to the changing dynamics of the system. These characteristics make the structure

an efficient one for nonlinear identification. The structure can also be expanded to develop an

adaptive control of nonlinear dynamic systems. Furthermore, it is found that the structure is

resistant to perturbations and parameter modifications.
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Chapter 4

Simultaneous adaptive control and

modeling based on hybrid compound

recurrent feed-forward neural network:

Simulation and stability analysis

4.1 Introduction

In the previous chapter, we explored the efficiency of the proposed CRFNN for the identification

of nonlinear dynamic systems. Through the simulation study, we found that CRFNN captures

the temporal dynamics of a nonlinear system with exceptional accuracy. They are found

to have numerous advantages, including a simpler structure, an excellent adaptive ability to

handle input noise, and independence of the system’s order. The present work focuses on the

development of simultaneous intelligent control and modeling strategies utilizing the CRFNN

architecture. Nonlinear control theory has gained popularity in recent times for designing

nonlinear control systems. While linear control theory approaches, such as PID controllers,

state space control approaches, have been used to identify and handle non-linear dynamic

systems since the late 1930s, they have many limitations [113], [114]. This resulted in the

development of nonlinear control theory methods including sliding mode control (SMC) [115],

robust control [116], adaptive control [117], and fuzzy-based control [118]. Adaptive controllers,

among these, have received a lot of interest from researchers. Unlike other control approaches,

adaptive control generates control inputs by taking the system’s slowly varying dynamics into
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account and driving it to follow the desired control law [41], [42]. As a result, even in the

presence of disturbance, the controller performance is faster and better. Among the types of

adaptive controller, indirect adaptive control scheme is widely used due to their adaptability

to their changing environment. For designing an effective controller using the indirect adaptive

control scheme, the knowledge regarding the plant must be known. When the knowledge

regarding the plant is unknown, identification is required. This has motivated us to develop an

effective control scheme for identification-based adaptive control of nonlinear dynamic systems.

Both the identifier and controller use the hybrid CRFNN model. The hybrid neuro architecture

takes advantage of both the feed-forward and recurrent structure (fast processing capacity and

the presence of memory neurons). The structure is trained online, therefore the structure does

not require prior information about the plant. The gradient-descent-based BP is applied to

dual up the weight equations and the convergence is proved using the Lyapunov-based stability

principles. The efficiency of the based controller is tested on two benchmark plant equations

of varying degrees and is also analyzed for their disturbance ability over selected neural-based

controllers such as LRNC and JNC.

4.2 HFRNN based indirect adaptive control scheme for

nonlinear dynamical systems

Figure 4.1 shows the block diagram of the proposed indirect adaptive control scheme. The pro-

posed controller scheme consists of two major blocks: HFRNN-based identifier and HFRNN-

based controller. The controller scheme is trained online in real time by simultaneously iden-

tifying the plant model through an identifier. The HFRNN-based identifier is used to identify

the unknown plant and the HFRNN-based controller to produce the control input uc(k). Both

the parameters are trained using the backpropagation algorithm. The HFRNN-based controller

takes the external input r(k), previous control input uc(k−1), and output of the plant yp(k−1)

as inputs. The weights of the controller are updated by detecting the error between the plant

and the reference model and are updated continuously until the control error is minimized.

The plant remains generally unknown, hence the information about the plant is crucial for

properly tuning the controller. The HFRNN-based identifier will estimate the plant sensitiv-

ity for the controller. The HFRNN-based identifier takes the present control input uc(k) and

previous plant output yp(k − 1) as inputs. The identifier is trained using the error generated
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Figure 4.1: Block diagram of the proposed HFRNN scheme

between the output of the plant and the neural identifier and is updated continuously until the

identification error is minimized. The training continues until the control error is minimized

and the plant tracks the reference model.

4.3 Problem statement

Let’s consider a plant yp(k) represented by the following difference equation as follows:

yp(k + 1) = f [yp(k), yp(k − 1), .., yp(k − n), uc(k), uc(k − 1), .., uc(k − m)] (4.1)

where yp(k + 1) denotes the one-step ahead output of plant model, n refers to the order of

the plant and m refers to the order of the controller input uc(k), f refers to the unknown

differentiable nonlinear function. Let’s consider a reference model with the following difference

equation :

ym(k + 1) = g[ym(k), ym(k − 1), .., ym(k − n), r(k), r(k − 1), .., r(k − m)] (4.2)
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Where ym(k + 1) refers to the one-step ahead output of the reference model, n denotes the

order of the reference model and m denotes the order of external input r(k), g denotes the

unknown nonlinear function that is assumed differentiable. The main objective of our work is

as follows: 1. To identify the unknown plant model by minimizing the error between the plant

and the identified neural model. This is done by updating the identifier weight equations based

on the error between the plant and the identified neural model such that

lim
k→∞

|yp(k + 1) − yhni(k + 1)| ≤ ϵ (4.3)

where ϵ → 0. 2. To make the plant follow the reference model by determining the control input

uc(k). This is achieved by continuously training the ANN-based controller update equations

to generate a control input uc(k) such that

lim
k→∞

|ym(k + 1) − yp(k + 1)| ≤ ϵ (4.4)

where ϵ → 0. The error between the plant and the reference model updates the controller

equations.

4.4 Lyapunov stability analysis

The convergence of the proposed structure is studied using the Lyapunov notion of stability.

According to the Lyapunov stability criteria, if there is any energy measure in the system, then

the rate of change of error derives the stability of the system. This study involves declaring

the weight update equations of the structure and checking whether stability is achieved or

not. The system is found to have achieved stability when the Lyapunov-based error function

is minimum and positive. The goal is to minimize the Lyapunov function V (W ):

J = min(V (W )) (4.5)

V (W ) > 0 for W > 0 V (W ) = 0 for W = 0 ∆V (k) ≤ 0 (4.6)
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where V(W) is the Lyapunov function and W denotes the weight of the network. For the

discrete-time, the change in the Lyapunov function is:

∆V (k) = V (k) − V (k − 1) (4.7)

To update weights using the stochastic gradient descent formula:

Wi(k + 1) = Wi(k) − η
∂E(k)
∂Wi(k) (4.8)

where η is the learning rate and E(k) is the error function. Assuming that the Lyapunov

function V (k) measures the error at each iteration, we can express it as:

V (k) = E(k) (4.9)

The change in the Lyapunov function becomes:

∆V (k) = E(k) − E(k − 1) (4.10)

Substituting the weight update :

E(k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) (4.11)

Now, substituting this back into the expression for ∆V (k):

∆V (k) = E(k − 1) − η
∂E(k − 1)
∂Wi(k − 1) − E(k) (4.12)

∆V (k) = −η
∂E(k − 1)
∂Wi(k − 1) (4.13)

Conditions for stability: For the system to be stable, ∆V (k) < 0:

−η
∂E(k − 1)
∂Wi(k − 1) < 0 (4.14)

This condition is met when η is positive and small, and ∂E(k−1)
∂Wi(k−1) > 0. This indicates that the

Lyapunov function decreases as the error E(k) decreases, yet the system stays stable.
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4.5 Learning algorithm

The gradient descent-based BP algorithm is used for updating the controller and identifier

weights. The main objective is to minimize the control error Ec(k). It is the instantaneous

error calculated between the reference model output and the plant output. Ec(k) is given by:

Ec(k) = 1
2[ec(k)]2 (4.15)

where, ec(k) = ym(k)−yp(k). Here, ym(k) and yp(k) denote the reference model output and the

plant output respectively. To update the controller weights in the output layer, the gradient

chain rule is applied by calculating the change of gradient of Ec(k) with respect to recurrent

output weight Worc(k) as below:

∂Ec(k)
∂Worc(k) = ∂Ec(k)

∂yp(k) × ∂yp(k)
∂uc(k) × ∂uc(k)

∂Worc(k) (4.16)

On simplification:
∂Ec(k)

∂Worc(k) = −e(k) × Rj(k) × J(k) (4.17)

Further to update the weight, the SGD formula is applied as:

Worc(k + 1) = Worc(k) + η

(
− ∂Ec(k)

∂Worc(k)

)
(4.18)

Similarly to update the controller’s output weight Wofc(k), the gradient change of Ec(k) with

respect to Wofc(k) is calculated as follows:

∂Ec(k)
∂Wofc(k) = ∂Ec(k)

∂yp(k) × ∂yp(k)
∂uc(k) × ∂uc(k)

∂Wofc(k) (4.19)

where ∂Ec(k)
∂yp(k) = −e(k), ∂yp(k)

∂uc(k) = Fj(k) and ∂uc(k)
∂Wofc(k) = J(k), so above equation can be written as

follows:
∂Ec(k)

∂Wofc(k) = −e(k) × Fj(k) × J(k) (4.20)

Again, the weight update equation of Wofc(k) is given by :

Wofc(k + 1) = Wofc(k) + η

(
− ∂Ec(k)

∂Wofc(k)

)
(4.21)
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Similarly, the hidden layer local weights of the controller Whc(k) is updated as follows:

∂Ec(k)
∂Whc(k) = ∂Ec(k)

∂yp(k) × ∂yp(k)
∂yrc(k) × ∂yrc(k)

∂uc(k) × ∂uc(k)
∂Whc(k) (4.22)

On simplification:

∂Ec(k)
∂Whc(k) = −e(k) × (I − R2

j (k)) × Worc(k) × T (k) (4.23)

where T (k) denotes the delayed states of the self-recurrent hidden nodes in the LRNN network.

Every calculation of the controller requires knowledge of the changing dynamics of the plant,

and J(k) computes the sensitivity of the controller. If the plant is completely unknown, it be-

comes very necessary to design an online identifier in parallel to the controller to automatically

adapt to the changing dynamics. The proposed structure is trained online, hence requiring

the weights and errors of the identifier to be updated simultaneously with the controller pa-

rameters. Ei(k) is the instantaneous error calculated between the plant, yp(k) and the neural

identifier, yhni(k). The instantaneous error is calculated by:

Ei(k) = 1
2[ei(k)]2 (4.24)

where, ei(k) = yp(k) − yhni(k). As the structure is trained online, the output of the controller

uc(k) becomes one of the inputs of the identifier. This results in calculation of ∂yp(k)
∂uc(k) . This

indicates the Jacobian matrix, J(k). This computation updates the FFNN identifier weights

Wifc(k) with respect to Ec(k). For this, the gradient of Ec(k) is calculated with respect to

Wifc(k)
∂Ec(k)

∂Wifc(k) = ∂Ec(k)
∂yp(k) × ∂yp(k)

∂yfc(k) × ∂yfc(k)
∂uc(k) × ∂uc(k)

∂Wifc(k) (4.25)

On substituting the values:

∂Ec(k)
∂Wifc(k) = −e(k) × wofc(k) × (I − F 2

j (k)) × X(k) (4.26)

Further, the weights wifc(k) are updated using the weight update rule applied as below:

wifc(k + 1) = wifc(k) + η

(
− ∂c(k)

∂wifc(k)

)
(4.27)
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Here, η denotes the static learning rate and is taken between 0 and 1. As the training progresses,

the neural network starts following the plant model i.e ∂yhni(k)
∂uc(k) ≈ ∂yp(k)

∂uc(k) . Once this is achieved,

the identified model can accurately represent the changing dynamics of the plant. With the

unknown plant identified, the HFRNN-based controller starts to learn the dynamics and hence

the plant model starts to follow the reference model i.e. ∂yp(k)
∂uc(k) ≈ ∂ym(k)

∂uc(k) . Figure 4.2 illustrates

the various iterative steps followed in training the controller scheme.

Figure 4.2: Steps followed in training HFRNN-based controller structure

4.6 Simulation examples

To evaluate the efficiency of the proposed HFRNN-based controller, the controller is compared

with two other neural-based controllers such as the Jordan-based neural network controller

(JNC), and the local recurrent-based neural network controller (LRNC) on two different non-

linear plant equations of varying degrees. All the controllers are designed with a single hidden

layer with 20 neurons and a static learning rate of 0.001. The initial weights and biases are

taken randomly in the interval (0,1). The controller is trained online for about 15000 seconds.
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4.6.1 Example 1: A nonlinear dynamic plant equation

In this example, a plant with the following difference equation is considered as in [45].

yp(k + 1) = 5yp(k)yp(k − 1)
(1 + yp(k)2 + yp(k − 1)2 + yp(k − 2)2) + uc(k) + 0.8uc(k − 1) + v(k) (4.28)

The nonlinear plant takes the identification structure as below:

yp(k + 1) = f [yp(k), yp(k − 1), yp(k − 2), uc(k), uc(k − 1)] (4.29)

Consider a reference model with the following difference equation:

ym(k + 1) = 0.72ym(k) + 0.64ym(k − 1) − 0.5ym(k − 2) + r(k) (4.30)

where f is the nonlinear function, r(k) denotes the external reference input, uc(k) is the

control input generated by the controller and v(k) denotes the disturbance signal. The system

is applied with an external reference input r(k) = sin(2πk
25 ). The disturbance applied to the

system initially is v(k) = 0. The main objective is to obtain the control input uc(k) and make

the plant follow the reference model. The inputs of the controller are [yp(k), yp(k − 1), yp(k −

2), r(k), uc(k − 1), uc(k − 2)] and that of identifier are [uc(k), yp(k − 1), yp(k)]. Figure 4.3 shows

the open-loop response of the plant. It can be seen that, without controller action, the plant

does not track the reference model. Figure 4.4 and Figure 4.5 show the response of the plant

during the initial and final stages of training. It is observed initially, that the plant does not

follow the reference model. But, as training progresses, the plant starts to follow the reference

model and after 15000 epochs, the error minimizes and converges to a minimum value. The

instantaneous MSE obtained is also shown in Figure 4.6. It is evident from Figure 4.6 and

Table 4.1 that the proposed controller gives good control performance even with a minimum

number of parameters. On the other hand, both JNC and LRNC take time to converge to a

minimum MSE.
Table 4.1: Comparison of controller parameters [Example-1]

S.No Structure Instantaneous
MSE

Simulation
time (secs)

1 HFRNN based controller 0.0010 1.39
2 JNC 0.0244 1.66
3 LRNC 0.0095 2.35
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Figure 4.3: Plant’s response without controller action [Example-1]
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Figure 4.4: Response obtained from the plant during the initial training phase [Example-1]
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Figure 4.5: Response of controllers during the final phase of training [Example-1]

1.49 1.4905 1.491 1.4915 1.492 1.4925 1.493 1.4935 1.494

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (secs)

In
s

ta
n

ta
n

e
o

u
s

 M
S

E

 

 
LRNC

JNC

HFRNN based Controller

1.4918 1.492 1.4922

x 10
4

0.2

0.4

0.6

 

 

Figure 4.6: Comparison of Instantaneous MSE curves [Example-1]
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4.6.2 Disturbance testing

To validate the recovering ability of the proposed controller, a sudden disturbance signal

dis(k) = sin(2πk
40 ) is introduced between the time interval 9000 < k ≤ 11000. A static learning

rate of 0.001 is considered, and the effect of external noise on the HFRNN-based controller,

JNC, and LRNC was analyzed. Initially, the system deviated from the reference model due

to the disturbance signal. But with training, the control parameters were adjusted to the

changing environment and the system recovered. However, it took a little longer time. The

instantaneous MSE during the disturbance signal of an HFRNN-based controller is found to

be very small as compared to JNC and LRNC. The MSE obtained for the based controller was

around 0.0653. Refer to Figure 4.7 for the comparison of the effect of disturbance signal over

HFRNN-based controller, JNC, and LRNC.
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Figure 4.7: Comparison of the effect of external noise on controllers [Example-1]

4.6.3 Recovering ability of the HFRNN based controller

The recovering ability of the proposed controller was also tested by changing the reference

input. For this, a new reference input r(k) was considered as below between the interval

5000 < k ≤ 15000:
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Figure 4.8: Recovering ability of HFRNN based controller to change in reference input
[Example-1]

r(k)=


sin
(

2πk
25

)
, for 0 < k ≤ 5000

sin
(

2πk
25

)
+ sin

(
2πk
10

)
, for 5000 < k ≤ 15000

(4.31)

When the reference input was changed after 5000 training epochs, the network was able to

capture and adapt to the new reference input. The controller was found to show good recovering

ability. Figure 4.8 shows the recovering ability of the based controller to the new reference input.

Table 4.2: Comparison of performance of controller parameters [Example-2]

S.No Structure Instantaneous
MSE

Simulation
time (secs)

1 HFRNN based
controller

3.160 × 10−4 1.52

2 JNC 0.0012 1.43
3 LRNC 0.0111 2.43

Testing of models with Square wave as a reference signal

The controller was further supplied with a square waveform as a reference signal to test the

recovery ability. The network was found to capture and adapt to a new reference input. For

this, the new reference input r(k) = square(πk
40 ) was considered. The controller showed good

adaptability, with the plant slowly following the desired model. During the end of the training,

the plant response resembled the desired model. The instantaneous MSE of the proposed
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Figure 4.9: Response of controllers with a square waveform as a reference signal [Example-1]
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Figure 4.10: Response of controllers for different initial conditions [Example-1]
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Figure 4.11: Instantaneous MSE of controllers for different initial conditions [Example-1]

0 500 1000 1500 2000 2500
−8

−6

−4

−2

0

2

4

6

8

10

Time (secs)

y
p

(k
) 

a
n

d
 y

m
(k

)

 

 
Response of the plant

Reference model

Figure 4.12: Plant’s response without controller action [Example-2]
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Figure 4.13: Response obtained from the plant during the initial training phase [Example-2]
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Figure 4.14: Response of controllers during the final phase of training [Example-2]
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Figure 4.15: Comparison of Instantaneous MSE curves [Example-2]
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Figure 4.16: Comparison of the effect of external noise on controllers [Example-2]
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Figure 4.17: Recovering ability of HFRNN based controller [Example-2]

HFRNN controller is found to be 4.7 × 10−7 and that of JNC and LRNC are found to be

4.88 × 10−8 and 6.17 × 10−7 respectively. Figure 4.9 shows the responses of the controller

during the final stages of training with a square waveform as a reference signal.

Testing of models with different initial conditions

Additionally, the controller was also tested by assigning a different initial condition of interval

(-1,1) for weights and biases. Initially, the plant failed to track the reference model, but with

training and updates to network weights through the BP algorithm, the controller started to

learn the dynamics of the plant. Towards the end of training, it is found to resemble the

desired response of the plant. Figure 4.10 shows the response of the controller during the

final stages of training. The instantaneous MSE is also shown in Figure 4.11. The proposed

HFRNN controller is seen to provide better MSE compared to other selected JNC and LRNC

controllers.

4.6.4 Example 2: A non-linear dynamic plant

To test the efficiency of the proposed controller, another BIBO plant in [45] is considered:

yp(k + 1) = yp(k)
(1 + yp(k − 1)2) + uc(k)3 + v(k) (4.32)
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The nonlinear plant takes the identification structure as below: yp(k + 1) = f [yp(k), yp(k −

1), uc(k)] The reference model is given by the following difference equation:

ym(k + 1) = 0.72ym(k) + 0.64ym(k − 1) − 0.5ym(k − 2) + r(k) (4.33)

where f is the nonlinear function, r(k) denotes the external reference input, uc(k) is the control

input generated by the controller and v(k) denotes the disturbance signal. The reference signal

applied to the system is, r(k) = sin(2πk
25 ). The inputs of the controller are [yp(k), yp(k −

1), yp(k − 2), r(k), uc(k − 1), uc(k − 2)] and that of identifier are [uc(k), yp(k − 1), yp(k)]. The

response of the plant without controller action is shown in Figure 4.12. The plant does not track

the desired model response without controller action. With the application of the controller,

the plant slowly starts to follow the desired model and after 15000 epochs the plant resembles

the desired model response. Figure 4.13 shows the responses of the controller during the initial

training phase and Figure 4.14 shows the responses of the controller during the final stages of

training. The plant is trained online and the instantaneous MSE is also shown in Figure 4.15.

The MSE is found to increase to the maximum during the initial stages of training and has

reached a minimum value after 15000 epochs. The Figures 4.13 and 4.14 and the Table 4.2

show that the HFRNN-based controller performs better than the Jordan and the LRNN-based

controller scheme.

4.6.5 Disturbance testing

To examine the recovering ability of the proposed controller, a sudden disturbance signal,

dis(k) = sin(2πk
40 ) was added between the time interval 9000 < k ≤ 11000. A static learning

rate of 0.001 was considered and the effect of external noise on HRC, JNC, and LRNC was

observed. The MSE of all controllers is found to increase with the addition of external noise.

This is due to the model deviating from the reference model. After a few epochs of training,

the system is seen to adapt to its new changes with MSE decreasing. The instantaneous MSE

of the proposed controller is found to be very small around 0.0080 as compared to JNC and

LRNC. Figure 4.16 shows the effect of disturbance on the proposed controller, JNC and LRNC.
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4.6.6 Recovering ability of the HFRNN based controller

The recovering ability of the proposed controller was also tested by changing the reference

input. When the reference input was changed from the previous one to the new one, the

network was able to capture and adapt to the new reference input. For this, the new reference

input r(k) is considered as below between the interval 5000 < k ≤ 15000:

r(k)=


sin
(

2πk
25

)
, for 0 < k ≤ 5000

sin
(

2πk
25

)
+ sin

(
2πk
10

)
, for 5000 < k ≤ 15000

(4.34)

Figure 4.17 shows the online adaptability of the controller.

Testing of models with Square wave as a reference signal

The controller was also supplied with a square waveform as a reference signal to test the recovery

ability. The network was found to capture and adapt to a new reference input. For this, the

new reference input r(k) = square(πk
40 ) was considered. The controller was found to show good

adaptability. The plant slowly starts to follow the desired model and after 13000 epochs the

plant resembles the desired model response. The instantaneous MSE of the proposed HFRNN

controller is found to be 1.660 × 10−7 and that of JNC and LRNC is found to be 9.880 × 10−7

and 6.000×10−7 respectively. Figure 4.18 shows the responses of the controller during the final

stages of training with a square waveform as a reference signal.

Testing of models with different initial conditions

The controller was also tested by assigning a different initial condition of interval (-1,1) for

weights and biases. Initially, the plant does not track the reference model, but with training

and an update of network weights through the BP algorithm, the controller starts to learn the

dynamics of the plant, and slowly towards the end of training it is found to resemble the desired

response of the plant. Figure 4.19 shows the response of the controller during the initial and

final stages of training. The instantaneous MSE is also shown in Figure 4.20. The proposed

HFRNN controller is seen to provide a better MSE as compared to other selected JNC and

LRNC controllers. From the results, it is very evident that the structure could capture the

changing dynamics of the plant very efficiently. The proposed approach is order-independent

and the structure is also simple as compared to other recurrent structures in the literature. All

78



Chapter 4. Simultaneous adaptive control and modeling based on hybrid compound
recurrent feed-forward neural network: Simulation and stability analysis

1.484 1.486 1.488 1.49 1.492 1.494 1.496 1.498 1.5

x 10
4

−5

0

5

10

15

Time (secs)

y
p

(k
) 

a
n

d
 y

m
(k

)

 

 

HFRNN based controller

Referance model

JNC

LRNC

1.483 1.484 1.485 1.486

x 10
4

−8
−6
−4
−2

0
2
4

 

 

Figure 4.18: Response of controllers with a square waveform as a reference signal[Example-2]

1.47 1.475 1.48 1.485

x 10
4

−8

−6

−4

−2

0

2

4

6

8

10

12

14

Time (secs)

y
p

(k
) 

a
n

d
 y

m
(k

)

 

 
JNC

Reference model

LRNC

HFRNN based controller

Figure 4.19: Response of controllers for different initial conditions [Example-2]
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Figure 4.20: Instantaneous MSE of controllers for different initial conditions [Example-2]

the selected controller structures were provided with the same inputs and hidden neurons. The

proposed HFRNN though initially took time to adapt to changes, but with iterative learning,

it was able to track the reference model. The model is more efficient than JNC and LRNC, as

shown by the lower MSE for HFRNN.

4.7 Conclusion

In this paper, an HFRNN-based indirect adaptive control scheme for the identification-based

control of nonlinear dynamic systems. The controller scheme has both identifier and controller

blocks. The controller’s performance is compared with Jordan neural controller (JNC) and

Local recurrent neural Controller (LRNC) models. The proposed model gives better MSE

than JNC and LRNC for any degree of BIBO system. The proposed model can be used to

control the unknown plant applications as the sensitivity of the plant is identified online through

the HFRNN-based identifier block. The stability and convergence of the updated equations

are guaranteed by Lyapunov stability principles. The proposed model is also tested for its

recovering ability and its ability to recover from disturbance. The results suggest that the

proposed model can be used for real-time nonlinear applications in the future.
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Chapter 5

A hybrid constructive training of

FFNN and RNN using adaptive

learning rate for nonlinear system

identification

5.1 Introduction

The identification and control of nonlinear dynamic systems were explored in the previous chap-

ter using the RNN structures with a fixed structure and fixed learning rate. These approaches

provided a reliable framework for modeling and real-time control of complex dynamical systems

but they are limited by the static nature of the network and the learning rate, which may not

fully utilize the system’s ability to expand as the problem becomes more complicated. The

performance of any type of ANN depends on the architecture, size of the network, number

of hidden neurons, number of hidden layers, and training parameters [119]. The architecture

of ANN (FFNN, RNN, and so on) is mostly selected through trial and error based on the

user experience. These fixed networks are trained using either standard gradient descent-based

algorithms such as BP or evolutionary algorithms. The resulting networks are either large or

small. Bigger complex networks tend to overfit the data and result in poor generalization.

Smaller networks lead to poor convergence and irregular pattern learning [120]. Likewise, the

value of the learning rate also influences the speed and convergence of the algorithm. A smaller

learning rate leads to slow convergence and a higher learning rate leads to faster convergence
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and instability. To address these limitations, this chapter introduces a novel methodology that

employs a growing neural network with ALR. A novel hybrid constructive algorithm for FFNN

and LRNN for identifying non-linear dynamical systems is proposed. The constructive algo-

rithm for FFNN is denoted as CFFNN and the constructive algorithm for LRNN is denoted

as CLRNN. This approach allows the network to dynamically grow its structure, optimizing

complexity and improving generalization. The integration of ALR into a novel constructive

algorithm enhances the training process by adjusting the learning rate leading to faster conver-

gence and stability of the network. The learning rate conditions are derived to generate system

stability using the Lyapunov stability theory. The performance of the proposed CFFNN and

CLRNN with ALR is evaluated under various conditions, demonstrating their advantages over

fixed-neural structures.

5.2 Mathematical structure of FFNN and LRNN

5.2.1 Feed forward neural network

In this section, the structure of FFNN is discussed as shown in Figure 5.1.

Figure 5.1: FFNN structure

1. Input layer : The input layer has input neurons and the input vector is denoted as

X(k) = [X1(k), X2(k), ..., Xn(k)]. The input weight vector is given as Wi(k). In our

problem, three inputs y(k), y(k − 1), r(k) are considered for constructing the FFNN net-

work.
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2. Hidden layer: In this layer, each neuron processes the information from the input layer

to the output layer. It is acted upon by either a linear or non-linear activation function.

The output of the kth hidden layer is

hn(k) = f1

(
n∑

i=1
X(k − i)Wi(k) + bi(k)Wbi(k)

)
(5.1)

Here, bi(k) denotes the input bias vector, Wbi(k) denotes the input bias weight vector

and f1 denotes the non-linear activation function of the hidden layer.

3. Output layer: The output layer computes the final output values as

yffnn(k) = f2

(
m∑

i=1
hn(k)Wo(k) + bo(k)Wbo(k)

)
(5.2)

Here, yffnn(k) is one step ahead predicted output of the network, bo(k) denotes the output

bias vector, Wbo(k) denotes the output bias weight and f2 denotes the linear activation

function of the output layer.

5.2.2 Local recurrent neural network

In this section, the structure of LRNN is discussed as shown in Figure 5.2.

Figure 5.2: LRNN structure
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1. Input layer : The input layer has ’m’ input neurons and the input vector is denoted

as X = [X1(k), X2(k), ..., Xm(k)]. The input weight vector is given as Wir(k). In our

problem, two inputs y(k − 1), r(k) are considered for constructing the LRNN network.

The RNN takes fewer inputs as compared to FFNN due to the presence of memory

connections in their architecture.

2. Hidden layer: Each neuron in this layer processes the information received from the

input layer and its self-recurrent layer to the output layer. It is acted upon by either a

linear or non-linear activation function. The output of the kth hidden layer is

hrn(k) = g1

(
m∑

i=1
X(k − i)Wir(k) + br(k)Wbr(k) + P (k)wrr(k)

)
(5.3)

Here, br(k) denotes the input bias vector, Wir(k) denotes the input bias weight, Wbr(k)

denotes the bias weight, P (k) denotes the self-recurrent hidden neurons and g1 denotes

the non-linear activation function of the hidden layer.

3. Output layer: The output layer computes the final output values as

ylrnn(k) = g2

(
m∑

i=1
Hrn(k)Wor(k) + bo(k)Wbo(k)

)
(5.4)

Here, ylrnn(k) is one step ahead predicted output of the network, bo(k) denotes the output

bias vector, Wbo(k) denotes the output bias weight, and g2 denotes the linear activation

function of the output layer.

5.3 Learning algorithm

To update the training parameters of CLRNN and CFFNN, a gradient descent-based BP

algorithm with ALR is used. The weights to be updated for the proposed algorithm include

[Wi(k), Wo(k), Wir(k), Wrr(k), Wor(k)]. The computation of gradient is performed layer by layer

in both the cases of FFNN and LRNN. We have considered one output for this problem. yffnn

denotes output of FFNN and ylrnn denotes the output of LRNN. As with another gradient-

based algorithm, the gradient is obtained with respect to the learning error. The weights are

trained every epoch to reduce the cost function. MSE is considered as the cost function in this
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work and is calculated as :

E(k) = 1
2e(k)2 (5.5)

The errors are backpropagated from the output through the hidden layer to update the output

layer weights of both FFNN and LRNN. Now, to update the input layer weights of both

structures, the errors are back-propagated from the output layer through the hidden layer to

the input layer. For FFNN, the input weights Wi(k) and output weights Wo(k) are updated

by calculating the change of gradient of the error with respect to weights as:

∂E(k)
∂Wo(k) = −e(k) × ∂yffnn(k)

∂Wo(k) (5.6)

∂E(k)
∂Wi(k) = −e(k) × ∂yffnn(k)

∂hn(k) × ∂hn(k)
∂Wi(k) (5.7)

Where e(k) = yp(k) − yffnn(k) is the learning error of the feed-forward network.

Similarly, for LRNN the input weights Wir(k), self-recurrent hidden weights Wrr(k), and output

weights Wor(k) are updated by calculating the change of gradient of the error with respect to

weights as:
∂E(k)

∂Wor(k) = −e(k) × ∂ylrnn(k)
∂Wor(k) (5.8)

∂E(k)
∂Wir(k) = −e(k) × ∂ylrnn(k)

∂hrn(k) × ∂hrn(k)
∂Wir(k) (5.9)

∂E(k)
∂wrr(k) = −e(k) × ∂yLrnn(k)

∂hrn(k) × ∂hrn(k)
∂wrr(k) (5.10)

The new weights are calculated as per the stochastic gradient weight update rule as

W (k + 1) = W (k) − ηe(k) ∂E(k)
∂W (k) (5.11)

Where W (k) is the weight matrix given as W = [Wi(k), Wir(k), Wrr(k), Wor(k), Wo(k)]. η is

the adaptive learning rate. For the initial iteration, η is chosen as 0.001. Further, the learning

rate is adjusted based on the fractional error ef (k), given by

ef (k) = mse(k) − mse(k − 1)
mse(k) (5.12)

where mse(k) is the cost function. The learning rate is increased or decreased based on the

value of validation MSE.
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5.4 Lyapunov stability analysis for adaptive learning rate

The learning rate is derived using the Lyapunov stability principles. The stability and conver-

gence of the proposed algorithm are also studied using Lyapunov stability principles. According

to Lyapunov stability, the system achieves stability when the Lyapunov-based function is min-

imum and positive. To derive the conditions, firstly a Lyapunov-based function V (k) is chosen

such as :

V (k) = 1
2e2(k) (5.13)

V (k) > 0 for e(k) ̸= 0 and V (k) = 0 for e(k) = 0.

The time derivative of the Lyapunov function is

˙V (k) = V (k + 1) − V (k) (5.14)

(or)
˙V (k) = 1

2e2(k + 1) − 1
2e2(k) (5.15)

Further expressing e(k + 1) in terms of e(k) as

e(k + 1) = e(k) + ∆e(k) (5.16)

where ∆e(k) is the change in error defined as δe(k)
δw(k)∆w(k). During learning rate adjustment,

the change of error ∆e(k) becomes

∆e(k) = −α × ηk × e(k) (5.17)

Substituting Eq.(5.17) into Eq.(5.16),

e(k + 1) = e(k) − α × ηk × e(k) (5.18)

(or)

e(k + 1) = e(k)[1 − α × ηk] (5.19)
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Substituting Eq.(5.19) into Eq.(5.14),

˙V (k) = 1
2e2(k)[1 − αηk]2 − 1

2e2(k) (5.20)

(or)
˙V (k) = 1

2e2(k)([1 − αηk]2 − 1) (5.21)

(or)
˙V (k) = 1

2e2(k)([1 − 2αηk + α2η2
k − 1) (5.22)

(or)
˙V (k) = 1

2e2(k)([−2αηk + α2η2
k) (5.23)

The condition for stability is ˙V (k) ≤ 0. Therefore, from Eq.(5.23),

−2αηk + α2η2
k ≤ 0 (5.24)

(or)

ηk(−2α + α2ηk) ≤ 0 (5.25)

(or)

ηkα(−2 + α2ηk) ≤ 0 (5.26)

where learning rate is ηk and α is the constant. From above Eq.(5.26), the value of learning

rate is 0 ≤ ηk ≤ 2
α2 . The system remains bounded and does not diverge, as long as the learning

rate is within this range and ˙V (k) remains negative and converges to 0 as limk→∞ V (k) = 0

5.5 A constructive approach for growing feed-forward

and recurrent networks

Figure 5.3 shows the main blocks of the constructive algorithm. The initial network is empty,

with only connections between the input and output layers. The algorithm enters the construc-

tive loop when the validation error is found more than the threshold efficiency. The hidden

layer forms the 1st connection with the input and output layer. This also results in the addition

of one new hidden neuron. The network’s performance is checked after every epoch until the
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stopping criteria are reached. The detailed steps followed in each block are discussed below:

Figure 5.3: A constructive algorithm procedure for feed-forward and recurrent networks

5.5.1 Building from an empty network

The network’s starting point consists of only the input and output layers and associated neu-

rons. The number of inputs in the prediction problem Xp equals the number of observations

O and the number of outputs in the prediction problem Yo equals the number of predictions

P (i.e) Xp = O, Yo = P . In our analysis, two inputs and one output are considered for LRNN,

and three inputs and one output are considered for FFNN structure. After the execution of

the first step, the LRNN and FFNN network structure is as in Figure 5.4 respectively.

(a) Initial CLRNN network (b) Initial CFFNN network

Figure 5.4: Initial network
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5.5.2 Adding Connections

This is the first step of building the constructive algorithm. The network is calculated for

the validation MSE. The validation MSE (MSEval) calculates the average of the squared

difference between the predicted and the actual values from the unseen validation data set. If

the MSEval(k) is found promising below the threshold efficiency (ϵ), then no new connections

are added as the network is found performing satisfactorily :

MSEval(k) ≤ ϵthreshold, no new neurons are added (5.27)

However, if there is no improvement in performance, then 1st hidden connection is added

successfully:

MSEval(k) > ϵthreshold, one new neurons is added (5.28)

The newly established neuron obtains each of the possible connections from input, output, and

self-recurrent neurons (in the case of LRNN). Figure 5.5 shows the addition of new connections

of CLRNN and CFFNN.

(a) Adding connection in CLRNN (b) Adding connection in CFFNN

Figure 5.5: Adding new connections

5.5.3 Adding neurons

The addition of neurons to the hidden layer of the network is done as follows:

1. If no hidden neurons are present, then the newly added neuron h1(k) becomes the first

hidden neuron in the network, forming the first hidden layer (shown with black lines

under the hidden layer in Figure 5.6).
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2. If hidden neurons (h1(k), h2(k), ..., hk(k)) are already present, then the newly added neu-

ron h(k + 1) will become part of the existing hidden layer (shown with red dotted lines

under hidden layer in Figure 5.6).

After the addition of each neuron, the network enters the constructive loop and performs the

following steps:

1. Forward pass: The forward pass is executed, processes the input data, and calculates

the output by using Eq.(5.1)-Eq.(5.4).

2. Calculation of Error and new learning rate: The error of the network is further

calculated and at the end of each epoch, the MSEval(k) is found and compared with a

desired threshold. If found higher, the adaptive learning rate is updated based on the

fractional error of the network.

3. Back propagation of error: The error is back propagated to update the weights for

the current epoch using Eq.(5.6)-Eq.(5.11).

4. Addition of new neurons: The performance of the network is checked for successful

decrement or increment of a validation error. The new neurons are added when the the

validation MSE is found to decrease at every epoch thus improving the performance. The

algorithm quits the constructive loop and enters the stopping criteria block. The perfor-

mance criteria such as RMSE and AMSE are also calculated to evaluate the performance

of the network.

(a) case 1: First neuron (b) case 2: subsequent neurons

Figure 5.6: Adding new neurons
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5.5.4 Terminating criterion

The terminating criterion of the algorithm is executed when the constructive loop faces failure

in more than 3 subsequent MSE epochs. The algorithm monitors the validation error at the

end of all epochs before the addition of a new novel neuron and it executes stopping criteria

in either of two cases:

1. Validation MSE is increasing for 3 cycles: The algorithm waits for three consecutive

cycles for the MSEval to decrease. If the condition is not met, no further neurons are

added:

If MSEval(k) > MSEval(k − 1) > MSEval(k − 2), no new neurons are added.

2. Validation MSE is decreased or remains the same for 3 cycles: If the validation

MSE has either remained the same or decreased constant for 3 consecutive training

cycles, then no new neurons are added further. In such case, the network is performing

satisfactorily and the addition of new neurons will lead to increased complexity (i.e)

If MSEval(k) ≤ MSEval(k − 1) ≤ MSEval(k − 2), no new neurons are added.

3. Maximum neurons reached: The algorithm also exits the constructive loop, if the

maximum neurons are reached

The final network through a constructive approach is obtained when no further neurons are

added to the hidden layer.

5.5.5 Adaptive learning rate

To improve the speed and performance of the network, a novel ALR is proposed with this

algorithm. When the learning rate remains fixed, the network fails to converge quickly and

gets stuck in local minima. Hence, it is required to adjust the step sizes based on the gradients.

When the gradients are large and the error remains small, a high learning rate is required and

at times when the gradients are small with large error, smaller learning rates are required.

Hence, ALR based on fractional error ef (k) is proposed in this work. For this, a fractional

error ef (k) is defined by calculating the relative change in MSE between consecutive iterations

as:

ef (k) = mse(k) − mse(k − 1)
mse(k) (5.29)
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where mse(k) is the cost function at iteration k. The ALR condition adapts as below: Based

on the fractional error ef (k), the learning rate is made adaptive as follows:

1. If the present value of MSE is less than the previous MSE, then the learning rate is

increased i.e.

if e < e(k − 1) then

η(k + 1) = η(k)(1 + αef (k))

end if

2. If the present value of MSE is greater than the previous MSE, then the learning rate is

decreased i.e.

if e ≥ e(k − 1) then

η(k + 1) = η(k)(1 − αef (k))

end if

Where the learning rate η(k) ranges from
(

0 < η < 2
α2

)
and α is the fixed scaling constant to

control the sensitivity of the change in error and to maintain stability throughout the procedure.

The value of α is taken as 0.001 for all examples.

5.6 Simulation experiments

In this section, the performance of CFFNN and CLRNN is tested over one example of nonlinear

plant equations of varying degrees and one nonlinear benchmark problem for simplicity. The

Mackey glass series is considered as the nonlinear benchmark problem. The initial parameters

are considered the same for both FFNN and LRNN structures as η = 0.001, α = 0.01. r(k)

denotes the external input of the plant, yp(k) denotes the output of the plant. The performance

of CLRNN and CFFNN is measured using RMSE and AMSE. The RMSE and AMSE are

defined as follows

RMSE(k) =
√∑N

i=0(yi − ŷi)2

N
(5.30)

AMSE(k) =

∑N−1
i=0 (yi−ŷi)2

N

k
(5.31)

where yi is the actual value, ŷi is the predicted value, N indicates the number of samples and

k is the number of iterations
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5.6.1 Example-1: A nonlinear plant equation

In this example, the performance of the algorithm is tested on the following II-order nonlinear

difference equation [36]

yp(k) = yp(k − 1)
1 + y2

p(k − 2) + r3(k − 1) (5.32)

The above equation depends on both past input and output values of the plant. The identifi-

cation structure of the plant can be written as

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 1)] (5.33)

The following external input r(k) is supplied to the plant :

r(k) = sin

(
2πk

40

)
(5.34)

The entire dataset is divided into training and validation values. A total of 1000 data samples

is considered with 500 values for training (t=1 to 500) and 500 values for validation (t=501

to 1000). The example is tested on both CFFNN and CLRNN algorithms. The maximum

number of neurons for all three structures is kept at 15.

Performance of CLRNN on example-1

The initial structure of the network is selected as 2-0-1 i.e. 2 input neurons as r(k) and y(k−1),

no hidden layer, and 1 output layer with 1 output neuron. The network takes the following

identification structure:

ylrnn(k) = f̂ [yp(k − 1), r(k)] (5.35)

The proposed CLRNN is compared with CLRNN with a fixed learning rate and fixed LRNN

structures. The initial MSE of CLRNN at the start of the training was found to be 0.016.

Figure 5.7 shows the predicted response of the CLRNN over selected LRNN structures. Figure

5.8 shows the effect of MSE on CLRNN over the increase of hidden neurons. From the results,

it is evident that the proposed algorithm is found to adjust and adapt the learning rate with the

training progress. The performance is found to be effective over time series prediction problems

even with fewer inputs and hidden neurons. At the final stages of training, RMSE is found to

be 0.2223 and AMSE is found to be 0.005. Table 5.1 shows the comparison of performance
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obtained for CLRNN over other selected structures. The number of neurons utilized by fixed

LRNN is 15 and that utilized by CLRNN is 10. After the final stages of training, CLRNN with

ALR results in 2-10-1 architecture with a fixed LRNN resulting in 2-15-1.

Performance of CFFNN on example-1

Generally, FFNN networks do not have memory neurons in their structure and so they require

more inputs as compared to RNN for effective prediction [121]. For training the FFNN network,

we have kept the initial structure of the network as 3-0-1 i.e. 3 input neurons as r(k), r(k − 1),

and y(k − 1), no hidden layer, and 1 output layer with 1 output neuron. The network takes

the following identification structure:

yffnn(k) = f̂ [yp(k − 1), r(k), r(k − 1)] (5.36)

The initial MSE at the start of the training was found to be 0.0089. The performance of CFFNN

is compared with CFFNN with a fixed learning rate and fixed FFNN structures. Figure 5.9

shows the predicted response of CFFNN over selected FFNN structures. Figure 5.10 shows the

effect of MSE over the increase of hidden neurons on CFFNN with ALR. From the results, it

is evident that the proposed algorithm is found to adjust and adapt the learning rate with the

training progress. The performance is found to be effective over time series prediction problems.

RMSE and AMSE of CFFNN are found to be 0.0167 and 0.0003 respectively at the final stages

of training. The number of neurons utilized by fixed FFNN is 15 and that utilized by CFFNN

is 12. After the final stages of training, CFFNN with ALR results in 3-12-1 architecture with

a fixed FFNN resulting in 3-15-1. Table 5.2 shows the comparison of performance obtained for

CFFNN over other selected structures.

5.6.2 Example-2: Mackey-Glass Time series problem

Further, the performance of the algorithm is tested on the following Mackey-glass series pre-

diction problem given by [122]

yp(k + 1) = (1 − α)yp(k) + b ∗ yp(k − τ)
1 + y10

p (k − τ) (5.37)
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Figure 5.7: Response of CLRNN over selected LRNN structures [Example-1]
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Figure 5.8: MSE curve over the addition of hidden neurons on CLRNN [Example-1]
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Table 5.1: Tabulation of performance of CLRNN over selected structures [Example-1]

S.No Algorithm Network
type

No of
samples in
each epoch

MSE AMSE RMSE

1 Traditional
Fixed

Learning
rate

LRNN 1000 0.0086 0.1173 0.0929

2 Hybrid
growing

algorithm
with ALR

CLRNN 1000 0.0002 0.0005 0.0223

3 Hybrid
growing

algorithm
with FLR

CLRNN 1000 0.1274 0.0162 0.1272

370 380

1.2

1.3

1.4

 

 

0 100 200 300 400 500 600 700
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (secs)

R
e

s
p

o
n

s
e

 

 

Desired plant model

CFFNN with ALR

FFNN fixed structure

CFFNN with FLR

310 320 330 340 350

0.8
1

1.2
1.4
1.6
1.8

 

 

Figure 5.9: Response of CFFNN over selected FFNN structures [Example-1]
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Figure 5.10: MSE curve over the addition of hidden neurons on CFFNN [Example-1]

The above problem takes the identification structure as below:

yp(k + 1) = g[yp(k), yp(k − 17)] (5.38)

The time-series problem is applied with values of α = 0.2, τ = 17 and β = 0.1. When τ ≥17,

the problem is said to exhibit chaotic behavior. Thus τ =17 is considered in this example.

Out of 1000 data samples, 500 samples are taken for training, and the rest 500 samples are

considered for validation. The maximum number of neurons for all three structures is kept at

20.

Performance of CLRNN on example-2

The initial structure of the network is selected as 2-0-1 i.e. 2 input neurons as yp(k) and

yp(k − τ), no hidden layer, and 1 output layer with 1 output neuron. The network takes the

following identification structure:

ylrnn(k) = f̂ [yp(k), yp(k − τ)] (5.39)

The proposed CLRNN is compared with CLRNN with a fixed learning rate and fixed LRNN

structures. Figure 5.11 shows the predicted response of the CLRNN over selected LRNN

structures. Figure 5.12 shows the effect of MSE on CLRNN over the increase of hidden neurons.
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From the results, it can be seen that the performance of CLRNN is found to be effective over

time series prediction problems even with fewer inputs and hidden neurons. At the final stages

of training, RMSE is found to be 0.0027 and AMSE is found to be 0.0046. Table 5.3 shows the

comparison of performance obtained for CLRNN over other selected structures. The number of

neurons utilized by fixed FFNN is 15 and that utilized by CLRNN is 10. After the final stages

of training, CLRNN with ALR results in 2-10-1 architecture with a fixed LRNN resulting in

2-15-1.

Performance of CFFNN on example-2

For training the CFFNN network, we have kept the initial structure of the network as 2-0-1 i.e.

2 input neurons as yp(k),yp(k − 17), no hidden layer, and 1 output layer with 1 output neuron.

The network takes the following identification structure:

yffnn(k) = f̂ [yp(k), yp(k − 17)] (5.40)

The initial MSE at the start of the training was found to be 0.8381. The performance of CFFNN

is compared with CFFNN with a fixed learning rate and fixed FFNN structures. Figure 5.13

shows the predicted response of CFFNN over selected FFNN structures. Figure 5.14 shows

the effect of MSE over the increase of hidden neurons on CFFNN with ALR. The proposed

algorithm is seen to adjust and adapt the learning rate with the training progress. From the

results, it is evident that the proposed algorithm is found to adjust and adapt the learning rate

with the training progress. The performance is found to be effective over time series prediction

problems. RMSE and AMSE of CFFNN are found to be 0.0218 and 0.0005 respectively at the

final stages of training. The number of neurons utilized by both fixed FFNN and CFFNN is

15. Table 5.4 shows the comparison of performance obtained for CLRNN over other selected

structures. After the final stages of training, CFFNN with ALR and fixed FFNN results in

2-15-1 architecture.

5.7 Conclusion

The study represents a hybrid constructive algorithm for FFNN and LRNN known as CFFNN

and CLRNN, for identifying a nonlinear dynamic system. The main contribution of the work

is as follows: (i) Hidden neurons are added to the network based on their validation MSE
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Table 5.2: Tabulation of performance of CFFNN over selected structures [Example-1]

S.No Algorithm Network
type

No of
samples in
each epoch

MSE AMSE RMSE

1 Traditional
Fixed

Learning
rate

FFNN 1000 0.0319 0.2184 0.1786

2 Hybrid
growing

algorithm
with ALR

CFFNN 1000 0.0001 0.0003 0.0167

3 Hybrid
growing

algorithm
with FLR

CFFNN 1000 0.0013 0.0005 0.0020
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Figure 5.11: Response of CLRNN over selected LRNN structures [Example-2]
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Figure 5.12: MSE curve over the addition of hidden neurons on CLRNN [Example-2]

Table 5.3: Tabulation of performance of CLRNN over selected structures [Example-2]

S.No Algorithm Network
type

No of
samples in
each epoch

MSE AMSE RMSE

1 Traditional
Fixed

Learning
rate

LRNN 1000 0.0087 0.2184 0.1786

2 Hybrid
growing

algorithm
with ALR

CLRNN 1000 0.0001 0.0774 0.060

3 Hybrid
growing

algorithm
with FLR

CLRNN 1000 0.0874 0.0624 0.0039
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Figure 5.13: Response of CFFNN over selected FFNN structures [Example-2]
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Figure 5.14: MSE curve over the addition of hidden neurons on CFFNN [Example-2]

101



Chapter 5. A hybrid constructive training of FFNN and RNN using adaptive learning rate
for nonlinear system identification

Table 5.4: Tabulation of performance of CFFNN over selected structures [Example-2]

S.No Algorithm Network
type

No of sam-
ples in each
epoch

MSE AMSE RMSE

1 Traditional
Fixed

Learning
rate

FFNN 1000 0.0012 0.0400 0.0346

2 Hybrid
growing

algorithm
with ALR

CFFNN 1000 0.001 0.0046 0.0027

3 Hybrid
growing

algorithm
with FLR

CFFNN 1000 0.0810 0.0066 0.0046

(ii) A novel adaptive learning rate based on fractional error is proposed. (iii) The weights are

updated at every epoch, resulting in faster convergence. The resulting network is small enough,

minimizing the computational complexity. The stability and convergence are also studied

theoretically. Tables and simulation results show that CLRNN and CFFNN outperform fixed

neural structures. Low RMSE and AMSE results indicate that the proposed algorithm may

produce the best architecture for nonlinear system identification.
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Chapter 6

Feedback-based optimization of

FFNNs for modeling complex dynamic

systems with APSOBP algorithm

6.1 Introduction

ANN has a wide range of applications in time series prediction, classification, regression prob-

lems, and so on [18], [123], [124]. Training of ANN for identification and control requires

robust and efficient optimization methods. ANN structures are mostly trained using BP [125],

and PSO [126]. BP is the simplest gradient-descent-based algorithm that updates weights in

a neural network using the gradient of error. BP algorithms are simple, having fewer tun-

able parameters and a fast convergence. However, they have a few disadvantages, including

being trapped in local optima for highly nonlinear non-differentiable problems. PSO is an

optimization algorithm that replicates the behavior of a flock of birds or a school of fish to

solve optimization problems. PSO algorithm is found to have many advantages over BP and

evolutionary algorithms. PSO updates only two components of the particle (personal best and

global best). In comparison to BP, PSO is more robust to noisy data and avoids local minima

as it can handle multi-objective optimization effectively. Despite all these, traditional PSO

algorithms may experience premature convergence, parameter sensitivity, and reduced explo-

ration if the parameters are not properly set [127]. This has led to the development of many

variations of the PSO algorithm in literature, all to improve the convergence and performance

of the algorithm. Combining PSO with BP combines the strengths of both algorithms such
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as the global and local search capabilities of PSO and BP while avoiding local minima. This

hybrid technique is further improved by the adaptive PSO-BP algorithm, which dynamically

modifies the PSO parameters and learning rate throughout the training phase. The adaptive

PSO-BP algorithm further enhances this hybrid approach by dynamically adjusting the PSO

parameters and learning rate during the training process. These adaptive mechanisms allow the

algorithm to respond to varying problem complexities, ensuring faster convergence, improved

stability, and better generalization performance. This chapter evaluates the adaptive PSO-BP

methodology on diverse nonlinear dynamic system identification tasks, providing a comprehen-

sive comparison with standard BP and static PSO-BP approaches. The results demonstrate

the advantages of the adaptive PSO-BP algorithm in terms of convergence speed, accuracy, and

robustness, establishing it as a powerful tool for training ANNs in complex, nonlinear domains.

6.2 Mathematical structure of FFNN

Figure 6.1: Feed Forward Neural Structure

This section describes the structure of FFNN and its learning using the BP algorithm.

The structure of FFNN is as shown in Figure 6.1. FFNN is a forward propagating structure

with information flowing in a single direction. In this work, three inputs are considered:

yn(k−1), x(k), x(k−1). Let the input vector U(k) = [yn(k−1), x(k), x(k−1)]. The input signals

are multiplied with the input weight vector Wi(k) = [wi1(k), wi2(k), ...., wid(k)] before being

sent to the hidden layer. The hidden layer receives these weighted input signals and is acted

by a sigmoidal activation function. Let Hn(k) denote the hidden layer vector with Hn(k) =
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[hn1(k), hn2(k), ..., hnp(k)] and hidden layer weight vector Wh(k) = [wh1(k), wh2(k), ...., whp(k)].

Further, the computed information is carried towards the output layer. A linear activation

function is acted upon on the output layer. Let yfnn(k) denote the output of the network at

kth instant. The output of the FFNN at kth instant is:

yfnn(k) = f1
( p∑

l=1
Hl(k)Whl(k) + bhl(k)Wohl(k)

)
(6.1)

where bhl(k) represents the bias vector applied at the output and Wohl(k) denotes the cor-

responding output bias weight vector. f1 indicates the linear activation function. Whl(k)

represents the corresponding hidden weight vector. The output of the induced field at kth

instant is:

Hn(k) = g1
(

d∑
n=1

U(k − n)Win(k) + bnn(k)Wxnn(k)
)

(6.2)

where bnn(k) denotes input bias vector and Wxnn(k) represents the corresponding input bias

weight vector. g1 denotes the sigmoidal activation function.

6.3 Training using BP algorithm

The training of FFNN is usually carried out using the BP algorithm. BP is a popular gradient-

based algorithm. This method updates the neural network’s weights using error gradients. The

first step of training using the BP algorithm is to define a cost function. We have considered

MSE as the objective function which is defined as the sum of squares of difference between

actual and predicted output of the plant under observation. The objective function at kth

instant is given as:

Ei(k) = 1
2[yn(k) − yfnn(k)]2 (6.3)

The modeling error is calculated at the output layer, and the gradients of weights from the

output layer to the hidden layer are computed and propagated back till the input layer is

reached.
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6.3.1 Update equations for hidden layer weights

To update the hidden layer weight, calculate the change in gradient of error Ei(k) with respect

to hidden layer weight Wh(k). It is calculated at kth instant as:

∂Ei(k)
∂Wh(k) = ∂Ei(k)

∂yfnn(k) × ∂yfnn(k)
∂Wh(k) (6.4)

(or)
∂Ei(k)
∂Wh(k) = −e(k) × Hn(k) (6.5)

6.3.2 Update equations for input layer weights

To update the input layer weight, calculate the change in gradient of error Ei(k) with respect

to input layer weight Wi(k) at as:

∂Ei(k)
∂Wi(k) = ∂Ei(k)

∂yfnn(k) × ∂yfnn(k)
∂Hn(k) × ∂Hn(k)

∂Wi(k) (6.6)

(or)
∂Ei(k)
∂Wi(k) = −e(k) × Wh(k) × (1 − H2

n)(k) × U(k) (6.7)

To find new weights, the SGD approach is applied and is calculated as follows:

Wh(k)(new) = Wh(old) − ηe(k) ∂Ei(k)
∂Wh(k) (6.8)

Wi(k)(new) = Wi(old) − ηe(k) ∂Ei(k)
∂Wi(k) (6.9)

The learning rate is denoted by η, with a range of 0 to 1. In this work, a fixed learning rate is

used to train the FFNN-APSOBP model.

6.4 Overview of PSO algorithm

PSP is a bio-inspired approach that is inspired by the behavior of a flock of birds or a school

of fish as they search for food in groups. They are found to exchange their hunting experience

and help other members of the group to find the best hunt. The algorithm works by randomly

selecting a group of birds in search space. Every bird is referred to as a ’particle’. A population
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or swarm can contain up to ’i’ particles. Each particle in the swarm searches the N-dimensional

space for the optimal solution. With every iteration, the particles adjust their velocity and

position. In this way, the entire swarm is guided toward the location of the desired optimum

solution in the search space. Consider a swarm of ’i’ particles which has a current position

pi and current velocity vi. They fly in N-dimensional search space until they find the global

optimum solution. They adjust their velocity based on their best position is known as personal

best (pbest) as well as the best solution of the entire swarm known as global best (gbest). This

updates their position and moves them forward in N-dimensional space. The velocity and

position update equation of classical PSO is:

vi(k + 1) = vi(k) + c1r1(k)(pbest(k) − pi(k)) + c2r2(k)(gbest(k) − pi(k)) (6.10)

The position is updated using the new calculated velocity in Eq.(6.10) as :

pi(k + 1) = pi(k) + vi(k + 1) (6.11)

Here c1 and c2 are the cognitive and social components respectively, and r1 and r2 are random

numbers in the interval (0,1). When the problems are highly nonlinear, the classical PSO

converges too early giving sub-optimal solutions. This has led to modification in the classical

PSO algorithm. Shi and Eberhart introduced the APSO algorithm [128]. The Eq.(6.10) and

Eq.(6.11) were modified with the addition of inertia weight to improve the convergence and

performance of the optimization problems. The velocity and position equations of APSO are

as below :

vi(k + 1) = wvi(k) + c1r1(k)(pbest(k) − pi(k)) + c2r2(k)(gbest(k) − pi(k)) (6.12)

pi(k + 1) = pi(k) + vi(k + 1) (6.13)

where w = wmax − k

(
wmax−wmin

k

)
denotes the inertia weight. As per the APSO algorithm,

w should begin with a large value at the initial stage and should be reduced gradually as the

training progresses to attain a good convergence.
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6.5 Problem statement

Let the input vector X(k) = [x(k), x(k−1), ....., x(k−b)] and output vector Y (k) = [yn(k), yn(k−

1), ...., yn(k − a)] of a nonlinear plant. The differential equation of the plant at kth instant is :

yn(k) = h[X(k), Y (k), k] (6.14)

Where h is the nonlinear mapping function relating input to output. The current output

yn(k) relies on both the current and previous values of the plant as well as external input.

a, b denotes the number of past outputs and the number of past input values of the plant

respectively. This work aims to identify the nonlinear function that satisfies ĥ ≃ h. This

ensures that the identified model appropriately represents the plant. When the identifier is

taken as FFNN, the structure is given by:

yfnn(k) = ĥ[X(k), Y (k)] (6.15)

A hybrid adaptive PSO-BP algorithm is used for training FFNN using MSE as the evaluation

function. The evaluation function at kth instant is given as:

MSE(k) = 1
2[yn(k) − yfnn(k)]2 (6.16)

Here, yn(k)−yfnn(k) is the modelling error. The fitness function is evaluated for every particle.

PSO aims to minimize the fitness value by adjusting the weights. BP further fine-tunes the

search process. The training continues until the identification error decreases to a minimum

value or zero.

lim
k→∞

|yn(k) − yfnn(k)| ≤ ϵ (6.17)

where ϵ → 0.
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Figure 6.2: Steps to train FFNN network using hybrid adaptive PSO-BP algorithm

6.6 Optimising FFNN using proposed adaptive PSO-BP

(APSOBP) algorithm

This section discusses how to train FFNN using the proposed APSOBP algorithm. The pro-

posed algorithm combines the advantages of both PSO (global search) and BP (local search). In

this paper, we present a novel inertia weight approach that decreases dynamically throughout

the optimization process. Inertia weight is crucial for improving the performance and conver-

gence of PSO The performance status of every particle is a key to adjusting inertia weight and

hyperparameters of PSO. If a particle’s best position is near its prior position, it is getting close

to the global optimum. In this case, an increase in inertia weight is required to keep the particle

near the global optimum. Alternatively, if the particle’s best position is significantly different

from its prior best position, it is moving away from the global optimum. This necessitates a

decrease in inertia weight to encourage more exploration of new paths rather than staying with

a less effective solution. Based on this concept, we developed a method for calculating inertia

weight using feedback from the global best position of the swarm. A performance index ei is

calculated by finding the difference between global best positions over consecutive iterations.
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The ei is calculated as

ei(k) = (gbest(k) − gbest(k − 1)) (6.18)

The performance-index ei is used to derive inertia weight as follows:

wk(k) = wmin + ei(k)
1 + |ei(k)| (6.19)

Here, gbest denotes the global best position at iteration k, and wmin denotes the minimum

inertia weight. Further, the hyperparameters are made dynamic to adapt to changes in the

optimization landscape of the problem. c1 and c2 are dynamically adjusted based on the error

metric ei in comparison to a fixed threshold. The adaptive method is as follows:



c1 = c1 + α

c2 = c2 + α
if ei < threshold

c1 = c1 − α

c2 = c2 − α
if ei > threshold

(6.20)

Where α is a constant that determines the rate of adjustment. The value of α is kept constant

at 0.1. By dynamically adjusting the inertia weight and hyperparameters based on particle

performance, the APSOBP algorithm effectively balances exploration and exploitation, leading

to improved convergence and performance in training the FFNN. The flowchart of FFNN

training using APSOBP is shown in Figure 6.2. The detailed steps are described below:

1. The algorithm starts with the initializing of FFNN architecture. For simplicity, the 3-10-1

FFNN structure is considered in this work.

2. The next step is to set the PSO parameters such as swarm size, inertia coefficient w,

hyperparameters c1, and c2, velocity, and position.

3. The algorithm enters the PSO loop (shown inside the green dotted box in Figure 6.2).

After every iteration, the fitness value of every particle f(pi) is calculated. MSE is

considered as the fitness function. The particle moves forward in the search space in

search of the optimum solution and updates its personal best pbest and position pbesti
if

the current fitness value f(pi) is less than the particle’s fitness value f(pbest). Further,

the global best gbest and its position gbest(k) of the swarm is updated if the current fitness
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value f(pi) is less than the swarm’s f(gbest(k)).

4. The inertia weights, cognitive component c1, and social component c2 are dynamically

changed using the inertia weight method in Eq.(6.18) and Eq.(6.19). Furthermore, the

hyperparameters c1 and c2 are dynamically modified based on Eq.(6.20).

5. The velocity and position get updated using the new inertia weight and hyperparameters.

6. The process of PSO continues until the termination criteria are met. The stopping criteria

for PSO is considered as the reach of maximum iterations in our work.

7. Further the optimized weights from PSO training are sent to the BP algorithm for further

local tuning of the search space. Many times BP faces the problem of producing sub-

optimal solutions for highly non-convex nonlinear problems. One of the reasons is due

to improper initialization of the weights at the start of BP. This problem is solved in

this work, as PSO provides a good set of initial weights, and BP has a better chance to

converge to a high global solution.

8. Further BP, fine-tunes the search locally around the global optimum. The algorithm now

enters the BP loop (shown inside the black dotted box in Figure 6.2).

9. The network searches locally using the BP algorithm. A constant learning rate β is

considered. The value of β is taken as 0.001. The identification error is calculated at

every epoch and the weights and biases are updated at every epoch until the termination

condition is met.

10. Finally, the network is validated and the performance of FFNN-APSOBP is evaluated in

terms of AMSE and RMSE. The BP algorithm is usually stopped with the termination

criteria. In this work, the reach of maximum iterations is considered as a stopping

criterion.

The use of Eq.(6.18), Eq.(6.19), and Eq.(6.20) is intended to provide better optimum solutions

than classical PSO and BP algorithms.

6.7 Simulation examples

To illustrate the efficiency of the FFNN-APSOBP approach, three examples of nonlinear bench-

mark problems are used. The obtained results are compared to the traditional FFNN-BP and
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FFNN-PSO structures.

6.7.1 Selection of parameter

To study the effectiveness of the proposed approach, 10 neurons in the hidden layer are consid-

ered for FFNN-APSOBP, FFNN-PSO, and FFNN-BP structures. A constant learning rate of

0.001 is considered to simulate the FFNN-BP and FFNN-ABPPSO structure. For the FFNN-

PSO and FFNN-APSOBP structures, the particle size is set to 30 and is randomly created.

The maximum number of iterations to train PSO-BP is 700 for all three structures. The inertia

weight, c1 and c2 are made dynamic using Eq.(6.19) and Eq.(6.20).

6.7.2 Case-1: Modelling of nonlinear plant equation with degree 3

Consider a non-linear plant described by the differential equation as given in [36]:

yn(k) = yn(k − 1)
1 + y2

n(k − 2) + x3(k − 2) (6.21)

The dynamic behavior of the plant relies on both current and previous inputs and outputs.

The identification model of the plant in Eq.(6.21) is:

yn(k) = a[yn(k − 1), yn(k − 2), x(k − 2)] (6.22)

The plant is supplied with the following input signal as x(k) = sin(2πk
40 ). Now, with FFNN as

the identifier, the structure becomes :

yfnn(k) = â[yn(k − 1), u(k), u(k − 1)] (6.23)

A total of 700 samples are taken for training and another 700 samples are considered for

validation. Figure 6.5 shows the variation of inertia weights over several epochs. From Figure

6.5, it can be seen that w varies from 0.7 to 0.4. The system assures stability if the value of w

does not exceed 1. The comparison of the response of the plant using FFNN-APSOBP, FFNN-

PSO, and FFNN-BP approach is shown in Figure 6.3. Figure 6.4 compares the MSE curves

obtained using the FFNN-APSOBP, FFNN-PSO, and FFNN-BP approaches across epochs.

The efficiency of the FFNN-APSOBP approach is evaluated using performance indexes such

as AMSE, and RMSE. From the results of Figure 6.3, 6.4 and Table 6.1, it is observed that
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the performance of the training is as follows: FFNN-APSOBP > FFNN-PSO > FFNN-BP.
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Figure 6.3: Comparison of the response of training FFNN with different algorithms [Case-1]

Table 6.1: Comparison of performance of training FFNN with different algorithms [Case-1]

S.No Algorithm Network
type

Samples
per epoch

MSE AMSE RMSE

1 BP FFNN 700 0.0619 0.3052 0.2487
2 APSOBP FFNN 700 0.0004 0.0082 0.0213
3 PSO FFNN 700 0.0258 0.0268 0.1463

6.7.3 Noise tolerance test [Case-1]

To investigate the effectiveness and adaptability of the novel FFNN-APSOBP approach, a

sudden disturbance dis(k) is added to the plant in the period 250 < k < 450. A disturbance

in the form of a sine wave dis(k) = sin(2πk
15 ) is added in the interval 250 < k < 450. Figure 6.6

shows the response of the FFNN-APSOBP approach over the disturbance. It can be seen from

the figure that FFNN-APSOBP initially diverted from the desired response, thus increasing

MSE values. With training the MSE has become zero thus tracking the desired performance.

Analysis: Apart from the above observations, Figure 6.5 illustrates that the algorithm starts

with encouraging exploration and once the promising areas are explored, w reduces to a lower

value (0.7 to 0.4), allowing the particles to use the best-known solutions. Additionally, a

slight increase in inertia coefficients after a few iterations signifies the algorithm’s ability to

escape early convergence, allowing for further exploration in search space. The maintenance
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Figure 6.4: Comparison of the effect of MSE on training FFNN with different algorithms
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Figure 6.6: Effect of disturbance on FFNN-APSOBP structure [Case-1]

of this lower inertia weight after a few iterations indicates the algorithm’s convergence for this

problem.

6.7.4 Case-2 : Identification of liquid level system

A model of the liquid level system is considered for identification as given in [129]. The system

comprises a DC water pump. The pump feeds a conical flask which then feeds a square tank,

resulting in second-order dynamics. The input voltage of the motor is the controlled variable

and the level of the water in the conical flask is taken as the output variable. The differential

equation of the liquid level system to be identified is given by:

yn(k + 1) = 0.9722yn(k) + 0.3578x(k) − 0.1295x(k − 1) − 0.3103yn(k)x(k) − 0.04228y2
n(k − 1)

+0.1663yn(k − 1)x(k − 1) − 0.03259y2
n(k)yn(k − 1) − 0.3513y2

n(k)x(k − 1)

+0.3084yn(k)yn(k − 1)x(k − 1) + 0.1087yn(k − 1)x(k)x(k − 1) + 0.2573y2
n(k − 1)e(k)

+0.2939y2
n(k − 1)e(k) + 0.4770yn(k − 1)x(k)e(k)

(6.24)

where e(k) is the white noise in the range [-0.025,0.025] and x(k) denotes the input applied to

the plant and is taken as x(k) = 0.4sin
(

2πk
250

)
+ 0.6cos

(
2πk
25

)
.
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The plant takes the following identification structure:

yn(k + 1) = h[yn(k), yn(k − 1), x(k), x(k − 1)] (6.25)

When FFNN is considered an identifying model, then it takes the following structure:

yfnn(k + 1) = ĥ[yn(k), x(k), x(k − 1)] (6.26)

A total of 700 samples are taken for training and another 700 samples are considered for

validation. Figure 6.9 shows the variation of inertia weights over several epochs. From the

result, it can be seen that w varies from 0.9 to 0.4. The system assures stability if the value

of w does not exceed 1. The comparison of the response of the plant using FFNN-APSOBP,

FFNN-PSO, and FFNN-BP approach is shown in Figure 6.7. Figure 6.8 shows the comparison

of the MSE curve of the plant using FFNN-APSOBP, FFNN-PSO, and FFNN-BP approach.

The efficiency of the FFNN-APSOBP approach is evaluated using indexes such as AMSE, and

RMSE. From the simulation results of Figure 6.7, 6.8 and Table 6.2, it is observed that the

performance of the training is as follows: FFNN-APSOBP > FFNN-PSO > FFNN-BP.

Table 6.2: Comparison of performance of training FFNN with different algorithms [Case-2]

S.No Algorithm Network
type

Samples
per epoch

MSE AMSE RMSE

1 BP FFNN 700 0.2793 0.1794 0.4124
2 APSOBP FFNN 700 0.0014 0.0032 0.0039
3 PSO FFNN 700 0.0481 0.0481 0.1612

6.7.5 Noise tolerance test [Case-2]

To investigate the effectiveness and adaptability of the novel FFNN-APSOBP model, a sudden

disturbance dis(k) is added to the plant in the period 250 < k < 450. A disturbance in the

form of a sine wave dis(k) = sin(2πk
15 ) is added in the interval 250 < k < 450. Figure 6.10

shows the response of FFNN-APSOBP over the disturbance. It can be seen from the figure

that FFNN-APSOBP initially diverted from the desired response, thus increasing MSE values.

With training the MSE has become zero thus tracking the desired performance.

Analysis: Apart from the above observations, Figure 6.9 illustrates that the algorithm starts

with encouraging exploration in systems with many local minima (increasing w from 0.7 to 0.9).

Once the promising areas are explored, w reduces to a lower value (0.7 to 0.4), allowing the
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Figure 6.7: Comparison of the response of training FFNN with different algorithms [Case-2]
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Figure 6.9: Variation of inertia weight over epochs on FFNN-APSOBP model [Case-2]

particles to use the best-known solutions. Additionally, a slight increase in inertia coefficients

after a few iterations signifies the algorithm’s ability to escape early convergence, allowing for

further exploration in search space. The maintenance of this lower inertia weight after a few

iterations indicates the algorithm’s convergence for this problem.

6.7.6 Case-3 : Modelling of Mackey glass series

The suggested approach was tested on a nonlinear Mackey glass time series prediction problem

as described in [130]. The prediction of the Mackey glass series is given by:

dyn(t)
dt

= −γ × yn(t) + β × yn(t − τ)
1 + y10

n (t − τ) (6.27)

The problem is solved using the parameter values β = 0.2 and γ = 0.1. The problem exhibits

chaotic behavior when τ ≥ 17. Hence the time delay is chosen as τ = 17. The corresponding

differential equation of Eq.(6.27) is as follows:

yn(k) = −γ × yn(k) + β × yn(k − τ)
1 + y10

n (k − τ) (6.28)

The structure of identification for the plant is:

yn(k) = h[yn(k), yn(k − τ))] (6.29)
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Figure 6.10: Effect of disturbance on FFNN-APSOBP structure [Case-2]

When FFNN becomes the identifier, the identification structure is:

yfnn(k + 1) = ĥ[yn(k), yn(k − τ)] (6.30)

A total of 700 samples are taken for training and another 700 samples are considered for

validation. Figure 6.13 shows the variation of inertia weights over several epochs. From the

figure, it can be seen that w varies from 0.7 to 0.4. The system assures stability if the value

of w does not exceed 1. Figure 6.11 compares the plant’s response using the FFNN-APSOBP,

FFNN-PSO, and FFNN-BP approaches. Figure 6.12 compares the MSE curve obtained for

the plant using FFNN-APSOBP, FFNN-PSO, and FFNN-BP approach. The efficiency of the

FFNN-APSOBP is evaluated using evaluation indexes such as AMSE, and RMSE. From the

results of Figure 6.11, 6.12 and Table 6.3, it is observed that the performance of the training

is as follows: FFNN-APSOBP > FFNN-PSO > FFNN-BP.

Table 6.3: Comparison of training of performance of FFNN with different algorithms [Case-3]

S.No] Algorithm Network
type

Samples
per epoch

MSE AMSE RMSE

1 BP FFNN 700 0.0087 0.1146 0.0930
2 APSOBP FFNN 700 0.0017 0.0018 0.033
3 PSO FFNN 700 0.0230 0.0231 0.0677

119



Chapter 6. Feedback-based optimization of FFNNs for modeling complex dynamic systems
with APSOBP algorithm

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (secs)

R
e

s
p

o
n

s
e

 

 
Desired plant response

FFNN−PSO

FFNN−APSOBP

FFNN−BP

Figure 6.11: Comparison of the response of training FFNN with different algorithms [Case-3]
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6.7.7 Noise tolerance test [Case-3]

To investigate the effectiveness and adaptability of the novel FFNN-APSOBP model, a sudden

disturbance dis(k) is added to the plant in the period 250 < k < 450. A sine wave as

disturbance dis(k) = sin(2πk
15 ) is added in the interval 250 < k < 450. Figure 6.14 shows the

response of FFNN-APSOBP over the disturbance. It can be seen from the figure that FFNN-

APSOBP initially diverted from the desired response, thus increasing MSE values. With

training the MSE has become zero thus tracking the desired performance.

Analysis: Apart from the above observations, Figure 6.13 illustrates that the algorithm starts

with encouraging exploration and once the promising areas are explored, w reduces to a lower

value (0.7 to 0.4), allowing the particles to use the best-known solutions. Additionally, a

slight increase in inertia coefficients after a few iterations signifies the algorithm’s ability to

escape early convergence, allowing for further exploration in search space. The maintenance

of this lower inertia weight after a few iterations indicates the algorithm’s convergence for this

problem.

6.8 Conclusion

In this work, a novel APSOBP algorithm for training FFNN to identify complex nonlinear sys-

tems is proposed. The algorithm incorporates the abilities of both particle swarm optimization
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Figure 6.14: Effect of disturbance on FFNN-APSOBP structure [Case-3]

and backpropagation algorithm. The weights of the FFNN are trained using the APSOBP

algorithm. PSO optimizes the weights at the initial stage, which are further fine-tuned by BP

around the optimum solution. Furthermore, to avoid the PSO algorithm’s early convergence,

we made the inertia coefficient and hyperparameters dynamic using the feedback mechanism

that computes the difference between the fitness value of global best in consecutive iterations.

The proposed inertia weight is observed to decrease nonlinearly with epochs ensuring adequate

exploration and exploitation of the PSO. The proposed method also ensures network stability

as the w ranges between 0 to 1 for all the selected examples. The structure’s performance is

evaluated using three examples of complex nonlinear problems and a sudden disturbance. The

results show that training FFNN using the APSOBP algorithm outperforms FFNN-BP and

FFNN-PSO approaches in terms of efficiency and robustness.
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

The main aim of this thesis is to develop novel approaches for the identification and adaptive

control of nonlinear dynamic systems, with a focus on effectively capturing their temporal

dynamics. To achieve this, we have proposed two novel modifications to the existing RNN

structures. Both the proposed RNN structures are applied to identify the nonlinear system.

They are independent of the plant order and involve memory neurons to handle the complexity

of the nonlinear dynamics. The developed architecture is further utilized to design adaptive

controllers for nonlinear systems. The BP algorithm, being the simplest learning algorithm

for ANN, is used to derive weight update equations. While ANN demonstrates robust perfor-

mance, their effectiveness depends on factors such as the network architecture and the learning

algorithm. To optimize the structure of ANNs, we have developed a constructive algorithm

for FFNN and RNN, allowing them to dynamically grow based on their performance on the

validation data. Despite their simplicity, the BP algorithm faces limitations such as getting

trapped in local minima for highly complex spaces. To address this, we proposed an adaptive

learning rate method to accelerate BP and developed a novel adaptive PSO-BP algorithm to

enhance ANN performance. These methods are validated for handling system uncertainties,

including parameter variations and disturbance signals and are validated against state-of-the-

art neural network structures to demonstrate their effectiveness.

In Chapter 2, a novel HEJNN structure is developed and applied for the identification of non-

linear dynamic systems. BP algorithm is used to derive the weight update equations of the

proposed model. The stability of the proposed approach is proven in the sense of Lyapunov-
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stability analysis. The performance of HEJNN structure is evaluated by comparing it with the

results obtained from other ANNs such as ENN, JNN, FFNN,and LRNN. Experimental results

show that the HEJNN model outperforms the other neural models in terms of identification

accuracy and robustness.

In chapter 3, an another novel modification of RNN referred as CRFNN is proposed. This

architecture combines the strengths of FFNN and LRNN. The BP algorithm is used to de-

rive the weight update equations and the Lyapunov-stability principles are applied to test the

stability of the proposed framework. MISO systems (various degrees of plant equation) and

Mackey glass series benchmark problem are considered and the performance of the proposed

structure is evaluated by comparing it with the results obtained from other popular neural net-

work models such as FFNN, ENN, JNN, and LRNN. The results of the simulation demonstrate

that CRFNN shows greater prediction accuracy, and better performance even in the scenario

of disturbance signals and parameter variation.

In Chapter 4, a simultaneous online identification and adaptive control framework for simul-

taneous identification and adaptive control of nonlinear dynamical systems is proposed. The

scheme is referred as HFRNN and a gradient-descent-based BP algorithm is used to derive

weight update equation. The stability of the proposed learning strategy is proven using the

Lyapunov stability principles. The results of HFRNN are compared with the JNC and LRNC.

The results demonstrate that HFRNN performs satisfactorily, even in the presence of distur-

bance signals.

In Chapter 5, we have developed a novel hybrid constructive algorithm to dynamically grow

FFNN and RNN structures. The proposed algorithm is applied to identify non-linear dynam-

ical systems. The constructive algorithm for FFNN is denoted as CFFNN and for RNN is

CLRNN. The hidden nodes are grown depending on the effect of mean square error (MSE) on

the validation dataset. To enhance the learning algorithm’s performance, a novel Lyapunov’s

stability-based ALR is also developed. The experimental results show that the CLRNN and

CFFNN with ALR outperform the other selected neural models.

In chapter 6, a novel APSOBP for training ANN is developed and is applied to FFNN to

identify nonlinear dynamical systems. This method integrates the strengths of PSO mainly

its good global search ability with the high convergence speed of BP. To avoid early conver-

gence, the PSO parameters such as inertia weight (w) and hyperparameters (c1, c2) are also

dynamically adapted. The proposed algorithm is evaluated against three benchmark nonlinear
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problems to ensure its effectiveness. The results show APSOBP algorithm outperforms the

selected methods in terms of convergence, accuracy, and robustness.

7.2 Future scope

Future studies will explore the integration of reinforcement learning to enhance control strate-

gies and learning of ANN. The other studies would include exploring techniques to improve the

computational efficiency of adaptive control algorithms, enabling faster processing in real-time

applications. Adaptive learning rate and PSO-BP algorithms developed in this thesis can also

be further enhanced by incorporating unsupervised learning approaches or another advanced

evolutionary algorithm to develop more versatile learning approaches.
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