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Design and Implementation of Intelligent Controllers on Nonlinear 

Systems 

Abhishek Chaudhary 

ABSTRACT 

 

The operation of robotic systems to execute complex tasks within dynamic 

environments represents a critical and challenging area of modern control systems 

engineering. As robotics, artificial intelligence and autonomous systems continue to 

advance, their applications across various sectors of society multiply, offering a wide 

array of opportunities and introducing significant risks. These opportunities and risks 

are particularly pronounced in areas such as path tracking, speed control and balance 

control—factors that are deeply influenced by the inherent complexity and 

unpredictability of real-world environments. To ensure that robotic systems can 

operate autonomously without succumbing to collisions, disturbances, or operational 

failures, it becomes imperative to monitor and optimize the parameters governing both 

mechanical and electronic components, thereby enhancing system reliability and 

performance. 

This research delves into the integration of intelligent control approaches and 

sophisticated optimization algorithms aimed at achieving advanced path tracking, 

robust balance control, continuous system monitoring and overall robustness, all while 

relying solely on on-board computing resources. The focus of this study is on the 

development and implementation of control strategies that are both adaptive and 

resilient, capable of handling the uncertainties and nonlinearities that typify real-world 

environments. These strategies are specifically tailored for two-degree-of-freedom (2-

DOF) operations within benchmark systems such as the ball balancer and helicopter 

systems, which serve as practical examples of the challenges faced by modern control 

systems. 

The design of these controllers begins with the application of feedback linearization 

techniques in conjunction with classical control methodologies. This foundational 
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approach is subsequently enhanced by incorporating intelligent controllers designed 

to improve robustness and adaptability in the face of unpredictable disturbances. The 

research provides a comprehensive overview of the dynamic equations that govern 

these systems, offering essential insights for control system designers who seek to 

understand the physical behaviour underlying the mathematical models. This 

theoretical foundation is followed by a detailed exposition of the mathematical 

techniques employed to augment the basic control laws, emphasizing the robust 

methodologies that make the system more resilient to external and internal 

perturbations. 

One of the primary challenges identified in current control practices is the limited 

capacity of conventional controllers to handle nonlinearities and uncertainties inherent 

in dynamic environments. To address this, the research proposes an intelligent control 

approach for both the ball balancer and helicopter systems. This approach utilizes a 

fuzzy-proportional-integral-derivative (Fuzzy-PID) controller, which is adept at 

managing the position control of the ball balancer and the trajectory tracking of the 

helicopter. The fuzzy logic component of the controller enhances its ability to deal 

with uncertainties, while the PID elements ensure precise and responsive control. To 

further optimize the performance of this controller, the research introduces a novel 

teaching-learning-based optimization (TLBO) algorithm. This algorithm improves 

upon existing methods by addressing transparency issues in the literature, thereby 

providing a more reliable and effective optimization process. 

Moreover, the study develops a hybrid optimization algorithm (HGPCTLBO) 

designed to optimize the parameters of a hybrid controller under conditions of random 

uncertainty. This hybrid controller combines classical control techniques with 

intelligent methodologies, resulting in a system that is both robust and flexible. The 

optimization process is tailored to the unique demands of both the helicopter and ball 

balancer systems, ensuring that the control parameters are finely tuned to achieve 

optimal performance under varying operational conditions. 

The optimization of the constraint parameters for both the classical controller and the 

hybrid classical-intelligent controller is carried out using a novel hybrid Giza pyramid 
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construction teaching-learning-based optimization (GPC-TLBO) algorithm. This 

algorithm is specifically designed to handle the complex constraints and performance 

criteria associated with the two benchmark systems. The effectiveness of the 

developed control techniques is rigorously validated through comprehensive 

simulation studies, as well as real-time analysis conducted on the actual systems. These 

validation processes demonstrate the superior performance and reliability of the 

proposed methodologies, highlighting their potential for widespread application in 

advanced robotic systems. 

In conclusion, this research makes significant contributions to the field of control 

systems by offering novel optimization approaches to handling the complexities and 

uncertainties of dynamic environments. The integration of intelligent control 

techniques with advanced optimization algorithms represents a promising direction for 

future developments in robotics and autonomous systems, paving the way for more 

resilient and capable robotic systems that can operate effectively in a wide range of 

challenging environments. 
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Chapter 1. Introduction 

1.1   Overview 

The challenge of approximating underactuated systems through the 

development of automatic decision-making and nonlinear control methods is a 

prevalent issue in various problems [1]. Technological advancements have had a 

significant impact on the adoption of innovative analytical approaches to address 

nonlinear challenges [2]. In many instances involving nonlinear control systems, 

quantifying the state may prove to be a complex task, posing challenges in addressing 

intricate control engineering problems. Another challenge lies in the insufficient 

comprehension of critical variables, as the states of the system can profoundly 

influence the nature of the control design phase, ultimately determining the potential 

for outstanding performance. This complexity has prompted researchers to explore 

different approaches to address this challenge. The diversity and intricacy of these 

systems have driven researchers to examine the performance of various controllers, 

primarily focused on achieving self-balancing control and steady-state operation. 

Traditionally, the rigorous analysis and control design for these systems have been 

motivated by a range of scientific, industrial, and military applications. 

Simultaneously, the theoretically challenging nature of analysing the behaviour of 

nonlinear dynamical systems has captivated mathematicians, leading to a 

comprehensive study of control systems. Comprehending the control requirements of 

a system demands a profound understanding of the system itself; however, the 

complexities of nonlinearities frequently make it extremely challenging to develop 

controls that ensure the best performance of a system [3]. Consequently, the 

collaborative efforts of engineers and scientists have given rise to the development of 

theories such as linear control, optimal control, adaptive control, and nonlinear control. 

The parameter tuning of nonlinear systems, a challenging feature of control theory, 

stands out as one of its most formidable aspects. Optimization strategies have been 

employed in the past to surmount this challenge, proving particularly advantageous 

when dealing with complicated systems. 

Over the recent decades, the domains of aerospace and robotics have 

consistently stood out as compelling sources of inspiration driving the thorough 

examination and control of nonlinear systems. The progress made by researchers in 

these fields has reciprocally influenced and elevated each other. Given these advances, 

this chapter outlines the different surfaces of nonlinear control theory pertaining to 

nonlinear systems. 

1.2    Background 

1.2.1 Optimization algorithms 

Optimization involves the examination of selecting the most favourable option from 

a limited array of choices. It is often considered a crucial quantitative element within a 

dynamic system where decisions are necessary to improve one or more assessments under 

specific conditions [4]. Each optimization problem includes decision variables, specific 

objective (fitness) functions and a set of constraints. An analysis of optimization algorithms in 
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the literature indicates the absence of a systematic classification. Figure 1.1 illustrates the 

operation of an optimization algorithm. 

 
Fig. 1.1 Operational procedure of an optimization algorithm 

In metaheuristic algorithms, the prefix "meta-" conveys the idea of going "beyond" or 

operating at a "higher level," surpassing the capabilities of basic heuristics. Metaheuristics 

prove to be effective in generating acceptable solutions for complex problems through trial 

and error within a reasonable timeframe. While the terms 'heuristics' and ‘metaheuristics' are 

sometimes used interchangeably [5], a recent trend distinguishes any stochastic algorithms 

involving randomization and global exploration as metaheuristics, however there is no 

certainty in discovering the best solution, and the workings of an algorithm remain 

unpredictable. The objective is to devise an efficient and practical algorithm that operates 

effectively in the majority of cases and produces high-quality results [6].  

Metaheuristic algorithms are characterized by two main features: intensification and 

diversification. The intensification phase, or exploitation, seeks and identifies the best 

candidates or solutions based on the current best approaches. The diversification phase, or 

exploration, ensures efficient traversal of the search space. Maintaining a delicate balance 

between these components significantly impacts the overall efficiency of an algorithm. 

Insufficient exploration coupled with excessive exploitation may lead the system to be trapped 

in a local optimum, making it extremely challenging, if not impossible, to find the global 

optimum. The "No Free Lunch theorems" in optimization assert that if algorithm A 

outperforms algorithm B for specific optimization functions, then B will outperform A for all 

other functions. This implies that when averaged over all potential function spaces, algorithms 

A and B perform equally well. In essence, there is no universally superior algorithm [7]. 

 

1.2.2 Nonlinear systems 

To describe the characteristics of intricate nonlinear systems, the transition 

from linear systems to nonlinear systems in control methodologies has been 

illuminated. Time-invariant linear control systems have been well-established, 

allowing for the use of state or output feedback to control, observe, stabilize, and track 

the system. However, introducing additional constraints or specifications to the system 

description can render the control design quite challenging. Coping with mildly 
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nonlinear systems commonly involves frequency domain analysis or an approach to 

input-output stability. The concept of feedback connectivity between a linear system 

and a nonlinearity has been expanded in the literature to encompass feedback between 

an LTI system and a gain-limited uncertainty. Consequently, integral quadratic 

constraints and robust stability theory were formulated [8]. While effective in the 

presence of linear, uncertain linear and slightly nonlinear systems, these techniques 

are not applicable to fully nonlinear systems. Fully nonlinear systems exhibit nonlinear 

temporal evolution and lack any fundamental linear components. To be more specific, 

a modification referred to as a saturation-type recurrent neural network, utilizing 

sigmoidal nonlinearity, exhibits no fundamental distinctions from a control system of 

Linear Time-Invariant (LTI) type or a somewhat nonlinear system in terms of 

controllability and observability.  

Despite the nonlinear rule governing the system's time-evolution, its linearity 

as an output does not simplify the system analysis. Requirements for controllability 

(specifically in the discrete-time context) and observability of dynamic neural 

networks, serving as examples of highly nonlinear systems, were proposed in [9]. The 

previous work employed a somewhat intricate time-domain analysis technique. While 

frequency domain analysis exclusively addresses systems with linear state evolution 

over time, nonlinear systems, in a comprehensive local theory encompassing 

disturbance decoupling, tracking, stability, observability, and controllability [10]. 

Differential geometry and Lie theory, widely adopted in the literature, were the 

primary tools used to address these control challenges. Although these techniques 

proved effective for local analyses, they often fail in global studies involving affine 

control-based nonlinear systems. The theory of input-to-state stability [11] 

encompasses both absolute stability and robust stability theories for highly nonlinear 

systems. Control Lyapunov functions (CLFs) are pivotal instruments in this theory for 

robustness analysis against disturbances. Furthermore, after applying a specific change 

of coordinate variables to the nonlinear dynamics, the converted system or one or more 

of its components may be a nonlinear system that is not affine in terms of control.  

 

1.2.2.a    2DoF ball balancer system 

 The 2 DOF Ball Balancer utilizes two Rotary Servo Base Units as its 

foundation. Through this experiment, researchers have the opportunity to apply the 

principles learned in the one-dimensional Ball and Beam experiment to the X-Y planar 

scenario. A complex electromechanical system with under-actuation, multivariate 

elements, and nonlinearity can be effectively represented using ball balancer systems. 

This system involves the simultaneous operation of two servo motors to control the 

position of a ball in a 2-Degree of Freedom (DOF) Ball Balancer. Being inherently 

nonlinear, this system serves as a challenging benchmark in various control 

applications and approaches. Users have the opportunity to experiment with different 

control methods to guide the ball to a specific location on a table. The system features 

a horizontal plate with slants in both directions, enabling the ball to roll freely across 

the surface. This setup dynamically demonstrates nonlinear kinematics and control 

theory. Due to its inherent characteristics of nonlinearity, instability and under-
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actuation, the ball balancer system is frequently employed to assess and evaluate 

control algorithms and technologies (Fig. 1.2). 

 

Fig. 1.2   Two-degree of freedom (2DoF) 

Ball Balancer System  

 

Fig. 1.3  Two-degree of freedom (2DoF) 

Helicopter System 

1.2.2.b    2DoF helicopter system 

A 2 Degree of Freedom (2 DoF) helicopter system is a setup in which the 

helicopter's motion is defined by two separate and manageable degrees of freedom. 

This usually includes the capability to regulate the helicopter's movement along two 

distinct axes or directions. In this context, "DoF" represents the count of independent 

parameters essential for describing the system's motion. In the instance of a 2 DoF 

helicopter system, there exist two such parameters that can be adjusted or controlled 

to impact the helicopter's behaviour. These systems involve the simultaneous operation 

of two servo motors to control the balancing of a 2-Degree of Freedom (DOF) 

helicopter. Being inherently nonlinear, this system serves as a challenging benchmark 

in various control applications and approaches. Users have the opportunity to 

experiment with different control methods to balance the body at different angles in 

free space. This setup dynamically demonstrates nonlinear kinematics and control 

theory. Due to its inherent characteristics of nonlinearity, instability, and under-

actuation, the helicopter system is frequently employed to assess and evaluate control 

algorithms and technologies (Fig. 1.3) 

 

1.2.3 Nonlinear control 

Practical systems inherently exhibit nonlinearity, particularly over a broader 

spectrum of operating conditions, even though certain systems are expected to exhibit 

linear behaviour near a specific operational point and at slower speeds under specific 

conditions. Nonlinear models are employed to accurately represent a diverse array of 

physical phenomena, including but not limited to gravitational and electrostatic 

attraction, Coulomb friction, V-I characteristics of electrical systems, and the drag on 

a moving vehicle [12]. The popularity of nonlinear control is on the rise due to 
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advancements in linear systems, a deeper exploration of nonlinearities, the need to 

address parametric uncertainty, and the flexibility it offers in system architecture. 

Approaches that account for dynamic forces such as sensory and Coriolis forces, which 

vary in speed, surpass basic techniques [13].  

Consequently, linear control principles impose limitations on the speed at 

which a desired accuracy can be achieved. Utilizing a straightforward nonlinear 

controller allows for adaptation to nonlinear forces, enabling high speeds across an 

extensive range of motion. The nature of real-world systems defies linear 

approximation due to inherent nonlinearities such as hysteresis, dead zones, saturation, 

and backlash. Nonlinear approaches excel in compensating for these nonlinearities, 

offering unparalleled efficacy. Model parameter uncertainty is a common 

characteristic in real-world systems due to abrupt or gradual shifts in parameter values. 

The resilience or adaptability of a nonlinear controller proves instrumental in 

managing the implications of model uncertainty [14]. This thesis is thoroughly 

considering the two nonlinear systems i.e. ball balancer system and helicopter system 

to implement state-of-art control strategies for achieving higher stability in these 

underactuated systems. 

 

1.2.4 Underactuated nonlinear systems 

Underactuated mechanical systems are characterized by having fewer control 

inputs than configuration variables, and they find applications across various domains 

such as Robotics, Aerospace Systems, Marine Systems, Flexible Systems, Mobile 

Systems, and Locomotive Systems. The property of being "under actuated" in these 

systems can be attributed to four main reasons: i) inherent dynamics of the system 

(e.g., aircraft, spacecraft, helicopters, underwater vehicles, locomotive systems 

without wheels), ii) intentional design for cost reduction or practical purposes (e.g., 

satellites with two thrusters and flexible-link robots), iii) actuator failure (e.g., in a 

surface vessel or aircraft), and iv) deliberately imposed to create complex low-order 

nonlinear systems for gaining insights into the control of high-order underactuated 

systems (e.g., the Beam-and-Ball system, Acrobot, Cart-Pole system, TORA system , 

Rotating Pendulum). The predominant strategies for controlling underactuated 

systems, specifically those resembling inverted-pendulum dynamics, typically involve 

initiating a swing-up motion from the pendulum's downward position and 

subsequently transitioning to a balancing controller.  

This balancing controller is commonly crafted using techniques such as 

linearization or gain scheduling to ensure equilibrium [15]. Illustrations of these 

approaches encompass swing-up control utilizing energy-based methods for the cart-

pole system, triple-link inverted pendulum, and rotating pendulum [16]. For the 

Acrobot, the balancing controller employing spline functions is outlined in [17]. The 

beam-and-ball system, due to its intricate nature, has attracted considerable attention 

from researchers with varied interests. Diverse methodologies have been utilized, 

including approximate feedback linearization by Hauser et al. [18], small nested 

saturations for the stabilization of feedforward cascade nonlinear systems by Teel, and 

stabilization through output feedback, as detailed in [19]. The vertical take-off and 

landing (VTOL) aircraft serves as an exemplary underactuated system extensively 
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employed as a test-bed for various trajectory tracking methods and configuration 

stabilization techniques. This encompasses trajectory tracking for slightly non-

minimum phase systems [20] and control methods based on hybrid/switching 

approaches [21].  

Exponential stabilization of underactuated examples of underwater vehicles 

and surface vessels was accomplished in [22] and [23] through appropriate coordinate 

transformations and the analysis of a time-varying linear system. A similar outcome 

for the attitude control of an underactuated spacecraft is detailed in [24]. The role of 

second-order non-holonomic constraints in necessitating the use of discontinuous 

stabilizing feedback laws for underactuated system stabilization is discussed in [25], 

primarily based on the well-known condition on the stability of nonlinear systems 

using time-invariant continuously differentiable state feedbacks [26]. Moreover, the 

accessibility of classes of underactuated mechanical systems has recently been 

addressed in [27]. This is grounded in a framework applied to the analysis of the 

controllability of non-holonomic systems [28] and a controllability theorem [29]. An 

example illustrating discontinuous stabilizing feedback for a system with an internal 

unactuated degree of freedom is presented in [30]. Adaptive control [31] and sliding 

mode control techniques [32] have also found application in underactuated mechanical 

systems, even though for limited scenarios.  

Flexible-link robots, being a significant class of underactuated systems suitable 

for space applications due to their lightweight and rapid execution of commands, are 

discussed. The Euler-Bernoulli model for a flexible arm is portrayed as an infinite-

dimensional system [33]. A truncated modal analysis is employed to derive a finite-

dimensional state-space model for flexible robots [33], [34]. Trajectory tracking for 

flexible robots is intricate, and standard measurements like the angle of rotation or the 

position of the tip often result in poor performance and non-minimum phase zero 

dynamics. In [35], a proposed non-collocated minimum-phase output based on an 

analysis of the initial infinite-dimensional model is presented, followed by the design 

of a finite-order compensator for trajectory tracking.  

A nonlinear non-collocated minimum-phase output for a flexible one-link 

robot arm is obtained from finite-order Euler-Lagrangian equations of the system. The 

method of controlled Lagrangians, preserving the Lagrangian structure of a 

mechanical system through the application of a control input, has been employed for 

local stabilization of the cart-pole system and the rotating pendulum to an equilibrium 

manifold [36]. However, this method has yet to successfully stabilize the rotating 

pendulum or more general underactuated systems to an equilibrium point. Hybrid and 

switching-based control approaches are gaining traction in the control of 

underactuated mechanical systems [36] and bipedal locomotion of walking robots. To 

conclude, aside from linearization-based techniques, the control of underactuated 

mechanical systems has predominantly focused on stabilization. This encompasses 

specific examples of cascade nonlinear systems and the utilization of energy-based 

methods combined with supervisory-based switching control. The current state of 

research in underactuated system control is far from achieving the goal of developing 

control design methods effective for broad classes of high-order underactuated 

systems in robotics and aerospace applications. 
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1.3  Existing challenges 

In this subsection, the major challenges faced by researchers during the 

implementation of control strategies on nonlinear systems are discussed. These 

challenges are further addressed in subsequent chapters of this thesis. 

 

1.3.1 Challenges in optimization 

Optimization algorithms face numerous significant challenges, mirroring the 

intricate and varied nature of real-world issues. Some of the primary obstacles with 

validated reasoning are mentioned here and handled further in this thesis: 

    Enhancing Efficiency and Scalability: 

Challenge: The efficiency and scalability of optimization algorithms are 

pivotal, particularly when addressing extensive problems or intricate systems. 

Reasoning: With the expansion in size and complexity of optimization problems, 

algorithms must adeptly manage an increasing number of variables and constraints 

while upholding efficiency. 

    Achieving Convergence to Global Optima: 

Challenge: Persistently ensuring convergence to a global optimum instead of a 

local one poses a challenge. Reasoning: Many optimization algorithms tend to 

converge towards local optima, necessitating the development of methods that 

consistently identify the global optimum. 

    Enhancing Robustness in Noisy Environments: 

Challenge: Numerous optimization problems in the real world are 

characterized by noisy or uncertain environments. Reasoning: Algorithms need to 

exhibit robustness to handle variations, uncertainties, and noise in both the objective 

function and constraints. 

The optimization process involves seeking the most effective solution to a problem. 

Consequently, a major challenge for metaheuristics lies in effectively addressing this task. 

Despite numerous suggestions for metaheuristics, only a select few consistently achieve the 

necessary success rate. Population-based metaheuristics are commonly favoured for their 

ability to adapt to large-scale optimization challenges. As mentioned earlier, metaheuristics 

are algorithms tailored to specific problems. Therefore, the key question revolves around 

determining the optimal algorithm parameter specifications based on the characteristics and 

size of the problem's search space. Moreover, the selection of an appropriate metaheuristic 

algorithm is a complex endeavour. Recent advancements aim to enhance and broaden the 

applicability of metaheuristic methods in order to overcome these challenges. 

 

1.3.2 Challenges in nonlinear control system 

Nonlinear control systems present numerous difficulties owing to the inherent 

complexity of their behaviour. This tends to the existence of many challenges while 

dealing with the stability of nonlinear systems. Some of the primary challenges 
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associated with managing nonlinear control systems with validated reasoning are 

mentioned here: 

    Complex Dynamics: 

Challenge: Nonlinear systems frequently display complex and intricate 

dynamics. Reasoning: The complexity introduced by nonlinearities makes 

comprehending and forecasting the behaviour of these systems challenging, leading to 

complexities in both system analysis and design. 

    Uncertainty and Parameter Variability: 

Challenge: Nonlinear control systems are vulnerable to uncertainties and 

variations in system parameters. Reasoning: Variations in parameters or uncertainties 

within the system model can induce unpredictable behaviour, necessitating the 

development of robust control strategies. 

   Stability and Bifurcations: 

Challenge: Ensuring stability in nonlinear control systems proves to be an 

intricate task. Reasoning: Nonlinear systems may undergo bifurcations, resulting in 

sudden changes in system behaviour. Analysing and controlling these bifurcations 

represent challenging aspects of nonlinear control. 

    Controller Design: 

Challenge: Formulating effective controllers for nonlinear systems is a 

challenging endeavour. Reasoning: The nonlinear nature of these systems often 

demands sophisticated control strategies, making the design of controllers that ensure 

stability and desired performance a complex process. 

    Real-Time Implementation: 

Challenge: Executing nonlinear control algorithms in real-time can be 

formidable. Reasoning: The computational intricacies associated with certain 

nonlinear control strategies may present challenges for real-time implementation, 

particularly in applications with stringent time constraints. 

Addressing these challenges requires a fusion of adequate mathematical 

modelling, control theory, and computational techniques to devise potent control 

strategies for nonlinear systems. Ongoing research endeavours contribute to the 

continual advancement of nonlinear control methodologies. 

 

1.4 Motivation 

Based on the aforementioned observations, it is recognized that, beyond 

methods based on linearization, the control of underactuated mechanical systems has 

predominantly focused on stabilization. This involves specific instances of cascade 

nonlinear systems and the utilization of energy-based techniques in conjunction with 

supervisory-based switching control. The portrayal of highly nonlinear systems can be 

depicted as a progression from linear systems to nonlinear systems in control systems. 
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Questions pertaining to controllability, observability, stabilization, and tracking for 

this system using state or output feedback have been comprehensively understood for 

an extended period.  

Addressing these issues is not as straightforward as the control problems for 

the original linear system. Minor deviations from the standard problem of stabilizing 

a linear time-invariant (LTI) control system, coupled with additional constraints, 

render the system complex. Moreover, the control design and analysis for systems with 

various nonlinearities have given rise to absolute stability theory. The current state of 

research in nonlinear systems control falls significantly short of our objective to 

develop effective control design methods applicable to diverse robotic applications. 

These motivation to current work can be outlined as follows: 

 

➢ In control applications, the controller's reaction to real time like situations in 

the system's behaviour is not deeply discussed. 

 

➢ Traditional control methods lack the capability to adapt and learn the system's 

behaviour across various operations, leading to frequent adjustments whenever 

there is a change in system operation, which demands a certain optimization 

technique. 

 

➢ Optimization algorithms are more or less dependent on parametric 

uncertainties. For the development of more effective algorithm in the long run, 

each step should be based on thoughtful planning, innovative features, and 

intelligent approaches, which demands improvement in already available 

optimization algorithms. 

 

➢ Researchers achieved a stable and satisfactory nonlinear system response by 

employing either a standard PID controller or it’s more flexible variants, which 

needs the initial constraint values to be inserted manually every time. This 

needs to be automated in addition with a more sophisticated optimization 

algorithms. 

 

➢ As Einstein famously stated, "Everything should be made as simple as possible, 

but not simpler." In practical applications, a robust algorithm with a simpler 

architecture is favoured for ease of implementation while maintaining 

efficiency for real-world applications. Which means, for practical applications 

we should be focused on traditional controllers with much enhanced 

performance while cascading with intelligent techniques. 

The limitations present in traditional control approaches, particularly when 

dealing with nonlinear and underactuated systems, served as the incentive for 

formulating various control strategies in this thesis. To elaborate briefly, challenges 

faced during the execution of famous algorithms like Teaching Learning Based 

Optimization (TLBO) algorithm and Giza Pyramid Construction (GPC) algorithm is 

addressed in detail. These algorithms aim to address uncertainties, enhance system 

sensitivity to various disturbances, and achieve effective control actions. This 
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approach was developed in an offline mode using fuzzy controller, offering advantages 

in terms of accurate condition monitoring and better stability to nonlinear systems. All 

these control techniques are driven by the motivation to overcome the limitations 

identified in the earlier conventional control approaches. 

 

 

1.5 Objectives 

This research is centred on the control of two-degree-of-freedom (2DoF) 

benchmark mechanical systems, driven by the widespread applications of 

underactuated systems and the intriguing theoretical challenges they pose. The 

research aims to achieve control and stability in the benchmark systems based on the 

following defined objectives: 

 

➢ Develop mathematical models for the two-degree-of-freedom (2DoF) ball 

balancer system and 2DoF helicopter system.  

 

➢ Design and implement classical and intelligent control techniques such as 

proportional-derivative, proportional-integral-derivative, linear quadratic 

control, fuzzy inference system and cascaded control for the 2DoF ball 

balancer system and 2DoF helicopter system using MATLAB/Simulink. 

 

➢ To implement real-time control of the 2DoF ball balancer system and 2DoF 

helicopter system for the defined intelligent and classical controllers. 

 

➢ Use the optimization algorithm to achieve more efficient and flexible response 

of 2DoF ball balancer system and 2DoF helicopter system while optimizing 

the classical and intelligent controllers. 

 

➢ To improve the functioning of Teaching Learning Based Optimization (TLBO) 

algorithm by introducing a new improvement factor to the algorithm and 

validate the algorithm using CEC benchmark functions. Use the improved 

algorithm to control the 2DoF ball balancer and helicopter system. 

 

➢ Develop a hybrid metaheuristic algorithm by improving Giza Pyramid 

Construction (GPC) algorithm while introducing Co-operate phase and 

Command phase to the algorithm. Then validate the developed algorithm using 

benchmark functions. Use the developed algorithm to control the 2DoF ball 

balancer system and 2DoF helicopter system. 

 

➢ Formulate hybrid controllers such as fuzzy-proportional integral derivative 

controllers, and tune the constrained parameters of this cascaded controller 

using the developed hybrid metaheuristic algorithm to develop control 

mechanism for 2DoF ball balancer system and 2DoF helicopter system.  
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1.6  Methodology 

This research makes a significant contribution by introducing optimization 

techniques to address the positioning, tracking, and balancing control challenges 

encountered in benchmark robotic systems. The approach involves the initial 

development of mathematical models for both systems. Additionally, an analysis of 

conventional control methods related to system modelling, operation and control is 

conducted to identify problems and formulate novel control strategies. Real time 

working results and Simulation graphs are carried out on 2DoF ball balancer system 

and 2DoF helicopter system using MATLAB 2015, which is powered by Intel(R) Core 

(TM) i5-4210U CPU processor @ 2.4 GHz and 1.70 GHz with 4 GB of RAM. The 

study proposes following methodology to tackle the control issues arising from the 

nonlinear, underactuated, and uncertain dynamics of the system: 

 

➢ Optimization algorithms are used to find the best settings for control 

parameters to reduce various error functions. Optimization helps tackle down 

the problems like multiple local minimums and complicated interactions 

among two-degree-of-freedom (2DoF) nonlinear system variables. The 

flexibility of optimization algorithms, like TLBO and GPC, allows for real-

time adjustments to adapt to changes or uncertainties in the system. Their 

ability to handle constraints ensures that the solutions are practical and feasible. 

 

➢ The need to improve optimization algorithms comes from the growing 

complexity and variety of real-world problems. As technological, scientific and 

industrial challenges become more complex, traditional optimization methods 

struggle to efficiently navigate these intricate and dynamic solution spaces. 

Enhancements in optimization algorithms allow for the development and 

integration of innovative approaches to tackle specific issues, adapt to 

changing conditions, and boost overall efficiency. By adding an improvement 

factor to the TLBO algorithm and introducing cooperate phase and command 

phase to the GPC algorithm, these algorithms become better at handling 

multiple objective functions.  

 

➢ These improvements are validated using CEC functions and optimizing PID 

controllers for robotic systems. This ensures that the enhanced optimization 

algorithms remain effective and versatile in solving practical problems, such 

as controlling a 2 DoF helicopter system and a 2 DoF ball balancer system. 

 

➢ Using an improved optimization algorithm to tune the constrained parameters 

of a classical PID controller involves calculating initial parameters manually, 

which can be time-consuming and complex. This issue is addressed by using a 

fuzzy PID cascaded controller, which helps generate the initial constrained 

parameters for the classical controller.  

 

➢ The importance of using a fuzzy PID controller in nonlinear robotic systems 

lies in its ability to handle the complex and unpredictable dynamics of these 

systems. Unlike linear systems, nonlinear robotic systems exhibit diverse and 
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nonlinear behaviours that are difficult to model accurately. The fuzzy PID 

controller effectively manages these uncertainties by using a fuzzy logic-based 

approach, allowing for a more adaptable and responsive control strategy. This 

controller can dynamically adjust its parameters based on real-time feedback 

and environmental changes, enhancing the system's resilience and overall 

performance. 

 

1.7 Outline of this thesis 

Chapter 1 (this chapter) is about introduction of controlling the nonlinear and 

underactuated systems using classical and intelligent methods, with some of the basics 

of nonlinear control theory. 

Chapter 2 provides a detailed literature on various optimization strategies, classical 

controller, fuzzy systems, and other recent control techniques developed to handle the 

uncertainties in nonlinear systems. This includes cascaded and combination form of 

controllers, hybrid form of optimization algorithms in respective control system and 

related domains. Detailed literature review on different control mechanism used to 

handle the balancing, tracking and positioning of 2DoF helicopter system and 2DoF 

ball balancer system is done to identify the hybrid optimization algorithms and 

cascaded classical-intelligent control mechanism to control these robotic systems. 

Chapter 3 is about providing a detailed mathematical modelling of two benchmark 

nonlinear systems i.e. 2DoF ball balancer and 2DoF helicopter system using classical 

control mechanism. This modelling is providing proper problem formulation in these 

two benchmark nonlinear systems.  

Chapter 4 develops the control mechanism for 2DoF ball balancer and 2DoF 

helicopter system while optimizing the proportional integral derivative constrained 

parameters by using teaching learning based optimization algorithm. This optimization 

technique handles the parameter uncertainties of these nonlinear systems efficiently.  

Chapter 5 is about providing the real work like situations in laboratory itself in the 

presence of external disturbance. Henceforth, improved teaching learning based 

optimization technique is used to control the variations due to external disturbance in 

2DoF helicopter and 2DoF ball balancer system. 

Chapter 6 develops the automated formation of initial constrained parameters for 

classical controller by using cascaded fuzzy-PID controller to handle the trajectory 

tracking, positioning and balancing in 2DoF helicopter system and 2DoF ball balancer 

system.  

Chapter 7 develops new optimization technique to control the 2DoF ball balancer 

system and 2DoF helicopter system. In here, command phase and co-operate phase are 

introduced to Giza pyramid construction algorithm and hence developing a novel 

approach to tune the constrained parameters of fuzzy-proportional-integral-derivative 

controller while balancing and tracking the above mentioned two robotic systems. 

Chapter 8 provides a summary of the methodologies employed in this study and 

additionally outlines potential avenues for future research. 
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Chapter 2. Literature Review 

 
Several control strategies and optimization techniques have been suggested in 

the literature for nonlinear systems. Optimization algorithm is a prevalent and 

substantial pattern with a wide range of applications. In virtually every aspect of the 

engineering and manufacturing sector, efforts are made to optimize processes, aiming 

to either minimize costs or maximize outcomes, profits, productivity, and overall 

efficiency. The dynamic behaviour evolving over time in nearly all real-world systems 

contributes to their complexity, prompting researchers to increasingly focus on 

nonlinear systems due to their uncertainties and unpredictable nature. In the literature, 

numerous controllers have been utilized and optimized to handle nonlinearities and 

enhance system performance. The crucial domain of controlling autonomous robots to 

carry out intricate tasks in dynamic environments has been a focal point in the field of 

control system. Many of these control surfaces are directly associated with position 

control, path planning, trajectory tracking, and the balancing control of vehicles. This 

chapter offers a summary of the fundamental and recent advancements in theories and 

methodologies aimed at achieving control aspects in benchmark robotic systems. 

Trajectory tracking and attitude control, examined through a two-degree-of-freedom 

(2DoF) helicopter model, specifically the twin-rotor multi-input multi-output system, 

is discussed deeply in this chapter. Subsequently, the chapter explores position 

tracking and balancing control in a two-degree-of-freedom (2DoF) ball balancer 

system also. This chapter provides a summary of the fundamental theories and the 

latest advancements in collecting control elements for benchmark nonlinear systems, 

which is done by using several control techniques and optimization algorithms. A 

detailed literature review of following topics is done in this chapter:- 

➢ Optimization Algorithms 

➢ Optimization of classical controller 

➢ Control mechanisms used for 2DoF ball balancer system 

➢ Control mechanisms used for 2DoF helicopter system 

Let us go through the literature survey of all these topics one by one. 

2.1  Optimization algorithms 

Optimization is a critical practice with a wide range of applications. In 

engineering and manufacturing, there is a constant effort to optimize various elements, 

such as reducing costs or improving outcomes, productivity, and efficiency. 

Optimization challenges are present in many aspects of our lives, both obvious and 

hidden. Any practical system, or even a part of it, can be seen as an optimization system 

with one or more embedded optimization issues. The main goal of optimization 

algorithms is to maximize efficiency by continually seeking more precise and 

adaptable solutions for a given problem [37, 38]. This means that problems must be 

reframed within the optimization context, which involves creating a "search space" for 

potential solutions and evaluating their performance against set criteria [39, 40]. 

Optimization helps address problems characterized by significant nonlinearity, 
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complexity, and large solution spaces. As problems become more complex, there is a 

need for methods that can provide high-quality solutions within a reasonable 

timeframe using available resources. Metaheuristic algorithms are a prime example, 

having become a vital part of all optimization processes. Achieving an optimal solution 

is the final stage in the optimization process. This process includes mathematically 

characterizing the system, identifying constraints, defining system attributes, and 

formulating an objective function. 

In a broader context, the optimization process can be classified into two 

categories: (a) exact methods and (b) approximation methods [41]. The exact approach 

strives for the optimal solution, ensuring the best possible answer, while the 

approximation method aims to provide a high-quality solution within a reasonable 

timeframe, though not necessarily achieving optimality. Examples of exact 

optimization techniques include the branch and bound approach and dynamic 

programming, whereas approximate methods encompass cut & plane, local search, 

scatter search, genetic algorithms, among others. Additionally, there are two types of 

approximate procedures: approximation algorithms and heuristic techniques. The 

former guarantees a proven arrangement quality and runtime limitations, while the 

latter focuses on obtaining a practical excellent arrangement within a reasonable time. 

Heuristic-based algorithms are highly specific to the problem at hand. Metaheuristics, 

as a type of algorithm, embody basic heuristics similarly to a governing system but 

without specifying a particular problem or domain, making them applicable to any 

optimization task. The term "metaheuristics" was coined by Glover [5], emphasizing 

their logical improvement to achieve an acceptable arrangement within a sufficiently 

short computing time. The simplicity and ease of implementation, lack of requirement 

for slope data, avoidance of local optima, and versatility across a range of problems 

involving different controls make meta-heuristic optimization valuable in addressing 

various ongoing challenges. 

Heuristic optimization methods were first proposed in the early '70s [42]. 

While these methods don't assure the optimal solution, they are capable of finding 

solutions that are close to optimal and feasible within a reasonable timeframe. The 

concept of heuristics was initially introduced [43] by G. Poyla in 1947, with its actual 

development gaining momentum after 1960. Essentially, heuristics are designed to 

provide improved computational performance most of the time, albeit at the expense 

of reduced accuracy compared to traditional optimization algorithms. Since heuristics 

are tailored to specific problems, they leverage domain-specific knowledge and are 

well-defined primarily for basic problems [44]. To be more precise, heuristics are 

approaches that use readily available but loosely structured information to guide 

problem-solving in both human beings and machines. Classically, the optimization 

algorithms are divided into two types – heuristic optimization algorithms and 

metaheuristic optimization algorithms. Heuristic optimization techniques and 

metaheuristic optimization techniques are both strategies employed to discover 

approximate solutions for complicated optimization problems. Nonetheless, there are 

distinctions between the two in terms of their scope, generality, and the extent of 

problem-specific knowledge involved. Key points of these algorithms are discussed in 

further sub-sections of this work. 
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2.1.1 Heuristic optimization techniques 

➢ Tailored for Specific Problems: Heuristics are primarily crafted for particular 

problem types, utilizing domain-specific knowledge to steer the search for 

solutions. 

➢ Limited Transferability: They may not easily adapt to different problem 

domains without substantial modification. 

➢ Generality: Reliance on Specific Knowledge: Heuristics often depend on 

problem-specific knowledge and may be customized to exploit the structure of 

a given optimization problem. 

➢ Localized Exploration: Many heuristics involve strategies focused on local 

exploration, iteratively refining the solution space by enhancing the current 

solution. 

➢ Optimality: No Assurance of Optimality: Heuristic methods do not ensure the 

discovery of the optimal solution. Instead, they concentrate on swiftly 

identifying good, feasible solutions. 

Most famous example for heuristic optimization algorithm is Hill Climbing. 

Hill Climbing is a localized search algorithm that progressively advances toward an 

elevated point in the solution space through iterative steps, effecting incremental 

enhancements. Termination occurs when no superior neighbouring solution is 

identified. But, this algorithm fails drastically when it comes to multiple optima 

solution kind of problems. The 2DoF robotic systems are such kind of nonlinear 

problem only. So we need better understanding of metaheuristic optimization 

techniques in order to handle the 2DoF robotic systems. 

2.1.2 Metaheuristic optimization techniques 

➢ Universal Problem-Solving: Metaheuristics are conceived as high-level, 

universal strategies applicable to a diverse array of optimization problems 

without heavy reliance on problem-specific knowledge. 

➢ Wide Applicability: They are frequently suitable for various domains and 

problems with minimal adaptation. 

➢ Generality: Independence from Specific Problems: Metaheuristics are not tied 

to specific problems and do not necessitate detailed knowledge about the 

specific characteristics of the optimization problem. 

➢ Global Exploration: Metaheuristics often employ global search strategies, 

traversing the entire solution space to escape local optima and discover 

superior solutions. 

➢ Optimality: No Guarantee of Optimality: Similar to heuristics, metaheuristics 

do not assure the identification of the optimal solution; instead, they focus on 

delivering high-quality solutions within a reasonable timeframe. 

This exploration delves into fundamental terminology within the realm of 

metaheuristic computing to present the concept of metaheuristic computing with 

utmost clarity. Definition 1 – “heuristic is defined as a problem-solving reasoning 

methodology that facilitates the derivation of a solution through trial-and-error and/or 
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the application of rules of thumb”. Definition 2 – “computing, in a narrow sense, is 

described as the application of computers to solve a specific problem through 

imperative instructions. In a broader sense, it constitutes a process where a system 

transforms given information or instructions into expected intelligent behaviours”. 

Synthesizing these definitions, the concept of metaheuristic computing can be 

articulated as follows – as per Definition 3 – “Metaheuristic computing is an adaptive 

and/or autonomous methodology for computing that employs general heuristic rules, 

algorithms, and processes to address a category of computational problems"[45]. 

In essence, heuristics are more tailored to specific problems, demanding a 

profound understanding of the particular optimization problem. On the other hand, 

metaheuristics are crafted as general problem-solving frameworks, applicable across a 

broad spectrum of problems without relying on intricate problem-specific knowledge. 

Metaheuristics often exhibit a higher level of abstraction, enabling broader 

applicability but potentially sacrificing some problem-specific optimization 

capabilities found in heuristics. Both approaches share the common objective of 

effectively discovering satisfactory solutions to complex optimization problems. There 

are numerous examples of metaheuristic optimization techniques in literature 

including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Teaching Learning Based Optimization (TLBO) algorithm, Giza 

Pyramid Construction (GPC) optimization algorithm.  

 
Fig. 2.1 General steps followed by optimization techniques 

Metaheuristic optimization algorithms employ diverse strategies, each guided 

by unique principles in their quest for optimal or near-optimal solutions to intricate 

problems. Step wise steps followed by these optimization techniques to conquer a 

problem is explained in fig. 2.1. Genetic Algorithms (GA), drawing inspiration from 

biological evolution, adhere to the principles of natural selection and genetics, utilizing 

mechanisms such as crossover and mutation to progressively evolve a population of 



17 
 

potential solutions [46]. Ant Colony Optimization (ACO), influenced by ant foraging 

behaviour, depends on pheromone trails to direct artificial ants in collaboratively 

constructing solutions through a decentralized approach [47]. Particle Swarm 

Optimization (PSO) takes cues from social behaviour, with particles adjusting 

positions based on individual experiences and global optimal solutions [48]. Each 

metaheuristic algorithm adheres to its distinct guiding principles, reflecting the array 

of inspirations shaping their approaches to optimization.  

Most famous optimization algorithms are of four types – “Evolutionary based”, 

“Trajectory based”, “Nature Inspired” and “Ancient Inspired”. Some of the recognized 

algorithms in the realm of evolutionary strategies include Genetic Algorithm (GA), 

Evolution Strategy (ES), Evolution Programming (EP), Differential Evolution (DE) 

and Bacteria Foraging Optimization (BFO) among others. Additionally, well-known 

swarm intelligence-based algorithms comprise Particle Swarm Optimization (PSO), 

Shuffled Frog Leaping (SFL), Ant Colony Optimization (ACO), Artificial Bee Colony 

(ABC), Fire Fly (FF) algorithm, and more. Apart from these, various algorithms like 

Iterated Local Search (ILS) and Guided Local Search (GLS) are based on trajectories 

followed in parent algorithm. Whereas the Ancient inspired algorithm is Giza Pyramid 

Construction (GPC) algorithm [49]. 

All evolutionary, trajectory and swarm intelligence-based algorithms are 

probabilistic and share common controlling parameters like population size, number 

of generations, elite size, etc. However, individual algorithms also require specific 

control parameters. For instance, GA utilizes mutation probability, crossover 

probability, and selection operator; PSO employs inertia weight, social and cognitive 

parameters; ABC depends on the number of onlooker bees, employed bees, scout bees, 

and limit; and HS algorithm considers harmony memory consideration rate, pitch 

adjusting rate, and the number of improvisations. Similarly, other algorithms like ES, 

EP, DE, BFO, AIA, SFL, ACO, etc., necessitate tuning their respective algorithm-

specific parameters. The precise tuning of these parameters is crucial as it significantly 

impacts the performance of these algorithms. If not properly tuned, algorithm-specific 

parameters may increase computational effort or result in local optimal solutions. 

Recognizing this challenge, Rao et al. introduced the teaching-learning-based 

optimization (TLBO) algorithm [50], which stands out for not requiring any algorithm-

specific parameters. TLBO, hinging on basic parameters such as population size and 

generation count, has garnered broad acknowledgment within the optimization 

research community [51]. Since its introduction, the Teaching-Learning-Based 

Optimization (TLBO) algorithm has seen a growing adoption across diverse fields of 

engineering and science. A thorough endeavour has been undertaken to gather data 

from numerous publications concerning the TLBO algorithm, recognizing the 

potential existence of further contributions in conferences and journals. Initially 

conceived to address constrained mechanical design optimization tasks, the Teaching-

Learning-Based Optimization (TLBO) algorithm has expanded its scope into various 

applications, highlighting its adaptability and effectiveness. Its capabilities have been 

showcased in multi-objective design optimization tasks, notably in refining a robotic 

gripper and resolving clustering issues [52].  
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Expanding its applications, TLBO played a crucial role in optimizing the shape 

and size of truss structures while integrating dynamic frequency constraints [53]. A 

significant advancement came in the form of a cooperative co-evolutionary TLBO 

algorithm, which introduced a refined exploration approach tailored for addressing 

large-scale global optimization challenges [54]. Demonstrating its versatility, the 

algorithm made strides in Bioinformatics, where the multi-objective Teaching-

Learning-Based Optimization (MO-TLBO) method effectively tackled the complex 

Motif Discovery Problem (MDP) [55]. Noteworthy enhancements to the algorithm 

included the integration of a swarm-based niching technique, a novel mutation strategy 

in the learner stage, and modifications to the teacher and learner phases, all 

contributing to its continuous refinement [56]. Applied to scenarios such as optimal 

capacitor placement in distribution networks and stochastic models for energy 

management, the algorithm consistently demonstrated its prowess [57]. Further 

enhancements, such as the Elitist Teaching Learning Oppositional Based (ETLOBA) 

algorithm [58], were introduced to augment TLBO's accuracy, as evidenced by 

comparative analyses with algorithms like HS, Improved Bees Algorithm (IBA), and 

ABC. The TLBO algorithm, akin to a literary masterpiece, continually unfolds its 

narrative across various optimization landscapes, showcasing its mettle against 

formidable counterparts such as GA, ABC, PSO, HS, DE, and Hybrid-PSO through 

rigorous experimentation on diverse benchmark problems [59]. Utilized the TLBO 

algorithm to optimize the design of planar steel frames. Compared the outcomes of 

TLBO with those obtained using GA, ACO, Harmony Search (HS), and the enhanced 

Ant Colony Optimization (IACO) [60].  

The TLBO method was employed to select distinctive oligonucleotide primers 

[61]. Digital hearing aids based on IIR were fashioned using the TLBO algorithm [62]. 

The TLBO algorithm was utilized for the efficient design of grillage systems adhering 

to LRFD-AISC standards [63]. Additionally, it was applied to optimize truss 

structures, with the method's validity demonstrated through four design examples [64]. 

A new application involved suggesting the TLBO algorithm to determine the optimal 

placement and size of Distributed Generation (DG) units within distribution systems 

[65]. To address the challenge of multi-objective short-term optimal hydro-thermal 

scheduling, an algorithm called hybrid differential evolution and TLBO (hDE-TLBO) 

was introduced [66]. Additionally, a hybrid self-evolving algorithm was recommended 

for solving a nonlinear optimal power flow problem, specifically aiming to minimize 

the fuel costs associated with thermal units [67]. 

The effectiveness of the TLBO algorithm was demonstrated in addressing 

constrained mechanical design problems [68]. An improved version, referred to as the 

Ameliorated TLBO algorithm, was proposed to elevate solution quality and hasten the 

convergence speed of TLBO [69]. In an effort to accelerate convergence speed and 

enhance solution quality, a quasi-opposition-based learning concept was integrated 

into the original TLBO algorithm [70]. Another algorithm, the multi-objective 

Teaching Learning Algorithm based on Decomposition (MOTLA/D), was put to the 

test on three systems, with results compared to other multi-objective algorithms based 

on decomposition [71]. A modification involving a self-adaptive mechanism was 

introduced in the phase of the TLBO algorithm, aiming to achieve a balance between 
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exploration and exploitation capabilities [72]. TLBO algorithm found practical 

application in optimizing process parameters for three machining processes, including 

the advanced abrasive water jet machining process, as well as the conventional 

processes of grinding and milling [73]. Conducted the optimization of parameters for 

a multi-pass turning operation through the application of the TLBO algorithm. 

Examined two distinct scenarios that had been previously explored by different 

researchers using various optimization methods like SA, GA, ACO, PSO, and others 

[74]. Implemented [75] a customized version of the Teaching–Learning-Based 

Optimization (TLBO) algorithm to address the short-term Hydro-Thermal Scheduling 

problem, incorporating considerations for valve point effects and prohibited discharge 

constraints. Applied the modified TLBO to tackle the same scheduling problem, taking 

into account the intricate and nonlinear relationships among the variables. Employed 

TLBO in classification tasks using neural networks within the realm of data mining. 

Introduced the Orthogonal Design based TLBO (OTLBO) algorithm [76], integrating 

it with statistical optimal methods to generate optimal offspring. Experimented with 

the Weighted TLBO (WTLBO) algorithm [77] on various benchmark optimization 

problems. Utilized TLBO for parameter identification challenges in designing a digital 

Infinite Impulse Response (IIR) filter [78]. Proposed an Improved TLBO algorithm 

with a Memetic method (ITLBO-M), enhancing global exploring ability through 

memetic methods and improving local search ability through one-to-one teaching [79]. 

Applied a modified TLBO for the design of a Proportional-Integral (PI) controller-

based Power System Stabilizer (PSS) [80]. Introduced an Improved Harmony Search 

Based Teaching Learning (HSTL) optimization algorithm [81], aiming for a balance 

between convergence speed and population diversity. Critically examined a note 

challenging the performance supremacy of the TLBO algorithm, presenting a re-

examination of views and experimental results in an objective manner [82]. [83] 

Surveyed the operational mechanism of TLBO for real-parameter optimization 

problems and categorized its real-world applications. Proposed a TLBO algorithm for 

multi-objective optimization problems (MOPs), incorporating non-dominated sorting 

and crowding distance computation concepts [84]. [85] Provided details on integrated 

maintenance scheduling for secure operation, formulating it as a complex optimization 

problem affecting unit commitment and economic dispatch schedules. Applied TLBO 

in hybrid fuzzy wavelet neural network for heart disease diagnosis [86]. Analysed 

TLBO algorithm performance on combinatorial optimization problems [87], 

specifically flow shop (FSSP) and job shop scheduling problems (JSSP). Employed 

TLBO for solving Economic Load Dispatch (ELD) problems with varying linear and 

non-linear constraints [88]. Used TLBO for solving optimal power flow problems, 

demonstrating effectiveness on IEEE 30-bus and IEEE 118-bus test systems [89]. 

Explored TLBO efficiency in solving benchmark problems related to truss structures 

with discrete design variables, comparing results with existing literature [90]. Applied 

modified TLBO and Double Differential Evolution (DDE) algorithm for solving 

Optimal Reactive Power Dispatch (ORPD) problems [91]. Proposed a multi-objective 

TLBO algorithm for solving the Motif Discovery Problem (MDP) [92], comparing 

results with other algorithms. Modified teacher and learner phases of TLBO for 

optimal location determination of AVRs in the distribution system [93]. Suggested an 

improved TLBO algorithm adapted to the enhanced framework of Particle Swarm 

Optimization (PSO) known as Bidirectional Teaching and Peer Learning PSO 
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(BTPLPSO) [94]. Proposed a method to quantify carbon emissions in turning 

operations using TLBO, including a multi-objective TLBO algorithm considering 

carbon emissions and operation time minimization [95]. Introduced a harmonic 

elimination technique for reducing harmonics in voltage source inverters using a 

modified TLBO algorithm [96]. [97]Presented an efficient method to extract all five 

parameters of a solar cell from a single illuminated current–voltage characteristic using 

TLBO. Integrated differential operators into TLBO with a Latin hypercube sampling 

technique to improve the initial population's flatness during the strip coiling process 

[98]. Used TLBO for optimal selection of design and manufacturing tolerances, 

comparing results with GA, NSGA-II, and MOPSO [99]. Considered mathematical 

models of casting processes for TLBO-based parameter optimization and proposed a 

multi-objective improved TLBO algorithm for unconstrained and constrained multi-

objective function optimization. Evaluated performance on CEC 2009 competition test 

problems [100 – 101]. [102] Applied QTLBO to solve the unit commitment problem, 

comparing results with other algorithms. Incorporated oppositional-based learning into 

basic TLBO for solving combined heat and power dispatch problems [103]. 

Investigated the performance of a new TLBO variant for global function optimization, 

comparing with advanced PSO, DE, and ABC variants on CEC 2005 benchmark 

functions [104]. Proposed a modified TLBO algorithm with self-adaptive wavelet 

mutation strategy and fuzzy clustering technique [105]. Introduced a hybrid TLBO-

DE algorithm [106] for chaotic time series prediction and demonstrated its 

effectiveness on typical chaotic nonlinear time series prediction problems. Formulated 

a multi-objective optimization problem and used a modified TLBO algorithm for 

coordinating TCSC [107], SVC, and power angle difference damping characteristics. 

[108] presented a Simplified Teaching–Learning-Based Optimization (STLBO) 

algorithm for solving the challenging NP-hard combinatorial optimization problem of 

Disassembly Sequence Planning (DSP). Introduced a hybrid TLBO [109] combining 

TLBO for solution evolution and variable neighbourhood search for fast solution 

improvement in Permutation Flow Shop Scheduling. Proposed a compact TLBO [110] 

algorithm to reduce memory requirements, utilizing adaptive statistic description to 

replace the process of a population of solutions. Modified TLBO with a feedback phase 

[111], DE algorithm operations, and chaotic perturbation mechanism to improve 

performance. Introduced the area copying operator of the producer–scrounger model 

into TLBO to decrease computation cost and enhance global performance for global 

optimization problems [112]. Applied TLBO techniques in forecasting a financial 

derivatives instrument (commodity futures contract index) using machine learning 

methods [113]. Presented a TLBO-based framework for computing coefficients for 

quadratic and cubic cost functions, valve point loading, piece-wise quadratic cost, and 

emission functions [114]. Proposed a new hybrid algorithm, Teaching–Learning-

Based Cuckoo Search (TLCS), for parameter optimization in structure designing and 

machining [115]. Highlighted a multi-objective optimal location of on-load tap 

changers (OLTCs) in distribution systems at the spirit of distributed generators (DGs) 

using TLBO coupled with the SA algorithm (SA-TLBO) [116]. Introduced an 

improved TLBO variant for simultaneous allocation of distributed resources in radial 

distribution networks, considering multi-level load scenarios [117]. Applied TLBO to 

determine optimal machining conditions for satisfactory machining performances, 

comparing its application potential to that of GA [118]. Advocated for the novel Auto-
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TLBO clustering algorithm, combining automatic k-value assignment and cluster 

validations into TLBO [119]. Presented a secured optimal power flow solution by 

integrating thyristor controlled series compensator (TCSC) with the optimization 

model under overload conditions, utilizing TLBO [120]. Conducted single and multi-

objective design optimization of a heat pipe using TLBO, comparing results with 

NPGA, GEM, and GEO algorithms [121]. Evaluated TLBO performance in obtaining 

the optimum geometrical dimensions of a robot gripper, considering five objectives 

[122]. Explored TLBO's effectiveness in obtaining optimal design and operating 

parameters for a smooth flat plate solar air heater (SFPSAH), with thermal efficiency 

maximization as the objective function [123]. Investigated TLBO's performance in 

multi-objective design optimization of a plate fin heat sink equipped with flow-through 

and impingement-flow air cooling system, considering entropy generation rate and 

material cost as objective functions [124]. Presented the design and analysis of a 

Proportional-Integral-Double Derivative (PIDD) controller for Automatic Generation 

Control (AGC) of multi-area power systems using TLBO [125]. Hybridized TLBO 

with Differential Evolution for estimating unknown proton exchange membrane fuel 

cell (PEMFC) model parameters [126]. Proposed an effective TLBO algorithm for 

solving the flexible job shop scheduling problem, comparing results with other 

optimization algorithms [127]. Introduced an integrated approach for real-time model-

based state of charge (SOC) estimation of Lithium-ion batteries, utilizing TLBO and 

the least square method for offline optimization [128]. 

TLBO method distinguishes itself as a beneficial strategy for parameter 

optimization, attributed to its distinctive learning-inspired approach. This method 

showcases a notable capacity to converge towards optimal solutions, steering clear of 

stagnation in local minima. Its intrinsic simplicity, efficiency, and versatility position 

is well-suited for addressing a broad spectrum of challenges in parameter optimization. 

 

2.2  Classical controller 

Over the years, feedback control mechanisms have exerted a significant influence on 

various fields such as manufacturing, robotics, aviation, and process control [129 – 

133]. Numerous efficient, robust, and adaptive controllers have been proposed 

alongside the widely used classical proportional-integral-derivative (PID) controller. 

Despite the availability of alternative controllers, the acceptance and reputation of PID 

controllers in control systems remain unparalleled and supreme. PID control systems 

can be applied in different modes—proportional only (P-mode), proportional and 

integral (PI mode), proportional and derivative (PD-mode), and proportional, integral, 

and derivative (PID mode)—based on process requirements [134]. PID controllers 

have been employed in industries for process control applications for many years. 

Despite their long history, PID controllers continue to be the most widely used 

controllers in both process and manufacturing industries today. Research indicates that 

approximately ninety percent (90%) of process industries utilize PID controllers. This 

widespread adoption is attributed to the robustness, simplicity, and ease of retuning 

control parameters. The PID controller has traditionally been considered the best 

controller in the absence of fundamental process knowledge [135]. Despite these 
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advantages, PID controllers also face some shortcomings, including unwanted speed 

overshoot and sluggish response due to unexpected variations in load torque and 

sensitivity to controller gains [136]. 

Controller tuning has long been a crucial aspect of feedback controllers, 

making it a significant area of research in both academic and industrial domains. The 

exploration and study of dynamic systems to develop efficient, reliable, and promising 

controllers fall under the purview of control engineering. Following the establishment 

of PID control, considerable interest in tuning techniques aimed at ensuring the 

excellent performance of PID controllers emerged. The initial rules for tuning PID 

controller parameters were introduced by Ziegler and Nichols in 1942 [137 – 138], 

with subsequent proposals of various tuning rules. Some of these approaches primarily 

focused on stabilizing linear systems [139], making them less suitable for nonlinear 

dynamic models. In contrast, certain techniques encompassed nonlinear systems with 

the aim of obtaining control variables satisfying stability criteria [140]. However, these 

latter strategies do not guarantee specific response characteristics. Consequently, a 

significant challenge in the field of control engineering revolves around the 

appropriate tuning of controller parameters. The tuning of controller variables is 

crucial for stabilizing closed-loop control systems and achieving objectives related to 

stability, durability, performance tracking, performance measurement, noise 

reduction, disturbance rejection, and robustness against environmental uncertainties. 

When presented with a set of objectives, various tuning approaches exist for 

PID controllers. Numerous authors and scholars have introduced diverse 

classifications of PID tuning strategies. For a more thorough and detailed examination 

of this classification, along with application strategies, refer to Moradi and Johnson 

[141 – 142].Additionally, [143] provides an alternative classification for tuning PID 

parameters. These approaches are broadly divided into classical and computational 

techniques: 

• Traditional Approaches: These approaches revolve around making 

assumptions regarding the plant model and the desired output. They aim to 

extract certain system features analytically or graphically, which are then 

employed to select controller settings. These methods are user-friendly, 

computationally efficient, and can serve as an initial step in parameter 

adjustment. However, the controller settings often yield desired results directly 

due to the assumptions made, necessitating further tuning. Some classical 

tuning methods include the Ziegler and Nichols [137 – 138] method and the 

Cohen (1953) method. 

 

• Computational or Optimization Approaches: These techniques involve 

utilizing data modelling and optimization strategies of a cost function to tune 

PID parameters. These methods for adjusting controller parameters rely on a 

cost function that they seek to minimize. There are six commonly used cost 

functions for tuning PID controller parameters, which are discussed later in this 

work. 
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2.3    Computational techniques for classical controller tuning 

Computational approaches are utilized for the self-tuning or automated tuning 

of PID controller parameters. A more detailed classification based on nature and 

application can be categorized into five (5) groups: 

I. Analytical Methods: These methods involve analysing the closed-loop model 

to achieve stability. It includes computing the relationship between a given 

plant model and the set objective to determine appropriate PID parameters. 

II. Heuristic Methods: Heuristic PID tuning strategies evolve through practical 

experience, where controller variables are manually selected based on the 

experimental knowledge of a seasoned designer. This designer utilizes 

information from controlled variable estimates to establish correct variable-

performance relationships. The heuristic method can also serve as a formula or 

rule base for online tuning, often involving trade-offs in design goals or 

objectives. 

III. Frequency Response Methods: These PID parameter tuning methods are 

typically offline and popular in academic settings. The technique is based on 

the characteristics of the target process or system, such as loop shaping, and 

has been presented in the use of frequency response for tuning PID controller 

parameters. 

IV. Optimization Methods: PID controller tuning strategies in this category can be 

considered an exceptional form of feedback optimal control system. PID 

variables are obtained spontaneously using offline mathematical programming 

or numerical optimization techniques for a singular objective. The computation 

can also be implemented using computerized heuristics or evolutionary 

algorithms for multiple design objectives. The main characteristic of these 

methods is that control parameters are fixed and acquired by the solution of an 

offline numerical optimization method. Offline numerical optimization 

techniques use the derived state vector of the plant by simulation or the real 

plant vectors. The obtained fixed control parameters are then integrated into a 

closed-loop system. This review falls into this class of tuning. 

V. Adaptive Tuning Methods: Adaptive tuning strategies are online, real-time 

tuning methods that involve the use of automated online mechanisms to tune 

PID controller parameter gains. The key feature of these techniques is that 

control parameters vary over pre-set time intervals in the closed-loop system. 

This thesis is focussed on Adaptive tuning using different optimization methods, 

that is why the literature review is narrowed down to it. In recent literature, heuristic 

algorithm-based optimization strategies have emerged as a powerful tool for 

addressing various challenges in control engineering [144]. Metaheuristic algorithms 

are widely employed in process control due to their architectural simplicity, effective 

optimization capabilities, and rapid response. In comparison to traditional optimization 

approaches, metaheuristic algorithms demonstrate higher efficiency in solving 

optimization problems with higher dimensions. Their adaptability to existing classical 

controller design methodologies is facilitated by their resilience. Regardless of model 

order, metaheuristic algorithms can serve as a fundamental mechanism for developing 
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both traditional and enhanced structured controllers for a range of unstable operational 

models. The significance of automatic PID tuning algorithms has garnered 

considerable attention in the industry, particularly in the last two decades [145]. 

Various methods, including metaheuristic techniques like GA, PSO, and SA, among 

others, have been applied. In the subsequent paragraphs, an overview of these 

algorithms and their applications in PID tuning is provided. 

Classical PID controller optimization using GA algorithm: “Genetic 

Algorithms are search and optimization methodologies inspired by two biological 

principles known as the process of natural selection and the mechanism of natural 

genetics [146]. GA [147] is a stochastic global search method that emulates the natural 

evolution process. It belongs to the category of probabilistic optimization techniques 

utilizing natural selection and genetic inheritance to address problem-solving 

challenges. Presently, Genetic Algorithms (GA) have garnered significant attention, 

and ongoing research has delved into exploring its application. In the field of Control 

Engineering, its implementation has progressed significantly. Despite the multifaceted 

considerations of performance, system stability, static and dynamic indices, and 

overall system robustness in control system design, GAs have been employed to fine-

tune PID parameters for diverse processes or plants. For instance, optimal methods for 

tuning PID settings in DC motor speed control have been discussed [148 – 149]. GA-

controlled PID controller tailored for synchronous generators to enhance damping and 

ensure power system stability is introduced [150]. The design of a PID controller for 

a cascade control process using GA is elucidated [151]. An investigation is introduced 

into the applicability of genetic algorithms for the automatic tuning of PID controller 

parameters [152]”. 

Classical PID controller optimization using ACO algorithm: “The ant colony 

optimization (ACO) algorithm is a unique approach inspired by the collective 

behaviour of insect swarms and initially developed for combinatorial problems. ACO 

serves as a stochastic metaheuristic method for addressing combinatorial optimization 

challenges, employing artificial ants to navigate through solution spaces. The primary 

objective of ACO is to discover shorter routes from ant nests to food sources by leaving 

behind a chemical compound, known as pheromone, enabling communication among 

ants. Proposed by Dorigo in his 1992 PhD thesis [47] & [153], the initial version of 

ACO laid the foundation for a challenging optimization algorithm rooted in both 

simple and complex foraging ant behaviours, gaining significant interest in the 1990s 

and beyond. In [154] applied ACO to tune PID controller parameters for a DC motor 

in a robotic arm, demonstrating superior performance compared to conventional tuning 

methods. Other applications include PID tuning for quadrotor stabilization [155], 

optimal PID regulator synthesis for human heart control [156] using ACO-based 

optimization, and various PID tuning applications such as Load Frequency Control 

[157], Autonomous Underwater Vehicle [158], Single Machine Infinite Bus control 

[159], position control of a DC motor [160] and multi-objective ACO for PID [161]”. 

Classical PID controller optimization using ABC algorithm: “The Artificial 

Bee Colony (ABC) metaheuristic optimization technique was introduced by Karaboga 

in 2005, drawing inspiration from the intelligent foraging behaviour of honey bees. 
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The method is rooted in the foraging model of honey bee colonies presented by 

Karaboga [162], comprising three main components: working and unemployed 

foraging bees, as well as food sources. Employed and unemployed foraging bees seek 

abundant food sources in proximity to their hive, while the hive itself serves as the 

third component. The concept involves forager recruitment to rich food sources, 

leading to positive feedback, and forager desertion of low food sources, resulting in 

negative feedback—essential behaviours for self-organization and collective 

intelligence. Further details and application strategies of ABC are discussed 

comprehensively in [163]. The ABC algorithm is applied for precise tuning of PID 

settings, employing benchmark functions for testing. The algorithm's performance is 

compared to other approaches based on overshoot, settling time, and minimal error 

[164]. In [165], the author proposed the use of the ABC algorithm for tuning PID 

controller regulation parameters in a DC motor. ABC algorithm is employed for 

obtaining optimal PID controller parameters for higher order oscillatory systems [166]. 

Additional applications include the control of fractional order systems [167], 

suppression of hub motion and endpoint vibration in a double-link flexible robotic 

manipulator [168], control of a bench-scaled nonlinear dynamical system [169] and 

tuning of a single-phase inverter [170]”. 

Classical PID controller optimization using BA algorithm: “The Bat Algorithm 

(BA) is a heuristic method inspired by the echolocation behaviour of natural bats, 

particularly microbats, in locating prey and distinguishing between different types of 

insects even in low-light conditions [171], where Yang introduced the BA, drawing 

influence from the sonar capabilities of microbats. In the original population, each bat 

updates its position through a correlated process utilizing echolocation. Echolocation 

involves emitting powerful ultrasonic pulses to generate echoes, which are then 

received with varying latencies and sound frequencies. This enables bats to precisely 

identify their prey. In the natural environment, echolocation events are brief, lasting 

only a few thousandths of a second (around 8–10 ms), with frequencies ranging from 

25 to 150 kHz and corresponding to air wavelengths of 2–14 mm [172]. Microbats 

employ sound waves for prey detection, emitting small signals during travel. However, 

when a potential prey is nearby, they increase the pulse rates and tune up the frequency. 

This frequency tuning, in combination with the pulse emission speed, reduces the 

wavelength of echolocations, enhancing detection precision. The BA has been 

successfully applied to optimize Proportional-Integral-Derivative (PID) parameters in 

various process plants. [173] employed BA to fine-tune PID controller parameters for 

a liquid level control system in a connected tank, widely used in industries such as 

mineral oil, food manufacturing, and water purification. In [174], BA was utilized to 

optimize the settings of a centrally controlled Proportional-Integral (PI) controller for 

a coal gas turbine, a non-linear multidimensional process with complex relationships 

across control loops. In [175], BA is used to tune PID controller parameters for a servo 

motor. Other applications of BA in PID tuning include speed control of brushless direct 

current drives [176], bio-inspired robot manipulators [177], and the control of 

microelectromechanical systems (MEMS) gyroscopes [178]”. 

Classical PID controller optimization using PSO algorithm: “In 1995, Kennedy 

and Eberhart introduced the PSO algorithm [48], a metaheuristic approach grounded 
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in swarm intelligence principles, designed to address complex mathematical 

challenges encountered in engineering [179]. Renowned for its versatility, PSO has 

become a widely used optimization technique with diverse applications in fields such 

as medicine [180], finance [181], economics [182], as well as security and military 

domains, biology, system identification, and more [183 – 184]. In various academic 

pursuits, PSO has been employed to address issues in structural, hydrological, and 

geotechnical civil engineering [185]. Additionally, PSO has recently found utility in 

solving problems within the realm of operations research [186]”. 

Classical PID controller optimization using Cukoo algorithm: “Yang and Deb 

introduced the Cuckoo Search (CS) metaheuristic evolutionary optimization algorithm 

[187], drawing inspiration from the cuckoo bird species. Cuckoos are captivating not 

only for their enchanting songs but also for their proactive breeding strategies. CS 

techniques have been applied in numerous studies to fine-tune PID controller 

parameters. [188] exemplify the utilization of the cuckoo optimization approach in 

PID parameter tuning for monitoring an inverted pendulum, experimental validation 

of the Van der Pol oscillator, and the stability analysis of a capsizing problem in 

nonlinear systems. [189] present a novel tuning approach for PID parameters in the 

AVR system, leveraging the CS algorithm along with a new frequency-domain 

performance benchmark. Introduces an innovative method for designing PID 

controllers using the CS optimization algorithm, aimed at enhancing the performance 

of buck-boost converters in LED driver circuits [190 – 191]”. 

Classical PID controller optimization using GWO algorithm: “Grey Wolf 

Optimization (GWO) is a recently introduced metaheuristic optimization algorithm, as 

proposed by Mirjalili et al. [192]. The inspiration for GWO comes from the social 

structure and intelligent hunting strategies of grey wolves, known for their dominant 

position within their habitats and group dynamics typically consisting of 5–12 

individuals. The distinctive feature of GWO, setting it apart from other metaheuristic 

algorithms, lies in its emulation of the well-defined social hierarchy among grey 

wolves. The primary objective of this social hierarchy is to evolve candidate solutions 

during each iteration, closely resembling the hunting behaviour of grey wolves as they 

locate and attack prey [193]. In the field of control engineering, there has been a 

notable surge in publications exploring the application of the GWO algorithm for 

tuning PID controller parameters. [194] proposed a GWO scheme to optimize the 

variables of a PI controller for a closed-loop condenser pressure control mechanism. 

The results demonstrated the effectiveness of the Grey Wolf (GW) optimizer 

compared to Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). 

Similarly, [195] tuned the parameters of a basic PID controller using the GWO 

algorithm for a magnetic levitation system, showing superior results compared to the 

traditional Ziegler-Nichols (ZN) [137 – 138] tuning scheme. [196] explored the 

application of the GW optimizer to fine-tune control variables of a PID controller for 

regulating the speed of a second-order DC motor system. GWO has found application 

in various other domains for PID tuning, including robotics [197], speed control of DC 

motors [198], inverted pendulum systems [199], voltage regulation [200], and wind 

turbines [201]”. 
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Classical PID controller optimization using TLBO algorithm: “Rao et al. 

proposed [50] the Teaching-Learning-Based Optimization (TLBO) as a solution for 

addressing global mechanical design challenges through large-scale non-linear 

optimization problems. TLBO, a population-based metaheuristic search algorithm, 

emulates the teaching and learning methods commonly observed in a classroom 

setting. In TLBO, a group of students collectively forms a solution, and the fitness of 

these solutions is termed as results or grades. The TLBO algorithm refines each 

learner's grade by incorporating learning from both the teacher and peer interactions. 

In the context of PID parameter tuning, TLBO has been employed to optimize the 

variables of PID for various processes, including automatic voltage regulator (AVR) 

systems, Automatic Generation Control (AGC) in power systems and the enhancement 

of magnetic levitation system performance [125, 202]. The algorithm has also been 

applied to design a PID controller for an AVR device with one and two degrees of 

freedom using a teaching-learning-based approach [203]. Due to its attractive features, 

such as a simple concept, lack of precise algorithm variables, straightforward 

implementation, and rapid convergence, TLBO has garnered significant attention. It 

has been adapted for capturing limited data and applied in various domains, including 

multi-objective optimization [204], large-scale problems [54, 56], and dynamic 

optimization problems [205]. TLBO has proven effective in diverse scientific and 

engineering applications [206]”. 

Traditionally, [207] and [208] provided an extensive examination of various 

strategies for position tracking and balancing control. These cutting-edge solutions 

primarily followed two distinct approaches. The first, known as cross-coupling control 

[209]–[211], involves considering the control loops of all machine axes 

simultaneously, with the control objective focused on regulating contour errors [212], 

[213]. The second approach, termed individual axis control, addresses each axis 

independently. In this method, the dynamics of other axes are treated as disturbances, 

and the control design simplifies to that of individual axes [214]. Both approaches 

relied on adjusting operational parameters (e.g., pitch and yaw movement, plate angle) 

[215], [216] or achieving precise position tracking [217], [218], ensuring the 

discrepancy between measured and desired paths is minimal while satisfying specific 

constraints. Additionally, it is noted that the development of control action in both 

approaches is interdependent.  

Furthermore, when dealing with individual axis control, except for a few 

exceptions (such as varying gain, intelligent approaches, stochastic-based control 

accounting for unknown noises, and fault-tolerant controllers), most nonlinear control 

techniques for 2DoF systems neglect parameter estimation in system dynamics. This 

limitation can be addressed by incorporating nonlinear and adaptive control algorithms 

into individual axis control architectures, especially since the issue of nonlinear 

position control for flexible axes is extensively explored. Indeed, several relevant 

studies employing techniques from nonlinear control theory have been documented in 

the literature concerning position and balancing control. Subsequent sections provide 

a comprehensive overview of these techniques for achieving various control aspects. 
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2.4   Control mechanisms used for 2DoF ball balancer system 

LQR controller: The Linear Quadratic Regulator (LQR) problem is formulated 

based on a dynamical system with a state evolution equation represented as a linear 

function. This linear function relies on the current state and input of the system and is 

subjected to quadratic cost. The primary goal of the controller is to minimize the cost 

function associated with system variables. In the control of the ball and plate system, 

an alternative synthesis approach utilizes repetitive and resonant controllers, with 

energy minimization influenced by the principles of the Linear Quadratic Regulator 

(LQR) theory [219]. The LQR control offers simplicity in programming and ensures 

asymptotic convergence of the system to the origin while following a desired trajectory 

[220]. Moreover, motion planning methods incorporating LQR and discrete model 

predictive controllers have been proposed for a ball-plate Mecanum robot system 

[221]. The Infinite Horizon Discounted LQR [222] establishes non-asymptotic 

bounds, but this comes at the expense of increased sample complexity compared to 

other model-free and model-based methods. A significant limitation of LQR is its 

reliance on accurate knowledge of the system's state, which is often impractical. For 

instance, when noise is present in the system, the deterministic assumption made for 

the transition of other states makes the state transition challenging. 

Back-Stepping Controller: The back-stepping controller engages in a recursive 

process utilizing a Lyapunov function and adheres to a systematic design approach for 

diverse nonlinear systems. In the research conducted by Kazim et al., a robust back-

stepping control strategy is employed for trajectory tracking in ball and plate systems, 

effectively handling bounded uncertainties with unknown periodicity [223]. This 

controller not only ensures global stability but also enhances tracking and transient 

performance. The drawback of the traditional back-stepping controller lies in its 

applicability only to state models in strict feedback form [224]. To overcome this 

limitation, a hybrid approach is devised by integrating the back-stepping controller 

with a 𝐻∞ tracking controller, addressing external disturbances in a ball and plate 

system and demonstrating asymptotic closed-loop stability [225]. Other control 

techniques, such as adaptive fuzzy control [226] or neural networks [227], have been 

combined with back-stepping to address inaccuracies in the model. However, these 

methods necessitate access to complete state output information. 

Proportional–Integral–Derivative (PID) controller: While there are numerous 

control strategies outlined in the literature for achieving self-balancing control in 

balancer systems, the PID controller stands out as widely employed in practical 

engineering applications. The nonlinear nature of the proportional integral derivative 

(PID) controller has been explored for one-to-one control in classical control of the 

ball on the plate system [228]. The PID controller's response is enhanced when 

structured based on the Generalized Kalman-Yanukovych-Popov lemma (GKYPL) 

strategy, offering a comparison with a typical PID in terms of steady-state response 

[229]. The PID controller is favoured for its straightforward structure, high reliability, 

and robust stability. However, a notable drawback in dealing with traditional PID 

controllers lies in the challenge of parameter tuning. The literature provides various 

techniques for tuning PID parameters, including intelligent techniques, self-tuning 
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algorithms, genetic and other algorithms [230 – 234]. The limitations of PID become 

apparent when the system faces parametric uncertainty and external disturbances. In 

practical applications, PID manages uncertainty comprehensively but is constrained to 

handling only constant parametric uncertainty, necessitating an accurate system model 

for implementation purposes. This open problem with PID is tackled in further 

chapters of this thesis. 

 

2.5   Control mechanisms used for 2DoF helicopter system 

The Linear Quadratic Regulator (LQR): operates on the receding horizon 

concept, predicting future outputs at each time step to minimize a global cost function 

[235]. In the context of a helicopter system, LQR control is developed through 

linearization [236], allowing interpolation between operating points. However, the 

limitations of the linearization model, with a focus on local asymptotic stability, render 

it inadequate for the entire system. In attempts to enhance LQR, integrating an 

integrator has been explored for optimal helicopter tracking [237]. While effective 

against parametric uncertainties, it exhibits limited robustness to unstructured 

uncertainty. Linear Quadratic Gaussian (LQG) controllers, as seen in [238] and [239], 

offer constant gains for models with uncertainty, promoting robustness. Nevertheless, 

challenges arise in allocating intuitive covariance matrices, directly dependent on 

weighting functions, before optimizing gains, making reliance on the controller 

difficult. 

The Back-Stepping Controller: provides a systematic approach to stabilize a 

reference signal in control system design, utilizing Lyapunov functions [240]. In the 

helicopter system literature, dual boundary conditional integral back stepping [241] 

and integral back stepping controllers have been developed, generating reference 

attitude angles for position control. Despite achieving good dynamic performance, the 

recursive design and repeated differentiation of back stepping controllers contribute to 

increased system complexity, limiting applicability for controlling multiple states 

[242].  

Proportional–Integral–Derivative (PID) controllers: are employed primarily to 

maintain measured process values at set points [243]. In helicopter systems, PID tuning 

based on fractional-order reference models is utilized for rotor control, with additional 

designs like cross-coupled PID for tracking purposes [244]. PID control, however, 

tends to cause oscillations and slower settling times in high-order systems [245]–[248]. 

While PID is sufficient for stabilizing aero vehicles, it struggles with highly nonlinear 

systems and lacks efficiency when the system deviates significantly from a fixed set 

point [249]. 

Sliding Mode Controllers (SMCs): introduce high-frequency switching terms 

in control signals to achieve robust disturbance rejection, finite-time stabilization, and 

precise tracking [250]. Various SMC techniques, including disturbance observer-

based controllers, adaptive second-order sliding mode controllers, multivariable 

integral sliding mode, and terminal sliding mode controllers, have been proposed for 
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Two Rotor Multirotor Systems (TRMS) [251 – 262]. Despite their advantages, 

chattering issues in SMCs, causing low control accuracy, mechanical wear, and power 

circuit heat losses, remain a significant concern [263]. 

Model Predictive Control (MPC): utilizes process models to minimize an 

objective function for control action [264]. This involves the explicit use of a system 

model to predict the future process output within a specified time horizon. The 

controller calculates a control sequence by employing a receding strategy, displacing 

the horizon towards the future at each instant. This strategy involves applying the first 

control signal of the sequence at each step. The application of MPC to helicopter 

systems is discussed in [265 – 266]. In an alternative approach, a model predictive 

control (MPC) employs online optimization within a predictive framework, taking 

advantage of the receding horizon with soft constraints [267] to address exact path 

tracking problems. Additionally, MPC is implemented for controlling various 

helicopter applications in [268 – 269]. Literature suggests that the complexity of MPC 

algorithms leads to longer computation times compared to other controllers. Another 

significant drawback is the model updating scheme's computational cost, especially if 

the model is updated frequently. To address this, one may attempt to decrease the 

model updating frequency; however, this compromise may rapidly degrade the 

system's stability [270]. 

H-infinity (𝐻∞): control is employed in attitude control systems to reduce 

oscillations and regulate rotational moments in the presence of un-modelled dynamics 

and parametric uncertainties [271]. Furthermore, the weighting functions are adjusted 

in real-time with respect to the plant's performance during attitude control to achieve 

the desired and accurate model/state information of the system [272]. In [273], H2/H∞ 

control is developed to address the balancing and trajectory tracking of UAVs, 

especially in the presence of disturbances and with minimal response time. 

Additionally, in [274], an H-infinity observer is designed to safeguard the TRMS 

against partial and complete failure resulting from actuator and sensor faults.  

Neural Network Controllers: The literature extensively showcases the 

application of neural networks to address highly nonlinear control problems, as 

indicated in references [275 – 277]. Neural networks operate through numerous simple 

processing elements at their inputs and outputs within their structure. These processing 

elements contain internal parameters known as weights, which play a crucial role in 

modifying the overall network behaviour to achieve optimal outputs for both the 

controller and its associated plant. Recognizing this advantage, various control and 

estimation approaches for TRMS (Tilt Rotor Multirotor Systems) are explored in 

[278], [279]. In [280], a backpropagation, feed-forward neural network model is 

employed for the nonlinear flight control of a 2-degree-of-freedom helicopter. [281] 

adopts an indirect adaptive neural network framework to develop a controller for a 

simulated helicopter system. This controller relies on three interconnected neural 

networks: the observer, actor, and critic, where the observer network is responsible for 

state estimation. Additionally, [282] introduces a robust adaptive neural designed to 

handle nonlinear non affine systems, focusing specifically on single-input single-

output (SISO) helicopter systems that involve certain single-channel modes like 
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vertical flight and pitch regulation, as well as special conditions where multiple 

channels become decoupled. 

Fuzzy Logic Controllers (FLCs): have emerged as information processing 

technologies, particularly for addressing uncertainties [283]. Here, fuzzy controller is 

employed to address input uncertainties in quadrotor UAVs. This controller minimizes 

system errors based on inputs and the antecedent fuzzy sets of non-singleton fuzzy 

logic controllers (FLCs), showcasing robust performance attributed to knowledge-

based design. Furthermore, the controller can handle all conceivable uncertainties 

without requiring a mathematical model of the plant [284]–[286]. In [287 – 288], 

intelligent adaptive fuzzy controllers are developed for tracking the output of multi-

input multi-output systems by approximating errors between actuator and sensor 

measurements during external disturbances. While type 1 FLCs (T1FLC) find 

application in various fields, their limitation in dealing with higher-order uncertainties 

is recognized as a significant drawback [289 – 290]. On the other hand, type 2 FLCs 

(T2FLC) are more powerful and adept at managing higher-order uncertainties. The 

increasing number of fuzzy sets has enhanced the degree of freedom for T2FLC in 

handling uncertainties effectively [291 – 292]. However, the computational intensity 

of general T2FLCs is heightened due to the type reduction scenario [293 – 295]. 

Advancements in artificial neural networks have significantly enhanced the 

capabilities of T2FLC, leveraging their inherent learning ability and uniform 

approximation of nonlinear systems [296 – 298]. This progress has led to the 

development of interval type 2 fuzzy neural networks (IT2FNN), widely adopted in 

control applications, particularly for path tracking in UAVs [299 – 300]. Nonetheless, 

challenges arise in the computation process due to the burdensome calculation of 

correlation matrices [301]. Additionally, the drawbacks of conventional membership 

functions and their limited adaptability to changes in inputs have spurred the demand 

for innovation in computational intelligence [302]. 

Hybrid Controllers: In addition to various linear, nonlinear, and intelligent 

control approaches for diverse systems, the literature extensively discusses the 

hybridization of controllers [303]–[305]. These methodologies leverage the strengths 

of multiple controllers to address the individual limitations of each. The integration of 

optimization techniques such as genetic algorithms (GA) and particle swarm 

optimization (PSO) with nonlinear controllers is exemplified in [306 – 307]. A GA-

based Proportional-Integral-Derivative (PID) approach is devised to adjust control 

parameters using a performance index as the fitness function [308]. An augmented 

control scheme, incorporating robust PID-based deadbeat control is employed to 

modify PID control parameters, mitigating tuning issues and providing precise control 

gain values [309]. In [310], a comprehensive evaluation of various conventional and 

intelligent control methods, including fuzzy logic and GA-based approaches, is 

implemented on the Tilt Rotor Multirotor System (TRMS). Furthermore, [311] 

explores sliding mode control (SMC) hybridized with fuzzy logic, comparing it with 

fuzzy sliding and fuzzy integral sliding controllers. [312] utilizes a parallel distribution 

of fuzzy Linear Quadratic Regulator (LQR) controllers for individual axis control of 

the system. Similarly, the design of the robust adaptive fuzzy controller (RAFC) 

incorporates the gradient descent algorithm [313]. Moreover, [314] highlight the 
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elimination of chattering in SMC when augmented by a fuzzy controller, achieving 

trajectory tracking for a quadrotor. Additionally, various controllers, including fuzzy-

sliding hybrid [315], adaptive sliding [316], LMI-based observer [317], and fuzzy 

controllers using non-monotonic Lyapunov functions [318], have been designed to 

enhance helicopter performance in the presence of disturbances and uncertainty. 

 

2.6  Identified research gaps 

The literature frequently highlights the advantages of optimization algorithms, 

despite their lack of theoretical foundation. However, in order to fully harness the 

potential of algorithms, several common challenges need resolution: 

➢ It is essential to recognize that the algorithm's complexity and the complexity 

of parameter relations are directly influenced by the number of algorithm 

parameters, thereby complicating the performance analysis. 

➢ Scientific literature acknowledges the significance of tuning parameters. 

Effectively applying metaheuristics to real-world problems requires the 

identification of an optimal starting parameter setting, a task that is time-

consuming and challenging. 

➢ Theoretical research on the analysis of landscapes (i.e., the topological 

structure guiding the search) for various optimization problems indicates that 

distinct issues and even different instances of the same issue involve different 

topologies. Specially while implementing such techniques on real-time world 

problems. 

➢ Researchers should focus on the integration of classical and intelligent 

controllers while performing constraint parameter optimization. Some studies 

suggest that combining the two results in a faster convergence rate.  
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Chapter 3. Two degree of freedom (2DoF) systems 

 
3.1   Overview 

An exhaustive examination of various strategies for position tracking and 

balancing control is presented in literature review. These cutting-edge solutions follow 

two primary approaches. The first approach, known as cross-coupling control, 

considers the control loops of all machine axes simultaneously, addressing the control 

objective as a path deviation correction problem. The second approach, termed 

individual axis control, handles each axis independently. Both approaches involve 

adjusting operating parameters (such as pitch and yaw movement, plate angle, etc.) or 

achieving precise position tracking ensuring that the deviation between measured and 

desired paths is minimal, and specific constraints are met. It's noted that both 

approaches are interdependent in developing the control action. Additionally, in 

dealing with individual axis control, with a few exceptions like varying-gain, 

intelligent and optimization-based control considering unknown noises, most 

nonlinear control techniques for 2DoF systems do not incorporate parameter 

estimation in system dynamics. This limitation could be addressed by incorporating 

nonlinear and adaptive control algorithms into individual axis control architectures, 

especially since the challenge of nonlinear position control for flexible axes has been 

extensively explored. Numerous studies in the literature employ techniques from 

nonlinear control theory, focusing on position and balancing control. In-depth 

overview of these techniques, covering various aspects of control achievement has 

been discussed in previous chapter. Considering the research gaps identified after this 

study, new control mechanism is designed for real time hardware system. Before 

implementing these control mechanisms, understanding of mathematical model of 

such hardware is must. Subsequent sections is all about the mathematics involved in 

developing the hardware model of 2DoF ball balancer and 2DoF helicopter. 

 

3.2   Modelling of 2DoF ball balancer model 

  In this section, the nonlinear model of two-degrees-of-freedom ball balancer 

system is discussed. The 2DOF ball balancer [319] is a typical test bench problem for 

attaining position tracking and balancing control with visual servo control. It comprises 

one quadrangular metallic plate fixed using gimbal joints with center. This plate is able 

to move using DC micro motors. This movement has two directions – X and Y axis. To 

balance the 2DOF ball balancer in these directions, rotational motion using Faulhaber 

series DC micro motors is used [320].  

  The aim is to balance the ball on quadrangular plate without falling off. This 

configuration of ball and plate has access to four degrees of freedom which are 

controlled using two different actuators. That’s why it is referred to as a two degrees of 

freedom i.e. X-axis and Y-axis. A part of this 2DOF ball balancer system contains a 

digital camera placed exactly above this plate, which is able to capture the images of 

these X & Y co-ordinates to track and help control the position of ball on the plate. A 
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real time working model of this system is shown in fig. 3.1 and the working relation 

between different components is explained in fig. 3.2. 

 

 
Fig. 3.1 Real time working laboratory setup of 2DoF ball balancer system 

 

 
Fig. 3.2 Working Structure between different components of 2DoF ball balancer system 

 
Fig. 3.3 Schematic diagram of a two degree of freedom ball balancer system. 
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A vision algorithm reads the co-ordinates of ball, through the image tracked using 

digital camera and provides information to the controller. Image processing is used as 

the feedback signal through personal computer in this mechanism. This process helps 

to adjust the angle of plate through servo motors along the X and Y axis. A typical 

representation of ball and plate system is given in figure 3.3, which signifies the X & 

Y co-ordinates with ball and plate are being controlled using a camera. 

3.2.1 Transfer function 

  The arrangement of two degrees of ball balancer system in open loop 

configuration is illustrated using transfer function modelling in Figure 3.4. Dynamic 

relation between servo voltage input and load angle output are represented by plant 

𝑊𝑠(s) while 𝑊𝑠𝑠(s) represents the dynamic relation between servo gear angle load and 

ball position dynamics. Two rotary servo based units are responsible for the control 

operation of 2DOF ball balancer system which makes these servo devices symmetrical 

to the plate arrangement in order to provide ease in real time operation. Both device 

dynamics are similar. Hence, 2DOF ball balancer system can be treated as a two 

decoupled beam and ball system. In one dimension, transfer function can be computed 

as:- 
 

W(s) = 𝑊𝑠(s) * 𝑊𝑠𝑠(s)            (3.1) 

Where,  

𝑊𝑠𝑠(𝑠)
𝐴(𝑠)

𝛽1(𝑠)
 𝑎𝑛𝑑 𝑊𝑠(𝑠) =

𝛽1(𝑠)

𝑉𝑚(𝑠)
      (3.2) 

 

 

         

Fig. 3.4 2DOF ball balancer transfer function for (a) X-axis servo angle (b) Y-axis servo angle 

and (c) one dimensional ball balancer (1DBB) open loop transfer function 

 

3.2.2 Mathematical equations for plate movement 

  A 2DOF ball balancer system is picturized in figure 3.5 by using its free body 

diagram. The ball movement due to the different plate angle can be formulated using 

equations of motion. Due to this change in angle, the force experienced by the ball can 

be explained using law of inertia as:- 

�̈�(𝑡) 𝑀ball =  𝐹x,t – 𝐹x,i    (3.3) 

Where, 𝑀ball represents mass of ball, and A represents displacement of ball.  
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𝐹x,i and 𝐹x,t are force of inertia and the translational force due to gravity respectively, 

in the direction of X axis along with plate.  

 
Fig. 3.5 Free body diagram of 2DOF ball balancer system. 

 

  In these calculations, friction damping and viscous constants are not taken into 

consideration. The mathematical equations used herein are derived from Quanser user 

manual for 2 DOF ball balancer model [319]. The value of translational force and force 

of inertia are calculated as:- 

𝐹x,t  = G*sinρ(t)* 𝑀ball     (3.4) 

𝐹x,i  = 𝜏𝑏𝑎𝑙𝑙/𝑅𝑏𝑎𝑙𝑙      (3.5) 

Where, 𝜏𝑏𝑎𝑙𝑙 is torque experienced and 𝑅𝑏𝑎𝑙𝑙 is representing radius of the ball. 

This makes it clear that if 𝑗𝑏𝑎𝑙𝑙 represents inertia of the ball then motion equation of ball 

balancer system can be written by linear acceleration as:- 

�̈�(𝑡) = {G*sinρ(t)* 𝑀ball*𝑅𝑏𝑎𝑙𝑙 
2} / {𝑅𝑏𝑎𝑙𝑙 

2 ∗ 𝑀ball + 𝑗𝑏𝑎𝑙𝑙}   (3.6) 

 

3.2.3 Servo angle calculations  

  In this subsection, the position of ball around the servo load angle are 

representing motion and time dynamics. These dynamics helps computing the behavior 

of 2DOF ball balancer system. Servo angle has a relation with respect to the beam of 

the 2DOF ball balancer system, which is given by: 

sinρ(t) = sin𝛽𝑙(t)*2*𝑅𝑎𝑟𝑚 / 𝐿p     (3.7) 

where, length of plate in 2DOF ball balancer system is given by 𝐿p and distance 

between shaft of SRV02 output gear and coupled joint is given by 𝑅𝑎𝑟𝑚.  
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  Considering servo angle to be Ɵ1, in order to calculate the motion and time 

dynamics  for representing motion equations, we need to linearize dynamics variable 

around Ɵ1=0. Relationship between servo angle and plate angle can be explained 

mathematically as:- 

�̈�(𝑡) = {G* sin𝛽𝑙(t)*2 ∗  𝑀ball*𝑅𝑏𝑎𝑙𝑙 
2 ∗ 𝑅𝑎𝑟𝑚} / {𝑅𝑏𝑎𝑙𝑙 

2 ∗ 𝐿p ∗ 𝑀ball + 𝑗𝑏𝑎𝑙𝑙}    (3.8) 

When we linearize the equation of motion, sin𝛽𝑙(t) would be replaced by 𝛽𝑙(t). Final 

equation for movement of plate for 1DBB is:- 

�̈�(𝑡) = {G*𝛽𝑙(t)*2 ∗  𝑀ball*𝑅𝑏𝑎𝑙𝑙 
2 ∗ 𝑅𝑎𝑟𝑚} / {𝑅𝑏𝑎𝑙𝑙 

2 ∗ 𝐿p ∗ 𝑀ball + 𝑗𝑏𝑎𝑙𝑙 ∗ 𝐿p}  (3.9) 

3.3   Problem formulation for 2DoF ball balancer system 

The 2DoF ball balancer's open-loop block diagram is presented as a decoupled 

model in which the x-axis servo has no impact on the y-axis response, as depicted in 

figure 3.4. In light of this, figure 3.6 illustrates the control model for the x-axis of the 

SRV02 integrated with the ball balancer system. The ball balancer block diagram 

elucidates control in two loops: the first loop for the SRV02 motor model and the 

second for the 1D ball balancer. The inner loop details the SRV02 controller (𝑍_(𝑠)) 

for position control of the D.C. series motor, estimating the required voltage to track 

the desired angle of the ball.  

 
Fig. 3.6 Block diagram with closed loop control scheme of a two degree of freedom ball 

balancer system. 

For any given controller, the discrepancy between the desired and real-time 

ball positions in the ball balancer model serves as the input for the controller. 

According to system specifications, the plate dimensions are 27.5cm length X 27.5cm 

width, restricting the ball's movement within a length of 13.75cm, assuming the ball is 

positioned at the plate's centre. However, this length causes the ball to reach the plate 

corners, and the research objective is to stabilize the ball in the centre. To achieve this, 

a range of 0-6.875 cm has been defined to confine the ball within the middle of the 

plate, with a reference of 3 cm chosen to keep the ball closer to the plate centre. 

Consequently, a 0.08 Hz square wave with an amplitude of 3 is considered as input for 

the system [321]. The inner loop is monitored by controlling the SRV02 position 

through a proportional motor gain, while external controllers can be designed for outer 

loop control. 
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3.4   Modelling of 2DoF helicopter model 

3.4.1   Inter-relation between pitch and yaw axis 

To examine the functionality and control capabilities, the helicopter's main and 

tail rotors are discussed. The main rotor generates vertical thrust, allowing the model 

to pitch around the horizontal axes (𝑋), while the tail rotor produces horizontal thrust, 

enabling yaw movement around the vertical axis (𝑌). These twin-rotor DC motors are 

driven by voltage inputs, yielding torque 𝜏1 for the main rotor and torque 𝜏2 for the 

tail rotor, as given by Quanser educational solutions [322]. The interconnections 

among different subsystems of the helicopter system are illustrated in figure 3.8, where 

dotted lines indicate cross-coupling between the two planes. The outputs of the 

mechanics block represent the pitch 𝜓 and yaw 𝜑 angles for the vertical and horizontal 

planes, respectively.  

Furthermore, the system's mathematical modelling is based on DC motor 

modelling for the main and tail rotors, along with mechanics modelling for the 

horizontal and vertical planes. Previous research has extensively established 

mathematical models for the pitch and yaw rotors of helicopter systems. Therefore, 

this study primarily concentrates on comprehending the operation of pitch and yaw 

motors and assessing them to ensure the achievement of the desired control objectives. 

 
Fig. 3.7 Free body diagram of a 2DoF helicopter model. 

 
Fig. 3.8 Cross-coupling effect of pitch rotor and yaw rotor in 2DoF helicopter model 
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Motors used are DC type, one is for pitch movement and other one is for yaw 

movement. The physical modelling also includes two different propellers. These are 

called front propeller and back propeller. Two different encoders are also used – one 

for pitch and second one is for yaw movements. Body of nonlinear helicopter system 

is kept on one stationary fixed base platform. The 1st DC motor i.e. Pitch motor is 

operating the movement of  front propeller, which further handles the altitude of 

nonlinear helicopter nose about its pitch axis. This further results in the controlling of 

pitch angle, denoted by θ. The 2nd DC motor i.e. yaw motor is operating the horizontal 

movement of nonlinear helicopter about its yaw axis. Which, further results in 

controlling of yaw angle, denoted by Ψ. The yaw encoder and the pitch encoder are 

used to measure the resultant yaw angle and pitch angle respectively. Using a slip-ring, 

in the form of signals, the measured angles then transferred further to provide the 

desired pitch and yaw angles.  

 

 
(a) 

 

 
(b) 

Fig. 3.9 Real time experimental (a) Body and (b) setup of 2 DOF helicopter system under 

external disturbances. 
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In literature, ample of work has been carried out on laboratory setup of 

helicopter model but all this work tends to lag behind when it comes to the working of 

real time model with real time environment conditions. Especially when the weather 

conditions are unfavourable. Such unfavourable weather conditions are developed for 

2DoF helicopter model in laboratory itself. Two high speed fans are used to create 

high turbulence in laboratory itself. This arrangement will be proved to be more helpful 

in validating the control scheme. A real time working model of helicopter system, with 

two high speed fans, is depicted in figure 3.9(a) and figure 3.9(b). The following 

constraints are considered during the modelling phase:  

• Pitch angle is denoted by θ. If θ = 0, it means the helicopter is horizontal. 

• When the head of helicopter system moves upwards and downwards, the pitch 

angle increases and decreases respectively. 

• If pitch angle moves positively i.e. θ(t) > 0, it means the helicopter body moving 

in vertical upward direction with respect to pitch axis.  

• If pitch angle moves negatively i.e. θ(t) < 0, it means the helicopter body moving 

in vertical downward direction with respect to pitch axis. 

• Yaw angle is denoted by Ψ. If Ψ = 0, it means the body is neither moving 

clockwise nor moving anticlockwise.  

• If the yaw angle increases i.e. Ψ(t) > 0, it means the body moves in horizontal 

direction and rotates counterclockwise with respect to yaw axis. 

• The force produced due to pitch thrust is denoted by Fp. If Fp > 0, it means pitch 

angle increases i.e. θ > 0. 

• The force produced due to yaw thrust is denoted by Fy. If Fy > 0, it means yaw 

angle increases i.e. Ψ > 0. 

3.5   Problem formulation for 2DoF helicopter model 

Distance of both the propellers are measure by taking canter of body as the reference 

which may determine centre of mass of nonlinear helicopter body. It gives 𝑟𝑝 and 𝑟𝑦 

the distance of 1st and 2nd propeller from the centre respectively. In continuation of 

modelling of nonlinear helicopter, the transformation matrix discussion would be the 

next step, as the centre-of-mass of nonlinear helicopter is interrupted from central axis 

[323 – 324].  

From this, rotation and translation in this transformation matrix are taken as: 

𝑇𝑐𝑚 : Translation about centre of mass 

𝑅𝛹 : Rotation about the yaw axis 

𝑅θ : Rotation about the pitch axis 

Which further gives mathematical equivalent of transformation matrix as:  

  𝑇𝑐𝑚 = [

1 0 0 𝑙𝑐𝑚
0 1 0 0
0 0 1 0
0 0 0 1

]      (3.10) 



41 
 

   𝑅θ = [

cos (−θ) 0 sin (−θ) 0
0 1 0 0

−sin (−θ) 0 cos (−θ) 0
0 0 0 1

]   (3.11) 

 𝑅𝛹 = [

cos (−𝛹) −sin (−𝛹) 0 0
sin (−𝛹) cos (−𝛹) 0 0

0 0 1 0
0 0 0 1

]   (3.12) 

  𝑇0 = 𝑅θ* 𝑅𝛹* 𝑇𝑐𝑚      (3.13) 

  Where 𝑇0 is resultant transformation matrix [323 – 234]. Then the lagrangian 

energy approach is used and one nonlinear equation of motion is achieved. In the 

process, the lagrangian mathematical equation (LME) considered is: 

    LME = K – P      (3.14) 

  Where, P denotes potential energy and K denotes kinetic energy for the 

nonlinear helicopter system. The kinetic energy in current discussion is the combination 

of three different energies. These three energies are due to three different factors in 

running helicopter - pitch, yaw and translation, due to movement of center of mass of 

nonlinear helicopter system. 𝑅𝑝 denotes the rotational kinetic energy in vertical 

direction i.e. pitch axis.  𝑅y denotes the rotational kinetic energy in horizontal direction 

i.e. yaw axis. 𝑇𝑡 denotes the translation kinetic energy due to movements in center of 

mass. Then total kinetic energy is given by:  

    R = 𝑅𝑝+ 𝑅y + 𝑇𝑡    (3.15) 

  Kinetic energy in horizontal direction and kinetic energy in vertical direction 

depends upon the moment of inertia in the pitch axis (Jeq,p) and moment of inertia in 

yaw axis (Jeq,y) respectively. Whereas the translational kinetic energy totally depends 

upon the length of center of mass, denoted by lcm. Hence, the equivalent rotational 

kinetic energy due to the vertical movement and horizontal movement of nonlinear 

helicopter system is given in the following equation: 

    𝑅𝑝 = (
𝑑

𝑑𝑡
 θ(t))2 ∗ 𝐽𝑒𝑞,𝑝* 0.5   (3.16) 

    𝑅𝑦 = (
𝑑

𝑑𝑡
 𝛹(t))2* Jeq,y * 0.5  (3.17) 

  The translational kinetic energy is derived considering the nonlinear dynamics 

of the helicopter system and further given with the help of following equation: 

    𝑇𝑡 = 
1

2
 𝑚ℎ𝑒𝑙𝑖 𝑙𝑐𝑚

2 ( �̇�2 +  �̇� 2 𝑐𝑜𝑠2(θ)) (3.18) 

  Putting eq. (3.16-3.18) in eq. (3.15), we may calculate the total kinetic energy 

of nonlinear helicopter system. Furthermore, the total potential energy experienced on 

the system, due to clear effect of the gravitational force is calculated as: 

    P = 𝑚ℎ𝑒𝑙𝑖 * g *  𝑙𝑐𝑚 ∗ sin (θ)    (3.19) 
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3.5.1 Calculation of ABCD parameters 

  Now in order to observe the nonlinear dynamics of the system, the generalized 

co-ordinates [θ, 𝛹, �̇�, �̇�]𝑇which further decides the behavior of nonlinear system are 

determined using the Lagrangian method. The nonlinear system parameters referred for 

this whole calculation are specifically mentioned in table 1 in detail, with specific 

values. By using this lagrangian method and substituting eq. (3.15-3.19) in eq. (3.14), 

the motion (both vertical and horizontal) equation for nonlinear helicopter is given as: 

( mheli lcm
2  + Jeq,p) θ̈  =  Kpp Vm,y + Kpy Vm,p – mheliglcmcosθ – Bp θ̇ − mheli 

lcm
2 sinθcosθΨ2̇     (3.20) 

(Jeq,y + mheli lcm
2 cosθ2)Ψ̈ = Kyp Vm,p + Kyy Vm,y – ByΨ̇ + 2mheli lcm

2 sinθcosθΨ̇θ̇         

(3.21) 

  For performing a state feedback control using LQR, the linearized model is 

expected to be used [325]. This will represent the dynamics of any system more clearly. 

In order to perform this, the nonlinear system will further linearized by equating θ =

0, 𝛹 = 0, �̇� = 0 𝑎𝑛𝑑 �̇� = 0 around origin and putting in equations (3.20) and (3.21). 

The obtained linearized equations are: 

 θ̈ = 
Vm,y∗Kpy 

( mheli∗ lcm
2 +Jeq,p)

 + 
Vm,p∗Kpp 

( mheli∗ lcm
2 + Jeq,p)

  - 
mheli∗ lcm

2 + Bp θ̇

( mheli ∗ lcm
2 + Jeq,p)

         (3.22) 

Ψ̈= 
Vm,y∗Kyy 

( Jeq,y + mheli lcm
2 )

 + 
Vm,p∗Kyp 

( Jeq,y + mheli lcm
2 )

  - 
ByΨ̇ 

( Jeq,y + mheli lcm
2 )

   (3.23) 

  The control system operating within the nonlinear helicopter system 

incorporates a gravitational disturbance, leading to pitch and yaw state errors. To 

mitigate these errors, the inclusion of two integrators is essential. Designating θ𝑑 and 

𝛹𝑑 as the desired set points for pitch and yaw angles, respectively, the relevant integrals 

are expressed through the following equations: 

   γ = ∫(𝛹𝑑 − 𝛹)dt      (3.24) 

   α = ∫(θ𝑑 − θ)dt      (3.25) 

 For the following state-space representation: 

   �̇� = Ax + Bu        (3.26) 

 Where, x is new state vector and formulated as:  

   x = [θ, 𝛹, �̇�, 𝛹,̇ α̇, γ̇]𝑇       (3.27) 

 and output is shown as: 

   y = Cx + Du        (3.28) 

 While ABCD being the system matrix, the input matrix u is:  

   u = [Vm,p, Vm,y]
𝑇       (3.29) 
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  With the aforementioned discussion in mind, the state space representation of 

the nonlinear helicopter system can be established by reformulating equations (3.22 – 

3.23) into the state space model, as follows: 

 

[
 
 
 
 
 
θ̇
�̇�
θ̈
�̈�
α̇
γ̇ ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 1 0 0 0
0 0 0 1 0 0

0 0
−Bp

 Jeq,p + mheli lcm
2 0 0 0

0 0 0
−By

 Jeq,y + mheli lcm
2 0 0

0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
θ
𝛹
θ̇
�̇�
α̇
γ̇ ]
 
 
 
 
 

+

[
 
 
 
 
 
 
 

0 0
0 0

 
Kpp

Jeq,p + mheli lcm
2

Kpy

Jeq,p + mheli lcm
2

Kyp

 Jeq,y + mheli lcm
2

Kyy

 Jeq,y + mheli lcm
2

0 0
0 0 ]

 
 
 
 
 
 
 

[
Vm,p

Vm,y
] 

(3.30) 

  y = [
1 0 0 0 0 0
0 1 0 0 0 0

]

[
 
 
 
 
 
θ
𝛹
θ̇
�̇�
α̇
γ̇ ]
 
 
 
 
 

      (3.31) 

  The ABCD matrix are calculated by substituting values from table 1 into 

equation (3.30 – 3.31) and given as: 

 

A = 

[
 
 
 
 
 
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −9.2751 0 0 0
0 0 0 −34955 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

  ;  B = 

[
 
 
 
 
 

0 0
0 0

 2.3667 0.0790
0.2410 0.7913

0 0
0 0 ]

 
 
 
 
 

 

 

C = [
1 0 0 0 0 0
0 1 0 0 0 0

]   D = 0 

   

  The ABCD parameters acquired will be applied within the MATLAB software's 

simulation platform, contributing to formulation of benchmark model for our existing 

problems. 

3.6  Conclusion 

In this chapter, the mathematical models of two-degree-of-freedom systems, namely 

the helicopter model and the ball balancer, were thoroughly explained. The chapter 

also provided a detailed description of the laboratory setup and formulated the problem 

for the implementation of both traditional and intelligent controllers. These models 

will serve as the foundation for applying various control strategies in the subsequent 

chapters. 
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Chapter 4. Optimized classical control of 2DoF systems 

 
4.1   Classical PID controller for 2DoF systems 

The PID controller is widely adopted in industrial control applications due to its 

reliability and straightforward implementation. Classical methods for designing and 

fine-tuning PID parameters (𝐾𝑝, 𝐾𝑖, 𝑎𝑛𝑑 𝐾𝑑) are well-established but require expertise 

and practice. These traditional techniques involve a trial-and-error process for setting a 

starting point and refining parameters to achieve desired efficiency [326]. Metaheuristic 

strategies, given their dynamic nature, present a viable alternative. Manual calculation 

of PID gain values often leads to significant errors, especially when dealing with 

diverse parametric and external uncertainties. Consequently, automatic PID gain tuning 

becomes necessary, a task accomplished through various metaheuristic algorithms. To 

implement this control scheme on 2DOF system, the close loop control system strategy 

is preferred. Whole control scheme is demonstrated using block diagram in figure 4.1.  

 
Fig. 4.1 Close loop control system with PID constraints 

  Ideally, PID controller will deliver some output which is the outcome of error 

(e) between the output processed value of the whole system and set point given by the 

user. If we consider 𝑅𝑑(s) to be the set point and R(s) is assumed to be the process value 

then, this error may be written as:- 

  e(t) = 𝑅𝑑(s) – R(s)      (4.1) 

  Furthermore, the  PID control in time domain is essential to be computed in 

order to attain the initial operating gain for the controlling of 2DoF system, which can 

be given as:- 

β(t) = 𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑅𝑑(t) – R(t)) + 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (
𝑑

𝑑𝑡
𝑅𝑑(t) − 

𝑑

𝑑𝑡
R(t)) + 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∫  (𝑅𝑑(t) – 

R(t)) dt                 (4.2) 

where,  𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are initial values of proportional, 

integral and derivative gains constant values respectively. 2DoF plant may refer to 

many systems as discussed in literature but for this work only 2DoF helicopter system 

and 2DoF ball balancer system are considered. Block diagram of these two systems 

with classical controller are discussed in the subsection one by one. 

Block diagram given in figure 4.2 illustrates the classical PID based control of 

a ball balancer system. Here two loops are used to control the servo angle of plate. If 

control of balancer system is need to be achieved, the outer loop of the figure 4.2 is to 
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be considered, where no servo dynamics are considered initially. Observing this, the 

Laplace equivalent of equation 4.2 is written in equation no (3) as:- 

β(s) = (𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 
𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠
 + 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑠) [𝑅𝑑(s) – R(s)]    (4.3) 

 

Fig. 4.2 Block diagram of PID control scheme of 2DoF ball balancer system 

Plant equations of this 2DoF system has already been discussed in previous 

chapter of this thesis. In this sub section of current chapter, focus will be on calculating 

the constraint parameters of the controller. Since, action of no servo dynamic force is 

observed, it clearly means the required load points are equal to the estimated ones. 

From here, we can calculate closed loop equations after the substitution of 1DBB 

system with outer loop controller (in equation 3) as:- 

R(s)

𝑅𝑑(𝑠)
 = 

(𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ s + 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  + 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑠
2)∗𝐾𝐺 

𝑠3 + (𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ s + 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  + 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑠
2)∗𝐾𝐺 

    (4.4) 

Where, constant gain for model is given by 𝐾𝐺 . PID gains may be calculated 

using third order prototype equations for which we need to consider:- 

(𝑠2 + 2sω𝑛ℑ + 𝛾𝑛
2)*(s + 𝑝0)      (4.5) 

Where ℑ represents the damping ratio, ω𝑛 represents the natural frequency and 

𝑝0 refers to the pole location. After expansion, this third order equation may be re-

written as:- 

𝑠3 + (2ω𝑛ℑ + 𝑝0) 𝑠2 + (ω𝑛
2  + 2ω𝑛ℑ𝑝0)s + ω𝑛

2𝑝0     (4.6) 

  Following the equation no. 4.6, the third order characteristic equation given in 

equation no. 4.4 may be given as:- 

 𝑠3 + (𝐾𝐺 ∗ 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )∗ 𝑠2 + (𝐾𝐺 ∗ 𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )*s + (𝐾𝐺 ∗ 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )        (4.7) 

 Equating equation no. (4.6) with equation no. (4.7), we may conclude the following:- 

 𝐾𝐺 ∗ 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = ω𝑛
2𝑝0             (4.8) 

 𝐾𝐺 ∗ 𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = ω𝑛
2  + 2ω𝑛ℑ𝑝0            (4.9) 

 𝐾𝐺 ∗ 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 2ω𝑛ℑ + 𝑝0            (4.10) 
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  After solving the equation no. (4.8-4.10) again, we may conclude that the initial 

gains for the PID controller may be computed as following:- 

 𝐾𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 
ω𝑛

2𝑝0

𝐾𝐺 
                    (4.11) 

 𝐾𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 
ω𝑛

2  + 2ω𝑛ℑ𝑝0

𝐾𝐺 
             (4.12) 

 𝐾𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 
2ω𝑛ℑ + 𝑝0

𝐾𝐺 
            (4.13) 

Equations (4.11-4.13) will be useful in the calculation of initial gain values. 

The procedure where we calculates these gain values, will create a large error, 

especially when we are operating under various external disturbances. This creates 

some scope for the automatic tuning of these PID parameters. This automatic tuning 

is achieved using Teaching Learning Based Optimization (TLBO) in current chapter. 

Similarly, the gain parameters of PID controller are also considered to control 

a two degree of freedom (2DoF) helicopter system. For this a closed loop control 

mechanism is developed for handling the cross-coupling between the pitch axis and 

yaw axis of helicopter model. Block diagram shown in figure 4.3 illustrates control of 

2DoF helicopter model:- 

 

 
Fig. 4.3 Block diagram of cross-coupled controller for 2DoF helicopter system 

The control model for the cross coupled yaw and pitch axis of the twin rotor 

system integrated with unmanned helicopter system is illustrated in figure 4.3. The 

parameters of controller G(s) are being handled using optimization algorithm. Two 

degree of freedom (2DOF) helicopter system is handled using variety of control 

techniques ranging from traditional controllers like PID & LQR to optimization 

techniques involving heuristic and metaheuristics (refer section 2.4). For any problem 

having some large numbers of constraint, it provides a near optimum solution but it is 

matter-of-fact that a minimum change in algorithm parameter may change the overall 

effectiveness of algorithm. Using such algorithm during the unfavourable weather 

conditions, may affect the working of helicopter system. This attracts present work, to 

use an algorithm whose results on helicopter model is free from the parameters of 

algorithm. Using such an algorithm will definitely provide a more stable control 

environment for cross coupled design of 2DOF unmanned helicopter system. In the 

figure, the controller ‘G(s)’ is optimized using proposed algorithm and implemented 
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on error ‘e(s)’ signal, which is obtained by subtracting the pitch and yaw angle signal 

from the pitch and the yaw reference signal respectively. Further, these optimized 

parameters of controller are handling the working of hardware system of helicopter 

model and the whole process continues until a more stable waveform for the pitch 

angle (θ) and the yaw angle (Ψ) is achieved. 

4.1.1   Defining cost functions 

The cost (or objective) functions IAE (Integral of Absolute Error), ITSE 

(Integral of Time-weighted Squared Error), ITAE (Integral of Time-weighted 

Absolute Error), IE (Integral of Error), MSE (Mean Square Error) and ISE (Integral of 

Squared Error) find widespread use in the realms of control theory and system 

optimization. Their primary role is to quantify the performance of a control system and 

aid in the adjustment of controller parameters. Presented below is a concise summary 

of each: 

1. IAE (Integral of Absolute Error): 

Application: Computes the cumulative sum of absolute error values over time. 

Objective: Emphasizes the reduction of error magnitudes. 

IAE = ∫ |𝒆(𝒕)| 𝒅𝒕      (4.14) 

2. ITSE (Integral of Time-weighted Squared Error): 

Application: Determines the sum of squared errors over time, with each error term 

weighted by time. 

Objective: Prioritizes the minimization of squared errors, assigning greater importance 

to persistent errors. 

ITSE = ∫ 𝒕𝒆𝟐(𝒕) 𝒅𝒕     (4.15) 

3. ITAE (Integral of Time-weighted Absolute Error): 

Application: Similar to ITSE but focuses on the integral of absolute error, 

incorporating time weighting. 

Objective: Highlights the reduction of error magnitudes over time. 

ITAE = ∫ 𝒕|𝒆(𝒕)| 𝒅𝒕      (4.16) 

4. IE (Integral of Error): 

Application: Computes the cumulative sum of errors over time without squaring or 

considering absolute values. 

Objective: Offers a general measure of overall error, without accentuating positive or 

negative deviations. 

IE = ∫𝒆(𝒕)𝒅𝒕       (4.17) 
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5. ISE (Integral of Squared Error): 

Application: Calculates the sum of squared errors over time without time weighting. 

Objective: Concentrates on minimizing squared errors without accounting for the 

duration. 

ISE = ∫𝒆𝟐(𝒕) 𝒅𝒕     (4.18) 

6. MSE (Mean of Square Error): 

Application: MSE is widely used in various fields, including control theory. 

Objective: It assesses the average squared error over time, making it sensitive to both 

the magnitude and duration of errors. 

MSE = (1/n)
𝟏

𝒏
 ∑ (𝐲𝐢 −  𝐩𝐢)^𝟐𝒏

𝒊=𝟎      (4.19) 

These cost functions play a critical role in evaluating a control system's 

performance during operation. Through the analysis of these metrics, engineers and 

researchers can refine controller parameters to enhance the system's responsiveness 

and minimize errors, ensuring improved control and stability. The choice of a specific 

cost function depends on the unique requirements and characteristics of the controlled 

system, which are further used in this work. 

4.2   TLBO algorithm based control mechanism  

4.2.1   TLBO algorithm 

  Teaching-Learning-Based Optimization (TLBO) is an optimization algorithm 

inspired by natural processes, specifically the dynamics of teaching and learning within 

a classroom. First introduced by Rao et al. [50], TLBO is a population-based approach 

crafted for tackling optimization problems. We will need two controlling parameters – 

number of generations and population size for the implementation of this algorithm. 

TLBO is based on the “teaching pattern” followed in an academic class to improve the 

knowledge of students. Working of TLBO method is described in two different phases. 

These are – “The Teaching Phase” and “The Learning Phase”. These two phases are 

composed of different algorithm and working of each phase is discussed in detail 

herewith. 

“The Teaching Phase” 

In this phase, learning of students in a class is demonstrated with the help of a teacher. 

In this portion of TLBO algorithm, a teacher focus on increasing the mean results of all 

the students available in the class for any specific subject which is being taught by 

him/her, totally depending upon the capacity of that particular teacher. Considering, I 

stands for iteration, ‘n’ is student population and ‘m’ be the total number of subjects, 

then for a particular subject ‘j’, the population size is ‘k’ is defined as:  

  k = 1,2,3,4,5,6,7,8,……n while the number of subjects be:  

  j = 1,2,3,4,5,6,7,8……m      (4.20) 
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  The best result (X𝑗,𝑏𝑒𝑠𝑡,𝑖) achieved amongst the intact population of students by 

taking all the subjects all-together, say the result of best learner i.e. X𝑗,𝑏𝑒𝑠𝑡,𝑖 is the result 

of a best student in a subject j. Focus of a teacher is to train the students to attain 

improved results out of the learner/students. The teacher is supposed to someone who 

is an extremely educated person. Hence, we will select our teacher to be that learner 

who is identified as the best learner using the algorithm. The best result of a teacher 

(X𝑗,𝑏𝑒𝑠𝑡,𝑖) and the mean result of each subject (X𝑚𝑒𝑎𝑛) are taken in the following 

equation to estimate the difference mean (Dmean𝑗,𝑘,𝑖) as:- 

Dmean𝑗,𝑘,𝑖 =  r * T𝑓{(X𝑏𝑒𝑠𝑡/T𝑓) – (X𝑚𝑒𝑎𝑛)}  (4.21) 

  where, r is representing a random number and T𝑓 is representing the teaching 

factor. The teaching factor is the deciding factor for the value of mean, which is aimed 

to be updated. Here, r will always be less than 1 and more than 0 which means r will 

always occur in a specific range [0,1]. The value of teaching factor (T𝑓) will be planned 

using the following equation, which is also based on random selection and given as:-  

T𝑓 = round (r+1)       (4.22) 

  Using the difference mean (Dmean𝑗,𝑘,𝑖) calculated in equation no. 4.21, the 

value of updated new solution (X𝑗,𝑘,𝑖(𝑛𝑒𝑤)) in the teaching phase is:- 

X𝑗,𝑘,𝑖(𝑛𝑒𝑤) = Dmean𝑗,𝑘,𝑖 +  X𝑗,𝑘,𝑖(𝑜𝑙𝑑)    (4.23) 

  Equation no. 4.23 will help update and regulate the algorithm with each 

iteration. Here, X𝑗,𝑘,𝑖(𝑛𝑒𝑤) will only be acknowledged under one condition only. That 

condition is – new solution provides upgraded function value after analyzing the greedy 

solution with the above equation. While applying this greedy solution, the new solution 

will either be accepted or be stand rejected, based on the fact that either it gives 

improved function value or not. At the completion of this teaching phase, all these 

upgraded function values becomes input for learning phase, which proves dependency 

of learning phase on the teaching phase.  

“The Learning Phase” 

This phase of optimization deals with the improvement of knowledge of students or 

learners through knowledge among each other all by themselves. One random student 

will be chosen by another student, this will be known as the selection of a partner 

student and will use the other student’s knowledge to boost own knowledge. First 

students will learns from the second if the other learner has supplementary knowledge. 

For a given population size (say ‘n’ number of learners or students), assume that A and 

B are the two randomly selected students in such a way that X𝐴,𝑖(𝑛𝑒𝑤) 𝑎𝑛𝑑  X𝐵,𝑖(𝑛𝑒𝑤) 

are the restructured explanation for X𝐴,𝑖(𝑜𝑙𝑑) 𝑎𝑛𝑑  X𝐵,𝑖(𝑜𝑙𝑑) which are further well-

defined in equation no. (4.24) and (4.25). 

X𝐴,𝑖(𝑛𝑒𝑤) = r * [X𝐴,𝑖(𝑜𝑙𝑑) - X𝐵,𝑖(𝑜𝑙𝑑)] + X𝐴,𝑖(𝑜𝑙𝑑)        (4.24) 
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  Equation (4.24) is deemed successful in addressing a given maximization 

problem only when the updated function evaluation for the current learner surpasses 

that of the partner learner. Likewise, its effectiveness in tackling a minimization 

problem is contingent upon the updated function assessment for the current learner 

being lower than that of the partner learner. 

X𝐴,𝑖(𝑛𝑒𝑤) = r * [X𝐵,𝑖(𝑜𝑙𝑑) - X𝐴,𝑖(𝑜𝑙𝑑)] + X𝐴,𝑖(𝑜𝑙𝑑)         (4.25) 

Equation (4.25) is considered successful in addressing a given maximization 

problem only when the updated function evaluation for the current learner is less than 

that of the partner learner. Similarly, its effectiveness in solving a minimization 

problem is contingent upon the updated function assessment for the current learner 

being greater than that of the partner learner. This whole process is continued until the 

optimal solution is achieved. This proper implementation of teaching learning based 

optimization algorithm, including both phases, is explained with the help of a flow chart 

in figure 4.4 below. 

 

Fig. 4.4 Flow chart for TLBO algorithm. 
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4.2.2    TLBO algorithm based control of 2DoF ball balancer 

  To implement teaching learning based optimization integrated while tuning the 

constraint parameters of proportional-integral-derivative controller of a 2DoF ball 

balancer system, a MATLAB SIMULINK platform is used and the blocks are arranged 

as shown in figure 4.5. The required calculations for error signal i.e. e(s) (in Fig. 4.5), 

which may be re-written from eq. (4.1) as: 

  e(s) = 𝑅𝑑(s) – R(s)     (4.51) 

  where, 𝑅𝑑(𝑠) is the desired set point and R(𝑠) is the output in the form of self-

control and self-balancing of balancer plate. PID controller is implemented after going 

through the optimization process using TLBO, on this error signal. The output R(s), 

error signals e(s) and set point 𝑅𝑑(𝑠) are calculated separately for both the axis i.e. X-

axis and Y-axis for the balancer plate. TLBO algorithm is used to optimize the 

parameters of PID controller, as shown in figure 4.5. Where, 𝑘𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑘𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and  

𝑘𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are initial derivative, initial integral and initial proportional gains used to 

control the balancer plate, for which the initial operating points are given as: 

𝛽𝑑(𝑠) = (𝑘𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 𝑠 +
𝑘𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠
 + 𝑘𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) [𝑅𝑑(s) –  R(s)]       (4.52) 

Initial parameters of PID controller are calculated using eq. (4.11 – 4.13). Then, 

controller gains are computed after each iteration of TLBO algorithm as explained in 

previous subsections of this thesis, which is followed by cost/objective function 

calculations, as explained already in equation no. (4.14 – 4.18). 

 
Fig. 4.5 Block diagram representing TLBO based tuning of PID controller of a 2DOF ball 

balancer system.      

The objective is to manage the position of the ball on the rectangular plate, a task 

achieved through the utilization of optimization algorithm. The crucial aspect of this 

controller implementation lies in its meticulous calibration to attain the desired output. 
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Fig. 4.6 Simulated response of default PD controller showing output variations of servo load 

angle and ball position of a 2DoF ball balancer system. 

 

 
Fig. 4.7 Simulated response of TLBO-PID controller showing output variations of servo load 

angle and ball position of a 2DoF ball balancer system. 

Subsequently, different MATLAB simulations are conducted, and the different 

outcomes obtained from these simulations are presented in Figs. 4.6 and 4.7. The 

evaluation of the proposed controller's performance, specifically concerning the 

enhancement of the servo angle (θ) and ball position (cm) is analysed through graphs 

that track the variation of these angles over time. In Fig. 4.6, a square reference signal 

is used on ball position signal while having a servo load angle, illustrating the resulting 
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behaviour of the actual load angle and actual ball position as output when default PD 

controller is used, as given by Quanser [319], is used as a controller. Integral part is 

introduced to PD controller, hence making it PID.  

Then TLBO algorithm is implemented on this PID controller hence obtaining 

the graphs in fig. 4.7. The successful control of a nonlinear balancer system is attained 

through the implementation of the proposed control schemes. This method is 

contrasted with previous endeavours in the field, employing various controllers. The 

breakdown of the time response of these simulated result is done further, enabling a 

comparative evaluation of the superior performance of the proposed control scheme 

within the simulation model.  

In the graphical representations, the blue line serves as the reference trajectory, 

while the pink line illustrates the actual output. The graphical results distinctly show 

that the actual output aligns closely with the reference signal when implementing the 

proposed control schemes. 

4.2.2.a    Time response analysis 

 The successful control of a nonlinear balancer system is attained through the 

implementation of the proposed control schemes. This method is contrasted with 

previous endeavors in the field, employing various controllers. Table 4.1 delineates the 

breakdown of the time response, enabling a comparative evaluation of the superior 

performance of the proposed control scheme within the simulation model. In the 

graphical representations, the blue line serves as the reference trajectory, while the pink 

line illustrates the actual output. The graphical results distinctly show that the actual 

output aligns closely with the reference signal when implementing the proposed control 

schemes. 

Table 4.1: Comparison of time response of servo angle results 

Control Scheme 

used 

Rise Time, 𝑇𝑟 

(sec.) 

Settling Time, 𝑇𝑠 

(sec.) 

Peak Over-

shoot, 𝑀𝑝 (%) 

Default PD [319] 2.98 3.5 22.9 

ZN-PID [327] 2.4 2.76 16.62 

TLBO-PID 0.93 1.98 14.1 

In the graphical and mathematical results, it is clearly seen that the proposed 

control schemes are tracking down the servo load angle trajectories of 2DoF ball 

balancer system. The proposed control scheme helps the balancer to have a stable 

operation and distortion less processing of feedback mechanism.  The graphical results 

are also demonstrating the mathematical values which are further mentioned in Table 

4.1, which makes it clear that the results obtained using the proposed control scheme 

is providing a more stable behaviour to balancer system on MATLAB/Simulation 

platform. For comparison purpose, time response analysis is done.  
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4.2.2.b   Cost function analysis 

The error observed during this simulation process, is processed through the 

objective functions and the results observed are shown in Table 4.2 and discussed 

herewith. The Integral of Absolute Error (IAE), Integral of Square of Error (ISE) and 

Integral of time weighted Absolute error (ITAE) are calculated as follows:  

IAE = ∫ |𝑒(𝑡)| 𝑑𝑡       (4.53) 

ISE = ∫ 𝑒2(𝑡) 𝑑𝑡      (4.54) 

ITAE = ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡       (4.55) 

The utilization of the TLBO optimization process for fine-tuning the constraint 

parameters of the controller led to diminishing in the objective functions from their 

initial values. In the case of employing the TLBO-PID controller, notable 

improvements were observed: ITAE decreased to 0.0050, IAE reduced to 0.0049, and 

ISE diminished to 0.0031, signifying improved error values. The response of the 

objective functions to the applied optimization algorithms is depicted in Figure 4.8. 

Table 4.2: Objective function values 

Controller ISE IAE ITAE 

ZN-PID 0.0219 0.03533 0.0699 

TLBO-PID 0.0031 0.0049 0.0050 

 

 

Fig. 4.8 Bar chart showing the values of different objective functions after using classical 

approach and TLBO optimization algorithm 
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4.2.3   TLBO algorithm based control of 2DoF helicopter system  

  To implement teaching learning based optimization while tuning the constraint 

parameters of proportional-integral-derivative controller of a 2DoF helicopter system, 

a similar approach is used as it was used to tune the earlier 2DoF system. MATLAB 

SIMULINK platform is used and the blocks are arranged as shown in figure 4.9. The 

required calculations for error signal i.e. e(s) (in Fig. 4.9), which may be re-written from 

eq. (4.1) as: 

  e(s) = 𝑅𝑑(s) – R(s)       (4.56) 

 
Fig. 4.9 Block diagram representing TLBO based tuning of PID controller of a 2DOF 

helicopter. 

  where, 𝑅𝑑(𝑠) is the desired set point and R(𝑠) is the output in the form of pitch 

and yaw angle of helicopter model. The controller block G(s) is represented for PID 

controller. The algorithm block represents the TLBO algorithm. PID controller is 

implemented after going through the optimization process using TLBO, on error signal. 

The output R(s), error signals e(s) and set point 𝑅𝑑(𝑠) are calculated separately for both 

the axis i.e. pitch-axis and Yaw-axis for the helicopter Simulink model. TLBO 

algorithm is used to optimize the parameters of this PID controller.  

4.2.3.a   Time response analysis 

For the pitch axis of the nonlinear system, an error signal e(s) is minimized 

using TLBO algorithm, representing the difference between the desired and actual 

pitch angles in radians. Similarly, the error signal of yaw axis is also minimized using 

the same algorithmic approach. The algorithms are using proportional-integral-

derivative controller’s constraints for the optimization process. Error signals are 

delivered as inputs for the PID controllers. Two PID controllers are utilized—one to 

manage yaw error and the other to handle pitch error. Both controllers collaborate to 

achieve a common objective: reaching the reference altitude, optimizing speed, and 

aligning with the angle values specified by the reference trajectory. The crucial aspect 

of the implemented controller is fine-tuning the constraint parameters. Subsequently, 

different MATLAB simulations are conducted and the diverse outcomes obtained 

from these simulations are presented in Figs. 4.10 and 4.11.  
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Fig. 4.10   Simulated response of LQR based controller showing output variations of yaw 

angle trajectory, pitch angle trajectory and voltage.  

 
Fig. 4.11   Simulated response of TLBO-PID control mechanism showing output of yaw 

angle trajectory, pitch angle trajectory and voltage variations. 
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  The evaluation of the proposed controller's performance, specifically 

concerning the enhancement of the pitch angle (θ) and yaw angle (Ψ) is analyzed 

through graphs that track the variation of these angles over time. In Fig. 4.10, a square 

reference signal is applied to the pitch trajectory and yaw trajectory, illustrating the 

resulting behavior of the actual pitch angle and yaw angle output when default LQR 

controller, as given by Quanser [322] is used as a controller. In Fig. 4.11, same square 

reference signal is applied to the pitch trajectory and yaw trajectory, illustrating the 

resulting behavior of the actual pitch angle and yaw angle output when TLBO 

optimized PID controller is used as the control mechanism. 

  The effective regulation of a nonlinear helicopter model is achieved by 

implementing the proposed control strategies. In comparison to previous approaches 

within the field, where Quanser [322] utilized the LQR controller to minimize pitch and 

yaw errors in a two-degree-of-freedom helicopter model, our current work employs a 

similar control system architecture with different controllers. To illustrate this, step and 

sinusoidal reference input trajectories are employed and visualized on the MATLAB 

Simulink interface. Tables 4.3 & Table 4.4 present a breakdown of the time response, 

enabling a comparative evaluation of the performance superiority of the proposed 

control scheme in the simulation model. 

Table 4.3: Comparison of simulation results obtained after time response analysis of pitch 

angle 

Control Scheme 

used 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Over-shoot 

(%) 

LQR [322] 1.1 4.72 8.99 

TLBO-PID 0.66 3.99 4.18 

Table 4.4: Comparison of simulation results obtained after time response analysis of yaw 

angle 

Control 

Scheme used 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Over-shoot 

(%) 

LQR [322] 1.0 5.12 18.3 

TLBO-PID 0.5 4.01 8.19 

 

4.2.3. b   Cost function analysis 

The tracking of reference pitch and yaw trajectories for the 2-degree-of-

freedom helicopter model is carried out using step references, and the results obtained 

are subjected to a comparative analysis. The aforementioned outcomes are sufficient 

to establish the superiority of the hybridized method over individual algorithms. The 

TLBO algorithm effectively manages the rise time, peak time, peak overshoot, and 

settling time for both the pitch and yaw axes. Various derivatives of error serve as 

objective functions in this simulation analysis, namely Integral Square Error (ISE), 

Integral Absolute Error (IAE), and Integral Time Square Error (ITSE), demonstrating 

the reduction in error during the implementation of optimization algorithms are 

calculated as follows:  

IAE = ∫ |𝑒(𝑡)| 𝑑𝑡      (4.56) 
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ISE = ∫ 𝑒2(𝑡) 𝑑𝑡     (4.57) 

ITSE = ∫ 𝑡𝑒2(𝑡) 𝑑𝑡      (4.58) 

  The utilization of the TLBO optimization process for fine-tuning the constraint 

parameters of the controller led to diminishing the objective functions from their initial 

values. In the case of employing the TLBO-PID controller, notable improvements were 

observed which are mentioned in Table 4.5. 

Table 4.5: Values of different error derivatives after applying TLBO-PID based control 

mechanism 

Controller IAE ISE ITSE 

TLBO-PID 0.8396 0.11 1.714 

 

4.3   GPC algorithm based control mechanism 

4.3.1  GPC algorithm  

The expression "Giza pyramid construction algorithm" lacks recognition 

within the realms of computer science, engineering, or any affiliated discipline. It 

appears to be a term employed solely in the context of an analogy or metaphor. In this 

particular context, the analogy highlights the strategic management of workers 

constructing the Giza pyramids by a leader known as Pharaoh's agent, aiming to attain 

optimal performance. This analogy draws parallels with the control strategy of the 

GPC algorithm. The GPC algorithm draws inspiration from the construction methods 

employed by workers building the Giza pyramids [49]. These workers, overseen by a 

leader referred to as Pharaoh's agent, were strategically managed to extract optimal 

performance from each individual. The control strategy of the GPC algorithm is based 

on the method employed by these workers to transport stone blocks to their assigned 

positions. Initially, the stone blocks are randomly positioned at the pyramid 

construction site. Workers are tasked with pushing these blocks to their desired 

locations, utilizing a ramp for this purpose. The workers manually slide the stone 

blocks over the ramp, revealing both the starting positions and associated costs of the 

blocks. This movement is influenced by factors such as the friction of the ramp and 

the capabilities of the workers. The interchangeability of workers, guided by Pharaoh's 

agent based on their varying powers and capabilities, allows for efficient execution of 

the task.  

Figure 4.12 illustrates the free-body movement of stone blocks over the ramp, 

showcasing all the forces acting on the blocks. In Figure 4.13, a detailed procedural 

flow chart outlines the steps to be followed for the proper execution of the GPC 

algorithm. The algorithm operates under certain assumptions: 

- Only one straight ramp with an even surface is utilized. 

- The maximum angle of the ramp is set at 15 degrees. 
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- Friction for workers is neglected. 

- Depending on the project's needs, workers may be substituted as required. 

 
Fig. 4.12 Stone block position on the ramp with all the forces 

Friction force (Kinetic) and Newton’s second law are detailed as: 

                          𝜇𝑘𝑓𝑚𝑔 𝑐𝑜𝑠 𝜃 = 𝑓𝑘𝑓       (4.59) 

0 = 𝑚𝑎𝑠 + 𝑚𝑔 𝑠𝑖𝑛 𝜃 + 𝑓𝑘𝑓                            (4.60) 

In these equations, 'm' signifies the mass of an individual block, 'g' denotes 

gravity, 'θ' represents the ramp angle, '𝑎𝑠 ' stands for acceleration, and the friction 

coefficient is denoted by 𝜇𝑘𝑓. '𝑣0' and 'd' indicate the initial velocity and the distance 

covered by the stone respectively. By employing the aforementioned formulas in 

conjunction with Newton's equations for motion, we can derive the following results: 

             −𝑔(𝑠𝑖𝑛 𝜃 + 𝜇𝑘𝑓 𝑐𝑜𝑠 𝜃) = 𝑎𝑠                               (4.61) 

          
𝑣0

2

2𝑔(sin𝜃+𝜇𝑘𝑓 cos𝜃)
= 𝑑                                (4.62) 

In every iteration of GPC, the initial velocity of stone block is defined using:  

                              𝑣0= rand(0,1)                                          (4.63) 

Given that the initial velocity falls within the range of 0 to 1, the determination 

of the friction coefficient range is established by:  

                    𝜇𝑘𝑓 = rand[𝜇𝑘_𝑚𝑖𝑛, 𝜇𝑘_𝑚𝑎𝑥]                                  (4.64) 

𝜇𝑘_𝑚𝑖𝑛 and 𝜇𝑘_𝑚𝑎𝑥 are predefined in the algorithm. Friction is distributed 

randomly across the surface, and the calculation of the worker's movement is 

determined by: 

                                
𝑣0

2

2𝑔 𝑠𝑖𝑛 𝜃
= 𝑥                                               (4.65) 

The updated positions of both the stone and the worker are determined by computing 

the values of 'd' and 'x'. Assume the initial position is denoted by vector 𝑝𝑖⃗⃗⃗  , and 𝜖𝑖⃗⃗   
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represents the random uniform distribution vector. Consequently, in the subsequent 

iteration, the calculation for the new worker position is expressed as: 

                             𝑝 = (𝑝𝑖⃗⃗⃗  + 𝑑) × 𝑥𝜖𝑖⃗⃗                                    (4.66) 

 

Fig. 4.13 Detailed flow-chart for GPC  
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The position derived from the aforementioned equation serves as the basis for 

a fresh solution in each iteration. Subsequently, the determination of the effective 

positions for all workers is contingent upon the probability of worker substitution, set 

at 50%. This substitution process is executed through the utilization of the uniform 

crossover operator. Here, the initial operator solution and the generated solution are 

outlined as follows: 

                     𝜙 = (𝜑1, 𝜑2, ⋯⋯𝜑𝑛)                                             (4.67) 

                     𝜓 = (𝜓1, 𝜓2, … , 𝜓𝑛)                                              (4.68) 

Updated solution after substitution: 𝑍 = (ζ1, ζ2, … , ζ𝑛)             (4.69) 

The formula employed for worker substitution in each iteration of the 

algorithm is determined by the following equation: 

                   ζ = {
𝜓, 𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] ≤  0.5
𝜑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                                     (4.70) 

4.3.2 GPC algorithm based control of 2DoF ball balancer system 

  Giza pyramid construction (GPC) algorithm is used to tune the constraint 

parameters of proportional-integral-derivative controller of a 2DoF ball balancer 

system. A similar MATLAB SIMULINK platform is used for this purpose, which was 

used to implement the TLBO algorithm earlier in this chapter. The blocks are re-

arranged as shown in figure 4.14 below. The required calculations for error signal is 

same what we used in eq (4.51) which may be re-written from eq. (1) as: 

  e(s) = 𝑅𝑑(s) – R(s)     (4.71) 

 
Fig. 4.14 Block diagram representing GPC based tuning of PID controller of a 2DOF ball 

balancer system   
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  where, 𝑅𝑑(𝑠) is the desired set point and R(𝑠) is the response in the form of 

position and angle control of 2DoF ball balancer. After undergoing optimization 

through GPC, the PID controller is applied to the error signal. The initialization process, 

detailed in equations (51) and (52) in this chapter, sets the initial parameters of the PID 

controller using equations (4.11 – 4.13). Subsequently, cost/objective functions are 

computed, as previously described in equations (4.14 – 4.18). The key to the 

effectiveness of this controller implementation lies in its careful calibration to achieve 

the desired output. 

  Following that, a series of MATLAB simulations are executed, and the diverse 

outcomes derived from these simulations are depicted in Figs. 4.15 and 4.16. The 

assessment of the performance of the suggested controller, particularly in terms of 

enhancing the servo angle (θ) and ball position (cm), is examined through graphs 

illustrating the variation of these angles over time. Fig. 4.15 employs a square reference 

signal on the ball position signal with a servo load angle, showcasing the observed 

behavior of the actual load angle and actual ball position when using the default PD 

controller provided by Quanser [319]. 

 

Fig. 4.15 Simulated response of PD controller 

showing output variations of servo load angle 

and ball position 

 

Fig. 4.16 Simulated response of GPC-PID 

control mechanism showing output of servo 

load angle and ball position 

  The introduction of the integral part transforms the PD controller into a PID 

controller. Subsequently, the GPC algorithm is applied to this PID controller, resulting 

in the graphs presented in Fig. 4.16. The effective control of a nonlinear balancer system 

is achieved through the implementation of the proposed control schemes, which are 

compared with previous approaches in the field involving various controllers. Further 

analysis breaks down the time response of these simulated results, facilitating a 

comparative assessment of the superior performance of the proposed control scheme 

within the simulation model. In the graphical representations, the blue line signifies the 

reference trajectory, while the pink line depicts the actual output. The graphical results 

distinctly demonstrate a close alignment between the actual output and the reference 

signal when employing the proposed control schemes.   



63 
 

4.3.2.a Time response analysis 

The effective regulation of a nonlinear balancer system is achieved through the 

application of the proposed control schemes. This approach is compared to prior 

initiatives in the field that utilized different controllers. Table 4.6 outlines the 

breakdown of the time response, facilitating a comparative assessment of the superior 

performance of the proposed control scheme within the simulation model. In the visual 

representations, the blue line represents the reference trajectory, while the pink line 

depicts the actual output. The graphical results unmistakably reveal a close alignment 

between the actual output and the reference signal when employing the proposed 

control schemes. Both in the visual and mathematical outcomes, it is evident that the 

proposed control schemes accurately follow the servo load angle trajectories of the 

2DoF ball balancer system. The proposed control scheme contributes to the balancer's 

stable operation and distortion-free processing of the feedback mechanism. The 

graphical results also illustrate the mathematical values, as further detailed in Table 

4.6, making it evident that the results obtained using the proposed control scheme 

provide a more stable behaviour for the balancer system on the MATLAB/Simulation 

platform. Time response analysis is conducted for comparison purposes. 

Table 4.6: Comparison of time response servo angle results 

Control Scheme 

used 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Over-shoot 

(%) 

Default PD [319] 2.98 3.5 22.9 

ZN-PID [327] 2.4 2.76 16.62 

GPC-PID 0.83 1.8 12.33 

 

4.3.2.b Cost function analysis 

The error encountered in this simulation is subjected to the objective functions, 

and the outcomes are presented in Table 4.7, discussed below. The Integral of Absolute 

Error (IAE), Integral of Square of Error (ISE), and Integral of Time Weighted Absolute 

Error (ITAE) are computed as follows: 

IAE = ∫ |𝑒(𝑡)| 𝑑𝑡     (4.72) 

ISE = ∫ 𝑒2(𝑡) 𝑑𝑡    (4.73) 

ITAE = ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡     (4.74) 

Table 4.7: Objective function values 

Controller ISE IAE ITAE 

ZN-PID 0.0219 0.03533 0.0699 

GPC-PID 0.0033 0.0054 0.0066 
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The application of the TLBO optimization process to fine-tune the constraint 

parameters of the controller resulted in a reduction of the objective functions from their 

initial values. When utilizing the TLBO-PID controller, significant enhancements 

were observed: ITAE decreased to 0.0050, IAE reduced to 0.0049, and ISE diminished 

to 0.0031, indicating improved error values. The response of the objective functions 

to the applied optimization algorithms is illustrated in Figure 4.17. 

 
Fig. 4.17 Comparison of ISE, IAE & ITAE response of GPC algorithm with ZN tuned PID 

4.3.3 GPC algorithm based control of 2DoF helicopter system 

To incorporate Giza pyramid construction (GPC) optimization algorithm for 

adjusting the constraint parameters of a proportional-integral-derivative controller in 

a 2DoF helicopter system, similar method is used which we preferred to incorporate 

the TLBO based control scheme. The MATLAB SIMULINK platform is utilized, and 

the arrangement of blocks is depicted in Figure 4.18. The necessary computations for 

the error signal, has already been discussed in earlier sections in details. 

 

Fig. 4.18 Block diagram representing TLBO based tuning of PID controller of a 2DOF 

helicopter 

Fig. 4.18 is same as fig. 4.9 and fig. 4.3 and has been discussed in detail earlier 

in the chapter. Only the algorithm approach is altered and rest whole functioning 

remains the same. GPC algorithm is used to optimize the parameters of this PID 

controller. In optimizing the pitch axis of the nonlinear system, the GPC algorithm is 
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employed to minimize the error signal, denoted as e(s), which signifies the difference 

between the desired and actual pitch angles measured in radians. Likewise, the error 

signal for the yaw axis undergoes a similar minimization process using the GPC 

algorithm. These algorithms utilize the constraints of the proportional-integral-

derivative (PID) controller for the optimization procedure. The error signals are fed as 

inputs to the PID controllers, where two PID controllers are employed—one to address 

yaw error and another to handle pitch error. In this way, both the trajectory angles are 

controlled using the same optimization approach. 

4.3.3.a Time response analysis 

Both controllers collaborate to attain a shared objective: achieving the 

reference altitude, optimizing speed, and aligning with the angle values specified by 

the reference trajectory. The critical aspect of the implemented controller involves 

meticulous adjustment of the constraint parameters. Following this, various MATLAB 

simulations are executed, and the diverse outcomes derived from these simulations are 

illustrated in Figs. 4.19 and 4.20. The assessment of the proposed controller's 

performance, particularly in enhancing the pitch angle (θ) and yaw angle (Ψ), is 

analysed through graphs depicting the variation of these angles over time. The 

effective regulation of a nonlinear helicopter model is achieved by implementing the 

proposed control strategies. In contrast to previous methodologies in this experiment, 

where Quanser [322] employed the LQR controller to minimize pitch and yaw errors 

in a two-degree-of-freedom helicopter model, our present investigation adopts a 

similar control system architecture but utilizes distinct controllers. To illustrate this, 

step and sinusoidal reference input trajectories are applied and visualized using the 

MATLAB Simulink interface. Tables 4.8 & Table 4.9 break down the time response, 

enabling a comparative evaluation of the superior performance of the proposed control 

scheme in the simulation model. 

Table 4.8: Comparison of simulation results obtained after time response analysis of pitch 

angle 

Control Scheme 

used 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Over-shoot 

(%) 

LQR [322] 1.1 4.72 8.99 

GPC-PID 0.58 1.11 4.3 

 

Table 4.9: Comparison of simulation results obtained after time response analysis of yaw 

angle 

Control Scheme 

used 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Over-shoot 

(%) 

LQR [322] 1.0 5.12 18.3 

GPC-PID 0.45 3.94 8.21 

In Fig. 4.19, a square reference signal is applied to the pitch and yaw 

trajectories, showcasing the resulting behaviour of the actual pitch angle and yaw angle 

output when the LQR controller, as provided by Quanser [322], is utilized. In Fig. 

4.20, the same square reference signal is applied to the pitch and yaw trajectories, 
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demonstrating the resulting behaviour of the actual pitch angle and yaw angle output 

when the GPC-optimized PID controller is employed as the control mechanism. 

 
Fig. 4.19 Simulated response of LQR based controller showing output variations of yaw angle 

trajectory, pitch angle trajectory and voltage 

 

 

Fig. 4.20 Simulated response of GPC-PID control mechanism showing output of yaw angle 

trajectory, pitch angle trajectory and voltage variations 
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4.3.3.b Cost function analysis 

The tracking of reference pitch and yaw trajectories in the 2-degree-of-freedom 

helicopter model is conducted using step references and the resulting outcomes go 

through a comparative analysis. These results are adequate to affirm the superiority of 

the hybridized method over individual algorithms. The GPC algorithm effectively 

controls the rise time, peak time, peak overshoot, and settling time for both the pitch 

and yaw axes. Various error derivatives serve as objective functions in this simulation 

analysis, specifically Integral Square Error (ISE), Integral Absolute Error (IAE), and 

Integral Time Square Error (ITSE), demonstrating the reduction in error during the 

implementation of optimization algorithms, and they are computed as follows:  

IAE = ∫ |𝑒(𝑡)| 𝑑𝑡      (4.75) 

ISE = ∫ 𝑒2(𝑡) 𝑑𝑡     (4.76) 

ITSE = ∫ 𝑡𝑒2(𝑡) 𝑑𝑡      (4.77) 

  Applying the GPC optimization algorithm to adjust the constraint parameters of 

the controller resulted in a reduction of the objective functions from their initial values. 

When implementing the GPC-PID controller, significant enhancements were observed, 

as detailed in Table 4.10. 

Table 4.10: Values of different error derivatives after applying TLBO-PID based control 

mechanism 

Controller IAE ISE ITSE 

GPC 0.7717 0.1046 1.616 

 

4.4  Conclusion 

This work demonstrates the application of optimization algorithms to both a 2 

DOF helicopter system and a 2DoF ball balancer system, with a primary focus on 

refining the constraint parameters of the PID controller to govern the servo angle 

trajectory. The emphasis then shifts towards trajectory control of flight angles. The 

finely-tuned results are compared with outcomes obtained from an LQR controller 

and PD controller. The performance analysis specifically investigates the servo angle, 

yaw angle, and pitch angles using various control techniques. The constrained 

optimization of the PID controller notably reduces cross-coupling errors between the 

angles of the helicopter model and the servo angle error of the rectangular plate on 

which a ball is balanced. To evaluate the output simulation performances of the tuned 

PID controller, default PD, and LQR controller, the MATLAB simulation platform is 

employed. Graphical and time response analyses are utilized to provide a 

comprehensive comparison among these controllers.  
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Chapter 5. Improved TLBO Algorithm Based Control of 2DOF 

Systems 

 
Teaching Learning-Based Optimization (TLBO) provides a well-known 

solution for optimization problems. Although TLBO has demonstrated successful 

applications across various problem domains, like any algorithm, it is not without its 

drawbacks. Some potential limitations of TLBO includes: 

➢ Parameter Sensitivity: Similar to many optimization algorithms, TLBO 

involves adjusting several parameters and the algorithm's performance can be 

highly sensitive to these settings. Identifying the optimal parameter set for a 

specific problem can pose a challenging task. 

➢ Applicability to Specific Problem Types: TLBO may not be uniformly 

effective across all types of optimization problems. Its performance can 

fluctuate based on the characteristics of the problem being addressed, and it 

may not be the most appropriate choice for certain optimization tasks. 

➢ Convergence Speed: TLBO may demonstrate slower convergence rates 

compared to certain other optimization algorithms. This limitation becomes 

significant when dealing with problems requiring swift convergence or under 

constraints of limited computational resources. 

➢ Challenges in Noisy or Stochastic Environments: TLBO may face challenges 

when applied to optimization problems featuring noisy or stochastic objective 

functions. The deterministic nature of TLBO might not be well-suited to handle 

such scenarios. 

➢ Limited Mathematical Foundation: Similar to many other nature-inspired 

algorithms, TLBO may lack a robust theoretical foundation compared to more 

established optimization techniques. This absence can make it challenging to 

provide guarantees about its performance in specific situations. 

While acknowledging these possible constraints, it is important to understand 

that the success of TLBO relies on the particular problem at hand and its application 

context. The optimization procedure employed by the TLBO algorithm has been 

extensively examined in the preceding chapters of this thesis. It has been noted that 

the generation of the teaching factor plays a crucial role in the optimization process. 

This teaching factor is influenced by the generation of random numbers within the 

algorithm, introducing sensitivity to randomization in calculations. This opens up 

opportunities for enhancing the generation of the teaching factor to ensure the effective 

implementation of the teaching-learning based optimization process. Subsequent 

sections of this thesis will delve into discussions regarding these enhancements. 

5.1     Improved TLBO (iTLBO) 

5.1.1   Updating process for teaching factor 

  The previous chapter extensively covers the computation and significance of 

the teaching factor in the TLBO algorithm. However, the algorithm does not assess the 

cost as a meaningful parameter since it is randomly categorized by the algorithm. In 

examining the outcomes from operations on various test functions conducted by R.V. 
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Rao et al. [50], it was observed that the algorithm exhibits quicker responses when the 

teaching factor (T𝑓) is maintained within the range of 1 and 2. According to R.V. Rao's 

research, the selection process for the teaching factor value is entirely dependent on the 

algorithm's randomized selection procedure. Moreover, the algorithm yields 

satisfactory results only when the value is either 1 or 2. 

  These statements highlight a lack of data involvement in the TLBO algorithm. 

To simplify the implementation of the algorithm and prevent complications, the final 

value of the teaching factor is determined as either 1 or 2 by rounding off the 

corresponding equation from the previous chapter, which is given as: 

T𝑓 = round (r+1)      (5.1) 

  However, if we refrain from adopting unnecessary shortcuts and take a closer 

look at the algorithm's randomized behavior, it becomes evident that the elimination of 

this random selection can be achieved by making the teaching factor dependent on the 

available data during algorithm implementation. The focus of this work is to explore 

the core of proposed algorithm, aiming to enhance overall results. 

  In pursuit of this improvement, a factor of enhancement (𝑖𝑓) is preferred to 

eliminate the random value (r) command from the teaching-learning-based 

optimization algorithm. The formula determining the value of 𝑖𝑓 is employed in the 

algorithm throughout the optimization process as: 

𝑖𝑓 = (1 + (X𝑗,𝑏𝑒𝑠𝑡,𝑖 − X𝑚𝑒𝑎𝑛)) −1   (5.2) 

  Where the value of X𝑗,𝑏𝑒𝑠𝑡,𝑖 & X𝑚𝑒𝑎𝑛 will be calculated based on the calculations 

already discussed in “teaching phase” of TLBO algorithm. In the TLBO algorithm, the 

teaching factor is currently assigned a randomized rounded-off number, indicating a 

potential area for enhancement. To address this issue in the algorithm, the revised 

formula for calculating the teaching factor can be referred to as:- 

T𝑓 = 
2+ (X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
     (5.3) 

5.1.2 Updated data-driven solution 

  The updated new results are approached using following equations, as adopted 

from “teaching phase” and “learning phase” of TLBO algorithm, as derived in previous 

chapter:-  

X𝑗,𝑘,𝑖(𝑛𝑒𝑤) = Dmean𝑗,𝑘,𝑖 +  X𝑗,𝑘,𝑖(𝑜𝑙𝑑)    (5.4) 

X𝐴,𝑖(𝑛𝑒𝑤) = r * [X𝐴,𝑖(𝑜𝑙𝑑) - X𝐵,𝑖(𝑜𝑙𝑑)] + X𝐴,𝑖(𝑜𝑙𝑑)   (5.5) 

X𝐴,𝑖(𝑛𝑒𝑤) = r * [X𝐵,𝑖(𝑜𝑙𝑑) - X𝐴,𝑖(𝑜𝑙𝑑)] + X𝐴,𝑖(𝑜𝑙𝑑)   (5.6) 

T𝑓 = 
2+ (X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
       (5.7) 

  Once the teaching factor updating procedure is complete using equation no 

(5.7), the assessment given by equation no (5.4), (5.5) and (5.6) also gets updated in the 
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consequent iterations of algorithm. Hence, new solution during the teaching phase can 

be explained using the following formula: 

X𝑗,𝑘,𝑖(𝑛𝑒𝑤) = X𝑗,𝑘,𝑖(𝑜𝑙𝑑) + {
1

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
}  *{X𝑏𝑒𝑠𝑡–

2+ (X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
X𝑚𝑒𝑎𝑛}          

(5.8) 

  Above equation (i.e. Eq. (5.4)) provides new solution after the teaching phase 

completion in iTLBO algorithm. This is also responsible for improved results during 

implementation of the learning phase of iTLBO. To make the new solution in the 

generation of algorithm in learning phase total independent on random behavior, the 

Eq. (5.2) is integrated with Eq. (5.5 – 5.6) and provides the data derived new solutions 

for learning phase as: 

X𝐴,𝑖(𝑛𝑒𝑤) = X𝐴,𝑖(𝑜𝑙𝑑) + {
1

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
} ∗ 𝜒1      (5.9) 

  Where, 𝜒1 = {X𝐴,𝑖(𝑜𝑙𝑑)  − X𝐵,𝑖(𝑜𝑙𝑑)} and equation no. (5.9) will be 

considered valid for solving a maximization problems if and only if 𝜒1 is giving positive 

value and valid for solving a minimization problems if and only if 𝜒1 is giving a 

negative value.  

Further, this gives us new solution as: 

X𝐴,𝑖(𝑛𝑒𝑤) = X𝐴,𝑖(𝑜𝑙𝑑) + {
1

1+(X𝑗,𝑏𝑒𝑠𝑡,𝑖−X𝑚𝑒𝑎𝑛 )
} ∗ 𝜒2     (5.10) 

  Where, 𝜒2 = [X𝐵,𝑖(𝑜𝑙𝑑) - X𝐴,𝑖(𝑜𝑙𝑑)] and equation no (5.10) will be considered 

valid for solving a maximization problems if and only if 𝜒2 is giving a positive value 

and valid for solving minimization problems if and only if 𝜒2 is giving a negative value. 

 

 

Fig. 5.1 Detailed flow chart illustrating the iTLBO algorithm 

When we eliminates randomized behaviour from algorithm of teaching 

learning based optimization method using iTLBO approach, the algorithm becomes 
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more consistent and attains better precision. The data driven updated approach gives 

stable output and quicker response with test benchmark functions and 2DOF system. 

These are discussed further in details and the whole execution of improved TLBO 

algorithm is explained using a flow chart in figure 5.1. It helps in providing a textual 

representation of algorithm flow for optimization process of iTLBO, which provides 

general outline or description of the typical steps involved in this improvised 

optimization algorithm. 

5.2    iTLBO on traditional benchmark functions 

This section provides evidence of the superior performance of the proposed 

optimization procedure compared to existing techniques found in the literature. Various 

experiments have been conducted to substantiate the enhanced efficacy of the Improved 

Teaching-Learning-Based Optimization (iTLBO) algorithm. These experiments 

encompass a range of benchmark functions, including four distinct constrained 

benchmark functions. Among them, two exhibit linear characteristics, while the 

remaining two showcase nonlinear characteristics in their objective functions. This 

problem is resolved using particle swarm optimization, artificial bee colony and 

teaching learning based optimization by Rao et. al. [50]. The specific attributes of these 

functions are elaborated upon below: 

• Benchmark test function 1 

For this we are taking a minimization linear problem which is having nine linear 

equality constraints and total thirteen design variables. As far as the number of active 

constraint are considered at the optimum point, there will be total six, which finally 

gives the global minimum at 𝑦∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) and have single 

objective functional value given as f(𝑦∗) = – 15. The problem may be defined using the 

following equations. 

Min f(y) = 5∑ 𝑦𝑖
4
𝑖=1 − 5∑ 𝑦𝑖

24
𝑖=1 − 5∑ 𝑦𝑖

13
𝑖=5     (5.11) 

S.T. 𝑓1(y) = 2𝑦1 + 2𝑦2 + 𝑦10+ 𝑦11–10 ≤ 0,      

𝑓2(y) = 2𝑦1 + 2𝑦3 + 𝑦10+ 𝑦12–10 ≤ 0,      

𝑓3(y) = 2𝑦2 + 2𝑦3 + 𝑦11+ 𝑦12–10 ≤ 0,      

𝑓4(y) = −8𝑦1 + 𝑦10≤ 0,        

𝑓5(y) = −8𝑦2 + 𝑦11≤ 0,        

𝑓6(y) = 8𝑦3 + 𝑦12≤ 0,        

𝑓7(y) = −2𝑦4 −𝑦5+ 𝑦10≤ 0,       

𝑓8(y) = −2𝑦6 −𝑦7+ 𝑦11≤ 0,       

𝑓9(y) = −2𝑦8 −𝑦9+ 𝑦12≤ 0,       

0 ≤ 𝑦𝑖 ≤ 1   (i = 1,2,3,……..9)  0 ≤ 𝑦𝑖 ≤ 100   (i = 10,11,12) 0 ≤ 𝑦𝑖 ≤ 1  (i = 13)  

Setting the number of generations as 500 and size of the population to be 50 in iTLBO 

algorithm proven to have the best result for given problem is premeditated and shown 
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below in Table 5.1. iTLBO took much less numbers of function evaluations to evidence 

the superiority over the considered optimization approaches. 

Table 5.1: Optimization results on benchmark function 1 

Optimization Best solution Function evaluations 

PSO  – 15 350,000 

ABC  – 15 240,000 

TLBO  – 15 100,000 

iTLBO – 15 90,000 

 

• Benchmark test function 2 

For this we are taking a minimization nonlinear problem which is having four nonlinear 

equality constraints and total seven design variables. As far as the number of active 

constraint are considered at the optimum point, there will be total two, which finally 

gives the global minimum at 𝑦∗ = (2.330499, 1.951372, – 0.4775414, 4.365726, – 

0.6244870, 1.1038131, 1.594227) and have single objective functional value given as 

f(𝑦∗) = 680.6300573. The problem may be defined using the following equations. 

Min f(y) = (𝑦1 − 10)2 + 5(𝑦2 − 12)2 + 𝑦3
4 + 3(𝑦4 − 11)2 + 10𝑦5

6 + 7𝑦6
2 + 𝑦7

4 − 4𝑦6𝑦7 − 

10𝑦6 − 8𝑦7         (5.12) 

S.T. 𝑓1(y) = –127 + 2𝑦1
2 + 3𝑦2

4+ 𝑦3 + 4𝑦4
2 + 5𝑦5) ≤ 0,         

𝑓2(y) = –282 + 7𝑦1 + 3𝑦2 + 10𝑦3
2 + 𝑦4– 𝑦5) ≤ 0,          

𝑓3(y) = –196 + 23𝑦1 + 𝑦2
2 + 6𝑦6

2 – 8𝑦7 ≤ 0, 𝑓4(y) = 4𝑦1
2 + 𝑦2

2 – 3𝑦1𝑦2 + 2𝑦3
2 + 5𝑦6 

– 11𝑦7 ≤ 0,      –10 ≤ 𝑦𝑖 ≤ 10  (i = 1, 2, 3, 4, 5, 6, 7) 

Setting the number of generations as 2000 and size of the population to be 50 in data 

driven proposed algorithm, proven to have the best result for given problem is 

premeditated and shown  in Table 5.2. iTLBO took much less numbers of function 

evaluations to evidence the superiority over the considered optimization approaches. 

Furthermore, these two benchmark test functions proved that the proposed iTLBO 

method gives stable and precise algorithmic solutions. Hence, we may go for a decent 

describing function to use this method in self-balancing and self-controlling of a 

2DOFBB system. 

Table 5.2: Optimization results on benchmark function 2 

Optimization Best solution Function evaluations 

PSO  680.630 350,000 

ABC  680.634 240,000 

TLBO  680.630 100,000 

iTLBO 680.63006 90,000 



73 
 

• Benchmark function 3 

A maximization nonlinear problem having one nonlinear equality constraint and ten 

design variables are used. At the optimum point there is one active constraint given the 

global maximum at 𝑦∗ = (1/√h, 1/√h, 1/√h, ……..) having one objective function value 

f(𝑦∗) = 1. The inequality constraint shown as |h| ≤ ε, which is converted from equality 

constraint, where ε = 0.001.  

Max f(y) = (√h)ℎ ∏ 𝑦𝑖
ℎ
𝑖=1        (5.13) 

S.T. g(y) = ∑ 𝑦𝑖
24

𝑖=1  – 1 = 0        

Where, h = 10 and 0 ≤ 𝑦𝑖 ≤ 10   (i = 1,2,3,……..h)  

Setting the maximum number of generations up to 2000 and size of population as 50 in 

improved TLBO algorithm, with best result for problem is calculated and shown in 

Table 5.3. iTLBO requires less function evaluations to prove its superiority over the 

other considered optimization methods. 

Table 5.3: Optimization results on benchmark function 1 

Optimization Best solution Function evaluations 

PSO  0.9 350, 000 

ABC  1 240, 000 

TLBO  1 100, 000 

iTLBO 1 90, 000 

• Benchmark function 4 

A minimization linear problem having three linear inequality constraints, three 

nonlinear inequality constraints and eight design variables are used. At the optimum 

point there are three active constraint given the optimum solution at 𝑦∗ = (286.165, 

579.3066, 5109.9707, 1359.9709, 5109.9707, 295.601, 182.0177, 217.982, 395.6012) 

having one objective function value as f(𝑦∗) = 7049.248021. The inequality constraint 

shown as |h| ≤ ε, which is converted from equality constraint, where ε = 0.000001. 

Min f(y) = 𝑦1 + 𝑦2 + 𝑦3       (5.14) 

S.T. 𝑓1(y) = –1 + 0.0025(𝑦4 + 𝑦6) ≤ 0                                 

𝑓2(y) = –1 + 0.0025(𝑦5 + 𝑦7 – 𝑦4) ≤ 0                              

𝑓3(y) = –1 + 0.01(𝑦8 – 𝑦5) ≤ 0                                

𝑓4(y) = –𝑦1𝑦6 + 833.33252𝑦4 + 100𝑦1 – 83333.333 ≤ 0          

𝑓5(y) = –𝑦2𝑦7 + 1250𝑦5 + 𝑦2𝑦4 – 1250𝑦4 ≤ 0           

𝑓6(y) = –𝑦3𝑦8 + 1250000+ 𝑦3𝑦5 – 2500𝑦5 ≤ 0           

Where,  –100 ≤ 𝑦1 ≤ 10000 

–1000 ≤ 𝑦𝑖 ≤ 10000  (i = 2,3) 

–100 ≤ 𝑦𝑖 ≤ 10000 (i = 4,5,6,7,8) 
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  Setting the maximum number of generations up to 2000 and size of population 

as 50 in iTLBO algorithm, with best result is evaluated and shown in Table 5.4. The 

improved TLBO requires less function evaluations to solve the benchmark function 

problem. 

Table 5.4: Optimization results on benchmark function 4 

Optimization Best solution Function evaluations 

PSO  7049.38 350, 000 

ABC  7053.904 240, 000 

TLBO  7049.24 100, 000 

iTLBO 7049.24 90, 000 

 

5.3      CEC functions used for validating iTLBO 

  IEEE Congress on Evolutionary Computation (CEC) is a famous benchmark 

series used to calculate the dominance of optimization algorithms. It is most elaborated 

platform used for the overall comparison of evolutionary, nature inspire and behavior 

based algorithms. The benchmark functions approved in CEC are used to evaluate the 

state of art algorithms. In 2005 IEEE CEC (CEC’05) [328], 25 benchmark functions 

were included for calculating the fitness landscape. Eight years down the line, in 

CEC’13 [329] three benchmark functions were approved, while including additional 

test functions in CEC’05. This count of test function is further increased in CEC’14 

[330], where 30 benchmark functions were proposed. In CEC’17 [331], different 

features were added to already existing 30 benchmark functions. These functions were 

adopted in CEC’18, CEC’19 and CEC’20 [332]. With time, the intelligence in 

algorithm was increase and so the level of benchmark functions. CEC’21 [333] 

included different combination of operators in benchmark functions. These benchmark 

functions and latest hybrid functions, as approved in latest CEC are used herein to prove 

the dominance of iTLBO algorithm. Search range for all these functions is 

[−100 100]𝐷, where D is the dimension of the problem. The iTLBO algorithm is 

implemented on these test benchmark functions and the results are compared with other 

optimization techniques, as shown in Table 5.5. The test benchmark functions used in 

this process are [334]: 

• High Condition Elliptic Function: 

𝑓1(𝑥) = ∑ (106)
𝑖−1

𝐷−1𝐷
𝑖=1 𝑧𝑖

2 + 𝑓𝑏𝑖𝑎𝑠     (5.15) 

z = M(x – 0) and M stands for a rotational orthogonal matrix which is generated from 

standard normal distribution using Gram-Schmidt Orto-normalization. 

• Bent Cigar Function: 

𝑓2(𝑥) = 𝑧𝑖
2 + ∑ (106)𝐷

𝑖=2 𝑧𝑖
2 + 𝑓𝑏𝑖𝑎𝑠 , z = M(x-0)     (5.16) 

• Discus Function: 

𝑓3(𝑥) = (106)𝑧𝑖
2 + ∑ 𝑧𝑖

2𝐷
𝑖=2 + 𝑓𝑏𝑖𝑎𝑠 , z = M(x-o)     (5.17) 
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• Rosenbrock Function: 

𝑓4(𝑥) = 𝑧𝑖
2 + ∑ (100(𝑧𝑖

2 − 𝑧𝑖+1)
2 + (𝑧𝑖 − 1)2)𝐷−1

𝑖=1 + 𝑓𝑏𝑖𝑎𝑠   (5.18) 

Where, z = M(2.048(x-o)/100)         

• Weierstrass Function: 

𝑓5(𝑥) = ∑ (∑ max[𝑎𝑘 𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑥𝑖 + 0.5)]) − 𝐷 ∑ max[𝑎𝑘 𝑐𝑜𝑠(2𝜋𝑏𝑘. 0.5)])𝑘
𝑘=0

𝑘
𝑘=0

𝐷
𝑖=1 +

 𝑓𝑏𝑖𝑎𝑠            

 (5.19) 

a = 0.5, b = 3, k(max) = 20, z = M(0.5(x – 0)/100)    

• Rastrigin Function: 

𝑓6(𝑥) = ∑ (𝑧𝑖
2 + 10)𝐷

𝑖=1 + 𝑓𝑏𝑖𝑎𝑠 , z = M(5.12(x-o)/100)       (5.20) 

• Modified Schwefel Function: 

𝑓7(𝑥) = 418.9829 ∗ 𝐷 − ∑ 𝑔(𝑐𝑖)
𝐷
𝑖=1 + 𝑓𝑏𝑖𝑎𝑠     (5.21)  

𝑐𝑖 = 𝑧𝑖 + 4.209687462275036e+0.02, z = M(1000(x-o)/100) 

• HGBat Function: 

𝑓8(𝑥) =  |(∑ 𝑧𝑖
2𝐷

𝑖=1 )2 − (∑ 𝑧𝑖
𝐷
𝑖=1 )2|

0.5
 (0.5∑ 𝑧𝑖

2 +𝐷
𝑖=1 ∑ 𝑧𝑖

𝐷
𝑖=1 ) / D + 0.5 + 𝑓𝑏𝑖𝑎𝑠   (5.22) 

z = M(5(x – 0)/100)        

• Expanded Scaffer 𝒇𝟓 Function: 

𝑓9(𝑥) =  𝑔(𝑥1, 𝑥2) + 𝑔(𝑥2, 𝑥3) + ⋯+ 𝑔(𝑥𝐷 , 𝑥1)     (5.23) 

𝑔(𝑥, 𝑦)= 0.5 
(𝑠𝑖𝑛2(√𝑥2+𝑦2)−0.5)

(1+0.001(𝑥2+𝑦2))2
      (5.24) 

z = M(x-o) 

• Hybrid Function 1: 

 N = 3, p = [0.3, 0.3, 0.4]       (5.25) 

g1 : Modified Schwefel’s Function 𝑓7(𝑥) 

g2 : Rastrigin’s Function 𝑓6(𝑥) 

g3: High Conditioned Elliptic Function 𝑓1(𝑥) 

• Hybrid Function 2: 

N = 3, p = [0.3, 0.3, 0.4]       (5.26) 

g1 : Bent Cigar Function 𝑓2(𝑥) 

g2 : HGBat Function 𝑓8(𝑥) 

g3 : Rastrigin’s Function 𝑓6(𝑥) 

  Furthermore, TLBO and iTLBO algorithms are used to handle the above 

mentioned benchmark functions. In the process, different parameters were taken into 
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consideration. Note that initial number of students for experiment is to be taken as 50. 

Maximum number of function evaluations is D*104, where D is problem dimensions. 

For the above mentioned CEC functions, we use D = 30. Moreover, MATLAB scripts 

are used for programming. TLBO & iTLBO are implemented by applying above 

mentioned settings. The same settings of parameters are used in [335], where a 

considerable good survey of above mentioned setting on CEC benchmark functions is 

available. For comparison analysis, results of other optimization algorithms are taken 

from [335]. All algorithms are run for 30 times on each CEC test function 

independently. The mean value of these 30 independent solutions is shown in Table 

5.5.  

Table 5.5: Mean solution comparison of iTLBO algorithm with optimization algorithms 

available in literature after implementing on CEC benchmark functions 

Functions PSO BAT DE TLBO iTLBO 

𝑓1(𝑥) 2.44e + 06 3.05e + 08 2.84e + 07 2.75e + 05 1.89e + 06 

𝑓2(𝑥) 3.10e + 06 3.12e + 01 1.79e + 01 8.15e – 01 0.88e + 00 

𝑓3(𝑥) 5.81e + 02 1.08e + 05 2.21e + 02 4.33e + 04 1.00e + 03 

𝑓4(𝑥) 1.10e + 02 3.29e + 03 1.07e + 02 6.64e + 01 1.92e + 01 

𝑓5(𝑥) 6.79e + 00 4.63e + 01 2.17e + 01 1.53e + 01 5.02e + 01 

𝑓6(𝑥) 5.80e + 01 1.76e + 02 3.26e – 01 6.82e + 01 7.90e – 08  

𝑓7(𝑥) 6.38e + 01 2.15e + 02 1.21e + 02 7.31e + 01 3.66e + 01 

𝑓8(𝑥) 6.35e – 01 2.78e + 00 9.28e – 01 2.46e + 00 1.55e - 01 

𝑓9(𝑥) 2.54e + 00 1.06e + 02 3.24e – 01 2.53e - 01 1.74e - 01 

Hybrid 1 3.45e + 05 4.87e + 06 1.48e + 06 1.19e + 05 2.40e + 03 

Hybrid 2 2.96e + 03 3.10e + 03 1.13e + 04 2.58e + 03 5.33e + 02 

 

5.4    Describing function and control scheme implementation 

  A methodology referred to as an extended adaptation of the frequency response 

describing function is employed to predict, examine, and assess the nonlinear dynamics 

of a system, generating a limit cycle. Specifically applied to two-degree-of-freedom 

systems, the describing function is developed through simulation using MATLAB 

scripts. Its primary objective is to establish the correlation between the ideal voltage 

and the input motor voltage post-transmission through the DAQ board and amplifier. 

The 2DOF system model, incorporating the describing function via MATLAB scripts, 

utilizes a numerical integration method. The simulation model's graphs, obtained 

through MATLAB, offer a more comprehensive understanding of stability analysis 

calculations. To achieve this, step response analysis of 2DOF systems is conducted. 

The controller employed in this configuration is a PID controller, optimized using the 

improved algorithm (iTLBO) and implemented in a closed-loop control system fashion. 

The step information characteristics of the system developed i.e., peak undershoot (𝛾1), 
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peak overshoot (𝛾2), settling time (𝛾3) and rise time (𝛾4) are calculated using Simulink 

model. In order to attain stable output for step response, The experimental values 

derived from graphs representing the aforementioned four characteristics of the 

nonlinear model should be minimized as much as possible. Hence, to generate the 

describing function used in the proposed minimization process, a combination of code 

and Simulink is processed to calculate the describing function J(x) used in this process 

as: 

J(x) = min[min(𝛾1) + min(𝛾2) + min(𝛾3) + min(𝛾4)]     (5.27) 

  First step is to calculation of error signal i.e. e(s) of closed loop control block 

diagram of 2DoF systems, which may be written as: 

 e(s) = 𝑅𝑑(s) – R(s)      (5.28) 

  where, 𝑅𝑑(𝑠) is the desired set point and R(𝑠) is the output in the form of self-

control and self-balancing of balancer plate. PID controller is implemented after going 

through the optimization process using iTLBO, on this error signal. In frequency 

domain of 2DOF system, optimized PID controller is implemented where 𝑘𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 
𝑘𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and  𝑘𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are initial derivative, initial integral and initial proportional gains 

used to control the servo angle, pitch angle and yaw angle of 2DoF systems, for which 

the initial operating points are given as: 

 𝛽𝑑(𝑠) = (𝑘𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 𝑠 +
𝑘𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠
 + 𝑘𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) [𝑅𝑑(s) –  R(s)]       (5.29) 

  The Ziegler-Nichols (ZN) tuning method is initially employed to calculate the 

initial parameters, and subsequently, the controller gains are determined in each 

iteration of the iTLBO algorithm, as detailed in the preceding chapters of this thesis. 

This is then succeeded by the computation of describing function values according to 

equation number (5.27). The optimization of PID gain values is pursued through the 

following steps, meticulously monitored within each iteration of the iTLBO algorithm 

using a MATLAB script: 

i.  Three constrained parameters of the considered problem as 𝑘𝑑, 𝑘𝑖 and  𝑘𝑝 are 

defined along with their upper and lower bound. 

ii.   Size of maximum iteration and Number of learners are defined.  

iii.    The Teaching Phase starts where mean of each subject is calculated and teacher is 

identified.  

iv.   Mean of each subject is updated and new teacher is identified by solving the 

equations in this sequence – eq. (5.2), (4.21), (5.3) and (4.23).  

v.    Describing function is used to check the new solution using updated value through 

eq. (5.27).  

vi.   In the teaching phase, randomly select two learners and compare them as given in 

eq. (5.8). 

vii.   Follow eq. (5.9) and (5.10) to update the new solution, when one learner is better 

than other.  
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viii.   Use describing function to validate the new solution through eq. (4.23) and accept 

it if it is found better. 

ix.   For the next iteration a new fitness value will be considered.  

x.    Current iteration terminates. 

xi.   Identification of teacher and the mean of learners gets updated after each iteration. 

Continuously use eq. (4.23) to calculate value of three dimensions defined in first 

step. 

xii.   Repeat Steps (iii) to (x) until the limit of maximum iterations is reached. 

xiii.    Final iteration will give the optimized value of three constrained parameters which 

is the optimized gain value of PID controller. 

xiv.   Optimized gain value of 𝑘𝑑 , 𝑘𝑖 and  𝑘𝑝 is then used as the constrained parameters 

for PID controller which is to be implemented on 2DoF systems in further 

subsections. 

 

5.5    iTLBO based control of 2DoF ball balancer system 

The 2DoF ball balancer system is working with dead zone nonlinearity in simulation 

model on MATLAB platform. Here, actuator dynamics are fed to dead zone 

nonlinearity of model to generate describing function gain.  The simulation model of 

ball balancer is modified as shown in figure 5.2 and all the fourteen steps mentioned in 

earlier subsection are followed. The results obtained in the process, are then compared 

with the existing results. After comparing it is clear that the time response parameters 

of the ball balancer model are improved, which shows the excellence of iTLBO method 

on 2DOF ball balancer system.  

 
Fig. 5.2 Complete block diagram to represent the angle and position control of a 2DOF ball 

balancer system using iTLBO optimization method while tuning a PID controller 
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5.5.1 Numerical Simulation 

  The improved parameters are mentioned separately in table 5.6 further. The 

graphical results obtained after this implementation are shown in figure 5.3 & figure 

5.4. Figure 5.3 shows the variations of x-axis obtained after implementing PID 

controller on the simulation model of 2DOF ball balancer system, whereas figure 5.4 

shows the variations of same axis obtained after implementing iTLBO method on the 

modified simulation model, as shown already in figure 5.2.  

 

Fig. 5.3 Simulation response of (a) x-axis of ball balancer system after using the PID 

controller (b) servo angle variations (c) voltage experienced by servo motor. 

 

Fig. 5.4 Simulation response of  (a) x-axis of ball balancer system after using iTLBO 

optimized PID controller approach (b) servo angle variations (c) voltage experienced by servo 

motor 

  The parameters like peak overshoot, settling time and peak time are improved 

considerably. The calculations are done after taking the square reference having 

amplitude of 3 units. The blue line is showing the reference signal and the pink line is 

showing the output obtained after using the implemented control action. Two different 

control actions are used, first one is the PID and second one is the proposed iTLBO 

approach. The peak overshoot is improved from 22.9% to 11.11%, the settling time is 

improved from 2.76 sec to 1.95 sec and the peak time is improved from 2.4 sec to 1.32 

sec. One more important parameter of time response analysis is steady state error. In 

this case, it refers to the time taken by the system in achieving stability of ball over the 

balancer plate. This is a highly variable factor in case of balancing type problems. In 

simulation, it can be calculated in terms of distance (as unit) and by observing the 

graphs obtained on the simulation model it is found that the steady state error is 

improved from 1.15 cm to 0.33 cm, which is again very desirable when it comes to 

controlling a nonlinear system. The servo angle range 6.08 to -12.16 degree by using 

PID controller, as shown in figure 5.3(b). Whereas the improved range in proposed 

approach is 4.4 to -8.85 degree, shown in figure 5.4(b). Which proves the stability of 

servo angle is improved. The voltage range experienced by this servo motor using PID 

controller is 1.45 to -2.9 volts, shown in figure 5.3(c). This is also improved using 
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proposed approach and turned out to be 1.05 to -2.1 volt, as shown in figure 5.4(c).  The 

root mean square error (RMSE) is also improved in the process, as shown by table 5.6. 

These calculations are clearly proving the superiority of the proposed approach over 

the PID controller being used by the researchers. 

Table 5.6: Time response parameters and RMSE value 

Controller 𝑡𝑠 (sec) 𝑡𝑝 (sec) 𝑀𝑝 (%) 𝑒𝑠𝑠 (cm) RMSE 

Position         Angle 

PID 2.76 2.40 22.90 1.15 5.1894 3.4049 

iTLBO 1.95 1.32 11.11 0.33 3.4280 2.5167 

 

5.5.2 Real-time Experiment  

This controlling action is achieved by using different controlling approaches. 

Initially, PID controller is employed to the nonlinear model then using the improved 

teaching learning based optimization method, gain values are further tuned in order to 

have the stable steady state operation. The stability is proved already by using time 

response analysis. PID controller and proposed iTLBO-PID control scheme are 

implemented on 2DoF ball balancer. The error signal [e(s)] is reduced to minimum 

and the desired balanced angle and ball position is achieved. The obtained results are 

further compared with the classical PID controller on the same simulation model using 

MATLAB/Simulink.  

 
Fig. 5.5 Real time responses of (a) ball position on x-axis (b) servo angle (c) input voltage 

experienced by servo motor of ball balancer system using PID controller 

 

 
Fig. 5.6 Improved real time responses of (a) ball position on x-axis (b) servo angle (c) input 

voltage experienced by servo motor of ball balancer system using proposed iTLBO-PID 

controller 
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Real-time results indicate that the primary cause of steady-state error in PID 

was its significant peak overshoot, which is minimized in iTLBO. This reduction 

contributes to improved settling time, peak time, and reduced root mean square error, 

as demonstrated in Table 5.6. The performance of proposed iTLBO controller in terms 

of real time ball position, servo angle and experimental voltage is shown by graphs, as 

shown in Figure 5.5 & 5.6. In these graphs, variation of servo angles, ball position and 

voltage is documented over a period of time. It is observed that proposed iTLBO 

provides stabilized operation for 2DOF ball balancer system by balancing the ball on 

square plate with nearly zero oscillations visible on the position graph, as shown in 

fig. 5.5(a) & fig. 5.6(a). The response is recorded with square reference signal using 

different controllers. Fig. 5.5(b) and 5.6(b) proves the superiority of iTLBO control 

approach over PID control approach, as the stability angle is varying between –21 to 

22 degrees in PID control technique but it is improved in iTLBO technique to –12 to 

12 degrees. This signifies that the proposed approach is capable to provide smooth 

operation during real time working of 2DOF ball balancer model. Furthermore, in Fig. 

5.5(c) & Fig. 5.6(c), the voltage action is defined to stabilize the plate angle in order 

to have a balanced ball on square plate. 

5.6      iTLBO based control of 2DoF helicopter system 

To implement improved teaching learning based optimization (iTLBO) algorithm while 

tuning the constraint parameters of proportional-integral-derivative controller of a 

2DoF helicopter system, a similar approach is used as it was used to tune the controller 

parameters of 2DoF ball balancer system. MATLAB SIMULINK platform is used and 

the blocks are arranged as shown in figure 5.7.  

 
Fig. 5.7 Block diagram representing iTLBO based tuning of PID controller of a 2DOF 

helicopter 

5.6.1 Convergence analysis  

  Two different PID controllers are used to handle the flight trajectories of 2DoF 

helicopter system. The controller is imposed on error signal which is calculated as:  

  e(s) = 𝑅𝑑(s) – R(s)       (5.30) 

where, 𝑅𝑑(𝑠) is the desired set point and R(𝑠) is the output in the form of pitch 

and yaw angle of helicopter model. The controller block G(s) is represented for PID 
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controller. PID controller is implemented while going through the optimization 

process using LQR method, TLBO and iTLBO optimization technique on error signal. 

The output R(s), error signals e(s) and set point 𝑅𝑑(𝑠) are calculated separately for 

both the axis i.e. pitch-axis and Yaw-axis for the helicopter Simulink model. 

                  
            (a)                                                                                                                 (b) 

 
(c) 

Fig.5.8 Absolute Error vs Time graph obtained by (a) LQR controller [322] (b) TLBO 

algorithm [63] (c) iTLBO algorithm 

Convergence of absolute error graph is obtained using eq. (5.30) by applying 

three different controlling techniques i.e. LQR, TLBO & proposed iTLBO. Using 

simulation shown in figure 5.7, signal e(s) is sent to workspace of MATLAB code and 

then error value is traced using three different controlling techniques. Figure 5.8 shows 

the path followed by error shown by pitch response of helicopter system when 

controlled using three controlling approaches i.e. LQR, TLBO & proposed iTLBO. As 

seen clearly in Fig. 5.8, the error is converged to nearly zero after 7.8 seconds while 

using LQR controller, got conversed after 4.1 seconds when TLBO optimization 

method is used and got conversed to nearly zero after 2.9 seconds when iTLBO 

optimization method is used on the pitch response of helicopter 

5.6.2 Numerical Simulation 

The impact of proposed algorithm is further discussed in Table 5.7 & 5.8, in 

which the response parameters i.e. settling time, peak time and peak overshoot 

obtained from the MATLAB/Simulation results along with the real time results of the 

helicopter system are shown further in Figure 5.9 and Figure 5.10. It is observed that 
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peak overshoot of LQR is high which causes huge oscillations and made it difficult to 

handle the external disturbances. Afterwards, by implementing TLBO, peak overshoot 

is reduced but the external disturbance is still an issue, which creates the need of 

improved controller. The results of iTLBO-PID controller, shows that not only the 

peak overshoot is reduced but the oscillations due to external disturbance is also 

reduced to almost zero and excellent balance of both yaw propeller and pitch propeller 

is achieved using the proposed method. 

Table 5.7: Time response parameters obtained for pitch axis for various controllers during 

simulation 

 

Method 

Pitch Response 

 𝑡𝑠 (sec)  𝑡𝑝 

(sec) 

𝑀𝑝 (%) 

LQR [322] 4.72 2.8 8.99 

TLBO-PID 3.99 1.2 4.18 

iTLBO-PID 2.83 1.0 0.92 

 
Table 5.8: Time response parameters obtained for yaw axis for various controllers during 

simulation 

 

Method 

Yaw Response 

 𝑡𝑠 (sec)  𝑡𝑝 

(sec) 

𝑀𝑝 (%) 

LQR [322] 5.12 2.1 18.3 

TLBO-PID 4.01 0.95 8.19 

iTLBO-PID 2.67 0.79 6.23 

5.6.3 Real-time Experiment  

The performance of proposed controller in terms of improved pitch angle (θ) 

and yaw angle (Ψ), under the presence of external disturbance (which is created using 

two Fans) is assessed by the graphs in which variation of these angles is recorded over 

the time. While placing the fans at different locations near the body of helicopter 

model, it is observed that orientation of pitch axis changes depending upon the 

locations of the fans but the pitch and yaw angles gets similar error irrespective of the 

location of the fans. This is due to the fact that the two propellers of the helicopter 

model are connected with a fixed base. Hence, only pitch and yaw angles are sensitive 

to the external disturbances. Further, pitch and yaw trajectories traced using the 

proposed approach under the influence of external disturbance is compared with other 

controller’s response under the same external disturbance in Fig. 5.9 and Fig. 5.10.  

The response is recorded with square reference signal using different 

controllers. Fig. 5.9(a) and 5.10(a) shows the trajectory of pitch axis and yaw axis 

respectively, obtained by using the default LQR controller. Fig. 5.9(b) and 5.10(b) 
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shows the trajectory of pitch axis and yaw axis respectively, obtained by using the 

TLBO optimization method on PID controller. Fig. 5.9(c) and 5.10(c) shows the 

trajectory of pitch axis and yaw axis respectively, obtained by using the iTLBO 

controller. The depiction clearly shows that the proposed iTLBO using PID, eliminates 

the disturbance to almost zero, in real time while improving the working of the 

helicopter system on MATLAB/ Simulation platform. 

 
        (a)                                                                                                 (b) 

 
(c) 

Fig. 5.9  Pitch angle trajectory with the square reference signal during external disturbance (a) default 

Quanser [322] LQR controller (b) TLBO  algorithm (c) proposed iTLBO algorithm

 
                     (a)                                                       (b)                                                                 (c) 

Fig. 5.10  Yaw angle trajectory with the square reference signal during external disturbance using (a) 

default Quanser [322] LQR controller (b) TLBO algorithm (c) iTLBO algorithm 
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5.7    Conclusion 

In this chapter, improved teaching learning based optimization (iTLBO) 

algorithm is developed. Two applications of which are demonstrated as – servo angle 

of two degree of freedom ball balancer system are controlled under the dead zone 

linearity and pitch axis & yaw axis trajectories of a two degree of freedom helicopter 

system are controlled under the presence of external disturbance by using iTLBO 

algorithm on these 2DoF systems. In the process, tuning of gain parameters of 

proportional integral derivative (PID) controller is performed. Comparing to other 

optimization techniques, the performance of iTLBO is more satisfactory on the linear 

and nonlinear benchmark functions. The performance of iTLBO is validated using 

CEC functions. The results obtained after experimental analysis of helicopter system 

proved that the developed approach turned out to be superior in eliminating the 

external disturbance. All the results are validated on simulation platform and gives 

noteworthy performance within the framework of traditional controller structure. 

Results obtained are authorized using time response analysis on the 

MATLAB/Simulation platform. To achieve these results, the describing function is 

derived using time response parameters only. The proposed controller is proved 

adaptable and adequate which gives satisfactory performance on helicopter system 

when tested under the presence of external air disturbance in the laboratory. Proposed 

iTLBO does not require any algorithmic specific parameters and eliminates 

randomness from TLBO algorithm, as the result control action is more reliable and 

achieves remarkable performance while handling yaw axis and pitch axis of helicopter 

system and maintaining the desired ball position by controlling the servo angle of plate 

of ball balancer system.  

While performing the tuning process, initial parameters are self-employed 

which are either calculated using traditional method, as discussed in modelling of ball 

balancer controller, or the use of ZN tuning method is done, as done in handling the 

initial controller constraints of pitch and yaw axis of helicopter. All these methods 

involves the required of initial manual input for optimization process. This problem is 

handled using Fuzzy Inference System as the initial constraint generator for PID 

controller. This is done while implementing the Fuzzy-PID controller on these 2DoF 

systems, while using the iTLBO optimization algorithm in further chapter of this 

thesis. This will further help the system to show robust performance and to be more 

susceptible to withstand disturbances. 
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Chapter 6. Hybrid intelligent-classical control for 2DoF 

systems 

 
6.1 Limitations of classical control strategy and need of hybrid 

controller 

PID controllers, renowned for their simplicity and efficacy, are extensively 

utilized in control systems. Traditional proportional-integral-derivative (PID) 

controllers remain the predominant choice across industries for diverse control tasks, 

owing to their straightforward design, simplicity, and cost-effectiveness in 

deployment. Nonetheless, standard PID controllers often fall short in effectively 

regulating systems characterized by added intricacies like time delays, pronounced 

oscillations (stemming from complex poles with minimal damping), fluctuations in 

parameters, nonlinear behaviours, and the presence of Multi Input and Multi Output 

(MIMO) configurations. These limitations have prompted the development of new and 

advanced tuning methods including Fuzzy Logic, Adaptive Control, Internal Model 

Control etc. These methods aim to improve the capability and performance of 

traditional PID controllers while enhancing the flexibility inherent in conventional PID 

control. Though numerous problems related to PID controller are tackled in control 

system using intelligent optimization algorithms, like the one used in earlier chapter 

of this thesis, still there is one limitations which lacks improved real time results on 

MIMO systems. This problem is the generation of initial constraints of PID controller 

while formulating the optimization algorithms. This problem may be addressed using 

a cascaded intelligent-classical controller i.e. Fuzzy-PID controller, as PID controllers 

have certain limitations comparing with fuzzy PID controllers: 

➢ Challenges with Nonlinear Systems: PID controllers are crafted based on linear 

system paradigms, rendering them less adept at managing systems imbued with 

substantial nonlinearities. In contrast, fuzzy PID controllers excel in this 

domain due to their capability to approximate nonlinear relationships utilizing 

fuzzy logic. 

➢ Complexity in Tuning: Achieving optimal performance through tuning poses 

a daunting task for PID controllers, particularly in intricate or dynamically 

evolving systems. Fuzzy PID controllers present greater tuning flexibility by 

integrating expert knowledge and linguistic variables, thereby streamlining the 

tuning process. 

➢ Robustness: PID controllers may weaken in maintaining robustness when 

confronted with uncertainties and disruptions within the system. Conversely, 

fuzzy PID controllers bolster robustness by incorporating adaptable fuzzy logic 

rules tailored to varying operational conditions. 

➢ Management of Complex Systems: PID controllers may prove inadequate in 

orchestrating control performance for systems characterized by intricate 

dynamics or interconnected variables. Fuzzy PID controllers excel in handling 

such complexity by flexibly capturing variable relationships in an adaptive 

manner. 

➢ Integration of Expert Knowledge: In scenarios where expert insight plays a 

pivotal role in control strategy formulation, fuzzy PID controllers offer a 
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distinct advantage. They facilitate the integration of qualitative expert 

knowledge via linguistic variables and fuzzy rules, thereby enhancing control 

effectiveness. 

➢ Adaptability: Unlike PID controllers, which maintain fixed parameters post-

tuning, fuzzy PID controllers exhibit adaptability by adjusting control 

strategies based on real-time feedback. This feature renders them better suited 

for systems with fluctuating dynamics or uncertainties. 

In summary, while PID controllers are revered for their simplicity and 

effectiveness in control systems, fuzzy PID controllers provide notable advantages in 

managing complex systems, incorporating expert knowledge, and ensuring robustness 

amidst uncertainties and disturbances. One fuzzy-PID (FPID) controller is used to 

optimize the controller action of 2DoF systems, which is further discussed in this 

chapter. 

6.2    Optimized FPID control mechanism 

As discussed above, a fuzzy PID controllers offer significant advantages due 

to their inherent structure. By employing analytical formulas within the fuzzy control 

law, designers can seamlessly integrate these controllers into real-time systems, such 

as 2DoF system, without encountering computational burdens, thanks to minimal 

computational delays. This makes them particularly well-suited for rapid processes. 

Additionally, their self-tuning capabilities render them suitable for handling non-

stationary processes. The growing acceptance of fuzzy PID controllers in various 

industrial sectors underscores their efficacy. In exploring analytical formula-based 

fuzzy PID controllers, a preference for triangular membership functions is indicated 

due to their computational convenience across diverse input combinations. 

Nonetheless, alternative membership functions remain open for exploration, as the one 

we used in this work i.e. Gaussian membership function. Moreover, enhancing the 

granularity of fuzzy sets for input and output variables can improve accuracy and 

facilitate more precise corrective actions. Additionally, employing optimization 

techniques enables optimal tuning of controller gains. This portion is explored deeply 

in current chapter. 

 
Fig. 6.1 Hybrid Fuzzy+Proportional+Integral+Derivative (FPID) control mechanism 

The proposed control action employs a hybrid approach, as illustrated in Figure 

6.1. Here, 'e' represents the error signal, while '𝑒𝑑 ' represents its derivative, aiding in 

understanding the rate of change of the error in the control process. These signals are 

quantized and utilized as subsets in fuzzy rule sets. A fuzzy logic-based rule system 

generates fuzzy inferences, which are then responsible for establishing three distinct 

constraints post-de-fuzzification. The output is initially obtained in fuzzy subset 
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domain, but scaling factors are applied to obtain results in the basic domain. These 

results are processed through an S-function in MATLAB programming, which 

integrates them into an algorithm aimed at satisfying a predefined cost function. An 

improved version of the teaching-learning-based optimization method is implemented 

accordingly. This iterative process continues until the predefined cost function yields 

minimized error, resulting in stability of required axis of 2DoF nonlinear systems. 

Seven distinct sets of linguistic values are applied to input and output fuzzy 

subsets, namely Big Positive, Big Negative, Medium Positive, Medium Negative, Low 

Positive, Low Negative, and Zero. A total of 49 fuzzy rules are formulated using these 

seven sets, as delineated in Table 6.1. These rules are constructed utilizing IF-THEN 

logic rules, employing Gaussian-shaped membership functions, as depicted in Figure 

6.2. This method leverages a knowledge base akin to human thinking, serving as the 

essence of fuzzy logic control action. The degrees of membership functions range from 

0 to 1, with 0 representing complete inconsistency and 1 indicating total consistency. 

In these logical operations, the error signal—defined as the disparity between the 

desired and actual values—is considered as the input. "Big Negative" (BN) signifies a 

large negative angle, while "Big Positive" (BP) denotes significant positive angles. 

Table 6.1: Rule set used for fuzzy logic control action 

e/𝒆𝒅 BN MN LN Z LP MP BP 

BN BN BN BN BN BN MN Z 

MN BN MN MN MN MN LN Z 

LN BN LN MN LN Z Z LP 

Z MN MN LN Z LP MP MP 

LP LN Z Z LP MP LP BP 

MP Z LP MP MP MP MP BP 

BP Z MP BP BP BP BP BP 

 

 

Fig. 6.2 Fuzzy logic membership function 

The fuzzy logic rules are designed to guide the system back to the desired angle 

trend. The coefficients of the proportional-integral-derivative (PID) controller are 

adjusted using membership functions derived from these fuzzy logic rules. By 

employing the S-function block in MATLAB, a programming function automates the 

linguistic level control strategy on a real-time model. This process furnishes empirical 

insights to fine-tune the servo angle through the fuzzy logic rules. Three distinct 
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outputs are generated, which serve as constraints in the cost function of the 

optimization algorithm within the S-function block. In this chapter, an enhanced 

version of the Teaching-Learning-Based Optimization (TLBO) algorithm, previously 

introduced in the preceding chapter, is utilized to optimize the functioning of hybrid 

FPID controller. This optimization mechanism is applied to both the 2 Degree of 

Freedom ball balancer system and the 2Degree of Freedom helicopter system to ensure 

precise balancing and positioning of the servo angle axis as well as the pitch & yaw 

axis. 

6.3   Hybrid FPID based control of 2DoF ball balancer system 

The proposed control optimized method operates with iTLBO algorithm. Initially, 

fuzzy rule logic is utilized in the first loop, where the response is obtained as 

constrained parameters. These parameters serve as constraints for the second loop's 

PID control action. In this subsequent loop, an improved version of the TLBO 

algorithm is applied to minimize the error on the balancing plate. One loop manages 

the SRV02, while the other handles the feedback operation in a one-dimensional ball 

balancer system. A detailed depiction of this approach is presented in Figure 6.3. The 

error detected in the closed-loop feedback system, along with its derivative, is given 

to the controller, effectively utilizing it as input to the fuzzy rule-based controller. The 

output of this controller yields three variable constraints, which are then optimized 

using an updated TLBO algorithm. This entire process is elaborated extensively in this 

section. Following the implementation of this approach, stable real-time balancing of 

the rectangular plate is achieved. 

 
Fig. 6.3 Control mechanism to handle the balancing of 2DoF ball balancer system 

6.3.1 Simulated results and comparison  

The graphical and mathematical outcomes resulting from the implementation 

of the proposed approach on this model within a simulation platform are compared 

with those yielded by the default controller. Consequently, the superiority of the 

proposed algorithm becomes evident. Table 6.2 enumerates the parameters discussed. 

These parameters, as defined in section 3 are peak time (𝑇𝑝), settling time (𝑇𝑠), peak 

overshoot (𝑀𝑝) and steady state error (𝑒𝑠𝑠). The proposed approach implemented on 

the simulation platform evidently enhances factors contributing to disturbance and 

instability. In the positioning and balancing of ball over the rectangular plate in this 

two degree of freedom (2DoF) nonlinear ball balancer system. In addition to 

evaluating the cost function parameters, both the proposed and default approaches also 
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compute the root mean square error (RMSE). Remarkably, the RMSE is enhanced 

through the utilization of state-of-the-art methods. This underscores the superiority of 

the proposed methodology over existing approaches, as illustrated in Table 6.3. 

Table 6.2: Time response parameters 

 

Controller 

 𝑇𝑝 (sec)  𝑇𝑠 (sec) 𝑀𝑝 (%) 𝑒𝑠𝑠 (cm) 

PID 2.40 2.76 22.90 1.15 

FPID-iTLBO 1.11 1.77 9.9 0.21 

 
Table 6.3: Root Mean Square Error 

controller                         RMSE 

Position(cm)            Angle (Ɵ) 

PID  5.1894 3.4049 

FPID-iTLBO 3.4280 2.5167 

The graphical representations are depicted in Fig. 6.4 and Fig. 6.5. In Fig. 6.4, 

the variations in the plate servo angle for the x-axis of the balancer model are displayed 

when employing a default PID controller. Conversely, Fig. 6.5 displays the variations 

in the plate servo angle for the same x-axis of the balancer model, this time utilizing 

an F-PID controller optimized with the iTLBO.  

 
Fig. 6.4 Simulation response of variations experienced by x-axis and servo angle deflection 

of ball balancer system using the PID controller 

 

 
Fig. 6.5 Simulation response of variations experienced by x-axis and servo angle deflection 

of ball balancer system using proposed approach 
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Both figures are generated using simulation on the MATLAB platform. 

Through this implementation, notable improvements are observed in the time response 

parameters, namely peak time, settling time, peak overshoot and steady-state error. 

The simulation results utilize a square reference trajectory, represented by the blue 

lines in both figures. The variations in the plate servo angle are denoted by the pink 

line. Specifically, the rise time is enhanced from 2.4 seconds to 1.11 seconds, settling 

time from 2.76 seconds to 1.77 seconds, peak overshoot from 22.9% to 9.9%, and 

steady-state error from 1.15 cm to 0.21 cm. These compelling mathematical and 

graphical findings serve to validate the efficacy of the implemented control 

mechanism. Furthermore, these results are compared with classical technique while 

working on real time simulator also in the upcoming subsections of this work herein. 

The ball position error and real time servo angle error are checked in the process. This 

performance is supported using integral time absolute error, as the improved ITAE is 

achieved and the same is shown using Table 6.4 and figure 6.6. 

  

 

Fig. 6.6 Integral time absolute error observed while using the PID controller and proposed 

hybrid FPID-iTLBO controller 

Table 6.4: Integral time absolute error values 

Controller Position error Angle error 

PID  4.05 cm 2.05 degree 

FPID-iTLBO 2.33 cm 1.11 degree 

 

6.3.2 Real-time results 

To validate enhanced stability, a comprehensive time response analysis has 

been conducted. The proposed tuning methodology demonstrates the ability to achieve 

stable balancing and self-positioning for the hardware model. Through this approach, 

the minimization of the error signal is achieved, thereby enhancing the system's 

reliability. Furthermore, the position and angle errors are computed utilizing the 

proposed approach, employing techniques such as Root Mean Square Error (RMSE) 

and Integral of Time multiplied by Absolute Error (ITAE). The outcomes of this 

analysis are compared with those obtained from the classical PID control approach, 

0

1

2

3

4

5

position error
(cm)

angle error
(deg.)

ITAE

PID proposed



92 
 

revealing reduced error rates when employing the proposed controller action during 

real-time operation. Real-time graphs generated using PID controller and FPID-

iTLBO controller are plotted on MATLAB platform.  Fuzzy logic enables a flexible 

and intuitive approach to managing uncertainty in position by representing linguistic 

variables and rules, allowing the controller to effectively adapt to different position 

feedback.

  
Fig. 6.7  Response of PID 

controller during real time experiment 

showing (a) ball position (b) servo angle 

(c) input voltage signal received by servo 

motor

 

 
Fig. 6.8  Response of FPID-

iTLBO control mechanism during real 

time experiment showing (a) ball position 

(b) servo angle (c) input voltage signal 

received by servo motor
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In contrast, the PID control mechanism ensures stability and resilience by 

continuously adjusting control signals based on error, thereby ensuring precise and 

timely responses to disturbances. Graphs track the ball position during real-time 

operation, as illustrated in Figure 6.7 (a) and Figure 6.8 (a). Figure 6.7 corresponds to 

the operation with the default PID controller, while Figure 6.8 corresponds to operation 

with the proposed tuning approach of the F-PID controller. Additionally, variations in 

the plate angle (in degrees) via the servo motor are depicted in Figure 6.7 (b) and 

Figure 6.8 (b). Furthermore, fluctuations in the voltage signal are observed and 

graphed in Figure 6.7 (c) and Figure 6.8 (c).  

Both scenarios utilize a square reference trajectory. Comparing Figure 6.7(a) 

and Figure 6.8(a), it is evident that the ball experiences significantly fewer oscillations, 

contributing to improved stability. Similarly, a comparison between Figure 6.7(b) and 

Figure 6.8(b) reveals a reduction in the variance of the servo angle of the plate, from 

(-21 to 22) degrees to (-11 to 11) degrees. This underscores the effectiveness of the 

proposed tuning method, as it demonstrates the capability to minimize fluctuations in 

the servo angle. Furthermore, figure 6.7(c) and Figure 6.8(c) illustrate the variations 

observed in motor voltage during real-time operations, attributable to consistent 

feedback signals. 

6.4 Hybrid FPID based control of 2DoF helicopter system 

This control technique commences by employing an initial fuzzy logic rule 

base, with its output subsequently directed to the PID controller as constraints. 

Following this, the iTLBO method is employed as an optimization technique to reduce 

error. The schematic depiction of this control method is shown in Fig. 6.9. Here, the 

error signal and its derivative are input to the fuzzy logic controller, which generates 

proportional, derivative, and integral constants as output. These constants, combined 

with the iterative process of the iTLBO algorithm, are then utilized as input for the 

PID controller. This iterative operation of algorithm along with the FPID controller 

action is discussed already in earlier subsection of this thesis. Consequently, using this 

optimization and controlling strategy, the system attains a stable waveform for both 

yaw and pitch angles. 

 

Fig. 6.9 Controller mechanism used to handle pitch and yaw angles of 2DoF helicopter 

system 
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Formation of cost function for this problem: 

The MATLAB script is employed to formulate the cost function for a nonlinear 

helicopter system, utilizing higher-order transfer function properties in the time 

domain. The ABCD matrices are applied to construct a second-order transfer function 

model using the RGA technique proposed by E. Bristol [325]. The resultant transfer 

function serves as the plant model in conjunction with a fuzzy PID controller, as 

depicted in Fig. 6.9. The time domain attributes of the developed system are utilized 

as benchmarks for the current problem's cost function. MATLAB script calculates 

these attributes, including rise time (𝜏1), settling time (𝜏2), peak overshoot (𝜏3) and 

peak undershoot (𝜏4). For optimal trajectory determination of the nonlinear helicopter 

model, the experimental values for these characteristics must be minimized during 

simulation on the MATLAB platform. A dependable blend of Simulink and coding is 

employed in the development of the cost function for the nonlinear helicopter model, 

presented as follows: 

C(x) = [min(𝜏1) + min(𝜏2) + min(𝜏3) + min(𝜏4)]   (6.1) 

6.4.1 Convergence analysis 

Absolute error is taken for the convergence discussion in the subsection of 

thesis. The absolute error is shown in fig. 6.9 and discussed in following equation as: 

Absolute Error [e(s)] = Desired angle – actual angle    (6.2) 

Reference angle provided in the simulation model is termed as the desired 

angle, while the angle output from the plant is termed as the actual angle. Both these 

angles are depicted in figure 6.9. Absolute error is computed for both pitch and yaw 

axes. The pitch angle absolute error and yaw angle absolute error are determined 

through simulations conducted on the MATLAB platform. Absolute error calculations 

are performed twice for each axis: first, with the default controller and second, after 

applying the proposed controller. The signal e(s) depicted in Figure 6.9 is transferred 

to the workspace and plotted on graphs. Figure 6.10 illustrates four distinct 

convergence graphs depicting the absolute error convergence observed during real-

time simulations of a 2DoF helicopter system.  

In Figure 10(a), the absolute pitch error of the helicopter before the application 

of the fuzzy-PID controller, based on the iTLBO algorithm, is plotted. It is evident that 

the error converges to nearly zero after 7.8 seconds. Conversely, in figure 10(b), the 

graph represents the absolute pitch error after applying the proposed controller, 

demonstrating superior efficiency as the error converges to nearly zero after 2.7 

seconds. This underscores the dominance of the proposed controller in managing the 

pitch axis of the nonlinear helicopter model.  

Additionally, figure 10(c) displays the absolute yaw error of the helicopter 

before the application of the fuzzy-PID controller, where the error fluctuates near zero 

but fails to converge even after 10 seconds. However, in figure 10(d), the convergence 

graph of the absolute yaw error after applying the proposed fuzzy-PID controller based 

on the helicopter model converges to zero after 9.6 seconds. This further confirms the 

superiority of FPID-iTLBO control strategy in handling the pitch and yaw axes of the 
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2DoF helicopter model. Moreover, the proposed fuzzy-PID controller, utilizing the 

improved TLBO algorithm, yields more satisfactory and stable outcomes during the 

real-time operation of the helicopter system, effectively managing external 

disturbances and turbulence effects, as shown in next subsection of this thesis. 

 
    (a)                                                                    (b) 

 
                                                                           (c)                                                                       (d) 

Fig. 6.10 Error convergence graph of (a) pitch angle with LQR controller (b) pitch angle 

with FPID-iTLBO controller (c) yaw angle on LQR controller (d) yaw angle with FPID-

iTLBO controller 

6.4.2 Real-time results 

When subjected to turbulence, the pitch angle trajectory is plotted on a graph 

using the simulation/MATLAB platform using FPID-iTLBO controller & LQR 

controller. The responses of both controllers are captured with a square reference input 

signal. The MATLAB simulation platform graphs demonstrate that the FPID-iTLBO 

controller exhibits superior handling of the pitch trajectory, even in the presence of 

external disturbances. The comparison between the proposed controller and the default 

LQR controller for the pitch angle trajectory is depicted in Figure 6.11. In figure 

6.11(a), the real-time graph of the pitch trajectory of the nonlinear helicopter system 

displays the presence of an initial disturbance, whereas in figure 6.11(b), it is evident 

that the initial disturbance is completely eliminated after implementing the FPID-

iTLBO controller. This outcome signifies the reliability of the 2DoF helicopter 

system's operational model. 
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       (a)                                                            (b) 

Fig. 6.11 Flight trajectory of pitch angle under the external disturbance using (a) LQR 

controller and (b) FPID-iTLBO control scheme 

   
(a)        (b) 

Fig. 6.12 Flight trajectory of yaw angle under the external disturbance using (a) LQR 

controller and (b) FPID-iTLBO control scheme 

Moreover, when subjected to turbulence, the pitch angle trajectory is plotted 

on a graph using the simulation/MATLAB platform for both the controllers. The 

responses of both controllers are captured with a square reference input signal. The 

MATLAB simulation platform graphs demonstrate that the FPID-iTLBO controller 

exhibits superior handling of the pitch trajectory, even in the presence of external 

disturbances. The comparison between the FPID-iTLBO controller and the default 

LQR controller for the yaw angle trajectory is depicted in Figure 6.12. In Figure 

6.12(a), the real-time graph of the yaw trajectory of the nonlinear helicopter system 

displays the presence of an initial disturbance, whereas in Figure 6.12(b), it is evident 

that the initial disturbance is completely eliminated after implementing the FPID-

iTLBO controller.  

The simulated results of these graphs are illustrated using table 6.5. In table 

6.5, time response analysis are shown for the graphs obtained in fig. 6.11 & fig. 6.12. 

FPID-iTLBO controller have proved superiority based on settling time (𝑡𝑠), improved 
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peak time (𝑡𝑝) and better peak overshoot (𝑀𝑝), obtained after simulation on MATLAB 

platform. 

Table 6.5: Time response parameters of graphs obtained in Fig. 6.11 & Fig. 6.12 

 

Controller 

Pitch Response Yaw Response 

 𝑡𝑠 

(sec) 

 𝑡𝑝 

(sec) 

𝑀𝑝 

(%) 

 𝑡𝑠 

(sec) 

 𝑡𝑝 

(sec) 

𝑀𝑝 

(%) 

LQR 4.72 2.8 8.99 5.12 2.1 18.3 

FPID-iTLBO 2.7 0.9 0.8 3.0 0.6 4.9 

 

6.5    Conclusion 

This study focuses on two application of optimized FPID controller in first 

application, focus is on controlling the flight trajectory of a 2DoF helicopter model 

under external disturbance induced by two high-speed fans positioned near the 

helicopter's propellers and in second application, focus is on balancing and positioning 

a ball over a rectangular plate through servo angle alteration in a 2DoF ball balancer 

system. To achieve this, a two-step fuzzy-PID controller is employed and optimized 

using an improved version of the teaching-learning-based optimization algorithm. 

Two identical controllers are utilized for the pitch axis and the other for the yaw axis 

of 2DoF helicopter model and the same controller is utilized for servo angle axis 

control of 2DoF ball balancer. The fuzzy logic component takes error and derivative 

of error as inputs and generates three distinct constraints as outputs for the second step 

of the controller, namely the PID controller.  

The optimization algorithm developed in previous chapter of this thesis is used 

to adjust these constraints through iterative calculations while minimizing the error 

signal effectively. The proposed control scheme demonstrates satisfactory 

performance, as discussed comprehensively in this chapter. Furthermore, comparison 

with existing literature results are conducted. The verification and validation of the 

proposed controller's outcomes are extensively scrutinized. Verification is carried out 

using MATLAB/Simulink models, while the superiority of the proposed approach is 

validated by referencing relevant literature. This proves that the optimization 

algorithms are a good tool to provide stable results while tuning the intelligent as well 

as classical controller. This gives further scope of use of more strong and quick 

optimization technique, which may be used to optimize cascaded intelligent-classical 

controllers. Such optimization techniques may be obtained by hybridizing more than 

one optimization algorithm. 

Hybrid optimization techniques present numerous benefits in addressing 

complicated optimization problems by merging the strengths of more than one 

optimization methodologies. Through the integration of more than one algorithms, 

they effectively navigate solution spaces, resulting in improved convergence rates and 

solution quality. Such hybrid approaches capitalize on the range of algorithms 

available to tackle various surfaces of optimization challenges, including exploring 

and exploiting the search space, managing multi-modal or non-linear functions, and 
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overcoming local optima. Furthermore, they possess the capability to dynamically 

transition between different algorithms or strategies based on the characteristics of the 

problem or the progress of convergence, thus ensuring flexibility and adaptability 

across a wide array of optimization scenarios. Ultimately, hybrid optimization 

algorithms serve as versatile and efficient tools for addressing complex optimization 

tasks, offering sharp performance and scalability compared to approaches dependent 

on a single methodology. One such hybrid optimization technique is developed in next 

chapter of this thesis, which is further used to handle the balancing and positioning of 

2DoF nonlinear systems. 
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Chapter 7.  HGPCTLBO: A hybrid algorithm, based optimized 

control of 2DoF systems 

 
7.1    Idea of HGPCTLBO 

Over time, heuristic and metaheuristic techniques have gradually supplanted 

classical control methods, primarily because conventional approaches like PID and 

fuzzy logic controllers (FLCs) demand expertise in parameter tuning from the 

controller designer. Unlike classical methods, metaheuristics alleviate this 

requirement. Pairing metaheuristic optimization algorithms with Classical PID has 

shown enhanced performance compared to traditional PID alone, as discussed deeply 

in literature survey of this thesis. It's evident that various heuristic and metaheuristic 

optimization techniques have been adopted to address the challenges posed by 

nonlinear under-actuated systems over the years. Initially, classical and subsequently 

intelligent controllers were employed to create efficient environments for 

multivariable models. TLBO & GPC [49, 50] algorithms are discussed deeply in 

chapter 3 of this thesis. The TLBO algorithm is based on the interaction dynamics 

observed between a teacher and a student in a classroom environment, with each role 

serving as crucial elements of the algorithm. Metaheuristic optimization algorithms 

rely on parameters specific to each algorithm. Reducing such parameters can lead to 

decreased complexity and improved efficiency of the algorithm. The Teaching-

learning-based-optimization (TLBO) algorithm excels in such contexts. The Giza 

pyramid construction (GPC) algorithm is a recent addition to the family of 

metaheuristic algorithms, drawing inspiration from the ancient construction techniques 

used in building the great pyramids of Egypt. Over time, GPC has demonstrated 

superior performance on various fitness functions compared to other metaheuristic 

approaches documented in the literature. GPC operates on a population-based 

approach, mirroring the movement of workers along ramps to elevate stone blocks. 

Eventually, optimization algorithms assumed control scheme optimization, 

fine-tuning controller parameters to yield optimal local and global solutions. This 

evolution saw the emergence of techniques such as Cuckoo search, Krill herd, Fire-

fly, Jaya, Gray wolf, among others [336 – 340], each contributing optimal solutions as 

discussed in literature survey. The amalgamation of these theories is becoming 

increasingly popular as hybrid methods consistently outperform their original 

counterparts, yielding more reliable results. Hybrid algorithms, leveraging 

characteristics from both optimizations, are now extensively utilized to enhance the 

performance of nonlinear systems, effectively addressing convergence time delays and 

delivering efficient responses. An example of such a hybrid approach is the Hybrid 

Giza pyramid construction teaching learning based optimization (HGPCTLBO) 

algorithm, which combines the teaching phase of TLBO with the updating approach 

of GPC by integrating the best worker fitness from GPC into the TLBO algorithm's 

student/learner phase. 

A hybrid method combines the most effective elements from both original 

algorithms. HGPCTLBO adopts a productive approach inspired by both the GPC and 

TLBO algorithms. Its inspiration stems from the construction techniques employed by 
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workers in building the Giza pyramids, as well as the collaborative nature observed 

among students in a classroom setting. In this hybrid approach, workers, who are 

focused on the collective goal of placing all stone blocks at designated locations, 

initially adhere to commands from a designated authority, such as the Pharaoh, and 

subsequently follow fellow workers to reach their destination. This methodology is 

structured into two phases: the “command phase” and the “cooperate phase”, as 

depicted in Figure 7.1 using a flowchart and elaborated upon in the subsequent 

subsections. 

7.1.1 Command phase 

During the initial phase, all workers will adhere to the guidance of a designated 

agent representing the Pharaoh. This agent is a specially selected worker positioned 

optimally relative to the destination. Workers will transport stone blocks according to 

the instructions provided by the Pharaoh's agent. The manner in which workers execute 

these instructions will define the control strategy employed by the current algorithm 

during this phase.  

The workers are tasked with relocating the stone blocks and transferring them 

to the ultimate destination via a ramp with friction. This displacement process is 

defined by: 

𝑑 =
𝑣0

2

2𝑔(sin𝜃+𝜇𝑘𝑓 cos𝜃)
                                         (7.1) 

The initial positions of the blocks, along with their associated costs, are already 

determined. The workers aim to locate the most optimal position to efficiently relocate 

the stone block. The displacement of the workers is expressed as: 

            𝑥 =
𝑣0

2

2𝑔 𝑠𝑖𝑛 𝜃
                                                 (7.2) 

The derivation of equation (7.1) and equation (7.2) has been thoroughly 

explained in chapter 3 of this thesis. The updated position or solution of the algorithm 

will be determined based on the displacement of the workers and the solution or 

position of the Pharaoh's agent, as described by the following equation: 

      𝑊𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑊𝑝

⃗⃗⃗⃗  ⃗ + 𝑑)𝑥 × (𝑊𝑝
⃗⃗⃗⃗  ⃗ − 𝑊𝑖

⃗⃗⃗⃗ ) 𝜖𝑖⃗⃗       (7.3) 

Here, 𝑊𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the new position of the worker while 𝑊𝑝

⃗⃗⃗⃗  ⃗ & 𝑊𝑖
⃗⃗⃗⃗  represents 

the Pharaoh’s agent position and initial position of worker respectively. After this, 

possibility of substitution will be investigated as discussed in sub-section 3.2 and given 

here as: 

                   ζ = {
𝜓, 𝑖𝑓 𝑟𝑎𝑛𝑑[0,1] ≤  0.5
𝜑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                                   (7.4) 

At the conclusion of this stage, the workers' positions will have been adjusted 

as instructed by the representative of Pharaoh. In the subsequent phase, the workers 

will collaborate with one another. 
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7.1.2 Co-operate phase 

During this stage, workers will assist one another in reaching the ultimate goal. 

By the conclusion of the command phase, each worker will have been assigned specific 

positions, resulting in each group having a distinct solution. Some groups may possess 

a greater quantity of solutions, while others may have fewer. This distribution will 

serve as a benchmark for the cooperative phase.  

Here, a worker will look to a nearby colleague who is engaged in working on 

a different stone block. If the cost function solution of the colleague is superior to that 

of the current worker, the latter will accompany the former to advance closer to the 

final destination. This process will update the current worker's position according to 

the following equation:  

      𝑊𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑊𝑖

⃗⃗⃗⃗  + (𝑊𝑓
⃗⃗ ⃗⃗  ⃗ − 𝑊𝑖

⃗⃗⃗⃗ ) 𝜖𝑖⃗⃗       (7.5) 

𝑊𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑊𝑖

⃗⃗⃗⃗ −  (𝑊𝑓
⃗⃗ ⃗⃗  ⃗ − 𝑊𝑖

⃗⃗⃗⃗ ) 𝜖𝑖⃗⃗        (7.6) 

𝑊𝑓
⃗⃗ ⃗⃗  ⃗ and 𝑊𝑖

⃗⃗⃗⃗  represents the current position of fellow worker and current worker 

respectively.  

The choice of the fellow worker is made randomly, and the criteria for selecting 

Equation (7.5) and Equation (7.6) depend on whether the problem is of the maximizing 

or minimizing type. At the conclusion of this phase, the worker's position is adjusted 

by referencing the position of their co-worker. The worker with the best position thus 

far will then assume the role of the new Pharaoh's agent, signalling the termination of 

the algorithm for the next iteration. The appropriate pseudo code for implementing the 

aforementioned two phases is detailed in the following subsection. This entire process 

is conducted with the following assumptions in consideration: 

• The ramp is linear and possesses a smooth, level surface. 

• A single ramp is employed. 

• The inclination relative to the horizontal must not exceed 15 degrees. 

• The outcome is influenced by both the stone block and the worker's position. 

• Friction is taken into account solely for the stone blocks, not the workers. 

• The workers are interchangeable and can be relocated to different positions. 

 

7.2    Algorithm flow of Hybrid GPC-TLBO 

Step by step flow chart of HGPCTLBO algorithm is detailed in figure 7.1 and 

the pseudo code developed following the command phase and co-operate phase of 

HGPCTLBO algorithm are mentioned here: 

Step 1 Generate initial population array as number of Workers 

Step 2 Set maximum number of iterations 

Step 3 Declare ISE, IAE and ITAE as cost function using Simulink platform 

 Command Phase start: 

Step 4 For iteration 1 to maximum number of iterations do  

Step 5 For worker 1 to maximum number of workers do 
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Step 6 Calculate position of Workers (cost) by using cost function  

Step 7 Declare best worker as Pharaoh’s agent  

Step 8 Calculate displacement of stone blocks by using equation no. (7.1) 

Step 9 Update the cost function and current position of workers using eq. (7.3) 

Step 10 Track movement of workers by using equation no. (7.2) 

Step 11 Investigate possibility of substitution using eq. (7.4) 

 Co-operate Phase start: 

Step 12 Select a worker and his fellow worker randomly 

Step 13 If position of fellow worker is better than position of current worker 

Step 14 Update the cost function and position of current worker using equation 

(7.5) & equation (7.6) 

 End if 

 End for loop (for workers) 

 End for loop (for iteration) 

  

 

 

Fig. 7.1 Flow chart of HGPCTLBO algorithm 

7.3    HGPCTLBO-PID based control of 2DoF ball balancer system 

The PID controller is integrated into the outer loop of the balancer system 

model, as discussed in chapter 3. This integration facilitates the placement of poles to 

ensure observable decay and controllable time constants. Initially, the PID controller 

parameters are computed using the methods outlined in Section 2, employing the 

Ziegler-Nichols (Z-N) method. Subsequently, the controller is applied to algorithmic 

functions. The optimization algorithms employed for this implementation include 

TLBO, GPC, and the proposed HGPCTLBO, enabling a comprehensive comparative 

analysis of the proposed approach. The primary objective of these algorithms is to 

determine the ball position and generate a graph illustrating the expected and computed 

values of the ball position along the axis. Variation in the parameters of the PID 

controller, utilized as the control term in the balancer model, governs these ball 

positions. The effectiveness of the optimization algorithms is assessed based on 
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minimizing the potential error, measured using various objective functions. Tracking 

error is employed to validate the effectiveness of the controller utilized in this control 

arrangement. The objective functions of the feedback controller utilized to validate the 

attributes of tracking error include the Integral of the absolute error, the Integral of 

square error, and the Integral of the time-weighted absolute error, represented as: 

IAE = ∫ 𝑒(𝑡) 𝑑𝑡      (7.7) 

ITAE = ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡     (7.8) 

ISE = ∫ 𝑒2(𝑡) 𝑑𝑡     (7.9) 

In this context, e(t) represents the tracking error derived on the Simulink 

platform after comparing the reference trajectory with the actual trajectory of the ball 

position on the plate surface. To assess the enhancement in tracking error control, the 

tracking errors obtained during the PID controller operation for each of the three 

algorithms (i.e., GPC algorithm, TLBO algorithm, and proposed HGPCTLBO) are 

individually acquired and subsequently subjected to the objective functions mentioned 

above during simulation analysis. The tuning mechanism used in this work is discussed 

in Fig. 7.2 below. 

 
Fig. 7.2 Block diagram showing the tuning mechanism used for constraints of PID controller 

7.3.1 Numerical analysis with objective functions 

The algorithm utilizes ISE, IAE, and ITAE as the objective functions and will 

continue iterating until the maximum number of iterations is reached. This process will 

yield data for analysing the closed-loop stability and relative stability across different 

optimization methodologies employed. The detailed steps for implementing the 

proposed hybrid optimization algorithms have already been discussed in previous 

section of this chapter. TLBO and GPC are executed following their respective 

methodologies as outlined in references [49] and [50] respectively. Upon reaching the 

maximum iteration limit of the optimization algorithms, the positions of the ball are 

tracked and plotted based on the parameter values obtained. The controller outputs 
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continuously adjust the plate angle through a servo motor feedback mechanism to 

achieve optimal ball position and balanced plate angle. This motion is monitored and 

plotted on the simulation platform. Figures 7.3, 7.4, 7.5, and 7.6 depict the observed 

ball tracking during simulation for the PID controller using classical PID, TLBO-PID, 

GPC-PID and the proposed HGPCTLBO-PID optimization approaches, respectively.  

 
Fig. 7.3 The ball position w.r.t. reference step signal for classical PID controller 

 
Fig. 7.4 The ball position w.r.t. reference step signal for GPC-PID controller 

 
Fig. 7.5 The ball position w.r.t. reference step signal for TLBO-PID controller 

 
Fig. 7.6 The ball position w.r.t. reference step signal for proposed HGPCTLBO-PID controller 
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Additionally, the time-domain specifications of the simulation results obtained 

during the optimization process are detailed alongside the corresponding graphical 

outcomes of each algorithm. Figure 7.3 illustrates the simulation outcomes for the 

classical PID controller approach applied to the ball balancer system. These results are 

optimized since parameter calculations are conducted using the traditional Ziegler-

Nichols (ZN) method. In this method, the feedback mechanism's behaviour is not 

adequately considered over the required duration, resulting in significantly higher 

observed values for Rise time (𝑇𝑟), Settling time (𝑇𝑠) and Peak overshoot (𝑀𝑝) than 

expected. Figures 7.4 and 7.5 display the variations in ball positions observed on the 

simulation platform when the unconstrained parameters of the PID controller are 

optimized using the GPC and TLBO algorithms, respectively. The time-domain results 

for the HGPCTLBO-PID control mechanism, depicted in Figure 7.6 and elaborated 

upon in Table 7.1, demonstrate the superiority of the proposed algorithm over both the 

classical controller and the latest optimization algorithms. Although the optimization 

manages to address the settling time and peak time issues of the classical controller to 

some extent, peak overshoot remains problematic with the TLBO and GPC algorithms. 

This concern is effectively addressed when employing the hybrid optimization, as 

indicated in Table 7.1, with improved peak time and settling time, the improved peak 

overshoot is also obtained to a satisfactory extent. 

Table 7.1: Time domain specifications comparison of all optimization algorithms used above 

Controller 𝑇𝑟 (sec) 𝑇𝑠 (sec) 𝑀𝑝 (%) 

Classical PID 2.40 2.76 22.90 

GPC-PID 0.83 1.8 12.33 

TLBO-PID 0.93 1.98 14.1 

HGPTLBO-PID 0.33 1.05 0.033 

 

The errors noted during this simulation are evaluated through the objective 

functions, and the corresponding results are presented in Table 7.2 and discussed 

below. The Integral of Absolute Error (IAE), Integral of Square of Error (ISE), and 

Integral of Time-Weighted Absolute Error (ITAE) are computed, revealing notable 

improvements in the objective functions when employing the proposed hybrid 

optimization process. Specifically, with the HGPCTLBO-PID controller, the ITAE 

decreases to 0.0003, the IAE decreases to 0.00211, and the ISE decreases to 0.00109, 

indicating significantly reduced error values. The objective function responses for all 

applied optimization algorithms are depicted in Figure 7.9. 

Table 7.2: Objective function values for experiments conducted 

Controller ISE IAE ITAE 

Classical PID 0.0219 0.03533 0.0699 

GPC-PID 0.0033 0.0054 0.0066 

TLBO-PID 0.0031 0.0049 0.0050 

HGPTLBO-PID 0.00109 0.00211 0.0003 

Moreover, the validity of the aforementioned arguments is demonstrated 

through simulation analyses of the ball balancer model using both the classical PID 

controller and the HGPCTLBO-PID controller with a continuous signal generator 
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under unity feedback conditions. In this setup, the servo motor continuously receives 

voltage adjustments based on variations in the ball's output position on the rectangular 

plate. This analysis is illustrated in Figures 7.7 and 7.8.  

 
Fig. 7.7 The simulation outcomes of the ball balancer model using the traditional PID controller 

illustrate (from left to right): (a) the ball's tracking response on the square plate, (b) the variations in 

servo angle during operation, and (c) the feedback voltage supplied to the servo motor during closed-

loop feedback operation 

 
Fig. 7.8 The simulation outcomes of the ball balancer model using the HGPCTLBO-PID controller 

depict (from left to right): (a) the ball's tracking response on the square plate, (b) the variations in 

servo angle during operation, and (c) the feedback voltage supplied to the servo motor during closed-

loop feedback operation 

 

Fig. 7.9 Comparison of ISE, IAE & ITAE response of different objective functions while 

using classical PID, GPC-PID, TLBO-PID & HGPCTLBO-PID controllers 

Figure 7.7 displays the simulation response obtained using the traditional PID 

controller, while Figure 7.8 exhibits the response achieved through the proposed 

optimization approach in the closed-loop feedback system of the balancer model. Upon 

comparing the initial images of both figures, it is evident that the tracking response of 

the ball position shows reduced oscillations, and the settling time is noticeably 
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diminished. Furthermore, in the second and third images, employing the proposed 

algorithm results in smoother servo angle variations, accompanied by a reduced 

settling period. Additionally, the servo voltage, received via the feedback signal, 

exhibits a quicker response. These analyses serve to confirm that the time response of 

the ball balancer model is significantly enhanced by employing the proposed 

HGPCTLBO algorithm. 

7.3.2 Real-time results with stability analysis 

During the real-time operation, the control action is executed using the HGPCTLBO-

PID controller. Initially, the traditional PID controller was assessed on the balancer 

system, followed by the application of the proposed method to optimize the parameters 

of this PID controller to achieve a reliable steady-state position. The D controller, 

along with the proposed algorithm, is then implemented on the hardware model, and 

the graphical results obtained in this process are documented and displayed in Figure 

7.10 and Figure 7.11.  

 
Fig. 7.10   Real time responses of (a) ball position (b) servo angle (c) voltage experienced 

by servo motor of ball balancer system using PID controller 

 
Fig. 7.11   Real time responses of (a) ball position (b) servo angle and (c) voltage 

experienced by servo motor of ball balancer model using HGPCTLBO –PID controller 

 

The error is minimized while attaining the desired ball position trajectory on the 

hardware model. The graphs illustrate (a) variations in real-time ball trajectory, (b) 

observed servo angle variations during real-time operation, and (c) the voltage signal 

received by the servo motor during the operation of the ball balancer model using both 

the PID controller and the HGPCTLBO-optimized PID controller. After graphical 

analysis, it is evident that the ball position exhibits reduced oscillations in Figure 

7.11(a) compared to Figure 7.10(a), indicating the enhanced reliability of the proposed 

controller. Furthermore, the observed servo angle variations reveal a narrower range 

in Figure 7.11(b) (-17 to 1) compared to Figure 7.10(b) (-25 to 25), indicating faster 

stability in the ball position over the square plate. Additionally, a comparison between 
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Figure 7.10(c) and Figure 7.11(c) shows less variation in the feedback signal received 

by the servo motor from (-1.8 to 1.5 volts) to (-2.2 to 2.2 volts) when using the 

proposed HGPCTLBO optimization technique. This clearly indicates reduced 

distortion in the real-time hardware model when employing the HGPCTLBO 

optimization technique, as evidenced by the improved graphical analysis. 

7.4     HGPCTLBO-PID based control of 2DoF helicopter system 

The MATLAB platform is employed to implement closed-loop control 

methods for both pitch and yaw axes through matrix equations. It's crucial to minimize 

deviations in system parameters to prevent significant variations in pitch and yaw 

angles, which are highly undesirable outcomes. To address this issue, a novel 

optimization approach is introduced. Additionally, real-time weather conditions are 

simulated using high-speed fans within the laboratory setting. This necessitates a more 

advanced controller capable of handling external disturbances, which is precisely what 

the proposed control scheme offers. This scheme utilizes an optimized controller, 

incorporating a fuzzy logic controller (FLC) that takes error and error deviation as 

inputs and generates three distinct outputs. These outputs serve as constraint 

parameters for a PID controller. Through the proposed hybridized optimization 

algorithm, these parameters are fine-tuned to minimize pitch and yaw errors. Figure 2 

illustrates this control strategy, where error and its derivative are fed into the FLC, and 

the resulting outputs dictate the constraints for the PID controller, completing the 

fuzzy-PID implementation. Finally, the hybridized algorithm is applied to optimize 

these constraints.  

 
Fig. 7.12 Control mechanism used for handling the pitch and yaw angles of 2DoF helicopter 

system 

FPID controller and the optimization mechanism for 2DoF helicopter: 

Figure 7.13 illustrates the control strategy employed. The FPID controller is utilized 

for both the pitch and yaw axes. The variable "e" represents the pitch and yaw errors, 

while "𝑒𝑑" signifies the derivative of these errors. These signals are quantized to form 

fuzzy subsets, followed by fuzzification to create linguistic values. A fuzzy rule base 

is then established to facilitate fuzzy inference. Subsequently, the signal is defuzzified 

into three output signals, which are given as input into the s-function block within 

MATLAB. This s-function block integrates the proposed hybridized HGPCTLBO 

algorithm. The process iterates until the pitch and yaw errors are minimized. Seven 
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distinct sets, namely POSITIVE_BIG (PB), NEGATIVE_BIG (NB), 

POSITIVE_MEDIUM (PM), NEGATIVE_MEDIUM (NM), POSITIVE_LOW (PL), 

NEGATIVE_LOW (NL), and ZERO, are utilized to determine linguistic values for 

both input and output fuzzy subsets. In total, 49 fuzzy rules are applied using Gaussian 

membership functions with degrees ranging from 0 to 1, as discussed in previous 

chapter of this thesis, employing IF-THEN logic. This approach imbues the control 

action of the helicopter model with intelligent decision-making capabilities. The 

linguistic level control operates as an automatic control scheme, utilizing experimental 

data to implement the FLC rule base for Gaussian membership functions on both the 

pitch and yaw axes. The three outputs from this arrangement serve as constraints for 

the PID controller.  

 
Fig. 7.13 Fuzzy-HGPCTLBO-PID controller mechanism used to handle flight angles of 

2DoF helicopter 

7.4.1 Numerical analysis and objective functions 

The propellers exhibit cross-coupling characteristics, adding complexity to the 

tuning process. To address this challenge, fuzzy logic is employed, offering intelligent 

tuning to establish initial parameters for the PID controller. Once these initial values 

are determined, they are inputted into an optimization algorithm. The TLBO, GPC, 

and proposed HGPCTLBO algorithms are utilized to optimize the controller 

parameters. This sequential use of optimization algorithms, starting with TLBO and 

GPC before employing HGPCTLBO, allows for a comparative analysis of the tuning 

process. The pitch and yaw trajectories are then tracked using these three control 

algorithms with the objective of following as reference trajectory while ensuring 

stability in the operation of the helicopter model. Errors observed in pitch and yaw 

angles, as illustrated in Figure 7.12, serve as different objective functions to evaluate 

the performance of the control approaches. Which are mentioned as follows: 

ISE = ∫ 𝑒2(𝑡) 𝑑𝑡     (7.10) 

IAE = ∫ |𝑒(𝑡)| 𝑑𝑡      (7.11) 

ITSE = ∫ 𝑡𝑒2(𝑡) 𝑑𝑡     (7.12) 

The objective functions are utilized until the maximum number of iterations is 

reached. In the tuning process, three distinct algorithms—GPC, TLBO, and 

HGPCTLBO—are employed. The data collected post-implementation of the 

optimization algorithms is examined, and the three algorithms are compared through 

time response analysis. The pitch and yaw trajectories are monitored relative to the 

reference trajectories, and simulation results are generated. The parameters of the 
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FPID controllers are continually adjusted until the maximum number of iterations is 

reached, employing all three algorithms. Once this maximum iteration limit is reached, 

the final parameter values are utilized to compute the time response parameters. 

Graphs depicting the movement of pitch and yaw angles are plotted, as depicted in 

figures 7.14 to 7.19. 

Figures 7.14 to 7.16 illustrate the yaw response observed on the simulation 

platform following the utilization of three different optimization algorithms. To 

facilitate comparison, Rise time (𝑇𝑟), Peak time (𝑇𝑝), Settling time (𝑇𝑠) and Peak 

overshoot (𝑀𝑝)  are considered from the time domain. In Figure 7.14, the values for 

𝑇𝑟, 𝑇𝑝 & 𝑇𝑠 are determined to be 0.5 sec, 0.95 sec, and 4.01 sec, respectively. These 

values are adjusted in Figure 7.15, where the time response parameters are measured 

at 0.45 sec, 0.81 sec, and 3.94 sec, respectively. Notably, in Figure 7.16, these 

parameters exhibit further enhancement. The final optimized parameters achieved 

through the proposed HGPCTLBO algorithm are found to be 0.41 sec, 0.58 sec, and 

2.8 sec. These time response parameters, observed following analysis of the simulation 

results for the yaw axis of the helicopter model, are summarized in Table 7.3. 

 
Fig. 7.14 Yaw angle vs time response 

when using TLBO optimization 

algorithm 

 
Fig. 7.15 Yaw angle vs time response 

when using GPC optimization algorithm 

 
Fig. 7.16 Yaw angle vs time response when using HGPCTLBO optimization 

algorithm 
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Table 7.3: Response observed from yaw axis for various optimization methods 

 

Method 

Yaw Response 

 𝑡𝑟 (sec)  𝑡𝑝 (sec) 𝑀𝑝 (%)  𝑡𝑠 (sec) 

TLBO 0.5 0.95 8.19 4.01 

GPC 0.45 0.81 8.21 3.94 

H-GPC-TLBO 0.41 0.58 4.6 2.8 

Moreover, the simulation of the pitch axis is explored using the TLBO, GPC, 

and HGPCTLBO algorithms. These three optimization techniques are applied to 

optimize the fuzzy-PID controller, and the resultant outcomes are depicted in Figures 

7.17 to 7.19.  

 
Fig. 7.17 Pitch angle vs time response 

when using TLBO optimization algorithm 

 
Fig. 7.18 Pitch angle vs time response 

when using GPC optimization algorithm 

 

 
Fig. 7.19 Pitch angle vs time response when using HGPCTLBO optimization algorithm 

In Figure 7.17, the pitch response following the implementation of the TLBO 

algorithm is illustrated. Here, the values for 𝑇𝑟, 𝑇𝑝 & 𝑇𝑠 are determined to be 0.66 sec, 

1.1 sec, and 3.99 sec, respectively. Figure 7.18 illustrates the pitch angle response 
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obtained after employing the GPC optimization technique on the fuzzy-PID controller. 

In this case, the values for 𝑇𝑟, 𝑇𝑝 & 𝑇𝑠 are measured at 0.58 sec, 1.1 sec, and 11.11 sec, 

respectively. It is evident that the settling time after utilizing GPC is unacceptable, 

indicating instability. This issue of undesirable time response parameters is resolved 

through the HGPCTLBO algorithm, which yields values of 0.46 sec, 0.9 sec, and 2.7 

sec for 𝑇𝑟, 𝑇𝑝 & 𝑇𝑠 respectively as shown in figure 7.19. A detailed comparison of the 

time response parameters calculated for the pitch axis is presented in Table 7.4. 

Table 7.4: Response observed from pitch axis for various optimization methods 

 

Method 

Pitch Response 

 𝑡𝑟 (sec)  𝑡𝑝 (sec) 𝑀𝑝 (%)  𝑡𝑠 (sec) 

TLBO 0.66 1.1 4.18 3.99 

GPC 0.58 1.1 4.30 11.11 

H-GPC-TLBO 0.46 0.9 3.33 2.7 

The above discussed findings are sufficient to determine the superiority of the 

hybridized method over the individual algorithms. The rise time, peak time, peak 

overshoot, and settling time of both the pitch and yaw axes are effectively managed 

through the utilization of the HGPCTLBO algorithm. When employing the hybridized 

optimization algorithm, issues such as undesired oscillations and prolonged stability 

time are effectively addressed. Various derivatives of error serve as objective functions 

during this simulation analysis. Specifically, Integral Square Error (ISE), Integral 

Absolute Error (IAE), and Integral Time Square Error (ITSE) are the three error 

objectives employed to illustrate the reduction of errors during the implementation of 

optimization algorithms, as shown below in table 7.5. 

Table 7.5: Minimized error values after applying various optimization algorithms 

Controller IAE ISE ITSE 

GPC 0.7717 0.1046 1.616 

TLBO 0.8396 0.11 1.714 

H-GPC-TLBO 0.7236 0.09869 1.5 

For the initial objective function regarding error, namely ISE, its value stands 

at 0.1046 and 0.11 when employing GPC and TLBO, respectively. However, this 

figure significantly diminishes to 0.09869 with the application of the hybridized 

algorithm. Similarly, for the second objective function of error, IAE, its value registers 

at 0.7717 and 0.8396 when optimized using GPC and TLBO, respectively. This value 

is further reduced to 0.7236 with the use of the hybridized algorithm. Finally, the third 

objective function, ITSE, also sees improvement to 1.5 when the hybridized algorithm 

is utilized, compared to its earlier values of 1.616 and 1.714 with GPC and TLBO 

optimization algorithms, respectively. All the values of different error functions 

obtained after implementing various optimization algorithms are presented in table 3. 

A comparative analysis of Integral Square Error (ISE), Integral Absolute Error (IAE) 

and Integral Time Square Error (ITSE) is depicted using bar charts in Figures 7.20, 

7.21 and 7.22, respectively. 
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7.4.2 Real-time results with stability analysis 

Real-time control is achieved by employing optimization algorithms to adjust 

the parameters of the FPID controller. These optimization algorithms include GPC, 

TLBO, and the hybridized GPC-TLBO method. The changes in pitch and yaw angles 

over time are depicted graphically. The graphical representations of the pitch trajectory 

and yaw trajectory are presented in Figures 7.23 and 7.24, respectively. Initially, the 

traditional FPID controller is tuned using the GPC algorithm, and the resulting pitch 

response is graphically recorded, as shown in Figure 7.23(a). It's observed that the 

trajectory exhibits oscillations and fails to reach the reference amplitude within the 

complete cycle, indicating an unreliable controller. Subsequently, the same FPID 

controller is tuned using the TLBO algorithm, resulting in even larger oscillations and 

an unstable system response, as depicted in Figure 7.23(b). In contrast, Figure 7.23(c) 

illustrates the response obtained using the H-GPC-TLBO algorithm on the same FPID 

controller.  

 
Fig. 7.20 Integral of Square error obtained 

after using GPC, TLBO & HGPCTLBO 

algorithms 

 
Fig. 7.21 Integral of absolute error obtained 

after using GPC, TLBO & HGPCTLBO 

algorithms 

 
Fig. 7.22 Integral of time square error obtained after using GPC, TLBO & HGPCTLBO 

algorithms 
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(a)                                                                                (b) 

 
(c) 

Fig. 7.23 The evaluation of the pitch axis trajectory of a real-time helicopter model under 

the influence of external disturbances caused by high-speed fans subsequent to the 

optimization algorithms including (a) GPC (b) TLBO and (c) the hybridized-GPC-TLBO 

 

 

                            (a)              (b)                                                 (c) 

Fig. 7.24 The evaluation of the yaw axis trajectory of a real-time helicopter model under 

the influence of external disturbances caused by high-speed fans subsequent to the 

optimization algorithms including (a) GPC (b) TLBO and (c) the hybridized-GPC-TLBO 

The pitch angle trajectory closely follows the signal reference amplitude with 

fewer oscillations, settling down by the end of the signal cycle. This demonstrates the 

reliability and efficiency of the H-GPC-TLBO algorithm in tracking the pitch 

reference signal, even in the presence of external disturbances, minimizing errors. 

Similarly, these three algorithms are applied to the yaw error signal. Initially, a GPC-

tuned FPID controller is utilized to control the yaw trajectory of the helicopter model, 

resulting in a trajectory with a significant offset and oscillations, as shown in Figure 

7.24(a). The same FPID controller is then tuned using the TLBO algorithm, yielding a 

yaw angle trajectory with similar large offset and oscillations, as depicted in Figure 
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7.24(b). Finally, the hybridized GPC-TLBO algorithm is employed to tune the FPID 

controller parameters, resulting in a less oscillatory response that settles by the end of 

the reference signal cycle, as shown in Figure 7.24(c). This demonstrates the 

distortion-less behaviour of the helicopter model achieved through the proposed 

optimization technique. The improved graphical results presented in Figures 7.23 and 

7.24 suffice to demonstrate the superiority of the proposed algorithm in mitigating 

external disturbances on the helicopter model. 

7.5   Conclusion 

The hybridized algorithm is employed to manage external disturbances in the 

2DoF helicopter system through the integration of a fuzzy-proportional-integral-

derivative (FPID) controller and the same algorithm is employed to manage the servo 

angle variations of a 2DoF ball balancer system under unknown but bounded 

disturbance using proportional-integral-derivative controller. The hybridized-GPC-

TLBO algorithm yields a more stable and reliable response, even when faced with 

external disturbances such as unfavourable wind speeds caused by high-speed fans in 

helicopter experiment and nonlinearity created by dead zone in ball balancer 

experiment. This hybrid optimization technique has demonstrated remarkable 

efficiency and superiority compared to individual algorithm results. Both simulation 

and real-time tuning are conducted on benchmark 2DoF helicopter model and 2DoF 

ball balancer system, with extensive numerical and graphical comparisons performed 

to showcase the performance of the developed control technique. External 

disturbances are diminished by minimizing error signals experienced by the pitch and 

yaw axes of the 2DoF helicopter model. The position error is diminished by 

minimizing the error signal experienced by servo axis of 2DoF ball balancer model. 

To achieve these error reductions, Integral Square Error (ISE), Integral Absolute Error 

(IAE) and Integral Time Square Error (ITSE) are employed as objective functions. The 

MATLAB/Simulink platform is utilized to demonstrate the effective control efficacy 

and adaptability of the developed control scheme in ensuring stability for both the 

2DoF systems. 
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Chapter 8. Conclusion and Future Scope of Work 

8.1   Introduction 

This chapter offers concluding reflections on different control strategies 

explored in the thesis, drawing from observed simulation and real-time outcomes. In 

this thesis, a new metaheuristic algorithms i.e. iTLBO & HGPCTLBO are introduced 

and used to optimize the classical and intelligent controllers on different benchmark 

nonlinear control problems to showcase their efficacy and performance. Initially, 

challenges within mechanical systems were pinpointed through modelling benchmark 

systems like an aerial vehicle and robotic balancer. Subsequently, these challenges 

were addressed using diverse nonlinear control theory approaches. The primary goal 

of developing controllers was to enable path tracking and position control for the 

benchmark systems, mitigating issues arising from uncertainty and outside laboratory 

environment. This chapter delivers a conclusion along with an exploration of future 

prospects in this domain. 

8.2   Contributions of the work 

The summary of work presented in this thesis is briefed chapter-wise as follows: 

Chapter 1 offers an introduction to nonlinear systems control, covering fundamental 

principles of nonlinear control theory. It outlines the motivations driving 

advancements in this field and formulates the necessary objectives. It mentions that 

several optimization techniques are used to handle nonlinear benchmark problems. 

These versatile optimization techniques have found applications across diverse fields 

of science, technology and engineering, facilitating the selection of optimal solutions 

from a variety of possible alternatives. Additionally, it emphasizes the significant 

contributions of the thesis and provides an overview of the subsequent chapters. 

Chapter 2 provides a literature survey on a broad spectrum of topics in nonlinear 

control theory, ranging from contemporary optimization algorithms to the fusion of 

multiple classical and intelligent control techniques. It includes surveys, comparisons, 

and analyses of performance. The review reveals that while linear controllers offer a 

straightforward means of designing closed-loop control systems for these benchmarks, 

the intricate nonlinear dynamics of the systems pose challenges in providing viable 

solutions and limit the general applicability of control laws. Linearization of nonlinear 

systems is attempted but adversely affects system response speed, prompting the 

development of several nonlinear control techniques to address underactuated system 

issues. Furthermore, it explores variations of control techniques and their applications 

in 2DoF systems. In light of drawbacks and limitations caught up in literature, basic 

control schemes integrating fuzzy logic are developed for the helicopter and ball 

balancer systems. Evaluation results shed light on the performance of these control 

techniques and underscore their vulnerabilities to external disturbances and parametric 

uncertainties. These problems are handled using various classical and intelligent 

control techniques, as discussed in different chapters of this thesis. 

Chapter 3 provides background information on the 2-degree-of-freedom (2DoF) 

helicopter and ball balancer benchmark systems, outlining fundamental concepts in 
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their mechanics. The complete mathematical model is discussed in detail in this 

chapter. The control equations for these benchmark systems are obtained, which are 

further used in upcoming chapters of this thesis. The benchmark helicopter model is 

introduced with external disturbance using two high speed fans, so that it will 

experience turbulence like situations. The ball balancer system is discussed with dead 

zone linearity with bounded but unknown disturbances. These systems are further 

controlled using various control schemes in chapter 4 to chapter 7. 

Chapter 4 presents optimized classical control techniques, which are applied on two 

nonlinear systems i.e. 2DoF ball balancer system and 2DoF helicopter system, 

employing TLBO and GPC as the optimization approaches. Different cost functions 

are established in this chapter and the same are employed to reduce the system errors 

observed during the simulation of 2DoF benchmark systems. Time response 

evaluations are performed on both systems, representing the inaugural utilization of 

these algorithms on such nonlinear systems. The stable responses attained highlight 

the originality of this work. All the results are validated through graphical as well as 

numerical results in detail. 

Chapter 5 presents the improvement in teaching learning based optimization 

algorithm, namely iTLBO, through mathematical and conceptual evidence. A data-

driven solution is provided to update the teaching factor in the execution of TLBO 

algorithm. The provided solution showcase the superiority of iTLBO over TLBO 

algorithm. Various validity criteria, including traditional benchmark functions, CEC 

functions and standard error derivatives of objective function values are obtained 

across multiple runs. These criteria examined the effectiveness of iTLBO algorithm. 

Simulation and real time results indicate that the iTLBO algorithm exhibits faster 

convergence compared to other optimization techniques in literature on linear and 

nonlinear benchmark functions. When applied to CEC test functions, iTLBO 

outperforms other algorithms, effectively balancing diversification and intensification 

to locate global optima. Finally iTLBO is used to constraints of PID controller, which 

is implemented on benchmark nonlinear systems i.e. 2DoF ball balancer system and 

2DoF helicopter system. It was observed through graphical as well as numerical results 

that the iTLBO-PID control method is providing stable results to both the nonlinear 

systems. Algorithm development and implementation is discussed at length in this 

chapter.  

Chapter 6 outlines the hybridization of intelligent Fuzzy Logic controller with 

classical PID controller to optimize the angle variation and axis variations of 

benchmark systems. The hybrid FPID controller is optimized using the iTLBO 

algorithm, which is developed in chapter 5 of this thesis. The optimized FPID control 

scheme for coupled helicopter system and decoupled ball balancer system is discussed 

at length in this chapter. The iTLBO algorithm showcases the improved time response 

analysis on simulation model of these benchmark systems. The real time graphs of 

both the benchmark systems are enough to prove the improved stability and balancing 

under the unfavourable condition also. Results obtained using this control scheme are 

compared with results available using earlier control methods and the dominance of 

iTLBO-FPID controller is proved. In the results, the position error, angle error and 
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ITAE error are reduced while using the proposed hybridized intelligent-classical 

control scheme. 

Chapter 7 presents mathematical and conceptual description of a developed hybrid 

optimization algorithm, namely HGPCTLBO. The optimization algorithm introduces 

“command phase” and “Co-operate phase” to the GPC algorithm. The Co-operate 

phase is inspired from the learner phase of TLBO algorithm. From this, the 

hybridization of GPC and TLBO is obtained and named as hybrid Giza pyramid 

construction teaching learning based optimization (HGPCTLBO) algorithm. The 

algorithm flow of HGPCTLBO is discussed in detail. This algorithm is used to 

optimize the classical PID controller as well as the intelligent Fuzzy-PID controller. 

The classical HGPCTLBO-PID control mechanism is developed for 2DoF ball 

balancer system. Here, the servo angle variations of square plate of ball balancer is 

controlled and the ball position over this plate is maintained successfully. The 

intelligent HGPCTLBO-Fuzzy-PID control mechanism is employed on 2DoF 

helicopter system. Here, the pitch angle axis and the yaw angle axis are controlled 

using various controllers while maintaining the minimal error using square reference 

trajectory. 

HGPCTLBO proved to be efficient and faster when the time response analysis is done 

for both the 2DoF nonlinear systems. The real – time graphical results are also showing 

the reduced fluctuations and improved error for position control as well as balancing 

of nonlinear systems. The IAE, ITAE and ISE cost functions are showing minimized 

error when HGPCTLBO optimization algorithm is implemented on PID controller as 

well as FPID controller of benchmark systems. 

8.3  Suggestion for future scope of work 

This section outlines potential avenues for future research building upon the 

current study. For trajectory tracking employing intelligent and classical controllers, 

enhancements can focus on improving tracking efficiency while maintaining steady-

state performance and accommodating multiple degrees of freedom. Exploring the 

operation of underactuated systems in both strong and weak fields, which involve zero 

dynamics, presents another promising direction. To enhance its effectiveness, the 

HGPCTLBO & iTLBO method could be integrated with additional optimization 

algorithms. Ultimately, an assessment of HGPCTLBO & iTLBO efficacy across 

diverse real-world engineering optimization assignments may be conducted. 

Additionally, incorporating migration strategy-based algorithms such as 

biogeography-based optimization (BBO), biologically inspired mechanisms like 

bacteria foraging algorithm (BFA), population-based evolutionary methods like 

invasive weed optimization-based algorithm (IWO) and other metaheuristic 

approaches like Jaya algorithm, Honey Badger Algorithm, the Dingo Optimizer and 

Artificial Gorilla Troops Optimizer with nonlinear systems may provide further 

research in this field. The methods like SVM, deep learning and block chain algorithms 

is also available to explore deep in this area. Furthermore, conducting reliability 

analyses of components within mechanical systems and investigating the impact of 

various control approaches could serve as valuable extensions. 
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8.4 Societal impact of the work 

Enhanced Disaster Response and Humanitarian Efforts: Autonomous systems 

with strong control mechanisms can be vital in disaster response. Drones and robots 

with intelligent controllers can be sent to areas affected by earthquakes, collapsed 

buildings or floods to search for survivors, assess damage and deliver critical supplies. 

Their ability to navigate challenging terrain with little human oversight allows for 

quicker responses, improving the chances of saving lives and reducing the risks faced 

by emergency responders in dangerous situations. 

Advancement in Autonomous Systems and Robotics: This research improves 

the accuracy, stability, and flexibility of autonomous robots, helping them operate 

better in changing and unpredictable environments. With better path tracking and 

balance control, robots and drones can efficiently handle tasks like warehouse 

management, security monitoring, and industrial inspections. Their ability to move 

independently without errors reduces the need for human involvement, cutting risks 

and costs while making the system more reliable. 

Safer and More Efficient Transportation: The intelligent control methods in 

this research can be used in smart transportation to improve the safety and efficiency 

of self-driving cars, drones, and automated trains. Better path tracking allows these 

vehicles to adjust in real time, reducing accidents and improving route planning. This 

can help ease traffic and decrease fuel consumption, supporting a more sustainable and 

eco-friendly transportation system. 

Breakthroughs in Aerospace and UAV Technology: This research offers 

improved control methods for aerial vehicles, helping them manage turbulence and 

external disturbances, which is essential for UAVs and future air mobility. For 

example, autonomous drones with advanced balance and navigation can be used in 

remote areas for delivering medical supplies, emergency surveillance or search-and-

rescue operations. 

Improved Industrial Automation and Smart Manufacturing: With intelligent 

and optimized control systems, industrial automation can be more precise, efficient 

and adaptable. Manufacturing robots with advanced algorithms can perform complex 

tasks like assembling delicate parts, conducting quality checks and adjusting to 

unexpected changes in real time. This can boost production efficiency, reduce 

operational costs and improve workplace safety by minimizing human exposure to 

dangerous environments. 
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Appendix #1 

#All steps involved in the optimization process of real time automatic tuning of PID 

gain values through TLBO algorithm are explained herewith: 

The constrained parameters of the algorithm are defined along with the variable 

sizes and boundaries: - 

nVar = 3; % Number of Unknown Variables which are namely P, I and D 

VarSize = [1 nVar]; % Unknown Variables Matrix Size 

VarMin = 0; % Unknown Variables Lower Bound 

VarMax = 10; % Unknown Variables Upper Bound 

Then cost function is defined through a script named error: 

CostFunction = @error: %the error script is called from its function which is 

defined herein 

Then the parameters of TLBO algorithm are defined and initialized as follows: - 

MaxIt = 1000; % Maximum Number of Iterations 

nPop = 50; % Population Size 

% Empty Structure for Individuals 

empty_individual.Position = []; 

empty_individual.Cost = []; 

% Initialize Population Array 

pop = repmat(empty_individual, nPop, 1); 

% Initialize Best Solution 

BestSol.Cost = inf; 

% Initialize Population Members 

for i=1:nPop 

pop(i).Position = unifrnd(VarMin, VarMax, VarSize); 

pop(i).Cost = CostFunction(pop(i).Position); 

if pop(i).Cost < BestSol.Cost 

BestSol = pop(i); 

end end 

Then the cost function for optimal PID is defined alongside the ISE, IAE, ITSE 

and ITAE. 

function [C,fval]=optimPID(G,ctype,idx) 
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% Inputs: G: Model of 2DoF System, ctype: Controler type (1 = P, 2* = PI, 3 

= PID) 

% idx: Performance criterion, 1 – ISE 2 – IAE 3 - ITSE 4 - ITAE 

% Outputs: C: PID transfer function, fval: optimal paramters 

C1=optimPID(G,3,1); % PID-Control, ISE index 

C2=optimPID(G,3,2); % PID-Control, IAE index 

C3=optimPID(G,3,3); % PID-Control, ITSE index 

C4=optimPID(G,3,4); % PID-Control, ITAE index 

K=znpidtuning(G,3); % Ziegler-Nichols stability margin tuning 

t=0:0.1:30; 

y1=step(feedback(C1*G,1),t); 

y2=step(feedback(C2*G,1),t); 

y3=step(feedback(C3*G,1),t); 

y4=step(feedback(C4*G,1),t); 

y=step(feedback(G*(K.kc*(1+tf(1,[K.ti 0])+tf([K.td 0],1))),1),t); 

[Gm,Pm,Wcg]=margin(G); % Initial parameters using stability based tuning 

pu=2*pi/Wcg; 

ku=Gm; 

x=ku/2; 

den=1; 

if ctype==2 

x=ku/2.2*[1 1.2/pu]; 

den=[1 0]; 

elseif ctype==3 

x=ku*2/pu/1.7*[pu/8 1 2/pu]; 

den=[1 0]; end 

Then the response for initial tuning is done to trace the initial parameters: - 

[y,t]=step(feedback(tf(x,den)*G,1)); 

cost = @error(x,G,den,t,dt,idx); % redefine cost function to facilitate 

optimization  

function J=error(x,G,den,t,dt,idx) 
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e=1-step(feedback(G*tf(x,den),1),t); % control error of step response 

Then the performance calculation for ISE, IAE, ITSE, ITAE are evaluated as 

following: -  

switch idx 

case 1 % ISE J=e'*e*dt; 

case 2 % IAE J=sum(abs(e)*dt); 

case 3 % ITSE J=(t.*e'*dt)*e; 

case 4 % ITAE J=sum(t'.*abs(e)*dt);   

end 

Now Initialize the Best result for the current iteration: 

BestCosts = zeros(MaxIt,1); 

Now start the TLBO algorithm Main Loop 

for it=1:MaxIt 

Calculation of Population Mean is done as follows 

Mean = 0; 

for i=1:nPop 

Mean = Mean + pop(i).Position; 

end 

Mean = Mean/nPop; 

The best solution is selected as Teacher as follows: - 

Teacher = pop(1); 

for i=2:nPop 

if pop(i).Cost < Teacher.Cost 

Teacher = pop(i); 

end 

end 

Teacher Phase main loop starts as: - 

for i=1:nPop 

Create Empty Solution 

newsol = empty_individual;  
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Teaching phase is moving towards teacher as: - 

newsol.Position = pop(i).Position + rand(VarSize).*(Teacher.Position - 

TF*Mean); 

Evaluation of new position for cost function: - 

newsol.Cost = CostFunction(newsol.Position); 

Comparison for the required greedy solution 

if newsol.Cost<pop(i).Cost 

pop(i) = newsol; 

if pop(i).Cost < BestSol.Cost 

BestSol = pop(i); 

end end end 

for i=1:nPop 

A = 1:nPop; 

A(i)=[]; 

j = A(randi(nPop-1)); 

Step = pop(i).Position - pop(j).Position; 

if pop(j).Cost < pop(i).Cost 

Step = -Step; end 

The above-mentioned equations will be repeated until the maximum iterations are 

reached. 

newsol.Position = pop(i).Position + rand(VarSize).*Step; 

newsol.Cost = CostFunction(newsol.Position); 

if newsol.Cost<pop(i).Cost 

pop(i) = newsol; 

if pop(i).Cost < BestSol.Cost 

BestSol = pop(i); 

end end end 
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Appendix #2 

#All steps involved in the optimization process of real time automatic tuning of PID 

gain values through GPC algorithm are explained herewith: 

The parameters of the algorithm are defined along with the variable sizes and 

boundaries: - 

nVar=3; % Number of Decision Variables i.e. P, I and D. 

VarSize=[1 nVar]; % Decision Variables Matrix Size 

VarMin=0; % Decision Variables Lower Bound 

VarMax=10; % Decision Variables Upper Bound 

Algorithm specific Giza Pyramids Construction (GPC) Parameters 

MaxIteration=1000; % Maximum Number of Iterations (Days of work) 

nPop=50; % Number of workers 

G = 9.8; % Gravity 

Tetha = 14; % Angle of Ramp 

MuMin = 1; % Minimum Friction  

MuMax = 10; % Maximum Friction 

pSS= 0.5; % Substitution Probability 

Then cost function is defined through a script named error: 

CostFunction = @error: %the error script is called from its function  

Then the cost function for optimal PID is defined alongside the ISE, IAE, ITSE 

and ITAE. 

function [C,fval]=optimPID(G,ctype,idx) 

C1=optimPID(G,3,1); % PID-Control, ISE index 

C2=optimPID(G,3,2); % PID-Control, IAE index 

C3=optimPID(G,3,3); % PID-Control, ITSE index 

C4=optimPID(G,3,4); % PID-Control, ITAE index 

K=znpidtuning(G,3); % Ziegler-Nichols stability margin tuning 

t=0:0.1:30; 

y1=step(feedback(C1*G,1),t); 

y2=step(feedback(C2*G,1),t); 

y3=step(feedback(C3*G,1),t); 
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y4=step(feedback(C4*G,1),t); 

y=step(feedback(G*(K.kc*(1+tf(1,[K.ti 0])+tf([K.td 0],1))),1),t); 

[Gm,Pm,Wcg]=margin(G); % Initial parameters using stability based tuning 

pu=2*pi/Wcg; 

ku=Gm; 

x=ku/2; 

den=1; 

if ctype==2 

x=ku/2.2*[1 1.2/pu]; 

den=[1 0]; 

elseif ctype==3 

x=ku*2/pu/1.7*[pu/8 1 2/pu]; 

den=[1 0]; 

end 

Then the response for initial tuning is done to trace the initial parameters: - 

[y,t]=step(feedback(tf(x,den)*G,1)); 

cost = @error(x,G,den,t,dt,idx); % redefine cost function to facilitate 

optimization  

opt=optimset('display','off','TolX',1e-9,'TolFun',1e-9,'LargeScale','off'); 

flag=0; while ~flag % if flag=0 restart optimization from current solution 

[x,fval,flag]=fminunc(cost,x,opt);  

end 

function J=error(x,G,den,t,dt,idx) 

e=1-step(feedback(G*tf(x,den),1),t); % control error of step response 

Then the performance calculation for ISE, IAE, ITSE, ITAE are evaluated as 

following: -  

switch idx 

case 1 % ISE J=e'*e*dt; 

case 2 % IAE J=sum(abs(e)*dt); 

case 3 % ITSE J=(t.*e'*dt)*e; 

case 4 % ITAE J=sum(t'.*abs(e)*dt);  end 
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Initialization of the algorithm through individual steps one after one as: - 

stone.Position=[]; 

stone.Cost=[]; 

pop=repmat(stone,nPop,1); 

best_worker.Cost=inf; 

for i=1:nPop 

pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 

pop(i).Cost=CostFunction(pop(i).Position); 

if pop(i).Cost<=best_worker.Cost 

best_worker=pop(i); % Pharaoh's special agent is designated here 

end end 

Giza Pyramids Construction (GPC) Algorithm Main Loop 

for it=1:MaxIteration 

newpop=repmat(stone,nPop,1); 

for i=1:nPop 

newpop(i).Cost = inf; 

V0= rand(0,1); % Initial Velocity  

Mu= MuMin+(MuMax-MuMin)*rand(1,10); % Friction 

d = (V0^2)/((2*G)*(sind(Tetha)+(Mu*cosd(Tetha)))); % Stone Destination 

x = (V0^2)/((2*G)*(sind(Tetha))); % Worker Movement 

epsilon=unifrnd(-((VarMax-VarMin)/2),((VarMax-VarMin)/2),VarSize); % 

Epsilon 

newsol.Position = (pop(i).Position+d).*(x*epsilon); % Position of Stone and 

Worker 

newsol.Position=max(newsol.Position,VarMin); 

newsol.Position=min(newsol.Position,VarMax); 

Substitution steps followed in each iteration as: - 

z=zeros(size(pop(i).Position)); 

k0=randi([1 numel(pop(i).Position)]); 

for k=1:numel(pop(i).Position) 

if k==k0 || rand<=pSS 
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z(k)=newsol.Position(k); 

else z(k)=pop(i).Position(k); 

end end 

newsol.Position=z; 

newsol.Cost=CostFunction(newsol.Position); 

if newsol.Cost <= newpop(i).Cost 

newpop(i) = newsol; 

if newpop(i).Cost<=best_worker.Cost 

best_worker=newpop(i); 

end end end 

Best cost value at the end of all iteration is stored as: - 

BestCost(it)=pop(1).Cost; 

end 
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