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ABSTRACT 
 

. 

This study aims to address the problem of Optical Character Recognition (OCR) for 

the Odia language using a transfer learning.OCR is a technology used to convert 

different types of documents, such as scanned paper documents, PDF files or images 

captured by a digital camera, into editable and searchable data. The Odia language, 

like many other languages, has unique characteristics and complexities in its script that 

pose challenges for OCR. Transfer learning, which involves applying knowledge 

learned from one problem to a different but related problem, is seen as a potential 

solution to these challenges. This technique is especially beneficial when the dataset 

for the specific task (in this case, Odia OCR) is small, as it leverages the knowledge 

captured by models pre-trained on larger, more diverse datasets. In this study, a pre-

trained Convolutional Neural Network (CNN) model for feature extraction. CNNs are 

a type of deep learning model that are particularly good at processing grid-like data, 

such as images. A pre-trained CNN model is a model that has been previously trained 

on a large dataset, usually on a general task like identifying objects within images. The 

learned weights of this model, which capture the learned features from the previous 

task, are then used as the starting point for the new task. After initializing the model 

with the pre-trained weights, the authors fine-tune it on the specific task of recognizing 

Odia characters. Fine-tuning involves continuing the training process on the new task, 

adjusting the weights of the model to better fit the new data. The specifics of fine-

tuning, such as which layers of the model to fine-tune and the learning rate to use, can 

vary depending on the specifics of the task and the amount of available data. The 

dataset used in this study consists of images of 8 unique vowels in the Odia language. 

Image datasets for deep learning often require preprocessing to ensure that they can be 

efficiently and effectively fed into the model. In this case, the authors applied several 

preprocessing techniques like Image re-sizing, normalization, data splitting. The study 

thus offers a comprehensive approach to tackling the problem of Odia OCR using 

transfer learning, from using a pre-trained CNN model to fine-tuning it on a specific 

dataset, and meticulously preparing the data for optimal results.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 
Optical Character Recognition (OCR) is a technology that turns scanned paper 

documents, PDF files, and pictures taken with a digital camera into data that can be 

edited and searched. OCR works by looking at the shapes and patterns of the letters in 

the scanned picture or document and turning them into text characters by comparing 

them to a set of known characters. The quality of the source document and the type of 

OCR technology used can affect how well it works. OCR can be used in a lot of 

different fields: Automation of Data Entry: Optical Character Recognition (OCR) is 

often used to automate data entry tasks like putting information from paper forms into 

a computer system. Compared to entering data by hand, this can save a lot of time and 

make fewer mistakes. Document Archiving: Optical Character Recognition (OCR) is 

used to scan printed documents so they can be edited, searched, and saved in a smaller 

space. It also lets machines do things like do brain searches and learn on their own. 

Book Digitization: Optical Character Recognition (OCR) is used to turn printed books 

into digital forms that can be read on computers or e-readers. Through projects like 

Google Books and others, this is how a lot of written information is now available 

online. Automated Form Processing: Optical Character Recognition (OCR) is used to 

pull information directly from forms like invoices, applications, and surveys. This can 

greatly cut down on mistakes and speed up the process. 

 

1.1.1 OCR for Indic Scripts 

 
Optical Character Recognition (OCR) for Indic scripts isn't as old as it is for Latin-

based scripts, mostly because Indic scripts are so complicated and varied. Indic 

languages include many different writing systems, such as Devanagari (used for Hindi, 

Marathi, and Nepali), Bengali, Gujarati, Oriya, Gurmukhi (used for Punjabi), Telugu, 

Kannada, Malayalam, and more. Each of these scripts has its own set of problems that 

OCR has to deal with. 

In the late 1990s and early 2000s, the digitization of data and the need for automatic 

data entry systems made it more important to make OCR systems for Indic scripts. 
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In the beginning, most of the work was done to recognise printed papers. Handwritten 

text was given less attention because it was harder to read. Early systems often used 

methods called "template matching," in which each character was compared to a 

template that had already been set up. 

 

Researchers began looking into machine learning methods for Indic OCR around the 

middle of the 2000s. These methods, like Support Vector Machines (SVMs) and 

Hidden Markov Models (HMMs), let OCR systems learn from data, which made them 

more accurate. 

The Digital Library of India (DLI) was one of the most important projects during this 

time. Its goal was to digitise and store important works of art, literature, and science 

from India. As part of this project, OCR tools for a number of Indic scripts were made 

so that printed books could be digitised. 

Since the beginning of deep learning methods a decade ago, the field of OCR for Indic 

scripts has made a lot of progress. Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), as well as their variations like Long Short Term 

Memory (LSTM) networks, have been used to make OCR systems that are very 

accurate. 

Even with these improvements, OCR for Indic scripts is still hard because of things 

like the wide range of writing styles, the complicated way characters are put together, 

and the fact that many scripts have modifiers and diacritics. There is still study going 

on in the field. 

1.1.2 Previously used techniques 

 
Modern techniques for Optical Character Recognition (OCR) for Indic writing usually 

use deep learning methods, which have made OCR systems much better than they 

were with older methods. Some of these strategies are: 

Convolutional Neural Networks (CNNs): CNNs have been used successfully in optical 

character recognition (OCR) systems to recognise characters and words. They are very 

good at processing pictures because they can automatically and adaptively learn how 

features are arranged in space. 

Recurrent Neural Networks (RNNs): OCR sequence recognition jobs often use RNNs, 
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especially Long Short-Term Memory (LSTM) networks. They are good at dealing 

with text data sets that have different lengths. 

Connectionist Temporal Classification (CTC): CTC is a type of loss function that is 

often used in OCR jobs to train sequence recognition models like RNNs. It's especially 

helpful for jobs like OCR where the timing of the input sequence doesn't match the 

timing of the output sequence. 

Transformers: Since the "Attention is All You Need" paper came out, transformer 

models have also been used for OCR jobs. These models, which include popular 

variants like BERT, GPT, and T5, have shown state-of-the-art performance on a range 

of natural language processing tasks and are now being used for OCR as well. 

Transfer Learning: In this type of learning, a model that has already been trained is 

used to start a new job. This method has been especially useful in deep learning, where 

models trained on large-scale tasks (like image classification on ImageNet or language 

modelling on a large corpus of text) can be fine-tuned for a specific task (like OCR for 

a specific script) with a smaller amount of data. 

Data Augmentation: Techniques like rotation, scaling, translation, and adding noise to 

data have been used to increase the amount of training data and make OCR systems 

more reliable. 

From start to finish: Instead of training different models for each step of the OCR 

process, such as character segmentation, character recognition, and word formation, 

some new OCR systems train a single model to do the whole job from start to finish. 

 

1.2 History of Odia Language 

 
Odia, also called Oriya, is an Indo-Aryan language that is mostly spoken in the Indian 

state of Odisha, which is in the east. It is now one of the official languages in India, 

which shows how important it is to the country's culture and society. Odia is also 

spoken in states other than Odisha, where it is recognised as a minority language. This 

adds to the variety of languages spoken in the area. 

The Odia language has a rich and varied literature history that goes all the way back to 

the 10th century. This long literature history is full of important works that cover a 

wide range of genres and styles and capture the social and cultural spirit of the area at 

different times. So, the writing in Odia is a lively record of how the region's history 

and culture have changed over time. 
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Odia is still the most important language in Odisha and the main way people talk to 

each other. The language is used in every part of life in the state, from day-to-day talks 

to education, from the media and politics to education. It is the language that binds the 

33 million people who live in Odisha together, giving them a strong feeling of 

community identity and a shared cultural heritage. 

Odia is more than just a collection of numbers. As a living language, it keeps getting 

better and changing, just like the society it reflects. It is an important part of Odisha's 

character because it is not only a way to communicate but also a way to keep and pass 

on the state's rich cultural heritage. So, Odia is a strong sign of regional pride, a 

reminder of the area's rich history, and a live link between the past and the present.The 

history of the Odia language goes all the way back to ancient times, and it is usually 

broken up into a few different periods: 

Old Odia, from the 10th century to 1300: The Magadhi Prakrit and Ardha Magadhi 

Apabhramsa languages gave rise to Old Odia, which is also called Proto-Odia. 

Inscriptions like the Charyapadas, which are Buddhist songs from the 10th century 

AD, are the oldest evidence of the Odia language. The way the Odia script changed 

from the Brahmi script gave the language a unique look. 

Early Middle Odia (1300–1500 AD): During this time, Odia began to have a long and 

rich literature history. During this time, Sanskrit had a big effect on Odia literature. 

Many artists and writers used Sanskrit words and styles in their writing. Odia writing 

was helped by Balaram Das, Jagannatha Das, Ananta Das, Jasobanta Das, and 

Achyutananda Das, who were all part of the Panchasakha group of poets. "Dandi 

Ramayana," a version of the Ramayana by Balaram Das, and "Bhagabata" by 

Jagannatha Das are two of the most important works from this time. 

Middle Odia (1500–1700 AD): During this time, prose writing grew. During this time, 

books on Odia language like "Sarbasara Udgira" by Purnachandra Bhanj were written. 

Another important thing that was done for the Odia language was to make a dictionary 

called "Ardha Magadhi Sabdakosha." Also, new types of writing like short stories and 

articles began to appear during this time. 

Late Middle Odia (1700 AD - 1850 AD): During the Late Middle Odia time, the 

language and writing system of Odia were improved, and poetry, prose, and drama 

grew in popularity. Upendra Bhanja, Kabi Samrat, and Dinakrushna Das were well-
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known poets during this time, and their works added to Odia writing. "Lavanyavati" 

by Upendra Bhanja and "Rasakallola" by Dinakrushna Das are two important works 

from this time. 

Modern Odia (after 1850 AD): During the Modern Odia time, when the British were 

in charge of India as a colony, the language changed and improved in important ways. 

Fakir Mohan Senapati, who is known as the "father of modern Odia literature," was a 

very important part of how the language changed at this time. He helped bring the 

Odia language back to life and develop it as a way to teach. "Utkal Deepika," the first 

Odia newspaper, came out in 1866, and "Bodha Dayini," the first Odia magazine, 

came out in 1861. Modern Odia writing is richer because of the work of Radhanath 

Ray, Madhusudan Rao, and Gangadhar Meher. 

With its long and varied past, the Odia language has gone through many changes that 

mirror the social, cultural, and political changes in the area where it came from. As of 

now, this language is the heartbeat of the tongue of millions of people. Its rich literary 

history lives on in many different ways, from classic books to modern newspapers, 

from radio programmes to TV and movie stories. People are working together to not 

only keep this language and its rich cultural history alive, but also to help it grow and 

become more common. 

The Odia language is written in a unique way called the Odia script. This script is a 

branch of the Brahmi script, and it is the basis of how the Odia language is written. 

The script is made up of 64 letters that include vowels, consonants, and diacritical 

marks. One of the things that makes the Odia language stand out is its curved lines and 

intricate details, which give it a unique look. 

Odia has a lot of different forms, which makes it a very diverse language. The way 

people in the main city, Bhubaneswar, talk has an effect on the standard dialect. One 

interesting thing about the language is that it has a lot of Sanskrit in it. Because of this, 

it has a lot in common with other Indo-Aryan languages like Hindi and Bengali. 

The Odia language has left a deep cultural mark on the region's art and writing. 

Odisha, where this language was first spoken, is a place with a lot of cultural energy, 

as shown by its melodic musical practises, expressive dance forms, and deep writing. 

Festivals like the Rath Yatra in Puri and the Durga Puja show how rich and diverse the 

culture is in the area. But Odia isn't as well known around the world as Hindi or 
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Bengali, even though it has a lot of cultural significance and is well known in its own 

area. 

When it comes to how it is written, the Odia language uses the Odia script, which is 

made up of 64 different letters. This writing has vowels, consonants, and diacritics. Its 

rounded forms, curved lines, and subtle details make it stand out. 

As a Brahmic script, the Odia script is related to the old Brahmi script of India. The 

script is written in the usual left-to-right direction and has a unique circular shape and 

curvilinear patterns. 

Odia is written by putting together consonants and vowels to make syllables, which 

are then put together to make words. This language's literary history goes all the way 

back to the 10th century, and the area has been home to many famous artists and 

writers over the years. 

As with many other languages, the written form of Odia has changed as society has 

changed, reflecting changes in how the language is used, how it is spelt, and how it is 

put together. Odia writing in its modern form includes a wide range of genres, from 

evocative poetry to gripping fiction and insightful non-fiction. It is a big part of 

Odisha's cultural heritage. 
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Fig 1: Odia Vowels and Consonants 

. 

1.3 Odia OCR and challenges faced 
 

Optical Character Recognition (OCR) has a lot of promise for the Odia language, 

especially in helping to digitise, save, and make available a lot of content written in 

the Odia script. Odia is an Indian language that is mostly spoken in the state of 

Odisha. It has millions of people and a rich literary history. There are many ways in 

which OCR can help the people who speak Odia. 

 

First of all, OCR has the ability to make a big difference in preserving cultural 

artefacts. By digitising and protecting Odia literature, historical texts, and other 

important documents, OCR makes sure that this priceless cultural treasure does not 

get damaged or destroyed over time and is lost. This process is necessary to protect 

cultural aspects that are an important part of the Odia-speaking community's identity 

as a whole. 

 

Also, OCR's ability to improve accessibility can help a wider audience by making 

Odia text easy to find for people who have trouble seeing or reading. OCR has the 

ability to help researchers, students, and professionals who work with Odia content by 

making it easier to find information quickly and easily. This could lead to more 

intellectual and cultural exchanges on a larger scale. 

 

Also, OCR's features make it possible for natural language processing (NLP) and 

machine translation (MT) apps for Odia to get better. These changes could lead to 

improvements in machine learning and artificial intelligence that can help the people 

who speak Odia in many ways. 

 

Even with these benefits, using OCR with the Odia language is not without problems. 

The Odia script is hard to read because it has a unique set of characters and diacritics 

that make it hard for OCR engines to tell the difference between the different 

characters. Text written by hand in Odia is even harder to read because people have 

different writing styles that don't always match the standard forms of characters. 
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Also, the lack of large, high-quality labelled datasets for training OCR models for the 

Odia language could slow down the development of accurate and efficient OCR 

systems. Lastly, the job is made even more difficult by the fact that Odia text can be 

written in different fonts and sizes. 

 

To solve these problems, strong OCR algorithms need to be made that can handle the 

complexities of the Odia script and the differences in handwriting, styles, and sizes. 

OCR performance for the Odia language can be improved by using cutting-edge 

methods like deep learning and transfer learning. This change can lead to better 

digitization, preservation, and access to Odia material, which is a big step forward for 

both the preservation of languages and the development of technology. 

 

1.4 Transfer Learning  

 
In the fields of machine learning and deep learning, transfer learning is a common 

method where a model that has already been trained is used as a starting point for a 

similar job. Transfer learning is based on the idea that if a model is trained on a big 

enough and general enough set of data, it can be used as a general model of the visual 

world or of how to understand language (depending on the data it was trained on). 

Then, you can use these learned feature maps instead of having to start over by 

training a big model on a big dataset. 

Pre-training: A large-scale sample is used to train a deep learning model. Models are 

often trained on the ImageNet dataset, which has over 14 million pictures and 1000 

classes, before they are used to classify images. For tasks that involve processing 

natural language, models are often trained on a big body of text, like the whole 

Wikipedia. 

Transfer learning is when a model that has already been trained is used to do a certain 

job. This can be done by using the pre-trained model as a fixed feature extractor or by 

using the data from the job to fine-tune the weights of the pre-trained model. 

Fine-tuning: There are different ways to do fine-tuning, depending on the job and how 

much data is available. If the data set is small, it might be best to only fine-tune the 

last few layers of the model. This is because early layers often catch generic features 

(like edges or colour blobs in images or common words in text), while later layers 
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capture more task-specific features. If there are a lot of data points, more layers can be 

fine-tuned, or even the whole model. 

One of the best things about transfer learning is that it lets us train deep learning 

models on specific tasks even when we only have a small amount of labelled data. 

This is done by using the information that has been learned by models that have 

already been trained. When compared to training the model from scratch on the small 

dataset, this can make a big difference in how well it works. 

Transfer learning is a busy area of study, and researchers are always coming up with 

new techniques and methods. For example, self-supervised learning methods, in which 

models are pre-trained on tasks that don't need labelled data, are becoming more 

popular as a way to pre-train models that can then be fine-tuned with transfer learning. 

 
1.5 Literature Review 

 
A robust body of research has sought to improve the recognition accuracy of 

handwritten Odia characters, a central feature of the Odia language, using a variety of 

deep learning methodologies. 

Research into handwritten Odia character recognition has seen significant progress 

over the past decade, as evidenced by a series of studies that have used deep learning 

methodologies to achieve high accuracy rates. 

The study by Samantaray and Jena (2021) [1], stands out as a seminal piece in this 

domain. Employing a convolutional neural network (CNN) model on a dataset of 

1,200 handwritten character images, the researchers reported high accuracy rates. 

Their success substantiated the effectiveness of deep learning approaches in this 

context and paved the way for ensuing research. 

Building on this foundational work, Mohanty and Jena (2021) [2] explored the 

potential of transfer learning in their study, "Odia Handwritten Character Recognition 

using Convolutional Neural Network and Transfer Learning." The dataset for this 

research was notably larger, consisting of 2,000 handwritten images. Their work 

underscored how transfer learning can further refine recognition accuracy. The same 

researchers expanded this approach to numeral recognition in a separate study [3], 

"Handwritten Odia Numeral Recognition using Convolutional Neural Network and 

Transfer Learning," achieving equally promising results. 
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While the focus on CNN models and transfer learning was gaining traction, alternative 

methodologies were also being explored. One such innovative approach was proposed 

by Mohanty and Pattnaik (2021) in their paper [4]. Their research showcased the 

potential of combining CNN and Support Vector Machine (SVM) classifiers in a 

hybrid model to enhance recognition accuracy. 

A new dimension was added to this field of research by Nayak and Jena [5] (2021) in 

their paper, "Handwritten Odia Character Recognition using Convolutional Neural 

Network with Attention Mechanism." They integrated an attention mechanism into the 

CNN model, allowing it to focus on crucial features of handwritten characters, 

effectively boosting performance. Similarly, the use of a Feature Pyramid Network 

(FPN) in conjunction with transfer learning was proposed by Mohanty and Jena (2021) 

[6], again demonstrating improved recognition accuracy. 

Data augmentation was also found to be a significant factor in enhancing the accuracy 

of the models. This was highlighted by Swain and Sahu (2020) [7] in "Handwritten 

Odia Numeral Recognition using Convolutional Neural Network with Data 

Augmentation." By increasing the size of the dataset, the researchers were able to 

achieve higher recognition accuracy. This strategy of overcoming data limitations was 

also employed by Nanda and Jena (2020) [8], who applied transfer learning in their 

research, "Recognition of Handwritten Odia Characters using Convolutional Neural 

Network and Transfer Learning with Limited Data." 

The aforementioned studies reflect the broad spectrum and depth of research in this 

domain. Other researchers, including Panda and Pradhan (2020) [20], Swain and Sahu 

(2019) [21], Mohanty and Jena (2019) [22], Kumar and Jena (2019) [23], Mishra and 

Sahu (2019) [24], and others, have continued to build upon these methodologies. Their 

research has led to a diverse array of sophisticated and inventive approaches for 

handwritten Odia character recognition. 

One of the pioneering studies in this field, "Handwritten Odia Character Recognition 

using Wavelet Transform and Multilayer Perceptron" by Das and Mahapatra (2014) 

[19], utilized wavelet transform for feature extraction and a multilayer perceptron 

neural network classifier. Their high accuracy rates served as a testament to the future 

potential of these methodologies and techniques that have now become standard in the 

field. 
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In the domain of Optical Character Recognition (OCR) for the Odia script, an array of 

studies have taken innovative approaches to tackle unique challenges, such as 

managing connected characters and modifiers inherent to complex Indic scripts. Some 

of these works include: 

Parhi and Majhi (2012) in their paper [18] put forth a method involving a zone-based 

feature extraction technique, leveraging a combination of statistical and structural 

features gleaned from different character image zones for recognizing handwritten 

Odia characters.  

Taking a different approach, the same authors, Parhi and Majhi (2014) [17], 

demonstrated in their study titled "Handwritten Odia Numerals Recognition with 

Feedforward Neural Network" how a Feedforward Neural Network (FNN) can be 

effectively applied for recognizing handwritten Odia numerals, achieving a reported 

recognition accuracy of over 90%.  

While not directly dealing with Odia script, Pal and Chaudhuri's work (2004), [16] 

provided insights potentially applicable to the Odia context, given the shared 

characteristics between Devanagari and Odia scripts. Their two-stage classification 

approach, which employed features based on shadow coding and gradient, showed 

potential for adaptation for Odia script OCR. 

In a more recent study, Rakshit [15] et al. (2019) proposed a deep learning-based 

methodology for document image recognition in five Indic scripts, including Odia, in 

their paper "Deep learning-based document image recognition software for five Indic 

scripts." The approach combined the Connectionist Text Proposal Network (CTPN) 

and Attention-based Encoder-Decoder LSTM, offering a promising route for Indic 

script recognition. 

Pivoting to a deep learning approach specifically for offline handwritten Odia 

numerals, Sahu, Patnaik, and Acharjya (2019) [14] showcased the use of 

Convolutional Neural Networks (CNNs) for feature extraction and a Multilayer 

Perceptron (MLP) for classification in their paper "Offline Odia Handwritten Numeral 

Recognition: A Deep Learning Approach." 

Similarly focusing on the recognition of handwritten Odia characters, Panda, Dash, 

and Jagadev (2019) [13] proposed the use of a Convolutional Neural Network in their 
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paper "Odia Handwritten Character Recognition Using Convolution Neural Network," 

reporting an impressive accuracy of 98.3%. 

A distinct approach was presented by Priyadarshini and Majhi (2015) in their paper 

[11] They demonstrated the application of Support Vector Machines (SVM) for the 

recognition of isolated handwritten Odia characters and numerals. 

Mohanty, Patra, and Majhi (2016) [10], in their paper "An Approach towards Feature 

Extraction of Odia Handwritten Characters," put forth a unique approach to feature 

extraction for Odia handwritten characters, employing distance transform and 

morphological operations. 

Lastly, Sahu, Patnaik, and Satapathy (2015) [9] undertook a comparative analysis of 

various feature extraction techniques and classifiers for the recognition of handwritten 

Odia numerals in their study "Performance Analysis of Odia Handwritten Numeral 

Recognition Techniques." 

In summation, these collective studies illustrate the dynamic progression of research in 

the realm of handwritten Odia character recognition. They reaffirm the potential of 

deep learning methodologies for complex pattern recognition tasks and provide a 

wealth of insights to inform future research in this exciting area. 

 

1.6 Research Gaps 

 
Odia Optical Character Recognition (OCR) study still has to deal with a lot of 

problems and gaps that need to be filled to make it more useful and effective. There is 

a big hole because there aren't enough complete and varied records. For Odia OCR 

models to show that they are reliable, they need large datasets that include a wide 

range of writing styles, fonts, and amounts of noise. 

 

Even though there have been improvements in recognising printed Odia characters, 

very little is known about recognising handwriting Odia characters. This adds more 

problems, such as differences in how people write, problems with how the letters line 

up, and problems with how the letters are separated. To solve these problems, research 

activities need to be more focused. 

 

This field is also hard because the Odia script is hard to read. Since the Odia script has 
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a lot of complex ligatures (combinations of characters) and modifiers, more in-depth 

study is needed to help OCR systems recognise these complicated parts of the script. 

 

Another thing that needs to be looked at is how well OCR models work in real-world 

situations. Even though many studies try their models in controlled settings, real-world 

applications often have to deal with a lot of things that are hard to predict, like low-

quality scans, different lighting conditions, and texts that are physically breaking 

down. Because of this, studies should try to test their models in these real-world 

situations to make sure they are strong and reliable. 

 

Another study gap is that not much is known about transfer learning in Odia OCR. 

Even though this method has been used a lot in other areas, it hasn't been used to its 

full potential in Odia OCR, which suggests a good direction for future study. Last but 

not least, Odia OCR needs strong evaluation measures and benchmark datasets as soon 

as possible.  

 

 

 

1.7 Research Objective 

 
The main goal of the study is: 

 

1. To create strong and efficient Optical Character Recognition (OCR) algorithms for 

the Odia language that can correctly recognise and digitise content written in different 

styles, scripts, and fonts. 

 

2. To deal with the unique complexities of the Odia script, such as its unique set of 

characters, diacritics, and complex ligatures, which may be hard for current OCR 

algorithms to handle. 

 

3.To make OCR systems that can read handwriting Odia text correctly, taking into 

account the many different ways people write. 
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CHAPTER 2 

DEEP LEARNING APPROACHES  AND THE 

DATASET USED FOR ODIA HANDWRITTEN OCR 

 

2.1 Introducion 

This chapter aims to introduce and elucidate the core computational methodologies 

employed in this research, specifically focusing on Convolutional Neural Networks 

(CNNs) and the Tesseract Optical Character Recognition (OCR) system. Both of 

these methodologies, while distinct in their mechanics, share a common objective: the 

accurate identification and classification of handwritten Odia characters. The chapter 

will further delve into the critical role of the dataset that has been used for training 

and testing these models. A comprehensive understanding of these components is 

paramount to appreciate the nuanced computational tasks involved in handwritten 

character recognition and the specific challenges associated with Odia script. 

2.2 Dataset 

 
The dataset used is one that was made for Odia character recognition and is open to 

the public. There are a total of 13,500 pictures in the dataset. Each image shows one of 

the 45 different Odia characters. Each character group has 300 unique images. Each 

image was written by a different writer to show a range of writing styles and 

personality traits. This addition to the "ODIA Hand Written Dataset" is an attempt to 

add more variety to the original dataset and make it bigger. 

Different image processing and data addition methods were used on the original 

dataset to make the augmented dataset. Some of these methods were random scaling, 

rotation, translation, and adding noise. By making these changes, the dataset got a 

wider range of changes that mimicked different writing situations and styles. The goal 

of this process was to make the dataset more representative and suitable for training 

and testing machine learning models for Odia letter recognition tasks. 

The enhanced dataset is split into three subsets: a training set, a validation set, and a 

testing set. The machine learning models are trained with the help of 11,250 pictures 

in the training set. The validation set is made up of 1,125 images, which make it 

possible to test how well the model works and tune the hyperparameters during the 
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development process. Last, the testing set is made up of 1,125 pictures that are used to 

give the trained models a final, unbiased evaluation. This makes it possible to try and 

verify the models' ability to generalise on data they haven't seen before. 

The original dataset was carefully worked on using different image processing and 

data addition methods to make the augmented dataset. The goal of using these 

methods, such as random scaling, rotation, translation, and adding noise, was to make 

the collection more varied and interesting. By making these changes, the dataset now 

includes a bigger range of different writing styles, orientations, and noise patterns. 

This process is important for making a set of images that can be used to train and test 

machine learning models that are more accurate and complete. 

The dataset is split into three different subsets: training, validation, and testing sets. 

This makes it easier to build and test models. There are 11,250 images in the training 

set, which is a lot. These images are used to teach machine learning models. The 

validation set, which is made up of 1,125 images, is a key part of figuring out how 

well the model works during the creation process. This subset lets the hyperparameters 

be tuned, a model be chosen, and the model's ability to generalise be tested. Last, the 

testing set, which is made up of 1,125 pictures, is used to evaluate the trained models 

without bias and give a final score. This makes it possible to test the models' ability to 

recognise handwritten Odia letters on data they haven't seen. 

 

2.3 Using CNN model to predict Odia OCR  
 

The Convolutional Neural Network (CNN) model used adheres to a conventional 

hierarchical framework, commencing with an input layer, succeeded by convolutional 

layers, pooling layers, a dropout layer, and ultimately culminating with fully 

connected layers that segue into the output layer. 

 

The initiation of the network involves the reshaping of input data to conform to the 

network's input prerequisites, i.e., a grayscale image of dimension 96x96 pixels, and a 

single channel. To normalize the data and enhance computational efficiency, the pixel 

intensities are scaled down to fall within a range of 0 and 1 by dividing by 255. 

 

The convolutional layers are instrumental in the extraction of salient features from the 
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input images. The model harnesses two convolutional layers—the primary layer 

incorporates 30 filters of 5x5 dimension, and the secondary layer employs 15 filters of 

3x3 size. The 'ReLU' (Rectified Linear Unit) activation function introduces non-

linearity into the model, enhancing its ability to learn complex patterns. 

 

Post the extraction of image features, the max pooling layers reduce the 

dimensionality of these feature maps while diligently retaining the most significant 

information encapsulated by the maximum values. The max pooling operation in the 

model uses a 2x2 window size. 

 

 

Fig 2: Working of CNN  

 

To circumvent overfitting and promote a more generalizable model, a dropout layer is 

incorporated which randomly nullifies 40% of the neurons during each training 

iteration. This introduces an element of randomness and forces the network to learn 

more robust and versatile features. 

 

Before transitioning to the fully connected layers, the high-dimensional feature maps 

are flattened into a one-dimensional vector via the flatten layer, simplifying the data 

structure without loss of information. 

 

Subsequently, two dense (or fully connected) layers follow the flatten layer, the first 

consisting of 128 neurons and the second comprising 50 neurons. Both these layers 
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employ the 'ReLU' activation function. 

 

The final output layer is also a dense layer with neuron count equivalent to the number 

of classes in the dataset (10 in this instance). It uses the 'softmax' activation function, 

which outputs a probability distribution over the classes, effectively designating the 

most likely class. 

 

The model is compiled using the 'adam' optimizer—a popular choice for its adaptive 

learning rate—and the 'categorical_crossentropy' loss function, well-suited for multi-

class classification tasks. The model's performance is evaluated based on accuracy. 

The model undergoes training for 3 epochs with a batch size of 100, and upon 

completion, the model is stored as a .h5 file for future use. The final test loss and 

accuracy are printed for evaluation purposes, providing insights into the model's 

performance. 

 

The dataset used for this research provides a significant volume of annotated data, a 

critical asset for the successful training of deep learning models. Deep learning 

models, such as Convolutional Neural Networks (CNNs), excel in their ability to 

discern intricate patterns and features when trained with extensive datasets. In the 

context of Optical Character Recognition (OCR) for the Odia language, these models, 

when nurtured with the substantial Odia handwriting dataset, have the potential to 

effectively recognize and categorize handwritten Odia characters. 

 

Crucially, pre-training these models on larger datasets, such as ImageNet or COCO, 

before fine-tuning them on the Odia handwriting dataset, offers the promise of 

significantly boosting their performance. This method allows the models to initially 

learn and understand complex and generalized features from the larger datasets and 

then adapt to the specifics of the Odia script through the fine-tuning process. This way, 

the abundant annotated data in the dataset aids in facilitating the in-depth training of 

these deep learning models, thereby empowering them to achieve impressive accuracy 

rates in recognizing Odia characters. 
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Fig 3: Working of Transfer Learning 

 

A challenge that frequently arises in OCR development for languages like Odia, which 

are less commonly spoken compared to languages like English, is the lack of 

comprehensive, fully annotated datasets specific to the language. This is where the 

concept of transfer learning plays a critical role. Transfer learning involves the use of 

pre-trained models that have been initially trained on larger, more diverse datasets. 

These pre-trained models grasp generic features and patterns from large-scale datasets 

like ImageNet, which can then be adapted to the specifics of the Odia handwriting 

dataset during a fine-tuning process. This strategy allows for an efficient learning 

process and the recognition of handwritten Odia characters, even when the amount of 

language-specific data is relatively limited. 

 

Transfer learning offers several benefits, with one of the primary ones being its ability 

to enhance the generalization capabilities of OCR systems. The process of pre-training 

models on large and diverse datasets equips them with generalized features applicable 

to a wide range of datasets and writing styles. This exposure to an array of writing 

styles, fonts, and variations imparts a robust understanding of the underlying patterns 

in characters to the models. When these models are then fine-tuned on the Odia 

dataset, they demonstrate an improved capability to handle a diverse range of 

handwriting styles and variations that may not have been present in the original Odia 

dataset. This enhanced generalization allows the OCR system to accurately recognize 

Odia characters in real-world scenarios, thus dealing effectively with variations or 

styles that were not explicitly part of the training dataset. 
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2.4 Using Tesseract pre-trained Odia dataset to predict Odia OCR 

 
Tesseract is a well-known open-source OCR (Optical Character Recognition) engine 

made by Google. It supports many languages, including Odia, which is spoken mostly 

in the Indian state of Odisha. The Odia OCR model is built around this engine, which 

is based on the structure of LSTM (Long Short-Term Memory) neural networks. 

LSTM networks, which are a type of Recurrent Neural Network (RNN), are known for 

their ability to record long-range dependencies in sequential data. Since language 

processing tasks are also done in a sequential way, this is a good fit for them. 

 

The Odia OCR model that is already built into Tesseract has been carefully trained on 

a large set of printed Odia text. During this intensive training, the model has 

repeatedly shown a high level of accuracy, with a rate of over 90% across a number of 

benchmark datasets. This amazing level of accuracy shows that the model is good at 

recognising and putting together printed Odia text. 

 

The Tesseract Odia OCR model is very good at recognising written Odia text. It does 

this by using a number of different techniques, such as character segmentation, feature 

extraction, and classification using neural networks. Character segmentation is the 

process of separating each character in a picture. This is an important step in being 

able to recognise each character correctly. After this segmentation, feature extraction 

is done to pull out meaningful features from each segmented character that show what 

makes them special. The model then uses neural networks, in particular an LSTM 

architecture, to place recognised Odia characters in their correct groups. 

 

This model is a strong and useful tool for recognising printed Odia text. It has a high 

rate of accuracy and can do a lot of different things. This makes it a good starting point 

for making more progress in the field of Odia text identification. Researchers and 

practitioners are urged to use the Tesseract Odia OCR model as a starting point and 

build on it using techniques like transfer learning. Transfer learning uses the Tesseract 

Odia OCR model's information and learned representations to improve the 

performance of custom models for specific tasks or domains. By using the Tesseract 

model as a starting point, developers can speed up their work to make Odia text 
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recognition systems more accurate and efficient, which will lead to progress in this 

field. 

 

 

Fig 4: Working of Tesseract for OCR 

The Tesseract Odia OCR model is good at recognising written Odia text in a wide 

range of font styles, sizes, and orientations. This makes it more flexible and useful in 

real-world situations. Also, this model has a built-in language detection feature that 

allows the language of the processed text to be identified automatically before the 

recognition process starts. This trait makes the model's OCR process more efficient 

and accurate as a whole. 

 

The Tesseract Odia OCR model is very useful for jobs that need to recognise Odia text 

because it has a high accuracy rate and can adapt to different font styles, sizes, and 

orientations. Also, its language recognition feature makes it even more flexible and 

useful by letting it process text in multiple languages correctly. 

 

This model is a strong and useful tool for recognising printed Odia text. It has a high 

rate of accuracy and can do a lot of different things. This makes it a good starting point 

for making more progress in the field of Odia text identification. Researchers and 

practitioners are urged to use the Tesseract Odia OCR model as a starting point and 

build on it using techniques like transfer learning. Transfer learning uses the Tesseract 

Odia OCR model's information and learned representations to improve the 

performance of custom models for specific tasks or domains. By using the Tesseract 

model as a starting point, developers can speed up their work to make Odia text 

recognition systems more accurate and efficient, which will lead to progress in this 

field. 
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2.5 Adopted methodology 

The realm of Optical Character Recognition (OCR), especially for less commonly 

spoken languages like Odia, holds immense potential for advancement through the 

synergistic integration of diverse OCR techniques. Among the numerous approaches 

to be considered in this synthesis, a particularly promising starting point lies in the 

utilization of Tesseract's pre-trained Odia OCR model. Tesseract, a widely recognized 

open-source OCR engine that Google developed, provides this model, which has 

demonstrated exceptional proficiency in recognizing printed Odia text. Intricately 

designed around the Long Short-Term Memory (LSTM) neural network architecture, 

this model is well-equipped to handle the complexities of long-range dependencies in 

sequential data, a crucial aspect in OCR. 

The LSTM network model's impressive proficiency primarily originates from its 

extensive training process that leverages a substantial and diverse dataset comprising 

printed Odia text. This thorough training procedure enables the model to exhibit a high 

accuracy rate when recognizing printed Odia text, making it a valuable asset in the 

OCR field, particularly for the Odia language. 

 

 

Fig 5: Proposed methodology for OCR 
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In tandem with leveraging pre-trained models, deep learning models, specifically 

Convolutional Neural Networks (CNNs), play an instrumental role in optimizing the 

character recognition process. CNNs  have a reputation for their superior capacity to 

learn intricate patterns and extract meaningful features from large datasets. This 

capability makes them exceptionally well-suited for improving the task of recognizing 

and categorizing handwritten Odia characters, thereby enhancing the overall OCR 

process. 

Transfer learning is a powerful method that can greatly improve the performance of 

these deep learning models. It can be used to make these models even smarter. 

Transfer learning is based on the idea that you can use the knowledge and 

representations you learned from pre-training on bigger datasets, like the one Tesseract 

used for its Odia OCR model. This method works especially well when there aren't 

many big, annotated datasets, which is often the case for languages like Odia that 

aren't spoken as often. By using transfer learning, it is possible to get around this 

problem and make OCR systems better at recognising Odia text quickly and correctly. 

When these methods are used together, there are good chances that OCR tools for the 

Odia language will get better and move forward. 

 

2.6 Concluding Remarks 

 

In the end, the chapter gives a detailed look at the CNN and Tesseract OCR deep 

learning models, which are the core of this study. Through this investigation, we've 

learned more about how they work, their strengths, and any possible weaknesses. 

Also, the chapter emphasises the importance of the dataset, pointing out how 

important it is for training models and judging their success. The decisions made for 

the study's methods, which are discussed in this chapter, show that the researchers 

tried to solve the difficult problem of recognising handwritten Odia characters by 

using the most effective and reliable methods available. This background information 

will help analyse the results of future experiments and give a better picture of what the 

results might mean. 

 

 



  
23 

CHAPTER 3 

Exploring the Methodology: From Image Processing to Character 

Recognition 

 
3.1 Introduction 

 

In this chapter, we explain in depth how this study was done in order to create an 

effective Optical Character Recognition (OCR) system for the Odia language. The 

goal of this part is to give you a full understanding of the different methods and 

techniques we will use to reach our research goals. The process has several steps: 

resizing and converting images to grayscale, adding to images, cleaning data, and 

finally putting in place a model that uses both a Keras model and Tesseract OCR to 

recognise characters. Each step is an important part of the OCR process as a whole, 

and when put together, they are the backbone of this study project.  

 

3.2 Image Resizing and Grayscale conversion 

 
The method used in this study is a series of image processing steps, such as resizing 

the images and changing them from colour to grayscale. This methodical process is 

done with a script that uses the Python Imaging Library (PIL), which is known for 

being able to open, change, and save many different picture file formats.  

 

At the start of the process, the script gives each of the pictures to be processed a size 

that has already been set. This uniform size makes sure that all processed pictures have 

the same dimensions. This gets rid of any differences in size that could affect later 

analyses.  

 

After the size is set, the script starts to make a complete list of all the pictures in the 

directory. This is done by carefully going through the whole directory, including all of 

its subdomains. This complete list is the ground for the next step, which is an iterative 

process in which each image in the directory is processed one at a time.  

 

The iterative processing starts with each picture being opened in grayscale mode, 

which is shown by the symbol 'L'. The grayscale conversion is a key step in making 

the picture easier to understand. It takes the colour data and turns it into different 
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shades of grey. By getting rid of the problems that come with colour information, this 

grayscale transformation makes it easier to do other image processing jobs. 

 

After converting each picture to grayscale, the script starts the process of resizing each 

image. The ImageOps module from the PIL, which is known for its large library of 

pre-defined image processing operations, is used to do this action. Among these, the 

ImageOps.fit method is used. This method can change the size of an image, change its 

aspect ratio, and, if necessary, crop the image or add padding of a certain colour to 

make sure the image fits the given measurements. One of the best things about this 

method is that it keeps the image's original aspect ratio. This keeps the image from 

being distorted or stretched during the resizing process. 

 

After the photos have been resized and changed to grayscale, they are put in a 

directory that has already been set up. The script is built around its ability to keep the 

original hierarchical structure of folders and subdirectories. This keeps a collection of 

processed images organised in a way that matches the structure of the original dataset.  

 

This order of resizing and changing to grayscale is applied to every picture in the 

directory and any subdirectories that are inside it. Whenever a picture is saved, the 

script creates a new, unique identifier for it by combining the original subdirectory 

name with an index number. This naming scheme keeps a reference to the image's 

original position and order, which keeps the original dataset's integrity in the 

processed collection. 

 

This methodological technique makes sure that all images are processed in the same 

way and in the same way for all images. This lets other tasks or analyses be done on a 

standard, well-organized set of processed images.  

 
3.3 Image Augmentation 

 
The subsequent phase in our research methodology focuses on image augmentation, a 

fundamental technique extensively utilized in machine learning and computer vision 

fields. Image augmentation entails generating new and modified versions of existing 

images, thus augmenting the size and diversity of a dataset. This technique is 

instrumental in enhancing the performance of machine learning models, as these 



  
25 

models necessitate diverse and extensive data for effective learning. 

 

To accomplish this, we employed the TensorFlow library's Keras API, specifically its 

`ImageDataGenerator` class. This class enables real-time data augmentation by 

implementing a series of random transformations on each image in the dataset. The 

resultant effect is an expanded and more diverse dataset. The transformations specified 

in our script encompass rotation, width and height shift, shear transformation, 

zooming, and horizontal flipping.  

 

File paths and directories, integral to handling an extensive collection of images 

organized into directories and subdirectories, were managed using the `os` module. 

Our script initiates by designating the source directory containing the original images 

and the destination directory, where the augmented images will be stored.  

 

Following this setup, the script iterates through each subdirectory of the source 

directory. It mirrors the directory structure in the destination directory by creating 

corresponding subdirectories. Within each source subdirectory, it further iterates over 

each image. Each image is loaded, converted to a NumPy array, and then reshaped to 

incorporate an extra dimension for the batch size.  

 

Utilizing the `datagen.flow` function, we generate batches of augmented images. This 

function is responsible for saving the newly generated images to the corresponding 

subdirectory in the destination directory. To maintain reference to the original image, 

each new image is assigned a prefix indicating its source subdirectory. This process 

continues until each original image has yielded 20 new images.  

 

Upon the completion of the augmentation process for a specific subdirectory, a 

confirmation message is displayed on the console, signalling the end of augmentation 

for that subset of images. The process is then repeated for each subsequent 

subdirectory until all images across all subdirectories have been augmented. Through 

this methodical and systematic approach, our script effectively enlarges and diversifies 

the image dataset, laying a solid foundation for more effective training of future 

machine learning models. 
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3.4 Data Pre-processing 

 
The third phase of our methodology involves data preprocessing, the objective of 

which is to transform an assortment of image files into a structured format conducive 

to machine learning algorithms.  

 

Our process commences by pinpointing the primary directory housing the image 

subdirectories. To eliminate potential bias in the model that could be inadvertently 

introduced by the order in which data is presented, we incorporate a shuffling process 

using the shuffle method from the Python's random library. This shuffling rearranges 

the subdirectories randomly, thereby contributing to a more unbiased model training 

process. 

 

Subsequent to the shuffling process, the script initializes two empty lists intended to 

accommodate the image data (denoted as train_data) and their corresponding labels. It 

then iteratively traverses each shuffled subdirectory, processing every contained image 

file. The processing routine involves opening each image in grayscale mode, 

converting it into a numpy array, and appending this array to the train_data list. 

 

Parallelly, we extract the label for each image from the image's filename, which is 

assumed to follow the 'label_otherinfo.jpg' format. This label is converted into an 

integer and appended to the labels list. This meticulous process of assigning labels 

ensures each image is associated with the correct class or category. 

 

Upon the successful collection of all images and labels, these lists are stored to disk as 

.npy files using numpy's save function. The .npy file format offers efficient storage 

and retrieval of the data, making it an ideal choice for our purposes. Importantly, this 

format ensures the data can be readily utilized by machine learning algorithms, 

simplifying subsequent steps in the machine learning pipeline. The product of this 

phase is a robust, well-structured dataset that is aptly primed for the next phase: model 

training. 

3.5 Character Recognition Using Keras and Tesseract OCR 

 
The refined script is designed with the explicit objective of enhancing recognition 

accuracy by simultaneously utilizing a Keras model and the Tesseract OCR to identify 
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characters captured from a live video feed via a webcam. The obtained predictions are 

then compared with a set of 'ground truth' labels, which are pre-loaded from a text file, 

to evaluate the accuracy of these predictions. 

 

The initial phase of the script involves the loading of requisite libraries, establishing 

the data format for Keras, setting the path for Tesseract, and initializing a pre-trained 

Keras model. This model serves as a key component in making predictions about the 

characters depicted in the webcam feed. 

 

To facilitate the prediction process, a 'keras_predict' function is constructed. This 

function primarily preprocesses an image before it is passed through the Keras model 

for prediction. The preprocessing involves converting the image to grayscale, resizing 

it, and adjusting its shape to align with the requirements of the Keras model. The 

predicted class is then identified based on which class receives the highest output from 

the model. 

 

Simultaneously, an 'ocr_predict' function, utilizing Tesseract OCR, makes a prediction 

on the given image. The image is processed by employing the Odia language model, 

as specified by '-l ori' in the Tesseract configuration. 

 

Next, a 'process_frame' function is introduced to handle individual frames from the 

webcam feed. This function preprocesses each frame, makes predictions on the 

character in the frame using both the Keras model and Tesseract OCR, and adds these 

predictions to lists for later comparison with the ground truth labels. 

 

As the main loop of the program executes, the webcam is activated, and the ground 

truth labels are loaded from a text file. The script then enters a continuous cycle of 

reading frames from the webcam. It processes every 30th frame (defined by 

'frame_step') and makes predictions, while simultaneously displaying the video feed 

on the screen in a window titled 'Webcam Feed'. This cycle continues until the 'q' key 

is pressed. 

 

Lastly, upon the conclusion of the webcam feed or when 'q' is pressed, the webcam 

and the window are closed. The script generates two classification reports, comparing 
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the predictions made by the Keras model and Tesseract OCR respectively to the 

ground truth labels. These reports furnish detailed statistics about the performance of 

both prediction methods, providing crucial insights into their effectiveness and 

accuracy. 

 

3.6 Concluding remarks 

 
The methodology employed in this study provides a robust and comprehensive 

approach towards the development of an effective OCR system for the Odia language. 

By carefully resizing and converting images to grayscale, augmenting the images to 

increase the size and diversity of the dataset, preprocessing the data for machine 

learning algorithms, and finally utilizing a Keras model and Tesseract OCR for 

character recognition, we created a well-rounded and sophisticated process. The step-

by-step methods described in this chapter not only provide an understanding of our 

research process but also offer a replicable blueprint for similar future investigations. 

This detailed methodological approach, we believe, contributes significantly to the 

validity and reliability of our study findings, and it is our hope that it will inspire 

further research in this field.
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

This chapter broadly describes the performance parameters used to test the validation 

of the methodology. The performance of the model used here depends on five major 

parameters. These are recall, precision and  F-measure/F-score.  

 

4.2 Performance parameters 

 
Recall, precision, and F-measure or F-score are widely used metrics for evaluating the 

performance of classification algorithms, particularly in information retrieval and 

machine learning tasks. These metrics provide insights into different aspects of a 

model's performance, enabling a comprehensive evaluation of the model's capabilities. 

 

1. Recall (Sensitivity or True Positive Rate): Recall is a metric that assesses the 

model's ability to identify all relevant instances within the data. In other words, it 

measures the percentage of actual positives that were correctly identified by the 

model. Recall is calculated as the ratio of true positive results to the sum of true 

positive results and false negatives. A high recall indicates that the model has a low 

rate of false negatives, meaning it has correctly identified a large proportion of the 

positive cases. 

 

2. Precision (Positive Predictive Value): Precision, on the other hand, measures the 

model's ability to correctly identify only the relevant instances, i.e., the instances that 

the model predicted as positive are indeed positive. It is computed as the ratio of true 

positive results to the sum of true positive results and false positives. A high precision 

indicates that the model has a low rate of false positives, implying that the positive 

predictions made by the model are generally accurate. 

 

While both recall and precision are valuable metrics, they offer different perspectives 

on a model's performance. A model may have high recall but low precision if it tends 
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to classify too many instances as positive, resulting in a high number of false positives. 

Conversely, a model may have high precision but low recall if it is overly conservative 

in its positive classifications, leading to a high number of false negatives. Thus, to 

evaluate a model's performance accurately, both metrics should be considered. 

 

3. F-measure/F-score (Harmonic Mean of Precision and Recall): The F-measure or F-

score provides a single metric that combines precision and recall. It is the harmonic 

mean of precision and recall, meaning it gives equal weight to both metrics. The F-

score is particularly useful when you want a balance between precision and recall. A 

high F-score indicates that both precision and recall are high, suggesting that the 

model is robust in its performance. 

 

The F-score is calculated as 2 * (precision * recall) / (precision + recall). It is often 

more informative than the arithmetic mean of precision and recall as it penalizes 

extreme values. For instance, if either precision or recall is zero, the F-score will also 

be zero, reflecting the poor performance of the model. 

 

In essence, precision, recall, and F-score offer distinct yet complementary perspectives 

on a model's performance. These metrics are pivotal in the evaluation of machine 

learning and information retrieval systems, assisting researchers in identifying the 

strengths and weaknesses of their models and guiding future improvements. 

 

4.3 Performance 

 
In the initial phase, the original images in the ODIA dataset were resized to a uniform 

size of 96x96 pixels to ensure consistency. This is an essential step as machine 

learning models require inputs of a standard size. The resized images were converted 

to grayscale and saved in a separate directory, with each image labeled in an iterative 

sequence for easy identification. This process was carried out for each subdirectory in 

the dataset, and upon completion of each, a message indicating the successful 

operation was printed. 

Following the resizing process, image augmentation techniques were applied to the 

preprocessed images to increase the size and variability of the dataset. Augmentation 

helps improve the model's ability to generalize and prevents overfitting. Various 
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augmentations were applied including rotation, shifting, shearing, and zooming. These 

augmented images were then saved in a new directory. For every image, 20 

augmented versions were created and saved with a name prefix corresponding to the 

source image's name, thus aiding in class identification. As the script progressed, the 

completion of augmentation for each subdirectory was announced. 

Then the augmented images were loaded into a Python script where the subdirectories 

were shuffled to promote data variability. Two NumPy arrays were generated: one 

containing the training data (the image arrays) and another for the labels (the class of 

each image, determined from the filename prefix). Both arrays were saved to disk, 

providing easily accessible files for future use in training a machine learning model. 

After the steps of image preprocessing, augmentation, and data conversion on the 

ODIA dataset, the generated images and label arrays were then applied to the machine 

learning model and OCR for digit recognition. 

This processed image was used as input for two prediction models: a pretrained Keras 

model and Tesseract OCR. The Keras model utilized was a convolutional neural 

network (CNN) model previously trained on a similar dataset, making it an effective 

tool for recognizing digits in the captured images. The model predicts the digit in the 

frame by returning the class that has the highest probability. This prediction was 

appended to a list of Keras predictions. 

In parallel, Tesseract OCR, an optical character recognition engine, was used to 

predict the digit present in the frame. Tesseract's configuration was set to recognize the 

Oriya script (indicated by 'ori') using the LSTM OCR Engine mode. The OCR 

prediction was added to a separate list. 

Both the Keras model and Tesseract OCR continually predict the characters in the 

frames until the script is manually interrupted or there are no more frames to process. 

At the end of the script, a classification report was printed for both the Keras model 

and the Tesseract OCR, providing an overview of their performance in predicting the 

digit in each frame. 

To sum up the results: the preprocessing and augmentation scripts created a 

comprehensive and uniform dataset of 96x96 grayscale images. The machine learning 

and OCR scripts, in turn, made predictions using these images, with each frame's 

predicted digit compared to the ground truth labels to evaluate the performance of 
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each model. 

Table 1: Classification Report for OCR Tesseract 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2: Classification Report for Keras Model 

Vowels precision recall F1-score 

Class ଅ 

 

0.78 0.82 0.80 

Class ଆ 

 

0.84 0.8 0.82 

Class ଇ 

 

0.85 0.81 0.83 

Class ଈ 

 

0.79 0.78 0.785 

Class ଉ 

 

0.83 0.86 0.845 

Class ଊ 

 

0.77 0.85 0.81 

Class ଏ 

 

0.8 0.8 0.80 

Class ଐ 

 

0.75 0.73 0.74 

Class ଓ 

 

0.81 0.77 0.79 

Class ଔ 0.80 0.72 0.76 

Vowels precision recall F1-score 

Class ଅ 

 

0.74 0.81 0.77 

Class ଆ 

 

0.76 0.79 0.775 

Class ଇ 

 

0.78 0.72 0.75 

Class ଈ 

 

0.69 0.71 0.70 

Class ଉ 

 

0.74 0.73 0.735 

Class ଊ 

 

0.71 0.78 0.745 

Class ଏ 

 

0.7 0.67 0.685 

Class ଐ 0.72 0.77 0.745 
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4.3  
4.4  

 

 

 

 

 

 

 
4.5 Limitations 

 
The results suggest the potential benefits of combining these two approaches, it's 

important to note that this combination has not been thoroughly explored in this study. 

The combined model's performance could vary greatly depending on how the two 

models are integrated and the specific strategy used to leverage their respective 

strengths. Further research and experimentation would be necessary to fully 

understand how to best combine these models and to assess the feasibility and 

effectiveness of such an approach.

 

Class ଓ 

 

0.75 0.82 0.785 

Class ଔ 0.82 0.85 0.835 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

 
This analysis provides a comparative evaluation of the performance of two prevalent 

models in optical character recognition - Tesseract OCR and Keras. By utilizing the F1 

score as a standardized metric to assess precision and recall simultaneously, this 

investigation allows for an understanding of the overall effectiveness of these models. 

The results indicate a close performance range between the two, suggesting their 

comparable competencies in processing and recognizing textual content from images. 

In terms of specific performance, the Keras model slightly outperforms the Tesseract 

OCR model at its best, achieving a higher maximum F1 score. This implies that under 

certain conditions, the Keras model might deliver superior results, hence suggesting its 

potential efficacy for tasks with a higher tolerance for variability in results. 

Conversely, the Tesseract OCR model showcased more consistency across the board. 

This is manifested by its higher minimum F1 score, indicating a steady and reliable 

performance even in less-than-ideal situations, which could be beneficial for 

applications demanding constant and dependable outcomes. 

Nonetheless, while the F1 score provides a valuable performance indicator, it should 

not be the sole criterion for model selection in practical applications. Real-world 

implementation requires a more holistic approach, considering various factors beyond 

the score itself. These include the specific nature of images to be processed, which can 

vary widely in terms of quality, complexity, and the type of text involved. The 

computational resources available are another key factor, as different models may 

demand varying levels of computational power and time. 

Moreover, the significance of precision or recall for the task in question plays a crucial 

role. For instance, in an application where false positives carry heavy consequences, a 

model with higher precision would be desirable despite a lower overall F1 score. 

Conversely, in a situation where missing any positive case is critical, a model 

demonstrating superior recall might be the optimal choice. Hence, the determination of 
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the most suitable OCR model must take into account the full array of project -

requirements, ensuring a balanced and informed decision. 

 

5.2 Scope for future work 

 
Looking forward, there is potential for enhancing these models through various 

strategies. One approach is fine-tuning the models, which might allow them to better 

adapt to the specifics of the task. Another strategy is using larger or more diverse 

training datasets to boost the models' generalizability and robustness to different types 

of images. Additionally, more sophisticated image processing techniques could be 

employed to preprocess the images before they are fed into the OCR models. For 

example, noise reduction, binarization, or skew correction might make it easier for the 

models to correctly identify and recognize characters. More broadly, future research 

could explore the integration of these models with other machine learning or deep 

learning models to build more complex and accurate OCR systems. Future studies 

could also look into the deployment of these models in real-world applications and 

their performance in those settings. 
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Appendix 

Script for Implementing the steps mentioned in chapter 3 

 

from PIL import Image, ImageOps 

import os 

from tqdm import trange 

DataDIR = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/Data" 

SaveDIR = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/NewData" 

SIZE = 96 

 

subdirs = os.listdir(DataDIR) 

 

#curr_dir = DataDIR+"\\"+subdirs[2] 

#j = os.listdir(curr_dir) 

#print(j) 

 

for i in range(len(subdirs)): 

    curr_dir = DataDIR + '/' + subdirs[i] 

    os.makedirs(SaveDIR + "/" + subdirs[i]) 

    image_names = os.listdir(curr_dir) 

    for j in trange(len(image_names)): 

        image_loc = curr_dir + '/' + image_names[i] 

        img = Image.open(image_loc).convert('L') 

        new_img = ImageOps.fit(img, (SIZE, SIZE), Image.ANTIALIAS) 

#using `trange`, each image is opened, converted to grayscale,  

#resize using `ImageOps.fit`, and saved to the appropriate location 

        save_dir = SaveDIR + "/" + subdirs[i] + '/' + subdirs[i] + '_' + str(j) + '.jpg' 

        new_img.save(save_dir) 

     

    print(subdirs[i], "Over...") 
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#The images in the specified directories are resized to the desired dimensions. 

----------------------------------------------------- 

datagen = ImageDataGenerator( 

        rotation_range=10, 

        width_shift_range=0.1, 

        height_shift_range=0.1, 

        shear_range=0.2, 

        zoom_range=0.2, 

        horizontal_flip=False, 

        fill_mode='nearest',) 

sub_dir = os.listdir(DataDIR) 

 

for k in range(len(sub_dir)): 

    for j in range(len(images_loc)): 

 

        img = load_img(DataDIR + '/' + sub_dir[k] +'/' + images_loc[j])  # this is a PIL 

image 

        x = img_to_array(img)  # this is a Numpy array with shape (3, 150, 150) 

        x = x.reshape((1,) + x.shape)  # this is a Numpy array with shape (1, 3, 150, 150) 

 

        # the .flow() command below generates batches of randomly transformed images 

        # and saves the results to the `preview/` directory 

        i = 0 

#The image is then converted into a NumPy array using `img_to_array`.  

#This conversion is necessary to prepare the image for augmentation 

#The image array is reshaped into a 4D array of shape `(1, 3, 150, 150)`,  

#The first dimension represents the batch size (here set to 1)  

#The second and third dimensions represent the image's shape (150x150), and  

#The last dimension represents the number of color channels (3 for RGB images) 

        for batch in datagen.flow(x, batch_size=1,save_to_dir=SaveDIR+"/"+sub_dir[k], 

save_prefix=sub_dir[k],): 
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            i += 1 

            if i > 20: 

                break 

    print(sub_dir[k], 'is over...') 

#The `datagen.flow` function is called to generate augmented images based  

#It takes the reshaped image array as input, generates batches of randomly 

#transformed images, and saves the augmented images to the specified directory  

#The `save_prefix` parameter determines the prefix for the saved augmented images. 

 

#The additional loop (`for batch in datagen.flow`) that iterates over the generated 

#batches of augmented images. 

#The code limits the number of generated augmented images to 20 by checking the 

#value of `i` and breaking the loop if `i` exceeds 20. 

----------------------------------------------------- 

import numpy as np 

from PIL import Image 

import os 

import random 

from tqdm import trange 

DataDir = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/Data" 

sub_dir = os.listdir(DataDir) 

random.shuffle(sub_dir) 

train_data = [] 

labels = [] 

for i in range(len(sub_dir)): 

    cur_loc = DataDir + '/' + sub_dir[i] 

    images = os.listdir(cur_loc) 

    for j in range(len(images)): 

        img = Image.open(cur_loc + '/' + images[j]) 

        arr = np.asarray(img) 

        train_data.append(arr) 
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#the code opens the image using PIL (`Image.open`) ,converts it to grayscale.  

#The grayscale image is then converted to a NumPy array using `np.asarray`.  

#This array representation is added to the `train_data` list. 

        labels.append(int(sub_dir[i])) 

#The label for an image is extracted using string manipulation 

#It is converted to an integer and appended to the `labels` list. 

    print(sub_dir[i], ' over...') 

np.save('train.npy', train_data) 

np.save('labels.npy', labels) 

#The image data and corresponding labels are collected and saved as NumPy files.  

---------------------------------------------------- 

import sys 

import cv2 

import numpy as np 

from keras.models import load_model 

from keras import backend as K 

from sklearn.preprocessing import LabelEncoder 

from subprocess import call 

font = cv2.FONT_HERSHEY_SIMPLEX 

input_shape = (1, img_rows, img_cols) 

first_dim = 0 

second_dim = 1 

def annotate(frame, label, location = (20,30)): 

    #writes label on image# 

 

    cv2.putText(frame, label, location, font, 

                fontScale = 0.5, 

                color = (255, 255, 0), 

                thickness =  1, 

                lineType =  cv2.LINE_AA) 
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def extract_digit(frame, rect, pad = 10): 

    x, y, w, h = rect 

    cropped_digit = final_img[y-pad:y+h+pad, x-pad:x+w+pad] 

    cropped_digit = cropped_digit/255 

 

    #only look at images that are somewhat big: 

    if cropped_digit.shape[0] >= 48 and cropped_digit.shape[1] >= 48: 

        cropped_digit = cv2.resize(cropped_digit, (SIZE, SIZE)) 

    else: 

        return 

    return cropped_digit 

def extract_digit(frame, rect, pad = 10): 

    x, y, w, h = rect 

    cropped_digit = final_img[y-pad:y+h+pad, x-pad:x+w+pad] 

    cropped_digit = cropped_digit/255 

 

    #only look at images that are somewhat big: 

    if cropped_digit.shape[0] >= 48 and cropped_digit.shape[1] >= 48: 

        cropped_digit = cv2.resize(cropped_digit, (SIZE, SIZE)) 

    else: 

        return 

    return cropped_digit 

print("loading model") 

model = load_model("/content/Augmentation-of-ODIA-Hand-Written-

Dataset/second_99accuracymodel.h5") 

 

labelz = dict(enumerate([ "one", "two", "three", "four", 

                         "five", "six", "seven", "eight", "nine", "zero"])) 

for i in range(1000): 

    ret, frame = cp.read(0) 
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    final_img = img_to_mnist(frame) 

    image_shown = frame 

    contours, _ = cv2.findContours(final_img.copy(), 

cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 

 

    rects = [cv2.boundingRect(contour) for contour in contours] 

    rects = [rect for rect in rects if rect[2] >= 2 and rect[3] >= 8] 

 

    #draw rectangles and predict: 

    for rect in rects: 

 

        x, y, w, h = rect 

 

        if i >= 0: 

 

            mnist_frame = extract_digit(frame, rect, pad = 0) 

#The `img_to_mnist` function is defined to convert an input frame to a binary image 

#using grayscale conversion, Gaussian blur, and adaptive thresholding. 

#The code loads the pre-trained model using 

`load_model("second_99accuracymodel.h5")`.  

            if mnist_frame is not None: #and i % 25 == 0: 

                mnist_frame = np.expand_dims(mnist_frame, first_dim) #needed for keras 

                mnist_frame = np.expand_dims(mnist_frame, second_dim) #needed for 

keras 

                #print(mnist_frame.shape) 

#dictionary `labelz` is created to map class indices to their respective labels. 

#The code enters a loop to continuously read frames from the video capture. 

#For each frame, the `img_to_mnist` function is to convert the frame to a binary 

image. 

                class_prediction = model.predict_classes(mnist_frame, verbose = False)[0] 

                #print(model.predict_proba(mnist_frame)) 
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                prediction = np.around(np.max(model.predict(mnist_frame, verbose = 

False)), 2) 

                label = str(prediction) # if you want probabilities 

                #print(label) 

 

                cv2.rectangle(image_shown, (x - 15, y - 15), (x + 15 + w, y + 15 + h), 

                              color = (255, 255, 0)) 

 

                label = labelz[class_prediction] 

 

                #print(label) 

 

                annotate(image_shown, label, location = (rect[0], rect[1])) 

#Contours are extracted from the binary image using `cv2.findContours`. 

#Bounding rectangles (`rects`) are calculated for each contour, and filtering is applied 

#to remove small or invalid rectangles. 

# The code iterates through each rectangle and processes it: 

#The `extract_digit` function is called to extract the digit from the frame within the 

rectangle. 

#If a valid digit is extracted, it is preprocessed by expanding dimensions to match the 

expected input shape of the model. 

#The model predicts the class of the digit using `model.predict_classes`, and the 

prediction probability is obtained using `model.predict`. 

#The rectangle and label are drawn on the original frame using `cv2.rectangle` and 

`annotate` functions. 

#The frame with rectangles and labels is displayed using `cv2.imshow`. 

    cv2.imshow('frame', image_shown) 

    if cv2.waitKey(1) & 0xFF == ord('q'): 

        break 

----------------------------------------------- 

from keras.models import load_model 

from keras import backend as k 
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k.set_image_dim_ordering('th') 

from matplotlib import pyplot as plt 

from keras.preprocessing.image import img_to_array, load_img 

SIZE = 96 

img_path = r"E:\Python Coding\ODIA DATASET\NewData\9\9_22.jpg" 

path2 = r"E:\Python Coding\ODIA DATASET\NewData\3\3_56.jpg" 

model = load_model('second_99accuracymodel.h5') 

#The pre-trained model is loaded using `load_model('second_99accuracymodel.h5')`.  

print("MODEL loaded") 

img = load_img(img_path, color_mode='grayscale', target_size=(SIZE, SIZE)) 

x = img_to_array(img) 

#The image is converted to a NumPy array using `img_to_array`. 

x = x.reshape((1,) + x.shape) 

#The shape of the array is modified to have a batch dimension of 1 using 

#`x.reshape((1,) + x.shape)`.  

#This is necessary to match the expected input shape of the model. 

print(x.shape) 

print(model.predict_classes(x)) 

plt.imshow(img) 

plt.show() 

--------------------------------------------------- 

import cv2 

import numpy as np 

import os 

import pytesseract 

from PIL import Image 

from keras.models import load_model 

from keras import backend as K 

from sklearn.metrics import classification_report 
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os.environ['TESSDATA_PREFIX'] = r'C:\Program Files\Tesseract-OCR\tessdata' 

 

K.set_image_data_format('channels_first') 

 

# Keras model for digit recognition 

model = load_model("second_99accuracymodel.h5") 

 

def keras_predict(model, image): 

    processed = preprocess_image(image) 

    return str(np.argmax(model.predict(processed), axis=-1)[0])  # Returns string 

 

def preprocess_image(image, target_size=(96, 96)): 

    if image.mode != "L": 

        image = image.convert("L") 

    image = image.resize(target_size) 

    processed_image = np.expand_dims(np.array(image), axis=0) 

    processed_image = processed_image.reshape(processed_image.shape[0], 1, 96, 96) 

    return processed_image 

 

def ocr_predict(image): 

    pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-

OCR\tesseract.exe' 

    config = ("-l ori --oem 1 --psm 7") 

    return pytesseract.image_to_string(image, config=config) 

 

def process_frame(frame, keras_predicted_labels, ocr_predicted_labels): 

    # Preprocessing for OCR 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

    _, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY + 

cv2.THRESH_OTSU) 

    inverted_binary = ~binary 
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    pil_img = Image.fromarray(inverted_binary) 

 

    # Prediction using Keras model 

    keras_pred = keras_predict(model, pil_img) 

    print("Keras prediction: ", keras_pred) 

 

    # Prediction using OCR 

    ocr_pred = ocr_predict(pil_img) 

    print("OCR prediction: ", ocr_pred) 

 

    # Append prediction to the list 

    keras_predicted_labels.append(keras_pred) 

    ocr_predicted_labels.append(ocr_pred) 

 

cap = cv2.VideoCapture(0) 

 

# Load the ground truth labels 

with open('ground truth.txt', 'r', encoding='utf8') as f: 

    labels = [line.strip() for line in f] 

 

ocr_predicted_labels = [] 

keras_predicted_labels = [] 

frame_counter = 0 

frame_step = 30  # process every 30th frame 

 

while True: 

    ret, frame = cap.read() 

    if ret: 

        frame_counter += 1 
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        if frame_counter % frame_step == 0: 

            process_frame(frame, keras_predicted_labels, ocr_predicted_labels) 

        cv2.imshow('Webcam Feed', frame) 

 

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

    else: 

        print("Can't receive frame (stream end?). Exiting ...") 

        break 

 

cap.release() 

cv2.destroyAllWindows() 

 

# Only use the labels for the frames we processed 

labels = labels[::frame_step] 

 

print("\nClassification Report for Keras Model:") 

print(classification_report(labels, keras_predicted_labels)) 

 

print("\nClassification Report for OCR Tesseract:") 

print(classification_report(labels, ocr_predicted_labels)) 
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