
[i]

Odia Handwritten Optical Character Recognition Using Transfer

Learning and Pre-trained Tesseract Odia dataset

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

Signal Processing and Digital Design

Submitted by

Swastik Mohanty

(2K21/SPD/19)

Under the supervision of

Piyush Tewari (Asst Prof, ECE Dept.)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi -110042

JUNE 2021

M
. T

e
c
h

(S
ig

n
a

l P
r
o

c
e
ssin

g
 a

n
d

 D
ig

ita
l D

e
sig

n
)

A
ish

w
a
r
y
a

 K
eller

2

0
2
1

[iii]

CONTENTS

CANDIDATE’S DECLARATION iv

CERTIFICATE v

ACKNOWLEDGEMENT vi

ABSTRACT vii

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABRREVIATIONS xi

CHAPTER 1 - INTRODUCTION 1

1.1 Overview 1

1.1.1 OCR for Indic Scripts 1

1.1.2 Previously Used Techniques 2

1.2 History of Odia Language 3

1.3 Odia OCR and challenges faced 3

1.4 Transfer Learing 4

1.5 Literature Review 9

1.6 Research Gaps 10

1.7 Research Objective 10

CHAPTER 2 – DEEP LEARNING APPROACHES AND THE

DATASET USED FOR ODIA HANDWRITTEN OCR

11

2.1 Introduction 11

2.2 Dataset 12
2.3 Using CNN to predict Odia OCR 12

2.4 Using Tesseract to predict Odia OCR 14

2.5 Proposed Methodology 15

2.6 Conclusing Remarks 17

CHAPTER 3 – EXPLORING THE METHODOLOGY: FROM

IMAGE PROCESSING TO CHARACTER RECOGNITION

35

3.1 Introduction 35

3.2 Image Resizing and Grayscale Conversion 35

3.3 Data Augmentation 36

3.4 Data Pre-processing 37

3.5 Character Recognition Using Keras and Tesseract OCR 38

CHAPTER 4 -RESULTS AND DISCUSSION 40

4.1 Introduction 41

4.2 Performance Parameters 43

4.3 Performance 43

4.4 Limitations 44

CHAPTER 5 – CONCLUSION AND FUTURE SCOPE 47

5.1 Conclusion 48

5.2 Scope for future work 49

REFERENCES 49

APPENDIX

[iv]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I Swastik Mohanty student of M.Tech (Signal Processing and Digital

Design), hereby declare that the project Dissertation titled “Odia

Handwritten Optical Character Recognition Using Transfer

Learning and Pre Trained Tesseract Odia dataset ” which is

submitted by me to the Department of Electronics and Communication

Engineering, Delhi Technological University, Delhi in partial fulfilment

of the requirement for the award of the degree of Master of Technology,

is original and not copied from any source without proper citation. This

work has not previously formed the basis for the award of any Degree,

Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi

Swastik Mohanty

Date: 31st May 2023

[v]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Report titled “Odia Handwritten

Optical Character Recognition Using Transfer Learning and Pre

Trained Tesseract Odia dataset” which is submitted by Swastik

Mohanty, 2K21/SPD/19 of Electronics and Communication

Department, Delhi Technological University, Delhi in partial fulfilment

of the requirement for the award of the degree of Master of Technology,

is a record of the project work carried out by the students under my

supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or

elsewhere.

Place: Delhi Piyush Tewari

Date: 31st May 2023 SUPERVISOR

[vi]

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to

whom the project is assigned, but it also demands the help and

guardianship of people who helped in completion of the project.

I would like to thank all those people who have helped me in this research

and inspired me during my study.

With profound sense of gratitude, I thank Piyush Tewari, my Research

Guide, for his encouragement, support, patience and his guidance in this

research work.

Furthermore, I would also like to thank the Head of the Department,

Electronics and Communication, Prof O.P. Verma, who gave me the

permission to use all required equipment and the necessary format to

complete the report.

I take immense delight in extending my acknowledgement to my family

and friends who have helped me throughout this research work.

Swastik Mohanty

[vii]

ABSTRACT

.

This study aims to address the problem of Optical Character Recognition (OCR) for

the Odia language using a transfer learning.OCR is a technology used to convert

different types of documents, such as scanned paper documents, PDF files or images

captured by a digital camera, into editable and searchable data. The Odia language,

like many other languages, has unique characteristics and complexities in its script that

pose challenges for OCR. Transfer learning, which involves applying knowledge

learned from one problem to a different but related problem, is seen as a potential

solution to these challenges. This technique is especially beneficial when the dataset

for the specific task (in this case, Odia OCR) is small, as it leverages the knowledge

captured by models pre-trained on larger, more diverse datasets. In this study, a pre-

trained Convolutional Neural Network (CNN) model for feature extraction. CNNs are

a type of deep learning model that are particularly good at processing grid-like data,

such as images. A pre-trained CNN model is a model that has been previously trained

on a large dataset, usually on a general task like identifying objects within images. The

learned weights of this model, which capture the learned features from the previous

task, are then used as the starting point for the new task. After initializing the model

with the pre-trained weights, the authors fine-tune it on the specific task of recognizing

Odia characters. Fine-tuning involves continuing the training process on the new task,

adjusting the weights of the model to better fit the new data. The specifics of fine-

tuning, such as which layers of the model to fine-tune and the learning rate to use, can

vary depending on the specifics of the task and the amount of available data. The

dataset used in this study consists of images of 8 unique vowels in the Odia language.

Image datasets for deep learning often require preprocessing to ensure that they can be

efficiently and effectively fed into the model. In this case, the authors applied several

preprocessing techniques like Image re-sizing, normalization, data splitting. The study

thus offers a comprehensive approach to tackling the problem of Odia OCR using

transfer learning, from using a pre-trained CNN model to fine-tuning it on a specific

dataset, and meticulously preparing the data for optimal results.

[viii]

LIST OF FIGURES

Figure No. Title Page No.

1 Odia Vowels and Consonants
7

2
Working of CNN

17

3
Working of transfer learning

19

4
Working of Tesseract for OCR

21

5 Proposed Methodology for OCR 22

[ix]

LIST OF TABLES

Table No. Title Page No.

1
Parkinson’s Disease - Signs and

Symptoms.

33

2
Confusion Matrix for the

misclassification cost.

33

[xi]

LIST OF ABBREVIATIONS

Abbreviation Full form

OCR - Optical Character Recognition

CNN - Convolutional Nueral Networks

RNN - Recurrent Neural Networks

LSTM - Long Short Term Memory

CTC - Connectionist Temporal Classification

BERT - Bidirectional Encoder Representations from

Transformers

GPT - Generative Pre-Training

SVM - Support Vector Machine

HMM - Hidden Markov Model

PIL - Python Imaging Library

API - Application Programming Interface

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Optical Character Recognition (OCR) is a technology that turns scanned paper

documents, PDF files, and pictures taken with a digital camera into data that can be

edited and searched. OCR works by looking at the shapes and patterns of the letters in

the scanned picture or document and turning them into text characters by comparing

them to a set of known characters. The quality of the source document and the type of

OCR technology used can affect how well it works. OCR can be used in a lot of

different fields: Automation of Data Entry: Optical Character Recognition (OCR) is

often used to automate data entry tasks like putting information from paper forms into

a computer system. Compared to entering data by hand, this can save a lot of time and

make fewer mistakes. Document Archiving: Optical Character Recognition (OCR) is

used to scan printed documents so they can be edited, searched, and saved in a smaller

space. It also lets machines do things like do brain searches and learn on their own.

Book Digitization: Optical Character Recognition (OCR) is used to turn printed books

into digital forms that can be read on computers or e-readers. Through projects like

Google Books and others, this is how a lot of written information is now available

online. Automated Form Processing: Optical Character Recognition (OCR) is used to

pull information directly from forms like invoices, applications, and surveys. This can

greatly cut down on mistakes and speed up the process.

1.1.1 OCR for Indic Scripts

Optical Character Recognition (OCR) for Indic scripts isn't as old as it is for Latin-

based scripts, mostly because Indic scripts are so complicated and varied. Indic

languages include many different writing systems, such as Devanagari (used for Hindi,

Marathi, and Nepali), Bengali, Gujarati, Oriya, Gurmukhi (used for Punjabi), Telugu,

Kannada, Malayalam, and more. Each of these scripts has its own set of problems that

OCR has to deal with.

In the late 1990s and early 2000s, the digitization of data and the need for automatic

data entry systems made it more important to make OCR systems for Indic scripts.

2

In the beginning, most of the work was done to recognise printed papers. Handwritten

text was given less attention because it was harder to read. Early systems often used

methods called "template matching," in which each character was compared to a

template that had already been set up.

Researchers began looking into machine learning methods for Indic OCR around the

middle of the 2000s. These methods, like Support Vector Machines (SVMs) and

Hidden Markov Models (HMMs), let OCR systems learn from data, which made them

more accurate.

The Digital Library of India (DLI) was one of the most important projects during this

time. Its goal was to digitise and store important works of art, literature, and science

from India. As part of this project, OCR tools for a number of Indic scripts were made

so that printed books could be digitised.

Since the beginning of deep learning methods a decade ago, the field of OCR for Indic

scripts has made a lot of progress. Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), as well as their variations like Long Short Term

Memory (LSTM) networks, have been used to make OCR systems that are very

accurate.

Even with these improvements, OCR for Indic scripts is still hard because of things

like the wide range of writing styles, the complicated way characters are put together,

and the fact that many scripts have modifiers and diacritics. There is still study going

on in the field.

1.1.2 Previously used techniques

Modern techniques for Optical Character Recognition (OCR) for Indic writing usually

use deep learning methods, which have made OCR systems much better than they

were with older methods. Some of these strategies are:

Convolutional Neural Networks (CNNs): CNNs have been used successfully in optical

character recognition (OCR) systems to recognise characters and words. They are very

good at processing pictures because they can automatically and adaptively learn how

features are arranged in space.

Recurrent Neural Networks (RNNs): OCR sequence recognition jobs often use RNNs,

3

especially Long Short-Term Memory (LSTM) networks. They are good at dealing

with text data sets that have different lengths.

Connectionist Temporal Classification (CTC): CTC is a type of loss function that is

often used in OCR jobs to train sequence recognition models like RNNs. It's especially

helpful for jobs like OCR where the timing of the input sequence doesn't match the

timing of the output sequence.

Transformers: Since the "Attention is All You Need" paper came out, transformer

models have also been used for OCR jobs. These models, which include popular

variants like BERT, GPT, and T5, have shown state-of-the-art performance on a range

of natural language processing tasks and are now being used for OCR as well.

Transfer Learning: In this type of learning, a model that has already been trained is

used to start a new job. This method has been especially useful in deep learning, where

models trained on large-scale tasks (like image classification on ImageNet or language

modelling on a large corpus of text) can be fine-tuned for a specific task (like OCR for

a specific script) with a smaller amount of data.

Data Augmentation: Techniques like rotation, scaling, translation, and adding noise to

data have been used to increase the amount of training data and make OCR systems

more reliable.

From start to finish: Instead of training different models for each step of the OCR

process, such as character segmentation, character recognition, and word formation,

some new OCR systems train a single model to do the whole job from start to finish.

1.2 History of Odia Language

Odia, also called Oriya, is an Indo-Aryan language that is mostly spoken in the Indian

state of Odisha, which is in the east. It is now one of the official languages in India,

which shows how important it is to the country's culture and society. Odia is also

spoken in states other than Odisha, where it is recognised as a minority language. This

adds to the variety of languages spoken in the area.

The Odia language has a rich and varied literature history that goes all the way back to

the 10th century. This long literature history is full of important works that cover a

wide range of genres and styles and capture the social and cultural spirit of the area at

different times. So, the writing in Odia is a lively record of how the region's history

and culture have changed over time.

4

Odia is still the most important language in Odisha and the main way people talk to

each other. The language is used in every part of life in the state, from day-to-day talks

to education, from the media and politics to education. It is the language that binds the

33 million people who live in Odisha together, giving them a strong feeling of

community identity and a shared cultural heritage.

Odia is more than just a collection of numbers. As a living language, it keeps getting

better and changing, just like the society it reflects. It is an important part of Odisha's

character because it is not only a way to communicate but also a way to keep and pass

on the state's rich cultural heritage. So, Odia is a strong sign of regional pride, a

reminder of the area's rich history, and a live link between the past and the present.The

history of the Odia language goes all the way back to ancient times, and it is usually

broken up into a few different periods:

Old Odia, from the 10th century to 1300: The Magadhi Prakrit and Ardha Magadhi

Apabhramsa languages gave rise to Old Odia, which is also called Proto-Odia.

Inscriptions like the Charyapadas, which are Buddhist songs from the 10th century

AD, are the oldest evidence of the Odia language. The way the Odia script changed

from the Brahmi script gave the language a unique look.

Early Middle Odia (1300–1500 AD): During this time, Odia began to have a long and

rich literature history. During this time, Sanskrit had a big effect on Odia literature.

Many artists and writers used Sanskrit words and styles in their writing. Odia writing

was helped by Balaram Das, Jagannatha Das, Ananta Das, Jasobanta Das, and

Achyutananda Das, who were all part of the Panchasakha group of poets. "Dandi

Ramayana," a version of the Ramayana by Balaram Das, and "Bhagabata" by

Jagannatha Das are two of the most important works from this time.

Middle Odia (1500–1700 AD): During this time, prose writing grew. During this time,

books on Odia language like "Sarbasara Udgira" by Purnachandra Bhanj were written.

Another important thing that was done for the Odia language was to make a dictionary

called "Ardha Magadhi Sabdakosha." Also, new types of writing like short stories and

articles began to appear during this time.

Late Middle Odia (1700 AD - 1850 AD): During the Late Middle Odia time, the

language and writing system of Odia were improved, and poetry, prose, and drama

grew in popularity. Upendra Bhanja, Kabi Samrat, and Dinakrushna Das were well-

5

known poets during this time, and their works added to Odia writing. "Lavanyavati"

by Upendra Bhanja and "Rasakallola" by Dinakrushna Das are two important works

from this time.

Modern Odia (after 1850 AD): During the Modern Odia time, when the British were

in charge of India as a colony, the language changed and improved in important ways.

Fakir Mohan Senapati, who is known as the "father of modern Odia literature," was a

very important part of how the language changed at this time. He helped bring the

Odia language back to life and develop it as a way to teach. "Utkal Deepika," the first

Odia newspaper, came out in 1866, and "Bodha Dayini," the first Odia magazine,

came out in 1861. Modern Odia writing is richer because of the work of Radhanath

Ray, Madhusudan Rao, and Gangadhar Meher.

With its long and varied past, the Odia language has gone through many changes that

mirror the social, cultural, and political changes in the area where it came from. As of

now, this language is the heartbeat of the tongue of millions of people. Its rich literary

history lives on in many different ways, from classic books to modern newspapers,

from radio programmes to TV and movie stories. People are working together to not

only keep this language and its rich cultural history alive, but also to help it grow and

become more common.

The Odia language is written in a unique way called the Odia script. This script is a

branch of the Brahmi script, and it is the basis of how the Odia language is written.

The script is made up of 64 letters that include vowels, consonants, and diacritical

marks. One of the things that makes the Odia language stand out is its curved lines and

intricate details, which give it a unique look.

Odia has a lot of different forms, which makes it a very diverse language. The way

people in the main city, Bhubaneswar, talk has an effect on the standard dialect. One

interesting thing about the language is that it has a lot of Sanskrit in it. Because of this,

it has a lot in common with other Indo-Aryan languages like Hindi and Bengali.

The Odia language has left a deep cultural mark on the region's art and writing.

Odisha, where this language was first spoken, is a place with a lot of cultural energy,

as shown by its melodic musical practises, expressive dance forms, and deep writing.

Festivals like the Rath Yatra in Puri and the Durga Puja show how rich and diverse the

culture is in the area. But Odia isn't as well known around the world as Hindi or

6

Bengali, even though it has a lot of cultural significance and is well known in its own

area.

When it comes to how it is written, the Odia language uses the Odia script, which is

made up of 64 different letters. This writing has vowels, consonants, and diacritics. Its

rounded forms, curved lines, and subtle details make it stand out.

As a Brahmic script, the Odia script is related to the old Brahmi script of India. The

script is written in the usual left-to-right direction and has a unique circular shape and

curvilinear patterns.

Odia is written by putting together consonants and vowels to make syllables, which

are then put together to make words. This language's literary history goes all the way

back to the 10th century, and the area has been home to many famous artists and

writers over the years.

As with many other languages, the written form of Odia has changed as society has

changed, reflecting changes in how the language is used, how it is spelt, and how it is

put together. Odia writing in its modern form includes a wide range of genres, from

evocative poetry to gripping fiction and insightful non-fiction. It is a big part of

Odisha's cultural heritage.

7

Fig 1: Odia Vowels and Consonants

.

1.3 Odia OCR and challenges faced

Optical Character Recognition (OCR) has a lot of promise for the Odia language,

especially in helping to digitise, save, and make available a lot of content written in

the Odia script. Odia is an Indian language that is mostly spoken in the state of

Odisha. It has millions of people and a rich literary history. There are many ways in

which OCR can help the people who speak Odia.

First of all, OCR has the ability to make a big difference in preserving cultural

artefacts. By digitising and protecting Odia literature, historical texts, and other

important documents, OCR makes sure that this priceless cultural treasure does not

get damaged or destroyed over time and is lost. This process is necessary to protect

cultural aspects that are an important part of the Odia-speaking community's identity

as a whole.

Also, OCR's ability to improve accessibility can help a wider audience by making

Odia text easy to find for people who have trouble seeing or reading. OCR has the

ability to help researchers, students, and professionals who work with Odia content by

making it easier to find information quickly and easily. This could lead to more

intellectual and cultural exchanges on a larger scale.

Also, OCR's features make it possible for natural language processing (NLP) and

machine translation (MT) apps for Odia to get better. These changes could lead to

improvements in machine learning and artificial intelligence that can help the people

who speak Odia in many ways.

Even with these benefits, using OCR with the Odia language is not without problems.

The Odia script is hard to read because it has a unique set of characters and diacritics

that make it hard for OCR engines to tell the difference between the different

characters. Text written by hand in Odia is even harder to read because people have

different writing styles that don't always match the standard forms of characters.

8

Also, the lack of large, high-quality labelled datasets for training OCR models for the

Odia language could slow down the development of accurate and efficient OCR

systems. Lastly, the job is made even more difficult by the fact that Odia text can be

written in different fonts and sizes.

To solve these problems, strong OCR algorithms need to be made that can handle the

complexities of the Odia script and the differences in handwriting, styles, and sizes.

OCR performance for the Odia language can be improved by using cutting-edge

methods like deep learning and transfer learning. This change can lead to better

digitization, preservation, and access to Odia material, which is a big step forward for

both the preservation of languages and the development of technology.

1.4 Transfer Learning

In the fields of machine learning and deep learning, transfer learning is a common

method where a model that has already been trained is used as a starting point for a

similar job. Transfer learning is based on the idea that if a model is trained on a big

enough and general enough set of data, it can be used as a general model of the visual

world or of how to understand language (depending on the data it was trained on).

Then, you can use these learned feature maps instead of having to start over by

training a big model on a big dataset.

Pre-training: A large-scale sample is used to train a deep learning model. Models are

often trained on the ImageNet dataset, which has over 14 million pictures and 1000

classes, before they are used to classify images. For tasks that involve processing

natural language, models are often trained on a big body of text, like the whole

Wikipedia.

Transfer learning is when a model that has already been trained is used to do a certain

job. This can be done by using the pre-trained model as a fixed feature extractor or by

using the data from the job to fine-tune the weights of the pre-trained model.

Fine-tuning: There are different ways to do fine-tuning, depending on the job and how

much data is available. If the data set is small, it might be best to only fine-tune the

last few layers of the model. This is because early layers often catch generic features

(like edges or colour blobs in images or common words in text), while later layers

9

capture more task-specific features. If there are a lot of data points, more layers can be

fine-tuned, or even the whole model.

One of the best things about transfer learning is that it lets us train deep learning

models on specific tasks even when we only have a small amount of labelled data.

This is done by using the information that has been learned by models that have

already been trained. When compared to training the model from scratch on the small

dataset, this can make a big difference in how well it works.

Transfer learning is a busy area of study, and researchers are always coming up with

new techniques and methods. For example, self-supervised learning methods, in which

models are pre-trained on tasks that don't need labelled data, are becoming more

popular as a way to pre-train models that can then be fine-tuned with transfer learning.

1.5 Literature Review

A robust body of research has sought to improve the recognition accuracy of

handwritten Odia characters, a central feature of the Odia language, using a variety of

deep learning methodologies.

Research into handwritten Odia character recognition has seen significant progress

over the past decade, as evidenced by a series of studies that have used deep learning

methodologies to achieve high accuracy rates.

The study by Samantaray and Jena (2021) [1], stands out as a seminal piece in this

domain. Employing a convolutional neural network (CNN) model on a dataset of

1,200 handwritten character images, the researchers reported high accuracy rates.

Their success substantiated the effectiveness of deep learning approaches in this

context and paved the way for ensuing research.

Building on this foundational work, Mohanty and Jena (2021) [2] explored the

potential of transfer learning in their study, "Odia Handwritten Character Recognition

using Convolutional Neural Network and Transfer Learning." The dataset for this

research was notably larger, consisting of 2,000 handwritten images. Their work

underscored how transfer learning can further refine recognition accuracy. The same

researchers expanded this approach to numeral recognition in a separate study [3],

"Handwritten Odia Numeral Recognition using Convolutional Neural Network and

Transfer Learning," achieving equally promising results.

10

While the focus on CNN models and transfer learning was gaining traction, alternative

methodologies were also being explored. One such innovative approach was proposed

by Mohanty and Pattnaik (2021) in their paper [4]. Their research showcased the

potential of combining CNN and Support Vector Machine (SVM) classifiers in a

hybrid model to enhance recognition accuracy.

A new dimension was added to this field of research by Nayak and Jena [5] (2021) in

their paper, "Handwritten Odia Character Recognition using Convolutional Neural

Network with Attention Mechanism." They integrated an attention mechanism into the

CNN model, allowing it to focus on crucial features of handwritten characters,

effectively boosting performance. Similarly, the use of a Feature Pyramid Network

(FPN) in conjunction with transfer learning was proposed by Mohanty and Jena (2021)

[6], again demonstrating improved recognition accuracy.

Data augmentation was also found to be a significant factor in enhancing the accuracy

of the models. This was highlighted by Swain and Sahu (2020) [7] in "Handwritten

Odia Numeral Recognition using Convolutional Neural Network with Data

Augmentation." By increasing the size of the dataset, the researchers were able to

achieve higher recognition accuracy. This strategy of overcoming data limitations was

also employed by Nanda and Jena (2020) [8], who applied transfer learning in their

research, "Recognition of Handwritten Odia Characters using Convolutional Neural

Network and Transfer Learning with Limited Data."

The aforementioned studies reflect the broad spectrum and depth of research in this

domain. Other researchers, including Panda and Pradhan (2020) [20], Swain and Sahu

(2019) [21], Mohanty and Jena (2019) [22], Kumar and Jena (2019) [23], Mishra and

Sahu (2019) [24], and others, have continued to build upon these methodologies. Their

research has led to a diverse array of sophisticated and inventive approaches for

handwritten Odia character recognition.

One of the pioneering studies in this field, "Handwritten Odia Character Recognition

using Wavelet Transform and Multilayer Perceptron" by Das and Mahapatra (2014)

[19], utilized wavelet transform for feature extraction and a multilayer perceptron

neural network classifier. Their high accuracy rates served as a testament to the future

potential of these methodologies and techniques that have now become standard in the

field.

11

In the domain of Optical Character Recognition (OCR) for the Odia script, an array of

studies have taken innovative approaches to tackle unique challenges, such as

managing connected characters and modifiers inherent to complex Indic scripts. Some

of these works include:

Parhi and Majhi (2012) in their paper [18] put forth a method involving a zone-based

feature extraction technique, leveraging a combination of statistical and structural

features gleaned from different character image zones for recognizing handwritten

Odia characters.

Taking a different approach, the same authors, Parhi and Majhi (2014) [17],

demonstrated in their study titled "Handwritten Odia Numerals Recognition with

Feedforward Neural Network" how a Feedforward Neural Network (FNN) can be

effectively applied for recognizing handwritten Odia numerals, achieving a reported

recognition accuracy of over 90%.

While not directly dealing with Odia script, Pal and Chaudhuri's work (2004), [16]

provided insights potentially applicable to the Odia context, given the shared

characteristics between Devanagari and Odia scripts. Their two-stage classification

approach, which employed features based on shadow coding and gradient, showed

potential for adaptation for Odia script OCR.

In a more recent study, Rakshit [15] et al. (2019) proposed a deep learning-based

methodology for document image recognition in five Indic scripts, including Odia, in

their paper "Deep learning-based document image recognition software for five Indic

scripts." The approach combined the Connectionist Text Proposal Network (CTPN)

and Attention-based Encoder-Decoder LSTM, offering a promising route for Indic

script recognition.

Pivoting to a deep learning approach specifically for offline handwritten Odia

numerals, Sahu, Patnaik, and Acharjya (2019) [14] showcased the use of

Convolutional Neural Networks (CNNs) for feature extraction and a Multilayer

Perceptron (MLP) for classification in their paper "Offline Odia Handwritten Numeral

Recognition: A Deep Learning Approach."

Similarly focusing on the recognition of handwritten Odia characters, Panda, Dash,

and Jagadev (2019) [13] proposed the use of a Convolutional Neural Network in their

12

paper "Odia Handwritten Character Recognition Using Convolution Neural Network,"

reporting an impressive accuracy of 98.3%.

A distinct approach was presented by Priyadarshini and Majhi (2015) in their paper

[11] They demonstrated the application of Support Vector Machines (SVM) for the

recognition of isolated handwritten Odia characters and numerals.

Mohanty, Patra, and Majhi (2016) [10], in their paper "An Approach towards Feature

Extraction of Odia Handwritten Characters," put forth a unique approach to feature

extraction for Odia handwritten characters, employing distance transform and

morphological operations.

Lastly, Sahu, Patnaik, and Satapathy (2015) [9] undertook a comparative analysis of

various feature extraction techniques and classifiers for the recognition of handwritten

Odia numerals in their study "Performance Analysis of Odia Handwritten Numeral

Recognition Techniques."

In summation, these collective studies illustrate the dynamic progression of research in

the realm of handwritten Odia character recognition. They reaffirm the potential of

deep learning methodologies for complex pattern recognition tasks and provide a

wealth of insights to inform future research in this exciting area.

1.6 Research Gaps

Odia Optical Character Recognition (OCR) study still has to deal with a lot of

problems and gaps that need to be filled to make it more useful and effective. There is

a big hole because there aren't enough complete and varied records. For Odia OCR

models to show that they are reliable, they need large datasets that include a wide

range of writing styles, fonts, and amounts of noise.

Even though there have been improvements in recognising printed Odia characters,

very little is known about recognising handwriting Odia characters. This adds more

problems, such as differences in how people write, problems with how the letters line

up, and problems with how the letters are separated. To solve these problems, research

activities need to be more focused.

This field is also hard because the Odia script is hard to read. Since the Odia script has

13

a lot of complex ligatures (combinations of characters) and modifiers, more in-depth

study is needed to help OCR systems recognise these complicated parts of the script.

Another thing that needs to be looked at is how well OCR models work in real-world

situations. Even though many studies try their models in controlled settings, real-world

applications often have to deal with a lot of things that are hard to predict, like low-

quality scans, different lighting conditions, and texts that are physically breaking

down. Because of this, studies should try to test their models in these real-world

situations to make sure they are strong and reliable.

Another study gap is that not much is known about transfer learning in Odia OCR.

Even though this method has been used a lot in other areas, it hasn't been used to its

full potential in Odia OCR, which suggests a good direction for future study. Last but

not least, Odia OCR needs strong evaluation measures and benchmark datasets as soon

as possible.

1.7 Research Objective

The main goal of the study is:

1. To create strong and efficient Optical Character Recognition (OCR) algorithms for

the Odia language that can correctly recognise and digitise content written in different

styles, scripts, and fonts.

2. To deal with the unique complexities of the Odia script, such as its unique set of

characters, diacritics, and complex ligatures, which may be hard for current OCR

algorithms to handle.

3.To make OCR systems that can read handwriting Odia text correctly, taking into

account the many different ways people write.

14

CHAPTER 2

DEEP LEARNING APPROACHES AND THE

DATASET USED FOR ODIA HANDWRITTEN OCR

2.1 Introducion

This chapter aims to introduce and elucidate the core computational methodologies

employed in this research, specifically focusing on Convolutional Neural Networks

(CNNs) and the Tesseract Optical Character Recognition (OCR) system. Both of

these methodologies, while distinct in their mechanics, share a common objective: the

accurate identification and classification of handwritten Odia characters. The chapter

will further delve into the critical role of the dataset that has been used for training

and testing these models. A comprehensive understanding of these components is

paramount to appreciate the nuanced computational tasks involved in handwritten

character recognition and the specific challenges associated with Odia script.

2.2 Dataset

The dataset used is one that was made for Odia character recognition and is open to

the public. There are a total of 13,500 pictures in the dataset. Each image shows one of

the 45 different Odia characters. Each character group has 300 unique images. Each

image was written by a different writer to show a range of writing styles and

personality traits. This addition to the "ODIA Hand Written Dataset" is an attempt to

add more variety to the original dataset and make it bigger.

Different image processing and data addition methods were used on the original

dataset to make the augmented dataset. Some of these methods were random scaling,

rotation, translation, and adding noise. By making these changes, the dataset got a

wider range of changes that mimicked different writing situations and styles. The goal

of this process was to make the dataset more representative and suitable for training

and testing machine learning models for Odia letter recognition tasks.

The enhanced dataset is split into three subsets: a training set, a validation set, and a

testing set. The machine learning models are trained with the help of 11,250 pictures

in the training set. The validation set is made up of 1,125 images, which make it

possible to test how well the model works and tune the hyperparameters during the

15

development process. Last, the testing set is made up of 1,125 pictures that are used to

give the trained models a final, unbiased evaluation. This makes it possible to try and

verify the models' ability to generalise on data they haven't seen before.

The original dataset was carefully worked on using different image processing and

data addition methods to make the augmented dataset. The goal of using these

methods, such as random scaling, rotation, translation, and adding noise, was to make

the collection more varied and interesting. By making these changes, the dataset now

includes a bigger range of different writing styles, orientations, and noise patterns.

This process is important for making a set of images that can be used to train and test

machine learning models that are more accurate and complete.

The dataset is split into three different subsets: training, validation, and testing sets.

This makes it easier to build and test models. There are 11,250 images in the training

set, which is a lot. These images are used to teach machine learning models. The

validation set, which is made up of 1,125 images, is a key part of figuring out how

well the model works during the creation process. This subset lets the hyperparameters

be tuned, a model be chosen, and the model's ability to generalise be tested. Last, the

testing set, which is made up of 1,125 pictures, is used to evaluate the trained models

without bias and give a final score. This makes it possible to test the models' ability to

recognise handwritten Odia letters on data they haven't seen.

2.3 Using CNN model to predict Odia OCR

The Convolutional Neural Network (CNN) model used adheres to a conventional

hierarchical framework, commencing with an input layer, succeeded by convolutional

layers, pooling layers, a dropout layer, and ultimately culminating with fully

connected layers that segue into the output layer.

The initiation of the network involves the reshaping of input data to conform to the

network's input prerequisites, i.e., a grayscale image of dimension 96x96 pixels, and a

single channel. To normalize the data and enhance computational efficiency, the pixel

intensities are scaled down to fall within a range of 0 and 1 by dividing by 255.

The convolutional layers are instrumental in the extraction of salient features from the

16

input images. The model harnesses two convolutional layers—the primary layer

incorporates 30 filters of 5x5 dimension, and the secondary layer employs 15 filters of

3x3 size. The 'ReLU' (Rectified Linear Unit) activation function introduces non-

linearity into the model, enhancing its ability to learn complex patterns.

Post the extraction of image features, the max pooling layers reduce the

dimensionality of these feature maps while diligently retaining the most significant

information encapsulated by the maximum values. The max pooling operation in the

model uses a 2x2 window size.

Fig 2: Working of CNN

To circumvent overfitting and promote a more generalizable model, a dropout layer is

incorporated which randomly nullifies 40% of the neurons during each training

iteration. This introduces an element of randomness and forces the network to learn

more robust and versatile features.

Before transitioning to the fully connected layers, the high-dimensional feature maps

are flattened into a one-dimensional vector via the flatten layer, simplifying the data

structure without loss of information.

Subsequently, two dense (or fully connected) layers follow the flatten layer, the first

consisting of 128 neurons and the second comprising 50 neurons. Both these layers

17

employ the 'ReLU' activation function.

The final output layer is also a dense layer with neuron count equivalent to the number

of classes in the dataset (10 in this instance). It uses the 'softmax' activation function,

which outputs a probability distribution over the classes, effectively designating the

most likely class.

The model is compiled using the 'adam' optimizer—a popular choice for its adaptive

learning rate—and the 'categorical_crossentropy' loss function, well-suited for multi-

class classification tasks. The model's performance is evaluated based on accuracy.

The model undergoes training for 3 epochs with a batch size of 100, and upon

completion, the model is stored as a .h5 file for future use. The final test loss and

accuracy are printed for evaluation purposes, providing insights into the model's

performance.

The dataset used for this research provides a significant volume of annotated data, a

critical asset for the successful training of deep learning models. Deep learning

models, such as Convolutional Neural Networks (CNNs), excel in their ability to

discern intricate patterns and features when trained with extensive datasets. In the

context of Optical Character Recognition (OCR) for the Odia language, these models,

when nurtured with the substantial Odia handwriting dataset, have the potential to

effectively recognize and categorize handwritten Odia characters.

Crucially, pre-training these models on larger datasets, such as ImageNet or COCO,

before fine-tuning them on the Odia handwriting dataset, offers the promise of

significantly boosting their performance. This method allows the models to initially

learn and understand complex and generalized features from the larger datasets and

then adapt to the specifics of the Odia script through the fine-tuning process. This way,

the abundant annotated data in the dataset aids in facilitating the in-depth training of

these deep learning models, thereby empowering them to achieve impressive accuracy

rates in recognizing Odia characters.

18

Fig 3: Working of Transfer Learning

A challenge that frequently arises in OCR development for languages like Odia, which

are less commonly spoken compared to languages like English, is the lack of

comprehensive, fully annotated datasets specific to the language. This is where the

concept of transfer learning plays a critical role. Transfer learning involves the use of

pre-trained models that have been initially trained on larger, more diverse datasets.

These pre-trained models grasp generic features and patterns from large-scale datasets

like ImageNet, which can then be adapted to the specifics of the Odia handwriting

dataset during a fine-tuning process. This strategy allows for an efficient learning

process and the recognition of handwritten Odia characters, even when the amount of

language-specific data is relatively limited.

Transfer learning offers several benefits, with one of the primary ones being its ability

to enhance the generalization capabilities of OCR systems. The process of pre-training

models on large and diverse datasets equips them with generalized features applicable

to a wide range of datasets and writing styles. This exposure to an array of writing

styles, fonts, and variations imparts a robust understanding of the underlying patterns

in characters to the models. When these models are then fine-tuned on the Odia

dataset, they demonstrate an improved capability to handle a diverse range of

handwriting styles and variations that may not have been present in the original Odia

dataset. This enhanced generalization allows the OCR system to accurately recognize

Odia characters in real-world scenarios, thus dealing effectively with variations or

styles that were not explicitly part of the training dataset.

19

2.4 Using Tesseract pre-trained Odia dataset to predict Odia OCR

Tesseract is a well-known open-source OCR (Optical Character Recognition) engine

made by Google. It supports many languages, including Odia, which is spoken mostly

in the Indian state of Odisha. The Odia OCR model is built around this engine, which

is based on the structure of LSTM (Long Short-Term Memory) neural networks.

LSTM networks, which are a type of Recurrent Neural Network (RNN), are known for

their ability to record long-range dependencies in sequential data. Since language

processing tasks are also done in a sequential way, this is a good fit for them.

The Odia OCR model that is already built into Tesseract has been carefully trained on

a large set of printed Odia text. During this intensive training, the model has

repeatedly shown a high level of accuracy, with a rate of over 90% across a number of

benchmark datasets. This amazing level of accuracy shows that the model is good at

recognising and putting together printed Odia text.

The Tesseract Odia OCR model is very good at recognising written Odia text. It does

this by using a number of different techniques, such as character segmentation, feature

extraction, and classification using neural networks. Character segmentation is the

process of separating each character in a picture. This is an important step in being

able to recognise each character correctly. After this segmentation, feature extraction

is done to pull out meaningful features from each segmented character that show what

makes them special. The model then uses neural networks, in particular an LSTM

architecture, to place recognised Odia characters in their correct groups.

This model is a strong and useful tool for recognising printed Odia text. It has a high

rate of accuracy and can do a lot of different things. This makes it a good starting point

for making more progress in the field of Odia text identification. Researchers and

practitioners are urged to use the Tesseract Odia OCR model as a starting point and

build on it using techniques like transfer learning. Transfer learning uses the Tesseract

Odia OCR model's information and learned representations to improve the

performance of custom models for specific tasks or domains. By using the Tesseract

model as a starting point, developers can speed up their work to make Odia text

20

recognition systems more accurate and efficient, which will lead to progress in this

field.

Fig 4: Working of Tesseract for OCR

The Tesseract Odia OCR model is good at recognising written Odia text in a wide

range of font styles, sizes, and orientations. This makes it more flexible and useful in

real-world situations. Also, this model has a built-in language detection feature that

allows the language of the processed text to be identified automatically before the

recognition process starts. This trait makes the model's OCR process more efficient

and accurate as a whole.

The Tesseract Odia OCR model is very useful for jobs that need to recognise Odia text

because it has a high accuracy rate and can adapt to different font styles, sizes, and

orientations. Also, its language recognition feature makes it even more flexible and

useful by letting it process text in multiple languages correctly.

This model is a strong and useful tool for recognising printed Odia text. It has a high

rate of accuracy and can do a lot of different things. This makes it a good starting point

for making more progress in the field of Odia text identification. Researchers and

practitioners are urged to use the Tesseract Odia OCR model as a starting point and

build on it using techniques like transfer learning. Transfer learning uses the Tesseract

Odia OCR model's information and learned representations to improve the

performance of custom models for specific tasks or domains. By using the Tesseract

model as a starting point, developers can speed up their work to make Odia text

recognition systems more accurate and efficient, which will lead to progress in this

field.

21

2.5 Adopted methodology

The realm of Optical Character Recognition (OCR), especially for less commonly

spoken languages like Odia, holds immense potential for advancement through the

synergistic integration of diverse OCR techniques. Among the numerous approaches

to be considered in this synthesis, a particularly promising starting point lies in the

utilization of Tesseract's pre-trained Odia OCR model. Tesseract, a widely recognized

open-source OCR engine that Google developed, provides this model, which has

demonstrated exceptional proficiency in recognizing printed Odia text. Intricately

designed around the Long Short-Term Memory (LSTM) neural network architecture,

this model is well-equipped to handle the complexities of long-range dependencies in

sequential data, a crucial aspect in OCR.

The LSTM network model's impressive proficiency primarily originates from its

extensive training process that leverages a substantial and diverse dataset comprising

printed Odia text. This thorough training procedure enables the model to exhibit a high

accuracy rate when recognizing printed Odia text, making it a valuable asset in the

OCR field, particularly for the Odia language.

Fig 5: Proposed methodology for OCR

22

In tandem with leveraging pre-trained models, deep learning models, specifically

Convolutional Neural Networks (CNNs), play an instrumental role in optimizing the

character recognition process. CNNs have a reputation for their superior capacity to

learn intricate patterns and extract meaningful features from large datasets. This

capability makes them exceptionally well-suited for improving the task of recognizing

and categorizing handwritten Odia characters, thereby enhancing the overall OCR

process.

Transfer learning is a powerful method that can greatly improve the performance of

these deep learning models. It can be used to make these models even smarter.

Transfer learning is based on the idea that you can use the knowledge and

representations you learned from pre-training on bigger datasets, like the one Tesseract

used for its Odia OCR model. This method works especially well when there aren't

many big, annotated datasets, which is often the case for languages like Odia that

aren't spoken as often. By using transfer learning, it is possible to get around this

problem and make OCR systems better at recognising Odia text quickly and correctly.

When these methods are used together, there are good chances that OCR tools for the

Odia language will get better and move forward.

2.6 Concluding Remarks

In the end, the chapter gives a detailed look at the CNN and Tesseract OCR deep

learning models, which are the core of this study. Through this investigation, we've

learned more about how they work, their strengths, and any possible weaknesses.

Also, the chapter emphasises the importance of the dataset, pointing out how

important it is for training models and judging their success. The decisions made for

the study's methods, which are discussed in this chapter, show that the researchers

tried to solve the difficult problem of recognising handwritten Odia characters by

using the most effective and reliable methods available. This background information

will help analyse the results of future experiments and give a better picture of what the

results might mean.

23

CHAPTER 3

Exploring the Methodology: From Image Processing to Character

Recognition

3.1 Introduction

In this chapter, we explain in depth how this study was done in order to create an

effective Optical Character Recognition (OCR) system for the Odia language. The

goal of this part is to give you a full understanding of the different methods and

techniques we will use to reach our research goals. The process has several steps:

resizing and converting images to grayscale, adding to images, cleaning data, and

finally putting in place a model that uses both a Keras model and Tesseract OCR to

recognise characters. Each step is an important part of the OCR process as a whole,

and when put together, they are the backbone of this study project.

3.2 Image Resizing and Grayscale conversion

The method used in this study is a series of image processing steps, such as resizing

the images and changing them from colour to grayscale. This methodical process is

done with a script that uses the Python Imaging Library (PIL), which is known for

being able to open, change, and save many different picture file formats.

At the start of the process, the script gives each of the pictures to be processed a size

that has already been set. This uniform size makes sure that all processed pictures have

the same dimensions. This gets rid of any differences in size that could affect later

analyses.

After the size is set, the script starts to make a complete list of all the pictures in the

directory. This is done by carefully going through the whole directory, including all of

its subdomains. This complete list is the ground for the next step, which is an iterative

process in which each image in the directory is processed one at a time.

The iterative processing starts with each picture being opened in grayscale mode,

which is shown by the symbol 'L'. The grayscale conversion is a key step in making

the picture easier to understand. It takes the colour data and turns it into different

24

shades of grey. By getting rid of the problems that come with colour information, this

grayscale transformation makes it easier to do other image processing jobs.

After converting each picture to grayscale, the script starts the process of resizing each

image. The ImageOps module from the PIL, which is known for its large library of

pre-defined image processing operations, is used to do this action. Among these, the

ImageOps.fit method is used. This method can change the size of an image, change its

aspect ratio, and, if necessary, crop the image or add padding of a certain colour to

make sure the image fits the given measurements. One of the best things about this

method is that it keeps the image's original aspect ratio. This keeps the image from

being distorted or stretched during the resizing process.

After the photos have been resized and changed to grayscale, they are put in a

directory that has already been set up. The script is built around its ability to keep the

original hierarchical structure of folders and subdirectories. This keeps a collection of

processed images organised in a way that matches the structure of the original dataset.

This order of resizing and changing to grayscale is applied to every picture in the

directory and any subdirectories that are inside it. Whenever a picture is saved, the

script creates a new, unique identifier for it by combining the original subdirectory

name with an index number. This naming scheme keeps a reference to the image's

original position and order, which keeps the original dataset's integrity in the

processed collection.

This methodological technique makes sure that all images are processed in the same

way and in the same way for all images. This lets other tasks or analyses be done on a

standard, well-organized set of processed images.

3.3 Image Augmentation

The subsequent phase in our research methodology focuses on image augmentation, a

fundamental technique extensively utilized in machine learning and computer vision

fields. Image augmentation entails generating new and modified versions of existing

images, thus augmenting the size and diversity of a dataset. This technique is

instrumental in enhancing the performance of machine learning models, as these

25

models necessitate diverse and extensive data for effective learning.

To accomplish this, we employed the TensorFlow library's Keras API, specifically its

`ImageDataGenerator` class. This class enables real-time data augmentation by

implementing a series of random transformations on each image in the dataset. The

resultant effect is an expanded and more diverse dataset. The transformations specified

in our script encompass rotation, width and height shift, shear transformation,

zooming, and horizontal flipping.

File paths and directories, integral to handling an extensive collection of images

organized into directories and subdirectories, were managed using the `os` module.

Our script initiates by designating the source directory containing the original images

and the destination directory, where the augmented images will be stored.

Following this setup, the script iterates through each subdirectory of the source

directory. It mirrors the directory structure in the destination directory by creating

corresponding subdirectories. Within each source subdirectory, it further iterates over

each image. Each image is loaded, converted to a NumPy array, and then reshaped to

incorporate an extra dimension for the batch size.

Utilizing the `datagen.flow` function, we generate batches of augmented images. This

function is responsible for saving the newly generated images to the corresponding

subdirectory in the destination directory. To maintain reference to the original image,

each new image is assigned a prefix indicating its source subdirectory. This process

continues until each original image has yielded 20 new images.

Upon the completion of the augmentation process for a specific subdirectory, a

confirmation message is displayed on the console, signalling the end of augmentation

for that subset of images. The process is then repeated for each subsequent

subdirectory until all images across all subdirectories have been augmented. Through

this methodical and systematic approach, our script effectively enlarges and diversifies

the image dataset, laying a solid foundation for more effective training of future

machine learning models.

26

3.4 Data Pre-processing

The third phase of our methodology involves data preprocessing, the objective of

which is to transform an assortment of image files into a structured format conducive

to machine learning algorithms.

Our process commences by pinpointing the primary directory housing the image

subdirectories. To eliminate potential bias in the model that could be inadvertently

introduced by the order in which data is presented, we incorporate a shuffling process

using the shuffle method from the Python's random library. This shuffling rearranges

the subdirectories randomly, thereby contributing to a more unbiased model training

process.

Subsequent to the shuffling process, the script initializes two empty lists intended to

accommodate the image data (denoted as train_data) and their corresponding labels. It

then iteratively traverses each shuffled subdirectory, processing every contained image

file. The processing routine involves opening each image in grayscale mode,

converting it into a numpy array, and appending this array to the train_data list.

Parallelly, we extract the label for each image from the image's filename, which is

assumed to follow the 'label_otherinfo.jpg' format. This label is converted into an

integer and appended to the labels list. This meticulous process of assigning labels

ensures each image is associated with the correct class or category.

Upon the successful collection of all images and labels, these lists are stored to disk as

.npy files using numpy's save function. The .npy file format offers efficient storage

and retrieval of the data, making it an ideal choice for our purposes. Importantly, this

format ensures the data can be readily utilized by machine learning algorithms,

simplifying subsequent steps in the machine learning pipeline. The product of this

phase is a robust, well-structured dataset that is aptly primed for the next phase: model

training.

3.5 Character Recognition Using Keras and Tesseract OCR

The refined script is designed with the explicit objective of enhancing recognition

accuracy by simultaneously utilizing a Keras model and the Tesseract OCR to identify

27

characters captured from a live video feed via a webcam. The obtained predictions are

then compared with a set of 'ground truth' labels, which are pre-loaded from a text file,

to evaluate the accuracy of these predictions.

The initial phase of the script involves the loading of requisite libraries, establishing

the data format for Keras, setting the path for Tesseract, and initializing a pre-trained

Keras model. This model serves as a key component in making predictions about the

characters depicted in the webcam feed.

To facilitate the prediction process, a 'keras_predict' function is constructed. This

function primarily preprocesses an image before it is passed through the Keras model

for prediction. The preprocessing involves converting the image to grayscale, resizing

it, and adjusting its shape to align with the requirements of the Keras model. The

predicted class is then identified based on which class receives the highest output from

the model.

Simultaneously, an 'ocr_predict' function, utilizing Tesseract OCR, makes a prediction

on the given image. The image is processed by employing the Odia language model,

as specified by '-l ori' in the Tesseract configuration.

Next, a 'process_frame' function is introduced to handle individual frames from the

webcam feed. This function preprocesses each frame, makes predictions on the

character in the frame using both the Keras model and Tesseract OCR, and adds these

predictions to lists for later comparison with the ground truth labels.

As the main loop of the program executes, the webcam is activated, and the ground

truth labels are loaded from a text file. The script then enters a continuous cycle of

reading frames from the webcam. It processes every 30th frame (defined by

'frame_step') and makes predictions, while simultaneously displaying the video feed

on the screen in a window titled 'Webcam Feed'. This cycle continues until the 'q' key

is pressed.

Lastly, upon the conclusion of the webcam feed or when 'q' is pressed, the webcam

and the window are closed. The script generates two classification reports, comparing

28

the predictions made by the Keras model and Tesseract OCR respectively to the

ground truth labels. These reports furnish detailed statistics about the performance of

both prediction methods, providing crucial insights into their effectiveness and

accuracy.

3.6 Concluding remarks

The methodology employed in this study provides a robust and comprehensive

approach towards the development of an effective OCR system for the Odia language.

By carefully resizing and converting images to grayscale, augmenting the images to

increase the size and diversity of the dataset, preprocessing the data for machine

learning algorithms, and finally utilizing a Keras model and Tesseract OCR for

character recognition, we created a well-rounded and sophisticated process. The step-

by-step methods described in this chapter not only provide an understanding of our

research process but also offer a replicable blueprint for similar future investigations.

This detailed methodological approach, we believe, contributes significantly to the

validity and reliability of our study findings, and it is our hope that it will inspire

further research in this field.

29

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter broadly describes the performance parameters used to test the validation

of the methodology. The performance of the model used here depends on five major

parameters. These are recall, precision and F-measure/F-score.

4.2 Performance parameters

Recall, precision, and F-measure or F-score are widely used metrics for evaluating the

performance of classification algorithms, particularly in information retrieval and

machine learning tasks. These metrics provide insights into different aspects of a

model's performance, enabling a comprehensive evaluation of the model's capabilities.

1. Recall (Sensitivity or True Positive Rate): Recall is a metric that assesses the

model's ability to identify all relevant instances within the data. In other words, it

measures the percentage of actual positives that were correctly identified by the

model. Recall is calculated as the ratio of true positive results to the sum of true

positive results and false negatives. A high recall indicates that the model has a low

rate of false negatives, meaning it has correctly identified a large proportion of the

positive cases.

2. Precision (Positive Predictive Value): Precision, on the other hand, measures the

model's ability to correctly identify only the relevant instances, i.e., the instances that

the model predicted as positive are indeed positive. It is computed as the ratio of true

positive results to the sum of true positive results and false positives. A high precision

indicates that the model has a low rate of false positives, implying that the positive

predictions made by the model are generally accurate.

While both recall and precision are valuable metrics, they offer different perspectives

on a model's performance. A model may have high recall but low precision if it tends

30

to classify too many instances as positive, resulting in a high number of false positives.

Conversely, a model may have high precision but low recall if it is overly conservative

in its positive classifications, leading to a high number of false negatives. Thus, to

evaluate a model's performance accurately, both metrics should be considered.

3. F-measure/F-score (Harmonic Mean of Precision and Recall): The F-measure or F-

score provides a single metric that combines precision and recall. It is the harmonic

mean of precision and recall, meaning it gives equal weight to both metrics. The F-

score is particularly useful when you want a balance between precision and recall. A

high F-score indicates that both precision and recall are high, suggesting that the

model is robust in its performance.

The F-score is calculated as 2 * (precision * recall) / (precision + recall). It is often

more informative than the arithmetic mean of precision and recall as it penalizes

extreme values. For instance, if either precision or recall is zero, the F-score will also

be zero, reflecting the poor performance of the model.

In essence, precision, recall, and F-score offer distinct yet complementary perspectives

on a model's performance. These metrics are pivotal in the evaluation of machine

learning and information retrieval systems, assisting researchers in identifying the

strengths and weaknesses of their models and guiding future improvements.

4.3 Performance

In the initial phase, the original images in the ODIA dataset were resized to a uniform

size of 96x96 pixels to ensure consistency. This is an essential step as machine

learning models require inputs of a standard size. The resized images were converted

to grayscale and saved in a separate directory, with each image labeled in an iterative

sequence for easy identification. This process was carried out for each subdirectory in

the dataset, and upon completion of each, a message indicating the successful

operation was printed.

Following the resizing process, image augmentation techniques were applied to the

preprocessed images to increase the size and variability of the dataset. Augmentation

helps improve the model's ability to generalize and prevents overfitting. Various

31

augmentations were applied including rotation, shifting, shearing, and zooming. These

augmented images were then saved in a new directory. For every image, 20

augmented versions were created and saved with a name prefix corresponding to the

source image's name, thus aiding in class identification. As the script progressed, the

completion of augmentation for each subdirectory was announced.

Then the augmented images were loaded into a Python script where the subdirectories

were shuffled to promote data variability. Two NumPy arrays were generated: one

containing the training data (the image arrays) and another for the labels (the class of

each image, determined from the filename prefix). Both arrays were saved to disk,

providing easily accessible files for future use in training a machine learning model.

After the steps of image preprocessing, augmentation, and data conversion on the

ODIA dataset, the generated images and label arrays were then applied to the machine

learning model and OCR for digit recognition.

This processed image was used as input for two prediction models: a pretrained Keras

model and Tesseract OCR. The Keras model utilized was a convolutional neural

network (CNN) model previously trained on a similar dataset, making it an effective

tool for recognizing digits in the captured images. The model predicts the digit in the

frame by returning the class that has the highest probability. This prediction was

appended to a list of Keras predictions.

In parallel, Tesseract OCR, an optical character recognition engine, was used to

predict the digit present in the frame. Tesseract's configuration was set to recognize the

Oriya script (indicated by 'ori') using the LSTM OCR Engine mode. The OCR

prediction was added to a separate list.

Both the Keras model and Tesseract OCR continually predict the characters in the

frames until the script is manually interrupted or there are no more frames to process.

At the end of the script, a classification report was printed for both the Keras model

and the Tesseract OCR, providing an overview of their performance in predicting the

digit in each frame.

To sum up the results: the preprocessing and augmentation scripts created a

comprehensive and uniform dataset of 96x96 grayscale images. The machine learning

and OCR scripts, in turn, made predictions using these images, with each frame's

predicted digit compared to the ground truth labels to evaluate the performance of

32

each model.

Table 1: Classification Report for OCR Tesseract

Table 2: Classification Report for Keras Model

Vowels precision recall F1-score

Class ଅ

0.78 0.82 0.80

Class ଆ

0.84 0.8 0.82

Class ଇ

0.85 0.81 0.83

Class ଈ

0.79 0.78 0.785

Class ଉ

0.83 0.86 0.845

Class ଊ

0.77 0.85 0.81

Class ଏ

0.8 0.8 0.80

Class ଐ

0.75 0.73 0.74

Class ଓ

0.81 0.77 0.79

Class ଔ 0.80 0.72 0.76

Vowels precision recall F1-score

Class ଅ

0.74 0.81 0.77

Class ଆ

0.76 0.79 0.775

Class ଇ

0.78 0.72 0.75

Class ଈ

0.69 0.71 0.70

Class ଉ

0.74 0.73 0.735

Class ଊ

0.71 0.78 0.745

Class ଏ

0.7 0.67 0.685

Class ଐ 0.72 0.77 0.745

33

4.3
4.4

4.5 Limitations

The results suggest the potential benefits of combining these two approaches, it's

important to note that this combination has not been thoroughly explored in this study.

The combined model's performance could vary greatly depending on how the two

models are integrated and the specific strategy used to leverage their respective

strengths. Further research and experimentation would be necessary to fully

understand how to best combine these models and to assess the feasibility and

effectiveness of such an approach.

Class ଓ

0.75 0.82 0.785

Class ଔ 0.82 0.85 0.835

34

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

This analysis provides a comparative evaluation of the performance of two prevalent

models in optical character recognition - Tesseract OCR and Keras. By utilizing the F1

score as a standardized metric to assess precision and recall simultaneously, this

investigation allows for an understanding of the overall effectiveness of these models.

The results indicate a close performance range between the two, suggesting their

comparable competencies in processing and recognizing textual content from images.

In terms of specific performance, the Keras model slightly outperforms the Tesseract

OCR model at its best, achieving a higher maximum F1 score. This implies that under

certain conditions, the Keras model might deliver superior results, hence suggesting its

potential efficacy for tasks with a higher tolerance for variability in results.

Conversely, the Tesseract OCR model showcased more consistency across the board.

This is manifested by its higher minimum F1 score, indicating a steady and reliable

performance even in less-than-ideal situations, which could be beneficial for

applications demanding constant and dependable outcomes.

Nonetheless, while the F1 score provides a valuable performance indicator, it should

not be the sole criterion for model selection in practical applications. Real-world

implementation requires a more holistic approach, considering various factors beyond

the score itself. These include the specific nature of images to be processed, which can

vary widely in terms of quality, complexity, and the type of text involved. The

computational resources available are another key factor, as different models may

demand varying levels of computational power and time.

Moreover, the significance of precision or recall for the task in question plays a crucial

role. For instance, in an application where false positives carry heavy consequences, a

model with higher precision would be desirable despite a lower overall F1 score.

Conversely, in a situation where missing any positive case is critical, a model

demonstrating superior recall might be the optimal choice. Hence, the determination of

35

the most suitable OCR model must take into account the full array of project -

requirements, ensuring a balanced and informed decision.

5.2 Scope for future work

Looking forward, there is potential for enhancing these models through various

strategies. One approach is fine-tuning the models, which might allow them to better

adapt to the specifics of the task. Another strategy is using larger or more diverse

training datasets to boost the models' generalizability and robustness to different types

of images. Additionally, more sophisticated image processing techniques could be

employed to preprocess the images before they are fed into the OCR models. For

example, noise reduction, binarization, or skew correction might make it easier for the

models to correctly identify and recognize characters. More broadly, future research

could explore the integration of these models with other machine learning or deep

learning models to build more complex and accurate OCR systems. Future studies

could also look into the deployment of these models in real-world applications and

their performance in those settings.

36

REFERENCES

[1] Das, Abhishek, Gyana Ranjan Patra, and Mihir Narayan Mohanty. "A

comparison study of recurrent neural networks in recognition of handwritten

Odia numerals." Advances in Electronics, Communication and Computing:

Select Proceedings of ETAEERE 2020. Springer Singapore, 2021.

[2] Jena, Om Prakash, et al. "Odia Character Recognition using Curvelet

Transform with DWT Feature Extraction." 2019 International Conference on

Applied Machine Learning (ICAML). IEEE, 2019.

[3] Sethy, Abhisek, Prashanta Kumar Patra, and Deepak Ranjan Nayak. "Off-line

handwritten Odia character recognition using DWT and PCA." Progress in

Advanced Computing and Intelligent Engineering: Proceedings of ICACIE

2016, Volume 1. Springer Singapore, 2018.

[4] Meher, Sukadev, and Debasish Basa. "An intelligent scanner with handwritten

odia character recognition capability." 2011 fifth international conference on

sensing technology. IEEE, 2011.

[5] Rushiraj, Indugu, Souvik Kundu, and Baidyanath Ray. "Handwritten character

recognition of Odia script." 2016 international conference on signal

processing, communication, power and embedded system (SCOPES). IEEE,

2016.

[6] Sethy, Abhisek, Prashanta Kumar Patra, and Deepak Ranjan Nayak. "Off-line

Odia Handwritten Character Recognition: A Hybrid

Approach." Computational Signal Processing and Analysis: Select

Proceedings of ICNETS2, Volume I. Springer Singapore, 2018.

[7] Nayak, Mamata, and Ajit Kumar Nayak. "Odia running text recognition using

moment-based feature extraction and mean distance classification

technique." Intelligent Computing, Communication and Devices: Proceedings

of ICCD 2014, Volume 2. Springer India, 2015.

[8] Jena, Om Prakash, et al. "Odia characters and numerals recognition using

hopfield neural network based on Zoning features." International Journal of

Recent Technology and Engineering 8.2 (2019): 4928-4937.

[9] Jena, Om Prakash, et al. "Odia characters and numerals recognition using

hopfield neural network based on Zoning features." International Journal of

Recent Technology and Engineering 8.2 (2019): 4928-4937.

[10] Das, Abhishek, and Mihir Narayan Mohanty. "An useful review on optical

character recognition for smart era generation." Multimedia and sensory input

for augmented, mixed, and virtual reality. IGI Global, 2021. 1-41.

[11] Sahu, Anupama, et al. "Odia Handwritten Characters Recognition Through

Cost–Benefit Analysis." Intelligent Systems: Proceedings of ICMIB 2021.

Singapore: Springer Nature Singapore, 2022. 631-639.

[12] Das, Mamatarani, and Mrutyunjaya Panda. "Analysis of Pre-processing

Techniques for Odia Character Recognition." Innovations in Bio-Inspired

Computing and Applications: Proceedings of the 10th International

Conference on Innovations in Bio-Inspired Computing and Applications

37

(IBICA 2019) held in Gunupur, Odisha, India during December 16-18, 2019

10. Springer International Publishing, 2021.

[13] Jena, Om Prakash, et al. "Recognition of Printed Odia Characters and Digits

using Optimized Self-Organizing Map Network." 2020 International

Conference on Computer Science, Engineering and Applications (ICCSEA).

IEEE, 2020.

[14] Das, Dibyasundar, et al. "A Multi-Stage Hybrid Model for Odia Compound

Character Recognition." Applied Intelligent Decision Making in Machine

Learning. CRC Press, 2020. 53-70.

[15] Pattanayak, Sanjibani Sudha, Sateesh Kumar Pradhan, and Ramesh Chandra

Mallik. "Printed Odia Symbols for Character Recognition: A Database

Study." Advanced Computing and Intelligent Engineering: Proceedings of

ICACIE 2018, Volume 1. Springer Singapore, 2020.

[16] Sethy, Abhisek, and Prashanta Kumar Patra. "Off-line Odia handwritten

numeral recognition using neural network: a comparative analysis." 2016

International Conference on Computing, Communication and Automation

(ICCCA). IEEE, 2016.

[17] Sethy, Abhisek, Prashanta Kumar Patra, and Soumya Ranjan Nayak. "A

Hybrid System for Handwritten Character Recognition with High

Robustness." Traitement du Signal 39.2 (2022).

[18] Sahu, Anupama, and S. N. Mishra. "Odia handwritten character recognition

with noise using machine learning." 2020 IEEE international symposium on

sustainable energy, signal processing and cyber security (iSSSC). IEEE, 2020.

[19] Dash, Kalyan S., N. B. Puhan, and Ganapati Panda. "A hybrid feature and

discriminant classifier for high accuracy handwritten Odia numeral

recognition." 2014 IEEE region 10 symposium. IEEE, 2014.

[20] Das, Abhishek, Gyana Ranjan Patra, and Mihir Narayan Mohanty. "LSTM

based Odia handwritten numeral recognition." 2020 international conference

on communication and signal processing (ICCSP). IEEE, 2020.

[21] Panda, Smruti Rekha, and Jogeswar Tripathy. "Odia offline typewritten

character recognition using template matching with unicode mapping." 2015

international symposium on advanced computing and communication

(ISACC). IEEE, 2015.

[22] Mohapatra, Ramesh Kumar, et al. "OHCS: A database for handwritten atomic

Odia Character Recognition." 2015 Fifth National Conference on Computer

Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG).

IEEE, 2015.

[23] Mitra, Chandana, and Arun K. Pujari. "Directional decomposition for odia

character recognition." Mining Intelligence and Knowledge Exploration: First

International Conference, MIKE 2013, Tamil Nadu, India, December 18-20,

2013. Proceedings. Springer International Publishing, 2013.

38

[24] Mitra, Chandana, and Arun K. Pujari. "Directional decomposition for odia

character recognition." Mining Intelligence and Knowledge Exploration: First

International Conference, MIKE 2013, Tamil Nadu, India, December 18-20,

2013. Proceedings. Springer International Publishing, 20

39

Appendix

Script for Implementing the steps mentioned in chapter 3

from PIL import Image, ImageOps

import os

from tqdm import trange

DataDIR = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/Data"

SaveDIR = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/NewData"

SIZE = 96

subdirs = os.listdir(DataDIR)

#curr_dir = DataDIR+"\\"+subdirs[2]

#j = os.listdir(curr_dir)

#print(j)

for i in range(len(subdirs)):

 curr_dir = DataDIR + '/' + subdirs[i]

 os.makedirs(SaveDIR + "/" + subdirs[i])

 image_names = os.listdir(curr_dir)

 for j in trange(len(image_names)):

 image_loc = curr_dir + '/' + image_names[i]

 img = Image.open(image_loc).convert('L')

 new_img = ImageOps.fit(img, (SIZE, SIZE), Image.ANTIALIAS)

#using `trange`, each image is opened, converted to grayscale,

#resize using `ImageOps.fit`, and saved to the appropriate location

 save_dir = SaveDIR + "/" + subdirs[i] + '/' + subdirs[i] + '_' + str(j) + '.jpg'

 new_img.save(save_dir)

 print(subdirs[i], "Over...")

40

#The images in the specified directories are resized to the desired dimensions.

datagen = ImageDataGenerator(

 rotation_range=10,

 width_shift_range=0.1,

 height_shift_range=0.1,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=False,

 fill_mode='nearest',)

sub_dir = os.listdir(DataDIR)

for k in range(len(sub_dir)):

 for j in range(len(images_loc)):

 img = load_img(DataDIR + '/' + sub_dir[k] +'/' + images_loc[j]) # this is a PIL

image

 x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)

 x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)

 # the .flow() command below generates batches of randomly transformed images

 # and saves the results to the `preview/` directory

 i = 0

#The image is then converted into a NumPy array using `img_to_array`.

#This conversion is necessary to prepare the image for augmentation

#The image array is reshaped into a 4D array of shape `(1, 3, 150, 150)`,

#The first dimension represents the batch size (here set to 1)

#The second and third dimensions represent the image's shape (150x150), and

#The last dimension represents the number of color channels (3 for RGB images)

 for batch in datagen.flow(x, batch_size=1,save_to_dir=SaveDIR+"/"+sub_dir[k],

save_prefix=sub_dir[k],):

41

 i += 1

 if i > 20:

 break

 print(sub_dir[k], 'is over...')

#The `datagen.flow` function is called to generate augmented images based

#It takes the reshaped image array as input, generates batches of randomly

#transformed images, and saves the augmented images to the specified directory

#The `save_prefix` parameter determines the prefix for the saved augmented images.

#The additional loop (`for batch in datagen.flow`) that iterates over the generated

#batches of augmented images.

#The code limits the number of generated augmented images to 20 by checking the

#value of `i` and breaking the loop if `i` exceeds 20.

import numpy as np

from PIL import Image

import os

import random

from tqdm import trange

DataDir = "/content/Augmentation-of-ODIA-Hand-Written-Dataset/Data"

sub_dir = os.listdir(DataDir)

random.shuffle(sub_dir)

train_data = []

labels = []

for i in range(len(sub_dir)):

 cur_loc = DataDir + '/' + sub_dir[i]

 images = os.listdir(cur_loc)

 for j in range(len(images)):

 img = Image.open(cur_loc + '/' + images[j])

 arr = np.asarray(img)

 train_data.append(arr)

42

#the code opens the image using PIL (`Image.open`) ,converts it to grayscale.

#The grayscale image is then converted to a NumPy array using `np.asarray`.

#This array representation is added to the `train_data` list.

 labels.append(int(sub_dir[i]))

#The label for an image is extracted using string manipulation

#It is converted to an integer and appended to the `labels` list.

 print(sub_dir[i], ' over...')

np.save('train.npy', train_data)

np.save('labels.npy', labels)

#The image data and corresponding labels are collected and saved as NumPy files.

--

import sys

import cv2

import numpy as np

from keras.models import load_model

from keras import backend as K

from sklearn.preprocessing import LabelEncoder

from subprocess import call

font = cv2.FONT_HERSHEY_SIMPLEX

input_shape = (1, img_rows, img_cols)

first_dim = 0

second_dim = 1

def annotate(frame, label, location = (20,30)):

 #writes label on image#

 cv2.putText(frame, label, location, font,

 fontScale = 0.5,

 color = (255, 255, 0),

 thickness = 1,

 lineType = cv2.LINE_AA)

43

def extract_digit(frame, rect, pad = 10):

 x, y, w, h = rect

 cropped_digit = final_img[y-pad:y+h+pad, x-pad:x+w+pad]

 cropped_digit = cropped_digit/255

 #only look at images that are somewhat big:

 if cropped_digit.shape[0] >= 48 and cropped_digit.shape[1] >= 48:

 cropped_digit = cv2.resize(cropped_digit, (SIZE, SIZE))

 else:

 return

 return cropped_digit

def extract_digit(frame, rect, pad = 10):

 x, y, w, h = rect

 cropped_digit = final_img[y-pad:y+h+pad, x-pad:x+w+pad]

 cropped_digit = cropped_digit/255

 #only look at images that are somewhat big:

 if cropped_digit.shape[0] >= 48 and cropped_digit.shape[1] >= 48:

 cropped_digit = cv2.resize(cropped_digit, (SIZE, SIZE))

 else:

 return

 return cropped_digit

print("loading model")

model = load_model("/content/Augmentation-of-ODIA-Hand-Written-

Dataset/second_99accuracymodel.h5")

labelz = dict(enumerate(["one", "two", "three", "four",

 "five", "six", "seven", "eight", "nine", "zero"]))

for i in range(1000):

 ret, frame = cp.read(0)

44

 final_img = img_to_mnist(frame)

 image_shown = frame

 contours, _ = cv2.findContours(final_img.copy(),

cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 rects = [cv2.boundingRect(contour) for contour in contours]

 rects = [rect for rect in rects if rect[2] >= 2 and rect[3] >= 8]

 #draw rectangles and predict:

 for rect in rects:

 x, y, w, h = rect

 if i >= 0:

 mnist_frame = extract_digit(frame, rect, pad = 0)

#The `img_to_mnist` function is defined to convert an input frame to a binary image

#using grayscale conversion, Gaussian blur, and adaptive thresholding.

#The code loads the pre-trained model using

`load_model("second_99accuracymodel.h5")`.

 if mnist_frame is not None: #and i % 25 == 0:

 mnist_frame = np.expand_dims(mnist_frame, first_dim) #needed for keras

 mnist_frame = np.expand_dims(mnist_frame, second_dim) #needed for

keras

 #print(mnist_frame.shape)

#dictionary `labelz` is created to map class indices to their respective labels.

#The code enters a loop to continuously read frames from the video capture.

#For each frame, the `img_to_mnist` function is to convert the frame to a binary

image.

 class_prediction = model.predict_classes(mnist_frame, verbose = False)[0]

 #print(model.predict_proba(mnist_frame))

45

 prediction = np.around(np.max(model.predict(mnist_frame, verbose =

False)), 2)

 label = str(prediction) # if you want probabilities

 #print(label)

 cv2.rectangle(image_shown, (x - 15, y - 15), (x + 15 + w, y + 15 + h),

 color = (255, 255, 0))

 label = labelz[class_prediction]

 #print(label)

 annotate(image_shown, label, location = (rect[0], rect[1]))

#Contours are extracted from the binary image using `cv2.findContours`.

#Bounding rectangles (`rects`) are calculated for each contour, and filtering is applied

#to remove small or invalid rectangles.

The code iterates through each rectangle and processes it:

#The `extract_digit` function is called to extract the digit from the frame within the

rectangle.

#If a valid digit is extracted, it is preprocessed by expanding dimensions to match the

expected input shape of the model.

#The model predicts the class of the digit using `model.predict_classes`, and the

prediction probability is obtained using `model.predict`.

#The rectangle and label are drawn on the original frame using `cv2.rectangle` and

`annotate` functions.

#The frame with rectangles and labels is displayed using `cv2.imshow`.

 cv2.imshow('frame', image_shown)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

from keras.models import load_model

from keras import backend as k

46

k.set_image_dim_ordering('th')

from matplotlib import pyplot as plt

from keras.preprocessing.image import img_to_array, load_img

SIZE = 96

img_path = r"E:\Python Coding\ODIA DATASET\NewData\9\9_22.jpg"

path2 = r"E:\Python Coding\ODIA DATASET\NewData\3\3_56.jpg"

model = load_model('second_99accuracymodel.h5')

#The pre-trained model is loaded using `load_model('second_99accuracymodel.h5')`.

print("MODEL loaded")

img = load_img(img_path, color_mode='grayscale', target_size=(SIZE, SIZE))

x = img_to_array(img)

#The image is converted to a NumPy array using `img_to_array`.

x = x.reshape((1,) + x.shape)

#The shape of the array is modified to have a batch dimension of 1 using

#`x.reshape((1,) + x.shape)`.

#This is necessary to match the expected input shape of the model.

print(x.shape)

print(model.predict_classes(x))

plt.imshow(img)

plt.show()

import cv2

import numpy as np

import os

import pytesseract

from PIL import Image

from keras.models import load_model

from keras import backend as K

from sklearn.metrics import classification_report

47

os.environ['TESSDATA_PREFIX'] = r'C:\Program Files\Tesseract-OCR\tessdata'

K.set_image_data_format('channels_first')

Keras model for digit recognition

model = load_model("second_99accuracymodel.h5")

def keras_predict(model, image):

 processed = preprocess_image(image)

 return str(np.argmax(model.predict(processed), axis=-1)[0]) # Returns string

def preprocess_image(image, target_size=(96, 96)):

 if image.mode != "L":

 image = image.convert("L")

 image = image.resize(target_size)

 processed_image = np.expand_dims(np.array(image), axis=0)

 processed_image = processed_image.reshape(processed_image.shape[0], 1, 96, 96)

 return processed_image

def ocr_predict(image):

 pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-

OCR\tesseract.exe'

 config = ("-l ori --oem 1 --psm 7")

 return pytesseract.image_to_string(image, config=config)

def process_frame(frame, keras_predicted_labels, ocr_predicted_labels):

 # Preprocessing for OCR

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 _, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY +

cv2.THRESH_OTSU)

 inverted_binary = ~binary

48

 pil_img = Image.fromarray(inverted_binary)

 # Prediction using Keras model

 keras_pred = keras_predict(model, pil_img)

 print("Keras prediction: ", keras_pred)

 # Prediction using OCR

 ocr_pred = ocr_predict(pil_img)

 print("OCR prediction: ", ocr_pred)

 # Append prediction to the list

 keras_predicted_labels.append(keras_pred)

 ocr_predicted_labels.append(ocr_pred)

cap = cv2.VideoCapture(0)

Load the ground truth labels

with open('ground truth.txt', 'r', encoding='utf8') as f:

 labels = [line.strip() for line in f]

ocr_predicted_labels = []

keras_predicted_labels = []

frame_counter = 0

frame_step = 30 # process every 30th frame

while True:

 ret, frame = cap.read()

 if ret:

 frame_counter += 1

49

 if frame_counter % frame_step == 0:

 process_frame(frame, keras_predicted_labels, ocr_predicted_labels)

 cv2.imshow('Webcam Feed', frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 else:

 print("Can't receive frame (stream end?). Exiting ...")

 break

cap.release()

cv2.destroyAllWindows()

Only use the labels for the frames we processed

labels = labels[::frame_step]

print("\nClassification Report for Keras Model:")

print(classification_report(labels, keras_predicted_labels))

print("\nClassification Report for OCR Tesseract:")

print(classification_report(labels, ocr_predicted_labels))

	Odia Handwritten Optical Character Recognition Using Transfer Learning and Pre-trained Tesseract Odia dataset
	SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
	MASTER OF TECHNOLOGY IN
	Submitted by Swastik Mohanty (2K21/SPD/19)

	DEPARTMENT OF ELECTRONICS AND COMMUNICATION DELHI TECHNOLOGICAL UNIVERSITY
	JUNE 2021
	DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
	DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (1)
	Swastik Mohanty
	1.1 Overview
	1.1.1 OCR for Indic Scripts
	1.1.2 Previously used techniques
	1.2 History of Odia Language
	1.3 Odia OCR and challenges faced
	Optical Character Recognition (OCR) has a lot of promise for the Odia language, especially in helping to digitise, save, and make available a lot of content written in the Odia script. Odia is an Indian language that is mostly spoken in the state of O...
	First of all, OCR has the ability to make a big difference in preserving cultural artefacts. By digitising and protecting Odia literature, historical texts, and other important documents, OCR makes sure that this priceless cultural treasure does not g...
	Also, OCR's ability to improve accessibility can help a wider audience by making Odia text easy to find for people who have trouble seeing or reading. OCR has the ability to help researchers, students, and professionals who work with Odia content by m...
	Also, OCR's features make it possible for natural language processing (NLP) and machine translation (MT) apps for Odia to get better. These changes could lead to improvements in machine learning and artificial intelligence that can help the people who...
	Even with these benefits, using OCR with the Odia language is not without problems. The Odia script is hard to read because it has a unique set of characters and diacritics that make it hard for OCR engines to tell the difference between the different...
	Also, the lack of large, high-quality labelled datasets for training OCR models for the Odia language could slow down the development of accurate and efficient OCR systems. Lastly, the job is made even more difficult by the fact that Odia text can be ...
	To solve these problems, strong OCR algorithms need to be made that can handle the complexities of the Odia script and the differences in handwriting, styles, and sizes. OCR performance for the Odia language can be improved by using cutting-edge metho...
	1.4 Transfer Learning
	1.5 Literature Review
	1.6 Research Gaps
	CHAPTER 2
	DEEP LEARNING APPROACHES AND THE DATASET USED FOR ODIA HANDWRITTEN OCR
	2.3 Using CNN model to predict Odia OCR
	2.4 Using Tesseract pre-trained Odia dataset to predict Odia OCR
	CHAPTER 3
	3.1 Introduction
	3.2 Image Resizing and Grayscale conversion
	3.3 Image Augmentation
	3.4 Data Pre-processing
	3.5 Character Recognition Using Keras and Tesseract OCR
	3.6 Concluding remarks
	CHAPTER 4 RESULTS AND DISCUSSION
	4.2 Performance parameters
	4.3 Performance
	4.3
	4.4
	4.5 Limitations
	CHAPTER 5 CONCLUSION AND FUTURE SCOPE
	5.2 Scope for future work
	REFERENCES

