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ABSTRACT
Emotions are complex psychological states that involve physiological arousal, cognitive

interpretation, and behavioural expression, influencing how individuals experience

and respond to events. Various modalities, including facial expressions, subjective

psychological tests, and physiological signals, can recognize human emotional states,

out of which physiological signals have several advantages over the other modalities,

including greater sensitivity to internal feelings and the ability to provide continuous,

real-time data for accurate emotional monitoring.

In this context, automated Emotion Recognition Systems (ERS) are gaining

popularity in predicting human emotions and enhancing health and decision-making.

These systems utilize machine learning (ML) and deep learning (DL) algorithms

to process wearable biosensor data and classify emotions with high precision and

reliability. The automated ERS using traditional ML and DL algorithms directly

accesses the user’s raw physiological data to train the model and further classify

emotions. It results in a significant loss of privacy protection for the user’s sensitive

physiological information.

This thesis aims to enhance the automated ERS by improving data privacy concerns

and integrity using a novel Federated Learning (FL) paradigm. Unlike traditional

machine learning techniques, the FL paradigm creates a decentralized environment

(client and server ends), allowing users to transmit only the model weights generated

locally on their device rather than the complete raw physiological data to a central

server. The server aggregates these weights to create a global model aggregator that

updates after each iteration. Apart from privacy, this thesis addresses the research

gaps for (1) Lack of multi-modality in FL-based automated ERS with physiological

data input; (2) Restricted emotion dimensions in FL-based automated ERS, exploring

a smaller range of emotions, (3) Existing FL-based automated ERS fails to address the

data heterogeneities occurring in a federated environment.
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Firstly, the thesis presents a comprehensive literature review of automated ERS

using physiological signals. It includes emotion models, physiological signals, the

relation between emotions and physiological signals, technical background including

data processing for physiological signals, ML and DL models, and the related works of

FL for ERS.

Secondly, the thesis proposes a privacy-preserved emotion recognition architecture

for multi-modal physiological data combining EEG, ECG, GSR and RESP signal

data. For this, the thesis proposes an FL-based Multi-modal Emotion Recognition

System (F-MERS) for classifying emotions using Valence, Arousal, and Dominance

emotion dimensions. The thesis validates the proposed F-MERS with three different

emotion datasets, proving it robust achieving an average testing accuracy of 83.02%

with AMIGOS, 86.51% with DEAP, and 75.19% with DREAMER. It assesses its

classification performance, scalability with different client distributions, convergence

speed, and communication computation (in terms of averaging and training times) and

discusses the experimental results. The F-MERS did not address data heterogeneity

present in the multi-modal physiological data and the federated environment.

Thirdly, the thesis overcomes the challenge of data heterogeneity, lacking in the

existing works of FL, by proposing an enhanced Attention-based Federated Learning for

Emotion recognition using Multi-modal Physiological data (AFLEMP) architecture.

AFLEMP removes the Variation Data Heterogeneity (VDH) occurring while combining

multiple physiological data together by implementing attention mechanisms at the client

end. It proposes a novel Scaled-Weighted Federated Averaging (SWFA) algorithm for

the server end to reduce the Imbalanced Data Heterogeneity (IDH) occurring due to

imbalanced data distribution at the client end within a federated environment. The

thesis validates the proposed AFLEMP with two different emotion datasets, achieving

the testing accuracy of 90.11% with AMIGOS and 85.12% with DREAMER, proving it

to be robust. For assessing the AFLEMP, the thesis evaluates and contrasts it with other

FL algorithms for ERS in terms of classification performance, convergence speed and

communication computation (in terms of averaging and training times) and discusses

its experimental results.

Fourthly, the thesis presents that the proposed AFLEMP provides multi-dimensionality

in terms of emotion dimensions, which is lacking in the existing works of FL for ERS.
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For this, the thesis proposes AFLEMP to classify a wide spectrum of emotions using

a 3D-VAD model of emotions (including Valence-Arousal-Dominance together). The

thesis presents the experimental results of the proposed AFLEMP for its classification

performance for Valence-Arousal-Dominance together and individually.

The research presented in this thesis contributes to the field of emotion recognition

based on physiological signals by exploring FL. The FL techniques can assist for

providing privacy of emotion recognition systems using multi-modal physiological

signals. The proposed F-MERS and AFLEMP are robust, efficient in communication,

and scalable.
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Chapter 1

Introduction

Recognizing emotions is a technique for determining a human being’s current state

of feelings and thoughts, which varies substantially. The use of technology to assist

individuals in identifying emotions is a relatively more explored field of study. Emotions

are essential to people’s lives because they influence their feelings and decision-making.

The two most common types of emotions that humans display are Positive and Negative

emotions [196]. The Positive emotions support an individual’s well-being, emotional

stability, and productivity in day-to-day activities. Conversely, negative emotions can

result in stress [243], anxiety [242], health issues, and other problems, and in severe

cases, they can even lead to suicide.

Psychologists primarily represent emotions using two approaches: (1) classify

emotions on discrete levels, defining each as high, low, and neutral [219], and (2)

define emotions into groups based on their polarity (positive or negative - named

as Valence) and intensity (arousal levels - named as Arousal) [126, 286]. Valence

(V) and Arousal (A) are the two dimensions of the 2-dimensional (2D-VA) model of

emotion [126] in which Valence indicates whether the emotion is positive or negative,

and Arousal indicates the intensity levels, i.e., low or high. This 2D model of emotion

was upgraded into a 3-Dimensional (3D-VAD) model of emotion [33, 127], which

included an addition of the Dominance (D) dimension to describe how submissive and

dominant emotions are for an individual. Each method contributes to communicating a

certain aspect of human emotion while putting forth perspectives on how emotions are

portrayed and experienced by people. These aid in assessing an individual’s emotional

condition at any moment.
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Figure 1.1: Branching representation for the emotion indicators

There are different indicators for identifying emotions as represented in Figure 1.1

and described below:

1. Psychological Subjective Questionnaires: It involves self-report measures

where individuals describe their feelings, experiences, or reactions to various

stimuli via common tests, non-verbal pictorial assessment techniques, and

questionnaires (as shown in Figure 1.2). These include Self-Assessment

Manikins (SAM) [119], Positive and Negative Affect Schedule (PANAS) [71],

Profile of Mood States (POMS) [220], The State-Trait Anxiety Inventory

(STAI) [63]. Disadvantages: These indicators depend on memory, which can

be unreliable and influenced by recent events. Individuals might only sometimes

be honest or may alter their responses due to social desirability bias or a lack of

self-awareness. Additionally, a person’s current mood can impact their answers,

compromising the data’s accuracy [130, 200, 259].

2. Physical Indicators: It includes Speech [209], Gestures, Facial Expres-

sions [289] and Postures (as shown in Figure 1.2). Disadvantages: While these

indicators are relatively easy to gather, they are not always reliable. Physical

2



Figure 1.2: Sample indicators for emotion recognition.

indicators might not capture the full spectrum of emotions, particularly more

subtle or complex emotions. Physical behaviours can be influenced by context and

social norms, leading to misinterpretation. People can mask their genuine feelings

by manipulating body indicators like facial expressions or voices, especially

in social situations. For instance, someone might smile even if experiencing

negative emotions [226].

3. Physiological Indicators: It includes physiological signals for Electroencephalo-

gram (EEG) [294], Electrocardiogram (ECG) [89], Galvanic Skin Response

(GSR) [152], Heart Rate (HR) [57], Blood Volume Pulse (BVP) [196] and

Respiration (RESP) [79]. Disadvantages: Recording these signals requires

a little complicated installation and maintenance of equipment susceptible

to movement artefacts and noises. Advantages: These indicators can

directly measure the body’s response (as shown in Figure 1.2) to emotional

stimuli, offering insights into the physiological processes underlying emotions.

Physiological indicators allow for continuous monitoring of emotional states,

providing real-time data. It benefits populations that cannot self-report, such

as infants, non-verbal individuals, or people with communication impairments.

These physiological signals reflect sensory-motor expressions and help predict

more accurate emotional shifts. Using single physiological signals leads

to inaccurate emotion classification due to noises and artefacts in them.

[77, 118, 169]. However, combining these signals in a multimodal approach

leads to more accurate and reliable classifications [50, 92, 109, 135].
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This thesis focuses on utilizing the physiological indicators for recognizing

emotions. It examines the effectiveness of the physiological signals EEG, ECG, GSR

and RESP (single and multi-modal) to accurately identify emotions.

1.1 Motivation and Background

1.1.1 Why Emotion Recognition?

As emotions play a vital role in a human being’s life, they influence how to see and

understand things related to daily life scenarios. Recognizing emotions via different

physical [289],[209] and physiological[294],[89], [152],[57] parameters in the past

research concludes that physical parameters like facial expression, speech, and text can

be fake, but physiological signals like EEG [294], ECG [89], HR [57], GSR [152]

and others can map the correct and accurate state of emotions. Emotion recognition

holds the potential to transform healthcare [39, 74, 166, 298] (improving mental health

monitoring), entertainment [202] (revolutionizing user experience), and education [183,

260] (enhancing learning environments) industries to understand and respond to human

emotions in real-time.

1.1.2 Background for Automated Emotion Recognition using

Physiological Signals

Automated Emotion Recognition Systems (ERS) use Machine Learning (ML) and

Deep Learning (DL) models to recognize human emotions via identifying patterns from

physiological responses, which can improve health and decision-making [74, 183, 298].

Automated ERS using ML and DL models requires physiological signal data as input

for classifying different emotions by evaluating behavioural tendencies, physiological

reactions, motor expressions, cognitive assessments, and subjective feelings. Figure 1.3

illustrates the process of automated ERS using physiological signals, such as heart rate,

skin conductance, and brain activity, through a multi-step process [120].

Initially, physiological signals are collected using wearable sensors (described later

in Chapter 2), which undergo preprocessing to remove noise and artefacts. It follows

4



Figure 1.3: Methodology for automated Emotion Recognition System (ERS) [244].

Figure 1.4: Workflow of steps for Emotion Recognition System (ERS)

feature extraction, where relevant features such as statistical metrics, frequency domain

features, and time-domain features are derived from the signals (as shown in Figure 1.4).

Then, feature selection techniques, such as Principal Component Analysis (PCA) [47],

are implemented to help identify the most informative features. For model training,

both ML and DL models like Support Vector Machines (SVM) [159, 193] and Random

Forests [82, 185, 194], Convolutional Neural Networks (CNN) [101, 143, 173], and

Long Short-Term Memory (LSTM) networks [31, 98, 267, 287], are employed to learn

the patterns associated with different physiological signal inputs reflecting different

emotions from labelled datasets. These models are then validated using cross-validation

techniques and performance metrics like accuracy, precision, recall, and F1-score. After

validation, the trained models can be deployed in real-time systems for continuous
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sensor data processing to classify emotions in real time. This comprehensive pipeline

leverages the power of ML and DL to enable accurate and robust emotion recognition

using physiological signals and can enhance model performance and adaptability. It has

wide applications in mental health monitoring, decision making and human-computer

interaction with user feedback.

1.1.3 What are the Privacy Concerns in Automated in ERS?

The automated ERS uses traditional ML and DL methods, which require complete

raw data for training the model, resulting in a significant loss of privacy protection for

a human’s sensitive physiological information [36, 45, 100]. These methods require

access to vast amounts of raw physiological data for effective model training, making

the ERS more vulnerable to unauthorized data access and misuse risks. Directly

feeding physiological signals into the model exposes sensitive data to third parties

and potential attackers, resulting in a substantial loss of privacy. Safeguarding this

sensitive physiological data has become a major concern in human emotion recognition,

particularly within certain environments. Conventional ML and DL models for ERS

allow multiple users to access each other’s emotional states [28, 82, 145, 146, 154, 268].

Given humans’ diverse range of daily emotions, individuals may prefer not to share

these emotions with others or an audience [56]. For instance, individuals facing

health challenges and navigating unstable emotional states might choose not to express

themselves openly [163]. Several potential challenges emerge as a result of privacy

concerns with automated ERS that utilize sensitive physiological signals, such as

data leakage incidents recently happened with the automated ERS [95, 164, 301],

In 2019 [25], biometric data and records got leaked. External hacking attempts leading

to data breaches result in the unauthorized access of sensitive physiological data utilized

by the ERS [123, 270].

1.1.4 Why Federated Learning (FL) Paradigm?

Federated Learning (FL) is one paradigm that cares for data privacy, creating

a decentralized environment [39, 99, 124]. It is a specialized architecture in

which the global model takes weights of the raw data for secure aggregation and

6



Figure 1.5: Schematic diagram of the Federated Learning environment.

analysis [136, 249]. In 2017, Google AI proposed FL 1), a new machine learning

technology [137, 249]. Figure 1.5 illustrates how several remote devices are allowed

for training models without moving or releasing complete datasets using Federated

Learning [136]. Unlike traditional learning techniques, FL uses weights of the raw data

to train the models instead of users’ complete raw data [214, 249]. Due to the relevance

of what it brings to the table for machine learning in a hyper-connected world, it is

fruitful for emotional recognition. It is a distributed algorithm for training data (stored

locally) that does not collect complete raw data from the local servers [69]. Hence, it

preserves the privacy of sensitive input data (physiological information) [36, 100].

1.2 Research Gaps

1.2.1 Research Gap 1: Lack of Privacy

Automated Emotion Recognition Systems using traditional machine learning and deep

learning methods for classifying emotions fail to preserve the data privacy of users’

sensitive physiological information during model training [36, 124]. This vulnerability

allows data attackers to access and exploit personal biometrics and physiological

information [39, 124, 270].

1https://www.tensorflow.org/federated

7

https://www.tensorflow.org/federated


1.2.2 Research Gap 2: Limited FL for ERS

The FL paradigm for emotion recognition based on physiological signals is an

unexplored area of research. To the best of our knowledge, very limited research papers

have been published using FL for ERS based on physiological signals, and they all have

implemented only one aggregation algorithm of FL (i.e. FedAvg) [36, 100, 149].

1.2.3 Research Gap 3: Less Emotion Dimensions

The existing FL works for ERS fail to recognize complex emotions and feelings, as they

employ a two-dimensional emotion model (2D-VA) that only encompasses positive-

negative emotions with arousal levels [36, 67, 100, 165, 248]. While the 2D-VA emotion

model can easily differentiate between positive and negative emotions. However,

recognizing identical emotions within the 2D emotion space remains challenging

[33]. Therefore, there is a need to implement an updated model (3D-VAD) with

more dimensions to capture a wider range of human emotions.

1.2.4 Research Gap 4: Restricted Modality

The existing FL works for ERS classifying emotions uses only one of the single

physiological signals EEG, EDA, ECG, or HR [98, 251, 252, 264, 287]. However, using

a single physiological signal is unreliable as artefacts and noises in the signals distort

the signals’ features, which are input for training the ML models to classify emotions.

Noises and artefacts in the signal result in unjustified and inaccurate recognition, as

they lead the model to misinterpret the underlying emotional state of the subject. [77,

118, 169].

1.2.5 Research Gap 5: No handling of Data Heterogeneity

The existing FL works for ERS do not address the data heterogeneity in the federated

environment [36, 67, 100, 165]. The data heterogeneity can significantly impact the

performance and generalization of federated models for ERS in real-world scenarios

and must be addressed.
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1.3 Problem Statement

This thesis addresses the paramount problem of privacy preservation of sensitive multi-

modal physiological signals in an automated emotion recognition system using the

Federated learning paradigm. Apart from privacy, this thesis reduces two types of

data heterogeneities: (1) Variation Data Heterogeneity (VDH) occurring in the multi-

modal physiological signal data input while combing multiple physiological signals

via feature-level fusion, and (2) Imbalanced Data Heterogeneity (IDH) occurring

in a federated environment due to the different data distribution at the client end.

Additionally, it works on expanding emotion dimensions using a 3D-VAD model of

emotions to explore a wide range of emotions via the three emotion dimensions:

Arousal, Valence, and Dominance, which is lacking in the existing works of FL for

ERS.

1.4 Research Objectives and Contribution of the Thesis

The main objective of the thesis is to preserve the privacy of the Emotion Recognition

System based on physiological signals. The thesis achieves the following four

objectives:

• Objective 1: Literature Review - To perform a comprehensive literature review

on the Emotion Recognition System based on Physiological Signals using a

Federated Paradigm.

Contribution: This thesis conducts an exhaustive, comprehensive literature

review to examine the strengths and weaknesses of various machine learning

and deep learning methods for classification models for automated emotion

recognition systems. This literature review adds the concept of federated learning

and its usage for emotion recognition. (Completed by Journal 1).

• Objective 2: Multi-modal Privacy Architecture - To propose privacy preserved

multi-modal architecture for emotion recognition using Federated Learning.

Contribution: This thesis proposes two multi-modal FL architectures for

emotion recognition: (1) Federated Learning-based Multi-modal Emotion

Recognition System (F-MERS), and (2) Attention-based Federated Learning
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for Emotion recognition using Multi-modal Physiological data (AFLEMP). The

thesis validates both the proposed F-MERS and AFLEMP for three different

emotion datasets: A dataset for Multi-modal research of affect, personality traits

and mood on Individuals and GrOupS (AMIGOS) [125], Database for Emotion

Analysis using Physiological signals (DEAP) [233], and A Database for Emotion

Recognition through EEG and ECG Signals from Wireless Low-cost Off-the-

Shelf Devices (DREAMER) [135]. To prove the generalizability and robustness

of the proposed architectures (F-MERS and AFLEMP), the thesis computes their

scalability, communication computation and performance measures. (Completed

by Journal 2, 3).

• Objective 3: FL Algorithms - To study and implement aggregation algorithms

of FL for emotion recognition systems.

Contribution: This thesis proposes a novel Scaled Weighted Federated

Averaging (SWFA) algorithm for handling IDH in a federated ERS for enhanced

and better averaging at the server end. It also explores and implements other

existing aggregation algorithms of FL - FedAvg, FedBoost, FedPer, and Dynamic

Weighted Federated Averaging (DWFA) for ERS. To prove the efficiency and

robustness of the proposed SWFA, the thesis implements it for two emotion

datasets (AMIGOS [125] and DREAMER [135]) and compares their averaging

time and classification accuracy. (Completed by Journal 2).

• Objective 4: Increased Emotion Dimensions - To study and implement more

dimensions of emotional states with their intensities while classifying emotions

in an FL environment for ERS.

Contribution: This thesis proposes the federated F-MERS architecture with

the three-dimensional model of emotion (3D-VAD) for binary classification of

emotions using Arousal, Valence, and Dominance individually. It proposes the

AFLEMP architecture with the 3D-VAD for the octal classification of emotions

for a wider range of emotions (eight different emotions), using Arousal, Valence,

and Dominance together. (Completed by Journal 2).
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1.5 Significance of the Thesis

Automated ERS are pivotal in discerning an individual’s emotional states, indicating

overall health [122, 135, 233, 287]. These systems leverage physiological signals

such as heart rate, blood pressure, and skin temperature collected via smart wearables

like smartphones and smart bands, forming an integral part of innovative healthcare

systems [122, 189, 274]. The thesis explores different techniques to improve the privacy

of emotion recognition systems using a federated learning approach and multi-modal

physiological signals. It explains how emotion recognition models are trained across

multiple decentralized devices while keeping the data local and offers a robust solution

for securely handling personal sensitive data.

The research contributes to the field of FL by exploring its application in

emotion recognition based on physiological signals. It encompasses a broad spectrum

of emotional states, addressing the limitations of traditional automated emotion

recognition systems that rely on conventional machine learning techniques. The

findings have significant implications across several domains. Improved emotion

recognition can lead to more precise assessments and timely interventions in mental

health [39, 298]. The technology can enhance user experience in human-computer

interaction by enabling systems to better interpret and respond to emotional cues.

Privacy preserves emotional healthcare and facilitates more adaptive and responsive

healthcare solutions.

1.6 Thesis Overview

This section outlines the structure of the thesis, providing an overview of the content

and purpose of each chapter. Chapter 2 gives the background for Emotions and

Physiological Signals. It details the different emotion models for mapping emotions

using discrete and dimensional structures. This chapter details four physiological

signals, their significance for emotions, and how they can be recorded using wearable

biosensor devices. The limitations and benefits of each physiological signal are

described in this chapter, specifying the need and importance of multi-modality. It

describes the complete steps for data processing techniques for physiological signals,

which include filtering, artefact removal, and feature extraction.
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Chapter 3 discusses the openly accessible emotion datasets with the availability of

physiological signals. It provides the data descriptions and pre-processing for the three

emotion datasets chosen for evaluating the architectures proposed by the thesis.

Chapter 4 presents the automated ERS using different ML and DL models, taking

the physiological signals as input for training the models for emotion classification and

reports their results. It describes the contribution of different ML and DL models for

emotion classification. This chapter also discusses the limitations and privacy concerns

in the traditional ML and DL models for emotion recognition.

Chapter 5 presents a detailed introduction to FL, including its workflow, types of

architecture, approaches, aggregation algorithms, tools and its importance in handling

sensitive data. It presents the literature review of existing FL state-of-the-art for emotion

recognition using physiological signals and reports their limitations. Additionally,

it outlines the different evaluation measures required to assess the FL architectures

proposed in this thesis.

Chapter 6 proposes a novel federated learning architecture: FL-based Multi-modal

Emotion Recognition System (F-MERS) for emotion recognition to solve the problem

of lack of privacy preservation for sensitive physiological signals. This chapter presents

the methodology for the proposed F-MERS and assesses its classification performance

based on accuracy, precision, recall, and F-1 score. It also measures its scalability and

communication computation in terms of time and discusses the experimental results.

Chapter 7 proposes a novel architecture: Attention-based Federated Learning for

Emotion recognition using Multi-modal Physiological data (AFLEMP) to address the

Variation Data Heterogeneity (VDH). The issue of VDH occurs due to variations in the

multi-modal physiological input data stream. The proposed AFLEMP uses different

attention mechanisms to reduce the VDH. This chapter presents the methodology for

the proposed AFLEMP, assesses its classification performance, scalability, convergence

speed and communication computation, and discusses the experimental results.

Chapter 8 addresses the problem of Imbalanced Data Heterogeneity (IDH)

occurring at the client end in a federated environment. It proposes a novel

Scaled Weighted Federated Averaging (SWFA) algorithm as a solution to IDH by

implementing AFLEMP with SWFA. This chapter presents the methodology for the

proposed AFLEMP with SWFA, evaluates and contrasts it with other FL Algorithms
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for ERS in terms of classification performance, convergence speed, and averaging time

and discusses its experimental results.

Lastly, Chapter 9 summarizes the conclusions inferred from this research work,

highlights the ethical considerations, potential future work, and the social applications

in this area.
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Chapter 2

Background for Emotions and

Physiological Signals

This chapter provides a comprehensive overview of emotions and the physiological

signals essential for emotion recognition. It explores the various theoretical models

psychologists use to categorize and understand emotions, offering insights into discrete

and dimensional models such as arousal and valence. These models serve as the basis

for interpreting human emotional experiences and their corresponding physiological

responses, including changes in heart rate, skin conductance, and brain activity. The

chapter delves into the significance of the physiological signals, explaining how they

offer insights into the emotional state of individuals and how they are measured using

modern biosensor technologies.

2.1 Emotion Models

Psychologists typically model emotions in two ways. One approach divides emotions

into categories such as arousal and valence [33, 127]. Another approach classifies

emotions on three levels: high, low, and neutral [65, 188, 219, 296]. Both models

offer insights into how humans represent and perceive emotions, highlighting different

aspects of human emotion.
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Figure 2.1: Plutchik’s model of emotions [219]

2.1.1 Discrete Emotion Models

Human emotions can be described using terms such as pain, anger, fear, happiness, and

many others [296]. These emotions are innate and do not require learning, manifesting

differently in various environments and revealing unique individual feelings.

Many psychologists have explored human emotions and responses in different

contexts, classifying them as discrete emotions. Cicero and Graver [65] suggested

that emotions are inherently natural and universally experienced across cultures. The

authors grouped emotions into four primary categories: pain, fear, pleasure, and lust.

Ekman [188] described emotions as clearly defined, quantifiable, physically connected,

originating from past physiological and communicative needs. The author named anger,

happiness, fear, sadness, disgust, and surprise the six fundamental emotions. These

emotions produced physiological reactions that functioned as alerts, occasionally telling

the difference between life and death. Figure 2.1 illustrates Plutchik [219]’s model of

emotions in a wheel consisting of eight primary emotions: anger, trust, joy, sadness,

fear, surprise, disgust, and anticipation. This model shows varying intensity, with

powerful emotions in the centre and weaker feelings on the wheel’s edges.

However, this emotion model cannot capture complicated emotions such as liking,

disliking, or hatred. In order to work over these constraints, the idea of a continuous

multi-dimensional space model is proposed.
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Figure 2.2: Models of emotions: (A) 2D-VA [286], (B) 3D-VAD [184]

2.1.2 Continuous Emotion Models

Continuous emotion models assess emotions along a single axis, simplifying

comparison and classification [126]. However, this approach addresses two main

difficulties. First, it can express correlations between different emotional states, such

as admiration versus trust, grief versus sadness, and quantify specific conditions, such

as very sad versus not sad [91]. Second, it accounts for varying intensities in emotions

with similar descriptions. For instance, joy can range from a little to a lot of happiness.

Consequently, psychologists have developed multi-dimensional emotion space models,

including 2D and 3D models.

2.1.2.1 2-Dimensional Valence-Arousal (2D-VA) Emotion Model

Russell introduced the circumplex model of emotions in 1980. This model uses valence

and arousal axes to create a two-dimensional space, representing affective states as

discrete points [126]. The valence axis indicates the positivity or negativity of the

current state. In emotion recognition, valence is typically measured on a scale that

ranges from highly negative to highly positive. In contrast, the arousal axis grades

the condition based on the arousal level, such as how energized or enervated one

feels. Figure 2.2 (A) illustrates Russell’s circumplex model schematically. The arousal-

valence model is widely used due to its ease of integration in assessing emotions through

questionnaires and its simplicity in training machine learning algorithms, resulting in

effective outcomes [221, 233].
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2.1.2.2 3-Dimensional Valence-Arousal-Dominance (3D-VAD) Emotion Model

It will be difficult to identify similar emotions in a two-dimensional emotion space,

despite its ease of discriminating between positive and negative, good and bad emotions.

For instance, anger and fear are both in the negative valence and high arousal range. To

distinguish such emotions, a new dimension, Dominance is introduced by Mehrabian

and Russel [33, 127]. Dominance refers to the degree of control or power one feels

in response to the emotion. Anger is associated with high dominance, where a person

feels in control or empowered such as taking action or confronting a situation. In

contrast, fear is often linked with low dominance, where a person feels powerless or

threatened such as feeling overwhelmed or wanting to escape. Figure 2.2 (B) shows

Mehrabian and Russel’s model of emotions, which expanded the 2-dimensional model

to 3-dimensional by adding a Dominance dimension.

2.2 Emotion Annotation and Ground Truth

Emotion annotation involves labelling or tagging the stimuli data with specific

emotional states from which emotions are to be induced. This process is essential

for training and evaluating automated emotion recognition systems. Annotators can

include humans [35, 108] and annotation tools [139, 254] may assist in labelling data

based on pre-trained models or algorithms, though human oversight is often needed

to ensure accuracy [139, 277]. They review the data and assign emotion labels based

on predefined categories (e.g., happy, sad, angry, and others) by listening to audio

recordings or watching videos used for emotion elicitation stimuli [35, 119, 233].

There are two types of annotation schemes. One involves discrete emotions, assigned

based on specific, predefined emotions (such as joy, fear, surprise), and the other is with

dimensional models, annotated based on dimensions such as valence (pleasantness vs.

unpleasantness), arousal (activation vs. deactivation), and dominance (control vs. lack

of control) [140].

Ground truth refers to the accurate and reliable reference data used as a benchmark

for evaluating the performance of emotion recognition systems [29, 78, 140]. It

represents the actual emotional states or labels against which model predictions are
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Figure 2.3: Self-Assessment Manikins (SAM) with ratings for emotion recognition.

assessed. Determining the ground truth for emotions is challenging due to the lack

of clear definitions. However, the most effective approach for annotating emotions

experienced during experiments is through subjective ratings of emotional trials or

self-reports. The most widely used subjective rating tool is Self-Assessment Manikin

(SAM) [119]. Figure 2.3 shows the SAM ratings on a scale of 1 to 9 for arousal, valence,

and dominance using the pictorial representation of manikins. It has been effectively

used to measure emotional responses across various scenarios, including reactions to

images, sounds, videos, and other types of stimuli. This thesis uses the datasets that

recorded subjects’ self-ratings using SAM [119].

2.2.1 Creation of Emotion Classification Labels

Using the self-ratings discussed in the previous section provided by the subjects while

watching the stimuli, a threshold value is set to categorize the emotional responses

into distinct classes (or labels). For each dimension of the 3D-VAD model (Valence,

Arousal, Dominance), a threshold is determined based on the distribution of ratings.

For example, on a scale of 1-9, a threshold of 4.5 can be used to quantify the low (<4.5)

and high (>4.5) classes.

• Binary Classification: For binary classification, the emotional labels are divided

into two categories (low and high) for each dimension as follows (shown in

Table 2.1), and described below:

18



Table 2.1: Mapping of emotions using valence, arousal, and dominance individually
(from 3D-VAD).

Valence
Low High

Sorrow, Anger,
Fear, Disgust

Happiness, Calm,
Surprise, Excitement

Arousal
Low High

Sorrow, Calm,
Fear, Happiness

Disgust, Anger,
Surprise, Excitement

Dominance
Low High

Sorrow, Disgust,
Happiness, Surprise

Fear, Anger,
Calm, Excitement

1. Valence: Positive emotions as High and Negative emotions as Low based

on whether the rating is above or below the set threshold. For example,

rating 3 on a scale of 1-9 will be referred to as a low valence and can imply

one of these emotions: Sorrow, Fear, Anger and Disgust.

2. Arousal: High arousal level emotions as High activation and Low arousal

level emotions as Low activation based on the arousal rating relative to the

threshold. For example, rating 3 on a scale of 1-9 will be referred to as

low arousal and can imply one of these emotions: Sorrow, Calm, Fear or

Happiness.

3. Dominance: High control and Low control are classified based on the

dominance rating in comparison to the threshold. For example, rating 3 on

a scale of 1-9 will be referred to as low dominance and can imply one of

these emotions: Sorrow, Happiness, Surprise and Disgust.

• Octal Classification: In octal classification, the emotional states are classified

into eight categories formed by all possible combinations of the three dimensions

(as shown in Table 2.2):

1. Low valence, Low arousal, Low dominance (LVLALD): Represents

negative emotions with low intensity and little to no control such as Sorrow.

2. Low valence, Low arousal, High dominance (LVLAHD): Represents

negative emotions with low intensity and strong control such as Fear.

3. Low valence, High arousal, Low dominance (LVHALD): Represents

negative emotions with high intensity but little to no control such as Disgust.
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Table 2.2: Mapping of emotions using valence, arousal, and dominance together (from
3D-VAD)

Valence Arousal Dominance Emotions
Low Low Low Sorrow
Low Low High Fear
Low High Low Disgust
Low High High Anger
High Low Low Happiness
High Low High Calm
High High Low Surprise
High High High Excitement

4. Low valence, High arousal, High dominance (LVHAHD): Represents

negative emotions with high intensity and strong control such as Anger.

5. High valence, Low arousal, Low dominance (HVLALD): Represents

positive emotions with low intensity but little to no control such as

Happiness.

6. High valence, Low arousal, High dominance (HVLAHD): Represents

positive emotions with low intensity and strong control such as Calm.

7. High valence, High arousal, Low dominance (HVHALD): Represents

positive emotions with high intensity but little to no control such as Surprise.

8. High valence, High arousal, High dominance (HVHAHD): Represents

positive emotions with high intensity and strong control, such as excitement.

The previous work of FL for ERS with physiological signals used valence

and arousal from a 2D model of emotions to recognize emotions [36, 67, 100].

They lacked the presence of dominance in their proposed frameworks for ERS.

Incorporating dominance with valence and arousal in emotion recognition is required

for enhanced and diverse emotional representation [172] and improved accuracy in

emotion recognition [172]. To overcome this research gap, this thesis used valence,

arousal, and dominance together, from the 3D-VAD model of emotion for the proposed

AFLEMP architecture, for which the results are given in later Chapter 7.
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Figure 2.4: Brain lobe’s functions for emotional activities.

2.3 Physiological Signals and Emotions

Physiological signals are the biochemical signals produced in response to external

events. These are used for emotion recognition as they directly map an individual’s

current state of emotions. They require considerable signal pre-processing and

assessment. The following are the most widely used physiological signals for

recognizing emotions.

2.3.1 Electroencephalographic (EEG) Signals

Electroencephalographic (EEG) signals are the electric impulses recorded to assess

brain functions [90, 294]. These signals are crucial for understanding brain activities,

as the brain controls all human emotions, including physical movement, sensory

processing, language and communication, memory, and emotions [237, 294]. EEG

has been widely used to investigate brain neuronal functions and human emotion with

high time resolution and does not cause radiation exposure [237, 299].

The human brain serves as a central hub where different emotions and feelings are

generated, processed, and regulated. Different regions of the brain work together

to interpret external stimuli and internal states, translating them into emotional

experiences. The human brain is divided into four regions called as lobes: Frontal,

Temporal, Parietal, and Occipital [97, 123, 262]. Figure 2.4 shows the different brain

lobes with their emotion-relative activities. The frontal lobe, particularly the prefrontal

cortex, manages emotions, impulse control, and social behaviour. The temporal lobe

processes emotions like fear and pleasure and aids in emotional memory formation.

While the parietal lobe focuses on sensory perception and spatial awareness, it also

helps interpret emotional expressions and body language. The occipital lobe handles

visual processing, indirectly influencing emotional responses to visual stimuli.
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Figure 2.5: Frequency band distribution of raw EEG signal and its impacts on brain

Table 2.3: Wearable devices that use physiological signals to track emotions [238].

Physiological Signal Wearable Device Example

EEG

Emotiv EPOC [5],
NeuroSky MindWave [9],
Emotiv Insight [116],
DSI-24 [18],
Neuphony Headband [19],
CGX Quick-20r V2 [17]

ECG
VitalPatch [16],
Polar H10 [11],
Garmin HRM-DUAL [8]

GSR
EMPATICA E4 [6],
RING [13],
SHIMMER3 [15]

RESP

EMPATICA E4 [6],
VitalPatch [16],
Samsung Gear Live Watch [20],
Garmin HRM-DUAL [8]

Figure 2.5 presents the raw EEG signal classification into five types of frequency

waves: Alpha, Beta, Theta, Delta, and Gamma. Delta waves, which have a frequency

of less than 3.5 Hz, are typically observed during sleep. Theta waves, with frequencies

between 4 to 8 Hz, indicate drowsiness or the onset of sleep [171, 261, 278]. Alpha

waves, ranging from 8 to 13 Hz, indicates relaxed states of a person. Beta waves range

from 14 to 30 Hz and are associated with nervousness or active thinking. Gamma waves

have frequencies above 30 Hz, indicates heightened alertness and emotional arousal.

Table 2.3 lists the different wearable devices for recording physiological signal

responses, including several EEG headsets. For recording EEG, there are various

EEG devices available, including Emotiv EPOC [5], NeuroSky MindWave [9], Emotiv
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Figure 2.6: 19 Channel EEG headset montage mapping over brain regions.

Insight [116], DSI-24 [18], Neuphony Headband [19], and CGX Quick-20r V2 [17]

which are placed over the head with various number of electrodes or channels ranging

from 1 to 32 channels which touch to the scalp to record the signals sent by the brain to

measure emotions. Figure 2.6 shows a montage to present a 19-channel EEG headset

placed overhead, covering various brain regions. The frontal lobe is covered with Fp1,

Fp2, F7, F3, Fz, F4 and F8, the central lobe is covered with C3, Cz and C4, the temporal

lobe is covered with T3, T5, T6 and T4, the parietal lobe is covered with P3, Pz and

P4, and the occipital lobe is covered with O1 and O2 [131].

2.3.1.1 Significance of EEG for Emotions

EEG measures electrical activity in the brain and is valuable for understanding

emotional states. For instance, happiness is traced with increased alpha wave activity

in the left frontal region of the brain, indicating a state of relaxed alertness and positive

emotional processing [132, 232, 285]. Conversely, sadness corresponds to heightened

activity in the right frontal region of the brain, reflecting emotional distress and negative

affect [232]. Fear is witnessed with increased beta waves in the frontal and parietal

regions of the brain, linked to heightened alertness and anxiety [162, 232]. During

relaxation, there is an increase in alpha waves, particularly in the occipital and parietal

regions of the brain, indicative of a calm and restful state [232, 285].
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2.3.1.2 Features from EEG signals

• Time-Domain: Time domain features focus on the amplitude and temporal

characteristics of the signal. It includes the following features for EEG [216]:

1. Mean: The average value of the EEG signal over time.

2. Median: The middle value of the EEG signal over time.

3. Variance: Measures the variation of the EEG signal around the mean.

4. Standard Deviation: The square root of the variance indicates the signal’s

dispersion.

5. Hjorth Parameters: These capture essential features of the signal, including

frequency content, signal strength and complexity.

– Activity: It represents the variance of the signal. It quantifies the

amount of information or the signal’s power as Low or High [40, 223].

– Mobility: The square root of the first derivative’s variance is divided

by the signal’s variance. It essentially measures the signal’s frequency

content [40, 223].

– Complexity: The ratio of the mobility of the first derivative of the

signal to the mobility of the signal itself. It measures the variation

in frequency content over time, indicating the intricacy of the signal’s

shape [40, 223].

6. Fractal Dimension (FD): It is a feature that quantifies the complexity and

self-similarity of EEG signals, particularly useful for analyzing non-linear

and irregular patterns found in the EEG signals.

• Frequency-Domain: The time-domain signal is converted into the frequency

domain using Fast Fourier Transform (FFT). The frequency domain features are

derived via the signal’s power spectrum, reflecting the distribution of power

across different frequency bands. It includes the following features for EEG

signal:

1. Power Spectral Density (PSD): Gives a measure of the power distribution

over frequency [179, 210, 233] and is calculated using the Welch

method [233].
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Table 2.4: Description of EEG signal features in time and frequency domain.

Domain Features Description

Time

Mean, Median,
Standard Deviation,
Variance

Average value, median, standard deviation, variance,
change between consecutive values the EEG signal.

Hjorth Activity This parameter measures the overall energy or power
of EEG signal.

Hjorth Mobility This parameter measures the rate of change of frequency
content of EEG signal.

Hjorth Complexity This parameter is a combination of Hjorth Activity
and Mobility measuring the complexity of EEG signal.

Fractal Dimension It is a feature that quantifies the complexity and
self-similarity of EEG signal.

Frequency
Power Spectral Density Measure of power distribution over frequency of the

EEG signal, calculated using Welch method.

Spectral Entropy Measure of the distribution or randomness of the power
spectrum of a signal

Bandpower (alpha, beta,
theta, delta)

This feature gives the power within specific frequency
bands.

2. Spectral Entropy: A measure of the signal’s complexity and randomness of

brain activity in the frequency domain [31, 234]. It provides a single metric

that reflects how power is distributed across frequencies, offering insights

into brain states and conditions.

3. Band Power: It gives the power within specific frequency bands, including

delta (0–3.5 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and

gamma (>30 Hz) [293].

Table 2.4 lists all the features from EEG signals in time and frequency domains.

2.3.1.3 Related Works of EEG for Emotion Recognition

Li et al. [269] investigated EEG features for cross-subject emotion recognition,

examining different channels, brain regions, rhythms, and feature types. The authors

identified the Hjorth mobility parameter in the beta rhythm as the most effective feature,

achieving the highest mean recognition accuracy. Additionally, the study conducted

a preliminary correlation analysis on 62 EEG channels, exploring highly correlated

features for their potential to distinguish emotions across subjects. Khateeb et al. [154]

improved emotion classification accuracy by extracting EEG features from the time

and frequency domains. The authors used a grid search methodology to identify

four optimal electrodes (FP1, FP2, F3, and C4) from a set of 32 electrodes for the
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Figure 2.7: ECG original signal waveform and its filtered signal [201]

classification task. Gao et al. [275] employed a spatiotemporal attention mechanism to

capture significant sequential and spatial information from EEG signals. The authors

effectively represented diverse EEG activation patterns for different emotional states.

The study concluded that EEG is essential for emotion identification.

2.3.2 Electrocardiographic (ECG) Signals

Electrocardiographic signals are electrical signals recorded to monitor the activity

of the human heart [81, 292] as shown in Figure 2.7) [89]. These are essential for

diagnosing various cardiac conditions and are used to understand heart rate variability

and other aspects of cardiovascular health. The contraction and relaxation of the heart

muscle upon electrical stimulation are represented numerically by the signals, which

also indicate the potential fluctuations communicated to the skin surface due to the

heart’s electrical activity. The height of the ECG waves, measured in millivolts (mV),

is known as amplitude.

Figure 2.7 illustrates the ECG signal waveform. It illustrates the different

components of ECG waveform and is described as follows: (1). P Wave represents

atrial depolarization, which is the electrical activity associated with the contraction of

the atria. (2). QRS Complex represents ventricular depolarization, which is associated

with the contraction of the ventricles. It is the most prominent part of the ECG

waveform. (3). The T Wave represents ventricular repolarization when the ventricles

return to their resting state [62]. (4). The RR interval is the time between successive

R-wave peaks in the QRS complex of the ECG waveform [229, 292]. It measures the

duration of one cardiac cycle, representing the time between two heartbeats [201].
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Figure 2.8: Heart Rate and Heart Rate Variability relation.

2.3.2.1 Significance of ECG for Emotions

ECG provides insights into cardiovascular responses associated with different emotions.

For example, happiness is observed with a moderate increase in heart rate and higher

Heart Rate Variability (HRV), signifying a flexible and adaptive autonomic nervous

system response [107, 224, 240]. Sadness is characterized by lower HRV and a slightly

reduced heart rate, indicating a state of reduced physiological arousal and autonomic

inflexibility [94, 215]. Fear or anxiety causes a significant increase in heart rate

and lower HRV, reflecting a heightened state of arousal and stress [58]. In contrast,

relaxation is marked by a lower heart rate and higher HRV, denoting a state of calm and

autonomic balance.

2.3.2.2 Heart Rate (HR) from ECG Signal

It is defined as the average number of times the muscle of the heart contracts or beats over

a certain period, generally one minute [80, 198]. External bodily responses, including a

smile or anger, and more physiological responses, such as an increase in heart rate, are

regularly used by humans to communicate their emotions and current condition [57].

Unintentional body reactions naturally depict various emotions triggered by various

physical reactions [80].

HR can be measured using various devices, including ECG monitors, wearable

fitness trackers, and pulse oximeters [58]. Heart Rate reflects how many times the

heart beats in a given period and is a fundamental measure of cardiovascular health.

It is calculated by measuring the time between successive R-wave peaks (as shown

in Figure 2.8) in the ECG (RR intervals) and converting this into Beats Per Minute

(BPM) [29, 203]. The variation in time between successive heartbeats is the HRV [203,
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Figure 2.9: Heartbeats, RR interval, Histogram of RR interval [257] for a subject in
neutral state.

239]. It reflects the variability in the RR intervals and indicates the autonomic nervous

system’s regulation of the heart. HRV can be analyzed using various methods, including

time-domain, frequency-domain, and non-linear methods.

2.3.2.3 Significance of HR for Emotions

Heart rate and HRV are significant indicators of emotional states. Elevated heart rate

is often linked to stress, anxiety, and excitement due to increased sympathetic nervous

system activity. In contrast, a decreased heart rate generally reflects relaxation and

contentment, associated with parasympathetic nervous system dominance [57]. HRV,

which measures the variation in time between successive heartbeats, offers insights into

emotional regulation; higher HRV indicates better emotional resilience and regulation,

whereas lower HRV can be associated with negative emotional states like depression

and anxiety. Analyzing these patterns can enhance emotion recognition and support

applications like biofeedback for emotional management.

2.3.2.4 Features from ECG Signal

• Time-Domain Features: Directly analyze the ECG waveform, providing

information on heart rate, intervals, and waveform amplitudes. These are

described as follows:

1. Mean Heart Rate: Average number of heartbeats per minute, calculated

from the RR intervals [89, 292].

2. Standard Deviation of Heart Rate (Std HR) : The standard deviation of

heart rate values over a recording period [203].
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3. Maximum, Minimum Heart Rate (Max, Min HR): The highest and lowest

heart rate observed during a specific recording period [203].

4. RR Interval: Time interval between two consecutive R-wave peaks in the

ECG signal. It reflects the heart rate variability (HRV) [125, 187, 203, 292].

5. Root Mean Square of Successive Differences (RMSSD): A measure of

beat-to-beat variability in heart rate [60]. It is calculated from the square

root of the mean of squared difference in successive RR intervals. It is an

indicator of parasympathetic activity.

6. NN50 Count: Number of successive RR intervals differing by more than

50 ms, another measure of HRV [235, 276].

7. Triangular Index: It is calculated as the total number of all RR intervals

divided by the height of the histogram’s peak (as shown in Figure 2.9). It

indicates the overall variability in heart rate [166, 203].

8. Triangular Interpolation of NN Interval Histogram (TINN): It is the

baseline width of the RR interval histogram (as shown in Figure 2.9),

measured by interpolating the area under the histogram to form a

triangle [166, 203].

9. Coefficient of Variation of Successive Differences (CVSD): The ratio of

the root mean square of successive differences (RMSSD) to the mean RR

interval [203].

10. Coefficient of Variation of NN Intervals (CVNNI): The ratio of the standard

deviation of RR intervals to mean RR interval, expressed as percentage [83].

11. Sample Entropy (SampEn): A measure of the complexity and irregularity

of the RR interval time series. It is the negative logarithm of the conditional

probability that sequences of similar patterns remain similar at the next

point [129].

• Frequency-Domain Features: Examine the distribution of power across

different frequency bands, offering insights into heart rate variability. The time

domain ECG signal is converted into frequency components via FFT.
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1. Power Spectral Density (PSD): Distribution of power across different

frequency bands, providing information about energy in various frequency

ranges of the ECG signal via Welch method [187].

2. Low-Frequency Power (LF, 0.04–0.15 Hz): Reflects sympathetic and

parasympathetic activity [60, 193, 292].

3. High-Frequency Power (HF, 0.15–0.4 Hz): Mainly represents parasympa-

thetic activity, often related to respiratory sinus arrhythmia [60, 193, 292].

4. LF/HF Ratio: The ratio of low-frequency to high-frequency power,

indicating balance between sympathetic and parasympathetic nervous

systems [60, 292].

5. Low-Frequency Power in Normalized Units (LFnu): The power in the

low-frequency range (0.04–0.15 Hz) expressed as a percentage of total

power (minus the VHF component). It is associated with parasympathetic

activity [125].

6. High-Frequency Power in Normalized Units (HFnu): The power in the

high-frequency range (0.15–0.4 Hz) expressed as a percentage of total

power (minus the VLF component). It is associated with parasympathetic

activity [125].

7. Total Power: The overall power in the ECG signal, indicating the total

energy across all frequency bands [292].

Table 2.5 lists all the features from the ECG signal in the time and frequency

domain.

2.3.2.5 Related Works of ECG for Emotion Recognition

Valenza et al. [89] focused on short-term emotion recognition using ECG signals.

The authors characterized linear features of the Inverse Gaussian (IG) probability

distribution, including the mean, standard deviation (STD), and power in low and

high-frequency bands from ECG signals. Tarvainen et al. [174] created ’Kubios,’ a

framework for HRV analysis. This user-friendly software accepts various ECG and RR

interval data formats for artefact removal, sample selection, and trend elimination, using
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Table 2.5: Description of ECG signal features in time and frequency domain.

Domain Features Description

Time

Mean HR, Std HR Average value, standard deviation of heart rate values
Max HR, Min HR The highest and lowest heart rates observed.
RMSSD Measure of beat-to-beat variability in heart rate

NN50 Number of NN intervals differ by more than 50
milliseconds

Triangular Index Measure of the overall shape of the RR interval histogram
TINN Triangular interpolation of NN intervals

CVSD Coefficient of variation of successive differences between
NN intervals

CVNNI Coefficient of variation of NN intervals

SampEn Measure of the irregularity or complexity of the time series
ECG Signal

Frequency

Power Spectral Density Measure of power distribution over frequency of the
ECG signal, calculated using Welch method.

LF Power in the low-frequency (0.04 to 0.15 Hz) range
of the ECG signal

HF Power in the high-frequency (0.15 to 0.4 Hz) range
of the ECG signal

LF/HF Ratio Ratio of LF power to HF power
LFnu Normalized low-frequency power
HFnu Normalized high-frequency power
Total power The overall power in the ECG signal

optimal algorithms to calculate common frequency and time domain HRV features. It

generates reports in text (ASCII), Matlab (.mat), or PDF formats. Subramanian et

al. [221] conducted R-peak detection on ECG signals to calculate inter-beat intervals

(IBI) by measuring the time difference between consecutive R-peaks. The authors

extracted the HR, HRV features and PSD in low-frequency bands and computed a total

of 32 features. In a pilot study, Guo et al. [94] used a movie clip approach to elicit

five different emotional states. They recorded a 90-second ECG signal post-stimulus

and used time, frequency domain, and statistical analysis to obtain HRV features.

They computed 13 features, selecting five to categorize two distinct emotional states

(positive and negative) and five emotions: sad, angry, fear, glad, and relaxed [94]. Costa

et al. [112] developed EmotionCheck, a wearable device that detects users’ heart rates

and reduces anxiety levels through artificial feedback. Hasnul et al. [167] employed

Neurokit and AuBT toolboxes for processing and feature engineering ECG signals. The

authors detected R peaks and extracted 56 heart rate and heart rate variability features.

2.3.3 Galvanic Skin Response (GSR)

GSR (Galvanic Skin Response) is the fluctuation in sweat gland activity, reflecting the

intensity of an individual’s emotional arousal [100]. The emotional arousal changes in
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Figure 2.10: GSR signal and its components [203].

response to the surroundings, whether due to fear, joy, or other emotionally significant

events, leads to more sweat. The GSR measures skin resistance by passing a tiny

amount of current or voltage through the body and monitoring the variations between

two sensor endpoints placed on the fingers [230]. It is also called Electrodermal

Activity (EDA). Two electrodes are placed on the finger to test Skin Conductivity (SC)

and Skin Resistance (SR), making the sensors on the fingertips essential. A tiny voltage

is detected at the electrodes, providing data on the skin’s electrical properties.

Figure 2.10 represents the GSR signal and its features. There are two components

of GSR signals: (1) Phasic component presenting the peaks in GSR signals and also

known as Skin Conductance Responses (SCRs). These represent transient increases

in skin conductance that occur in response to specific stimuli or events [230, 282].

The height of the SCR peak indicates the magnitude of the response. Larger peaks

usually reflect stronger or more intense stimuli. (2) Tonic component, also known as

Skin Conductance Level (SCL), represents the baseline level of skin conductance over

time. It reflects the overall level of physiological arousal and can vary due to long-term

changes in emotional or physiological states [178]. Changes in the tonic component

can indicate gradual shifts in arousal levels or mood. For example, a sustained increase

in SCL might suggest ongoing stress or anxiety [121]. The phasic component of the

GSR signal is superimposed on the tonic baseline and reflects short-term variations in

arousal.
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2.3.3.1 Significance of GSR for Emotions

GSR measures changes in skin conductance due to sweat gland activity, which varies

with emotional arousal. Happiness can be observed with a moderate increase in GSR,

indicating a balanced state of arousal [153]. Sadness is associated with lower GSR,

reflecting reduced arousal and emotional engagement [142, 178]. Fear and anxiety

cause high GSR due to increased sweat gland activity, signifying heightened emotional

and physiological arousal [155, 178]. During relaxation, GSR is low, indicating a state

of calm and reduced arousal [155].

2.3.3.2 Features from GSR Signal

• Time-Domain Features: Time-domain features focus on the direct measurement

and characteristics of the GSR signal over time.

1. Mean Galvanic Skin Response (Mean GSR): The average value of the

GSR signal over a specific period. Provides a baseline measure of skin

conductance, reflecting the overall level of physiological arousal [243, 282].

2. Variance of GSR (Var GSR): The variance of the GSR signal values over a

specified period. Measures the degree of fluctuation or spread in the GSR

signal [243].

3. Skewness of GSR: A measure of the asymmetry of the GSR signal

distribution about its mean. It indicates the direction of skew in the GSR

data. Positive skewness suggests a distribution with a longer right tail, while

negative skewness indicates a longer left tail [243, 282].

4. Kurtosis of GSR: A measure of the sharpness of the GSR signal distribution.

It reflects the presence of outliers or extreme values. Higher kurtosis

indicates more outliers or extreme values, while lower kurtosis suggests a

flatter distribution [243, 282].

5. Standard Deviation of GSR (Std GSR): The standard deviation of the GSR

signal values. It represents the amount of variation or dispersion from the

mean GSR. Higher standard deviation indicates greater variability in skin

conductance [243, 282].
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Figure 2.11: GSR signal and SCR components: Onsets, Peaks and Recovery [203]

6. Tonic Component: The slow, baseline-level changes in skin conductance

are often obtained through low-pass filtering of the signal. It represents the

general level of arousal over time [44, 133].

7. SCL (Tonic) Slope: The rate of change in the tonic component of the GSR

signal is often calculated by fitting a linear model to the baseline (slow-

changing) part of the signal. It Indicates the trend or direction of baseline

skin conductance over time [44, 133].

8. SCR (Phasic) Peaks: The amplitude and timing of response peaks (as

shown in Figure 2.11) in the phasic component of the GSR signal, which

represents rapid changes in skin conductance in response to stimuli. It

reflects the intensity and timing of skin conductance responses to specific

stimuli or events. Higher peaks suggest stronger responses [44, 133].

• Statistical Features Applied to SCR (Phasic) and SCL (Tonic)

1. Statistical Features for SCR (Phasic) [101, 148]:

– Mean SCR Peak Amplitude: The average amplitude of SCR peaks over

a period.

– Variance of SCR: Measures the average squared deviation of each SCR

value from the mean SCR value.

– Standard Deviation of SCR Peak Amplitude: The variability in the

amplitude of SCR peaks.
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Table 2.6: Description of GSR signal features in time and frequency domain.

Domain Features Description

Time

Mean GSR, Var GSR,
Skew GSR, Kurtosis GSR,
Std GSR

Average value, variance, skewness, kurtosis,
standard deviation of the GSR signal

Tonic Component The slow, baseline-level changes in skin conductance

SCL (tonic) slope Slope of the tonic (slow-changing) component of the
skin conductance level (SCL)

SCR (phasic) peaks The number of peaks representing the phasic
(rapid-changing) component of the SCR

Mean SCL, Var SCL, Std SCL,
Mean SCR, Var SCR, Std SCR Statistical features applied to SCR, SCL

Frequency Power Spectral Density Measure of power distribution over frequency of the
GSR signal, calculated using Welch method.

2. Statistical Features for SCL (Tonic) [101, 148]:

– Mean SCL Value: The average value of the tonic component over a

specified period.

– Variance of SCL: Measures the average squared deviation of each SCL

value from the mean SCL value.

– Standard Deviation of SCL: The square root of the variance of SCL.

• Frequency-Domain Features: Frequency-domain features analyze the GSR

signal in terms of its frequency components, providing insights into the

underlying rhythms and periodicity.

1. Power Spectral Density (PSD): The distribution of power across different

frequency bands of the GSR signal. Provides information about the

frequency content and energy distribution in the GSR signal [125, 187, 233].

It is computed via the Welch method.

Table 2.6 lists all the features from the GSR signal in the time and frequency domain.

2.3.3.3 Related Works of GSR for Emotion Recognition

Nasoz et al. [84] used a SenseWear armband to collect the GSR signals for 29

participating subjects. The proposed study normalized the GSR signal data and fed

it into the machine learning algorithms for emotion classification. Subramanian et

al. [221] collected the GSR data from 58 university students while watching 36 video

stimuli. The study extracted mean skin resistance, number of local minima in the
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Figure 2.12: Raw and filtered Respiration signal [203].

GSR signal, average rising time of the GSR signal, spectral power in the [0-2.4] Hz

band, zero crossing rate of skin conductance slow response ([0-0.2] Hz), zero crossing

rate of skin conductance features from the GSR signals and then fed them to train

the machine-learning models. Ragot et al. [159] also collected the EDA data from

Empatica E4 [6] smartwatch for 19 French volunteers and extracted the SCL features

from the EDA signal. The study then fed them into the machine learning models

for further emotion recognition. Ali et al. [151] extracted statistical measures from

Skin Conductance (SC), including the mean, standard deviation, maximum, minimum,

root mean square, the means of the first and second derivations, and the GSR signal’s

negative slope. The authors extracted the response latency of the first significant Skin

Resistance (SR), the sum of SR amplitudes, and the sum of SR areas. Perry et al.[121]

extracted basic statistical variables, first-order differential variables, and second-order

differential variables from EDA signals for emotion analysis. Tara Hassani [100] used

GSR data in a federated learning environment. The author utilized GSR data from the

CASE [134] dataset to propose a model with good accuracy for valence and arousal

emotions and ensured privacy for the GSR data.

2.3.4 Respiration (RESP)

It measures a subject’s breathing pattern (as shown in Figure 2.12), specifically how

deeply and quickly they breathe. In the context of emotion recognition, rapid and deep

breathing can signal high arousal states, such as anger, fear, or joy. On the other hand,

deep and slow breathing denotes a calm, peaceful state, indicating a sign of passivity

or passive states like grief or subtle emotions. The respiration signal measures changes

in the volume of air entering and leaving the lungs. It reflects breathing patterns and

36



Table 2.7: Description of Respiration signal features in time domain.

Domain Features Description

Time
Mean RESP, Median RESP,
Var RESP, Skew RESP,
Kurtosis RESP, Std RESP

Average value, median value, variance, skewness, kurtosis,
standard deviation of the Respiration signal

respiratory rate and is often used in monitoring and diagnosing respiratory health. The

respiration signal measures changes in the volume of air entering and leaving the lungs.

It reflects breathing patterns and respiratory rate and is often used in monitoring and

diagnosing respiratory health.

2.3.4.1 Significance of RESP for Emotions

RESP provides a window into respiratory patterns associated with emotions. Regular,

moderate breathing rate, signifying a balanced and positive emotional state, can be

linked to happiness [74, 102]. Sadness is associated with slower, deeper breathing,

reflecting a contemplative or melancholic state [102]. Fear and anxiety lead to rapid,

shallow breathing, indicative of heightened arousal and stress [74, 153]. Relaxation, in

contrast, is characterized by slow, deep breathing, denoting a state of calm and reduced

physiological arousal [74, 153]

2.3.4.2 Features from RESP Signal

• Mean Respiratory Rate (Mean RESP): The average rate of respiration over a

specified period, typically measured in breaths per minute (bpm). It provides a

general measure of the average breathing rate [55].

• Median Respiratory Rate (Median RESP): The middle value of the respiratory

rate when the data is ordered from smallest to largest. It offers a robust measure

of central tendency, less affected by outliers compared to the mean [36, 233].

• Variance of Respiratory Rate (Var RESP): The measure of how much the

respiratory rates deviate from the mean, calculated as the average squared

deviation from the mean [36, 233].

• Standard Deviation of Respiratory Rate (Std RESP): The standard deviation of

the respiratory rate values over a specified period. Measures the dispersion or

variability of the respiratory rate around the mean [36, 233].
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Table 2.8: Benefits and limitations of physiological signals.

Physiological
Signals Benefits Limitations

EEG
Permits measurements of individuals
with disabilities like paraplegia and
facial paralysis.

It requires complicated installation and
maintenance of equipment susceptible to
movement artefacts.

ECG
Mobile measures (i.e. smart clothes with
embedded sensors, smartwatch)
are possible during cardiac examinations.

It allows movement artefacts in mobile
systems, higher accuracy in stationary
measuring.

EDA
It is a good emotional indicator and
distinguishes between conflict and non-
conflict situations

It only measures arousal, which is influ-
enced by temperature and requires reference
and calibration.

RESP Installation is easy and simple and can
signify panic, terror, focus, or depression.

It is tough to distinguish between the
many emotional spectrums.

Table 2.7 gives the description of the features from Respiration signal in time

domain.

2.3.4.3 Related Works of RESP for Emotion Recognition

Folschweiller et al. [231] reviewed recent findings on brain activity synchronized with

respiration, focusing on emotional cognition. The review highlighted how the brain’s

respiratory rhythm regulates emotion and cognition. The authors emphasized that

changes in breathing rhythm’s frequency, regularity, and amplitude correspond to

different emotional and arousal states, underscoring its adaptive role in supporting

cognition based on emotional context [231]. They concluded by highlighting the

evident bidirectional relationship between emotions and respiration. Hafeez et al. [103]

analyzed and processed respiration rate data collected by impulse radio ultra-wideband

(IR-UWB) from 35 participants. The authors extracted statistical features from the

respiratory rhythm to classify three emotions: fear, disgust, and happiness. Kyle et

al. [138] detected child emotion regulation and liability by observing variations in the

physiologic stress response employing respiration rate fluctuations during a mirror-

tracing activity.

2.4 Multi-Modal Physiological Signals

Single physiological signals include challenges related to signal quality and noise,

sensor accuracy, individual variability, data interpretation, integration, and synchro-

nization, as shown in Table 2.8. For example, long-term monitoring can result

in signal drift, where baseline levels shift over time, affecting the accuracy of
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Figure 2.13: Illustration for multi-modal physiological signals fusion.

measurements. Hence, combining these signals is encouraged for a more accurate

prediction rate [50, 92, 109].

The combining of different physiological signals is called multi-modal physiological

signals. Multi-modal physiological signals refer to collecting and analyzing data from

multiple physiological sensors, such as heart rate, skin conductance, body temperature,

and blood pressure, to provide a comprehensive and integrated view of an individual’s

physiological and bodily responses. Combining information from various measurement

modalities enables a more detailed and accurate assessment of health, stress, and

emotional responses [92, 109]. This approach leverages the strengths of different

sensors to overcome the limitations of single-modality measurements, leading to

improved diagnostic accuracy and a deeper understanding of complex physiological

interactions. Figure 2.13 gives an illustration of the fusion process. Physiological

signals can be combined using fusion methods such as the following:

• Feature-Level Fusion (FLF): It integrates the features extracted from different

physiological signals into a single feature set before making any prediction.

This approach combines raw data or derived features from multiple modalities

into a unified representation vector [50, 92, 109]. It involves steps such as (1)

Data processing for the same frequency range, (2) Data Extraction, (3) Feature

Integration, and (4) Feature Selection.

• Decision-Level Fusion (DLF): It combines the outcomes or decisions made by

individual models that analyze each physiological signal separately. Instead of
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Figure 2.14: Workflow for physiological data pre-processing steps.

merging raw data or features, this approach combines the results of separate

analyses to reach a final decision [50, 92]. It involves steps such as (1) Individual

Analysis and (2) Combining Decisions.

Recent studies [50, 92, 109, 135] evaluated coherence between multi-modal signals

to allow feature-level fusion and discovered that it enhanced overall accuracy over

decision-level fusion. Hence, this thesis uses the FLF approach for proposing the

multi-modal FL-based ERS architectures.

2.5 Data Processing of Physiological Signals

Data processing is a broader term for collecting, storing, manipulating, and analyzing

data. It encompasses data preprocessing and the various methods used to analyze and

interpret the data. Figure 2.14 gives a workflow for the data Pre-processing steps.

2.5.1 Data Pre-Processing

In order to prepare raw data for analysis and modelling, data preprocessing is essential.

It must be cleaned, transformed, and encoded to be fed into machine learning algorithms.

Missing value management, data normalization or standardization, and data division

into training and test sets are all included in this procedure. Data preprocessing

enhances the effectiveness and reliability of subsequent analytical and predictive tasks

by ensuring data is accurate, consistent, and in the required format. It can be done with

a variety of tools and methods, as listed below:

2.5.1.1 Filtering

EEG, ECG, GSR, and other physiological signals require filtering at specific frequencies

to improve data accuracy. Filtering either removes specific frequencies or retains

others. If the subject moves during data collection, sensor readings can become

inaccurate and contain noises. Data filtering methods such as Butterworth filters [61,
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147] including High-pass filters [64], Low-pass filters [147], Band-pass filters [73],

and Elliptic filters [61, 147, 192, 228] prevent disturbances and artefacts from the raw

signal. Butterworth filter is a low-pass, high-pass, or bandpass filter with a maximally

flat frequency response in the passband. A high-pass filter removes low-frequency

noise, such as baseline drift, below a specific cutoff frequency. A low-pass filter

removes high-frequency noise above a certain cutoff frequency. Bandpass filter passes

signals within a specific frequency range and attenuates frequencies outside this range.

Different physiological measurements require different filters; for example, a low-pass

filter works best for ECG at 100 and 500 Hz. Additionally, Fourier frequency analysis

splits raw EEG signals and uses a bandpass filter to remove detected noise. EEG signals

are particularly prone to noise and artefacts due to the large number of electrodes and

sensitivity to facial movements.

Bos et al. [73] used a bandpass filter from EEGLab for Matlab to remove noise

and artefacts from EEG recordings. They applied a moving average filter to preprocess

RESP and EDA signals [87]. Izard [64] used high-pass filters with frequencies of 0.1

Hz and 4 Hz for RESP and ECG data, respectively. To preprocess ECG signals and

smooth GSR signals, the author employed Butterworth filter [61, 147, 192, 228].

2.5.1.2 Artefact Removal and Denoising

Artefacts such as muscle movements, eye blinks (in EEG), or motion artefacts (in

EEG) from environmental, experimental, and physiological conditions can degrade

signal quality and make parts unusable. It is crucial to eliminate these artefacts to

ensure reliable analysis of physiological signals. The major techniques for this are:

1. Independent Component Analysis (ICA): is an analytical approach that works

for source signals that are statistically independent and non-Gaussian. It then finds

a linear transformation that maximizes the independence between the resulting

components [42, 88]. It separates physiological signals from noise and artefacts,

such as separating brain activity signals from eye movement artefacts in EEG

data.

2. Empirical Mode Decomposition (EMD): is a signal decomposition method

specifically designed to handle non-linear and non-stationary signals (largely for
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EEG and ECG) [180, 258]. It’s an adaptive method that decomposes a signal

into a series of Intrinsic Mode Functions (IMFs), each representing oscillatory

modes at different time scales. EMD allows for the separation of different

frequency components that correspond to different brainwave frequencies, such

as delta, theta, alpha, and beta, without the need for a predefined filter bank [246,

290]. The different IMFs may contain artefacts, which can be disregarded,

while those without artefacts can be readily identified and selected for further

experimentation and analysis. EMD has three extensions: Bivariate EMD for

two channels, Trivariate EMD for three channels, and Multivariate EMD for up

to 32 channels [34, 177].

3. Principal Component Analysis (PCA): is a dimensionality reduction technique

that transforms data into a new coordinate system. Orthogonal (uncorrelated)

principal components represent the transformed data. It helps filter out noise

and irrelevant variations in the data by focusing on the principal components that

capture the most variance.

Valenza et al. [88] used ICA to extract the Respiration Sinus Arrhythmias (RSA)

feature from ECG signals. Bigirimana et al. [42] proposed an artefact removal approach

combining ICA with Wavelet Transform (ICA-WT) for EEG signals, significantly

improving recognition performance compared to standard ICA.

Zhang et al. [290] used EMD to convert the EEG signals into IMFs and then

extracted the features from the IMFs using an autoregressive (AR) Model. Patel et

al. [218] used EMD to remove eye blinks from EEG signals by decomposing them

into IMFs. Mert et al. [34] used multivariate EMD (MEMD), which is an extension of

EMD works for up to 32 EEG channels for extracting the IMFs [177].

Qiang et al. [206] applied PCA to select features and remove irrelevant or redundant

features from EEG signals. Arjun et al. [46] employed PCA for dimensionality

reduction, reducing 32-channel raw EEG data in the DEAP dataset to 8 dimensions.

Alickovic et al. [75] compared three noise removal algorithms, Multiscale Principal

Component Analysis (MSPCA), PCA, and ICA, concluding that MSPCA performs the

best among the others.
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Figure 2.15: Overlapping windows on EEG signal [104].

2.5.2 Feature Extraction

Feature extraction from physiological signals is crucial in preparing data to be fed into

Machine Learning (ML) and Deep Learning (DL) algorithms for emotion classification.

Following preprocessing, the signals are segmented into temporal segments called

windows. Figure 2.15 presents an illustration of an EEG signal with overlapping

windows. Various features can be extracted from each of the segments to capture

relevant information [40, 77, 210]. These features include statistical metrics such as

mean and variance, temporal features such as peak intervals and signal amplitude

changes, or spectral features such as frequency components and power spectral

density [36, 190, 210]. The extracted features are then used as input to ML and

DL algorithms, enabling the models to learn patterns and relationships within the data,

ultimately facilitating accurate classification or prediction of physiological states or

emotions [125, 135, 233]. This thesis uses the features extracted from the physiological

signals EEG, ECG, GSR, and RESP as explained in earlier section 2.3.

2.6 Summary

An in-depth examination of emotions includes two primary models for categorizing

and mapping emotions: discrete models and dimensional models (2D-VA and 3D-

VAD models of emotions). The 2D-VA model maps emotions along Valence

and Arousal axes, while the 3D-VAD model expands this by adding a third axis,

Dominance. Emotion ground truth is gathered through self-assessment questionnaires

such as SAM [119], PANAS [71], and POMS [220], with SAM being widely

utilized. The 3D-VAD model enables a broader range of emotion classification (octal

classification) compared to the 2D-VA model (binary classification). For accurate

emotion mapping, physiological signals like EEG, ECG, and GSR are valuable as they

reflect an individual’s emotional state through bodily responses, capturing essential
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characteristics in both time and frequency domains. These signals undergo data

processing techniques such as artefact removal, filtering, and feature extraction to

enable emotion classification. Multi-modal physiological data achieves more accurate

emotion classification than single-physiological signal data.
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Chapter 3

Open Emotion Datasets

This chapter presents various physiological signals-based emotion recognition datasets,

which are openly accessible [67, 195, 233, 299]. These datasets provide diverse

physiological signal data, including EEG, ECG, GSR, and others, recorded using

a variety of wearable biosensor devices such as EEG headsets, respiration belts,

smart wristbands and watches. Each dataset is meticulously curated, encompassing

a wide range of emotional states, enabling researchers to train and validate their models

effectively. Moreover, these datasets facilitate actual comparisons between different

methodologies’ outcomes, serving as benchmarks for emotion recognition algorithms.

Each dataset’s unique characteristics and diverse emotional contexts highlight the need

for robust models that can generalize across different settings.

FL has been applied to ERS, particularly using the DEAP [233], DREAMER [135],

and CASE [134] datasets. However, these studies have typically utilized only peripheral

signals from the DEAP [233] dataset or focused exclusively on EEG data from

the CASE [134] and DREAMER [135] datasets without incorporating multi-modal

physiological signals. In contrast, this thesis leverages multi-modal physiological

signals from these datasets to provide a more comprehensive approach to emotion

recognition.
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Figure 3.1: Experimental setup for WESAD dataset collection [195].

3.1 Wearable Stress and Affect Detection (WESAD) [195]

WESAD [195] is a comprehensive dataset that collected data from 15 subjects,

including 12 males and 3 females. It collected the following multi-modal physiological

signals:

• ECG, EMG using RespiBAN Professional [12].

• EDA, RESP, SKT using EMPATICA E4 [6].

WESAD [195] is collected for two scenarios: (1) subjects were shown 11 funny short

videos (for a total of 392 seconds), and (2) subjects performed a Trier Social Stress

Test (TSST) [54]. The subjects rated themselves with PANAS [71] and STAI [63] tests.

Figure 3.1 presents the data collection setup for WESAD [195].

3.2 SJTU Emotion EEG Dataset (SEED) [299]

SEED [299] is a narrow EEG-based dataset collected EEG data in the BCMI laboratory.

It consists of EEG data for 15 subjects, including 7 males and 8 females, using a 62-

channel ESI NeuroScan System [7]. The data was collected while the subjects watched

15 Chinese film clips for 15 trials in one experiment. The subjects rated their emotional

reactions to each film clip by completing the questionnaire immediately after watching

each clip with positive, negative and neutral emotion labels [299]. This dataset has two

limitations: (1) it only consists of EEG physiological data, and (2) the stimulus shown

is only in the Chinese language, which is restricted to a specific population. Figure 3.2

presents the stimuli and data collection.
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Figure 3.2: Experimental setup for SEED dataset collection [299].

Table 3.1: Details of the 18 film clips shown to each subject in DREAMER [135].

Video ID Film Clip Target Emotions
1 Searching for Bobby Fischer Calmness
2 D.O.A Surprise
3 The Hangover Amusement
4 The Ring Fear
5 300 Excitement
6 National Lampoon’s VanWilder Disgust
7 Wall-E Happiness
8 Crash Anger
9 My Girl Sadness
10 The Fly Disgust
11 Pride and Prejudice Calmness
12 Modern Times Amusement
13 Remember the Titans Happiness
14 Gentlemans Agreement Anger
15 Psycho Fear
16 The Bourne Identity Excitement
17 The Shawshank Redemption Sadness
18 The Departed Surprise

3.3 A Database for Emotion Recognition through EEG

and ECG Signals from Wireless Low-cost Off-the-

Shelf Devices (DREAMER) [135]

DREAMER [135] is a wide dataset collected data from Twenty-three subjects, including

14 males and 9 females, while watching 18 film clips (ranging from 65-393 seconds)

as shown in Table 3.1. It collected the following physiological signal data:

• EEG using 14-channel Emotiv EPOC [5] at 128 Hz.

• ECG using wireless SHIMMER [15] sensor at 256 Hz.

The subjects rated their emotions using SAM [119] ratings for arousal, valence and

dominance on a scale of 1 to 5.
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Figure 3.3: Experimental setup for CASE dataset collection [134]

3.4 Continuously Annotated Signals of Emotion (CASE) [134]

CASE [134] dataset collected data from 30 subjects, including 15 males and 15 females,

while watching 20 videos (each of approx. one minute). It collected the following

multi-modal physiological signal data:

• ECG, RESP, blood flow, EDA, and SKT at 1000Hz.

The subjects rated their emotions while watching video stimuli using SAM [119] for

arousal and valence on a scale of 1 to 5. Figure 3.3 presents the experimental setup for

data collection.

3.5 A Database for Emotion Analysis using Physiologi-

cal signals (DEAP) [233]

DEAP [233] is a rich dataset comprising data from 32 subjects, including 16 males and

16 females, while watching 40 video stimuli, each lasting for one minute. It collected

the following physiological signal data:

• EEG, ECG, EDA, SKT, and RESP using the Biosemi ActiveTwo system [3].

It recorded their ratings using SAM [119] ratings for arousal, valence and dominance

on a scale of 1 to 9 and liking and familiarity on a scale of 1 to 5. Figure 3.4 presents

the experimental setup for data collection.
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Figure 3.4: Experimental setup for DEAP dataset collection [233].

Table 3.2: Details of the 15 film clips shown to each subject in EMDB dataset [148].

Video ID Film Clip Target Emotions
1 On Golden Pond

Amusement2 When Harry met Sally
3 An Officer and a Gentleman
1 The Champ

Sadness2 The Killing Fields
3 Witness
1 Gandhi

Anger2 Cry Freedom
3 The Godfather
1 Maria´s Lovers

Disgust2 Pink Flamingos
3 Modern Times
1 Silence of the Lambs

Fear2 Halloween
3 Marathon Man

3.6 BioVid Emo DB (EMDB) [148]

EMDB [148] database collected heart rate and skin conductance level using Nexus-32

amplifier device [10]. It collected data from 86 subjects while watching 15 film clips

(detailed in Table 3.2). It recorded their ratings using SAM [119] for arousal, valence,

amusement, sadness, anger, disgust and fear on a scale of 1 to 9. This dataset is limited

to only two physiological signals, HR and SCL.
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Table 3.3: Details of the 16 short videos shown to each subject in AMIGOS
dataset [125].

Video ID No. of Samples Duration (in sec) Videos
10 12225 96 August Rush
13 7229 57 Love Actually
138 15160 122 The Thin Red Line
18 10575 83 House of Flying Daggers
19 16106 126 Exorcist
20 8335 65 My Girl
23 14265 112 My Bodyguard
30 9717 76 Silent Hill
31 19886 155 Prestige
34 8417 66 Pink Flamingos
36 8698 68 Black Swan
4 11621 91 Airplane
5 14347 112 When Harry Met Sally
58 8181 64 Mr Beans Holiday
80 13047 102 Love Actually
9 9630 75 Hot Shots

Figure 3.5: Experimental setup for AMIGOS dataset collection [125].

3.7 A dataset for Multi-modal research of affect, per-

sonality traits and mood on Individuals and GrOupS

(AMIGOS) [125]

AMIGOS [125] is a rich dataset comprising data recordings in two experimental

settings. In the first one, 40 subjects, including 13 females and 27 males, watched

16 short emotional videos (57-155 seconds) given by Table 3.3. In the second one, the

subjects watched 4 long videos (ranging from 14-23 minutes), some of them alone and

the rest in groups. It collected the following physiological signal data:

• EEG using 14-channel Emotiv EPOC Neuroheadset [4]

• ECG, GSR using Shimmer 2R [14]

The subjects were asked to self-report their emotional experiences, providing

annotations for various emotion dimensions such as arousal, valence, and dominance
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Figure 3.6: Experimental setup for ASCERTAIN dataset collection [221].

using SAM [119] ratings on a scale of 1 to 9. Figure 3.5 presents the experimental

setup for data collection from alone and group scenarios.

3.8 A multi-modal databaASe for impliCit pERsonal-

iTy and Affect recognitIoN (ASCERTAIN) [221]

ASCERTAIN [221] dataset collected physiological data from EEG using a single dry-

electrode EEG device, ECG from two measuring electrodes placed at each arm crook,

and GSR from two electrodes positioned on the middle and index finger phalanges. It

collected data from 58 subjects, including 37 males and 21 females, while watching 36

movie video clips (ranging from 51-128 seconds). It recorded their ratings for arousal

and valence for emotions on a scale of 1 to 7. This dataset has a limitation regarding

emotion dimension, as it only rates emotions using valence and arousal. Figure 3.6

presents the experimental setup for data collection.

3.9 Chosen Emotion Datasets for Proposed FL-based

Automated ERS

Table 3.4 presents the summary of all the described datasets. Out of these

datasets, this thesis uses the benchmark datasets DEAP1 [233], AMIGOS2 [125],

1https://www.eecs.qmul.ac.uk/mmv/datasets/DEAP/download.html

2http://www.eecs.qmul.ac.uk/mmv/datasets/AMIGOS/index.html
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Table 3.4: Summary of openly accessible datasets for ERS based on physiological
signals.

Summary of Datasets

Dataset No. of
Subjects

Emotion Dimensions Physiological Modalities FL Applied

WESAD [195] 15 Neutral, Stress,
Amusement

EDA, ECG, RESP, SKT,
EMG, PPG

×

SEED [299] 15 Neutral, Positive,
Negative

EEG ×

DREAMER [135] 23 Arousal, Valence,
Dominance

EEG, ECG ×

CASE [134] 30 Arousal, Valence,
Dominance

EMG, ECG,
EOG, Facial Video

✓

DEAP [233] 32 Arousal, Valence, Liking,
Dominance, Familiarity

EEG, ECG, EDA,
SKT, RESP, Facial
Video, EMG, EOG

✓

EMDB [148] 32 Arousal, Valence,
Dominance

SCL, HR ×

AMIGOS [125] 40 Arousal, Valence,
Dominance, Familiarity

EEG, ECG, GSR ×

ASCERTAIN [221] 58 Arousal, Valence, Liking,
Engagement, Familiarity

ECG, EDA, EEG,
Facial Video

×

and DREAMER3 [135], as they comprise multi-modal physiological data, majorly

including EEG. These three datasets validate the proposed architectures F-MERS and

AFLEMP as described later in Chapters 6, 7 and 8, respectively.

3.9.1 Data processing for Emotion Datasets (AMIGOS, DEAP,

DREAMER)

The proposed F-MERS and AFLEMP architectures uses the pre-processed data given

by the data owners as it has achieved state-of-the-art results. The steps are given below:

1. In the AMIGOS [125] dataset, Not a Number (NaN) values are detected in the

ECG signals for the 28th subject for the 9th video, which is removed from the

experimental setup.
2. The EEG, GSR, RESP and ECG data are downsampled to a common frequency

of 128 Hz in order to fuse them in a common feature vector (For all three

datasets) [125, 135, 233].
3. EEG data is filtered from 4.0 to 45.0 Hz with a bandpass filter (For all three

datasets).
4. The ECG and GSR data are filtered with a cutoff frequency of 60Hz using a

low-pass filter (For AMIGOS [125]).
3https://zenodo.org/record/546113#.ZEn3hi8RpQI
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3.9.2 Data Clipping

1. AMIGOS [125]: The proposed F-MERS uses the 16-short video experiments

since longer videos are less likely to elicit stable emotions [37]. Each video

displayed to the subject in the experiment is of varying duration, from which we

use the last 50 seconds of data of every video and clip the starting portion.

- Data Matrix =[total subjects x videos (per subject) x samples (per video)]

= [40 x 16 x 6400 (50 x 128)]

2. DEAP [233]: The proposed F-MERS uses the data from the last 60 seconds of

every video stimuli shown to the subjects after removing the 3-second baseline.

- Data Matrix = [total subjects x videos (per subject) x samples (per video)]

= [32 x 40 x 7680 (60 x 128)]

3. DREAMER [135]: The proposed F-MERS uses the data from the last 60 seconds

of every video stimulus shown to the subjects.

- Data Matrix = [total subjects x videos (per subject) x samples (per video)]

= [23 x 18 x 7680 (60 x 128)]

Table 3.5 presents the data description for all three datasets and their pre-processing,

which is further used for validating the proposed architectures in Chapter 6, 7, and 8.

3.9.3 Data Labelling

Subjects from all three datasets use Self-Assessment Manikin (SAM) [119] to rate

their valence, arousal, and dominance levels. On a scale of 1-9 (in AMIGOS [125],

DEAP [233]) and 1-5 (in DREAMER [135]). The emotions of low and high valence,

arousal, and dominance are defined by a threshold float value of 4.5 (in AMIGOS [125],

DEAP [233]) and 3 (in DREAMER [135]), as shown in Table 3.6.

3.10 Summary

Various publicly accessible emotion recognition datasets exist based on physiological

signals [67, 195, 233, 299]. These datasets include physiological signal data such as

EEG, ECG, and GSR, recorded using devices like EEG headsets, respiration belts,
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Table 3.5: Descriptions with pre-processing of the emotion dataset used in the thesis.

Dataset Description
Content DEAP [233] AMIGOS [125] DREAMER[135]
Subjects 32 40 23
Videos per subject 40 16 18
Video duration 63 sec 57-155sec 65-393 sec
Physiological Signals EEG, GSR, RESP EEG, ECG, GSR EEG, ECG
Emotion Dimensions VAD VAD VAD

Recorded Signal EEG, GSR, RESP 512 Hz EEG 128 Hz,
ECG, GSR 256 Hz

EEG 128 Hz,
ECG 256 Hz

Data Matrix (3D)
(Subjects x videos x samples) 32 x 40 x 7680 40 x 16 x 6400 23 x 18 x 7680

Label Matrix (2D) 40 x 3 16 x 3 18 x 3
Emotion Assessment Self-Assessment Manikin (SAM) [119]
EEG Device BioSemi Active Two [3] Wireless EMOTIV EPOC [5]
EEG Electrodes 32 channels 14 channels
ECG, GSR Device BioSemi Active Two [3] Wireless SHIMMER [15]
ECG Electrodes - ECG right and Left
GSR Electrode channel no. 17 -

Data processing
Downsampling
(at 128 Hz) EEG, GSR, RESP EEG, ECG, GSR EEG, ECG

Bandpass filtering
(from 4.0-45 Hz) EEG

Low-pass filtering
(at 60 Hz) GSR ECG, GSR ECG

Baselines 3 seconds 5 seconds 4 seconds

Data Clipping
Uses the last 60 seconds
of every video experiment
and clips the starting portion.

Uses the last 40 seconds
of every video experiment
and clips the starting portion.

Uses the last 60 seconds
of every video experiment
and clips the starting portion

Data Labelling
Subjects rated their emotions
for VAD using the SAM on
scale of 1-9 (4.5 as threshold)

Subjects rated their emotions
for VAD using the SAM on
scale of 1-9 (4.5 as threshold)

Subjects rated their emotions
for VAD using the SAM on
scale of 1-5 (3 as threshold)

Table 3.6: Emotions ratings for open emotion datasets using 3D-VAD

Ratings AMIGOS [125] DEAP [233] DREAMER [135]
Low
(Arousal/Valence/Dominance) 1 - 4.5 1 - 4.5 1 - 3

High
(Arousal/Valence/Dominance) 4.5 - 9 4.5 - 9 3 - 5

and smart wristbands. Each dataset is carefully curated to represent a broad spectrum

of emotional states, offering the ability to train and validate classification models

effectively. Additionally, these datasets serve as valuable benchmarks, allowing for

direct comparisons between different emotion recognition methodologies.
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Chapter 4

Machine Learning for Automated ERS

using Physiological Signals

A recent upsurge in research focuses on developing automated emotion recognition

technology by leveraging machine learning and deep learning algorithms trained on

physiological signal data. This chapter presents the various machine learning and deep

learning methodologies and approaches for classifying emotional states.

4.1 Machine Learning Models for Emotion Recognition

using Physiological Signals

Machine learning approaches enable a trained model to identify patterns in raw

data and extract meaningful insights. The training phase is crucial for ensuring

the accuracy of the analysis and requires extensive and diverse datasets to achieve

a high-quality model [247]. The process involves collecting data from various sources,

consolidating it in a central repository, and then using it to train the model. This

centralization can lead to privacy issues, as data from different sources may be

accessible to others, potentially violating data privacy regulations and increasing the

risk of misusing sensitive information. These challenges are crucial when managing

sensitive physiological data containing emotional information. This issue of privacy

concern is an obstacle to advancing machine learning techniques in healthcare [76].

Machine learning model maps physiological signal characteristics to their labels using
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Figure 4.1: Distribution of ML models for automated motion Recognition System
(ERS).

a training set [125, 135, 145]. SVM [252], K-NN [84], Random Forest (RF) [185], and

Decision Tree (DT) [111] are some of the examples of Supervise Learning algorithms.

The SVM classifier is the most widely used classification model in the literature(as

shown in Figure 4.1) [111, 194, 206, 252].

Related Works: Multiple ML models have been implemented for emotion recognition

using single physiological modalities, such as Cheng et al. [111] classified emotions

based on EEG data using SVM and DT classifiers, achieving average accuracies of

87.11% and 75.89%, respectively, for arousal, valence, and dominance from the

DREAMER [135] dataset. Tuncer et al. [252] introduced LEDPatNet19, a novel

SVM-based network for EEG data from the DREAMER [135] dataset. The proposed

LEDPatNet19 network featured multilevel feature fusion and achieved accuracies of

94.44%, 94.58%, and 92.86% for valence, arousal, and dominance, respectively. Sarma

et al. [194] classified emotional states (happy, sad, and neutral) using EEG signals

from the SEED [299] dataset with SVM, KNN, and RF classifiers, achieving average

accuracies of 81.90%, 89.13%, and 87.30%, respectively. Gao et al. [206] proposed

a classification model for neutral, happy, and sad emotions using feature fusion of

power spectrum and wavelet energy entropy from EEG signals of SEED [299] and

DEAP [233] datasets. The authors achieved accuracies of 89.17% with SVM and
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91.18%. Hasnul et al. [167] proposed a uni-modal emotion recognition system using

ECG signals and four ML algorithms (KNN, SVM, RF, DT). The authors validated the

proposed model on the AMIGOS [125], DREAMER [135], and a self-collected dataset

(A2ES), achieving an average accuracy of over 90% for arousal and valence.

Some works on multi-modal physiological signals combining two or more

physiological signal data have also been implemented using ML models, such as

Sharma et al. [145] developed KNN with K=3 and SVM with RBF kernel for EEG and

ECG signals. The authors showed that KNN outperforms SVM in terms of accuracy

on the DREAMER [135] and AMIGOS [125] datasets. Younis et al. [77] introduced a

Stacking classifier for emotion recognition with a self-collected dataset, incorporating

multi-modal physiological signals including SKT, EDA, and HR, achieving accuracies

of 93%, 94%, 97.50%, 97%, and 98.20% using KNN, SVM, RF, DT, and stacking,

respectively. Awaan et al. [267] proposed an ML-based emotion recognition classifier

using SVM, RF, and LSTM stacking, combining EEG, ECG, and GSR signals. They

validated the model on the AMIGOS [125] dataset with K-fold cross-validation (K=10),

achieving an average accuracy of 94.5%. Table 4.1 summarises the ML approaches

used with various physiological signals for automated emotion recognition.

4.2 Deep Learning Models for Emotion Recognition

using Physiological Signals

Numerous studies have utilized deep learning methods independent of specific features,

such as Attention-based Convolutional Recurrent Neural Networks (ACRNN) [266],

Convolutional Neural Networks (CNN)[173], Dynamical Graph Convolutional Neural

Networks (DGCNN)[251], Long Short-Term Memory (LSTM) networks [98], Multi-

layer Perceptrons (MLP)[96], and Recurrent Neural Networks (RNN)[287] for emotion

classification tasks. CNNs are deep, feed-forward neural networks that generate weights

and exhibit high translation invariance, and is the most widely adopted neural network

(as shown in Figure 4.2) for emotion classification.

57



Table 4.1: Summary of ML models for automated ERS.

Reference Year Dataset Physiological
Signals

Classification
Model

Average Accuracy Modality ED1 DP2

Arousal Valence Dominance

Nasoz et al. [84] 2003 Self-collected
dataset

HR,
GSR

KNN Avg - 72% Dual 2D No

Koelstra et al. [233] 2011 DEAP [233] EEG GNB 62% 57.60% - Single 2D No

Subramanian et al. [221] 2016 ASCERTAIN [221]

GSR

NB

66% 68% -
Single

2D No
ECG 59% 60% -
EEG 61% 60% -
EEG, ECG,
GSR

67% 69% - Multi

Ferdinando et al. [93] 2016
AMIGOS [125]

ECG KNN - 10 fold CV 59.07% 55.80% - Single 2D No
KNN + LOSO 58.70% 59.20% -

Katsigiannis et al. [135] 2018 DREAMER [135]
EEG

SVM - RBF
62.17% 62.49% 61.84%

Single
3D

No
ECG 62.37% 62.37% 61.57%
EEG, ECG 62.32% 61.84% 61.84% Dual

Zheng et al. [300] 2017
SEED [299]

EEG SVM
Avg - 79.28% (positive, negative, neutral)

Single 2D No
DEAP [233] 69.67% (Arousal, Valence) -

Cristian et al. [256] 2017 Mahnob - HCI [161] EEG SVM Avg - 65.29% (Arousal, Valence) Single 2D No

Wiem et al.[168] 2017 Mahnob - HCI[161]

ECG SVM -Linear 51.40% 44.05% - Single 2D No
GSR 47.36% 48.93% -
RESP 47.36% 53.19% -
TEMP 40.14% 43.30% -

Li et al.[269] 2018
DEAP[233] EEG SVM + LOSO Avg - 59.06% Single 2D No
SEED[299] EEG SVM + LOSO Avg - 83.33% (positive, negative, neutral) Single 2D No

Cheng et al.[111] 2020 DREAMER[135] EEG DT 75.74% 75.53% 76.40% Single 3D No
SVM 87.03% 87.14% 87.18%

Bota et al.[185] 2020 WESAD [195] EDA RF 85.78% 92.86% - Single 2D No
ECG 85.75% 92.86% -
BVP 85.78% 94.39% -
RESP 85.78% 92.86% -

Tuncer et al.[252] 2021 DREAMER[135] EEG SVM 94.58% 94.44% 92.86% Single 3D No
Galvão et al.[82] 2021 DREAMER [135] EEG KNN (K=1) 93.72% 92.16% - Single 2D No

RF 93.79% 93.65% -

Sharma et al.[145] 2021

DREAMER[135] EEG, ECG KNN (K=3) 92.06% 92.3% 92.38% Dual 3D No
SVM (RBF) 92.01% 91.53% 92.29%

AMIGOS [125] EEG, ECG KNN (K=3) 92.01% 85.26% 89.65% Dual 3D No
SVM (RBF) 89.87% 81.97% 87.31%

Khateeb et al. [154] 2021 DEAP[233] EEG SVM - 10 fold CV Avg - 65.72% Single 2D No
SVM + LOOCV Avg - 65.92%

Sarma et al. [194]

2021 SEED[299] EEG SVM Avg - 81.90% (positive, negative, neutral) Single 3D No
RF Avg - 87.30%
KNN Avg - 89.13%
RF 81.31% 81.52% -

DREAMER [135]
KNN 88.31% 86.40%
RF 84.69% 84.73% -

Rupal et al.[212]

2022
DEAP [233]

EEG +
Peripheral

KNN 86.64% 86.40% -

Multi 2D No
SEED [299]

Ensemble (DT)
Avg- 95.7% (positive, negative, neutral)

DEAP [233] 84.3% 83.9% -

Gao et al.[275]
2022 SEED [299]

EEG
Graphical CNN
(RF)

Avg - 70.88% (positive, negative, neutral)
Single 2D No

DEAP [233] 66.37% 63.93% -

Younis et al. [77] 2022 Self-collected
dataset

SKT,
EDA,
HR

KNN(K=5) Avg - 93% Multi 3D No

SVM(RBF) Avg - 94%
RF Avg - 97.50%
DT Avg - 97%
Stacking Avg - 98.20%

Awaan et al. [267] 2022 AMIGOS [125]
EEG,
ECG
GSR

Ensemble
(SVM+RF+LSTM)

Avg - 94.5% (Arousal, Valence) Multi 2D No

Hasnul et al. [167] 2023
AMIGOS [125],
DREAMER [135]
Self-collected(A2ES)

ECG

SVM(RBF)
KNN(K=3)
RF
DT

Avg - 90% (Arousal, Valence) Single 2D No

1Emotion Dimension(ED)
2Data Privacy (DP)

58



Figure 4.2: Distribution of DL models for automated Emotion Recognition System
(ERS).

Related Works: Santamaria-Granados et al. [143] used CNN to extract features

from ECG and GSR data, classifying arousal and valence emotional states using the

AMIGOS [125]. Martinez et al. [101] effectively employed a Deep Convolution Neural

Network (DCNN) on Skin Conductance and BVP to differentiate four emotional states:

fun, excitement, relaxation, and anxiety. Topic et al. [40] used CNN on EEG data of

the DREAMER [135] dataset and classified three emotional states with accuracies of

85.10%, 81.25%, and 85.10%, for arousal, valence and dominance respectively. The

authors proposed a novel method based on feature maps for emotion recognition. They

create feature maps based on the topographic (TOPO-FM) and holographic (HOLO-

FM) representations of EEG signals [40]. The proposed approach tested four datasets,

among which DREAMER [135] outperforms the others in terms of accuracy.

As evidenced by multiple examples in the present literature, CNN outperformed

traditional ML algorithms for emotion classification and is directly proportional to

emotion prediction performance [31, 266]. CNN is combined with other classifiers

to improve the model’s overall performance for classifying different classes of

emotions [52].

Yang et al. [287] propose a hybrid network combining CNN and RNN to classify

emotion states using a spatial-temporal representation of raw EEG data streams of the

DEAP [233] dataset. The author also used LSTM to extract the textual information

from participants’ feedback. The network achieved accuracy for arousal and valence
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as 90.81% and 89.92%, respectively. Tao et al. [266] proposed a novel model named

ACRNN based on CNN for extracting more discriminating features of EEG data. The

authors used the publicly available DREAMER [135] dataset for classifying arousal

and valence emotional states with accuracies of 93.38% and 93.72%, respectively.

Iyer et al. [31] developed an Ensemble-hybrid model for emotion recognition using

CNN, LSTM, a hybrid of CNN-LSTM, and a Stacking ensemble. Out of all, stacking

achieves the best classification results. The proposed model is validated with two

benchmark datasets, SEED [299] and DEAP [233], using EEG physiological signals,

achieving an average accuracy of 97.16% and 65% for SEED and DEAP, respectively.

Chakravarthi et al. [48] proposed a hybrid model using a CNN-based pre-trained

ResNet-152 (Residual network) algorithm and LSTM. The authors employed EEG

physiological signals to recognize humans’ emotions and behavioural changes. The

proposed model is validated on the SEED [299] dataset, achieving an average accuracy

of 98% for positive, negative and neutral emotions.

Zali et al. [52] proposed a subject-independent human emotion recognition system.

It uses multi-channel EEG signals from SEED [299] and DEAP [233] datasets. The

authors employed different pre-trained models such as AlexNet, VGG19, ResNet18,

Inception-V3, and EfficientNet-b0, among which Inception-V3 performs best with

the SVM classifier. The proposed model achieved the highest average accuracy of

94.58% for SEED [299] and 90.7% for DEAP [233]. Singh et al. [172] proposed

an emotion recognition framework using EEG physiological signals. The proposed

model uses a deep convolution neural network (DCNN) for feature extraction and eight

other classifiers (SVM, KNN, DT, NN, LSTM, AdaBoost, NB, RF) for classifying

binary, quad, and octal emotion states. This framework validates two datasets,

DREAMER [135] and DEAP [233], in two different scenarios, i.e. subject dependent

and subject-independent. The best results are from subject-independent scenarios, with

an average of 97.97% for DREAMER and 99.36% for DEAP.

Li et al. [263] proposed a novel model for emotion recognition using spatial and

temporal streams of EEG physiological signals. The proposed model used MLP to

classify emotions in valence and arousal states. It is validated in a subject-independent

scenario with two datasets, DREAMER [135] and DEAP [233], achieving an average

accuracy of 63.06% and 62.49% for DREAMER [135] and DEAP [233] respectively.
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Table 4.2: Summary of DL models for automated ERS.

Reference Year Dataset
Physiological

Signal

Classification

Model

Average Accuracy
Modality ED1 DP2

Arousal Valence Dominance

Tang et al.[98] 2017 SEED[299] EEG Bimodal - LSTM Avg - 93.97% Single 3D No

Song et al.[251] 2018 DREAMER[135] EEG DGCNN 84.54% 86.23% 85.02% Single 3D No

Yang et al.[287] 2018 DEAP[233] EEG CNN - RNN 90.81% 89.92% - Single 2D No

Santamaria et al.[143] 2018 AMIGOS[125]
EEG

DCNN
81% 71% -

Dual 2D No
ECG 71% 75% -

Ali et al. [151] 2018
Self-collected

dataset
ECG,GSR CNN Avg - 71.05% Dual 3D No

Liu et al.[264] 2019 SEED[299] EEG DCCA Avg - 94.58% Single 3D No

Dar et al.[173] 2020 DREAMER[135]
EEG, ECG

GSR
CNN+LSTM Avg - 90.8% Multi 3D No

Bhattacharyya et al.[27] 2020 DREAMER[135] EEG DNN 79.95% 79.95% 79.95% Single 3D No

Cheng et al.[111] 2020
DREAMER[135]

EEG DNN
88.95% 87.23% 88.20%

Single 3D No
DEAP[233] 97.53% 97.69% -

Sarkar et al.[193] 2020
DREAMER[135]

ECG
Self - Supervised

CNN

85.90% 85% -
Single 2D No

WESAD[195] 95% (Affect state)

Dar et al.[173] 2020 AMIGOS[125]
EEG, ECG

GSR
CNN+LSTM Avg - 99.0% Multi 3D No

Tao et al.[266] 2020 DREAMER[135] EEG ACRNN 93.38% 93.72% - Single 2D No

Nath et al.[70] 2020 DEAP[233] EEG CNN+PCA 81.20% 84.30% - Single 2D No

Topic et al.[40] 2020 DREAMER[135] EEG CNN 85.10% 81.25% 85.10% Single 3D No

Zhang et al.[255] 2020 CASE[134] EDA CorrNet 74.03% 76.37% - Single 2D No

Yang et al. [291] 2020
Self-collected

dataset
ECG CNN Avg - 75.4% Single 3D No

Deng et al.[268] 2021
DEAP[233]

EEG 3D-CNN
91.94% 92.49% -

Single 2D No
SEED[299] Avg - 99.19%

Tan et al.[59] 2021 Mahnob-HCI[161] EEG CNN 79.39% 72.12% - Single 2D No

Zhang et al.[288] 2021 Mahnob-HCI[161] EEG
CNN 70.17% 71.38% -

Single 2D No
HFCNN 88.28% 89% -

Liakopoulos et al.[146] 2021 WESAD[195] ECG CNN+LOSO Avg - 82.35% Single 3D No

Bhatti et al.[28] 2022

WESAD[195]
EDA, ECG,

SKT, RESP
CNN+LOSO

Avg - 89.57%

Multi

3D No

CASE[134]
EDA, BVP,

SKT

71.0% - - 1D

NoDREAMER [135] 83.04% 80.34% 82.50%
3D

DEAP [233] 78.44% 77.50% 79.38%

Kumari et al.[176] 2022

AMIGOS [125]

EEG
CNN

(EmotionCapsNet)

80.07% 79.06% 79.69% Single 3D No

DREAMER [135] 91.51% 91.19% -

DEAP [233] 99.58% 99.23% -

Anuragi et al.[26] 2022
SEED [299]

EEG ANN
Avg- 78.1% (positive, negative, neutral)

Single 2D No
DEAP [233] 83.5% 82.1% -

Gao et al.[275] 2022
SEED [299]

EEG
Graphical CNN

(GCNN)

Avg - 85.65% (positive, negative, neutral)
Single 2D No

DEAP [233] 81.95% 81.77% -

Iyer et al.[31] 2023
SEED [299]

EEG
CNN+LSTM

(Stacking)

Avg - 97.16% (positive, negative, neutral)
Single 2D No

DEAP [233] Avg - 65%(Arousal, Valence) -

Chakravarthi et al. [48] 2023 SEED [134] EEG

CNN-LSTM+

ResNet-152

(Hybrid)

Avg - 98% (positive, negative, neutral) Single 2D No

Zali et al.[52] 2023
SEED [299]

EEG
CNN (Inception-V3)+

SVM

Avg - 94.58% (positive, negative, neutral)
Single 2D No

DEAP [233] - Avg - 90.7% (positive, negative) -

Singh et al.[172] 2023
DREAMER [135]

EEG DCNN
97.64% 96.74% 99.55%

Single 3D No
DEAP [233] 99.58% 99.23% 99.28%

Li et al.[263] 2023
DREAMER [135]

EEG MLP+Self-Attention
64.25% 61.88% -

Single 2D No
DEAP [233] 61.89% 63.10% -

Bagherzadeh et al. [227] 2024 SEED [134] EEG ResNet-18 Avg - 81.25% (positive, negative, neutral) Single 2D No

1Emotion Dimension(ED)

2Data Privacy (DP)
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Deep learning algorithms eliminate the need for data pre-processing and feature

extraction, which are the most time-consuming elements of the emotion classification

system. Deep Learning reduces the extra dimensions and removes the noises in the

data signals using methods like Autoencoders and Neural Networks, which have a

high success rate for emotion recognition. According to past research, Deep Learning

approaches are well-suited to dynamic simulation and improvised feature extraction.

However, they are not well suited for human physiology-based recognition as these

methods are limited to working as a black box [101]. They take extensive data to train

and are exceedingly computationally costly. Table 4.2 summarises the Deep Learning

approaches used with various physiological signals for automated emotion recognition.

4.3 Privacy Concerns in traditional ML and DL for

ERS using Physiological signals

The automated ERS using traditional ML and DL methods requires complete raw data

for training the model, resulting in a significant loss of privacy protection for sensitive

physiological information [36, 45, 100]. However, feeding the physiological signals to

the model directly allows the third party and data attackers to access the sensitive data,

leading to a consequential loss of privacy. Conventional ML and DL models for ERS

based on physiological signals allow multiple users to access each other’s emotional

state [59, 82, 145, 154]. Several potential challenges emerge as a result of privacy

concerns with automated ERS that utilize sensitive physiological signals:

• Multiple data leakage incidents recently happened with the automated ERS [95,

164, 301]. In 2019 [25], millions of users’ biometric data and records got leaked.

Their fingerprint scans and face recognition records were publicly accessible.

• External hacking attempts leading to data breaches result in the unauthorized

access or disclosure of sensitive physiological data utilized by the ERS [123, 270].

Such occurrences have the potential to significantly impact individuals’ privacy

and erode trust in the system.
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• Inference attacks occur when adversaries derive sensitive information about

individuals from seemingly innocuous data or system outputs [38, 115].

These attacks can infer individuals’ emotional states by exploiting patterns in

physiological signals.

• Model Inversion Attacks (MIA) involve reverse-engineering the ERS model

to extract sensitive information about individuals from its outputs [23, 24].

This method allows adversaries to infer details about individuals’ physiological

responses or emotional states from the output predictions made by the ERS.

The acquisition and management of sensitive physiological data from wearable

sensors in an automated ERS pose challenges of privacy considerations due to a

centralized environment [36, 45, 100]. Conventional ML and DL models for automated

ERS allow multiple users to access the raw physiological data while training, as it

involves centralized data processing and predictions [82, 145, 154]. The possibility

of external parties accessing the sensitive physiological data containing emotional

information can lead to further emotional distress. In such circumstances, individuals

become less inclined to disclose their personal sensitive physiological information.

Hence, preserving the privacy of sensitive physiological data is essential so that some

third party without authorization cannot access it [160].

4.4 Summary

Various ML and DL methodologies have been used for classifying emotional states

using physiological signals. ML approaches focus on training models to identify

patterns in raw data and extract meaningful insights, with SVM being the most

commonly used model for ERS. In contrast, most studies leveraging DL techniques

do so without relying on specific feature extraction, with CNNs being the most

widely adopted neural architecture for emotion classification. The privacy concerns

are reported, including data leakage, external hacking, inference attacks, and model

inversion attacks in the traditional ML and DL models while recognizing emotions.
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Chapter 5

Literature Review of Federated

Learning Paradigm for ERS

This chapter comprehensively reviews the literature on the FL paradigm, particularly

as it applies to Emotion Recognition Systems using physiological signals. It explores

the evolution of FL, a distributed approach that enables machine learning models to be

trained across decentralized data sources, thus preserving privacy by keeping sensitive

data on client devices. This chapter critically analyzes various FL implementations and

techniques used for ERS, examining their effectiveness in addressing key challenges,

such as data privacy and model performance, and highlights gaps in the current

literature.

5.1 Introduction to Federated Learning Paradigm

Federated Learning (FL) is a distributed paradigm for training machine learning models

on datasets stored locally on client devices without collecting the complete raw data

from the devices [272, 273]. Machine learning is used in physiological signals-based

Emotion Recognition Systems (ERS) to help automate emotion recognition tasks.

Traditional classifiers for automated ERS strive to achieve high accuracy, but they do

not preserve user’s sensitive information (physiological data) since they require access

to the complete raw data. However, physiological data is personal and sensitive and

requires developing a privacy-preserving environment. FL offers a solution to this
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Figure 5.1: Federated Learning for Emotion Recognition System (ERS) with
physiological signals.

problem by allowing the development of a privacy-preserving global aggregator [51]

without gaining direct access to the user’s raw, sensitive physiological data.

Figure 5.1 shows the Federated Learning setup for ERS using physiological signal

data. Each client device stores wearable sensor physiological data locally. The machine

learning model is trained on this local data at the client end, and only the model updates

(such as gradients or weights) are sent to the central global server for further aggregation

from all the client updates. The raw data never leaves the client end, reducing the risk

of data breaches and unauthorized access. The client and server end are described in

detail in the next subsection.

5.1.1 Types of Architecture of FL

5.1.1.1 Client-Server Architecture

In a client-server architecture, the data owners are known as clients. Users (or groups

of users) with wearable sensors act as clients that run the local model at their end [36,

100, 149]. The local model at the client end generates the model updates (gradients)

to be sent to the global server [69, 136, 214]. The server then aggregates the updates

(gradients) and sends an updated version to all clients. After receiving the updates,

the clients use them for further training iterations on their local data [136]. Figure

5.2 (A) presents the Client-Server architecture of FL, showing the movement of model

gradients between the client and server end.
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Figure 5.2: Architectures of Federated Learning: (A). Client-Server Architecture, (B).
Peer-to-Peer Architecture

5.1.1.2 Peer-to-Peer Architecture

In a peer-to-peer architecture, multiple clients (peers) collaborate to train a machine-

learning model without relying on a central server to coordinate the process. In this

architecture, each client communicates directly with others to share model updates

and collectively build a global model [280, 295]. Each client in this architecture

has a local training model, which they aim to aggregate from nearby client model

updates [32, 197, 253]. The participating clients in this architecture (as shown in

Figure 5.2. B) do not require a third-party coordinator.

When the number of clients increases in a peer-to-peer architecture, coordination

becomes complex as no central server exists [43, 280, 295]. Clients coordinate with

each other, creating an extensive communication overhead. Also, disagreements

or inconsistencies exist between clients in a peer-to-peer architecture, which slows

down or even halts the training process. However, in client-server architecture,

communication overheads are comparatively lower. Hence, this thesis adopts the

client-server architecture to propose FL-based emotion recognition architectures.

5.1.2 Approaches of FL

Federated learning has three forms of data partitioning based on the statistical sharing

among clients in characteristics and feature domains described below.
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Figure 5.3: Horizontal data distribution of physiological data from two clients.

Figure 5.4: (a) Horizontal FL, (b) Vertical FL and (c) Federated Transfer Learning

5.1.2.1 Horizontal Federated Learning (HFL)

Horizontal Federated Learning (HFL) is a federated framework for horizontal data

partitioning in a decentralized environment [51]. It involves collaboration among

multiple clients with datasets having the same feature set and different samples [67].

Each participating client has data on different subjects with the same set of

features [36, 45]. Figure 5.3 gives an illustrative example of horizontal data partitioning

for physiological data from multiple subjects residing into two clients. It shows that

different subjects have the same features at each client end, such as Subj1-Subj3 with

Feature1-Feature3 on Client 1 and Subj4-Sub6 with the same features on Client 2. In

horizontal data partitioning, data across different rows share the same features aligned

by features. Figure 5.4 (a) presents how HFL works with horizontal data partitioning

having the same feature space and different sample space.
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Figure 5.5: Vertical data distribution of physiological data from two clients.

5.1.2.2 Vertical Federated Learning (VFL)

On the other hand, Vertical Federated Learning (VFL) is a federated framework for

vertical data partitioning in a decentralized environment. It involves collaboration

among multiple clients with datasets with different feature spaces but overlapping

samples [49, 211, 284]. In vertical data partitioning, each participating client has

data on the same entity but with different types of information (features) [225, 249].

Figure 5.5 gives an illustrative example of vertical data partitioning for physiological

data from multiple subjects residing into two clients. It shows that the same subjects

overlap with different features at each client end, such as Subj1, Subj2 and Subj3

overlapping with different features from EEG signal data on Client 1 and ECG signal

data on Client 2, respectively. In vertical data partitioning, data across rows is the same,

but the features in columns are different [211, 281]. For example, two medical clinics

wish to collaborate on training an ML model. The data from each clinic is different,

but they have the same patients, and due to privacy and security issues, they cannot

disclose their information.

5.1.2.3 Federated Transfer Learning (FTL)

Federated Transfer Learning (FTL) combines transfer learning principles with federated

learning. It enables collaborative learning across clients with different datasets in

terms of features and samples (as shown in Figure 5.4 (c)). Unlike traditional HFL

or VFL, the datasets at different clients do not fully overlap in the features or the
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samples [207, 225, 236, 249]. Transfer learning involves reusing and fine-tuning

machine learning models learned on a dataset from one domain (existing at one client)

to solve a problem in a second domain (existing at another client). Liu et al. [279]

introduced FTL as a new technique and framework for improving statistical modelling

in data federation. Chen et al. [272, 273] created a framework FedHealth to collect

data from various organizations and use FTL to give tailored healthcare services to the

users.

This thesis uses HFL to propose FL-based emotion recognition architectures, as

the physiological data from EEG, ECG, GSR, and RESP signals form a fused feature

vector from different subjects, giving the same feature set to all subjects as columns.

These subjects are partitioned into different clients with the same features to create a

federated environment to propose a multi-modal emotion recognition architecture.

5.1.3 Aggregation Algorithm of FL

The aggregation algorithms explain the formation of a global aggregator by aggregating

updates from the clients with their local servers engaged in the training session. A

coordinator aggregates the model parameters centrally using an averaging algorithm

in the client-server model (as shown in Figure 5.2. (A)). The different aggregation

algorithms of FL are discussed in this section as follows:

• Federated Averaging (FedAvg) [136]: Google introduced the FedAvg algorithm

to aggregate the model updates received from all the clients at the server

via a client-server architecture of FL. FedAvg aggregates the gradients (at the

server end) produced by Stochastic Gradient Descent (SGD) (at each client end)

using the computation given by equation 5.1. Following aggregation, the local

participating client receives the aggregated model updates, which repeat until the

model converges or the number of iterations is complete. It is noticeable that the

FedAvg [136] is the only algorithm used for emotion recognition [36, 45, 165].

wg
t =

1
Ntotal

Ntotal

∑
i=1

wl
t,i (5.1)

Where wg
t is the global model created in time t, wl

t,i is the local model received

from all clients in time t, and Ntotal is the total number of the local model received
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Figure 5.6: Illustration of different Federated Learning aggregation algorithms.

at the global server.

• Federated Boosting (FedBoost) [114]: It extends the traditional boosting

technique to be applied in a federated learning setting. Boosting is an ensemble

technique to build a robust classifier by combining weak classifiers sequentially.

Fedboost allows boosting for each local model running at the client end. The

local model updates from the client are then sent to the server for aggregation. It

improves the overall model’s performance by introducing an ensemble strategy

for the training data at the client end. This algorithm provides computational

speedups, faster convergence, along with data privacy.

• Personalized Federated Learning (FedPer) [170]: This FL method is for

personalized model training in a privacy-preserving manner. The FedPer

approach involves splitting the model into the base and personalized layers (as

shown in Figure 5.6). In this method, only the base layers are transmitted to

the server for aggregation, while the personalized layers remain undisclosed

and are not shared. The rationale for this approach is that the base layers

primarily concentrate on feature learning, facilitating efficient sharing among

clients through aggregation. Conversely, the upper layers play a more significant

role in classification or decision-making, providing customization that aligns

with each client’s local data.

• Dynamic Weighted Federated Averaging (DWFA): Chen et al. [110] proposed

a novel dynamic weighted federated averaging algorithm for handing the

imbalance in the data at the client end. It is an extension of the traditional
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Table 5.1: Characteristics comparison between FL aggregation algorithms.

FL Methods→
Measures ↓ FedAvg [136] FedPer [170] FedBoost [114] DWFA [110]

Scalability Yes No No Yes
Communication
Overhead Yes Yes Yes Yes

Aggregation averaging weights
and parameters

averaging Personalized
weights

averaging Boosted
weights

dynamically weighted
averaging of weights

Privacy Protects privacy
of client data

Client data is exposed
to central server

Client data is exposed
to central server

Protects privacy
of client data

Computational
Complexity Low Higher Higher Medium

Use case Homogeneous
data distribution

Heterogeneous
data distribution

Heterogeneous
data distribution

Heterogeneous
data distribution

Figure 5.7: Components of Federated Learning

FedAvg algorithm aimed at improving the performance of federated learning

environments that deal with heterogeneous data distributions across clients.

DWFA adjusts the weights dynamically based on the significance of the client’s

contribution. For instance, a client with a larger dataset or better model accuracy

might be assigned a higher weight during aggregation, allowing the global model

to benefit more from valuable client models.

Table 5.1 compares the different federated learning aggregation algorithms based

on their computation overheads, computational complexity, data privacy, and ability

to address data heterogeneity. Figure 5.7 gives a visual representation of all four

components of federated learning, including the type of architectures, different

approaches of FL, different aggregation algorithms of FL and tools required for

implementing FL.
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Table 5.2: Tools for Federated Learning

Tool Developer Description Data
Partitioning

TFF[208] Google TensorFlow provides a friendly and adaptive framework for users to simulate distributed
computing locally using TFF.

Horizontal

PySyft [250] OpenMined With PyTorch, it uses Federated Learning, Differential Privacy (DP), Model Predictive
Control (MPC) to separate private data from model training.

Horizontal,
Vertical

FATE [22] Webank FATE is part of the Federated AI Ecosystem, which creates safe computing protocol
using homomorphic encryption and MPC.

Horizontal,
Vertical

OpenFL [67] Intel Intel created Open Federated Learning to implement FL on sensitive data. It contains
bash deployment scripts and uses certificates to secure communication.

Horizontal,
Vertical

Flower [1] ETH
Zurich

Flower provides a high-level API that makes setting up and running FL experiments easy.
It is developed by a team of researchers at ETH Zurich and is open-source and available
on GitHub. It can be easily used with PyTorch and TensorFlow.

Horizontal,
Vertical

5.1.4 Popular Tools for Federated Learning Setup

Various open-source frameworks and software options are available when exploring

federated learning, including TFF [208], PySyft [250], FATE [22], OpenFL [67], and

Flower [1]. The best option heavily relies on the use case’s purpose and characteristics.

This thesis uses TFF 1 version 0.19.0 for all the experimental setups for FL. Table 5.2

gives all other useful tools with their descriptions.

5.2 Research Methodology

The literature review aims to collect information for analyzing and evaluating all

significant emotion recognition technologies with federated learning concepts based on

physiological signals. It consists of four research papers for ERS based on physiological

signals using FL.

5.2.1 Research Questions

This review delves into the following research questions (RQ) mentioned in Table 5.3.

The research questions help define the keywords for the inclusion criterion for reviewing

the articles.

Inclusion Criteria: These databases were used to search for articles to perform

literature review (as Figure 5.8 presents): Elsevier, Google Scholar, Springer Link,

ACM Digital Library, and PubMed.

1https://github.com/google-parfait/tensorflow-federated
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Table 5.3: Research questions

RQs Questions

RQ1 What makes privacy a vital consideration for physiological signal-based
emotion recognition systems?

RQ2 How does federated learning ensure data privacy in emotion recognition
systems using physiological data?

RQ3 What evaluation measures can assess federated learning environment
for emotion recognition?

Figure 5.8: Search domains for reviewing.

Keywords: It uses the following keywords for searching: Emotion recognition, multi-

modal emotion recognition, emotion recognition using physiological signals, bio-

sensors, bio-signals, emotion recognition via wearable sensors, federated learning

in smart healthcare, and emotion recognition using federated learning. It considers

the articles from journals (with indexing in SCI, SCIE, and Scopus) and good-ranking

conferences published in English.

Exclusion Criteria: For reviewing the related work, articles not written in English

are excluded. Also, it does not include articles based on the statistical evaluation of

physiological signals.

5.3 Related work of FL in Emotion Recognition

Federated learning has been implemented to preserve the privacy of peripheral

physiological data in emotion recognition systems. Only four research studies utilize

federated learning to safeguard the privacy of sensitive physiological signals while

performing emotion recognition by creating a decentralized framework. Table 5.4

summarizes these studies, giving the combination of physiological signals used, type

of federated learning approach, experimental settings, and their achieved results.
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Table 5.4: Recent studies on emotion recognition based on physiological signals using
Federated Learning.

Reference Dataset Physiological
Signal

Base
Model

Average
Accuracy

FL Approach Tool FL
Algo

Modality

Nandi et al.
[36]

DEAP[233] EDA, RB FFNN 81.92 % Horizontal FL TFF FedAvg Dual

Tara Hassani
[100]

CASE[134] GSR CNN 79% Horizontal FL TFF FedAvg Single

Gu et al.
[248]

DEAP[233],
DREAMER [135]

EEG CNN -
LSTM

88.27%,
92.24%

Transfer FL TFF - Single

Agrawal et al.
[149]

DEAP[233] EEG CNN 69.77% Horizontal FL TFF FedAvg Single

Nandi and Xhafa [36] developed Fed-ReMECS, a real-time emotion classification

framework using FL that leverages multi-modal physiological data from EDA and RESP

wearable sensors. The authors classify nine emotional states from the DEAP [233]

dataset using two domains of Arousal and Valence. Tara [100] employed the

physiological signal GSR on the CASE [134] dataset to train a federated CNN-based

model for emotion recognition. According to the author’s findings, the proposed

federated CNN architecture performs similarly to a centralized CNN architecture

in terms of accuracy. However, its federated learning nature allows it to protect

users’ sensitive information. Gu et al. [248] proposed a federated transfer learning

environment for ensuring data privacy while recognizing emotions in a teacher-student

network. The authors used the EEG signals from the DEAP [233] and DREAMER [135]

datasets. Agarwal et al. [149] developed a decentralized model FedCER using federated

learning for recognizing emotions in three dimensions. FedCER validated the EEG

data from the benchmark DEAP [233] dataset. A 2D convolution neural network was

used for feature extraction at the client end for the EEG data. The model proved to be

as accurate as the non-FL environment (baseline 2dCNN) while preserving the privacy

of the client’s data.

The literature demonstrates that deep learning models are the most extensively

studied approaches for integrating federated learning with physiological data in emotion

recognition. Their ability to generate model weights through neural networks, coupled

with optimizers designed for deep neural architectures, ensures faster convergence and

more precise weight updates.
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5.4 Answers to RQs

Based on the literature on FL for ERS using physiological data, the following research

questions are answered:

• RQ1: What makes privacy a vital consideration for physiological signal-based

emotion recognition systems?

ANS: Physiological data is inherently personal and highly sensitive, encompass-

ing signals such as EEG, ECG, GSR, and Heart Rate. Data from these signals are

unique to each individual, revealing a lot about their health status and potentially

providing insights into their emotional state, behaviour, and habits. Hence, they

are considered sensitive. Compromising the privacy of physiological data can

have profound repercussions on an individual’s life. It opens the door for data

attackers and exposes them to the risk of data breaches, which, in turn, can

lead to various threats [21]. These threats include the potential exposure of an

individual’s health status, emotional stability, and even their biometric identity

based on physiological signals. Therefore, safeguarding privacy is crucial when

handling physiological data in an ERS.

• RQ2: How does federated learning ensure data privacy in emotion recognition

systems using physiological data?

ANS: FL is a promising approach that creates a decentralized environment with

the local model at the client end and a global aggregator at the server end [69]. It

allows the local model updates to be sent to the central server, combining them to

create a global aggregator [39, 99, 124]. This approach does not allow the global

aggregator to access the raw data used for training (at the client end). Hence, it

preserves the privacy of sensitive physiological data (stored on the client’s end).

• RQ3: What evaluation measures can assess federated learning environment for

emotion recognition?

ANS: FL is a distributed environment creating a local model at the client end and

a global aggregator at the server end. Classification accuracy with scalability for

different data distributions at client end measures the predictive performance and

effectiveness of the FL models for emotion recognition [36, 100, 149, 248].
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5.5 Limitations of existing Federated Learning in ERS

The review of related work on FL for emotion recognition systems aims to assess the

current state of the literature and identify existing challenges. It examines the latest FL

studies for emotion recognition based on physiological signals and reports the following

limitations:

1. Limited Emotion Classification: Existing research on FL for ERS did not focus

on intricate emotions encompassing the dominance dimension of the 3D-VAD

emotion model. They fail to classify a broad spectrum of emotions and cover

only limited emotions. They could only classify into basic positive and negative

emotions using arousal and valence dimensions.

2. Limited Modality: Prior studies using FL for ERS have primarily conducted

experiments utilizing either a single physiological signal or integrating only

peripheral signals. These studies lack a comprehensive approach incorporating

multiple physiological modalities, majorly not including EEG for emotion

classification.

3. Absence of Subject-Independence: No previous research on Federated

Learning for ERS validates for independent subjects (or clients). The

generalization of models across different clients is not thoroughly explored in

the existing works of FL for emotion recognition models. The variability across

subjects is a crucial challenge in ERS, and ensuring that a model trained in a

federated environment can generalize well to new, unseen subjects is important

for real-world applicability.

4. Limited Research of FL in Emotion Recognition: The use of federated learning

for emotion recognition based on physiological signals is a less explored area

of research. Since FL came in 2017, very limited work has been published

on emotion recognition using the federated paradigm (as mentioned in Section

5.1.3). These research works focused on only one federated aggregation

algorithm - FedAvg [136]. Other federated learning algorithms are described in

Section 5.1.3 Table 5.1, which have not been explored for emotion recognition.
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Different algorithms like FedBoost [114] and FedPer [170] may have better

comparison outcomes regarding data privacy and communication computations.

5. Lacking Communication Computation Discussion: Communication is a

crucial barrier in a federated environment, as it concerns the amount of data

transfer, communication overhead, and data privacy. Communication between

the central server and the client devices is often a major bottleneck in federated

learning, which has not been discussed in any of the previous FL works for ERS.

6. Data Heterogeneity Not Addressed: The existing architectures of FL for

emotion recognition using physiological signals have not addressed the issue

of data heterogeneity. Imbalanced Data Heterogeneity can occur in a federated

environment at the server end due to the uneven data distributions at the client

end.

7. Evaluation & Assessment: The existing model of FL for ERS has used only

classification accuracy with scalability for different data distributions at the client

end to measure the predictive performance and effectiveness of their proposed

FL models for emotion recognition [36, 100, 149, 248]. No classification

performance other than accuracy and communication computation (in terms

of times) has been discussed.

5.6 Evaluation Measures for Assessing Proposed FL

Architectures

This section presents the various evaluation measures, lacking in the existing FL works

for ERS. These measures assess the performance of the proposed federated learning-

based emotion recognition architectures (described later in chapters 6, 7, 8), which

perform both binary (low/high) and octal (eight emotions) classifications. Evaluating

the effectiveness of the emotion recognition models is critical in determining their

practical applicability, particularly for real-time applications that involve physiological

signal data. The following sections describe the different performance measures used

in this thesis, along with their relevance to emotion recognition tasks.
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Table 5.5: Confusion matrix representation for binary classification

Predicted Positive Predicted Negative
Actual Positive True Positive False Negative
Actual Negative False Positive True Negative

5.6.1 Classification Performance Measures

The classification performance of the proposed federated learning-based emotion

recognition architectures is evaluated using widely adopted metrics, such as Confusion

Matrix, Accuracy, Precision, Recall, and F1-score. These measures provide insight into

how well the models can distinguish between different emotional states, both in binary

classification (low/high emotion) and multi-class classification (eight emotions). Each

of these measures is crucial in analyzing the model’s ability to handle imbalanced data,

misclassification costs, and overall reliability.

5.6.1.1 Confusion Matrix

The Confusion Matrix is a useful metric for visualizing the performance of classification

models. It provides a matrix representation of the true versus predicted labels, showing

how well the model performs for each emotion. Table 5.5 displays the counts of

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)

predictions in a tabular format, making it easier to see where the model performs well

and where it makes errors.

From the confusion matrix, the following metrics can be derived:

• Accuracy: Accuracy is derived from the confusion matrix as the ratio of correct

predictions to the total predictions. It represents the overall proportion of

correctly classified instances.

• Precision: The ratio of true positive predictions to the sum of true and false

positives for each class.

• Recall: The ratio of true positive predictions to the sum of true positives and

false negatives for each class.

• F1-Score: The harmonic mean of precision and Recall for each class.
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5.6.1.2 Classification Accuracy

Classification Accuracy is the most commonly used performance metric. It represents

the proportion of correct predictions made by the model out of the total number of

predictions. The formula for accuracy is given by Equation 5.2 as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(5.2)

The TP presents the predicted emotion label (low/high for binary and one of the

eight emotions for octal), which matches the actual emotion label (low/high for binary

and one of the eight emotions for octal). FP presents the predicted emotion label

(low/high for binary and one of the eight emotions for octal) that does not match the

actual emotion label (low/high for binary and one of the eight emotions for octal). TN

presents the predicted emotion label correctly, which corresponds to the absence of the

actual emotion label. FN presents the predicted emotion label that fails to capture the

presence of the actual emotion label for each dimension (valence, arousal, dominance)

in a given instance.

While accuracy is useful for providing an overall sense of model performance, it

may be misleading in cases of imbalanced datasets, such as when certain emotional

states (e.g., neutral emotions) occur far more frequently than others (e.g., extreme

emotions). In such cases, additional metrics, like precision and Recall, become more

valuable for understanding the model’s performance. A higher accuracy value indicates

better performance of the emotion classification model.

5.6.1.3 Precision

Precision, also known as positive predictive value, is a metric that reflects the proportion

of positive predictions that are actually correct. It focuses on the reliability of the

model in terms of classifying positive instances. The formula for precision is given by

Equation 5.3 as follows:
Precision =

T P
T P+FP

(5.3)

High precision indicates a low false positive rate, meaning that the model is

conservative in labelling positive instances and only labels instances as positive when

it has high confidence. In the context of emotion recognition, this is particularly
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important when distinguishing between highly similar emotional states, where false

positives could lead to misinterpretations. In the case of octal classification, where

eight different emotions are considered, precision can be calculated for each individual

class (emotion) independently and then averaged.

5.6.1.4 Recall

Recall, also referred to as sensitivity or True Positive Rate (TPR), measures the model’s

ability to correctly identify all actual positive instances. It is crucial in scenarios where

missing a positive instance (false negative) is more costly than incorrectly labelling a

negative one. The formula for Recall is given by Equation 5.4 as follows:

Recall =
T P

T P+FN
(5.4)

In emotion recognition systems, Recall is significant when the goal is to ensure

that all instances of a particular emotion are detected. For instance, if the system is

used to detect high-arousal emotions in real-time applications, failing to identify such

states could be detrimental. Recall can also be calculated for each class individually in

multi-class classification (octal emotions).

5.6.1.5 F1-Score

The F1-Score is a composite metric that balances precision and Recall, providing

a single score to evaluate the model’s overall performance. It is particularly useful

when there is an uneven class distribution or when the cost of false positives and false

negatives are not the same. The F1-score is the harmonic mean of precision and Recall,

and it can be calculated as given in Equation 5.5:

F1 = 2× P×R
P+R

(5.5)

A higher F1 score indicates that the model has a good balance between precision

and Recall, making it effective in identifying true positive instances while minimizing

false positives and negatives. In the context of multi-class emotion recognition (octal

classification), the F1 score can also be computed for each class and then provided as

an average.
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5.6.2 Scalability Measures

This thesis evaluates the scalability of the proposed federated learning-based emotion

recognition architectures, demonstrating their ability to efficiently handle various data

partitioning strategies and models while maintaining appropriate training times across

diverse client data distributions. The training time and model accuracy are used to assess

the scalability of the proposed architectures, as detailed in the subsections below.

5.6.2.1 Training Time

It refers to the time taken by the local model to learn from the updated global model

gradients at the client end after each averaging round. It is computed mathematically

as in Equation 5.6.

T =
tc1 + tc2 + tc3 + ....tci

i
(5.6)

Where,

• T is the average of all clients’ training time.

• tci is the time the ith client takes for local model training.

5.6.2.2 Model Accuracy

In federated learning, scalability refers to the model’s ability to maintain its

performance, specifically accuracy, as the number of clients (data sources) increases.

A key factor is how the model handles data distribution across clients and continues

to converge effectively over multiple communication rounds. The model’s accuracy

should be maintained even as the number of clients increases. It is presented (with

different client distributions and iterations).

5.6.3 Communication Computation Measures

FL is a distributed machine learning technique that leverages data residing in multiple

local models and aggregates them at a central global server. The evaluation of the

efficiency of communication in this process is by measuring the below measures:
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5.6.3.1 Averaging Time

It is the time required for the server to aggregate the model updates received from

the client end, which impacts the communication efficiency of the FL model and is

computed at the server end. Longer averaging time leads to increased communication

latency and a higher risk of update delay and network congestion.

Tagg = TC1 +TC2 +TC3 + ....TCi (5.7)

Where,

• Tagg is the total aggregation time at the server.

• TCi is the time taken by the server to average the weights received from client

Ci(i = 1,2,3...i).

• i is the total number of clients contributing their updates.

5.6.3.2 Convergence Speed

The convergence speed of an FL model refers to the speed at which the model achieves

its optimal performance, i.e., the point at which the model can no longer improve with

additional training rounds. One way to measure the convergence speed of an FL model

is by obtaining the training and testing loss. The training and testing loss is computed

for the local model at the client’s end in an FL environment as it tracks how the training

and testing losses are decreasing over time.

5.6.3.3 Binary cross-entropy

This function computes the training and testing loss for the proposed architectures while

performing binary classification. The formula for binary cross-entropy is as given by

Equation 5.8:
LB =−(ylog(p)+(1− y)log(1− p)) (5.8)

Where,

• LB is the binary loss generated for binary classification.
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Table 5.6: List of evaluation measures for proposed Federated Learning based emotion
recognition architectures.

Evaluation Measures Measures
Performance Measures • Confusion Matrix

• Accuracy
• Precision
• Recall
• F1-Score

Scalability Measures • Training Time
• Accuracy

Communication Computation • Averaging Time
• Convergence Speed (Loss)

• y represents a binary indicator (0 or 1) for accurately classifying the class label,

where 0 corresponds to ”low”, and 1 corresponds to ”high”.

• p denotes the predicted probability associated with the observations of class

labels.

5.6.3.4 Categorical Cross-Entropy

This function computes the training and testing loss for the proposed architectures

for multi-class classification (with eight emotion classes). It computes the loss by

comparing the predicted probability distribution with the true class labels. The formula

for categorical cross-entropy is given in Equation 5.9:

LC =−
C

∑
c=1

yc log(pc) (5.9)

Where,

• LC is the categorical loss generated for octal classification.

• C is the number of classes. yc is the binary indicator for class c (1 if the correct

class, 0 otherwise).

• pc is the predicted probability for class c.

Table 5.6 lists all the evaluation measures for proposed Federate Learning emotion

recognition architectures.
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5.7 Summary

The literature for the FL paradigm is reviewed, including FL architectures, approaches,

aggregation algorithms, and tools. It gives the related work focusing specifically

on its application to ERS using physiological signals. It traces the evolution of

FL as a decentralized approach that allows machine learning models to be trained

across distributed data sources, maintaining privacy by ensuring sensitive data remains

on client devices. The review critically assesses different FL implementations and

techniques used in ERS, evaluating their effectiveness and model performance. It

identifies existing gaps and limitations in the current research of FL for ERS based on

physiological signals. Different evaluation measures are also presented to assess the

proposed FL architectures.

This chapter is based on the following work:

• J1: Neha Gahlan, and Divyashikha Sethia. ”Federated Learning in Emotion

Recognition Systems based on Physiological Signals for Privacy Preservation:

A Review” Multimedia Tools and Applications: 1-69. June 2024. (SCIE,

Impact factor-3.6, Publisher: Springer). Doi: https://doi.org/10.1007/

s11042-024-19467-3.
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Chapter 6

F-MERS for Privacy to Emotion

Recognition System

One of the significant issues in keeping physiological data while identifying emotions

is a significant privacy concern. Physiological data like EEG, ECG, HR and others

are sensitive as they reveal information about a person’s health status and biometrics

data and can potentially provide insights into their emotional state, behaviour, and

habits [122, 135, 233, 287]. Conventional ERS use wearable sensors to record sensitive,

physiological data fed into a machine learning model for training and classification

purposes. This traditional ERS uses a centralized environment for training and

classification without any privacy standards, allowing data attackers easy access to

sensitive personal data, resulting in data leaks [82, 145, 146, 154]. The breach of such

sensitive data will destroy authentication mechanisms [95, 164, 301]. Therefore, it is

essential to use physiological signal data for emotion recognition systems to protect

people’s personal sensitive information.

This chapter introduces a novel FL-based Multi-modal Emotion Recognition System

(F-MERS) to address the data privacy concerns in ERS. The proposed F-MERS

architecture creates a decentralized environment by creating a client end (with subjects’

multi-modal physiological signal data) and a server end for aggregating the updates.

It runs the local model update at the client end and then sends the model updates

(gradients) to the central server for averaging them. It does not allow the central server

to access the raw physiological data at the client end, thereby preserving the privacy of

physiological data.
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Following are the main contributions of this chapter:

1. Proposal of F-MERS architecture combining multiple physiological signals:

EEG, GSR, ECG, and RESP using Feature-level Fusion (Multi-modality). It

uses an MLP classifier as a base model for classifying the three dimensions of

the VAD model of emotions, i.e., Valence, Arousal, and Dominance (Additional

Emotion Dimension).

2. Performance evaluation of proposed F-MERS architecture: It validates the

three benchmark datasets: AMIGOS [125], DEAP [233] and DREAMER [135]

using two testing scenarios: Subject-Dependent and Subject-Independent,

making it more generalized and robust. It is compared with the non-FL

architecture by achieving accuracy comparable to the centralized MLP model

(non-federated). This chapter provides the scalability (in terms of rounds and

iterations) and reports the communication computation (in terms of training and

averaging times) for the proposed F-MERS architecture.

6.1 Experimental Methodology

The proposed F-MERS architecture utilized the three dimensions: Valence Arousal

and Dominance of the Mehrabian and Russell’s 3D-VAD model [33, 127] (as described

earlier in Chapter 2).

6.1.1 Data Processing

1. Datasets Description

The proposed F-MERS architecture validates the three emotion benchmark

datasets among the others, as they consist of multi-modal physiological data:

AMIGOS [125], DEAP [233], and DREAMER [135]. Detailed descriptions of

all the datasets with their data processing, including data clipping and labelling,

are given in Section 3.9.1. Table 6.1 briefly describes all three datasets.
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Table 6.1: Brief description of all the datasets for F-MERS.

Description/Dataset AMIGOS [125] DEAP [233] DREAMER [135]
No. of subjects 40 32 (16 male, 16 female) 23 (14 male, 9 female)
Physiological Signals EEG, ECG, GSR EEG, GSR, RESP EEG, ECG

Video Content 16 short videos,
4 long videos 40 videos 18 videos

Video Duration 57-155 seconds,
14-15 minutes 63 seconds 65 - 393 seconds

Label Matrix 16 x 3 40 x 3 18 x 3
Emotion Dimensions Arousal, Valence, Dominance
Emotion Assessment SAM (Self Assessment Manikins)
EEG electrodes 14 32 14
ECG electrodes 2 - 2
GSR electrodes 1 1 -
RESP electrodes - 1 -

Table 6.2: Extracted features from ECG, EEG, GSR, RESP signals for F-MERS.

Physiological
Signal Domain Features

EEG
(238/544 Features)

Time
(10 x 14/32)

Hjorth Complexity, Activity, Mobility,
Fractal Dimension, Mean, Median,
Variance, Standard Deviation (STD),
1st and 2nd difference.

Frequency
(7 x 14/32)

Spectral Entropy, SVD Entropy,
Sample Entropy,
Bandpower (alpha, beta, theta, delta)

ECG
(64 Features)

Time
(25 x 2)

Mean NNI, Median NNI, NNI 50,
HRV Mean, SDNN, RMSSD,
Mean HR, Max HR, Min HR, Std HR,
TINN, CSI, CVI, CVSD, CVNNI, SampEn,
SD1, SD2, Triangular Index

Frequency
(7 x 2)

Total Power, VLF, HLF, LF, HF,
LFnu, HFnu, LF/HF Ratio

GSR
(20 Features)

Time
(19)

Mean GSR, Var GSR, Skew GSR, Kurtosis GSR,
Std GSR, SCL (tonic) slope, SCR (phasic) slope,
Mean SCL, Var SCL, Std SCL,
Mean SCR, Var SCR, Std SCR

Frequency
(1) Power Spectral Density

RESP
(6 Features)

Time
(6)

Mean RESP, Median RESP,
Var RESP, Skew RESP,
Kurtosis RESP, Std RESP

2. Feature Extraction & Feature Fusion

The proposed F-MERS architecture extracts the features given in Table 6.2) from

the physiological signals: EEG, ECG (Right and Left channels), GSR and RESP,

which are detailed in earlier section 2.3. It applies a sliding window of 4 seconds

with 50% overlap for the feature extraction methods for all physiological signal

data [135, 233].
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Figure 6.1: Feature Fusion for F-MERS.

(a) Feature Fusion: The proposed F-MERS architecture employs Feature-

Level Fusion (FLF) to use rich data from distinct modalities. The FLF

process involves performing feature extraction independently for each signal

data. After feature extraction, the resulting feature vectors from each signal

concatenate into a single fused feature vector. This fused feature vector

represents the information extracted from all the signal modalities (EEG,

ECG, GSR, and RESP) as shown in Figure 6.1 used in the training process.

The final feature vectors obtained are:

For AMIGOS [125]:

FA = f (14∗17=238)
eeg + f (32∗2=64)

ecg + f (20)
gsr = f (322)

eeg+ecg+gsr (6.1)

For DEAP [233]:
FD = f (32∗17=544)

eeg + f (20)
gsr + f (6)resp = f (570)

eeg+gsr+resp (6.2)

For DREAMER [135]:
FDr = f (14∗17=238)

eeg + f (32∗2=64)
ecg = f (302)

eeg+ecg (6.3)

Where feeg, fecg, fgsr, and fresp present the number of features of EEG, ECG,

GSR, and RESP signals, respectively. FA gives the concatenated feature vector for the

AMIGOS [125] dataset, and FD gives for the DEAP [233] dataset, and FDr for the
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Figure 6.2: Architecture of proposed F-MERS with AMIGOS [125].

DREAMER [135] dataset. After concatenation, the fused feature vector consists of

322 features from AMIGOS [125] dataset, 570 from DEAP [233] dataset, and 302 for

DREAMER [135] dataset presented by equations 6.1, 6.2, and 6.3 respectively.

6.1.2 Architecture of F-MERS

The architecture for the proposed F-MERS is discussed below stepwise in detail, and

its illustration with marked respective steps is given by Figure 6.2.

• Step 1: Data Collection and Preprocessing

Firstly, the proposed F-MERS architecture collects multi-modal physiological

data from all the subjects. It includes physiological signals such as EEG, ECG,

GSR, and RESP data. This data then goes for preprocessing, serving as input to

the next step.

• Step 2: Feature Extraction and Fusion

The architecture performs feature extraction on the collected physiological data

for the Statistical, Time-domain, and Frequency-domain features. It fuses the

extracted features into a single concatenated feature vector.
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Figure 6.3: Data divisions of clients for F-MERS (with AMIGOS [125]).

Table 6.3: Partitioning subjects into clients for each dataset (1 Client = 1 Subject) for
F-MERS.

AMIGOS [125] (40 Subjects)
Client = 15 Client = 20 Client = 40

DEAP [233] (32 Subjects)
Client=10 Client=16 Client = 32

DREAMER [135] (23 Subjects)
Client=7 Client=11 Client = 23

• Step 3: Data Division for FL Environment

This step defines the participating clients in the FL environment. For creating a

federated environment, the architecture divides the datasets into three different

client divisions, with each client consisting of one subject’s multi-stream

physiological data, followed similarly by two other datasets. An illustration

is shown in Figure 6.3 for the AMIGOS [125] dataset, showing that the first

experiment is with clients=15, the second with clients=20, and the third with

clients=40. It works similarly for the other two datasets with different no. of

client as given in Table 6.3.

• Step 4: Model Selection and Training

As a baseline classifier, the proposed F-MERS architecture uses a Multi-Layer

Perceptron (MLP) neural network in the federated learning environment. The

MLP model takes the concatenated feature vector of the physiological signal

data in the input layer. Table 6.4 gives the parameter for the proposed F-MERS
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Table 6.4: Model parameters of the proposed F-MERS.

Layers Output
Shape

Activation
Function Hyperparameters

Input None, 322/570/302 None None
Dense None, 512/1024 ReLU Dropout=0.7
Dense None, 256/512 ReLU Dropout=0.7
Dense None, 128/256 ReLU Dropout=0.7
Dense None, 256/128 ReLU Dropout=0.7
Dense None, 64 ReLU Dropout=0.7
Output None, 1 Sigmoid None

Optimizer = SGD, Learning Rate =0.005

Algorithm 1 Federated Averaging (FedAvg [136])
Server Execution:

initialize w0
for each round r =1,2, ... do

m←− max(int(C ∗m),1);
St←− (random set of m clients);
for each client k ∈ St in parallel do

wk
t+1←− ClientUpdate(k,wt) end

wt+1←− ∑
K
k=1

nk
n wk

t+1

ClientUpdate(k,w)://Run on client k
A←− (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch a ∈ A do
w←− w−η∆l(w; a)

return w to server

architecture using multiple dense layers with an activation function.

• Step 5: Creating FL Environment

TFF [208] is used as an FL tool in the proposed F-MERS architecture. After

splitting the dataset, the architecture distributes it to multiple virtual clients.

It creates a federated learning environment using TFF to produce FedAvg, a

federated averaging algorithm [136]. TFF employs a distributed aggregation

protocol [214] to collect and aggregate client model updates. Equation 6.4 gives

the computation for FedAvg.

wg
t =

1
Ntotal

Ntotal

∑
i=1

wl
t,i (6.4)
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Table 6.5: Partitioning subjects into clients: Subject-Independent scenario for F-
MERS.

Dataset = AMIGOS [125] (40 Subjects)
1 Client= 1 subject Client = 15 Client = 20 Client = 40
Training/Testing clients 12/3 16/4 32/8

Dataset = DEAP [233] (32 Subjects)
1 Client= 1 subject Client=10 Client=16 Client = 32
Training/Testing clients 8/2 13/3 26/8

Dataset = DREAMER [135] (23 Subjects)
1 Client= 1 subject Client=7 Client=11 Client = 23
Training/Testing clients 5/2 9/2 18/5

Where wg
t is the aggregated weight at the global server in time t, wl

t,i are the

weights received from all local models in time t, and Ntotal is the total number of

the local model participating for aggregation. It employs the horizontal federated

learning approach [27]. The Algorithm 1 describes the detailed steps for the

algorithm for FedAvg as:

1. Creation of Local Model (client end): The local model is created using

the multi-layer perceptron, initially taking the feature vector as input from

each client’s multi-stream physiological data. The models from each client

are then sent to the server to generate a global aggregator.

2. Creation of Global Aggregator (server end): After receiving the local

model from the clients, the server performs the federated averaging

(FedAvg). It then sends the updates from the global server back to the

clients.

3. Local Model Updates (client end): Following aggregation, the partici-

pating client receives updates from the global server. The process repeats

until the model converges or completes the number of iterations. The

experiments are performed with three rounds of iterations (Rounds = 100,

200, 500).

6.1.3 Experimental Setup

This chapter experiments with two perspectives: The non-federated learning envi-

ronment (Non-FL) and the Federated learning environment (FL). It validates both of

these approaches in Subject-dependent and Subject-independent scenarios. These
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approaches are employed to assess the effectiveness of the proposed F-MERS

architecture. For both perspectives, this work utilizes Google Colab’s Pro plus

NVIDIA V100 GPU, CUDA version 11.2, Python 3.8, TensorFlow (TF version-2.6.0 ),

TensorFlow Federated (TFF version-0.19.0) and Keras frameworks to run the models

and trials on a MacBook Air with a 1.6 GHz dual-core Intel core i5. Each round of

aggregation in the federated environment requires clients to train one epoch locally,

with batch size 256 [173, 222].

6.1.4 Validation Scenarios of the architecture

This chapter validates the proposed FL approach in two scenarios: One is Subject-

dependent, and the other is Subject-independent.

1. The Subject-dependent scenario uses data from each client for training and

testing, i.e., 80% of each of the client’s data for training and 20% of each of the

client’s data for testing.

2. The Subject-independent scenario uses different sets of training and testing

clients, which are in the ratio of 80% (training) and 20% (testing). For example,

the model uses 12 clients for training and the rest 3 clients for testing.

Table 6.5 presents the no. of subjects utilized for training and testing the experiment in

the subject-independent scenario separately for each dataset, along with the details of

the three experiments performed.

6.1.5 Evaluation Measures for F-MERS

The following measures evaluate the proposed F-MERS architecture (as detailed

in Section 5.6). Performance Measures: Confusion Matrix, Binary Accuracy

(Training Accuracy and Testing Accuracy) and F1-Score. Scalability Measures:

Training Time and Model Accuracy with different client distributions and iteration

rounds. Communication Computation Measure: Averaging time for different client

distribution and iteration rounds.
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Figure 6.4: Testing accuracies for proposed F-MERS for AMIGOS [125] in Subject-
dependent scenario.

6.2 Results and Discussion

This section presents the experimental results of the proposed F-MERS architecture

for binary classification of emotion dimensions. The local models at the client end

use the updates from the global server and perform the classification at their end,

protecting user privacy. The global server does not have any access to the raw data.

The following subsections present the experimental results for both Subject-dependent

and Subject-independent scenarios.

6.2.1 Subject-Dependent Results

This section presents the experimental results of the proposed F-MERS architecture for

the subject-dependent scenario with all three datasets: AMIGOS [125], DEAP [233]

and DREAMER [135].

1. Testing Accuracies of F-MERS: Figures 6.4, 6.5, 6.6 shows the graphical

representation of testing accuracy (average of all clients) scores of the proposed

F-MERS architecture with all rounds of aggregation for all the modalities with

AMIGOS [125], DEAP [233] and DREAMER [135] datasets, respectively in

subject-dependent scenario. It clearly illustrates that the proposed F-MERS
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Figure 6.5: Testing accuracies for proposed F-MERS for DEAP [233] in Subject-
dependent scenario.

Figure 6.6: Testing accuracies for proposed F-MERS for DREAMER [135] in Subject-
dependent scenario.

architecture performs better with multi-modal physiological signal data than

single modalities of physiological signal data, validated by different client

distributions. Hence, we present further results with 500 rounds of iterations.
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Table 6.6: Training and testing accuracies for proposed F-MERS with 500 rounds in
subject-dependent scenario.

Metrics Training Accuracy Testing Accuracy
(AMIGOS [125])

Physiological Signal/
Clients(C) C=15 C=20 C=40 C=15 C=20 C=40

Arousal
EEG 74.20% 75.13% 77.40% 74.40% 74.50% 75.00%
GSR 81.11% 82.23% 85.50% 81.80% 81.89% 82.20%
ECG 80.70% 81.40% 81.12% 80.00% 80.00% 80.10%
Multimodal
EEG+GSR+ECG 86.14% 87.11% 88.88% 86.00% 86.00% 86.80%

Valence
EEG 70.11% 71.11% 72.11% 70.00% 70.11% 70.15%
GSR 79.05% 80.55% 81.05% 79.00% 79.00% 79.03%
ECG 76.00% 76.11% 77.00% 75.80% 75.92% 76.00%
Multimodal
EEG+GSR+ECG 80.89% 81.40% 81.80% 80.90% 80.90% 80.98%

Dominance
EEG 73.22% 74.55% 75.44% 73.97% 74.00% 74.10%
GSR 79.90% 80.00% 81.55% 79.78% 79.89% 80.00%
ECG 79.00% 80.45% 80.22% 78.00% 78.26% 78.60%
Multimodal
EEG+GSR+ECG 82.10% 82.80% 84.11% 82.80% 82.88% 83.06%

(DEAP [233])
Physiological Signal/
Clients(C) C=10 C=16 C=32 C=10 C=16 C=32

Arousal
EEG 82.20% 83.78% 86.10% 82.00% 82.13% 84.20%
GSR 85.10% 85.78% 87.11% 84.90% 85.11% 86.31%
RESP 82.11% 83.11% 84.55% 81.88% 82.45% 83.73%
Multimodal
EEG+GSR+RESP 86.60% 87.10% 89.10% 86.40% 86.98% 88.10%

Valence
EEG 81.10% 83.11% 85.05% 81.91% 82.31% 83.10%
GSR 82.30% 84.44% 85.15% 83.00% 83.74% 84.40%
RESP 80.00% 80.55% 83.45% 80.00% 80.23% 81.20%
Multimodal
EEG+GSR+RESP 85.77% 86.45% 88.10% 85.00% 85.12% 86.20%

Dominance
EEG 81.89% 82.21% 83.45% 81.89% 82.21% 83.45%
GSR 80.12% 81.56% 82.32% 80.12% 81.56% 82.32%
RESP 81.11% 83.45% 84.22% 82.21% 83.45% 84.22%
Multimodal
EEG+GSR+RESP 82.52% 83.52% 86.52% 81.56% 82.32% 86.52%

(DREAMER [135])
Physiological Signal/
Clients(C) C=7 C=11 C=23 C=7 C=11 C=23

Arousal
EEG 61.50% 63.11% 65.10% 63.50% 63.88% 64.04%
ECG 69.10% 69.50% 71.25% 68.20% 68.90% 69.10%
Multimodal
EEG+ECG 73.10% 73.40% 75.12% 73.21% 73.50% 74.66%

Valence
EEG 70.10% 72.10% 73.45% 71.30% 71.70% 72.35%
ECG 73.80% 74.11% 76.21% 74.07% 74.30% 75.43%
Multimodal
EEG+ECG 76.16% 78.20% 79.05% 77.20% 77.50% 78.12%

Dominance
EEG 67.70% 69.60% 70.50% 68.50% 69.10% 69.50%
ECG 66.50% 68.10% 69.150% 67.10% 67.65% 68.55%
Multimodal
EEG+ECG 71.05% 71.30% 74.10% 72.70% 73.00% 73.80%

2. Training and Testing Accuracy Comparison for F-MERS: Table 6.6 gives the

average training and testing accuracies of the proposed F-MERS architecture

(with 500 rounds of iterations) from all the client distributions for single and

multi-modal physiological data. For example, when Clients =15, the table gives
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Table 6.7: F1-Score results (during testing) for the proposed F-MERS with all datasets
in a subject-dependent scenario

Datasets→ AMIGOS (EEG+ECG+GSR) DEAP (EEG+GSR+RESP) DREAMER (EEG+ECG)
Emotions
Dimensions↓ C = 15 C = 20 C = 40 C = 10 C = 16 C = 32 C = 7 C = 11 C = 23

Valence 0.801 0.810 0.811 0.854 0.865 0.864 0.736 0.748 0.761
Arousal 0.851 0.851 0.854 0.853 0.868 0.876 0.763 0.777 0.782
Dominance 0.825 0.829 0.833 0.819 0.834 0.861 0.711 0.732 0.735

an average of training accuracies achieved by all 15 models trained at each

client end. The difference between training and testing results in Table 6.6

is hardly 1-2%, showing no overfitting in the proposed F-MERS architecture.

It clearly illustrates that the multi-modal architecture performs better than

single modalities, validated by different client distributions. The different

client distributions represent the ability of the proposed F-MERS architecture

to handle large amounts of data without compromising its performance, making

it scalable. The proposed F-MERS architecture achieves an average testing

accuracy of 88.10% (arousal), 86.20% (valence), and 86.52% (dominance) with

the DEAP [233] dataset for clients = 32, 86.80% (arousal), 80.98% (valence), and

83.06% (dominance) with the AMIGOS [125] dataset for clients = 40, 74.66%

(arousal), 78.12% (valence), and 73.80% (dominance) with the DREAMER [135]

dataset for clients = 23, for the multi-modal physiological signal data.

3. F1-Score for F-MERS: Table 6.7 gives the F1-score values for the proposed

multi-modal F-MERS architecture derived while testing (averaged from all the

clients). The F1-score values being close to 1 demonstrate that the proposed

F-MERS architecture ensures that the predicted labels (low/high) match closely

to the actual class labels (low/high). It indicates a strong performance of the

proposed F-MERS architecture in identifying correct positive instances with all

three datasets.

4. Confusion Matrix for Binary Classification by F-MERS: Table 6.8 provides the

confusion matrix for a better presentation of the classification task performed. It

gives the values for each low/high-class label for binary classification performed

for emotion dimensions arousal, valence, dominance. It shows the ratio of actual

and predicted class is higher for true positive and true negative data samples.
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Table 6.8: Confusion matrix for the proposed F-MERS in subject-dependent scenario.

AMIGOS [125]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.854 0.015 Low 0.895 0.018 Low 0.854 0.018
High 0.250 0.908 High 0.175 0.876 High 0.174 0.819

DEAP [233]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.942 0.059 Low 0.855 0.049 Low 0.842 0.059
High 0.121 0.878 High 0.128 0.869 High 0.122 0.878

DREAMER [135]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.894 0.145 Low 0.886 0.123 Low 0.775 0.121
High 0.109 0.889 High 0.129 0.862 High 0.142 0.862

Table 6.9: Testing accuracy for the proposed F-MERS and the Non-FL across all
datasets in a subject-dependent scenario with maximum number of clients.

Environment Non FL With FL Non FL With FL Non FL With FL
Epochs(E)/Rounds(R) E = 500 R = 500 E = 500 R = 500 E = 500 R = 500

AMIGOS [125] (with clients = 40)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 75.10% 75.00% 70.35% 70.15% 74.15% 74.10%
GSR 82.30% 82.20% 79.11% 79.03% 80.11% 80.00%
ECG 80.11% 80.0% 76.0% 76.0% 78.55% 78.60%
Multimodal
(EEG+GSR+ECG) 86.81% 86.80% 81% 80.98% 83.11% 83.06%

DEAP [233] (with clients = 32)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 84.51% 84.20% 83.18% 83.10% 83.80% 83.45%
GSR 86.52% 86.31% 84.53% 84.40% 82.45% 82.32%
RESP 83.92% 83.73% 81.28% 81.20% 84.30% 84.22%
Multimodal
(EEG+GSR+RESP) 88.20% 88.10% 86.34% 86.20% 86.78% 86.52%

DREAMER [135] (with clients = 23)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 65.00% 64.04% 72.35% 72.15% 69.50% 69.12%
ECG 70.11% 69.10% 75.10% 75.20% 68.55% 68.23%
Multimodal
(EEG+ECG) 74.81% 74.66% 78.23% 78.10% 73.80% 73.43%

5. Comparison of F-MERS with Non-federated MLP: This chapter also compares

the efficacy of the proposed federated F-MERS architecture to the non-federated

learning centralized MLP for emotion recognition based on physiological signal

data via results from Table 6.9. The objective is to achieve comparability between

the proposed F-MERS architecture and the non-federated centralized MLP model,

along with the addition of data privacy considerations in the proposed F-MERS.

The proposed multi-modal F-MERS architecture achieves an average accuracy of

86.94% (from valence, arousal and dominance), which is comparable with multi-
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Figure 6.7: Testing accuracies for proposed F-MERS for AMIGOS [125] in Subject-
independent scenario.

modal Non-FL achieving 87.10% (from valence, arousal and dominance) with the

DEAP [233] dataset for client = 32. For the AMIGOS [125] dataset, the proposed

multi-modal F-MERS architecture achieves an average accuracy of 83.61% (from

valence, arousal and dominance), which is comparable with multi-modal Non-FL

achieving 83.64% (from valence, arousal and dominance) with clients = 40. For

the DREAMER [135] dataset, the proposed multi-modal F-MERS architecture

achieves an average accuracy of 75.39% (from valence, arousal and dominance),

which is comparable with multi-modal Non-FL achieving 75.61% (from valence,

arousal and dominance) with clients = 23.

6.2.2 Subject-Independent Results

This section presents the experimental results of the proposed F-MERS architecture for

the subject-independent scenario with the datasets: AMIGOS [125], DEAP [233] and

DREAMER [135].

1. Testing Accuracies of F-MERS: Figures 6.7, 6.8, 6.9 shows the graphical

representation of accuracy scores of the proposed F-MERS architecture with all

rounds of aggregation for all the modalities with AMIGOS [125], DEAP [233]

and DREAMER [135] datasets, respectively in subject-independent scenario. It

shows that the proposed multi-modal F-MERS architecture performs best for all
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Figure 6.8: Testing accuracies for proposed F-MERS for DEAP [233] in Subject-
independent scenario.

Figure 6.9: Testing accuracies for proposed F-MERS for DREAMER [125] in Subject-
independent scenario.

three emotion dimensions when rounds = 500 among the rest of the rounds. It

clearly illustrates that the proposed F-MERS architecture performs better with

multi-modal physiological signal data than single modalities of physiological

signal data, validated by different client distributions. Hence, we present further

results with 500 rounds of iterations.

2. Training and Testing Accuracy Comparison for F-MERS: Table 6.10 gives the
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Table 6.10: Training and testing accuracies for the proposed F-MERS with 500 rounds
in subject-independent scenario.

Metrics Training Accuracy Testing Accuracy
(AMIGOS [125])

Physiological Signal/Clients (C) C=15 C=20 C=40 C=15 C=20 C=40
Arousal

Multimodal
EEG+GSR+ECG 85.56% 87.10% 88.50% 85.76% 86.22% 87.90%

Valence
Multimodal
EEG+GSR+ECG 80.60% 81.52% 82.80% 80.58% 81.12% 82.10%

Dominance
Multimodal
EEG+GSR+ECG 81.10% 82.50% 83.10% 80.73% 81.56% 82.06%

(DEAP [233])
Physiological Signal/Clients C=10 C=16 C=32 C=10 C=16 C=32

Arousal
Multimodal
EEG+GSR+RESP 84.80% 86.10% 87.80% 85.22% 85.72% 86.50%

Valence
Multimodal
EEG+GSR+RESP 87.12% 88.18% 89.88% 88.34% 88.78% 89.02%

Dominance
Multimodal
EEG+GSR+RESP 81.10% 82.10% 84.88% 83.12% 83.45% 84.02%

(DREAMER [135])
Physiological Signal/Clients C=7 C=11 C=23 C=7 C=11 C=23

Arousal
Multimodal
EEG+ECG 72.80% 74.55% 75.10% 73.50% 74.01% 74.33%

Valence
Multimodal
EEG+ECG 76.60% 78.15% 79.88% 77.81% 78.52% 79.02%

Dominance
Multimodal
EEG+ECG 70.88% 72.30% 72.40% 71.88% 72.01% 72.24%

average training and testing accuracies of the proposed F-MERS architecture

(with 500 rounds of iterations) from all the client distributions for single

and multi-modal physiological data in the subject-independent scenario. The

difference highlighted between training and testing results given in Table 6.10 is

hardly 1-2%, showing that the proposed F-MERS architecture is not overfitted.

Here, the multi-modal architecture performs better than single modalities, as

validated by different client distributions. The different client distributions

represent the ability of the proposed F-MERS architecture to handle large amounts

of data without compromising its performance, making it scalable. In the subject-

independent scenario, it achieves an average testing accuracy of 86.50% (arousal),

89.02% (valence), and 84.02% (dominance) with the DEAP [233] dataset for

client = 32. 87.90% (arousal), 82.10% (valence), and 82.06% (dominance) with
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Table 6.11: F1-Score results (during testing) for the proposed F-MERS with all datasets
in subject-independent scenario

Datasets→ AMIGOS (EEG+ECG+GSR) DEAP (EEG+GSR+RESP) DREAMER (EEG+ECG)
Emotions
Dimensions ↓ C = 15 C = 20 C = 40 C=10 C = 16 C = 32 C = 7 C=11 C = 23

Valence 0.795 0.791 0.813 0.891 0.883 0.893 0.789 0.801 0.804
Arousal 0.805 0.882 0.891 0.864 0.878 0.888 0.702 0.749 0.768
Dominance 0.822 0.812 0.824 0.841 0.833 0.854 0.722 0.744 0.761

Table 6.12: Confusion matrix for the proposed F-MERS in subject-independent
scenario.

AMIGOS [125]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.854 0.085 Low 0.891 0.145 Low 0.754 0.168
High 0.094 0.967 High 0.076 0.888 High 0.112 0.966

DEAP [233]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.842 0.151 Low 0.854 0.149 Low 0.812 0.169
High 0.159 0.848 High 0.089 0.908 High 0.191 0.828

DREAMER [135]
Valence Arousal Dominance

Class Low High Class Low High Class Low High
Low 0.894 0.129 Low 0.806 0.101 Low 0.917 0.15
High 0.128 0.849 High 0.109 0.984 High 0.13 0.850

the AMIGOS [125] dataset for client = 40. 74.33% (arousal), 79.02%(valence),

and 72.24% (dominance) with the DREAMER [135] dataset for clients = 23, for

the multi-modal physiological signals.

3. F1-Score for F-MERS: Table 6.11 gives the F1-score values for the proposed

multi-modal F-MERS architecture when tested in the subject-independent

scenario averaged from all the clients. The F1-score values are near to 1,

showing that the proposed F-MERS architecture ensures that the predicted labels

(low/high) match closely to the actual class labels (low/high), indicating correct

positive instances classification.

4. Confusion Matrix for Binary Classification by F-MERS: Table 6.12 presents

the confusion matrix for a better presentation of the classification task performed.

Each matrix representing the classification ratios breaks down the recognition

performance for the emotion dimensions Valence, Arousal, and Dominance

across Low and High classes. It shows that the ratio of actual and predicted

class is higher for true positive and true negative data samples.
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Table 6.13: Testing accuracy comparison for the proposed F-MERS and the Non-FL
across all datasets in a subject-independent scenario with maximum number of clients.

Environment Non FL With FL Non FL With FL Non FL With FL
Epochs(E)/Rounds(R) E=500 R=500 E=500 R=500 E=500 R=500

AMIGOS [125] (with clients=40)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 76.21% 75.09% 71.15% 70.95% 73.76% 73.15%
GSR 82.45% 82.20% 79.91% 79.46% 80.11% 80.00%
ECG 81.56% 81.14% 76.35% 76.20% 77.86% 77.50%
Multimodal
(EEG+GSR+ECG) 88.12% 87.90% 81.81% 82.10% 82.23% 82.06%

DEAP [233] (with clients=32)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 84.89% 84.45% 85.67% 85.53% 84.67% 84.55%
GSR 85.25% 85.16% 85.53% 85.89% 81.45% 81.29%
RESP 82.12% 82.24% 82.12% 82.06% 80.56% 80.34%
Multimodal
(EEG+GSR+RESP) 86.88% 86.50% 89.12% 89.02% 84.16% 84.02%

DREAMER [135] (with clients=23)
Physiological Signal (Arousal) (Valence) (Dominance)
EEG 66.10% 64.78% 74.53% 74.21% 68.87% 68.43%
ECG 71.05% 70.10% 77.86% 77.68% 67.88% 67.10%
Multimodal
(EEG+ECG) 75.02% 74.33% 79.23% 79.02% 72.68% 72.24%

5. Comparison of F-MERS with Non-federated MLP: This chapter compares the

efficacy of proposed F-MERS architecture to non-federated learning (centralized

MLP) for emotion recognition based on physiological signal data in subject-

independent scenarios. Table 6.13 gives an average accuracy of 86.51% (from

valence, arousal and dominance), which is comparable with Non-FL achieving

86.72% (from valence, arousal and dominance) for multi-modal data with the

DEAP [233] dataset for clients = 32. For the AMIGOS [125] dataset, the

proposed multi-modal FL architecture achieves an average accuracy of 84.02%

(from valence, arousal and dominance), which is comparable with multi-modal

Non-FL achieving 83.45% (from valence, arousal and dominance) with clients

= 40. And, for the DREAMER [135] dataset, the proposed multi-modal FL

architecture achieves an average accuracy of 75.19% (from valence, arousal and

dominance), which is comparable with multi-modal Non-FL achieving 75.64%

(from valence, arousal and dominance) with clients = 23.
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Table 6.14: Training and averaging time (in seconds) for proposed F-MERS in subject-
independent scenario. Clients (C), Rounds (R).

(AMIGOS [125])
Measures
(in seconds)

C=15 C=20 C=40
R=100 R=200 R=500 R=100 R=200 R=500 R=100 R=200 R=500

Training
Time 99.157 194.701 508.756 99.427 198.958 510.943 103.376 215.104 520.434

Averaging
Time 76.458 152.774 398.618 84.924 155.722 410.698 90.293 162.842 419.394

(DEAP [233])
Measures
(in seconds)

C=10 C=16 C=32
R=100 R=200 R=500 R=100 R=200 R=500 R=100 R=200 R=500

Training
Time 130.412 220.011 550.123 145.411 240.812 568.132 158.631 260.421 596.287

Averaging
Time 90.812 182.434 410.509 100.555 198.231 450.918 115.342 190.412 470.314

(DREAMER [135])
Measures
(in seconds)

C=7 C=11 C=23
R=100 R=200 R=500 R=100 R=200 R=500 R=100 R=200 R=500

Training
Time 110.609 200.354 518.145 120.512 220.989 540.456 125.39 235.799 550.422

Averaging
Time 77.512 155.445 400.867 86.432 160.254 415.821 92.367 170.256 421.443

6.2.3 Communication and Scalability Measures

This thesis is the first to report the training and averaging times for a federated learning

architecture for emotion recognition using physiological data. Table 6.14 assesses

the scalability and communication computation of the proposed F-MERS architecture.

For measuring scalability, training time (in seconds) and classification accuracies with

different data distributions is computed, which implies that the proposed approach

can handle different data distributions with acceptable training times, making the

proposed F-MERS architecture scalable. Furthermore, averaging time (in seconds)

is computed for aggregation in the FL environment to measure the communication

computation of the global server reflected by different rounds of aggregations, which

converge at round = 500, giving optimal performance. Table 6.14 presents the mean of

training and averaging times for subject-dependent and subject-independent scenarios.

Federated learning requires more communication overhead due to aggregation [158,

265]. Table 6.14 provides the maximum training time of 596.287 seconds (taken by

the local model) and maximum averaging time of 470.314 seconds (taken by the global

server), which are manageable. The training and averaging times are low enough to

conclude that the proposed F-MERS architecture can be feasibly deployed in real-

time emotion recognition scenarios, where frequent model updates are needed without

sacrificing privacy.
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6.2.4 Discussion

1. Proposed FL architecture in both subject-dependent and subject-independent

scenario: This chapter aims to validate the proposed FL architecture F-MERS

through experiments conducted in two different scenarios: Subject-Dependent

(SD) and Subject-Independent (SID). The results obtained in these scenarios

show that the performance of the F-MERS architecture is slightly better (1-

2%) in the Subject-independent scenario compared to the Subject-dependent

scenario. However, it is noteworthy that the performance difference between

the two scenarios is very minute, validated by all three datasets. Results in

Tables 6.6, 6.9, 6.10, 6.13 indicates that the proposed F-MERS architecture

performs well in both scenarios and proves to be robust, scalable and generalized.

2. Proposed FL architecture comparison with existing FL work for emotion:

To compare the proposed F-MERS architecture with the existing works in FL

for emotion recognition, the same evaluation grounds are included, i.e., the

same datasets and validation approach. Table 6.15 compares the proposed F-

MERS architecture with previous work based on FL for emotion recognition

using physiological signals. The results in the table conclude that the proposed

F-MERS architecture with multi-modal physiological signal data outperforms

the previous works in both the validation scenarios of subject-dependent (SD)

and subject-independent (SID) in terms of accuracy, robustness, and scalability.

6.2.4.1 Limitations

The proposed FL architecture, F-MERS, utilizes multi-modal physiological data,

including signals from EEG, ECG, GSR, and RESP, as a combined vector. However,

integrating these different signals together may result in variation data heterogeneity,

which the proposed F-MERS architecture does not address. Additionally, F-MERS

architecture uses uniformly distributed data across all clients, a scenario that does not

align with the uneven data distribution often seen in real-world applications.

105



Table 6.15: Comparison of F-MERS with existing FL-based ERS.

Reference Dataset Physiological Signal CM1 Tool Algorithm Avg.
Accuracy

Modality Validation CC2 S3

Nandi et al.[36] DEAP [233] EDA+RB FFNN TFF FedAvg 81.92% (VA) Bi-Modal SID4 × ✓

Tara Hassani [100] CASE[66] GSR CNN TFF FedAvg 79% (V),
68% (A)

Single SD4 × ×

Agrawal et al.[149] DEAP [233][72] EEG 2D-CNN TFF FedAvg
66.99% (V),
70.10% (A),
72.22% (D)

Single SD4 × ×

Proposed F-MERS
DEAP [233] EEG+GSR+

RESP MLP TFF FedAvg

89.02% (V),
86.50% (A),
84.02% (D)

Multi-
Modal

SID4 ✓ ✓

DREAMER [135] EEG+ECG
79.02% (V),
74.33% (A),
72.24% (D)

AMIGOS [125] EEG+ECG+
GSR

80.10% (V),
87.90% (A),
81.06% (D)

Proposed F-MERS
DEAP [233] EEG+GSR+

RESP MLP TFF FedAvg

86.20% (V),
88.10% (A),
86.52% (D)

Multi-
Modal

SD5 ✓ ✓

DREAMER [135] EEG+ECG
78.10% (V),
74.66% (A),
73.43% (D)

AMIGOS [125] EEG+ECG+
GSR

80.98% (V),
86.80% (A),
83.06% (D)

1Classification Model (CM), 2Communication Computation (CC), 3Scalability (S)
4Subject Independent (SID), 5Subject Dependent (SD)

6.3 Summary

The proposed novel FL-based Multi-modal Emotion Recognition System (F-MERS)

architecture successfully and accurately classify human emotions while protecting

sensitive physiological information. It improves prior work in emotion recognition

by generating a federated environment using federated averaging (FedAvg) at the

server. The training and classification are performed at the client’s end to protect

data privacy from data breaches and sensitive information scenarios by not sharing

the complete raw data (available at the clients’ end) with other entities and the global

server. The contributions of proposed F-MERS architecture are prominently evident

from the results stating that the multi-modal F-MERS architecture outperforms single

modalities, including EEG, ECG, GSR, and RESP.

The three datasets (AMIGOS [125], DEAP [233] and DREAMER [135]) validate

the results for different iterations and varying rounds, concluding the model to be

robust, scalable, and performs accurately. It disagrees with the prior works on

emotion recognition in that they have not considered the privacy concerns for the

user’s physiological data. This chapter concludes that emotion recognition with a

single modality is less accurate than multi-modal physiological signal data. Hence,
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the proposed FL-enabled multi-modal emotion recognition system can assist in better

personalized emotional care with the security of personal data privacy while dealing

with emotional distress.

This chapter is based on the following work:

• J3: Neha Gahlan, and Divyashikha Sethia. ”Federated learning inspired privacy

sensitive emotion recognition based on multi-modal physiological sensors.”

Cluster Computing (2023): 1-23. (SCIE, Impact Factor: 4.4, Publisher:

Springer). Doi: https://doi.org/10.1007/s10586-023-04133-4.
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Chapter 7

Attention for Variation Data

Heterogeneity in multi-modal ERS

Combining multiple physiological signals in a multi-modal emotion recognition

architecture results in Variation Data Heterogeneity (VDH) due to the distinct

characteristics and variations of each signal. The existing works of FL for ERS did not

address this data heterogeneity issue. The following chapter discusses addressing and

reducing this issue of VDH in detail.

This chapter introduces a unique novel architecture Attention-based Federated

Learning for Emotion recognition using Multi-modal Physiological data (AFLEMP)

to create a decentralized environment by creating a client end (with subjects’ multi-

modal physiological signal data) and a server end for aggregating the updates. It runs

the local model update at the client end and then sends the model updates (gradients)

to the central server for averaging them. The proposed AFLEMP architecture resolves

the challenge of VDH arising from variations in multi-modal physiological signal

data at the client’s end by incorporating an attention mechanism at the client’s end.

An attention mechanism is useful in this context as it selectively focuses on the most

essential or relevant features from each signal, reducing the impact of VDH at the client

end. The attention mechanism ensures that the local training model (at the client end)

gives more weight to the essential features from the multi-modal signal data, thereby

sending weights of only those essential features (after training at the client end) to the

server. Hence, it reduces the communication overhead between the client and server

as it only sends the weights from essential features rather than the weights from all the
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features. The proposed AFLEMP integrates three different attention mechanisms with

an Artificial Neural Network (ANN) at the client end and evaluates them using two

different datasets.

Previous literature of FL for emotion classification using physiological signals have

used only the Valence and Arousal dimensions of the emotion model (2D-VA model

of emotion), which do not cover a wide spectrum of emotions, as described earlier

in Chapter 2, subsection 2.2.1. To fill this research gap, the proposed AFLEMP

integrates Dominance along with Arousal and Valence (from the 3D-VAD model of

emotion) together and performs binary and (Valence, Arousal, Dominance in low/high

class) octal classification (Valence-Arousal-Dominance in eight emotion classes) of

emotions.

Following are the main contributions of this chapter:

1. Proposal of AFLEMP architecture combining the physiological signals: It

combines EEG, GSR, and ECG using Feature-level Fusion (Multi-modality). It

utilizes an ANN classifier as a base model for performing binary (using Valence,

Arousal and Dominance individually) and octal classification (using Valence-

Arousal-Dominance together) of emotions using a 3D-VAD model of emotions

at the client end. AFLEMP integrates three different attention mechanisms with

ANN: (a) Generalized Attention, (b) Self-Attention, and (c) Transformer, to

reduce the VDH at the client end.

2. Performance evaluation of proposed AFLEMP architecture: It validates the two

benchmark datasets: AMIGOS [125] and DREAMER [135] using Leave-one-

out cross validation (LOOCV) technique (Validation). The proposed AFLEMP

architecture evaluates two classification scenarios: binary classification, where

emotions are categorized into two distinct classes (e.g., high and low Valence),

and octal classification, which expands the categorization into eight emotional

states. This dual approach allows AFLEMP to demonstrate its effectiveness,

providing insights into its performance for both simpler and more diverse

emotions. The inclusion of octal classification (VAD together) highlights the

ability of the proposed AFLEMP to handle more diverse emotions. It provides

the scalability (in terms of rounds and iterations) and reports the communication
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computation (in terms of training and aggregation times) for the proposed

AFLEMP architecture.

7.1 Variation Data Heterogeneity (VDH)

There is a challenge in combining multi-modal physiological data for Emotion

Recognition Systems (ERS) known as Variation Data Heterogeneity (VDH). This issue

arises due to differences in the intrinsic characteristics of each physiological signal

(such as EEG, ECG, and GSR) captured from different wearable sensors. Subjects

exhibit variations in their physiological responses during emotion elicitation, and these

differences lead to data heterogeneity, making it difficult to integrate and analyze

such diverse data sources effectively. Equation 7.1 presents the fused feature vector

(denoted as F) input consisting of multi-modal physiological data (EEG, ECG, GSR).

This equation presents the VDH arising from combining the EEG, ECG, and GSR

signal data.

F = [FEEG,FECG,FGSR] (7.1)

The proposed AFLEMP architecture utilizes attention mechanisms to dynamically

weigh the contribution of each physiological signal at the client end. The attention

mechanisms assign weights to the subjects and sensor modalities based on relevance

and quality. Equation 7.2 presents the computation of the attention weights as follows:

α = AttentionTrans(F,θ) (7.2)
w = fθ (F,α) (7.3)

Where, the attention mechanism (AttentionTrans) computes attention weights (α) based

on the input data (F) and the model parameters (θ ). The local model is represented by

fθ . Equation 7.3 gives the computation of weights (w) by the local model fθ , from the

input data F, and the attention weights α (computed from Equation 7.2).
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Table 7.1: Brief description of datasets for AFLEMP.

Description/Dataset AMIGOS [125] DREAMER [135]
No. of subjects 40 23 (14 male, 9 female)
Physiological Signals EEG, ECG, GSR EEG, ECG

Video Content 16 short videos,
4 long videos 18 videos

Video Duration 57-155 seconds,
14-15 minutes 65 - 393 seconds

Label Matrix 16 x 3 18 x 3
Emotion Dimensions Arousal, Valence, Dominance
Emotion Assessment SAM (Self Assessment Manikins)
EEG electrodes 14 14
ECG electrodes 2 2
GSR electrodes 1 -
RESP electrodes - -

7.2 Experimental Methodology

The proposed AFLEMP architecture utilize the three emotion dimensions: Valence,

Arousal and Dominance from the Mehrabian and Russell’s 3D-VAD model of emotions

to classify the emotions [33, 127]. It performs binary classification for low/high

Arousal, Valence and Dominance, and octal classification for eight different emotion

classes using VAD (discussed later in detail in Subsection 7.2.1.3).

7.2.1 Data Processing

1. Datasets Description

The proposed AFLEMP architecture validates the emotion benchmark datasets

among the others, as they consist of multi-modal physiological data: AMI-

GOS [125] and DREAMER [135]. Detailed descriptions of all the datasets

with their data processing, including data clipping and labelling, are given in

section 3.9.1. Table 7.1 gives a brief description of all the datasets.

2. Creation of Emotion Classification Labels: The proposed AFLEMP architec-

ture utilizes a dimensional emotion model (3D-VAD). For emotion evaluation, a

threshold of 4.5 was applied for the AMIGOS dataset and a threshold of 3 for

the DREAMER dataset. Based on these dimensions, two types of classification

labels are outlined below (as detailed earlier in Chapter 2, subsection 2.2.1):

(a) Binary Classification: In this case, emotions are grouped into two
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Table 7.2: Mapping of emotions using 3D-VAD for AFLEMP.

Valence Arousal Dominance Emotions
Low Low Low Sorrow
Low Low High Disgust
Low High Low Fear
Low High High Anger
High Low Low Happiness
High Low High Calm
High High Low Surprise
High High High Excitement

categories, ”low” or ”high,” depending on whether the values of Valence,

arousal, or dominance are below or above the threshold [172]. The

classification labels obtained here are Low Valence (LV) / High Valence

(HV), Low Arousal (LA) / High Arousal (HA), and Low Dominance (LD)

/ High Dominance (HD).

(b) Octal Classification: In this case, the combination of all possible ”low”

and ”high” values across the three dimensions results in eight different

emotions, providing a more nuanced classification [172]. The classification

labels obtained here for Valence-Arousal-Dominance (VAD) are HVHAHD

/ HVHALD / HVLAHD / HVLALD / LVHAHD / LVHALD / LVLAHD /

LVLALD. Table 7.2 gives the mapping for these class labels into emotions.

3. Feature Extraction: After pre-processing the EEG, ECG and GSR signals from

the datasets, an overlapping sliding window of 2 seconds with 50% overlap

segments the signals [135]. Hence, the resulting segments will overlap by 1

second. Overlapping windows facilitate more reliable statistical estimation by

increasing the number of data points used for calculations [182]. It reduces the

risk of information loss at the boundaries of individual windows, as important

signal characteristics that span adjacent windows are captured by overlapping

regions [86]. Overlapping windows identify essential physiological phenomena,

such as peaks in the case of ECG signals, and study their characteristics. After

segmenting the signal, we extract a specific set of features, i.e. 219 features from

the AMIGOS [125] dataset and 208 features from the DREAMER [135] dataset

given in Table 7.3 and detailed in section 2.3.

4. Feature Fusion: The proposed AFLEMP architecture combines the features
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Table 7.3: Extracted features from ECG, EEG, and GSR signals for AFLEMP.

Physiological
Signal Domain Features

EEG
(196 features)

Time
(6 x 14)

Mean, Variance, Standard Deviation,
Hjorth Mobility, Activity, Complexity

Frequency
(2 x 4 x 14)

Power Spectral Density, Band Power
(alpha, beta, theta, delta)

ECG
(12 features)

Time
(5 x 2) SDNN, RMSSD, SDSD, HRV, TINN

Frequency
(1 x 2) Power Spectral Density

GSR
(11 features)

Time
(2 x 5)

Skin Conductance Level (SCL) ,
Skin Conductance Resistance (SCR)

Frequency
(1 x 1 ) Power Spectral Density

extracted from the physiological signals data (EEG, ECG and GSR) via the

Feature-Level Fusion (FLF) method. This process extracts features individually

from each signal and then concatenates them together as a single vector. It

preserves all the information from each modality without losing any essential

features. The concatenation is expressed mathematically in Equations 7.4 and

7.5.
FA = f (196)

eeg + f (12)
ecg + f (11)

gsr = f (219)
eeg+ecg+gsr (7.4)

FD = f (196)
eeg + f (12)

ecg = f (208)
eeg+ecg (7.5)

Where feeg, fecg and fgsr presents the number of features of EEG, ECG and GSR

signals, respectively. FA gives concatenated feature vector for the AMIGOS [125]

dataset and FD gives for the DREAMER [135] dataset. After concatenating the

feature vectors, the fused feature vector consists of many features, i.e., 219 for

AMIGOS [125] and 208 for DREAMER [135].

7.2.2 Centralized ANN with Attention

The centralized environment uses the global dataset (data from all subjects) as input

to the ANN integrated with attention mechanisms. This environment is created by

splitting the global data into training and testing sets of 80% and 20%, respectively.

In a centralized environment, clients upload their local datasets to a trusted central

server, while in a decentralized, federated environment, clients maintain their private

data locally. ANN is the base classifier for both the centralized environment and
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Table 7.4: Model parameters of AFLEMP architecture at the client end.

Layers Output
Shape

Activation
Function Regularization Hyperparameters

Input (None, 219/208) None None None
Attention Mechanism
(Generalized,
Self-attention,
Transformer)

(None, 219/208) Softmax None

Attention Heads=6
(Transformer),
Use bias=False,
Attention dropout=0.2

Dense (None, 128) ReLU L2 (0.01) Dropout=0.2
Dense (None, 64) ReLU L2 (0.01) Dropout=0.2

Output (None, 1) Sigmoid (Binary)
Softmax (Octal) None None

Optimizer = SGD, Learning Rate =0.001

decentralized FL. ANNs are a flexible and powerful deep-learning network to easily

handle large datasets and achieve state-of-the-art performance [30, 150, 191]. Table 7.4

presents the parameters at each layer for the ANN model embedded with the attention

mechanism layers (including generalized attention, self-attention, and Transformer).

7.2.3 Attention Mechanisms

The proposed emotion recognition architecture implements three different attention

mechanisms, explained in detail as follows:

1. Generalized Attention: The generalized attention mechanism allows the model

to selectively focus on different modalities within the input data, improving its

ability to capture relevant information and make accurate predictions [217]. For

the proposed AFLEMP architecture, the input data is a fused feature vector of

the EEG, ECG and GSR features. The Equation 7.6 presents computation from a

weighted sum of the values, where the similarity between the query and the keys

determines the weights. The weighted output is fed into the subsequent layer of

the ANN model.

AttentionGen(Q,K,V ) = softmax(Q ·K)V (7.6)

Here, the Softmax function in the attention layer computes the attention weights,

Q ·K is the dot product between the query vector (Q) and the matrix of key vectors

(K). V is the matrix of value vectors.
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2. Self-Attention: The self-attention mechanism is a method that empowers the

model to selectively concentrate on different portions of the input sequence,

thereby enhancing the precision of predictions [41, 68]. It has shown excellent

results on the emotion recognition system based on physiological data [141, 266].

The single-head self-attention mechanism would compute a weighted sum of the

input fused features based on their relevance to emotions. The weights are

learned during training and depend on the input data. The generated weighted

input sequence is then passed to the next layer of the ANN model, where the

features are transformed and used for classification. The self-attention function

is expressed mathematically as in Equation 7.7:

AttentionSel f (Q,K,V ) = softmax(
QKt
√

dk
)V (7.7)

Here, QKt is the dot product between the query vector Q and the transposed

matrix of key vectors Kt .
√

dk is a scaling factor to prevent the dot product from

growing too large. dk is the dimensionality of the key vectors, which is typically

smaller than the dimensionality of the query and value vectors.

3. Transformer: The transformer attention is a robust mechanism to learn

the strong relationship between different features in a fused feature vector

(EEG+ECG+GSR). It benefits emotion recognition, allowing the model to

learn which features are most important for classifying emotions [271]. Its

application in a federated environment reduces the data transfer requirements

between the client and server. By enabling clients to focus on essential input data

segments selectively, it minimizes the amount of data exchange. It reduces the

communication overhead and makes the training process more efficient.

The proposed AFLEMP architecture implements a transformer by incorporating

multi-head self-attention (heads = 6), followed by a normalization layer. The

output of this mechanism is fed into the ANN model for further classification.

The mathematical computations is defined below in Equations 7.8, 7.9 and 7.10:

AttentionTrans = MultiHead(Q,K,V ) (7.8)
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Figure 7.1: Architecture of the ANN with attention layers for AFLEMP.

MultiHead(Q,K,V ) = Concat(head1, ...,head6)Xo (7.9)

where, headw = AttentionSel f (Q,K,V ) (7.10)

Equation 7.8 introduces multi-head attention, where six attention heads

concurrently process the data using Equation 7.9 and 7.10, providing diverse

perspectives. The resulting outputs are concatenated and transformed, capturing

important patterns in the input. Equation 7.10 clarifies that each attention head

operates using the same underlying attention mechanism, contributing distinct

insights. Figure 7.1 illustrates the diagrammatic flow of the proposed AFLEMP

architecture with attention layers (different mechanisms).

7.2.4 Architecture of AFLEMP

The proposed AFLEMP architecture aims to advance the field of emotion recognition

by becoming a robust, privacy-preserving FL process that can effectively learn from

diverse client data sets to create a more accurate and reliable global model for emotion

recognition. The primary aim is to develop an FL process that effectively leverages the

heterogeneous data distribution present in individual clients to build a more accurate

model for emotion recognition using multi-modal physiological signal data. The

proposed AFLEMP architecture adopts Horizontal Federated Learning (HFL), as client

data distribution has similar features but differs in sample space. It is a promising

approach to FL that leverages larger datasets and has the potential for increased model

accuracy and generalization [270].
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Figure 7.2: Complete workflow for AFLEMP architecture with AMIGOS [125].

1. AFLEMP

The proposed Attention-based Federated Learning for Emotion recognition using

the Multi-Modal Physiological data (AFLEMP) architecture is a coalesced

federated learning approach. It integrates different attention mechanisms

(Generalized attention, Self-attention, and Transformer) with an ANN to generate

weights and perform classification at the client end. It performs federated

averaging at the server to aggregate the local model’s weights from clients.

Figure 7.2 illustrates the complete architecture, showing every step, starting from

the initial data collection, data pre-processing, feature extraction and fusion,

federated environment creation and then the final classification at the client end.

2. Federated Environment Setup

The proposed AFLEMP architecture uses TFF [208] as an FL tool to create a

federated learning environment and uses Federated Averaging (FedAvg [136]) to

collect and aggregate client model updates. Equation 7.11 gives the computation

for the federated averaging at the server end. The algorithm for the FedAvg is

described in detail earlier in Chapter 6.

wg
t =

1
Ntotal

Ntotal

∑
i=1

wl
t,i (7.11)
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Table 7.5: Federated data distribution for all clients (C) with different subjects (S) for
AFLEMP.

AMIGOS (Subjects = 40)
Clients = 5
Subjects = 10

Clients = 10
Subjects = 21

Clients = 15
Subjects = 33

Clients = 20
Subjects = 40

C1 = S 1(1),
C2 = S 2-3(2),
C3 = S 4-5(2),
C4 = S 6-7(2),
C5 = S 8-10(3)

C1 = S 1(1), C2 = S 2-3(2),
C3 = S 4-5(2), C4 = S 6-7(2),
C5 = S 8-9(2), C6 = S 10-11(2),
C7 = S 12-13(2), C8 = S 14-15(2),
C9 = S 16-18(3), C10=S 19-21(3)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3-4(2), C4 = S 5-6(2),
C5 = S 7-8(2), C6 = S 9-10(2),
C7 = S 11-12(2), C8 = S 13-14(2),
C9 = S 15-16(2), C10 = S 17-18(2),
C11 = S 19-20(2), C12 = S 21-23(3),
C13 = S 24-26(3), C14 = S 27-29(3),
C15 = S 30-33(4)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4(1),
C5 = S 5-6(2), C6 = S 7-8(2),
C7 = S 9-10(2), C8 = S 11-12(2),
C9 = S 13-14(2), C10 = S 15-16(2),
C11 = S 17-18(2), C12 = S 19-20(2),
C13 = S 21-22(2), C14 = S 23-24(2),
C15 = S 25-26(2), C16 = S 27-28(2),
C17 = S 29-30(2), C18 = S 31-33(3),
C19 = S 34-36(3), C20 = S 37-40(4)

DREAMER (Subjects = 23)
Clients = 3
Subjects = 4

Clients = 5
Subjects = 8

Clients = 7
Subjects = 13

Clients = 10
Subjects = 23

C1 = S 1(1),
C2 = S 2(1),
C3 = S 3-4(2)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3-4(2), C4 = S 5-6(2),
C5 = S 7-8(2)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4-5(2),
C5 = S 6-7(2), C6 = S 8-10(3),
C7 = S 11-13(3)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4-5(2),
C5 = S 6-7(2), C6 = S 8-9(2),
C7 = S 10-12(3), C8 = S 13-15(3),
C9 = S 16-19(4), C10 = S 20-23(4)

Here wg
t is the aggregated weight at the global server in time t, wl

t,i are the weights

received from all local models in time t, and Ntotal is the total number of the local

model participating for aggregation. The federated environment setup follows

these steps: (1) Creation of Local Model (client end); (2) Creation of Global

Model (server end); (3) Local Model Update (client end).

3. Federated Data Partitioning

The proposed federated architecture adopts HFL, as all clients have the same

features but differ in sample space (no. of subjects). Both the AMIGOS [125]

and DREAMER [135] datasets are divided into four client divisions (C= 5, 10, 15,

20 /C=3, 5, 7, 10) as shown in Table 7.5, and the experiments ran for three rounds

of aggregation (R= 50, 100, 200). One-way ANOVA testing is performed (with a

significance value of 0.05 [199]) using IBM SPSS Statistics to test whether there

are significant differences between the different client distributions. The p-value

for AMIGOS [125] dataset is 0.045 and for DREAMER [135] is 0.037. Both are

less than 0.05, implying significant differences between client distributions.

7.2.5 Experimental Setup

The tests and trials for the proposed AFLEMP architecture use Python 3.8 on a MacBook

Air with a 1.6 GHz dual-core Intel Core i5 and Google Colab’s Pro plus NVIDIA V100
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Table 7.6: Train and test set of clients for proposed AFLEMP for both the datasets.

AMIGOS [125]
No. of Clients C=5 C=10 C=15 C=20
Training/Testing Clients 4/1 9/1 14/1 19/1

DREAMER [135]
No. of Clients C=3 C=5 C=7 C=10
Training/Testing Clients 2/1 4/1 6/1 9/1

GPU, CUDA version 11.2. Models are generated using the TensorFlow (TF version-

2.6.0 ), TensorFlow Federated (TFF version-0.19.0) and Keras frameworks. During

each round of aggregation, clients were required to train 200 epochs locally, with a

batch size of 1024.

7.2.6 Evaluation Measures for AFLEMP

The following measures evaluate the proposed AFLEMP architecture (as detailed in

Section 5.6). Performance Measures: Binary (low/high classes) and Octal (eight

emotion classes) Classification Accuracy (Training Accuracy and Testing Accuracy),

Precision, Recall, and F1-Score. Scalability Measures: Training Time and Model

Accuracy with different client distributions and iteration rounds. Communication

Computation Measure: Averaging time for different client distribution and iteration

rounds, and Convergence Speed via Categorical Cross Entropy Loss.

7.2.7 Testing of the architecture

The proposed AFLEMP architecture utilizes a widely used Leave-one-out cross-

validation (LOOCV) strategy to test the federated architecture. This approach treats

each client as a test set once while using the rest of the clients for training [117, 154].

In each step of the LOOCV, from the C available clients, the samples of one client are

used as the test set, and the samples of the remaining C-1 clients are used as the training

set [125]. For instance, in the proposed federated learning architecture, when clients=5,

the architecture allocates 4 clients for training, leaving the remaining 1 for testing, and

this process iterates 5 times (Table 7.6 illustrates for all clients). The architecture

reports results based on the average values across all iterations and evaluates model

performance using metrics like accuracy, precision, recall, and the F1-score.
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Table 7.7: Training and testing accuracies for AFLEMP for different attention
mechanisms.

AMIGOS [125] (EEG+ECG+GSR)

Rounds=200,
Clients=20

Binary classification
(low/high classes)

Octal classification
(8 emotion classes)

Valence Arousal Dominance VAD
Attention
Mechanisms

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Without Attention 76.11% 75.34% 77.10% 78.21% 78.81% 77.45% 80.12% 79.84%
Generalized Attention 77.10% 76.11% 78.78% 77.43% 79.78% 78.67% 80.91% 80.21%
Self-Attention 78.95% 78.22% 79.44% 79.23% 79.88% 79.45% 81.56% 81.84%
Transformer 82.77% 82.22% 80.58% 81.11% 81.50% 81.10% 83.04% 83.04%

DREAMER [135] (EEG+ECG)

Rounds=200,
Clients=10

Binary classification
(low/high classes)

Octal classification
(8 emotion classes)

Valence Arousal Dominance VAD
Attention
Mechanisms

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Train
accuracy

Test
accuracy

Without Attention 70.10% 69.20% 69.70% 68.65% 71.65% 70.34% 73.88% 73.11%
Generalized Attention 72.11% 71.55% 71.20% 70.11% 72.11% 71.22% 74.10% 73.56%
Self-Attention 74.89% 73.55% 75.55% 74.45% 74.12% 73.78% 75.88% 75.65%
Transformer 77.21% 76.56% 77.11% 76.14% 76.11% 75.55% 78.55% 77.34%

7.3 Results and Discussion

In a federated environment, the local data stays at the client’s end, and the global

server does not have direct access. Consequently, emotion classification is carried out

locally solely on each client. This section presents the results of the proposed AFLEMP

architecture for classifying different emotion dimensions. The results are presented in

the following categorical way:

7.3.1 Accuracy comparison for proposed multi-modal AFLEMP

with different attention mechanisms

The proposed AFLEMP architecture experiments with three different attention

mechanisms using two datasets, AMIGOS [125] and DREAMER [135], for which

Table 7.7 presents the training and testing accuracies with 200 rounds of iterations.

The following insights are derived from the tabular results.

1. Attention Mechanisms: Table 7.7 clearly shows that Transformer is performing

best among the other attention mechanisms with testing accuracy of 83.04%

on AMIGOS [125] and 77.34% on DREAMER [135] for octal classification

(VAD), and 81.40% on AMIGOS [125] and 75.95% on DREAMER [135] for

binary classification (average of valence, arousal, dominance).
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Figure 7.3: Testing accuracies for AFLEMP for Valence, Arousal, Dominance, and
3D-VAD.

2. Emotion dimensions: Table 7.7 gives the results for all the attention mechanisms

with both binary (Valence, Arousal, Dominance individually) and octal (Valence-

Arousal-Dominance together) classifications. It clearly shows that the octal

classification with eight emotion classes (from VAD) is performing better than

the binary classification with low and high classes (from valence, arousal,

dominance individually) for each of the attention mechanisms. Figure 7.3

represents the testing accuracy for octal (VAD) and binary (valence, arousal

and dominance) classifications for the Transformer with different rounds of

iterations and maximum no. of clients (C=20 for AMIGOS [125] and C=10

for DREAMER [135]). It clearly illustrates that the proposed multi-modal

AFLEMP architecture is performing better classification with VAD than binary

classifications in all three rounds of iterations (R=50, 100 and 200).

3. Training and testing accuracies: The Training and Testing accuracies given

in Table 7.7 show a difference of 1-2%, reflecting that there is no overfitting

in the proposed AFLEMP architecture. Both the reported training and testing

accuracies show the transformer’s best performance with octal classification.

Figure 7.4 gives the testing accuracy curves with multiple iterations for multi-modal

physiological data. The following points are inferred from the graph results:

1. Iteration Rounds: The best results are obtained with 200 rounds of aggregation

for all the client distribution, and this result is consistent across all three attention

mechanisms and both datasets. It is the convergence point where the proposed

AFLEMP architecture performs best.
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Figure 7.4: Testing accuracies for the AFLEMP for 3D-VAD in different iterations
with different attention mechanisms.

Table 7.8: Evaluation measures for testing the AFLEMP (with Transformer) for 200
rounds.

Dataset ↓ Emotion Dimensions↓ Recall Precision F-1 Score Accuracy
Valence 0.804 0.820 0.811 0.822
Arousal 0.714 0.733 0.723 0.812
Dominance 0.850 0.780 0.815 0.811

AMIGOS
(EEG+ECG+GSR)

VAD 0.860 0.830 0.845 0.830
Valence 0.810 0.770 0.788 0.765
Arousal 0.735 0.765 0.746 0.761
Dominance 0.775 0.795 0.785 0.755

DREAMER
(EEG+ECG)

VAD 0.787 0.872 0.795 0.773

2. Client Distributions: There is a significant increment in testing accuracy

when Clients=5 to Clients=20 for AMIGOS [125] (nearly 12-15%) and when

Clients=3 to Clients=10 for DREAMER [135] (nearly 13-15%).

3. Attention Mechanisms: The highest testing accuracy is achieved with Trans-

former (i.e. 83.04% for AMIGOS [125] and 77.34% for DREAMER [135])

outperforming the other two attention mechanisms.

7.3.2 Other performance measures for proposed multi-modal

AFLEMP

7.3.2.1 Classification measures

The optimal values of evaluation measures, including Precision, Recall, F-1 score, and

Testing Accuracy, are shown in Table 7.8. It shows that evaluation measures other than

accuracy, i.e., precision, recall and f1-score is also giving optimal values for both octal

122



and binary classifications for the proposed AFLEMP architecture using both datasets

with the best-performing attention mechanism Transformer.

7.3.2.2 Scalability measures

1. Accuracy: For proving the proposed AFLEMP architecture to be scalable,

its accuracy is computed for each round of iteration and with different client

distributions as shown in Figure 7.4. The figure shows the testing accuracy for

octal classification (VAD) with all three attention mechanisms for both datasets

with Rounds=50, 100, and 200, and Client distributions, C=5, 10, 15, 20 for

AMIGOS [125], and C=3, 5, 7, 10 for DREAMER [135].

2. Training Time: The training time contributes to the communication efficiency of

the proposed AFLEMP architecture with different rounds of iterations and client

distributions providing scalability. Table 7.9 presents the training time spent

on the client end for running 200 local epochs for different client distributions

(C=5, 10, 15 and 20 / C=3, 5, 7 and 10) and iterations of rounds (R=50, 100

and 200). The proposed AFLEMP architecture observes the best results when

R=200, with a training time of 266.652 seconds for AMIGOS (with C=20) and

245.502 seconds for DREAMER (with C=10).

7.3.2.3 Communication Computation Measures

1. Averaging Time: Averaging time is majorly determining the impact on

communication efficiency of the proposed AFLEMP architecture in terms of

different rounds of iterations and client distributions. Table 7.9 presents the

values in seconds, indicating the incremental change in averaging time resulting

from variations in data size (C=5, 10, 15 and 20 / C=3, 5, 7 and 10) and the

number of rounds (R=50, 100, and 200). The proposed AFLEMP architecture

achieves the best results when R=200 with averaging time of 100.537 seconds

for AMIGOS [125] (with Client =20) and 99.367 seconds for DREAMER [135]

(with Client=10).
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Table 7.9: Training and averaging time in seconds for the AFLEMP (with
Transformer).

Epochs=200 AMIGOS [125] DREAMER [135]
Rounds=50 Client=5 Client=10 Client=15 Client=20 Client=3 Client=5 Client=7 Client=10
Training Time
(in seconds)
(Client End)

95.110 98.324 115.571 130.231 90.345 107.205 140.452 120.121

Averaging Time
(in seconds)
(Server End)

55.103 65.123 74.142 88.135 65.571 76.383 80.302 91.472

Rounds=100
Training Time
(in seconds)
(Client End)

117.231 121.764 130.554 153.232 100.561 115.271 130.701 147.678

Averaging Time
(in seconds)
(Server End)

62.123 70.124 80.142 92.633 68.127 75.642 78.577 92.566

Rounds=200
Training Time
(in seconds)
(Client End)

150.221 173.763 200.503 266.652 150.213 173.121 193.201 245.502

Averaging Time
(in seconds)
(Server End)

71.578 75.478 87.123 100.537 71.343 80.880 86.367 99.367

Figure 7.5: Loss curves for the AFLEMP for AMIGOS [125] and DREAMER [135]
for 3D-VAD (with Transformer).

2. Convergence Speed: To measure the convergence speed, categorical cross-

entropy loss is computed, as show in Figure 7.5. It illustrates the categorical cross-

entropy loss versus epoch curves for the AMIGOS [125] and DREAMER [135]
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Table 7.10: Performance comparison with existing FL works for ERS with physiological
signals.

FL for Emotion Recognition

Reference Dataset
Physiological
Signal

Classification
Model

Modality
FL
Methods

ED1 Testing Accuracy S3 CC2

Nandi et al. [36] DEAP [233] EDA, RESP FFNN Bi-Modal FedAvg 2D 81.92% (VA) ✓ ×
Tara Hassani [100] CASE [134] GSR CNN Single FedAvg 2D 79% (VA) × ×
Agrawal et al. [? ] DEAP [233] EEG 2D-CNN Single FedAvg 3D 69.77% (avg. V,A,D) × ×
Proposed (FL)
AFLEMP

AMIGOS [125]
DREAMER [135]

EEG+ECG+GSR
EEG+ECG

ANN+
Transformer

Multi-Modal FedAvg 3D
83.04% (VAD)
77.34% (VAD)

✓ ✓

1Emotion Dimension (ED), 2Communication Computation (CC), 3Scalability (S)

datasets for the proposed AFLEMP architecture. It reveals that the train

and test sets follow a similar declining path for the eight emotion classes

(VAD). The declining loss curves clearly indicate that the loss generated by the

proposed AFLEMP architecture decreases progressively as the model improves

its performance. This reduction in loss corresponds to the increase in accuracy

over time, demonstrating that the model is learning and adapting effectively. By

the time the training reaches 200 epochs, both the loss and accuracy stabilize,

suggesting that the model has converged to an optimal solution.

7.3.3 Performance comparison of proposed multi-modal FL (AFLEMP)

with existing FL works

Table 7.10 presents the comparative analysis between the proposed privacy-preserving

federated AFLEMP architecture and other existing methods discussed in the literature

utilizing FL for emotion recognition. It demonstrates that the proposed AFLEMP

architecture outperforms the previous FL works for emotion recognition, achieving

testing accuracy of 83.04% and 77.34% for AMIGOS [125] and DREAMER [135],

respectively. Additionally, the proposed architecture also computes the scalability and

communication computation, which is missing in the previous studies for FL.

7.4 Summary

The proposed novel Attention-based Federated Learning for Emotion recognition

using Multi-Modal Physiological data (AFLEMP) architecture is able to accurately
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classify broader human emotions (using VAD) in a decentralized, federated learning

environment. It integrates three attention mechanisms using an ANN model to train and

classify different emotions at the client’s end. The attention mechanism calculates the

weights for essential features from multi-modal physiological data at each client end and

sends the computed gradients to the global server. Embedding the attention mechanism

in the proposed federated architecture reduces the amount of data transfer from client to

server in a federated environment, improving communication efficiency and reducing

the Variation Data Heterogeneity (VDH) in multi-modal physiological data. The

result outcomes of the proposed AFLEMP architecture evidenced the reduction of

data heterogeneity through improved communication, making the architecture robust.

The proposed AFLEMP architecture validates the three attention mechanisms,

and their results prove that the Transformer performs best. It evaluates two emotion

datasets, AMIGOS [125] and DREAMER [135], for multi-modal physiological signals

- EEG, ECG, and GSR. Varying iterations evaluate the proposed AFLEMP architecture,

including aggregation rounds (R=50, 100, and 200) and client distributions (C=5, 10,

15, 20/ C=3, 5, 7, 10). The consistency of the results for all clients suggests that the

architecture is adept at handling the challenge of data heterogeneity. The proposed

AFLEMP architecture is efficient (with manageable training and aggregation times)

and scalable, maintains the accuracy and robustness of the emotion recognition model

while preserving the privacy of the client’s sensitive data and improves the previous

federated learning approaches in emotion recognition.

This chapter is based on the following work:

• Neha Gahlan, and Divyashikha Sethia. ”AFLEMP: Attention-based Federated

Learning for Emotion recognition using Multi-modal Physiological data.”

Biomedical Signal Processing and Control 94 (2024): 106353. (SCIE, Impact

Factor: 5.1, Publisher: Elsevier). Doi: https://doi.org/10.1016/j.

bspc.2024.106353.
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Chapter 8

Scaled Weighted Federated Averaging

(SWFA) for Imbalanced Data

Heterogeneity in Multi-modal ERS

In a real-world federated environment, each client may consist of different amounts or

distributions of data, leading to an Imbalanced Data Heterogeneity (IDH), significantly

impacting model aggregation at the server end. This imbalance can arise due to

variations in the number of participants/clients, causing a disproportionate influence on

the global model server. Such imbalances hinder the performance and generalizability

of the ERS. However, existing FL works for ERS ignored this critical issue of IDH,

resulting in models that may not perform well across real-world populations. The

following chapter discusses this issue in greater detail, proposing a novel aggregation

algorithm to address and reduce IDH, thereby improving the robustness and fairness of

FL models for emotion recognition across distributed datasets.

This chapter introduces a novel Scaled Weighted Federated Averaging (SWFA)

algorithm for aggregation at the server end. It is embedded (at the server end)

in the proposed attention-based federated learning emotion recognition AFLEMP

architecture using multi-modal physiological signal data (at the client end). The

previous literature in FL introduced the FedAvg [51], FedPer [170], FedBoost [114]

algorithms to average the weights at the server end received from each client [51, 283].

However, these algorithms cannot address the imbalances in the data distributed at

the client end. Recent research proposed a Dynamic Weighted Federated Averaging
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Figure 8.1: Imbalanced Data Heterogeneity (IDH) in a federated environment.

(DWFA) algorithm to address the imbalanced training and testing data at the client

end [110]. However, it ignores the computational overheads, is susceptible to

fluctuations in client performance, and misses client scalability, opening the way for

better averaging.

Following are the main contributions of this chapter:

• Proposal of SWFA at server end in AFLEMP architecture: It implements

the SWFA algorithm in AFLEMP at the server end for aggregation with a

transformer at the client end for emotion recognition. SWFA aggregates the

gradients computed from the multi-modal EEG, ECG, and GSR physiological

signal data (Multi-Modality).

• Performance evaluation of proposed SWFA with AFLEMP architecture: It

validates the two benchmark datasets: AMIGOS [125] and DREAMER [135]

using Leave-one-out cross validation (LOOCV) technique (Validation). It

provides scalability (in terms of rounds and iterations) and reports the

communication computation (in terms of training and aggregation times) for

the proposed SWFA with AFLEMP architecture. It provides a performance

comparison of the proposed SWFA with other aggregation algorithms of FL

(with AFLEMP for emotion recognition).

8.1 Imbalanced Data Heterogeneity (IDH)

Existing aggregation algorithms of federated learning fail to address the issue of IDH

occurring at the client’s end. Clients have different amounts of data available for
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training in a real-world scenario, which leads to IDH. For example, some clients may

have a small amount of data, while others may have a large amount of data. The server

aggregates these heterogeneous updates from the clients, but the imbalance primarily

arises from the diversity in each client’s data. Figure 8.1 gives an illustration of IDH

in a federated environment.

Let there be an FL environment with clients denoted as C =C1,C2, ...Ci. Each client

contains data from a different number of subjects, denoted as S = S1,S2,S3....,Sk. The

fused feature vector input consists of multi-modal physiological data (EEG, ECG, GSR)

denoted as X (X = [EEG+ECG+GSR]). Equation 8.1 presents mathematically the

IDH in different clients. For example, Client 1 (C1) consists of data from subjects S1

and S2, whereas some other random client (C4), consists of data from subjects S11 to

S17 and so on.

∥C1
S1...S2

∥ , ∥C2
S3...S5

∥ , ∥C3
S6...S10

∥ , ∥C4
S11...S17

∥ .... , ∥Ci
S18...Sk

∥ (8.1)

8.2 Experimental Methodology

8.2.1 Scaled Weighted Federated Averaging (SWFA)

In the standard FedAvg algorithm, the server aggregates local model updates from

clients by computing a weighted average. The weight for each client is typically

proportional to the size of its local dataset. It works well when the data is homogeneous

and balanced across clients, but several issues arise when clients have imbalanced data

distributions. In such a scenario of imbalanced data distributions, clients with larger

datasets may dominate the model update, leading to a global model biased toward those

clients.

The proposed Scaled Weighted Federated Averaging (SWFA) extends the standard

FedAvg algorithm to handle the challenge of imbalanced data across clients in a

federated environment. It focuses on improving the aggregation process at the server

end by scaling and weighting client updates. SWFA introduces an additional scaling

mechanism to account for these imbalances. The idea is to ensure that the aggregation

process gives appropriate importance to each client’s model update, regardless of data
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distribution. It involves scaling the client updates, in which each client’s contribution is

scaled based on the diversity/amount of the data it holds. It helps mitigate the impact of

clients with large datasets. Equation 8.8 gives the computation for the scaled weighted

federated averaging.

wg
t =

∑
N
i=1 wi ·wl

t,i

∑
N
i=1 wi

(8.2)

Here, wg
t is the aggregated weight at the global server in time t, and wi is the weight

assigned to client i, serving as the scaling factor. wl
t,i are the weights received from all

client’s local models in time t, and N is the total number of the local models participating

in aggregation. Algorithm 2 provides the algorithm for the proposed SWFA as below:

Algorithm 2 Scaled Weighted Federated Averaging (SWFA)
1: Input: Client weights wi for i = 1,2, . . . ,N
2: Output: Scaled weighted average wg

i
3: Initialize global model weights wg = 0
4: Initialize total weight sum S = 0
5: for each client i from 1 to N do
6: Update global model weights:

wg
i ← wg

i +wi ·wl
t,i (8.3)

7: Update total weight sum:
S← S+wi (8.4)

8: end for
9: Compute scaled weighted average for each parameter i:

wg
i =

∑
N
i=1 wi ·wl

t,i

∑
N
i=1 wi

(8.5)

10: Return: Scaled weighted average wg
i

Key elements of the algorithm are:

• Scaling weights wi: This is the scaling factor assigned to each client based on

the data amounts. These weights control the contribution of each client’s local

model update at the global server.

• Local model weights wl
t,i: These are the model weights that each client i calculates

after training on its local data.
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• Global model weights wg
i : This is the globally averaged model that is updated at

the server after aggregating the client models.

Explanation of the steps:

• Step 1: The algorithm takes as input the client weights wi for each client i (where

i = 1,2, . . . ,N). These weights determine the importance of each client in the

aggregation process.

• Step 2: The algorithm outputs the scaled weighted average of model weights,

denoted as wg
i . This represents the new global model weights after federated

averaging.

• Step 3: The global model weights are initialized to zero:

wg = 0

This ensures that the aggregation starts from a neutral state.

• Step 4: A variable S is initialized to zero:

S = 0

This variable will store the sum of client weights for normalization.

• Step 5: The algorithm iterates over all clients (1 to N) to aggregate their

contributions.

• Step 6: For each client i, the local model weight wl
t,i (trained on local data) is

added to the global weight, scaled by the client’s weight wi:

wg
i ← wg

i +wi ·wl
t,i

This ensures that each client contributes proportionally based on their assigned

weight wi.

• Step 7: The total sum of client weights is updated as follows:

S← S+wi
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• Step 8: The loop completes once all client updates have been aggregated.

• Step 9: The final global model weights are computed by normalizing the weighted

sum:

wg
i =

∑
N
i=1 wi ·wl

t,i

∑
N
i=1 wi

This ensures that the global model update reflects a true weighted average rather

than a simple sum.

• Step 10: The algorithm returns the scaled weighted average wg
i , which serves as

the new global model update for the next training round.

SWFA helps the global model aggregator converge faster at the server end, as it balances

client contributions more effectively, avoiding instability caused by data imbalances.

Clients with disproportionately large or small datasets are appropriately scaled so that

the global aggregator is not biased toward any single client.

8.2.2 AFLEMP with SWFA

The proposed multi-modal AFLEMP with SWFA architecture uses the Transformer

with ANN at the client end (to reduce the VDH) and SWFA at the server end (to reduce

the IDH). It classifies emotions using the three emotion dimensions: Valence, Arousal

and Dominance from Mehrabian and Russell’s 3D-VAD model of emotions [33, 127].

It performs binary classification for low/high Arousal, Valence and Dominance, and

octal classification for eight different emotion classes using VAD. Figure 8.2 gives the

architecture of AFLEMP with SWFA, and it is detailed in the following subsections.

8.2.2.1 Data Description

To evaluate the proposed AFLEMP with SWFA architecture, we perform compre-

hensive experiments on the publicly available multi-modal physiological datasets

AMIGOS [125] and DREAMER [135]. Brief details of the two datasets are summarized

in Table 8.1 and detailed information about the subjects, collection scenario, and

physiological sensor devices and their pre-processing is given in section 3.9.1.
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Figure 8.2: Architecture of proposed AFLEMP with proposed aggregation algorithm
SWFA.

Table 8.1: Brief description of datasets for AFLEMP with SWFA.

Description/Dataset AMIGOS [125] DREAMER [135]
No. of subjects 40 23 (14 male, 9 female)
Physiological Signals EEG, ECG, GSR EEG, ECG

Video Content 16 short videos,
4 long videos 18 videos

Video Duration 57-155 seconds,
14-15 minutes 65 - 393 seconds

Label Matrix 16 x 3 18 x 3
Emotion Dimensions Arousal, Valence, Dominance
Emotion Assessment SAM (Self Assessment Manikins)
EEG electrodes 14 14
ECG electrodes 2 2
GSR electrodes 1 -
RESP electrodes - -

• The proposed AFLEMP with SWFA architecture considers the experiment

involving 16 short videos from the AMIGOS [125] dataset, and 18 video stimuli

from the DREAMER [135] dataset.

• For emotion evaluation, a threshold of 4.5 (lower than 4.5 as low and higher than

4.5 as high) was applied for the AMIGOS [125] dataset and a threshold of 3

(lower than 3 as low and higher than 3 as high) for the DREAMER [135] dataset.

Based on these dimensions, the proposed AFLEMP with SWFA architecture uses

two types of classification labels as outlined below (detailed in earlier section 2.2.1):

1. Binary Classification: In this case, the classification labels obtained here are

Low Valence (LV) / High Valence (HV), Low Arousal (LA) / High Arousal (HA),
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Table 8.2: Extracted features from ECG, EEG and GSR signals for AFLEMP with
SWFA.

Physiological Signal Domain Features

EEG
(196 features)

Time
(6 x 14)

Mean, Variance, Standard Deviation,
Hjorth Parameters (Activity, Mobility, Complexity)

Frequency
(2 x 4 x 14) Power Spectral Density (PSD), Band Power

ECG
(12 features)

Time
(5 x 2) SDNN1, RMSSD2, HRV3, SDSD4, TINN5

Frequency
(1 x 2) Power Spectral Density (PSD)

GSR
(11 features)

Time
(2 x 5)

SCL (Skin Conductance Level)
SCR (Skin Conductance Resistance)

Frequency
(1 x 1 ) Power Spectral Density (PSD)

and Low Dominance (LD) / High Dominance (HD) [172].

2. Octal Classification: In this case, the classification labels obtained here for

Valence-Arousal-Dominance (VAD) are: HVHAHD / HVHALD / HVLAHD /

HVLALD / LVHAHD / LVHALD / LVLAHD / LVLALD [172].

8.2.2.2 Feature Extraction

For the proposed AFLEMP with SWFA architecture, we extract 219 features from

the AMIGOS [125] dataset and 208 from the DREAMER [135] dataset using an

overlapping sliding window of 2 seconds (with 50% overlap), as listed in Table 8.2,

(detailed in earlier section 2.3). The extracted features from the physiological

signals data (EEG, ECG, GSR) are then combined using the Feature-Level Fusion

(FLF) method as a concatenated feature vector. The concatenating is expressed

mathematically in Equations 8.6 and 8.7.

FA = f (196)
eeg + f (12)

ecg + f (11)
gsr = f (219)

eeg+ecg+gsr (8.6)

FD = f (196)
eeg + f (12)

ecg = f (208)
eeg+ecg (8.7)

Where, feeg, fecg and fgsr present the number of features of EEG, ECG and GSR

signals, respectively. FA stands for concatenated feature vector for the AMIGOS [125]

dataset and FD for the DREAMER [135] dataset.
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Table 8.3: Model parameters of the local model run at the client end in AFLEMP with
SWFA.

Layers Output
Shape

Activation
Function Regularization Hyperparameters

Input (None, 219/208) None None None

Attention Mechanism
(Transformer) (None, 219/208) Softmax None

Attention Heads=6,
Use bias=False,
Attention dropout=0.2

Dense (None, 128) ReLU L2 (0.01) Dropout=0.2
Dense (None, 64) ReLU L2 (0.01) Dropout=0.2

Output (None, 1) Sigmoid (Binary)
Softmax (Octal) None None

Optimizer = SGD, Learning Rate =0.001

8.2.2.3 Attention Mechanism - Transformer

The proposed AFLMEP with SWFA architecture uses the Transformer attention

mechanism by incorporating multi-head self-attention (heads = 6), followed by a

normalization layer. The output of this mechanism is fed into the ANN model for

further classification.

8.2.2.4 Base Classifier - ANN

The proposed AFLEMP with SWFA architecture uses a Transformer with ANN at the

client end. Table 8.3 presents the parameters at each layer for the ANN model with

the Transformer. This model incorporates a Transformer-based attention mechanism

followed by two dense layers for classification tasks. The input layer feeds into the

attention mechanism, which has 6 attention heads, no bias, and a dropout, which

further gets into the dense layers.

8.2.2.5 Federated data Partitioning

The proposed AFLEMP with SWFA architecture adopts HFL, as all clients have the

same features but differ in sample space (no. of subjects). Both the AMIGOS [125] and

DREAMER [135] dataset is divided into four client divisions (C= 5, 10, 15, 20 /C=3,

5, 7, 10) as shown in Table 8.4, and the experiments ran for three rounds of aggregation

(R= 50, 100, 200). One-way ANOVA testing is performed (with a significance value of

0.05 [199]) using IBM SPSS Statistics to test whether there are significant differences

between the different client distributions. The p-value for AMIGOS [125] dataset is

0.045 and for DREAMER [135] is 0.037. Both are less than 0.05, implying significant
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Table 8.4: Federated data distribution for all clients (C) with different subjects (S) for
AFLEMP with SWFA.

AMIGOS [125] (Subjects = 40)
Clients = 5
Subjects = 10

Clients = 10
Subjects = 21

Clients = 15
Subjects = 33

Clients = 20
Subjects = 40

C1 = S 1(1),
C2 = S 2-3(2),
C3 = S 4-5(2),
C4 = S 6-7(2),
C5 = S 8-10(3)

C1 = S 1(1), C2 = S 2-3(2),
C3 = S 4-5(2), C4 = S 6-7(2),
C5 = S 8-9(2), C6 = S 10-11(2),
C7 = S 12-13(2), C8 = S 14-15(2),
C9 = S 16-18(3), C10=S 19-21(3)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3-4(2), C4 = S 5-6(2),
C5 = S 7-8(2), C6 = S 9-10(2),
C7 = S 11-12(2), C8 = S 13-14(2),
C9 = S 15-16(2), C10 = S 17-18(2),
C11 = S 19-20(2), C12 = S 21-23(3),
C13 = S 24-26(3), C14 = S 27-29(3),
C15 = S 30-33(4)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4(1),
C5 = S 5-6(2), C6 = S 7-8(2),
C7 = S 9-10(2), C8 = S 11-12(2),
C9 = S 13-14(2), C10 = S 15-16(2),
C11 = S 17-18(2), C12 = S 19-20(2),
C13 = S 21-22(2), C14 = S 23-24(2),
C15 = S 25-26(2), C16 = S 27-28(2),
C17 = S 29-30(2), C18 = S 31-33(3),
C19 = S 34-36(3), C20 = S 37-40(4)

DREAMER [135] (Subjects = 23)
Clients = 3
Subjects = 4

Clients = 5
Subjects = 8

Clients = 7
Subjects = 13

Clients = 10
Subjects = 23

C1 = S 1(1),
C2 = S 2(1),
C3 = S 3-4(2)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3-4(2), C4 = S 5-6(2),
C5 = S 7-8(2)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4-5(2),
C5 = S 6-7(2), C6 = S 8-10(3),
C7 = S 11-13(3)

C1 = S 1(1), C2 = S 2(1),
C3 = S 3(1), C4 = S 4-5(2),
C5 = S 6-7(2), C6 = S 8-9(2),
C7 = S 10-12(3), C8 = S 13-15(3),
C9 = S 16-19(4), C10 = S 20-23(4)

differences between client distributions.

8.2.2.6 Federated Environment via SWFA

The proposed algorithm uses TFF [208] as an FL tool to create a federated

learning environment and uses SWFA to collect and aggregate client model updates.

Equation 8.8 gives the computation for weighted federated averaging.

wg
t =

∑
N
i=1 wi ·wl

t,i

∑
N
i=1 wi

(8.8)

Where wg
t is the aggregated weight at the global server in time t, wi is the weight

assigned to client i, wl
t,i are the weights received from all client’s local model in time t,

and N is the total number of the local models participating for aggregation. Algorithm 2

provides the algorithm for the proposed SWFA (discussed above in Section 8.2.1). The

federated environment setup follows these steps: (1) Creation of Local Model (client

end); (2) Creation of Global Model (server end); (3) Local Model Update (client end).

8.2.3 Experimental Setup

The tests and trials for the proposed AFLEMP with SWFA architecture use Python

3.8 on a MacBook Air with a 1.6 GHz dual-core Intel Core i5 and Google Colab’s

Pro plus NVIDIA V100 GPU, CUDA version 11.2. Models are generated using the
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Table 8.5: Train and test set of clients for AFLEMP with SWFA.

AMIGOS [125]
No. of Clients C=5 C=10 C=15 C=20
Training/Testing Clients 4/1 9/1 14/1 19/1

DREAMER [135]
No. of Clients C=3 C=5 C=7 C=10
Training/Testing Clients 2/1 4/1 6/1 9/1

TensorFlow (TF version-2.6.0 ), TensorFlow Federated (TFF version-0.19.0) and Keras

frameworks. During each round of aggregation, clients were required to train 200

epochs locally, with a batch size of 1024.

8.2.4 Evaluation Measures for AFLEMP with SWFA

The following measures evaluate the proposed AFLEMP with SWFA architecture

(as detailed in Section 5.6). Performance Measures: Binary (low/high classes)

and Octal (eight emotion classes) Classification Accuracy (Training Accuracy

and Testing Accuracy), Precision, Recall, and F1-Score. Scalability Measures:

Training Time and Model Accuracy with different client distributions and iteration

rounds. Communication Computation Measure: Averaging time for different client

distribution and iteration rounds, and Convergence Speed via Categorical Cross Entropy

Loss.

8.2.5 Testing of the architecture

The Leave-one-out Cross Validation (LOOCV) strategy is used to test the AFLMEP

with SWFA architecture. This approach treats each client as a test set once while using

the rest of the clients for training [117, 125, 154]. Table 8.5 illustrates for all clients.

The architecture reports results based on the average values across all iterations and

evaluates model performance using metrics like accuracy, precision, recall, and the F1

measure.

8.3 Results and Discussion

In a federated environment, the local data stays at the client’s end, and the global server

does not have direct access. Consequently, emotion classification is carried out locally
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Table 8.6: Training and testing accuracies for proposed AFLEMP with SWFA.

AMIGOS [125]
Valence Arousal Dominance VAD

Clients=20 Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Rounds=50 82.23% 81.11% 84.44% 83.21% 83.11% 82.12% 84.55% 83.11%
Rounds=100 84.34% 83.45% 86.21% 85.45% 85.55% 84.13% 87.11% 86.44%
Rounds=200 88.98% 88.15% 89.78% 89.10% 88.11% 87.11% 90.96% 90.11

DREAMER [135]

Clients=10 Valence Arousal Dominance VAD
Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Training
Accuracy

Testing
Accuracy

Rounds=50 75.87% 74.32% 79.55% 78.21% 77.12% 76.45% 79.78% 78.34%
Rounds=100 79.94% 78.54% 82.55% 81.45% 80.15% 79.65% 82.11% 81.11%
Rounds=200 84.88% 83.81% 85.66% 84.61% 84.15% 83.93% 86.34% 85.12%

solely at each client’s end. This section presents the results of the proposed AFLEMP

with SWFA for classifying different emotion dimensions. The results are presented in

the following subsections.

8.3.1 Performance measures for proposed multi-modal AFLEMP

with SWFA

The proposed multi-modal AFLEMP architecture employs SWFA to create a global

aggregator at the server end. It classifies emotions using two scenarios: one is binary

classification, and the other is octal classification. The octal classification covers a

broader range of emotions than the binary classification. The evaluation measures

for the proposed AFLEMP with SWFA architecture are given in the following section

below.

8.3.1.1 Classification Accuracies

Table 8.6 gives the Training and Testing accuracies For evaluating the performance

of the proposed multi-modal AFLEMP with SWFA architecture for different iteration

rounds. It gives the accuracy results for both the binary and octal classifications. The

following points can be inferred from the Table 8.6:

1. It clearly states that the best results are obtained with 200 rounds of iterations with

a maximum no. of clients. It gives results with only the maximum no of clients,

but for the rest of the client distributions, Figure 8.3 graphically presents the

testing accuracies with each client distribution and different rounds of iterations.

138



Figure 8.3: Testing accuracies for the proposed AFLEMP with SWFA for Valence,
Arousal, Dominance, and 3D-VAD for all rounds of iterations.

2. The proposed AFLEMP with SWFA architecture achieves a testing accuracy

of 88.15% (Valence), 89.10% (Arousal), 87.11% (Dominance), and 90.11%

(VAD) for AMIGOS [125], and 83.81% (Valence), 84.61% (Arousal), 83.93%

(Dominance), and 85.12% (VAD) for DREAMER [135]. It shows that

octal classification (for eight emotion classes) gives better results than binary

classification (only low/high classes).

3. It presents the training and testing accuracies, showing very little difference in

their values, stating that there is no overfitting in the proposed AFLEMP with

SWFA architecture.

8.3.1.2 Other Predictive Measures

To evaluate the predictive performance of the proposed multi-modal AFLEMP with

SWFA architecture for different iteration rounds, we compute the Accuracy, Precision,

Recall, and F1-score. Table 8.7 presents the values of recall, precision, f-1 score, and

testing accuracy for the proposed multi-modal AFLEMP with SWFA architecture for

200 rounds of iterations for both datasets AMIGOS [125] and DREAMER [135] with
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Table 8.7: Evaluation measures for testing the proposed AFLEMP with SWFA for 200
rounds.

Dataset ↓ Emotion
Dimensions↓ Recall Precision F-1 Score Testing Accuracy

Arousal 0.847 0.892 0.861 0.898
Valence 0.815 0.888 0.856 0.871
Dominance 0.787 0.872 0.845 0.869

AMIGOS [125]
(EEG+ECG+GSR)

VAD 0.871 0.955 0.913 0.901
Arousal 0.780 0.850 0.813 0.846
Valence 0.791 0.889 0.837 0.835
Dominance 0.792 0.835 0.812 0.838

DREAMER [135]
(EEG+ECG)

VAD 0.795 0.893 0.845 0.851

both binary and octal classifications. It shows that evaluation measures other than

accuracy, i.e., precision, recall and f1-score is also giving optimal values for both octal

and binary classifications for the proposed AFLEMP with SWFA architecture.

8.3.1.3 Communication Computation Measures

Training time (from the client end), averaging time (from the server end), and the model

convergence speed via loss curves measures the communication computations of the

proposed AFLEMP with SWFA architecture.

1. Table 8.8 presents the training and averaging times (in seconds) for all the iteration

rounds and client distributions with both datasets for octal classifications (VAD).

It shows that the maximum training time is 266.652 seconds for 200 rounds

of iterations for AMIGOS [125] and 245.502 seconds for DREAMER [135].

Similarly, the averaging time presented by Table 8.8 shows that the proposed

multi-modal AFLEMP with SWFA takes a maximum averaging time of 107.684

seconds by AMIGOS [125], and 101.467 seconds by DREAMER [135] with 200

rounds of iterations.

2. Table 8.8 presenting the values in seconds, indicating the incremental change

in training, and averaging time resulting from variations in data size (C=5, 10,

15 and 20 / C=3, 5, 7 and 10) with the number of rounds (R=50, 100, and

200) proving the proposed multi-modal AFLEMP with SWFA architecture as a

scalable architecture.

3. Figure 8.4 illustrates the categorical cross-entropy (for octal classification) loss

versus epoch curves for the AMIGOS [125] and DREAMER [135] datasets for
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Table 8.8: Training and averaging time in seconds for the proposed AFLMEP with
SWFA.

Epochs=200 AMIGOS [125] DREAMER [233]
Rounds=50 Client=5 Client=10 Client=15 Client=20 Client=3 Client=5 Client=7 Client=10
Training Time
(in seconds)
(Client End)

95.110 98.324 115.571 130.231 90.345 107.205 140.452 120.121

Averaging Time
(in seconds)
(Server End)

65.212 72.321 80.342 96.212 68.671 76.932 82.302 90.102

Rounds=100
Training Time
(in seconds)
(Client End)

117.231 121.764 130.554 153.232 100.561 115.271 130.701 147.678

Averaging Time
(in seconds)
(Server End)

70.671 75.354 84.342 100.563 70.367 79.172 81.367 96.326

Rounds=200
Training Time
(in seconds)
(Client End)

150.221 173.763 200.503 266.652 150.213 173.121 193.201 245.502

Averaging Time
(in seconds)
(Server End)

74.211 80.431 89.621 107.684 70.123 81.110 89.221 101.467

the proposed AFLEMP with SWFA architecture. It reveals that the train and

test sets follow a similar declining path for the eight emotion classes (VAD).

The declining loss curves clearly indicate that the loss generated by the proposed

AFLEMP with SWFA architecture decreases progressively as the model improves

its performance. This reduction in loss corresponds to the increase in accuracy

over time, demonstrating that the model is learning and adapting effectively. By

the time the training reaches 200 epochs, both the loss and accuracy stabilize,

suggesting that the model has converged to an optimal solution.

8.3.2 Performance comparison of proposed multi-modal AFLEMP

with SWFA and other FL aggregation algorithms

The proposed multi-modal AFLEMP architecture leverages SWFA at the server side

to serve as a global aggregator. Its performance is compared against other federated

learning aggregation methods. Table 8.9 presents the testing classification accuracy

and the time taken by each FL algorithm for server-side aggregation. The proposed

multi-modal AFLEMP with SWFA outperforms the other FL algorithms, achieving

testing accuracy of 90.11% and 85.12% with AMIGOS [125] and DREAMER [135],
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Figure 8.4: Loss curves for the proposed AFLEMP with SWFA for 3D-VAD.

Table 8.9: Testing accuracies and averaging time for AFLEMP with SWFA and other
FL algorithms.

AMIGOS [125] DREAMER [135]Clients=20,
Rounds=200 Testing Accuracy Averaging Time

(in seconds) Testing Accuracy Averaging Time
(in seconds)

Fedavg 83.10% 100.537 77.31% 99.367
Fedper 84.12% 180.551 78.98% 190.545
FedBoost 86.67% 195.343 80.45% 201.432
DWFA 81.52% 201.713 74.92% 196.125
SWFA 90.11% 107.684 85.12% 101.467

respectively for octal classification. The SWFA takes 107.684 seconds with the

AMIGOS dataset and 101.467 seconds with the DREAMER dataset for performing

averaging at the server end with the maximum number of iteration rounds and clients.

The time taken by SWFA is shorter than all other FL algorithms except FedAvg while

achieving improved classification accuracy.
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Table 8.10: Performance comparison with existing FL works for emotion recognition
with physiological signals.

FL for Emotion Recognition

Reference Dataset
Physiological
Signal

Classification
Model

Modality
FL
Methods

ED1 Testing Accuracy S3 CC2

Nandi et al. [36] DEAP [233] EDA, RESP FFNN Bi-Modal FedAvg 2D 81.92% (VA) ✓ ×
Tara Hassani [100] CASE [134] GSR CNN Single FedAvg 2D 79% (VA) × ×
Agrawal et al. [149] DEAP [233] EEG 2D-CNN Single FedAvg 3D 69.77% (Avg. V,A,D) × ×
Proposed
F-MERS

AMIGOS [125]
DREAMER [135]

EEG+ECG+GSR
EEG+ECG

MLP
Multi-
Modal

FedAvg 3D
83.02% (Avg. V,A,D)
75.19% (Avg. V,A,D)

✓ ✓

Proposed
AFLEMP

AMIGOS [125]
DREAMER [135]

EEG+ECG+GSR
EEG+ECG

ANN+
Transformer

Multi-
Modal

FedAvg 3D
83.04% (Avg. V,A,D)
77.34% (Avg. V,A,D)

✓ ✓

Proposed
AFLEMP

AMIGOS [125]
DREAMER [135]

EEG+ECG+GSR
EEG+ECG

ANN+
Transformer

Multi-
Modal

SWFA 3D
90.11% (VAD)
85.12% (VAD)

✓ ✓

1Emotion Dimension (ED), 2Communication Computation (CC), 3Scalability (S)

8.3.3 Performance comparison of proposed multi-modal AFLEMP

with SWFA with existing FL works

Table 8.10 presents the comparative analysis between the proposed privacy-preserving

federated architecture and other existing methods discussed in the literature utilizing

FL for emotion recognition. It demonstrates that the proposed AFLEMP with SWFA

architecture outperforms the previous FL works as well as the proposed FL architectures

(F-MERS and AFLEMP) for emotion recognition, achieving an accuracy of 90.11%

and 85.12% for AMIGOS [125] and DREAMER [135], respectively. Additionally,

the proposed AFLEMP with SWFA architecture also computes the scalability and

communication computation, which is missing in the previous studies of FL for emotion

recognition.

8.4 Summary
The proposed multi-modal AFLEMP architecture with the novel Scaled Weighted

Federated Averaging (SWFA) algorithm can accurately and effectively classify broader

human emotions (using VAD) in a decentralized, federated learning environment.

SWFA is embedded (at the server end) in the proposed multi-modal AFLEMP

architecture, generating a global aggregator at the server. It averages the updates from

the local model running at the client end. It enhances the aggregation process by scaling

the weights received from clients with large data, thereby reducing the Imbalanced

Data Heterogeneity (IDH) occurring at the client end. The result outcomes of the

proposed SWFA algorithm evidenced the reduction of data heterogeneity by improved
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classification accuracy (for both binary and octal) and reduced communication

computations, making the AFLEMP architecture robust. It improves the fairness and

effectiveness of the aggregation process, leading to a more robust global aggregator in

federated learning environments.

The proposed AFLMEP with SWFA architecture integrates a Transformer with an

ANN model to train at the client’s end and SWFA at the server end. The Transformer

calculates the weights for essential features from multi-modal physiological data at each

client end and sends the computed weight gradients to the global server. Embedding

the attention mechanism in the proposed federated architecture reduces the amount of

data transfer from the client to the server in a federated environment, reducing the

amount of data transfer, thereby reducing the Variation Data Heterogeneity (VDH) in

multi-modal physiological data (at the client end). Embedding SWFA at the server end

in the proposed federated architecture helps reduce the IDH by performing scaling and

weighted averaging at the global server. The result outcomes of the proposed AFLEMP

with SWFA architecture evidenced the reduction of data heterogeneities from the client

and server end through improved communication, making the architecture robust.

This chapter is based on the following work:

• J2: Neha Gahlan, and Divyashikha Sethia. ”AFLEMP: Attention-based

Federated Learning for Emotion recognition using Multi-modal Physiological

data.” Biomedical Signal Processing and Control 94 (2024): 106353. (SCIE,

Impact Factor: 5.1, Publisher: Elsevier). Doi: https://doi.org/10.

1016/j.bspc.2024.106353.

144

https://doi.org/10.1016/j.bspc.2024.106353.
https://doi.org/10.1016/j.bspc.2024.106353.


Chapter 9

Conclusion, Future Work & Social

Impact

This chapter summarizes the key findings and contributions of the research, reflecting

on the overall objectives and how they have been addressed throughout the work. It

delves into the implications of these findings, not only in terms of academic progress

but also in terms of their practical applications in real-world settings. The chapter

then outlines potential future work, focusing on areas where further exploration could

enhance current methodologies or open up new research avenues. Finally, the societal

impact of this research is discussed, emphasizing how advances in emotion recognition

through physiological signals can contribute to various sectors such as healthcare,

education, and human-computer interaction. The broader ethical considerations

regarding physiological signals are also highlighted to ensure that future developments

align with societal needs and values.

9.1 Conclusion & Future Work

This thesis establishes the theoretical basis and fundamental concepts needed to grasp

the idea of emotion recognition and its relationship with physiological data. It evaluates

emotions, various physiological signals used in emotion recognition, benchmark

datasets, and methodologies for classifying emotional states. Majorly, it addresses

data privacy concerns by introducing an innovative Federated Learning (FL) paradigm

for emotion recognition. FL offers a promising approach for utilizing large and diverse

datasets to train machine learning models while preserving data privacy, a crucial factor
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in safeguarding sensitive, emotional, mental healthcare, and physiological information.

In conclusion, this thesis is based on four key objectives: (1). Preserves privacy of

ERS based on physiological signals, (2). Provides multi-modality with physiological

signals in ERS, (3). Addresses data heterogeneity (variation and imbalanced) in

federated ERS, (4). Expands emotions of ERS via 3D-VAD emotion dimensions.

Firstly, the thesis conducted a comprehensive literature review of the automated ERS

using physiological signals to find the research gaps. It provides a literature review of the

emotion models, physiological signals, the relation between emotions and physiological

signals, technical background including data processing for physiological signals, ML

and DL models, and the related works of FL for ERS. It is covered in Chapters 2, 3, 4.

Secondly, the thesis proposes a privacy-preserved FL-based Emotion recognition

architecture using multi-modal physiological data (F-MERS) for classifying emotion

states using a three-dimensional model of emotions covering a wide range of similar

and complex emotions. The Proposed F-MERS validates three emotion benchmark

datasets. The experimental results show that muli-modal performs better than single

modalities, proving the proposed F-MERS to be robust, scalable (in terms of client

distribution and number of iterations and rounds) and efficient in communication (in

terms of time). The proposed F-MERS could not address the data heterogeneities of

the multi-modal physiological data and the federated environment. It is covered in

Chapter5.

Lastly, the thesis addresses two different types of data heterogeneities. One is the

Variation Data Heterogeneity (VDH) existing in the multi-modal physiological data, and

the other is Imbalanced Data Heterogeneity (IDH) occurring at the server end within

a federated environment. To reduce these, the thesis proposed an Attention-based

(AFLEMP) architecture to remove the VDH in the multi-modal physiological data.

It incorporates a Scaled-Weighted Federated Averaging (SWFA) algorithm to reduce

the IDH occurring at the server end within a federated environment. The Proposed

AFLEMP validates two emotion benchmark datasets. The experimental results show

improvement in classification accuracies and evaluation metrics, indicating the removal

of VDH. Also, the communication efficiency in terms of time is compared for the

proposed SWFA with other existing FL methods, resulting in better performance than

other FL methods. It is covered in Chapters 5, 6, 7.
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9.1.1 Lessons Learnt

Based on the literature review, experiments performed, and findings, the following are

the learning points:

1. Why is privacy essential for physiological data? Physiological data is

inherently personal and highly sensitive, encompassing signals such as EEG,

ECG, RESP, GSR, Heart Rate, and others. Data from these signals are unique

to each individual, revealing a lot about their health status and potentially

providing insights into their emotional state, behaviour, and habits. Hence,

they are considered sensitive. Compromising the privacy of physiological data

can have profound repercussions on an individual’s life. It opens the door for

data attackers and exposes them to the risk of data breaches, which, in turn, can

lead to various threats [21]. These threats include the potential exposure of an

individual’s health status, emotional stability, and even their biometric identity

based on physiological signals. Therefore, safeguarding privacy is crucial when

it comes to handling physiological data. For this, the proposed study ensures

that physiological sensor data for emotion recognition is used to protect people’s

privacy and autonomy.

2. How can complex emotions be mapped into different dimensions? Complex

emotions like fear, wrath, guilt, resentment, anxiety, and others have different

levels of arousal, valence and dominance, are difficult to distinguish and cannot

be mapped on the 2-dimensional emotion model by Russel [204]. Hence, the

proposed study adopted Mehrabian’s 3-dimensional model of emotions to map

these complex emotions [33, 128]. The 3-dimensional model of emotion maps

complex emotions into three dimensions: Arousal, Valence and Dominance. It

understands better how emotions are experienced and influence one’s behaviour.

The 3-dimensional model of emotions maps emotions as arousal refers to the

physiological activation or intensity level of emotions, ranging from low arousal

(calm, relaxed) to high arousal (excited, anxious). Valence represents the

pleasantness or unpleasantness of emotions, ranging from positive (happiness,

joy) to negative (anger, sadness). Dominance reflects an emotion’s sense of

control or power, ranging from feeling dominant (empowered, in control) to

147



feeling submissive (helpless, powerless). This information develops better ways

to cope with complex emotions and build stronger relationships.

3. How do physiological signals contribute to emotion recognition? Physiologi-

cal signals provide valuable information about the body’s physiological responses

and indicate different emotional states.

• EEG signals record the electrical hum of the brain, revealing its activity, as

the brain acts as the maestro of emotions, conducting everything from

physical actions and sensory experiences to language, memories, and

feelings [175, 278].

• GSR measures the skin’s electrical conductivity and is also known as

Electrodermal Activity (EDA) [156, 181, 205]. Skin conductivity varies

with skin moisture level (sweating), showing variations in the Autonomous

Nerve System associated with arousal, reflecting emotions such as stress,

anxiety, and surprise. It is, in particular, a measure of arousal.

• ECG signals are electric signals acquired to trace the action of the human

heart and the potential fluctuations transmitted to the skin surface due

to the heart’s electrical activity (the contraction and relaxation of heart

muscles) [113, 245]. Electrodes linked to the skin surface detect it.

• The respiratory rate (RESP) physiological signal represents the frequency

of breaths a person takes per minute, mirroring the inhaling and exhaling air

rate. These breathing patterns closely connect to the emotional states [233].

When experiencing emotions like stress, fear, anxiety, or excitement,

breathing quickens and becomes shallower. In contrast, during moments of

relaxation and calmness, our breathing becomes slower and deeper. This

interplay between respiratory rates highlights the importance of conscious

breathing techniques in managing emotions [106]

4. Why is multi-modality required in emotion recognition? Here, multi-

modality refers to the fusion or combination of different physiological signals

required for emotion recognition. These different physiological signals provide
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complementary information about emotions. Multiple physiological signals

capture a more comprehensive picture of emotional states and increase emotion

recognition accuracy [53]. Emotion recognition systems that rely on a single

physiological signal are vulnerable to noise, artefacts, or biases inherent in

that particular modality (physiological signal). Combining multiple modalities

(physiological signals) creates more robust and adaptable systems capable of

recognizing different emotions more accurately and precisely. In response, the

proposed study combines the participating subjects’ EEG, ECG, GSR and RESP

signals.

5. How can machine learning be used for automated emotion recognition

systems? Physiological signals data (EEG, ECG, GSR, RESP) obtained from

different wearable sensors for recognizing emotions is preprocessed, from which

the relevant features are extracted. The relevant features extracted are the inputs

to train the Machine Learning and Deep Learning algorithms like SVM [252],

DT [111], and KNN [85, 298], RNN [213], CNN [157, 173], and LSTM [98]

for classifying the different emotion states. These algorithms are successful in

attaining higher accuracies with physiological sensor data. It is worth noting

that the success of these automated machine learning-based emotion recognition

systems depends on the quality and diversity of the training data, the choice of

relevant features, and the selection and optimization of the machine learning

algorithm. The proposed study accommodates this by implementing an MLP

classifier for emotion state classification.

6. How federated learning paradigm is preserving data privacy in emotion

recognition? The traditional ML and DL architectures require complete access to

the physiological data for training the model in an automated emotion recognition

system. It compromises the privacy of the data as it requires complete access

to physiological data for training purposes, giving easy access to data attackers.

A new paradigm called Federated Learning (FL) is introduced by McMahan et

al. [51] to resolve the issue of data privacy. FL is a promising approach that

creates a decentralized environment with a local and global model at the client

and server end, respectively [69]. It allows the local model updates to be sent
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to a central server, combining them to create a global model [39, 99, 124]. This

approach does not allow the global model to access the raw data used for training

and hence preserves the privacy of the sensitive physiological data. The proposed

study accommodates this approach by proposing the F-MERS architecture for

emotion recognition, preserving the privacy of the sensitive physiological data

while achieving good accuracy results.

9.1.2 Ethical Implications and Responsible Use

The ethical implications surrounding the automated ERS for emotion classification

framework are significant and require thorough consideration. Automated ERS

offers intriguing possibilities but raises several ethical concerns, mainly when

applied to sensitive physiological data that require scholarly discussion and cautious

implementation. Here is a breakdown of such critical issues:

9.1.2.1 Privacy Concerns

When utilizing technology for automated emotion recognition and classification

using sensitive physiological data, a critical ethical consideration is required to

safeguard individuals’ privacy rights. These technologies involve collecting sensitive

physiological data and then using it for automation via machine learning models. This

process unintentionally violates an individual’s right to privacy. Intrusive collection and

analysis of emotions raise concerns about individual privacy and autonomy. Adhering

to ethical standards and principles, such as obtaining informed consent and ensuring

participant privacy, is crucial, as mentioned below:

1. While collecting data, Informed Consent (Transparency): Individuals are

provided clear and concise information on how their data is collected, used,

and stored.

2. Granularity: Consents are specific to the intended use of the data. Collecting

data for research doesn’t automatically allow its use for commercial purposes.

3. Opt-out vs Opt-in: Opt-in consent ensures individuals actively choose to

participate, minimizing coercion.
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4. Voluntary Participation: Participants must willingly agree to contribute their

physiological data without coercion. They should have the option to withdraw at

any point without facing negative consequences.

9.1.2.2 Potential Biases

The following biases need to be taken care of when using automated Emotion

Recognition Systems (ERS) and collecting sensitive physiological data:

1. Demographic and Cultural Biases: These biases raise ethical concerns if the ERS

favours certain demographic factors such as age, gender, and ethnicity over others,

potentially leading to unequal representation. If the training data predominantly

represents a specific group or culture, the system might struggle to accurately

recognize and interpret emotions in individuals from other demographics.

2. Algorithmic Biases: The algorithms powering ERS may inadvertently perpetuate

existing societal biases in the training data. For instance, if historical data

contains imbalances or stereotypes, the system might unintentionally reinforce

these biases, leading to unfair or inaccurate results.

3. User Interface Bias: The potential biases introduced through the user interface

of the ERS might be biased toward users with different abilities. They should

avoid discrimination based on interface preferences or limitations and be easily

accessible.

The ethical implications of using automated ERS and collecting sensitive physiological

data involve addressing potential biases, obtaining informed consent through trans-

parency and voluntary participation, and ensuring responsible use by prioritizing data

security, privacy, and fair deployment practices. Ethical considerations are paramount

in shaping the development and deployment of emotion recognition technology to foster

trust, fairness, and positive societal impact.

9.1.2.3 Responsible Uses

The proposed automated Emotion Recognition System (ERS) can be utilized in the

following responsible ways:
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1. Data Security and Privacy: The automated ERS must ensure robust measures to

protect the collected physiological data. They secure storage and protect against

unauthorized access. Emphasize the importance of respecting individuals’

privacy rights throughout the data lifecycle.

2. Mitigating Harm: The automated ERS must implement safeguards to prevent

potential harm from misusing emotion recognition technology. It includes

addressing issues like emotional profiling, stigmatization, or the unintended

consequences of relying on ERS in sensitive data.

3. Fair and Equitable Deployment: The automated ERS must strive for fair and

equitable deployment of ERS across diverse populations. Avoid scenarios where

certain groups may face disproportionate consequences or disadvantages due to

the technology’s application.

9.1.2.4 Limitations

One of the key challenges in applying the proposed F-MERS and AFLEMP to real-

world scenarios is handling noisy and incomplete physiological signal datasets. Unlike

controlled laboratory settings, real-world physiological signals often suffer from motion

artefacts, environmental interference, and sensor inconsistencies. EEG signals may be

affected by muscle movements and electrode displacement, ECG signals may exhibit

baseline drift and powerline interference, while temperature fluctuations and skin

conditions can impact GSR readings. These artefacts introduce variability in the

extracted features, leading to performance degradation. To address this issue, different

filtering methods can be applied to the signal data as a preprocessing step, like low

and high-frequency filters, Butterworth filters, and bandpass filters. Additionally,

Empirical Mode Decomposition (EMD) and Independent Component Analysis (ICA),

as discussed above in section 2.5.1.2, can be applied to the EEG signal for artefact

removal and denoising.

Another significant issue in real-world applications is incomplete datasets.

Physiological signals are prone to missing values due to sensor failures, poor signal

quality, or user non-compliance. In federated architectures, missing data can vary

across clients, leading to biased updates and inefficient model training. To address

152



this, future research should investigate federated data imputation techniques like Fed-

MIWAE [105], FedTMI [297], Fedimpute [144] to handle missing data dynamically

while preserving user privacy.

9.1.3 Future Work

There are certain restrictions on the proposed study, which opens the door for more

investigation and testing. These are: (1). Since the current work involves feature-level

fusion, one should experiment with decision-level fusion of several modalities. 2)

Developing a more comprehensive method for emotion identification by combining

physiological markers with additional bodily expressions of emotion, such as eye

tracking, speech, and gesture. Since the current study only considers physiological

signs, the proposed FL framework can be expanded in the future to integrate physical

and physiological indicators.

9.2 Social Impact & Applications

This section outlines different applications for emotion recognition with federated

learning that can improve real-world situations. The FL paradigm makes a wide range

of applications possible by eliminating the need for data sharing while creating a

machine-learning model. These are described as below:

1. Smart Emotional Healthcare: The automated ERSs are pivotal in discerning

an individual’s emotional states, which indicate their overall health. These

systems leverage physiological signals such as heart rate, blood pressure, and skin

temperature collected via smart wearables like smart bands and smartphones,

forming an integral part of innovative healthcare systems. The proposed

FL-based ERS mitigate the risk of information leakage and privacy attacks,

ensuring highly protected data privacy in the healthcare industry by embedding

them in the edge devices at the user’s end (as shown in Figure 9.1). This

approach significantly reduces vulnerabilities towards sensitive physiological
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Figure 9.1: Health monitoring using smart wearable sensors

data associated with traditional centralized ERS, offering a safer alternative for

recognizing emotions and health status via smart wearables.

Figure 9.2: In-Home health monitoring using smart wearable sensors

2. In-Home Mental well-being Monitoring:In-home health monitoring has

garnered widespread interest among the global ageing population. In these

scenarios, wearable IoT edge devices like smartphones and smartwatches play

a crucial role in data acquisition. These devices, worn at home, track daily

activities such as emotions, reactions, heart rate, and pulse rate (as shown in

Figure 9.2). IoT devices efficiently collect vast amounts of data, which can

be processed further. However, traditional healthcare centres utilize this data

for diagnosis, applying ML and DL methods to classify emotional states while

allowing third-party attackers to access sensitive data. To overcome these issues,

the proposed robust FL-based ERS can be integrated with the IoT wearable

devices to help report complex emotions recognized, enhance data privacy and

improve communication, accuracy and training performance.

3. E-Learning: In E-Learning, FL enabled emotion recognition systems leverage

wearable IoT devices to monitor physiological signals like heart rate and skin

temperature, providing real-time insights into students’ emotional states (as
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Figure 9.3: Emotional health monitoring while E-learning.

shown in Figure 9.3). Unlike traditional methods, FL trains models directly

on devices, ensuring data privacy by keeping sensitive information local.

This approach personalizes learning experiences, offers real-time feedback to

educators, enhances student support, and improves learning outcomes by adapting

to students’ emotional needs. FL’s decentralized nature ensures robust data

privacy and security, making it a transformative and trustworthy solution for

modern E-Learning environments. For example, Gu et al. [248] proposed a

privacy-preserved teacher-student network. The author used EEG signals in this

network to recognize student emotions in an academic environment.

4. Corporate Workers: Employees in the corporate sector generally have a

demanding workload every day, which causes a lot of stress. This ongoing stress

can lead to an unhealthy lifestyle and an unwillingness to work, forcing individuals

to quit their occupations or negatively affecting their health. Employees under

such pressure could lose awareness of their emotional states. Helping people

identify their current emotions and mental health is essential, enabling them

to take breaks when necessary. Their complex and multiple emotions may be

detected in real-time with data privacy using the proposed robust FL architecture,

which can help them become more conscious and create a less stressful work

atmosphere (as shown in Figure 9.4). Employees can work with greater

confidence and integrity and less stress, which enhances their general well-being

and productivity.

5. Pet Robots: These days, robots are being used increasingly in various settings,

including retail, restaurants, hotels, airports, hospitals, and more [241]. These

machines work using human-machine communication. A new study [186] claims
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Figure 9.4: Emotional health monitoring in office corporate environments.

Figure 9.5: Pet Emo robot with interactive sensors

that the most acceptable robots are humanoid robots, which resemble humans

in appearance. When these robots are in varied surroundings, they use smart

devices and facial expressions to track human emotions. Once tracked, they

can help people keep their emotions in check. For instance, the autonomous

and intelligent EMO robot1 (shown in Figure 9.5) developed by Emospark has

an integrated neural network processor and optical drop sensors. It functions

as a devoted companion and pet robot. Applications for iOS and Android can

be connected to it with ease. Embedding the proposed FL architecture in such

robots can enhance the data integrity, privacy while recognizing emotions and

requests user experiences using slider buttons. The arousal, dominance, and

valence emotions are the main focuses of the robotic paradigm.

6. Designing Emotional UI: These days, individuals can recognize emotions

and discern moods thanks to user interfaces on smart TVs, smartphones, and

wearables.

”Technology is best when people are happy.”2.

For example, Spikey Sanju’s Employee Engagement app uses emojis on

1https://living.ai/emo/

2https://uxplanet.org/designing-emotional-ui-b11fa0fda5c
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Figure 9.6: Animoji: Augmented reality masks to express emotions.

employees’ displays to measure their emotions, such as joyful, furious, or sad [2].

Many UI designers use cameras to create cutting-edge means for users to express

their feelings, such as Animoji3 or augmented reality masks (an example is shown

in Figure 9.6). These features allow people to convey emotions, significantly

improving the user experience. By incorporating data privacy into these UI

features through the proposed FL-based ERS, these devices can be safeguarded,

enhanced, and less susceptible to data breaches while recognizing emotions.

3https://dribbble.com/shots/9524341-Employee-Engagement-App-Mood-Tracker-UI
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A B S T R A C T

Automated emotion recognition systems utilizing physiological signals are essential for affective computing and
intelligent interaction. Combining the multiple physiological signals is more precise and effective in accurately
assessing a person’s emotional state. These automated emotion recognition systems using conventional
machine learning techniques require complete access to the physiological data for emotion state classification,
compromising sensitive data privacy. Federated Learning (FL) resolves this issue by preserving the user’s
privacy and sensitive physiological data while recognizing emotions. However, existing FL methods have
limitations in handling data heterogeneity in the physiological data and do not measure communication
efficiency and scalability. In response to these challenges, this paper proposes a unique novel framework
called AFLEMP (Attention-based Federated Learning for Emotion recognition using Multi-modal Physiological data)
integrating attention mechanism-based Transformer with an Artificial Neural Network (ANN) model. The
framework reduces two types of data heterogeneity: (1) Variation Heterogeneity (VH) in multi-modal EEG, GSR,
and ECG physiological signal data using attention mechanisms and (2) Imbalanced Data Heterogeneity (IDH)
in the FL environment using scaled weighted federated averaging. This paper validates the proposed AFLEMP
framework on two publicly available emotion datasets, AMIGOS and DREAMER, achieving an average accuracy
of 88.30% and 84.10%, respectively. The proposed AFLEMP framework proves robust, scalable, and efficient
in communication. AFLEMP is the first FL framework to propose for emotion recognition using multi-modal
physiological signals while reducing data heterogeneity and outperforming existing FL methods.

1. Introduction

The field of affective computing, concentrating on detecting and
quantifying human emotions, has emerged as a promising domain
within Human-Computer Interaction (HCI) research. It aims to enable
machines to comprehend and identify the emotional state of humans.
Additionally, it focuses on providing appropriate feedback to regulate,
respond, and evaluate emotions. Furthermore, emotion analysis is crit-
ical in healthcare, where it helps comprehend a human’s cognitive and
behavioural functioning.

Over the last decade, there has been extensive research on the
connection between emotions and physiological signals [1–5]. Apply-
ing various physiological signals to discern and accurately delineate
different emotional states has become a promising strategy. Physi-
ological signals like Electroencephalogram (EEG), Electrocardiogram
(ECG), Galvanic Skin Response (GSR), Heart Rate (HR), Electrodermal
Activity (EDA), Respiration (RESP) and Blood Volume Pulse (BVP) are
capable of accurately detecting and measuring a person’s emotional
state in real-time [6–9]. These are preferable over physical sensors like

∗ Corresponding author.
E-mail addresses: nehagahlan_2k21phdcs02@dtu.ac.in (N. Gahlan), divyashikha@dtu.ac.in (D. Sethia).

facial expressions, speech, gestures, and postures for recognizing emo-
tions [10–12] because physical sensors capture external manifestations
of emotions. Various factors influence the physical sensors, including
cultural differences, individual variations, or conscious attempts to
hide or display emotions. On the other hand, physiological responses
are more relative to the autonomic nervous system, which operates
involuntarily and is less susceptible to conscious control or external
influence [13]. In addition, physiological sensors are less intrusive than
physical sensors. These sensors provide valuable information about the
intensity of the emotional response. For example, signals such as ECG
and heart rate help detect low and high arousal levels. EEG activity
changes in the brain’s frontal and temporal regions are associated with
emotional responses like happiness, sadness, and fear. GSR measures
changes in the skin’s electrical conductance and causes changes in
emotional arousal.

Using a single physiological signal is not reliable for emotion recog-
nition due to the presence of artefacts and noises that might distort
the signal’s features, impacting the accuracy of the emotion recognition

https://doi.org/10.1016/j.bspc.2024.106353
Received 5 June 2023; Received in revised form 4 March 2024; Accepted 8 April 2024

https://www.elsevier.com/locate/bspc
https://www.elsevier.com/locate/bspc
mailto:nehagahlan_2k21phdcs02@dtu.ac.in
mailto:divyashikha@dtu.ac.in
https://doi.org/10.1016/j.bspc.2024.106353
https://doi.org/10.1016/j.bspc.2024.106353
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2024.106353&domain=pdf


Multimedia Tools and Applications
https://doi.org/10.1007/s11042-024-19467-3

Federated learning in Emotion Recognition Systems based
on physiological signals for privacy preservation: a review

Neha Gahlan1 · Divyashikha Sethia1

Received: 16 September 2022 / Revised: 16 February 2024 / Accepted: 21 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Automated Emotion Recognition Systems (ERS) with physiological signals help improve
health and decision-making in everyday life. It uses traditionalMachine Learning (ML)meth-
ods, requiring high-quality learning models for physiological data (sensitive information).
However, automated ERS enables data attacks and leaks, significantly losing user privacy
and integrity. This privacy problem can be solved using a novel Federated Learning (FL)
approach, which enables distributed machine learning model training. This review examines
192 papers focusing on emotion recognition via physiological signals and FL. It is the first
review article concerning the privacy of sensitive physiological data for an ERS. The paper
reviews the different emotions, benchmark datasets, machine learning, and federated learn-
ing approaches for classifying emotions. It proposes a novel multi-modal Federated Learning
for Physiological signals based on Emotion Recognition Systems (Fed-PhyERS) architec-
ture, experimenting with the AMIGOS dataset and its applications for a next-generation
automated ERS. Based on critical analysis, this paper provides the key takeaways, identifies
the limitations, and proposes future research directions to address gaps in previous studies.
Moreover, it reviews ethical considerations related to implementing the proposed architec-
ture. This review paper aims to provide readers with a comprehensive insight into the current
trends, architectures, and techniques utilized within the field.

Keywords Emotion recognition · Federated learning · Physiological signals · Wearable
sensors · Privacy

1 Introduction

Emotions play a pivotal role in shaping individuals’ lives, exerting a profound influence on
their feelings, current state of mind, and decision-making processes. Humans exhibit two
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Abstract
Traditional machine learning classifiers can automatically evaluate human behaviour and emotion recognition tasks.

However, prior research work does not secure users’ privacy and personal information because they need complete access

to sensitive physiological data. The recently introduced Federated Learning (FL) paradigm can address this problem. FL

allows the local model updates to be sent to a central server, combining them to create a global model. It does not allow the

global model to access the raw data used to train it. Motivated by the core concept of FL, this paper proposes a novel FL-

based Multi-modal Emotion Recognition System (F-MERS) framework combining EEG, GSR, ECG, and RESP physi-

ological sensors data. It uses Multi-layer Perceptron (MLP) as a base model for classifying complex emotions in three

dimensions: Valence, Arousal, and Dominance (VAD). The work validates the F-MERS framework with three emotion

benchmark datasets, DEAP, AMIGOS, and DREAMER, achieving accuracies of 87.90%, 89.02%, and 79.02%, respec-

tively. It is the first FL-enabled framework for recognizing complex emotions in three dimensions (VAD) with multi-modal

physiological sensors. The proposed study assesses the F-MERS framework in two scenarios: (1). Subject dependent and

(2). Subject independent, making the framework more generalized and robust. The experimental outcomes indicate that the

F-MERS framework is scalable, efficient in communication, and offers privacy preservation over the baseline Non-FL

MLP model.

Keywords Emotion recognition system � Federated learning � Physiological sensors � Multi-modal � Privacy �
MLP

1 Introduction

Emotions influence a person’s physical health and deci-

sion-making abilities [1]. For instance, people are more

prone to suffering from poor mental health during emo-

tionally stressful times. Also, when a person is not feeling

well, their emotional state is unbalanced. Hence, deter-

mining the emotional states is vital to ensure improved

emotional wellness. There are two categories of indicators

for recognizing emotions, as described below:

• Physical indicators: One is human bodily indicators,

such as facial expression [2, 3], speech [4], gesture [5],

Eye-tracking [6, 7], posture, and others, which have the

advantage of being easy to collect. Nevertheless, it is

quite easy for people to alter their body signs, such as

their voice or facial expression, to hide their genuine

emotions while interacting with others. People might,

for instance, smile during a formal social gathering

even if they are experiencing bad emotions. Hence,

there is no way to guarantee the correctness of these

indicators.

• Physiological indicators: These indicators capture the

electrical activities (physiological responses) of the

human body using physiological sensors like - Elec-

troencephalogram (EEG) [8–10], Electrocardiogram

(ECG) [11], Electrodermal Activity (EDA) [12], Heart

Rate (HR) [13], Blood Volume Pulse (BVP) [14] and

Respiration Rate (RESP) [15]. These indicators can
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Abstract—Emotions, intricate mental states shaped by neu-
rophysiological alterations influenced by cognitive processes,
sensory inputs, behaviours, and diverse experiences, remain a
compelling domain for exploration. The Electroencephalogram
(EEG) is a potent tool that directly quantifies these emotional
variations by capturing brain signals. Recent strides in emo-
tion recognition have harnessed traditional machine learning
classifiers to automate the identification of human emotions
with remarkable success. This paper delves into the relatively
underexplored Discrete Emotion Model, unveiling its capacity
to achieve outstanding accuracy despite historical reservations
regarding its effectiveness, using the ECSMP (Emotion, Cogni-
tion, Sleep, and Multi-model Physiological signals) dataset. It has
two distinct environments, Video watching, and CANTAB-based
cognitive assessment phases, enabling seamless data collection
and analysis. This research effectively quantifies emotion for
binary classification (classifies the type of emotion felt) and
multiclass classification (classifies the intensity of emotion felt),
elevating emotion recognition capabilities through the synergy
of EEG technology. The exceptional performance of XGBoost,
with a 96.5% accuracy rate in binary classification and 95% in
multiclass emotion recognition, highlights its prowess compared
to the other models tested.

Index Terms—Emotion Recognition, Physiological signals

I. INTRODUCTION

Emotions are states experienced by individuals that influence
their behaviours and thoughts. They arise from both physical
and physiological reactions to internal or external stimuli.
Differentiating between emotions can be done through facial
expressions, behaviours, and physiological responses. Physio-
logical signals are precious in accurately reflecting a person’s
emotions in real-time. Monitoring these signals has become
more accessible through wearable devices such as smartphones
and smartwatches. However, improved emotional well-being
necessitates developing techniques to extract emotional states
from physiological measurements acquired via mobile devices.
Electroencephalogram (EEG) is a widely employed and effec-
tive physiological signal for discerning emotions [1], [2]. This

efficacy arises from its direct capture of signals emanating
from the brain.

A. Emotion Model

Fig. 1: Plutchik’s Emotion Model [3]

Scholars and psychologists have proposed two prominent and
widely accepted theories in studying emotions: the Discrete
Emotion Model and the Dimensional Emotion Model [4], [5].

From a discrete perspective, influenced by Ekman’s the-
ory [15] and evolutionary insights from Darwin and Tomkins,
six primary emotions emerge: happiness, sadness, anger,
disgust, fear, and surprise. Additional feelings result from
intricate combinations or variations of these core emotions.
Plutchik [16] introduces a wheel model as shown in Fig. 1,
classifying eight primary emotions by intensity. It is similar
to mixing primary colors to create secondary hues. Izard [17]
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Abstract—Emotions are intricate mental states triggered by

neurophysiological adjustments linked to ideas, sensations, be-

havioral reactions, and a level of pleasure or annoyance. These

changes are best traced with the physiological signal Electroen-

cephalogram (EEG), as it records the direct sensations sent

by the brain. Recent research on emotion classification meth-

ods employs conventional machine learning classifiers to access

human emotions and perform automatic emotion recognition

tasks. However, they lack in securing users’ privacy and sensitive

information because they need access to all data. A newly

introduced framework Federated Learning (FL), can resolve this

problem. It is an approach that aims to create a global model

classifier without requiring access to users’ local data. This study

proposes a novel FL framework, Federated learning for Emo-

tion recognition (FedEmo), for emotion state classification from

physiological signal EEG while preserving users’ data privacy.

It uses Artificial Neural Network (ANN) as a baseline model for

classifying emotional states: Arousal, Valence, and Dominance.

Adding the concept of federated learning to build a framework

FedEmo prevents loss of privacy as it enables the local training

on the client’s end with an updated model from the global server

without compromising privacy. The proposed FedEmo framework

approach achieves accuracies of 63.3%, 56.7%, and 52.2% for

Valence, Arousal, and Dominance, respectively, using the well-

known DREAMER dataset. These results are comparable to the

basic centralized ANN model with the additional development of

privacy preservation.

Index Terms—Emotion Recognition, Physiological signals, Fed-

erated Learning, Data Privacy

I. INTRODUCTION

Emotions are interpersonal states that have an impact on
the behavior and thoughts of a person. They originate from
physical and physiological reactions and internal or external
stimuli. Face expressions, behavioral patterns, and physiolog-
ical reactions can all be used to discriminate between various
emotions [1]. Out of these, physiological signals are the most

preferred parameters as they map the exact emotions of a per-
son at any instance. Recording such signals is performed by the
different smart wearables [2]. Recent technology developments
have made it easy to access physiological signal monitoring
via wearable devices, including smartphones, smartwatches
(Empatica E4), and many others. Emotional well-being can
be better cared for by creating new techniques to extract
emotional states from physiological measurements utilizing
mobile devices often, which will have a favorable impact on
physical health. The Electroencephalogram (EEG) is a popular
and effective physiological signal for identifying different
emotions. These signals record the current emotions of a
person by sending the signals directly to the brain [3].

Fig. 1. Russell’s circumplex model of affect [4]

Relative to this, Russell [4] proposed a two-dimensional
model of emotions. This model categorizes emotions based on
valence and arousal (as shown in Fig.1). Mehrabian and Rus-
sell [5], [6] extended the two-dimensional model into a three-
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Abstract—Electroencephalography (EEG) is useful for map-

ping emotions directly from the brain, but its heterogeneous

signals make it challenging to extract features accurately. Prior

works for emotion classification uses EEG data without removing

data heterogeneity leading to misclassification or inaccurate

classification. This paper proposes an EMD-based methodology

for EEG data that segments signals into multiple IMFs to remove

heterogeneity and extract significant features. The proposed

approach uses a Feed-Forward Neural Network (FFNN) to

classify emotions via the VAD model and shows a 5-6% increment

in accuracy, precision, and recall scores for emotion classification.

Experimental results demonstrate good evaluation performance

scores for classifying emotional states on two publicly accessible

emotional datasets, AMIGOS and DREAMER.

Index Terms—Emotion Classification, Electroencephalogram
(EEG), Empirical Mode Decomposition (EMD), Temporal and
Spectral features

I. INTRODUCTION

Electroencephalographic (EEG) signals are the electric im-
pulses recorded to assess brain functions. The brain controls
humans’ emotional activities, including physical movement,
sensory processing, language & communication, memory, and
emotions. It investigates various techniques for recognizing
emotional states and monitors the cognitive state of humans
to assess their emotional health. EEG signals are easily
analyzed, and their changes are easily observable, making
them a popular and effective means of identifying distinct
emotions. Therefore, it should be considered an important
element while recognizing emotions. Researchers have become
more interested in identifying emotions from EEG signals
in recent years [1], [2], [3]. Hence, extracting EEG features
and classifying them for emotion recognition have become
intriguing research topics.

Wearable devices like smartphones and smartwatches
(e.g. Empatica E4) have made it possible to monitor
the physiological signals, thanks to recent technological
developments. The physiological measurements collected by
wearable devices serve as inputs for emotion classification
systems driven by artificial intelligence. Automated systems
for classifying emotional states are made possible by the use
of Deep Learning (DL) and Machine Learning (ML) models.
These models can automatically identify correlations between
measurements taken under different conditions, analyze

large volumes of data, and classify various emotional states.
Among the algorithms utilized in these systems are Support
Vector Machine (SVM) [2], Decision Trees (DT), K-Nearest
Neighbor (KNN) [1], Artificial Neural Network (ANN) [1],
and Long Short-Term Memory (LSTM).

Why is EMD required for EEG signals?
The EEG signals are often composed of multiple underlying
modes, each with frequency, phase, and amplitude, which
can be challenging to identify and separate using traditional
linear techniques. The billions of interconnected neurons in
EEG signals render them non-linear and non-stationary. These
inconsistencies in the EEG signals may lead to misclassifi-
cation or inaccurate emotional state classification. This issue
can be resolved by segmenting the original EEG signals and
identifying the segment that causes non-stationarity in the
original signal. Huang et al. [4] introduced a signal processing
technique based on the Hilbert transformation called Empirical
Mode Decomposition (EMD) to address this issue. EMD
decomposes the original EEG signals into a set of Intrinsic
Mode Functions (IMFs), representing the underlying oscilla-
tory modes present in the signal. These IMFs can then be ana-
lyzed individually to gain insight into the different components
of EEG signals, such as theta waves and alpha waves. Which
IMF component classifies best? By decomposing the EEG
signal into IMFs, EMD provides a more detailed representation
of the underlying patterns in the signal, which can help analyze
brain responses to emotional activities. Additionally, EMD
also denoises the signal by removing high-frequency noise
that may be present in the signal. EMD has been applied
to predicting and detecting seizures from EEG signals [5]. It
successfully interprets the inter-modulation distortion and non-
stationarity in EEG signals and is adopted for the proposed
EEG-based emotion classification framework.

The recent studies that employed EMD on the EEG data are
shown in Table I for emotion classification. Zhuang et al. [2]
applied EMD to the EEG signals gathered from 32 channels
placed on the scalp of the DEAP dataset. The authors used
the machine learning-based algorithm SVM to classify only
two emotional states: Valence and Arousal. Ahmet et al. [1]
used Multivariate Empirical Mode Decomposition (MEMD)
for the low & high arousal and valence emotional states.
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