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Abstract

This paper explores synergistic integration of the semi-automatic segmentation techniques, im-

proved the K-Means clustering algorithms, the morphological transformations, and the Mumford-Shah

(MS) functional approximation methods in fields of an image processing and computational geome-

try. The Semi-automatic segmentation, facilitated by an user interaction, enables precise delineation

of the regions of interest within images, offering versatility across the diverse applications. A Ran-

dom Walker method, is known for its flexibility in segmenting images into the multiple objects and

complements traditional binary segmentation approaches. Conversely, MS functional, renowned for

modelling images as the piecewise-smooth functions, has seen limited adoption in the geometry pro-

cessing due to the computational complexities and challenges in a mesh adaptation. To address these

issues, advancements have merged algorithms such as the largest minimum distance algorithm with the

traditional K-Means clustering and enhancing cluster analysis efficiency. Moreover, an integration of

the morphological transformations with a MS functional approximation methods facilitates the noise

reduction, an edge detection and the boundary extraction in images. This paper investigates fusion of

these methodologies to solve challenges in an image and the geometry processing, offering insights into

their applications, the potential advancements in the computational image and geometry processing.
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Chapter 1

Introduction

In image processing and computational geometry, the various methodologies have emerged to overcome

challenges such as segmentation, noise reduction and feature extraction. Semi-automatic segmentation

techniques leverage user interaction to delineate regions of an interest within the images, facilitating

tasks ranging from an image editing to the medical imaging and an object recognition. Among these

techniques, the Random Walker method stands out for its flexibility in the segmenting images into mul-

tiple objects and offering advantages over traditional binary segmentation approaches. On the other

hand, Mumford-Shah (MS) functional, originally devised for an image segmentation, has garnered

recognition for its ability to model images as the piecewise-smooth functions. Inspite of its success in

image processing applications, it has received limited attention in geometry processing. Some chal-

lenges such as computational complexity and an adaptation of the MS model to meshes have hindered

its widespread adoption in the domain.To address these kinds of challenges, recent advancements have

paved a way for the novel approaches. By combining algorithms such as largest minimum distance

algorithm with the traditional K-Means clustering, researchers aim to enhance the efficiency and the

accuracy of the cluster analysis. In addition to, methodologies like morphological transformations

offer versatile tools for tasks such as noise reduction, an edge detection and the boundary extraction

in images.

In this paper, we research into the fusion of these methodologies to solve specific challenges in an image

processing and the geometry processing domains. We explore an application of the K-Means clustering

algorithms in conjunction with the semi-automatic segmentation techniques for further more precise

image segmentation. Moreover, we investigate the integration of the morphological transformations

with the Random walker Segmentation method and the MS functional approximation methods to en-

hance the processing of geometric data on meshes. We hope to shed light on developments and future

uses in the fields of computational image and geometry processing through the use of these coupled

methodologies.
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Chapter 2

Related Work

By exploring the frontier of semi-automatic segmentation, researchers have crafted some innovative ap-

proaches to empower users in the image analysis. Boykov and Jolly pioneered the paradigm shift with

the graph cuts, empowering users to delineate foreground and background regions via intuitive seed

points[1], followed by the energy minimization through a Max-flow Min-cut framework. Building upon

this foundation,[2] Li et al. merged watershed segmentation with the graph cut optimization, while[3]

Nagahashi et al. iteratively refined the segmentation through graph cuts and multiscale smoothing.

Shi et al. introduced the groundbreaking methodology based on the normalised cuts, redefining image

segmentation as the graph partitioning problem. Further enriching this toolkit, Rother et al. in-

troduced graph cut, ingenious fusion of colour modelling and the local minimization, enhancing the

precision of an object delineation.[4] Mortensen and Barrett revolutionized user interaction with the

intelligent scissors, enabling swift and accurate object extraction through the intuitive gestures.

In the contrast, the Random Walker method[5], a brainchild of Grady, introduced the dynamic

paradigm where user-provided seed points propagate information across an image, allowing for flexible

and intuitive segmentation of arbitrary objects. This approach, augmented by subsequent extensions,

has emerged as the cornerstone in interactive image segmentation, offering unprecedented versatility

and an ease of use.Meanwhile, the[6] Mumford-Shah (MS) functional, originally devised for image

segmentation, has transcended the traditional boundaries to find an application in diverse domains.

Inspite of its inherent computational challenges, latest advances in approximation techniques and dis-

crete calculus formulations have unlocked its potential for an image restoration, feature extraction,

and the mesh processing. From image denoising to mesh segmentation, MS functional has performed

an indelible mark on the landscape of image processing and analysis.

Complementing these sophisticated techniques, [7] K-Means clustering algorithm stands as the stalwart

in the domain of an unsupervised learning, offering the robust framework for partitioning data into

the clusters. However, its reliance on initializations and susceptibility to the local minima highlights

the ongoing quest for an improved clustering methodologies.Together, these methodologies form the

bedrock of the modern image processing, offering the rich tapestry of tools to overcome the myriad

challenges in segmentation and analysis, while continuing to encourage novel approaches and advance-

ments.

2



Chapter 3

Basic idea of the Image

Segmentation Methods

3.1 RANDOM WALKER METHOD

This section explains the details of Grady’s previously disclosed Random Walker approach [5].G=

(V,E) is a representation of an undirected graph, where E and V denote the set of edges and vertices,

respectively.The collection of pixels in an image is denoted by the vertex V. Two vertex sets are

present.The first group, referred to as ”labelled vertices,” is always annotated by the user as belonging

to several objects, namely the seeds. The other set, referred to as ”unlabelled vertices,” is located to

the left of the image’s pixels. The edges are made up of pairs of pixels that are neighbours in a picture;

these can be either typical 4- or 8-neighborhood pairs.The weight of an edge ”e” could be indicated

depending on the difference in the two pixels’ colour scale or grayscale intensities.

w (vi, vj) = e
d(vi,vj)

2

σ2 orw (vi, vj) =
1

1 +
d(vi,vj)

σ

(3.1)

The value of the parameter σ can be selected appropriately. An edge’s weights for similar pixels fall

within the range of (0, 1); for dissimilar pixels, the weight will be closer to 0, while for similar pixels, the

weight would be closer to 1. The Random Walker method works on the basis of the above-mentioned

graph structure. The premise is there are k potential objects in an image, and each and every labelled

vertex of Vm belongs to 1 of k objects. Assume that e is the weighted edge with endpoints like vi

and vj ; i.e., e = (vi, vj). The weight of the edge w(e) can be understood as a measurement of the

random walk’s transition probability from one vertex to another, and it falls within the range of (0, 1).

Depending on the edge’s weight, a random walk from vi to vj is more likely to transition if the two

have comparable colours or intensities, but is less likely to do so if they don’t.

Assuming the specified random walk on a graph, we have the above transition probabilities. For

every specific, for every single unlabeled vertex v ∈ Vu, quantity p is the probability that the random

3



CHAPTER 3. BASIC IDEA OF THE IMAGE SEGMENTATION METHODS 4

walk, starting at that vertex, will end up at any one of the labelled vertices that correspond to the

specific object k. Following that, the probabilities are used to guide the segmentation of the images.

More precisely, we determine that every vertex vi belongs to the segment k if and only if pik > pik′ for

any k′ ̸= k. Because they include a quick shift in hue or intensity, the edges in the image—as opposed

to the edges in the graph—correspond to low transition probabilities. As a result, we can state that

when doing the segmentation, our algorithm will favour image edges.

By solving the massive, sparse linear system, it becomes possible to compute the probabilities pik [?].

The combinatorial Dirichlet problem has the same answer as the Random Walker probabilities. The

definition of the Dirichlet integral is:

D[u] =
1

2

∫
Ω

|∇u|2 dΩ (3.2)

for the region Ω and the field u . Finding the harmonic function is the next step, though. The

function that fulfils the Laplace equation is known as the harmonic function,i.e.

∇2u = 0 (3.3)

The Dirichlet issue is the task of determining the harmonic function, i.e., subject to its boundary

values. The Euler-Lagrange equation for the Dirichlet integral is a harmonic function that minimises

the integral as long as it meets the boundary constraints. The combinatorial Laplacian matrix is

defined by us as

Lij =


δi if i = j

−ωij if i and j are adjacent

0 otherwise

(3.4)

where vertices i and j serve as the index for Lij .

By using these definitions, we can determine how to solve for a harmonic function that, while

maintaining the fixed seed nodes, determines the probabilities and potentials on the unseeded nodes.

The Dirichlet integral can be expressed combinatorially as follows:

D[u] =
1

2
xTLx =

1

2

∑
cij∈E

wij(xi − xj)
2 (3.5)

The function x that minimizes the integral is the combinatorial harmonic. L is positive semi-definite,

hence the only critical points that will be minimum are those in D[x]. Next, divide the vertices into

two sets: Vm, which are the marked/seed nodes, and Vu, which are the unseeded nodes. This way,

Vm ∪ Vu = V and Vm ∩ Vu = ∅. Note: All of the seed points, Vm, regardless of their designations, are

contained in Vm. Without losing generality, we can suppose that the nodes in L and x are arranged

with the seed nodes at the top and the unseeded nodes at the bottom. Thus, the above equation may
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be broken down into:

D[xu] =
1

2

[
xT
m xT

u

] [Lm B

BT Lu

][
xm

xu

]
(3.6)

where, respectively ,xm and xu represent the potentials of seeded and unseeded nodes. Regarding

determining critical point yields and distinguishing Dxu in relation to xu,

Luxu = −BTxm (3.7)

By indicating the (possible) probability that xis assumes for each label,s, at node vi.

On defining the function Qvj = s, vj ∈ Vm where s ∈ Z, 0 < s ≤ K, as the collection of labels for seed

points. Upon defining the Vm × 1 vector, at the node vj ∈ Vm, where |.| indicates cardinality, for each
label s:

This is the linear equation system where Vm is unknown. This equation would not be singular if

the graph is connected or if there is a seed present in every connected component.

ms
j =

1 if Q(vj) = s

0 if Q(vj) ̸= s
(3.8)

Therefore, solving for labels s yields a solution to the combinatorial Dirichlet problem.

Ls
ux

s
u = −BTms (3.9)

3.2 Mumford Shah Method

3.2.1 Mumford Shah Configuration

Mumford and Shah defined the piecewise-smooth approximation function [6] that describes an input

image. Reading this functional as follows:

MS[u,C] = α

∫
Ω

(u− g)2 dΩ+ β

∫
Ω\C

|∇u|2 dΩ+ γ

∫
C

dS, (3.10)

with C being the set of (unknown) curves that characterise the collection of discontinuities,g being

an input image on the two-dimensional planar domain Ω,u (unknown) being its approximation. The

tightness , smoothness , and length of discontinuities . of a model’s approximation to an input image

are its intuitive parameters.

Furthermore, C is frequently thought of as the closed curve or the boundary of a space division for

segmentation purposes, even if neither the model nor the best solution call for this. Furthermore, this

model is not limited to the pictures; in general, g can be a real-valued function over any surface, and

Ω need not be the plane. Unfortunately, this functional is non-convex and challenging to optimise

outside of the restricted cases.
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3.2.2 To Optimise the MS functional.

Convex envelopes or convex approximations to the MS functional are the most common approxima-

tions to the MS that have been suggested in order to avoid these problems. By substituting the term

accounting for the length of the segment boundaries with the total change of the gradient [8] of the

segment binary indicator function, the MS functional could be convexified when this problem is limited

to foreground/background extraction. This can be assumed as a piecewise constant function, which

eliminates the possibility of isolated discontinuities or open segment boundaries, as opposed to using

a piecewise-smooth assumption. Although this might be expanded to include many segments, the

discontinuous sets are still inevitably produced.

Although the mesh segmentation [9] process has successfully employed this assumption, it can be

appropriate within situations where the interested function is that normal field which varies relatively

smoothly across surfaces and may display internal discontinuities.

Similarly, Tsai et al. [10] use various level sets to directly tune MS functional, although they too

need closed segment boundaries. As a result, these methods fall short of the desired level of generality.

Instead, we use an estimate based on the -convergence results from Ambrosio and Tortorelli, which is

likely to converge towards the MS functional.

For example, the Finite Element Method is used by Chambolle, Dal Maso, and Bourdin, together

with an adaptive mesh refinement and edge alignment needed for optimisation. These numerical al-

gorithms are quite vulnerable to noise, even with such sophisticated techniques. Fortunately, novel

discretization strategies for Ambrosio-Tortorelli (AT) [11] models have been developed on grids; these

strategies no longer require adaptive meshes or FEM in order to obtain piecewise smooth solutions.

Applications for this discretization include feature extraction and picture restoration on voxel-

based digital geometries. [12] Pokrass et al. used the first discrete differential calculus version of AT to

overcome problem of partial matching in order to gain 3D shapes that are rigid. Unlike our pointization,

this one evaluates the cross-term on the faces, producing smoother features, while discontinuities

and values reside on the vertices. This works effectively for their particular goal but restricts the

applications it can be used for.

3.3 Morphological Operations Method

3.3.1 The Opening transformation

It involves performing the erosion followed by the dilation on the input image. It helps in removing

the noise from an image by shrinking boundaries of the foreground objects.
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3.3.2 The Closing transformation

The closing is opposite of opening, involves a dilation i.e. followed by an erosion. It is quite useful for

filling tiny holes or gaps in the foreground objects.

3.3.3 The Morphological gradient

A gradient is obtained by taking the difference between a dilated image and an eroded image. It

highlights the boundaries of objects in an image.

3.3.4 The Top hat transformation

This transformation is a difference between an input image and its opening. It highlights small, bright

regions in an image.

3.3.5 The Black hat transformation

This transformation is a difference between closing of an input image and an input image itself. This

highlights dark regions or features in an image.

3.3.6 The Boundary extraction

It involves taking the difference between an input image and its eroded version. This highlights the

boundaries of objects in an image.

3.4 K-Means Clustering

The K-Means algorithm was first proposed by J.B. MacQueen [13] is clustering process that depends

on splitting. an algorithm that’s generally utilised for pattern recognition or mining of data. Foun-

dations of technique are error criterion or square error with the goal of minimising the performance

index of cluster.

The process seeks out ”K” divisions that require the set of criteria for optimising output. In order

to obtain the initial classification, we must first select some dots to represent initial focal points of

cluster (typically,first K sample income dots are chosen to present the initial cluster focal point). Next,

we must gather the remaining sample dots and arrange them in accordance with least distance crite-

rion. If the initial classification we felt unreasonable,must modify them by recalculating every cluster

focal point. This process must be repeated until the desired classification is obtained.

The certainty, efficiency, and briefness of the K-Means algorithm are its advantages. As a result,

this method heavily relies on the starting dots and the variations in beginning sample selection, which

consistently produce distinct results.



Chapter 4

Algorithms

4.1 Algorithm for Random Walker Method

For applications of real world involve segmenting an interested object that has different shades of

colour from ”distant” portions of the colour spectrum. Because of this, Random Walker is subject

to an unusual constraint: it must determine the weight between two pixels entirely by calculating

the Euclidean distance between each pixel’s colour vector. Since ∥A1 − A2∥ is ”the large value,” for

example, if the object is primarily composed of two colour regions A1 = (a1, b1, c1) and A2 = (a2, b2, c2),

thereafter any pixel pair of an interested object that are adjacent, have the colour values A1, A2

respectively would get connected by weight’s edge w = e−β∥A1−A2∥2

. Since this value is almost zero,

Random Walker would not be able to ”transition” between these pixels. This presents a special

challenge when there is object segmentation. Our goal in this situation is to deal with the difficulties

brought on by such barriers.

4.1.1 Graph based weight

To tackle or get around this issue, weight based on probability distribution has been employed. Con-

sequently, the mean-shift based segmentation process might come before the Random Walker based

segmentation. An algorithm’s complexity is increased by mean-shift based methods, so we looked

for any segmentation techniques that may eliminate the need for over-segmentation in image prepro-

cessing. When it comes to semi-supervised segmentation, the user has access to ”seeds,” or previous

knowledge that provides crucial details about the object’s profile. Typically, when a user ”scratches”

an object of interest, they are able to identify the colour spectrum regions that make up the object.

Ideally, this method should be granted great probability when crossing 2 pixels with colour values

from set A = {Ai}ni=1, if the object is composed of clustered parts of the colour spectrum, such as

A1, A2, . . . , An. Predefining that the distance between Ai and Aj must be considered as 0, as well as

that the colour vectors near Ai and Aj have a tiny distance between them, are two ways to accomplish

this.

8



CHAPTER 4. ALGORITHMS 9

Visualising colour space as the completely linked graph is one method to accomplish the aforemen-

tioned goal. Since discrete colour values are typically used in digital image processing, each and every

colour vector can be seen as a node in a fully connected graph. dij = |Bi − Bj | is the weight of an

edge that connects the colour values Bi.

First, we create this kind of graph G and set the weights. Now, the user just needs to adjust the

weight of an edge connecting any Ai, Aj after assigning seed information, which is given in the form of

set A. Using this redesigned graph G, now, we use the Floyd-Warshall pairs shortest path algorithm,

which yields least distance between any two colour valence. We now create a new graph G′, where

minimum path’s weight between two nodes, BjBi and Bj in G equals the distance between them,

represented as dij ’s. Take note of a formulation that meets both criteria, d′′ij .

4.1.2 To use Random Walk

Take the task to be segmented k objects, that an user has provided seed data in sets’ form A
(l=1 to k)
i ,

where l represents each sign, to be performed for each l between 1 and k. We take the subsequent

actions:

1. Create the network H whose vertices are an image’s pixels. If comparable pixels are 4-connected,

then two vertices are connected by an edge.

2. Using the set A4
i , construct G′

i and construct the graph Gi on the colour space. A dχij is the

distance between colours Ai and Aj in G′
i.

3. The weight of an edge linking two linked vertices of H, vi and vj with colour values Ai, Aj is

determined by wχ
ij = e−βdχ

ij .

4. Build the Laplacian Ll whose ijth element is defined as ...

Lij =


δi,χ if i = j

−ωij,χ if i and j are adjacent

0 otherwise

(4.1)

5. We solve the system LuP = BTm, just like in the case of an ordinary Random Walker.

6. We classify vj as belonging to segment l if Pi > Pχ
i for every l′ ̸= l. Take note that P is known

as the (P1, P2, ...)
T where Pi is vertex probability vi belongs to vertex set with label l to vertex

vi.
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4.2 Algorithm for Mumford Shah Method

The Mumford-Shah algorithm is the technique used for an image segmentation and an edge detection,

aiming to create the piecewise smooth representation of an image. Here is the simplified outline:

• Initialization:-Begin with the initial guess for an image segmentation. Set parameters to balance

the smoothness of an image and how closely it fits an original image.

• Energy Functional:-Define the function that measures the quality of segmentation. This function

considers the difference between the original and the segmented images, the smoothness and

segmented image and the total length of an edge.

• Gradient Descent:-Use an iterative process to minimise an energy functional .And update the

segmented image and the edges using the gradient descent approach, that iteratively adjusts

them to minimise the energy functional.

• Edge Detection:-Identify edges by finding the regions where an image changes rapidly. Update

set of edges to reflect these detected changes.

• Regularisation:-Regularise an edge set to avoid having many edges.Try to Smooth the edges us-

ing techniques like the curve evolution or the level set methods to ensure they are not fragmented.

• Iteration:-Repeat process of updating an image and the edges until the changes become minimal,

indicating that the segmentation has stabilised.

• Final Output:Produce final segmented image and an edge set, achieving the piecewise smooth

representation of an original image.

Throughout the process, an algorithm balances fit to an original image and smoothness of seg-

mentation by adjusting parameters. This balance helps in achieving the meaningful segmentation

where the edges are very clear and segments are very smooth.

4.3 Algorithm for Morphological Transformations Methods

4.3.1 Dilation

• Input: Take the binary image and the structuring element
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• Process:For each and every pixel in an image, superimpose structuring element centred on pixel.If

any pixel in structuring element overlaps with the foreground pixel in an image, set the centre

pixel to the foreground.

• Output: Generate dilated image, where the objects are expanded.

4.3.2 Erosion

• Input: Take the binary image and the structuring element.

• Process: For each and every pixel in an image, superimpose structuring elements centred on the

pixel. If all pixels in the structuring element overlap with the foreground pixels in an image, set

the centre pixel to the foreground; otherwise, set it to the background.

• Output:Generate an eroded image, where the objects are shrunk.

4.3.3 Opening

• Input: Take a binary image and a structuring element.

• Process: Perform erosion on an image to remove the small objects and the noise.Perform dilation

on an eroded image to restore size of remaining objects.

• Output: Generate an opened image, where the small objects and the noise are removed but main

structures remain intact.

4.3.4 Closing

• Input:-Take the binary image and the structuring element.

• Process: Perform dilation on an image to fill the small holes and the gaps. Perform erosion on

an dilated image to restore size of the original objects.

• Output: Generate closed image, where the small holes and the gaps are filled, and main structures

are preserved.

4.4 Algorithm for K-means Clustering Method

Let us consider N pattern x1,x2,,xN ,samples that need to be classified.They must be grouped into K

cluster.

1. Select value from {x1, x2, . . . , xn} to serve as first focal point’s cluster z1. For example, z1 = x1.
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2. Select a different place to serve like the second cluster’s focus point that is equally spaced from

z1. Next, measure distant between every point and z1.

xi − zi, i = 1, 2, . . . , n (4.2)

If:

∥xj − z1∥ = max ∥xi − z1∥ , i = 1, 2, . . . , n, j = 1, 2, . . . , n (4.3)

Next, designate xj as the second cluster’s focal point, with z2 = xj .

3. Determine the distance, one by one, between every example in {x1, x2, . . . , xN} and {z1, z2}:

di1 = ∥xi − z1∥ , i = 1, 2, . . . , N (4.4)

di2 = ∥xi − z2∥ , i = 1, 2, . . . , n (4.5)

Select shortest distance between the results:

min (d′i1, d
′
i2) , i = 1, 2, . . . , n (4.6)

Collect minimums from each model, {z1, z2} sample. Select greatest from the list of least to serve

as focal point z3 of the cluster. If:

min (d′i1, d
′
i2) = max {min (di1, di2)} , i = 1, 2, . . . , N (4.7)

Then:

z3 = xj (4.8)

4. Assume that the cluster focal points {zi, i = 1, 2, . . . , r} have a value of r (r < k). Finding r+1th

focal point of the cluster is now necessary:

min{dj1, dj2, . . . , djr} = max{min{di1, di2, . . . , dir}}, i = 1, 2, . . . , N, j = 1, 2, . . . , N (4.9)

5. Continue until r + 1 = K is reached.

6. As of right now, z1,1, z2,1, . . . , zk,1 are our chosen initial cluster focal points. The serial numbers

utilised in an iterative process to find the cluster locations are the numbers in parentheses.

7. Assign {x1, x2, . . . , xN} to one of K clusters in accordance with the distance minimization rule:

∥x− zj(t)∥ = min ∥x− zi(t)∥ , i = 1, 2, . . . ,K, j = 1, 2, . . . , k (4.10)
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Thereafter:

x ∈ Sj(t) (4.11)

The serial number of an iterative operation is represented by the symbol t in the formula; Sj

reprents for jth cluster, and zj represents focal point of the clusters.

8. Determine the updated values ny vector for every focal point of cluster individually:

zj(t+ 1), j = 1, 2, . . . , k (4.12)

Determine sample vectors by mean for every cluster:

zj(t+ 1) =
1

N

∑
x∈Sj(t)

x, j = 1, 2, . . . ,K (4.13)

The number of samples of the jth cluster is represented by the symbol in the formula above.

Determine the sample mean vectors for each of the K clusters. The cluster criterion function Jj

could be minimized by using mean vectors to create new clusters.

Jj =
∑

x∈Sj(t)

∥x− zj(t+ 1)∥2 , j = 1, 2, . . . ,K (4.14)

9. Classify all the samples of pattern one by one again and executive an iterative process if:

zj(t+ 1) ̸= zj(t), j = 1, 2, . . . ,K (4.15)

then go back to step 7. An algorithm has completed its convergence if:

zj(t+ 1) = zj(t), j = 1, 2, . . . ,K (4.16)
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Result

5.1 for the Random Walker Method

Figure 5.1: segmented image using random walker method

Here, this segmentation result image shows the segmented image where the different regions are

highlighted that are based on the labels created by Random Walker algorithm. Regions are differenti-

ated based on markers set in grayscale image.There will be two segments, one for areas with intensity

less than 0.4 and one for areas with intensity greater than 0.4.

5.2 for the Mumford Shah Method

Figure 5.2: segmented image using mumford shah method

14
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Here,Segmentation starts by initializing the level set function with the circular region, applies

Gaussian smoothing to grayscale image, and iteratively evolves level set to segment an image. The

output shows images: the original grayscale image, the edges, and the segmented image, highlighting

the distinct regions based on the intensity variations.

5.3 for the Morphological Operations Methods

Figure 5.3: segmented image using morphological operations method

Figure 5.4: segmented image using morphological operations method

Here,the segmented images consists of the four processed images, each demonstrating the effect of

one of the morphological operations, helping to understand how these operations modify.
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5.4 for the K-Means Clustering Method

Figure 5.5: segmented image using k-means clustering method

Here,the segmented image displays regions of an image grouped into 2 dominant colors, highlighting

the major color-based segments in an image.
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Conclusion

In the conclusion, the presented algorithm exemplifies a systematic approach to computational im-

age processing and geometry, showcasing robust experimental validation, the efficient implementation,

and an innovative techniques for an image enhancement and the clustering. Through the qualitative

evaluation on an image, the algorithm’s segmentation performance surpassed that of the ordinary

Random Walker method, demonstrating notable accuracy improvements across various scenes and the

objects.By leveraging morphological transformations, follow as opening, closing, gradient, top hat,

black hat, and boundary extraction, an algorithm achieves the superior noise reduction, an object

highlighting, and the boundary delineation, contributing to an overall image quality and the segmen-

tation accuracy.

Moreover, the evaluation of the K-Means clustering algorithm enhances the algorithm’s versatility and

the effectiveness in the cluster analysis tasks. By mitigating random cluster focal points and optimis-

ing clustering criteria, the algorithm outperforms the standard K-Means method, offering stable and

accurate clustering outcomes.In the essence, combined results highlight the algorithm’s comprehen-

sive approach, positioning it as the valuable tool for diverse applications in the computational image

processing and geometry, characterised by its performance, efficiency and an innovation in handling

complex image data and geometric structures.

17
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