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ABSTRACT

Software quality plays a pivotal role in ensuring the success of software projects,

especially in today’s rapidly evolving technological landscape. As software systems

grow more complex, predicting their quality, identifying potential defects, and foresee-

ing maintenance challenges have become critical tasks. Software Quality Prediction

Models (SQPMs) serve as powerful tools to forecast software defects, allowing organi-

zations to take proactive measures in improving system reliability, reducing costs, and

enhancing overall product quality. By leveraging Machine Learning (ML) techniques,

SQPMs help automate the prediction process, providing decision-makers with valu-

able insights into which components or modules of software are more prone to defects

or changes. This, in turn, enables effective resource allocation, improved maintenance

strategies, and a reduction in post-release failures.

The increasing demand for efficient software quality models has led to extensive

research on improving the performance of these models. This thesis, titled ’Develop-

ment and Validation of Software Quality Prediction Models using Machine Learning

Techniques’, aims to enhance the performance of prediction models by developing

robust classifiers and tackling critical issues that hinder the effectiveness of learning

algorithms. This research outlines several key objectives, including conducting sys-

tematic reviews on the classification algorithms and various factors affecting software

quality prediction models. A detailed analysis of the data imbalance problem, parame-

ter tuning, feature selection, and techniques for handling outliers and multi-collinearity

are explored. Additionally, the research focuses on the validation of open-source

datasets and the proposal of new metrics for software quality assessment. The thesis

covers multiple experiments and methodologies aimed at tackling these objectives.

Each experiment involves the application of state-of-the-art techniques and algorithms



in software defect categorization (SDC) and software defect prediction (SDP).

The first area of study focuses on the categorization of software defects based on

maintenance effort, change impact, and a combination of the two. Various machine

learning algorithms, including the Multinomial Naı̈ve Bayes (NBM), ensemble learn-

ers ( Random Forest (RF), eXtreme Gradient Boosting (XGB), Adaptive Boosting

(ADB), and Bagging (BAG)) and Convolutional Neural Networks (CNN) were applied

to develop software defect categorization (SDC) models. These models are utilized

to categorize software defects into low, medium, and high categories based on three

key defect attributes - maintenance effort, change impact, and their combined ef-

fect. Experiments were conducted on five Android applications - Bluetooth, Browser,

Calendar, Camera, and MMS with the Top10, Top25, Top50, and Top100 relevant

keywords extracted from the defect reports through text mining. The results, validated

using AUC values, indicate acceptable predictability for defects categorized in various

categories. Models based on combined approach demonstrated better performance

than those built using only change impact and remain competitive with those built

using only maintenance effort. Multinomial Naı̈ve Bayes (NBM) and Convolutional

Neural Networks (CNNs) can be effectively used for software defect categorization.

Random Forest emerged as the most effective ensemble technique, followed by Bag-

ging and AdaBoost. These models provide valuable insights for software practitioners

in terms of effort estimation and resource management, offering a practical solution

for addressing high-category defects that demand significant developer or tester effort.

This thesis examines the application of parameter tuning techniques to software

quality prediction models. Through a systematic literature review of 31 primary

studies, this review identifies and analyzes various parameter tuning methods. A

detailed analysis of these studies revealed that tuned models consistently demonstrated

improved predictive performance and stability over untuned models. Among the

most effective parameter tuning techniques identified were grid search, differential

evolution, genetic algorithm-based approaches, and hybrid methods. Classification



algorithms such as Support Vector Machine (SVM), k-Nearest Neighbor (KNN),

Random Forest (RF), Neural Networks (NN), and Classification and Regression Trees

(CART) were frequently subjected to parameter tuning, with notable sensitivity to

hyperparameter adjustments. On the other hand, algorithms like Linear Regression,

Regression Trees (RTs), and Bagging with RTs exhibited lower sensitivity to parameter

tuning. The results also showed that parameter tuning significantly enhanced the

performance of underperforming classifiers, affecting their ranking. The thesis offers

practical recommendations for software practitioners, advocating for the use of tuning

methods in predictive modeling to ensure optimal performance.

A major challenge in predictive modeling is handling imbalanced datasets in

software defect prediction (SDP). This thesis explores two approaches to address this

challenge with focus on neural networks: (1) Data-Level Approach: This approach

employed four oversampling techniques (ROS, SMOTE, BL-SMOTE, ADASYN),

six undersampling techniques (RUS, CC, NM, CNN, TL, ENN), and two hybrid

techniques combining oversampling and undersampling (SMOTE-TL, SMOTE-ENN)

applied across six open-source software datasets. A total of 78 ANN-based defect

prediction models were developed using these techniques, and stratified 10-fold cross-

validation was performed to ensure robust validation. The performance was assessed

using AUC, G-Mean, and Balance metrics. The study found that oversampling and hy-

brid techniques, especially SMOTE-ENN, significantly enhanced model performance.

Statistical analysis further confirmed that SMOTE-ENN, BL-SMOTE, SMOTE-TL,

ROS, and SMOTE were the best-performing techniques, whereas models without

resampling and those using undersampling ranked poorly. (2) Algorithm-Level Ap-

proach: A Weighted Loss Function for Neural Networks (WL-NN) was introduced to

address data imbalance during model training. Four models were developed: NN on

imbalanced data, WL-NN on imbalanced data, NN on balanced data via SMOTE-ENN

(NN + SMOTE-ENN), and WL-NN on balanced data via SMOTE-ENN (WL-NN +

SMOTE-ENN), resulting in 88 defect prediction models. The results demonstrated



that WL-NN significantly improved model performance, with WL-NN + SMOTE-

ENN showing a 27% improvement compared to other models. This combination

outperformed all approaches, establishing that weighted loss functions combined with

data resampling are highly effective in addressing imbalanced data issues in SDP.

Feature selection plays a vital role in improving the performance of SQPMs by

eliminating irrelevant or redundant features from the dataset. This thesis focused on

evaluating the effectiveness of swarm intelligence techniques - Ant Colony Optimiza-

tion (ACO), Cuckoo Search (CS), and Crow Search (CRS) - for feature selection in

software defect prediction, comparing them to traditional filter-based methods such as

Chi-Square (CHI2) and Information Gain (IG). Using 22 datasets from the AEEEM,

JIRA, and PROMISE repositories, the results demonstrated that Cuckoo Search (CS)

consistently outperformed the other methods, achieving the highest AUC values across

most datasets and classifiers. Crow Search (CRS) also performed well, often rank-

ing just behind CS, especially when combined with classifiers like Support Vector

Machine (SVM) and Random Forest (RF). In contrast, Ant Colony Optimization

(ACO) showed mixed results, delivering strong performance in some cases but lacking

consistency compared to CS and CRS. Overall, the study highlights the superior

performance of swarm intelligence techniques, with Cuckoo Search (CS) and Crow

Search (CRS) emerging as promising approaches to enhance defect prediction models,

especially when integrated with advanced classifiers like RF and SVM.

This thesis provides a comprehensive review of multi-collinearity in software qual-

ity prediction, a critical issue affecting the reliability, maintainability, and efficiency of

predictive models. Through a detailed analysis of the literature, the paper highlights

several challenges posed by multi-collinearity, such as uncertainty in predictor effects,

overfitting, and reduced generalizability of software quality models. To address these

challenges, the review explores various mitigation strategies, including traditional

methods like principal component analysis (PCA), regularization techniques (ridge

and lasso regression), stepwise regression, and variance inflation factor (VIF) thresh-



olding. It also discusses more recent advancements such as hybrid PCA-regularization

approaches, sparse partial least squares (SPLS), and modern machine learning tech-

niques, including Ensemble Learning and Deep Learning approaches. Among these,

PCA, ridge regression, and lasso regression are identified as the most commonly

employed techniques to combat multi-collinearity.

This thesis proposes a comprehensive metric suite tailored for evaluating event-

driven software systems, which are increasingly prevalent due to their capacity to

manage complex and asynchronous interactions. The study emphasizes the distinctive-

ness of event-driven systems compared to structured and object-oriented paradigms,

underscoring the need for specialized metrics. The proposed metrics are categorized

into key areas, including event structure, event dependency, event performance, event

complexity, event synchronization, and event reliability. Each metric is thoroughly

defined to provide a standardized, objective framework for assessing the unique

characteristics and behavior of event-driven systems.

In summary, this thesis contributes significantly to the field of software quality

predictive modeling by addressing key issues such as imbalanced data, parameter

tuning, feature selection, and algorithm optimization. The developed models and

techniques have demonstrated their potential to improve the accuracy and efficiency of

predictive models, thereby supporting better decision-making in software maintenance

and quality assurance.
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Chapter 1

Introduction

1.1 Introduction

In an era where software systems permeate every facet of modern society, ensuring the

quality of these systems is paramount. The pervasive reliance on software in critical do-

mains, such as healthcare, finance, defense, and infrastructure, amplifies the consequences

of software failures, which can range from financial losses to loss of life. Consequently,

software quality has evolved into a critical area of study within software engineering,

attracting considerable attention from both academia and industry [1].

The development and maintenance of software systems are inherently complex, often

requiring the integration of numerous components, technologies, and processes. As

software systems become more intricate, the potential for defects and quality issues

increases, posing significant challenges to software engineers and quality assurance teams

[2]. Traditional approaches to ensuring software quality, such as manual testing and code
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reviews, are becoming increasingly inadequate in the face of the growing complexity

and scale of modern software systems. These approaches are often time-consuming,

labor-intensive, and prone to human error, making them insufficient to meet the rigorous

demands of contemporary software development.

In this context, predictive modeling has emerged as a powerful tool for enhancing

software quality assurance. Predictive modeling leverages historical data to forecast future

outcomes, enabling software engineers to identify and address potential quality issues

before they manifest in operational environments. By applying machine learning (ML)

techniques to software quality data, predictive models can provide valuable insights into

defect-prone components, guide testing efforts, and inform decision-making processes [3].

The central premise of this work is that the performance of predictive models in soft-

ware quality assurance can be significantly improved by addressing several key factors

that affect model accuracy, reliability, and generalizability. These factors include imbal-

anced data, outliers, overfitting and underfitting, multi-collinearity, parameter tuning, and

feature selection [4]. By systematically investigating these factors and developing novel

approaches to mitigate their impact, this research aims to advance the state of the art in

software quality prediction and contribute to the broader field of software engineering.

This chapter provides a structured foundation for the thesis by introducing key concepts

and setting the context for the research. It begins with an overview of software quality in

Section 1.2. Section 1.3 explains predictive modeling, breaking down its definition, steps,

and application in software quality prediction, followed by an exploration of techniques

used in this field. Section 1.4 discusses the various factors that influence the performance

of predictive models. A literature survey in Section 1.5 reviews existing studies on software

metrics and software quality prediction, identifying research gaps and directions. The
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chapter continues by outlining the thesis objectives in Section 1.6, which defines the vision,

focus, and goals of the research. Section 1.7 provides a summary of the research work,

and the chapter concludes with a brief overview of the thesis organization in Section 1.8.

1.2 Software Quality

A software system is designed and developed to meet a set of well-defined requirements

(functional and non-functional). Software quality is defined as the extent to which a

software system meets the specified requirements. Software quality is a multifaceted

concept that encompasses various attributes of a software product, including its function-

ality, performance, reliability, security, usability, and maintainability. The International

Organization for Standardization (ISO) defines software quality as “the degree to which

a software product meets specified requirements and user needs.” According to IEEE

Standard glossary of Software Engineering Terminology, Software Quality is defined as

[5]: “1. The degree to which a system, component, or process meets specific requirements

and 2. The degree to which a system, component, or process meets customer or user needs

or expectations.” These definitions highlights the dual focus of software quality on both

conformance to requirements and the satisfaction of user expectations.

The impact of software quality on an organization can be profound, influencing every-

thing from operational efficiency to customer satisfaction. In the context of commercial

software, quality directly affects the marketability and competitiveness of a product. A

software product that is prone to defects, crashes, or security vulnerabilities is likely to face

poor adoption rates, negative user reviews, and increased support costs [6]. Conversely,

high-quality software that performs reliably and meets user expectations is more likely to
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succeed in the marketplace. In the context of safety-critical systems, such as those used in

healthcare, aviation, or automotive industries, software quality takes on an even greater

significance. High-quality software is essential for ensuring that these systems function

correctly, efficiently, and securely. Conversely, poor software quality can lead to a wide

range of negative consequences, including software failures, security breaches, and user

dissatisfaction. In extreme cases, software defects can result in catastrophic failures with

significant financial, legal, and reputational repercussions [7]. In these domains, software

failures can have life-threatening consequences. For example, a defect in medical device

software could lead to incorrect diagnoses or treatment recommendations, potentially

endangering patients’ lives. Similarly, software failures in automotive systems could lead

to accidents and fatalities. As a result, ensuring the highest possible level of software

quality is imperative in these contexts.

Ensuring software quality is a complex and challenging task, particularly in the context

of modern software systems [8]. Several factors contribute to this complexity, including

the growing scale and intricacy of software systems, the diversity of technologies and

platforms, and the dynamic nature of software requirements. Additionally, the prevalence

of distributed and agile development practices, which involve multiple teams working

on different components of a software system, further complicates the task of ensuring

consistent quality across the entire system. A key challenge in maintaining software quality

is the difficulty of detecting and preventing defects during the software development

process. Despite the availability of various testing and verification techniques, it is often

impossible to identify all potential defects before a software product is released. This is

particularly true for extensive and intricate systems, where the number of possible test

cases and execution paths can be virtually infinite. As a result, even well-tested software
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products may contain defects that only become apparent after deployment. In this work,

the terms ”defect”,”bug” and ”fault” are used interchangeably.

1.3 Prediction Modeling

This section discusses predictive modeling, the validation process, the steps for SQPM.

1.3.1 What is Predictive Modeling?

Predictive modeling is a statistical and computational technique used to forecast future

events or outcomes based on historical data [9]. It is widely used in various domains,

including finance, healthcare, marketing, and engineering, to predict outcomes such as

stock prices, disease outbreaks, customer behavior, and equipment failures. In the context

of software quality, predictive modeling is used to forecast the likelihood of defects,

categorize issues, and guide quality assurance activities. Predictive modeling is inherently

interdisciplinary, drawing on concepts and techniques from statistics, machine learning,

data mining, and domain-specific knowledge. It involves the use of mathematical models

to represent the relationships between input variables (features) and the outcome of interest

(target variable). These models are trained on historical data, allowing them to learn

patterns and relationships that can be used to make predictions on new, unseen data.

1.3.2 Steps in Prediction Modeling

The following are the steps that are used in Predicting modeling:

1. Defining the Objective: The first and most critical step in predictive modeling is to
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Figure 1.1: Steps in Predictive Modeling

clearly define the objective of the modeling effort. This involves understanding what

you are trying to predict, why it is important, and how the predictions will be used.
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In the context of software quality, the objective might be to predict the likelihood

of defects in a software module, the time required for a bug to be resolved, or the

impact of a change on software maintainability. Defining a clear objective helps in

guiding the subsequent steps of the modeling process and ensures that the model’s

output will be relevant and actionable. The objective should be specific, measurable,

achievable, relevant, and time-bound (SMART) [10].

2. Formulation of the Problem: Once the objective is defined, the next step is to

formulate the problem in a way that can be addressed using predictive modeling

techniques. This involves translating the business or research objective into a formal

problem statement that defines the target variable (what you want to predict) and

the independent variables (features) that will be used to make the prediction. For

example, if the objective is to predict software defects, the problem formulation

might involve defining the target variable as a binary outcome (defect or no defect)

and identifying potential predictors such as code complexity, lines of code, developer

experience, and past defect history. Problem formulation also involves deciding

on the type of predictive model that is appropriate for the task. This could be a

classification model (e.g., predicting whether a software module will have defects),

a regression model (e.g., predicting the number of defects), or a ranking model (e.g.,

prioritizing software modules based on their defect risk).

3. Identifying Key Variables and Hypotheses: In this step, the key variables that

are likely to influence the target outcome are identified. These variables are usually

selected based on domain knowledge, previous research, or exploratory data analysis.

Along with identifying key variables, it is also essential to formulate hypotheses
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regarding the relationships between these variables and the target outcome. For

example, in software quality prediction, one might hypothesize that more complex

code (as measured by metrics such as cyclomatic complexity) is more likely to

contain defects. These hypotheses guide the selection of features and the design of

the model.

4. Data Collection: After the problem is formulated and key variables are identified,

the next step is to collect the data that will be used to build and train the predictive

model. Data collection involves gathering relevant data from various sources, such

as software repositories, version control systems, bug tracking systems, and other

software engineering tools. The quality and relevance of the data are critical to the

success of the predictive model. Data collection should focus on acquiring data that

is complete, accurate, and representative of the problem at hand. In some cases, data

from multiple sources may need to be integrated to provide a comprehensive view

of the software system.

5. Data Preprocessing and Cleaning Once the data is collected, it must be prepro-

cessed and cleaned to ensure it is suitable for modeling. This step involves several

tasks, including handling missing values, correcting errors, normalizing data, and

transforming variables if necessary. In software quality prediction, data prepro-

cessing might also involve aggregating data at the appropriate level (e.g., at the

module or file level) and creating new features that capture relevant aspects of the

software development process. Outlier detection and handling are also important at

this stage. Outliers can skew the results of the predictive model, leading to biased or

inaccurate predictions. Techniques such as z-score analysis, IQR-based methods, or
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domain-specific rules are often used to identify and address outliers.

6. Exploratory Data Analysis (EDA): Exploratory Data Analysis (EDA) is an essen-

tial step in predictive modeling that involves analyzing the data to discover patterns,

trends, and relationships between variables. EDA helps in understanding the distri-

bution of data, identifying any anomalies, and determining the suitability of various

features for predictive modeling. In EDA, various statistical and visualization tech-

niques are employed to summarize the data and generate insights. For example, in

software quality prediction, one might use histograms, box plots, and scatter plots

to examine the distribution of software metrics and their relationship with defect

occurrence. EDA also plays a critical role in feature selection, helping to identify

the most relevant features that should be included in the model. This step is crucial

for building models that are both accurate and interpretable.

7. Feature Engineering: Feature engineering is the process of transforming raw data

into features that better represent the underlying problem to the predictive model.

This step is critical because the quality of the features can significantly impact

the performance of the model. In software quality prediction, feature engineering

might involve creating new features that capture aspects of software complexity,

change history, or developer activity. For example, one might create a feature that

represents the number of changes a file has undergone in the last month or a feature

that captures the experience level of the developers who contributed to a particular

module. Feature engineering also includes the selection of the most relevant features

(feature selection) and the transformation of features to improve their suitability for

modeling (e.g., by applying logarithmic transformations to handle skewed data).
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8. Model Selection: With the data preprocessed and the features engineered, the next

step is to select the appropriate predictive model. The choice of model depends on

the nature of the problem, the type of data available, and the specific requirements

of the prediction task. In software quality prediction, common models include

decision trees, random forests, support vector machines, neural networks, and

logistic regression. The selection process often involves comparing the performance

of different models using cross-validation or other techniques to determine which

model best meets the objective of the prediction task.

9. Model Training: Once the model is selected, it is trained using the prepared data.

Model training involves fitting the model to the data, allowing it to learn the patterns

and relationships between the input features and the target variable. During training,

the model’s parameters are adjusted to minimize the error between the predicted and

actual outcomes. This step is iterative and may involve several rounds of training

and validation to optimize the model’s performance.

10. Model Validation and Testing: Validation and testing are essential steps that ensure

the model’s performance is generalizable to new, unseen data. Validation typically

involves partitioning the data into training and validation sets, where the model

is trained on one subset of the data and validated on another. Cross-validation

techniques, such as k-fold cross-validation, are often used to assess the model’s

robustness and to avoid overfitting. Once the model performs well on the validation

set, it is tested on a separate test set to evaluate its effectiveness in a real-world

applications.

11. Hyperparameter Tuning: It is the process of optimizing the model’s hyperparame-
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ters to achieve the best possible performance. Hyperparameters are the parameters

that are not learned during training but are set before the training process begins.

These include parameters such as the learning rate, the number of trees in a random

forest, or the depth of a neural network. Various techniques, such as grid search,

random search, or Bayesian optimization, can be used to systematically explore the

hyperparameter space and find the optimal settings.

12. Model Evaluation: After the model is trained and tested, it is evaluated using

appropriate metrics to assess its performance. Common evaluation metrics for

predictive models include accuracy, precision, recall, F1-score, and area under the

ROC curve (AUC-ROC). In the context of SQP, it is also important to consider

the practical implications of the model’s performance, such as the cost of false

positives and false negatives. For example, predicting a defect that does not exist

(false positive) may lead to unnecessary effort, while failing to predict an existing

defect (false negative) may result in undetected issues in the software.

13. Model Deployment: Once the model is validated and evaluated, it is deployed in

a production environment where it can be used to make predictions on new data.

Model deployment involves integrating the predictive model into existing systems,

such as software development tools or quality assurance platforms, so that it can be

used in real-time or batch processing. Deployment also requires ongoing monitoring

and maintenance to ensure that the model continues to perform well over time. This

includes tracking the model’s predictions, retraining the model as new data becomes

available, and updating it to reflect changes in the underlying software development

process.
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14. Model Interpretation and Communication: Model interpretation involves explain-

ing the predictions made by the model in a way that is understandable and actionable

for stakeholders. This is particularly important in software quality prediction, where

decisions based on model predictions can have significant implications for software

development and maintenance. Techniques such as feature importance analysis,

partial dependence plots, and SHAP (SHapley Additive exPlanations) values can

be used to interpret the model’s predictions and understand the contribution of

different features. Communication of the model’s results is also critical, involving

the presentation of findings to stakeholders in a clear and concise manner. This may

include reports, dashboards, or visualizations that highlight the key insights and

recommendations based on the model’s predictions.

15. Continuous Improvement: Predictive modeling is an ongoing process that re-

quires continuous improvement. As new data becomes available and as the software

development environment evolves, the predictive model may need to be updated

or retrained to maintain its accuracy and relevance. Continuous improvement in-

volves regularly reviewing the model’s performance, incorporating feedback from

stakeholders, and making adjustments as necessary. This iterative approach en-

sures that the model remains effective in predicting software quality and supporting

decision-making in software development.

1.3.3 Predictive Modeling for Software Quality

Predictive modeling has become an integral part of software quality assurance, providing

a data-driven approach to identifying and mitigating quality issues. The application of
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predictive modeling in software quality spans several key areas, including defect prediction,

defect categorization, change prediction, maintainability prediction and effort estimation.

1.3.3.1 Defect Prediction

Defect prediction is one of the most widely studied applications of predictive modeling

in software quality. The goal of defect prediction is to identify components or modules

in a software system that are likely to contain defects [8]. By identifying defect-prone

components early in the development phase, software engineers can prioritize testing and

quality assurance efforts, thereby reducing the risk of defects in the final product. Defect

prediction models typically use historical data, such as software metrics (e.g., lines of code,

complexity, code churn) and defect reports, to forecast the likelihood of defects in new

or modified components. These models may be based on a variety of machine learning

techniques, including decision trees, random forests, support vector machines, and neural

networks. The choice of model and features is critical to the success of defect prediction,

as it determines the model’s ability to accurately identify defect-prone components.

1.3.3.2 Defect Categorization

Defect categorization involves classifying defects based on their severity, impact, or

other attributes [11]. This is crucial for prioritizing quality assurance efforts, as different

types of defects may require different levels of attention and resources. For example, a

critical defect that affects the core functionality of the software may need to be addressed

immediately, while a minor defect that affects a rarely used feature may be deferred to a

later release. Predictive models for defect categorization typically use features such as

defect descriptions, defect history, and software metrics to classify defects into different
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categories. These models may be based on classification algorithms such as multinomial

Naı̈ve Bayes, support vector machines, or convolutional neural networks. The accuracy of

defect categorization models is critical for ensuring that resources are allocated effectively

and that the most critical defects are addressed promptly.

1.3.3.3 Change Prediction

Change prediction models aim to forecast the likelihood of future changes in specific

components of a software system [12]. Changes may be required due to new feature

requests, bug fixes, or adaptations to new environments. Predicting which parts of the

software are more susceptible to change can help in better planning and resource man-

agement, allowing for proactive maintenance and reducing the risk of introducing new

defects. Change prediction models often utilize version control data, change history, and

dependency graphs to forecast which modules are likely to undergo changes in future

iterations.

1.3.3.4 Maintainability Prediction

Software maintainability is a critical quality attribute that determines how easily a software

system can be modified to correct defects, improve performance, or adapt to a changed

environment [13]. Maintainability prediction models assess the ease with which software

can be maintained based on different factors such as code structure, documentation quality,

and adherence to coding standards. These models help in identifying areas of the software

that may become maintenance bottlenecks, enabling organizations to take corrective

actions early in the development process. Predictive models for maintainability often rely

on metrics like code complexity, cohesion, coupling, and code smells.
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1.3.3.5 Reliability Prediction

Reliability prediction models are developed to estimate the probability of software func-

tioning without failure over a specified period under given conditions [14]. These models

are particularly important for critical systems where failures can have severe consequences.

Reliability prediction often involves analyzing historical failure data, operational profiles,

and software architecture. The goal is to forecast the reliability of future releases or

new features, allowing organizations to allocate resources to areas that require the most

attention to ensure high reliability.

1.3.3.6 Effort Estimation

Effort estimation involves predicting the amount of effort required to complete a soft-

ware development task, such as fixing a defect, implementing a feature, or conducting

a code review [15]. Accurate effort estimation is critical for project planning, resource

allocation, and budget management. Overestimating effort can lead to inefficient use of

resources, while underestimating effort can result in missed deadlines, cost overruns, and

compromised quality. Predictive models for effort estimation typically use features such

as task complexity, developer experience, and historical effort data to forecast the effort

required for new tasks. These models may be based on regression algorithms, such as

linear regression, decision trees, or neural networks. The accuracy of effort estimation

models is critical for ensuring that projects are completed on time, within budget, and with

the desired level of quality.
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1.3.4 Techniques Applied in Predictive Modeling for Software Quality

Machine learning (ML) techniques form the backbone of predictive modeling in software

quality assurance. These techniques enable the development of models that can learn

patterns from historical data and make accurate predictions on new data. Several ML

techniques are commonly applied in predictive modeling for software quality, including

supervised learning, unsupervised learning, and ensemble learning.

1.3.4.1 Supervised Learning

It is the most widely used ML technique in predictive modeling for software quality [16].

In supervised learning, the model is trained on labeled data, where the input features (e.g.,

software metrics) are associated with known outcomes (e.g., defect presence). The model

learns the mapping between the features and the outcomes, allowing it to make predictions

on new, unlabeled data. Common supervised learning algorithms used in software quality

prediction include decision trees, random forests, support vector machines, and neural

networks. These algorithms are particularly effective for tasks such as defect prediction,

defect categorization, and effort estimation, where the goal is to predict a specific outcome

based on historical data.

1.3.4.2 Unsupervised Learning

it is another important ML technique used in predictive modeling, particularly for tasks

such as anomaly detection and clustering. In unsupervised learning, the model is trained

on unlabeled data, where the input features are not associated with specific outcomes [17].

The model learns the underlying structure of the data, such as clusters or patterns, without
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the need for labeled data. In the context of software quality, unsupervised learning can be

used for tasks such as identifying outliers in software metrics, detecting unusual patterns

in code changes, or clustering similar defects based on their characteristics. Common

unsupervised learning algorithms include k-means clustering, hierarchical clustering, and

principal component analysis (PCA).

1.3.4.3 Ensemble Learning

Ensemble learning involves combining multiple ML models to improve predictive perfor-

mance. The idea behind ensemble learning is that by aggregating the predictions of multiple

models, the overall prediction can be more accurate and robust than any individual model

[18]. This is particularly useful in software quality prediction, where different models

may capture different aspects of the data. Common ensemble learning techniques include

bagging (e.g., random forests), boosting (e.g., gradient boosting machines), and stacking.

These techniques have proven to enhance the accuracy and robustness of predictive models,

particularly in complex and high-dimensional datasets.

1.3.4.4 Deep Learning

It is a subset of ML that involves the use of neural networks with multiple layers (i.e., deep

neural networks) to learn complex patterns and representations from data. Deep learning

has gained significant attention in recent years due to its success in various domains,

such as computer vision, speech recognition, and natural language processing. In the

context of software quality, deep learning has shown promise in tasks such as defect

prediction, defect categorization, and effort estimation [19]. For example, convolutional

neural networks (CNNs) have been applied to the categorization of software defects based
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on their descriptions, while recurrent neural networks (RNNs) have been used to model

the temporal aspects of software development processes. One of the key advantages of

deep learning is its ability to automatically learn features from raw data, reducing the need

for manual feature engineering. This is particularly useful in software quality prediction,

where the complexity and diversity of the data can make feature engineering challenging.

However, deep learning models also demand significant volumes of data and computational

resources, which can be a barrier to their adoption in some contexts.

1.3.4.5 Natural Language Processing (NLP)

Natural language processing (NLP) is another emerging trend in predictive modeling for

software quality. NLP techniques are used to analyze and interpret human language, mak-

ing them highly suitable for tasks such as processing defect descriptions, code comments,

and other textual data [20]. In the context of software quality, NLP has been utilized

to tasks such as defect categorization, sentiment analysis of developer comments, and

automatic generation of test cases from requirements. For example, NLP techniques

such as word embeddings and transformers have been used to represent textual data in a

form that can be used by predictive models. The integration of NLP with traditional ML

techniques has the potential to greatly improve the accuracy and relevance of predictive

models, particularly in tasks that involve textual data. However, NLP also introduces

additional challenges, such as the need to handle ambiguity, context, and domain-specific

language.
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1.3.4.6 Transfer Learning and Cross-Project Validation

Transfer learning is an ML technique that involves applying knowledge learned from one

domain or project to another. In the context of software quality prediction, transfer learning

has been used to apply models trained on one project to other projects, particularly in

situations where labeled data is scarce. Cross-project validation is a related concept that

involves evaluating the performance of a predictive model on data from different projects.

This is important for ensuring that the model is generalizable and can be utilized across

a broad range of software systems. Cross-project validation is particularly challenging

in software quality prediction, as different projects may have different characteristics,

metrics, and processes. The application of transfer learning and cross-project validation is

an emerging trend in predictive modeling for software quality, with the potential to enhance

the generalizability and applicability of predictive models across different contexts.

1.4 Factors Affecting the Performance of Predictive Mod-

eling for Software Quality

The performance of predictive models in software quality prediction is influenced by several

factors, each of which can greatly influence the accuracy, reliability, and generalizability

of the models. Understanding these factors is critical for developing effective predictive

models and improving their performance in practice.
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Figure 1.2: Factors affecting the Performance of SQPM

1.4.1 Imbalanced Data

It is a common challenge in predictive modeling for software quality, particularly in tasks

such as defect prediction and defect categorization. Imbalanced data occurs when the target

variable’s distribution is skewed, with one class being significantly more prevalent than the

other(s). For example, in defect prediction, the majority of components may be defect-free,

while only a small proportion may contain defects. Imbalanced data can lead to biased

models that are overly focused on the majority class, resulting in poor performance on the

minority class. This is particularly problematic in software quality prediction, where the

minority class (e.g., defective components) is often the most critical to identify. Several

techniques have been developed to address imbalanced data, including resampling methods

(e.g., oversampling, undersampling), cost-sensitive learning, and ensemble methods.
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1.4.2 Parameter Tuning

Parameter tuning involves optimizing the hyperparameters of the predictive model to

achieve the best possible performance. Hyperparameters are the parameters that are not

learned from the data but are set before the training process, such as the learning rate,

regularization strength, and the number of hidden layers in a neural network. In the context

of software quality prediction, parameter tuning is critical for achieving optimal model

performance. Poorly chosen hyperparameters can lead to underfitting, overfitting, or slow

convergence, resulting in suboptimal predictive accuracy. Several techniques can be used

for parameter tuning, including grid search, random search, and Bayesian optimization.

1.4.3 Feature Selection

It is the process of identifying the most relevant features that contribute to the predictive

power of the model. In the context of SQP, feature selection is critical for improving model

accuracy, reducing computational complexity, and enhancing interpretability. Irrelevant or

redundant features can lead to overfitting, reduced accuracy, and increased computational

cost. Several techniques can be used for feature selection, including filter methods, wrapper

methods, and embedded methods. The choice of feature selection technique is influenced

by the nature of the data, the predictive task, and the specific requirements of the model

1.4.4 Multi-Collinearity

Multi-collinearity occurs when two or more features in the dataset are highly correlated

with each other. In the context of software quality, multi-collinearity can occur when
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multiple software metrics or process variables capture similar information. For example,

lines of code and code complexity may be highly correlated, as larger modules tend to

be more complex. Multi-collinearity can lead to unstable model estimates, where minor

changes in the data can result in significant changes in the model coefficients. This can

make the model difficult to interpret and reduce its predictive accuracy. Several techniques

can be used to address multi-collinearity, including feature selection, principal component

analysis (PCA), and regularization methods such as ridge regression

1.4.5 Overfitting and Underfitting

Overfitting and underfitting are two common issues that can affect the performance of

predictive models. Overfitting happens when the model becomes overly complex and

captures noise or random variations in the training data, resulting in poor generalization

to new data. Underfitting occurs when the model is too simple and fails to capture

the underlying patterns in the data, resulting in poor performance on both the training

and test data. In the context of SQP, overfitting and underfitting can lead to inaccurate

predictions and unreliable models. Several techniques can be used to mitigate overfitting

and underfitting, including regularization, cross-validation, and model complexity control.

The choice of model architecture, hyperparameters, and training techniques is critical for

achieving the right balance between underfitting and overfitting.

1.5 Literature Survey

Software quality prediction is a vital aspect of software engineering, focusing on fore-

casting the likelihood of defects, estimating the time required for bug resolution, and
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assessing the impact of changes on software maintainability. The increasing complexity

of modern software systems and the high demand for reliable software have necessitated

the development of sophisticated predictive models that can aid in maintaining high soft-

ware quality standards. Predictive modeling in software engineering has evolved over the

years, incorporating diverse statistical and machine learning techniques to enhance the

accuracy and reliability of predictions. This literature review aims to provide a compre-

hensive overview of the existing research on software quality prediction, highlighting key

techniques, challenges, and future directions.

1.5.1 Software Metrics

Some of the frequently utilized Object Oriented metric suites found in the literature include:

• Chidamber and Kemerer[21] proposed a metric suite which consists of 6 metrics

pertaining various aspects of OO software. These metrics are: Weighted Methods

per Class (WMC), Depth of Inheritance Tree (DIT), Number Of Children (NOC),

Coupling Between Object (CBO), Response For a Class (RFC) and Lack of Cohesion

in Methods (LCOM). This metric suite has been used in various studies predicting

software quality prediction.

• Li and Henry[22] had given a metric suite that comprises: Data Abstraction Coupling

(DAC), Message Pass Coupling (MPC) and Number of Methods (NOM) and two

size metrics namely SIZE1 and SIZE2.

• Lorenz and Kidd[23] presented the following Object-Oriented metrics: Class Size

metrics (CS), Number of Operations (methods) Overridden by a subclass (NOO),
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Number of Operations Added by a subclass (NOA) and Specialization Index (SIX).

• Metrics for Object Oriented Design (MOOD) [24] contains following metrics: At-

tribute Hiding Factor (AHF), Method Hiding Factor (MHF), Method Inheritance

Factor (MIF), Attribute Inheritance Factor (AIF), Coupling Factor (COF), and Poly-

morphism Factor (POF).

• Bieman and Kang[25] introduced 2 cohesion metrics: Tight Class Cohesion (TCC)

and Loose Class Cohesion (LCC).

• Briand et al.[26] provided 18 metrics that assess different types of interactions

between classes. In addition to various coupling metrics proposed by Briand [26],

Martin[27] introduced two additional coupling metrics: two more coupling metrics,

Afferent Coupling (Ca) and Efferent Coupling (Ce).

• Lee et al.[28] introduced inheritance-based and non-inheritance-based coupling

metrics: NIH-ICP, IH-ICP. They also introduced Information flow-based coupling

(ICP) metric which is the sum of NIH-ICP and IH-ICP. To assess cohesion, they

proposed information flow based cohesion (ICH) metric.

• Bansiya and Davis[29] proposed the Quality Model for Object-Oriented Design

(QMOOD) metrics suite. The components of this metric suite are as follows:

Number of Polymorphic Methods (NOP), Design Size in Classes (DSC), Number

of Hierarchies (NOH), Average Number of Ancestors (ANA), Data Access Metric

(DAM), Direct Class Coupling (DCC), Cohesion among Methods of a Class (CAM),

Measure of Aggression (MOA), Method of Functional Abstraction (MFA)), Class

Interface Size (CIS).
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• Tang et al.[30] introduced Coupling Between Methods of a Class (CBM), Number

of Object/Memory Allocation (NOMA), Average Method Complexity (AMC), and

Inheritance Coupling (IC).

1.5.2 Software Quality Prediction

Malhotra [31] conducted a systematic review of studies from January 1991 to October

2013 in the literature that use the machine learning techniques for software fault prediction

and she found that the most frequently used ML techniques for Software Fault Prediction

were C4.5, Naive Bayes, Multilayer Perceptron, Support Vector Machines and Random

Forest.

The study of Mahmood et. al. [32] showed that when the data is imbalanced, the

predictive capability of SDP studies tends to be low. Japkowicz [33] demonstrated that class

imbalances hinder the performance of standard classifiers and evaluated the effectiveness

of Over-Sampling, Down-Sizing and Learning by Recognition strategies to address the

issue. Hulse et al. [34] presented a comprehensive and systematic experimental analysis of

learning from imbalanced data, using 11 learning algorithms with 35 real-world bench-

mark datasets from a variety of application domains. He and Garcia [35] offer an extensive

review of the development of research in learning from imbalanced data. Khoshgoftaar

and Gao [36] used the random under sampling technique (RUS) on the majority class to

alleviate the detrimental effects of imbalanced data on the prediction models. Ozturk and

Zengin [37] proposed HSDD (hybrid sampling for defect data sets) to solve imbalanced

data problem. Kumar and Sureka [38] applied five different strategies (Random Under-

sampling, Random Oversampling, SMOTE, SMOTEBoost and RUSBoost) to counter data
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imbalance problem and concluded that Gain Ratio and RELEIF outperform other strategies.

Kanimozhi [39] proposed that combining different expressions of the re-sampling approach

is an effective solution to the tuning problem. Ge [40] performed the comparative Analysis

of SDP Algorithms in Supervised Learning Software Using Imbalanced Classification

Datasets. Alan and Catal [41] proposed an Outlier Detection Method Utilizing OO

Metrics Thresholds. Shivaji et. al. [42] proposed Gain Ratio based FS method suitable

for classification-based defect prediction. Kumar and Rath [43] has utilized a genetic

algorithm (GA) as a FS technique to identify the optimal set of source code metrics. Lu

et. al. [44] observed that Multidimensional Scaling MDS which uses Random Forest

similarity measure on the software metrics (independent prediction variables) outperforms

other active learning approaches. Aktas and Buzluca [45] used CFS and PCA techniques

to derive the most suitable subset of metrics. Yang and Qian [46] employs an automated

parameter tuning method called Caret to find the best possible parameter configurations

and that outperforms the default parameter settings. Malhotra et. al. [47] proposed

Parameter Tuning on SDP through Differential Evolution & Simulated Annealing. Cui

[48] proposed novel feature selection method based on CFS evaluator and GreedyStepwise

(GS) search. Cui et. al. [49] conducted a study on the impact of the number of features on

the performance of SDP models.

1.5.3 Research directions revealed from literature review

• It has been noted that in majority of the SQP models, the techniques to address the

issues the performance of models are not employed.

• It has been noted that in most of the chosen primary studies that addressed the
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imbalanced data, the techniques employed are very primitive. Those techniques

alone are not sufficient considering the data complexities. There is scope to apply

various advance techniques to build improved prediction models.

• In most of the studies, the size of public dataset used is very small. The performance

of prediction models should be validated on large datasets.

• It has been reflected through this review that few to ensembles and hybridized

techniques gave very good performance. The generalized findings regarding the

applicability of these methods could not be presented, as these methods were hardly

seen replicated. Thus future work should focus on applying these techniques on

diverse datasets to establish their applicability in this area.

• Few of the selected primary studies reported the threat of result bias as the software

system from which datasets have been extracted has got specific properties. Thus

to reduce this threat future studies should focus on cross project validation or inter-

project validation.

• Researchers have showed how the different issues have impact on the performance

of quality predictors. But the studies are limited to only few machine learning

algorithms. Thus, a comprehensive and comparative study has to be carried out on

various machine learning algorithms.

• There are no studies found to address outliers and multi-collinearity problems in the

defect prediction models built using machine learning algorithms. So it is required

to analyze the possibility of occurrence of outliers and multi-collinearity problems

and address them.
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• Few studies have proposed Nature-inspired algorithms to address the different issues

in the Machine Learning based defect predictors. So it is required to compare the

performance and exploit those algorithms to develop better models.

• Some researchers have developed certain tools for collecting data sets or building

models etc. They are helpful in conducting research in Software/Computer Engi-

neering field. A study on the available tools has to be conducted. Also, new tools if

desired may be developed.

1.6 Objectives of the Thesis

1.6.1 Vision

Improving the performance of software quality prediction models using Machine Learning

(ML) techniques.

1.6.2 Focus

The focus of the thesis is centered on several key research objectives, each addressing a

specific aspect of software quality predictive modeling. These objectives are designed to

systematically explore, analyze, and improve the factors that influence the performance of

predictive models, with a particular emphasis on imbalanced data, outliers, overfitting &

underfitting, multi-collinearity, parameter tuning, and feature selection. The research is also

focused on developing classifiers that are effective in identifying defect-proneness, change-

proneness and maintainability of classes or modules, thereby enhancing the predictive
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accuracy and reliability of SQP models. In this regard, effective defect prediction and

defect categorization models were developed for open-source software systems. To ensure

the reliability and generalizability of the predictive models, the research employs rigorous

validation techniques, including ten-fold cross-validation, to minimize bias in the results.

Therefore, this study specifically aims to achieve the following objectives:

1. To perform a systematic review of the classification algorithms used in software

quality predictive models.

2. To conduct systematic literature review to identify and validate the different factors

effecting the performance of software quality prediction models.

3. To study methods employed to categorize defects for Software Maintenance.

4. To study and apply parameter tuning techniques for software quality prediction

models.

5. To study, analyze and propose methods to address data imbalance problem in soft-

ware quality prediction models.

6. To review and explore feature selection techniques for software quality prediction

models.

7. To study techniques used to handle multi-collinearity and apply them in software

quality prediction models.

8. To explore the latest algorithms in developing software quality prediction models

and evaluate their performance.
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9. To study and propose metrics for assessing software quality in view of latest software

development methodologies.

1.6.3 Goals

Each of the research objectives outlined above is accompanied by specific goals that

detail the steps and milestones necessary to achieve the desired outcomes. These goals

are designed to guide the research process, ensuring that each objective is addressed

systematically and comprehensively.

1. Systematic review of classification algorithms employed for software quality predic-

tion models

1.1. To identify the various algorithms used in software quality predictive modeling,

categorizing them based on their underlying principles and approaches.

1.2. To analyze the performance of these algorithms in diverse contexts, identifying

strengths, weaknesses, and areas for improvement.

1.3. To highlight gaps in the existing literature and suggest potential directions

for future research, focusing on the development of novel algorithms that can

address existing limitations.

2. Systematic Literature Review on Factors Affecting Model Performance

2.1. To systematically review the literature on factors affecting the performance of

software quality predictive models, focusing on issues such as data imbalance,

outliers, overfitting & underfitting, multi-collinearity, parameter tuning, and

feature selection.
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2.2. To identify and validate the most significant factors that influence model

performance, providing a solid foundation for further research.

2.3. To propose a comprehensive framework that integrates these factors into a

unified approach for improving predictive model performance.

3. Application of Parameter Tuning Techniques

3.1. To study existing parameter tuning techniques and their application in software

quality predictive modeling.

3.2. To develop and validate new parameter tuning methods that optimize model

performance, focusing on techniques that balance accuracy and generalization.

3.3. To apply these methods to real-world datasets, demonstrating their practical

utility in improving predictive model performance.

4. Addressing Data Imbalance in Predictive Models

4.1. To explore existing techniques for handling imbalanced data in software quality

prediction models, evaluating their effectiveness and limitations.

4.2. To develop and validate new methods for addressing data imbalance, focusing

on techniques that enhance predictive accuracy without sacrificing model

interpretability.

4.3. To apply these techniques to real-world datasets, demonstrating their practical

applicability and effectiveness in improving model performance.

5. Exploration of Feature Selection Techniques

31



Objectives of the Thesis

5.1. To review existing feature selection techniques used in software quality predic-

tive modeling, identifying their strengths and limitations.

5.2. To develop and validate new feature selection methods that can improve model

performance by choosing the most relevant and informative features.

5.3. To apply these techniques to various datasets, demonstrating their effectiveness

in enhancing predictive accuracy and reducing model complexity.

6. Handling Multi-Collinearity

6.1. To review existing techniques for handling multi-collinearity in software quality

predictive models, identifying their strengths and limitations.

6.2. To develop and validate new methods for mitigating the impact of multi-

collinearity on predictive model performance.

6.3. To apply these techniques to various datasets, demonstrating their effectiveness

in enhancing model accuracy and reliability.

7. Exploration of Latest Algorithms for Predictive Modeling

7.1. To explore and evaluate the latest AI and ML algorithms for software quality

predictive modeling, focusing on their applicability and effectiveness.

7.2. To develop and validate new predictive models using these algorithms, compar-

ing their performance with existing methods.

7.3. To perform a thorough analysis of the results, identifying the most promising

algorithms for future research and application.

8. Validation of Open Source Datasets for Quality Prediction
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8.1. To collect and validate datasets from open-source software projects, ensuring

their suitability for quality prediction and inter-project validation.

8.2. To apply predictive models to these datasets, demonstrating their generalizabil-

ity and robustness across different software projects.

8.3. To propose guidelines for dataset validation and inter-project validation, pro-

viding a roadmap for future research in this area.

9. Exploration of Software Metrics for Quality Prediction

9.1. To review existing software metrics used in quality prediction, identifying their

relevance and applicability to modern software development practices.

9.2. To develop and validate new software metrics that can enhance the predictive

accuracy and reliability of software quality models.

9.3. To apply these metrics to various datasets, demonstrating their effectiveness in

predicting software quality in different contexts.

1.7 Overview of the Work

Software quality prediction is a critical area in software engineering, addressing the need

to ensure reliability, maintainability, and efficiency in software systems. The complexity

of modern software, coupled with the rapid evolution of development methodologies, has

made it increasingly important to develop robust and accurate models that can predict

software quality by detecting potential defects early in the development process. The

overarching aim of the work was to improve the performance of prediction models in
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software quality by addressing various challenges such as imbalanced data, outliers, hy-

perparameter tuning, feature selection, multi-collinearity, and the application of advanced

machine learning and deep learning techniques. This overview presents a comprehensive

summary of the research conducted, methodologies, and significant findings of each study.

A thorough systematic literature review was carried out following the guidelines

provided by Kitchenham [50] to obtain a clear understanding of previous research in the

area of software quality prediction. The primary objective of this review was to explore

and comprehend studies on software quality prediction from the following perspectives:

• The most useful metrics in identifying the change and defect prone classes/modules.

• The machine learning algorithms effective in identifying the change and defect prone

classes/modules.

• To identify the issues affecting the performance of machine learning algorithms in

software quality predictive modeling.

• To study the techniques being used for handling parameter tuning.

• To study the techniques being used for handling imbalanced data.

• To study the techniques being used for handling feature selection.

• To study the techniques being used for handling multi-collinearity.

• To identify the kinds of data sets being used by researchers in prediction model

development.
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Once the search string was established, the most relevant and reputable digital libraries

were chosen to extract pertinent papers related to the subject of software quality prediction.

By thoroughly analyzing the data gathered from these studies, the research questions were

addressed. Various researchers have explored the application of ML techniques in SQP.

Nevertheless, further empirical studies are necessary to validate these algorithms across

multiple datasets and to compare their outcomes.

Categorizing software defects based on attributes such as maintenance effort and

change impact is vital for efficient resource allocation during the software maintenance

phase. The research developed and validated various defect categorization models, uti-

lizing different machine learning techniques. The first study in this domain developed

Software Defect Categorization (SDC) models using the Multinomial Naı̈ve Bayes (NBM)

algorithm. The study focused on three software defect attributes: maintenance effort,

change impact, and a combined approach that integrates both. Text mining techniques

were employed to extract relevant features from bug reports, and the performance of the

SDC models was evaluated using the Area Under the Receiver Operating Characteristic

(ROC) curve. The SDC models based on the combined approach of maintenance effort and

change impact exhibited superior performance compared to models based on individual

attributes. The study demonstrated the efficacy of the NBM algorithm in classifying

software defects. The study underscores the importance of considering multiple attributes

in defect categorization models. Building on the previous study, another study was focused

on developing SDC models using ensemble learning techniques. The study conducted a

comprehensive evaluation of four ensemble learning techniques, namely Random Forest,

XGBoost, AdaBoost, and Bagging, for software bug categorization. Experiments were

conducted on five Android applications - Bluetooth, Browser, Calendar, Camera, and
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MMS. Thus, a total of 5 (bug datasets) x 4 (predictor sets) x 3 (approaches) x 4 (tech-

niques) = 240 SBC models were built during experimentation. The results of the study

demonstrate that ensemble learning techniques can significantly improve the accuracy

of bug categorization. Among the four techniques, Random Forest achieved the best

performance, followed by Bagging, AdaBoost, and XGBoost. Thus, the study provides

strong evidence that ensemble learning techniques can be effectively used for software

bug categorization. Third study in this domain focused on developing SDC models using

Convolutional Neural Networks (CNNs), a powerful deep learning technique. The study

developed CNN-based SDC models for five Android operating system application modules.

A total of 60 models were created, considering different feature sets and categorization

approaches. The performance of the models was evaluated using the AUC metric. The

CNN-based SDC models outperformed traditional machine learning approaches, achieving

high predictive accuracy in categorizing software defects. The study also highlighted the

robustness of CNNs in handling large and complex datasets. Overall, this work illustrates

the potential of deep learning techniques to enhance the accuracy and efficiency of SDC.

However, additional research is required to enhance the performance of deep learning

architectures on high-level faults and to explore other deep learning architectures and

techniques for SDC.

One of the significant contributions of the work is the systematic review of hyper-

parameter tuning techniques for software quality prediction models. Hyperparameter

tuning is critical for optimizing the performance of ML models, yet it has often been

overlooked in the context of software quality prediction. Hyperparameters are critical

configurations for ML algorithms that significantly influence the performance of predic-

tive models. In software quality prediction, models are employed to detect vulnerable
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software components early in the development process, aiding in better resource allo-

cation and enhancing overall software quality. However, many studies rely on default

hyperparameter settings, which can lead to suboptimal model performance. The study

conducted a systematic review of existing literature to identify and analyze studies that

have utilized hyperparameter tuning techniques in software quality prediction. The review

covered various domains, including defect prediction, maintenance estimation, change

impact prediction, reliability prediction, and effort estimation. The review identified 31

primary studies on hyperparameter tuning for software quality prediction models. The

findings highlighted that tuning hyperparameters significantly enhances the predictive

accuracy of models. Additionally, it was observed that certain classification algorithms are

highly sensitive to their parameter settings, achieving optimal performance when tuned

appropriately. Conversely, some algorithms exhibit low sensitivity to hyperparameters,

making tuning unnecessary in such cases. The study concluded that hyperparameter tuning

is essential for improving the predictive capability of software quality models. Practical

guidelines were provided to facilitate effective hyperparameter tuning, offering insights

for both researchers and practitioners in the field.

Imbalanced data is a pervasive challenge in machine learning, particularly in software

defect prediction, where the number of defective software components is often significantly

lower than non-defective ones. This research explored various techniques to address this

issue, focusing on Artificial Neural Networks (ANNs) to improve model performance. The

study investigated the effectiveness of various data resampling techniques in improving

the performance of ANN-based SDP models. A total of twelve data sampling methods,

including over-sampling, under-sampling, and hybrid techniques, were applied to six

distinct defect datasets from open-source Java-based systems. The performance of the
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resulting 78 SDP models was assessed using ten-fold cross-validation and measures such

as AUC, G-Mean, and Balance. The study found that handling imbalanced data signif-

icantly improves the performance of ANN-based SDP models. The Synthetic Minority

Oversampling with Edited Nearest Neighbor Technique (SMOTE-ENN) outperformed

other techniques, demonstrating its effectiveness in addressing imbalanced data. The

research advocates for the use of oversampling and hybrid data balancing techniques in

developing effective defect prediction models. The findings provide a foundation for

further exploration of imbalanced learning techniques in SDP. To further address the

issue of imbalanced data, another study in this research proposed the use of a Weighted

Loss Function for Neural Networks (WL-NN). Four types of defect prediction models

were constructed: NN over imbalanced data, WL-NN over imbalanced data, NN over

balanced data, and WL-NN over balanced data. The experiments were carried out on 22

open-source datasets from the AEEEM, JIRA, and PROMISE repositories. The results

demonstrated that the proposed WL-NN significantly improves the performance of SDP

models. When combined with data resampling techniques, WL-NN outperformed other

approaches, achieving the highest predictive performance. The study strongly recommends

the adoption of the WL-NN approach for handling imbalanced data in software defect

prediction. The findings contribute to the ongoing research on improving the robustness

and accuracy of predictive models in the presence of imbalanced data.

Feature selection is a crucial step in building effective predictive models, as it helps in

identifying the most relevant features while reducing the dimensionality of the dataset. This

research explored the application of swarm intelligence techniques for feature selection in

SDP. This study focused on evaluating the effectiveness of swarm intelligence techniques,

particularly Cuckoo Search (CS) and Crow Search (CRS), in selecting relevant features
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for software defect prediction. The research employed a diverse set of feature selection

methods and machine learning algorithms on multiple datasets from the PROMISE reposi-

tory. Comparative analysis was conducted using traditional filter-based techniques such as

chi-square and information gain, alongside the swarm intelligence techniques. The find-

ings revealed that CS and CRS outperformed traditional filter-based methods in selecting

relevant features for defect prediction. These swarm intelligence techniques demonstrated

superior performance in exploring the solution space and identifying high-quality feature

subsets. The study emphasizes the potential of swarm intelligence techniques to improve

accuracy and efficiency of defect prediction models. The complementary nature of these

techniques with traditional classifiers such as logistic regression, support vector machine,

Naı̈ve Bayes, and random forest was also emphasized.

Multi-collinearity issignificant challenges in software quality prediction, affecting

the reliability and interpretability of the models. This research conducted a systematic

review of the challenges and solutions related to these issues. The review identified several

techniques for addressing multi-collinearity, including dimensionality reduction methods

such as Principal Component Analysis (PCA), regularization techniques like Ridge and

Lasso regression. The study also emphasized the importance of careful feature selection in

minimizing multi-collinearity. The research found that handling these issues significantly

enchance the performance of SQP models.

This research also proposed a Metric Suite for Event-Driven Software Systems. Event-

driven software systems have gained significant prominence due to their ability to handle

complex and asynchronous interactions. Evaluating the quality and characteristics of

such systems is crucial to ensure their reliability and efficiency. This study proposed

a comprehensive set of metrics specifically designed to measure event-driven software
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systems. Beginning with an exposition of the event-driven programming paradigm, this

study emphasizes its pivotal traits, highlighting the distinctiveness of event-driven systems

in contrast to structured and object-oriented programming paradigms. The purpose of

this study is to address the necessity for metrics tailored to event-driven systems. The

proposed metrics are grouped into categories, such as event structure, event dependency,

event performance, event complexity, event synchronization and event reliability metrics.

Each metric is defined and described. These metrics facilitate software practitioners to

make informed decisions during system design, optimization, and evaluation processes.

This work concludes by discussing the limitations of the study, including potential threats

to its validity. Future guidelines are also outlined, highlighting opportunities for further

research, industry adoption, tooling, benchmarking, and continuous improvement of the

proposed metrics.

1.8 Organization of the Thesis

This section outlines the structure of the thesis. The thesis is structured into ten chapters,

each focusing on a specific aspect of the research undertaken to develop and validate

improved machine learning techniques for software quality predictive modeling. The

organization of the thesis is as follows: Chapter 1 sets the stage for the entire research

work by presenting the basic concepts of work and the motivation of the thesis. Chapter 2

details the research methodology adopted to achieve the research objectives. Chapter 3

presents a comprehensive systematic literature review conducted according to established

guidelines to identify the research gaps. Chapter 4 presents the construction of software

defect categorization models based on maintenance effort and change impact. Chapter 5
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presents the hyperparameter tuning techniques in software quality prediction. Chapter 6

proposes the techniques to handle imbalanced data in software quality prediction. Chapter

7 proposes swarm intelligence-based approaches for feature selection in software quality

prediction. Chapter 8 analyzes the techniques to handle the problems of multi-collinearity,

overfitting & underfitting and outliers in software quality prediction. Chapter 9 pro-

poses a metric suite for event-driven software systems. Finally, Chapter 10 presents the

conclusions of the thesis. The brief description of each chapter is given below.

Chapter 1: The introduction sets the stage for the entire research work. It begins

by discussing the significance of software quality prediction in the context of software

engineering. The chapter outlines the challenges associated with predictive modeling in

software quality, including imbalanced data, outliers, multi-collinearity, and the need for

efficient feature selection and parameter tuning. The chapter also presents the research

objectives, the scope of the study, and the contributions of the research. This chapter also

describes the detailed steps of developing quality prediction models.

Chapter 2: This chapter details the research methodology adopted to achieve the

research objectives. It begins with a discussion on the design of the study, including the

selection of datasets, the choice of algorithms, and the evaluation metrics used to assess

model performance. The chapter also covers the experimental setup, data preprocessing

techniques, and the steps involved in the development and validation of predictive models.

Finally, the chapter discusses the systematic approach taken to address the challenges

identified in the research.

Chapter 3: The third chapter presents a comprehensive systematic literature review

conducted according to established guidelines. This review provides a detailed understand-

ing of the existing research in software quality prediction, with a focus on areas such as
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defect prediction, change impact analysis, and maintainability estimation. The review

highlights the strengths and limitations of current approaches, identifies research gaps, and

sets the foundation for the subsequent chapters. Key findings from the review are used to

justify the need for improved techniques in software quality prediction.

Chapter 4: This chapter focuses on the categorization of software defects based

on maintenance effort and change impact. It presents four distinct studies that employ

different machine learning techniques for defect categorization: Multinomial Naı̈ve Bayes

(NBM), ensemble methods, Convolutional Neural Networks (CNN), and deep learning

methods. The chapter compares the effectiveness of these approaches and highlights the

combined impact of maintenance effort and change impact on defect categorization.

Chapter 5: This chapter delves into the importance of hyperparameter tuning in en-

hancing the performance of predictive models. It provides an in-depth analysis of different

tuning techniques, including grid search, random search, and more advanced methods.

The chapter presents the results of experiments that show how tuning hyperparameters

can significantly improve model performance. Practical guidelines for hyperparameter

tuning in software quality prediction are also provided, based on the insights gained from

the experiments.

Chapter 6: This chapter addresses the challenge of imbalanced data in software defect

prediction. It explores various techniques to manage this issue, including oversampling,

undersampling, and hybrid methods. The chapter specifically focuses on the application of

these techniques to Artificial Neural Networks (ANN) and evaluates their effectiveness

in improving model performance. This chapter also introduces a novel Weighted Loss

Function for Neural Networks (WL-NN) designed to tackle imbalanced data in software

defect prediction. The chapter presents experimental results demonstrating the superiority
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of the WL-NN approach in enhancing prediction accuracy.

Chapter 7: This chapter investigates the application of swarm intelligence techniques

for feature selection in software defect prediction. It compares these techniques with

traditional filter-based methods and assesses their effectiveness in improving the accuracy

of defect prediction models. The chapter demonstrates how swarm intelligence can be

leveraged to identify optimal feature subsets, enhancing model performance.

Chapter 8: This chapter delves into the issue of multi-collinearity in software quality

prediction models. It reviews the causes and consequences of multi-collinearity and dis-

cusses various techniques to mitigate its impact. The chapter provides practical guidelines

for managing these issues, ensuring the development of reliable and accurate prediction

models.

Chapter 9: This chapter proposes a comprehensive set of metrics tailored for evaluating

event-driven software systems. It discusses the unique characteristics of event-driven

systems and the necessity for specialized metrics to assess their quality. The chapter

introduces various metric categories, including event structure, event dependency, and

event performance, providing a detailed explanation of each metric and its application.

Chapter 10: The final chapter summarizes the key findings and contributions of

the thesis. It discusses the implications of the research for both academia and industry,

highlighting the advancements made in software quality prediction. The chapter also

identifies potential areas for future research, offering suggestions for further exploration

and development in this field.
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Chapter 2

Research Methodology

2.1 Introduction

In modern software engineering, predictive models serve a crucial role in assessing the

quality of software systems. These models leverage historical data to forecast future

software defects, anticipate changes, and evaluate maintainability. The purpose of the

research is to improve the performance of machine learning algorithms in identifying

defect-prone or change-prone software classes/modules.

This chapter on research methodology provides a comprehensive framework for the

systematic investigation carried out during the research. It outlines the strategies, methods,

and techniques employed to achieve the objectives of the study. This chapter includes the

definition of the research problem, the selection of variables, data collection procedures,

and the experimental design framework. Through this, the methodology ensures the

validity, reliability, and rigor of the research findings, guiding how the software quality

45



Research Process

predictive models were developed, validated, and analyzed.

The structure of this chapter is as follows: it begins by outlining the research process

in Section 2.2, followed by the problem definition in Section 2.3, the methodology for

literature review in Section 2.4, a detailed explanation of the variables in Section 2.5,

the data analysis methods employed in Section 2.6, the experimental design framework

in Section 2.7, the empirical data collection in Section 2.8, the model development and

validation in Section 2.9, the performance measures employed in Section 2.10 and finally,

statistical analysis in Section 2.11.

2.2 Research Process

The research process followed in this study involves several stages, each designed to

methodically address the research objectives and hypotheses [51]. The stages of the

research process are summarized in Figure 2.1 below:

1. Problem Definition: Identifying the research problem, including challenges in

current software quality prediction models, such as imbalanced data and multi-

collinearity.

2. Literature Review: Conducting a systematic review of past research to identify

existing gaps, algorithms, and best practices in software quality prediction.

3. Data Collection: Collecting datasets from open-source repositories (PROMISE[52],

AEEEM [53], JIRA[54] , and Android Modules[55]) for software quality prediction.

4. Preprocessing and Data Balancing: Applying data cleaning, normalization, and
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Figure 2.1: Research Process

balancing techniques such as SMOTE (Synthetic Minority Over-sampling Tech-

nique) to handle imbalanced datasets.

5. Feature Selection and Dimensionality Reduction: Using methods such as Recur-

sive Feature Elimination (RFE) and Principal Component Analysis (PCA) to select

relevant features and reduce dimensions.

6. Model Development: Developing predictive models using machine learning algo-

rithms, including Naı̈ve Bayes, Ensemble Methods, Convolutional Neural Networks

(CNNs), etc.

7. Evaluation and Validation: Evaluating the performance of models using met-
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rics like AUC (Area Under the Curve), G-Mean, Balance, and MCC (Matthews

Correlation Coefficient).

8. Statistical Testing: Employing statistical tests such as the Friedman test and

Wilcoxon Signed-Rank test to verify the significance of performance improvements.

2.3 Define Research Problem

The primary research problem is to improve the performance of software quality prediction

models by addressing key challenges, including hyperparameter tuning, imbalanced data,

feature selection, and multi-collsinearity. This research seeks to answer the following

research questions:

• How can machine learning algorithms be improved to better identify defect-prone or

change-prone modules?

• What are the most effective approaches for categorization of software defects?

• What data preprocessing techniques can mitigate the impact of imbalanced datasets

on predictive models?

• Which feature selection methods yield the best results in terms of predictive accu-

racy?

• How can overfitting and underfitting be controlled through effective parameter tuning

and model optimization?
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• How can multi-collinearity be addressed in software quality prediction models to

improve stability and accuracy?

• What new software metrics are needed to assess software quality in the context of

modern programming paradigms?

2.4 Literature Survey

This section delves into the current state of research in software quality prediction. The

literature survey helps in understanding the progress made in the field, identifying gaps

in current research, and discovering opportunities for further advancements [56]. This

provides the foundation for addressing the research problem by drawing insights from past

studies, methodologies, and experiments that have attempted to solve similar problems.

This is essential in identifying the tools, techniques, algorithms, and challenges faced in

software quality predictive modeling.

2.4.1 Steps to Conduct a Literature Survey

i. Define the Scope of the Survey

• Start by clearly identifying the key research questions and themes relevant

to the research, such as the improvement of predictive models for software

defects, addressing data imbalance, or multi-collinearity.

• Delimit the scope based on years, relevance to machine learning, software

defect prediction, and the specific challenges that have been identified.
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ii. Source Identification

• Identify credible sources, including peer-reviewed journal articles, conference

papers, technical reports, and open-source datasets like PROMISE and AEEEM.

Databases like IEEE Xplore, Springer, ACM Digital Library, and Google

Scholar are crucial.

iii. Keyword Search

• Develop a comprehensive list of keywords related to the research (e.g., ”soft-

ware defect prediction”, ”multi-collinearity in machine learning”, ”SMOTE

in software quality models”, ”convolutional neural networks in defect predic-

tion”).

iv. Organize and Filter Results

• Filter articles based on relevance, citations, and recency. Focus on studies that

provide insights into the algorithms, metrics, and methodologies related to

software quality and defect categorization.

• Use tools like EndNote or Mendeley for citation management and organization.

v. Critical Evaluation of Sources

• Critically assess each source by examining their methodologies, data collection

procedures, and results. Pay attention to studies that have successfully tackled

the challenges relevant to the research.

• Assess the performance metrics used (AUC, G-Mean, Balance) and the statisti-

cal tests employed in their validation.
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vi. Synthesizing Information

• Combine findings from different studies to highlight common challenges,

successful methodologies, and areas where further research is required.

• Organize the findings into categories such as ”Data Imbalance Solutions”,

”Handling Multi-collinearity”, ”Feature Selection Techniques”, and ”Perfor-

mance Metrics in Software Quality Prediction”.

vii. Identify Research Gaps and Opportunities

• Based on the review, pinpoint the areas where improvements are needed, such

as more efficient algorithms for handling outliers, techniques for addressing

overfitting/underfitting, or the development of new metrics for modern pro-

gramming paradigms.

viii. Writing the Literature Review

• Structure the literature review into thematic sections that align with the objec-

tives of the research. Each section should focus on addressing a key challenge,

highlighting past efforts, and providing a rationale for the proposed approach.

2.4.2 Systematic Review of Classification Algorithms in SQP

Several classification algorithms have been employed in software quality prediction,

including decision trees, support vector machines (SVM), neural networks, and ensemble

methods like Random Forests. This literature survey is conducted to highlight several
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issues in existing predictive models, such as limited handling of imbalanced data and

difficulty in optimizing algorithms for better performance across varied software systems.

2.4.3 Systematic Review of Data Imbalance Problem in SQP

Data imbalance refers to a disproportionate representation of classes, where one class

(e.g., defect-prone modules) is much smaller than the other (non-defect-prone modules).

Imbalanced data can severely impact the performance of ML algorithms by biasing them

toward the majority class. This literature survey is conducted to study the different

approaches to address these challenges.

2.4.4 Systematic Review of Parameter Tuning Techniques in SQP

Parameter tuning methods optimize hyper-parameters of algorithms, thereby preventing

overfitting and underfitting. This literature survey is conducted to study the different

techniques employed to optimize hyper-parameters.

2.4.5 Systematic Review of Feature Selection Techniques and Multi-

collinearity in SQP

Feature selection is critical to reduce problems of multi-collinearity and improve model

interpretability. This literature survey is conducted to study the different techniques

employed to address these challenges.
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2.5 Defining Variables

Variables are defined as elements or factors that can change or be changed in an experi-

ment or study[57]. The variables in prediction models are divided into independent and

dependent variables. Understanding these variables is crucial for building accurate models

that can generalize across various software systems.

2.5.1 Independent Variables

Independent variables are those that are manipulated or controlled in the research to observe

their effect on other variables [58]. They are considered the ”cause” in a cause-and-effect

relationship.

The Object-Oriented Metrics serve as independent variables in this research. These

metrics represent characteristics of software modules and are strong indicators of potential

defects or changes in the codebase [59]. Below are some of the commonly used object-

oriented metrics:

• Lines of Code (LOC): The total number of lines in a software module.

• Cyclomatic Complexity (CYC): Measures the number of linearly independent paths

through a program’s source code, indicating the complexity of the control flow.

CC = E −N + 2P (2.1)

where E is the number of edges in the control flow graph, N is the number of nodes

and P is the number of connected components.
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• Depth of Inheritance Tree (DIT): Measures how deep a class is in the inheritance

hierarchy. A deeper inheritance tree can complicate understanding and maintenance,

potentially increasing defect rates.

• Number of Children (NOC): Quantifies the number of immediate subclasses de-

rived from a superclass. A higher NOC suggests a more complex class hierarchy,

influencing maintainability.

• Number of Public Methods (NPM): Counts the number of public methods in a

class. A higher count may suggest more interactions with other classes, increasing

complexity.

• Methods per Class (MPC): Measures the average number of methods defined in

each class. A high MPC can indicate increased complexity affecting maintainability.

MPC =
Total Number of Methods
Total Number of Classes

(2.2)

• Weighted Methods per Class (WMC): Sums the complexities of all methods in a

class, serving as a measure of overall class complexity. Higher WMC values may

correlate with higher chances of defects.

WMC =
m∑
j=1

Complexity(Mj) (2.3)

where Mj represents each method and m is the total number of methods in the class.

• Response for a Class (RFC): Counts the number of methods that can be executed in

response to a message sent to an object of that class. A higher RFC indicates a more

54



Defining Variables

complex class that may be harder to test and maintain.

RFC = |M|+ |C| (2.4)

where |M| is the number of methods in the class and |C| is the number of methods

in the classes called by the methods of this class.

• Lack of Cohesion of Methods (LCOM): Assesses the cohesion within a class by

measuring how well the methods of the class are related. Low cohesion may indicate

a class trying to perform too many unrelated tasks, potentially leading to higher

defect rates.

LCOM =

0 if all methods access the same instance variables

Count of Disconnected Methods otherwise
(2.5)

• Coupling Between Objects (CBO): Measures the interdependencies between classes

and is a strong indicator of code complexity and maintenance effort.

CBO =
n∑

i=1

|Mi| (2.6)

where Mi represents each class that is referenced by the class being measured, n is

the total number of classes that are directly coupled to the class.

• Class Interface (CI): Evaluates the number of public interfaces provided by a class.

A high number may increase the likelihod of misuse and defects.
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• Fan-in and Fan-out: Fan-in measures the number of classes that call methods of a

particular class, while fan-out counts the number of classes that a given class calls.

High fan-in can indicate a class is well-utilized, while high fan-out may suggest

excessive dependencies.

Fan-in = Number of Classes Calling this Class (2.7)

Fan-out = Number of Classes Called by this Class (2.8)

These independent variables are known to affect software quality and are thus used as

predictors in the machine learning models developed.

2.5.2 Dependent Variable

Dependent variables are those that are measured or observed in response to changes in the

independent variables. They are considered the ”effect” in a cause-and-effect relationship.

The dependent variable in this research is a binary or categorical label indicating

whether a software module is defect-prone or change-prone. In this research, the dependent

variable is formulated as follows:

• Defect Proneness: The module is labeled as defect-prone (1) if defects were identi-

fied in past versions, and non-defect-prone (0) otherwise.

• Change Proneness: Similarly, change-proneness refers to the likelihood that a

module will require modification in future software releases.
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2.6 Data Analysis Methods

Data analysis in this research follows a rigorous pipeline that includes data preprocess-

ing, feature selection, and applying machine learning algorithms. Several data analysis

techniques were employed to ensure the accuracy and robustness of the predictive models.

2.6.1 Data Preprocessing

Data preprocessing is the first critical step in data analysis. The following steps were

undertaken during the preprocessing phase:

• Handling Missing Data: Imputation techniques such as mean or mode imputation

were applied to fill in missing values.

• Normalization: Features were normalized using Min-Max Scaling to ensure all

features contribute equally to the model:

Xscaled =
X −Xmin

Xmax −Xmin

(2.9)

• Outlier Detection: Outliers were identified using Z-scores and handled appropri-

ately to prevent model distortion.

• Data Transformation: Transformation techniques like log transformation were

used to handle skewed distributions of independent variables.
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2.6.2 Data Balancing

Given that software defect data is often imbalanced, with significantly more non-defect-

prone modules than defect-prone ones, data balancing techniques are essential.

2.6.3 Feature Selection

Feature selection methods, including Recursive Feature Elimination (RFE) and Principal

Component Analysis (PCA), were used to reduce the dimensionality of the dataset while

retaining the most informative features. Feature selection helps mitigate the issue of

multi-collinearity and enhances the model’s generalizability.

2.6.4 Classifiers

The study employs the following machine learning techniques for quality prediction:

2.6.4.1 Logistic Regression (LR)

Logistic regression is a linear classification algorithm that models the probability of a

binary outcome based on one or more predictor variables. The logistic regression formula

is given by:

P

(
y =

1

X

)
=

1

1 + e−(β0+β1x1+β2x2+....+βnxn)
(2.10)

P
(
y = 1

X

)
is the probability of the dependent variable y being 1 given the predictor

variables X1,X2,. . . Xn and β0 , β1, . . . ., βn are the coefficients of the logistic regression

model.
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2.6.4.2 Support Vector Machine (SVM)

Support vector machine is a powerful classification algorithm that constructs hyperplanes

in a high-dimensional space to separate data points of different classes. The SVM formula

for binary classification is given by:

f(x) = sign(
N∑
i=1

αiyi K (x, xi) + b) (2.11)

where f(x) is the decision function, αi are the Lagrange multipliers, yi are the class labels,

K (x, xi) is the kernel function, and b is the bias term.

2.6.4.3 Naı̈ve Bayes (NB)

Naı̈ve Bayes is a probabilistic classifier based on Bayes' theorem with the assumption of

independence between features. The Naı̈ve Bayes formula for classification is given by:

P (y/X) =
P (X/y)P (y)

P (X)
(2.12)

where P (y/X) is the posterior probability of class y given the features X, P (X/y) is the

likelihood of the features given the class, P(y) is the prior probability of class y, and P(X)

is the probability of the features.

Naı̈ve Bayes is a simple yet effective probabilistic classifier widely used in machine

learning, particularly for text classification [60]. It is based on Bayes' theorem and the

”naive” assumption of conditional independence among features. In classification, it's used

to calculate the probability of a given data point belonging to a particular class.

Let’s define:
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• p(data): Probability of the data point (constant for all classes).

• p(class): Prior probability of the class. It's calculated as the ratio of the number of

data points in that class to the total number of data points.

p(class) =
Number of datapoints in class

Total number of data points
(2.13)

• p
(

featurei
class

)
: Probability of feature i occurring given the class.

• p(data/class): Probability of the data point given that it belongs to the class. This

represents the likelihood of observing a specific set of features given a class. In text

classification, for instance, it's often calculated based on the frequency of words in

documents of that class. It can be calculated as:

p(data/class) = p

(
feature1
class

)
∗ p

(
feature2
class

)
∗ . . . . . . . ∗ p(

featuren
class

) (2.14)

• p(class/data): Probability of the data point belonging to a specific class given its

features. It's calculated using Bayes' theorem.

p(class/data) =
p(data/class) ∗ p(class)

p(data)
(2.15)

Naı̈ve Bayes is computationally efficient and works well when the assumption of feature

independence is reasonable. While the ”naive” assumption may not hold in all cases, Naı̈ve
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Bayes can still provide surprisingly good results, especially for high-dimensional data like

text documents.

The sci-kit machine learning framework [61] in python is used to implement the Naı̈ve

Bayes classifier (sklearn.naive bayes. GaussianNB), with default parameter configurations.

2.6.4.4 Random Forest (RF)

Random forest is an ensemble learning algorithm that constructs multiple decision trees

and combines their predictions through voting or averaging. The Random Forest algorithm

is based on the principle of bagging and uses random sampling of features to build each

tree. The RF's final output is determined by computing the mode of the outputs generated

by the constituent decision trees within the forest.

• Bootstrap Sampling: Random Forest starts by creating multiple bootstrap samples

from the original training data. This means that for each tree in the forest, a

new dataset is generated by randomly selecting samples from the original dataset

with replacement. This results in multiple subsets of the data with potentially

some duplicates and some samples not included. Given a dataset of size N, we

randomly sample N data points with replacement to create a new dataset. This can

be represented as:

NewDataSet = SampleWithReplacement(OriginalDataSet,N) (2.16)

• Decision Trees: For each bootstrap sample, a decision tree is trained. These decision

trees are often referred to as ”weak learners” because they might not perform well
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individually on the entire dataset, but they capture different patterns within their

respective bootstrap samples.

• Voting (Classification) or Averaging (Regression): When making predictions, each

decision tree in the forest casts a ”vote” (in classification problems) or produces a

prediction (in regression problems). For classification tasks, the class that receives

the most votes becomes the final prediction. For regression tasks, the predictions

from each tree are averaged. In a classification problem, each tree provides a

prediction for the class label. The final prediction is determined by majority voting

among all trees. Let's denote the predicted class by Tree i as ”Class i” for the i-th

tree. The final prediction is:

FinalPrediction = Mode({Class 1, Class 2, ..., Class n} (2.17)

The sci-kit machine learning framework [61] in python is used to implement the

random forest classifier (sklearn.ensemble.RandomForestClassifier).

2.6.4.5 XGBoost

eXtreme Gradient Boosting or XGBoost (XGB), is an ensemble method that employs

a gradient boosting framework. It aims to optimize a differentiable loss function by

iteratively adding decision trees [62]. The prediction of the model is the weighted sum of

the predictions from the individual trees.

Let's define the set of base models as {T1, T2, ..., Tn}, where Ti represents individual

decision trees. The final prediction, ŷXGB, is determined by weighted averaging:
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ŷXGB =
n∑

i=1

αi Ti (2.18)

where αi represents the weight assigned to tree Ti.

2.6.4.6 AdaBoost

AdaBoost, short for Adaptive Boosting, is an ensemble method that assigns different

weights to training instances based on their classification accuracy [63]. It sequentially

builds a series of base models and adjusts the weights of misclassified instances. The final

prediction is the weighted sum of base models.

Let's define the set of base models as {H1, H2, ..., Hn}, where Hi represents individual

models. The final prediction, ŷADB, is determined by weighted averaging:

ŷADB =
n∑

i=1

βi Hi (2.19)

where βi represents the weight assigned to tree Hi.

2.6.4.7 Bagging

Bootstrap Aggregating, or Bagging (BAG), is an ensemble technique that creates multiple

subsets of the training data through bootstrapping and trains independent base models on

each subset [64]. The final prediction is obtained through averaging or majority voting.

Let's define the set of base models as {M1, M2, ..., Mn}, where Mi represents individual

models. The final prediction, ŷBAG, is determined by averaging:
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ŷBAG =
1

n

n∑
i=1

Mi (2.20)

Bagging with decision trees is a specific type of bagging that uses decision trees as

base learners. Bagging with decision trees is a popular ensemble learning technique for

classification tasks [64].

2.6.4.8 Artificial Neural Network(ANN)

Artificial Neural Networks(ANNs), or simply, Neural Networks (NNs) represent a powerful

machine learning methodology inspired by the intricate mechanisms of the human brain.

Robert Hecht-Nielsen defined “neural network as a computing system made up of a

number of simple, highly interconnected processing elements, which process information

by their dynamic state response to external inputs” [65]. Similar to the human brain, ANN

comprises interconnected neurons or nodes that are arranged into various layers within

the network. The neurons in an ANN function by processing information and transmitting

it to other neurons in the network. The structure of ANNs is designed to enable them

to learn and generate predictions by identifying patterns in input data. Within a Neural

Network, each neuron obtains inputs from the preceding layer, which are then individually

multiplied by their associated weights and subsequently summed. This weighted sum

undergoes an activation function, leading to the generation of an output signal. This output

signal is then transmitted to the subsequent layer, facilitating the flow of information and

computation throughout the network. The output of a neuron in the ith layer is given by

the following equation:

64



Data Analysis Methods

ŷi = i

(
n∑

j = 1

[xj × wij] + bi

)
(2.21)

Here xj is the jth input, wij is the weight between the jth input and the current neuron,

n is the total number of inputs to the neuron from the preceding layer, bi is the bias term

of the neuron and i is the activation function for the current neuron. For each j in the

range [1, n], the multiplication of xj with wij is summed up. The bias term is then added

to this summation. Finally, the activation function i is employed to transform this result

into the output ŷi. The activation function within a Neural Network plays a pivotal role

in capturing and effectively modeling complex non-linear relationships. When it comes

to predicting software defects, the relationship between software metrics and component

defect proneness is frequently intricate and characterized by non-linearity. Thus, the

utilization of a Neural Network emerges as a suitable approach for accurate software defect

prediction [66].

2.6.4.9 Convolutional Neural Network(CNN)

CNNs represent a category of deep learning models extensively utilized for the analysis of

image and sequential data, including text classification. The core of a CNN consists of

convolutional layers designed to learn and apply filters to the input data, scanning through

it to detect patterns or features [67]. In the case of text data, these filters are typically

one-dimensional. The convolution process in a CNN entails element-wise multiplication

of a small filter (also known as a kernel) with the input data, resulting in the creation of a

feature map. This mathematical operation can be expressed as follows:
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S(j) = (X ∗W )(j) = ΣF−1
i=0 X(j + i) ∗W (i) (2.22)

where S(j): Value of the feature map at position j, X: Input data, W: Filter (kernel) weights,

and F: Filter size.

Following the convolutional layers, pooling layers are frequently employed to reduce

data dimensionality while preserving crucial features. Max-pooling, a common technique,

involves selecting the highest value within a small region. The mathematical representation

for one-dimensional max-pooling is as follows:

P (j) =
K−1
max
i=0

C(j + i) (2.23)

where P(j): Output value after max-pooling, C: Feature map, and K: Pooling window

size.

Subsequent to the convolutional and pooling layers, CNNs generally incorporate one

or more fully connected layers, akin to traditional neural network layers found in Multi-

Layer Perceptrons (MLPs). For developing Software Defect Categorization (SDC) models,

the study employed back-propagation learning, a technique that optimizes the network's

weights to minimize the disparity between observed and desired outputs.

zlij= Σm−1
p=0 Σ

n−1
q=0x

l−1
i+p,j+qw

l
p,q + blj (2.24)

ŷlij =
l
(
zlij
)

(2.25)

where xl−1
i,j represents the output of the preceding layer at position (i,j), wl

p,q represents
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the filter at position (p,q) in layer l, bljrepresents the bias term for neuron j in layer l, l(.)

represents the activation function in layer l and ŷlij represents the output of neuron at

position (i,j) in layer l.

The rationale behind choosing these machine learning techniques is their effectiveness,

versatility, and widespread use in classification tasks, including defect prediction.

2.7 Experimental Design Framework

The experimental design framework is a critical part of any scientific inquiry. It serves as

the blueprint for the collection, analysis, and interpretation of data, providing a systematic

approach to understanding the research problem. For this research, the goal was to develop

and validate software quality prediction models that address challenges like imbalanced

data, outliers, overfitting, underfitting, multi-collinearity, and parameter tuning, among

others. The various steps of the framework are illustrated in Figure 2.2.
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2.8 Empirical Data Collection

Data collection is the foundation of predictive model development. For software quality

prediction models, empirical data on software metrics and defect labels are required. This

research utilizes publicly available datasets like PROMISE, AEEEM, JIRA repositories,

and Android modules. Each of these repositories offers a variety of software projects

with extensive historical data, including defect records, code changes, and object-oriented

metrics.

Empirical data collection was conducted through a structured process:

i. Selection of Datasets: The PROMISE, AEEEM, JIRA and Android repositories

were selected for their widespread use in the software quality research community.

These datasets contain a mixture of open-source projects, which provide real-world

data necessary for developing robust models.

ii. Data Extraction: Data were extracted from the selected datasets. For instance, in

the PROMISE dataset, data were preprocessed by using specific software metrics as

independent variables and labeling defect-prone classes as the dependent variable.

Each project dataset was treated as a separate entity to maintain the consistency of

empirical research.

iii. Data Storage: Extracted data were stored in a structured format (e.g., CSV, ARFF,

or SQL databases) to ensure easy access during the preprocessing and model devel-

opment phases. Each dataset was labeled clearly with the corresponding software

project and version information.
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2.8.1 Datasets

Quality prediction models are developed using datasets from defect repositories such

as AEEEM[53], JIRA[54], PROMISE[52], and Android[55]. The dataset consists of

independent variables, such as software metrics and process metrics. These variables are

required for the training of a model and to complete the predictive model task. These

software metrics consist of McCabe's cyclomatic metrics, C&K metrics, and other OOM.

All of the datasets have a different number of independent variables. These software metrics

are characterized based on different measures such as cohesion, inheritance, coupling, the

complexity of a dataset, and LOC of a particular software.

The software projects validated in this thesis include six open source java applications

the PROMISE repository - ant, camel, ivy, jedit, log4j and prop. The brief description of

these open source projects are as follows: Apache Ant (Another Neat Tool) is “ a software

tool that automates soft-ware build processes, such as compiling, running, testing, and

assembling Java appli-cations” [68]. Apache Camel is “ a message-oriented middleware

framework to exchange, route and transform data using various protocols” [69]. Apache

Ivy is “ a dependency management tool used to manage (record, track, resolve, and report)

project dependencies” [70]. jEdit is “ a programmer’s text editor with a number of features

and plugins. Its powerful search engine for regular expressions, syntax high-lighting, and

auto-indentation makes it particularly appealing to those working with Java and XML” [71].

Log4j is “ a java based logging library popularly used by a variety of applications” [72].

Apache Props Antlib is “ a library of supplementary handlers for Apache Ant properties

resolution”[73].

The characteristics of defects of datasets of AEEEM[53], JIRA[54], PROMISE[52],
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and Android[55] are given in Table 2.1, Table 2.2, Table 2.3 and Table 2.4 respectively.

Table 2.1: Characteristics of Datasets of AEEEM Repository

Dataset Version Total Components Non-Buggy Buggy % of Buggy

Equinox (EQ) 3.4 324 195 129 40

JDT Core (JDT) 3.4 997 791 206 21

PDE UI (PDE) 3.4.1 1497 1288 209 14

Mylyn (MYL) 3.1 1862 1617 245 13

Apache Lucene (AL) 2.4.0 691 627 64 9

Table 2.2: Characteristics of Datasets of JIRA Repository

Dataset Version Total Components Non- Buggy Buggy % of Buggy

Active MQ 5.0.0 1884 1591 293 16

Derby 10.5.1.1 2705 2322 383 14

Groovy 1.6 (Beta 1) 821 751 70 9

Hbase 0.94.0 1059 841 218 21

Hive 0.9.0 1416 1133 283 20

JRuby 1.1 731 644 87 12

Wicket 1.3.0 (Beta 2) 1763 1633 130 7

The study on defect categorization employed the defect data of five modules of Android

software [74], that is available on GITHUB repository [55]. The changelogs between two

versions in the repository have a description of the changes, that are used in finding the

defects. The five Android modules and their versions between which change logs extracted

were: Bluetooth (4.1-4.4), Browser (2.3-4.0), Calendar (4.1-4.4), Camera (2.3-4.0) and
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MMS (2.3-4.0). The study used software called Defect Collection and Reporting System

(DCRS)[75], that aids in extracting the bug reports from the changelogs between the two

predetermined versions of Git repository. Each defect report extracted has the following

data: a) Unique defect identifier; b) Source code file name, which has been affected by the

defect correctness; c) the description of the defect; d) LOC added and LOC removed to fix

a defect and e) the total of LOC added or removed for fixing the defect. The study applied

text mining techniques to find keywords from the defect descriptions found in the bug

reports generated by DCRS. Then the study performed preprocessing, feature selection

using infogain measure and vector space model defined by Ruchika et al. [76][77] to

obtain Top10, Top25, Top50 and Top100 ranked keywords. These keywords are used in

building SDC models as independent features. The defects found from the bug reports

are categorized based on maintenance effort and change impact and assign levels (low,

medium and high) for every defect identified in the android application packages under

this study. Table 2.4 lists out the count of different levels of defects in these datasets.

Table 2.3: Characteristics of Datasets of PROMISE Repository

Dataset Version Total Components Non-Buggy Buggy % of Buggy

Ant 1.7 745 579 166 22

Camel 1.4 872 727 145 17

Ivy 2 352 312 40 11

Jedit 4 306 231 75 25

Log4j 1 135 101 34 25

Poi 2 314 277 37 12

Tomcat 6 858 781 77 9

Velocity 1.6 229 151 78 34
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Table 2.3 continued from previous page

Dataset Version Total Components Non-Buggy Buggy % of Buggy

Xalan 2.4 723 613 110 15

Xerces 1.3 453 384 69 15

Table 2.4: Count of Different Levels of Defects in Android Datasets

Maintenance Effort Change Impact Combination
S.No. Application Versions Low Medium High Low Medium High Low Medium High
1 Bluetooth 4.1-4.4 26 27 26 15 54 10 27 27 25
2 Browser 2.3-4.0 196 191 199 328 110 148 200 193 193
3 Calendar 4.1-4.4 54 55 56 35 30 100 55 55 55
4 Camera 2.3-4.0 117 118 118 115 156 82 118 119 116
5 MMS 2.3-4.0 57 57 54 42 95 31 56 56 56

2.9 Model Development and Validation

The study employed Stratified K-Fold Cross-Validation technique with K=10, means

that the datasets are divided into ten partitions or folds [78]. The training of the model is

performed using nine folds, while the remaining fold is utilized for validation. This ten-fold

process is repeated to ensure all folds are utilized for both training and validation purposes.

The illustration of k-fold cross validations is given Figure 2.3. Stratified K-Fold Cross-

Validation offers several advantages: Firstly, it mitigates bias arising from imbalanced

class distributions, by ensuring the defective and non-defective instances are appropriately

represented in training and validation sets. Secondly, by repeating the process ten times, we

obtain robust estimates of model performance, reducing the impact of random variations

and enhancing the reliability of the results. Moreover, this methodology allows for the

assessment of model generalizability across different datasets, enhancing the applicability
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Figure 2.3: Illustration of k-Fold Cross Validation

of the developed SDP models.

2.10 Performance Measures

Defect prediction is a classification problem, where the model predicts whether the given

class is a defective or not. The defective class is the positive class whereas the non-

defective class is the negative class. The confusion matrix lists all four possible prediction

outcomes in a binary classification problem as shown in Table 2.5. When a defective class
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is classified as ”defective” correctly, it is considered a true positive (TP). Conversely, when

a non-defective class is incorrectly classified as ”defective”, it is considered a false positive

(FP). A true negative (TN) occurs when a non-defective class is correctly classified as

non-defective, while a false negative (FN) occurs when a defective class is incorrectly

classified as non-defective.

Table 2.5: Confusion Matrix

Predicted Defective Predicted Non-defective

Actual Defective TP FN

Actual Non-defective FP TN

Accuracy is the ratio of correctly predicted instances to the overall number of instances

in a prediction model.

Accuracy =
TP + TN

TP + FN + FP + TN
x 100 (2.26)

Error Rate = 1− Accuracy (2.27)

Precision is the proportion of true defective instances out of all the instances that are

predicted to be defective.

Precision =
TP

TP + FP
x 100 (2.28)

Recall or Sensitivity or True positive rate (TPR) is the ratio of correctly predicted defective
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instances to the total number of actual defective instances.

TPR =
TP

TP + FN
x 100 (2.29)

Specificity or Selectivity or True negative rate (TNR) is the proportion of correctly pre-

dicted non-defective instances to the total number of actual non-defective instances.

TNR =
TN

TN + FP
x 100 (2.30)

False positive rate (FPR) is the proportion of non-defective instances that were incorrectly

predicted as defective to the total number of actual non-defective instances.

FPR =
FP

TN + FP
x 100 (2.31)

Accuracy measure is suitable for evaluating model performance on balanced datasets.

However, in imbalanced datasets, the accuracy measure may be biased towards the majority

class, leading to the failure of identifying the crucial minority class. To overcome this issue,

several studies have suggested using performance metrics such as G-mean, Balance, Area

under ROC (AUC) and Matthews Correlation Coefficient (MCC) to evaluate imbalanced

data.

The G-mean (GM) is a metric that calculates the geometric mean of sensitivity (TPR)

and specificity (TNR). It is useful for evaluating classification performance on imbalanced

datasets because it takes into account the performance on both the majority and minority

classes. “A low G-mean score indicates poor performance in correctly classifying the

positive cases, even if the negative cases are correctly classified. [79]” Therefore, a high
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G-mean score indicates a balanced performance across both classes.

GM =
√
TPR ∗ TNR (2.32)

Balance measure (BL) is Euclidean distance between a pair of (TPR, FPR) to that of an

optimal value pair of TPR =1 and FPR = 0. A high BL indicates that TPR and FPR are

close to their optimal values of 1 and 0 respectively.

BL = 1−
√

(1− TPR)2 + (0− FPR)2

2
(2.33)

The area under the receiver operating characteristic (ROC) curve is commonly known as

AUC. The ROC curve is plotted using the false positive rate (FPR) as the x-coordinate

and the true positive rate (TPR) as the y-coordinate. The AUC represents the probability

that a randomly selected defective instance will be ranked higher than a randomly selected

non-defective instance [80]. AUC is often employed as it is less sensitive to imbalanced

data. Higher AUC values indicate better performance of the machine learning classifier.

AUC =

∫ 1

0

TPR(FPR)d(FPR) (2.34)

The Matthews Correlation Coefficient (MCC) is a metric used to evaluate the quality

of binary classifications. It takes into account all four quadrants of a confusion matrix:

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The

MCC is particularly useful for imbalanced datasets because it provides a balanced measure

that can be used even when the classes are of very different sizes. The MCC is defined as

follows:
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MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.35)

The MCC produces a value between -1 and +1. +1 indicates a perfect prediction, 0

indicates that the prediction is no better than random and -1 indicates a total disagreement

between prediction and observation.

2.11 Statistical Analysis

To validate the significance of performance improvements across different models, statisti-

cal tests are employed. Two of the most commonly used non-parametric tests in machine

learning for comparing multiple algorithms are the Friedman Test and Wilcoxon Signed

Rank Test.

The Friedman test is used to compare more than two techniques across multiple

datasets. It checks for significant differences in the rankings of techniques [81]. It is a

non-parametric equivalent of the repeated measures ANOVA test. This test is particularly

suited for situations where the same parameter is measured under various conditions on

the same subject. The Friedman test calculates the rank of each technique across multiple

datasets, and the average rank provides the mean rank for that specific technique.

χ2
F =

12N

k(k + 1)

(
k∑

j=1

R2
j −

k(k + 1)2

4

)
(2.36)

where N is the number of datasets, k is the number of techniques, Rj is the rank of jth

the algorithm on each dataset. If the p-value is below the significance level (i.e., α =0.05),

the null hypothesis (that all techniques perform equally) is rejected. Thus, the Friedman
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test allows for comparing multiple algorithms across different datasets without assuming

normality.

The Wilcoxon Signed Rank Test is a non-parametric test used to compare two related

samples. This statistical test is employed to compare two related samples or repeated

measurements on a single sample. The study used it to evaluate pairs of techniques with the

aim of examining the null hypothesis, which posits that there is no statistically significant

difference in the performance between the techniques [81].

W = min(
∑
i

R+
i ,
∑
i

R−
i ) (2.37)

where R+ and R− are the ranks of the positive and negative differences between the

two samples. If the p-value is below the threshold (i.e., α =0.05, it implies a significant

difference between the algorithms.
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Chapter 3

Systematic Literature Review

3.1 Introduction

Software quality prediction plays a pivotal role in ensuring the long-term success and

sustainability of software projects. As systems evolve, they are subjected to numerous

changes, including bug fixes, enhancements, and updates, which can inadvertently in-

troduce defects or degrade the quality of the system [82]. In this context, the ability to

forecast which parts of the system are likely to require changes or are prone to defects can

help organizations allocate resources efficiently, prioritize testing efforts, and reduce the

cost and time involved in maintaining software.

Predictive models for software quality have traditionally relied on statistical techniques

and expert judgment. However, the increasing availability of large-scale datasets and

the rapid advancements in machine learning have transformed the way these models are

developed and validated. Modern predictive models leverage a wide range of features
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and metrics derived from the software itself, such as code complexity, historical defect

data, and process-related factors. The incorporation of machine learning techniques into

this process allows for more accurate, scalable, and adaptive models, providing valuable

insights into software quality at various stages of development and maintenance. The

process of systematically studying and developing the software quality predictive models

is essential for the continuous improvement of software engineering practices, which forms

the basis for this Systematic Literature Review (SLR).

This chapter conducts a systematic literature review to synthesize the state of the

art in software quality prediction, with a particular focus on machine learning-based

methodologies. The goal is to provide a comprehensive and structured analysis of the

current knowledge, practices, gaps, and future directions in this field. The scope of this

review encompasses the metrics, algorithms, techniques, and datasets used by researchers

and practitioners to build and evaluate predictive models aimed at identifying defect-prone

and change-prone software classes or modules.

Research Questions Guiding the Review

The review is structured around several research questions (RQs), each designed to address

specific aspects of software quality predictive modeling. These RQs form the core of the

systematic review and guide the literature search, selection, and analysis processes. The

research questions are:

RQ1: What are the most used metrics in identifying the change and defect-prone classes/modules?

RQ2: What kinds of datasets are being used by researchers in software defect and change

prediction?
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RQ3: Which machine learning algorithms are effective in identifying the change and

defect-prone classes/modules?

RQ4: How the researchers addressed issues (like imbalanced data, high dimensionality,

parameter tuning, multicollinearity) affecting the performance of software quality

prediction models?

RQ5: What are techniques being used for validation of software quality prediction models?

RQ6: What are the performance measures used for the evaluation of software quality

prediction models?

RQ7: What are the statistical tests used by the researchers?

Overview of the Systematic Literature Review Process

The systematic literature review follows a structured process, adhering to the guidelines

established by Kitchenham and Charters [83] for conducting rigorous and transparent

reviews in software engineering. The process begins with the formulation of the research

questions and the creation of a detailed review protocol. This is followed by an extensive

search of relevant literature across multiple databases, ensuring that the most up-to-date

and impactful studies are included in the review.

Once the literature is collected, a careful selection process is employed to filter out

studies that do not meet predefined inclusion and exclusion criteria. Studies are then

subjected to a quality assessment to ensure that only high-quality, relevant research is

included in the final analysis. The selected studies are systematically reviewed and

categorized based on their contribution to answering the RQs.
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The results of the review are presented in a structured format, with separate sections

dedicated to each research question. This ensures clarity and allows for a focused analysis

of each aspect of software quality predictive modeling. The review also includes a

discussion section, which synthesizes the findings and highlights key trends, gaps, and

future research directions.

The chapter is structured as follows: Section 3.2 outlines the review protocol, including

the search strategy, inclusion/exclusion criteria, and quality assessment methods. Section

3.3 presents the review results, organized by research question. Section 3.4 provides a

discussion of the findings, offering insights into the current state of research and identifying

opportunities for future work.

3.2 Review Protocol

This section outlines the systematic approach adopted to conduct the systematic literature

review (SLR) to ensure the transparency, replicability, and rigor of the research process.

The protocol defines the research questions, search strategy, inclusion/exclusion criteria,

and quality assessment criteria, which guide the selection and evaluation of studies rel-

evant to answering the research questions. The objective of this protocol is to provide a

comprehensive and structured analysis of the existing literature related to software defect

and change prediction, with a focus on metrics, datasets, machine learning algorithms,

validation methods, performance metrics, and statistical tests used in SQP models.
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3.2.1 Search Strategy

The search strategy is critical to ensuring that the review captures all relevant studies

published in the field. A comprehensive search will be performed across multiple databases

to locate studies that address the research questions. The databases chosen for this review

include:

• IEEE Xplore

• ACM Digital Library

• SpringerLink

• ScienceDirect

• Google Scholar

• Wiley Online Library

These databases were selected based on their relevance to the field of software engi-

neering and machine learning, as they index a wide range of peer-reviewed conference

papers, journal articles, and relevant technical reports.

Keywords and search terms are constructed to target studies related to SDP, change

prediction, and machine learning in software quality. The search is based on combinations

of key terms related to the research questions, such as: ”software defect prediction”,

”change prediction”, ”machine learning algorithms”, ”software metrics”, ”imbalanced data

in software prediction”, ”high dimensionality in software models”, ”parameter tuning in
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machine learning”, ”cross-project validation”, ”performance measures in software quality”,

ans ”statistical tests in software defect prediction”

The search string is customized to fit the search query requirements of the databases.

Boolean operators will be used to combine search terms and ensure relevant studies are

retrieved. The search string formed is as follows:

(“software” AND (“defect” OR “bug” OR “fault” OR “change” OR “effort” OR

“maintenance” OR “quality”)) AND (“machine learning” OR “support vector machine”

OR “naı̈ve bayes” OR “deep learning” OR “neural network” OR “ANN” OR “CNN” OR

“RNN”OR “ensemble learning” OR “random forest” OR “decision tree” OR “CART”)

AND (“variables” OR “parameters” OR “metrics” OR “object oriented metrics” OR

“OOM”) AND (“validation” OR “empirical” OR “design” OR “development”) AND

((“imbalanced data” OR “data sampling” OR “undersampling” OR “oversampling” OR

“SMOTE” OR “cost sensitive”) OR (“hyperparameter tuning” OR “parameter tuning” OR

“grid search” OR “random search”) OR (“feature selection” OR “dimensionality reduction”)

OR (“multicollinearity”)) OR (“evolutionary” OR “search” OR “optimized” OR “heuristic”

OR “particle swarm” OR “harmony search” OR “simulated annealing” OR “bat search”

OR “swarm intelligence” OR “firefly search” OR “gravitational serach” OR “inclined

planes sytem” OR “bio-inspired” OR “genetic algorithm” OR “Grey Wolf” OR “cuckoo

serach” OR “ant colony” OR “artificial bee colony”) AND (“method” OR “technique” OR

“algorithm” OR “variant” OR “model”) OR (“cross-validation” OR “hold-out validation”

OR “k-fold cross validation”) OR (“performance measure” OR “performance metric” OR

“accuracy” OR “AUC” OR “MCC” OR “gmean” OR “balance” ) OR (“statistically” OR

“validated” OR “statistical” OR “statistical test” OR “paired test” OR “wilcoxon” OR

“friedman” OR “ANOVA”))
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The search will focus on primary studies published between January 2010 and July

2024 to ensure the review includes up-to-date research in software defect prediction and

change-prone module identification.

3.2.2 Inclusion and Exclusion Criteria

Inclusion Criteria

This will be applied to filter studies based on their relevance and alignment with the RQs.

To ensure the review focuses on high-quality and relevant studies, only those studies that

meet the following criteria will be included:

• Relevance to Software Quality Prediction: Studies must specifically address software

defect or change prediction using machine learning techniques.

• Use of Empirical Data: The study must present empirical results based on real-world

datasets or simulation-based experiments related to software quality prediction.

• Focus on Machine Learning Algorithms: Studies should involve the application of

machine learning algorithms (e.g., decision trees, support vector machines, neural

networks, or ensemble methods) in software defect or change prediction.

• Metrics, Datasets, and Algorithms: Studies should explore or apply metrics, datasets,

or machine learning algorithms relevant to identifying change or defect-prone mod-

ules.

• Handling of Issues in Prediction Models: Studies that address common issues such

as imbalanced data, parameter tuning, high dimensionality, and multicollinearity

will be included.
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• Studies Evaluating Model Performance: Studies must evaluate the performance

of the models using well-established measures such as accuracy, precision, recall,

F1-score, AUC, etc.

• Validation Techniques: Studies employing validation methods (e.g., cross-project

validation, k-fold cross-validation) to ensure the robustness of the predictive models

will be included.

• Language: Only studies written in English will be included.

• Peer-Reviewed Studies: Only peer-reviewed journal articles, conference papers, and

technical reports will be included to ensure the quality of the reviewed literature.

Exclusion Criteria

The exclusion criteria help eliminate studies that do not meet the necessary quality or focus

on irrelevant topics. Studies will be excluded based on the following criteria:

• Irrelevant Focus: Studies that focus on software quality without applying machine

learning techniques or predictive models for defect/change prediction.

• Lack of Empirical Data: Studies that provide theoretical discussions or surveys

without presenting empirical data or results from experiments.

• Non-Predictive Models: Studies that focus on areas unrelated to prediction modeling,

such as software development methodologies, software maintenance practices, or

general software quality assurance.
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• Duplicate Studies: Duplicate studies (e.g., the same study published in different

venues) will be excluded, and only the most complete version of the study will be

considered.

• Non-English Studies: Studies published in languages other than English will be

excluded.

• Non-Peer-Reviewed Sources: Unreviewed sources such as preprints, editorials, blog

posts, and non-peer-reviewed conference papers will be excluded.

3.2.3 Quality Assessment Criteria

Quality assessment is essential to ensure that the studies included in the review are reliable

and of high academic value. The following quality assessment criteria will be applied to

evaluate the studies:

• Relevance to Research Questions: The study’s relevance to the research questions

will be assessed. Does the study directly contribute to answering at least one of the

formulated RQs?

• Clarity of Research Objectives: The study must clearly define its research objectives,

hypotheses, or goals, particularly regarding the evaluation of machine learning

algorithms for defect/change prediction.

• Appropriateness of Methodology: The study’s methodology will be scrutinized to

ensure it is rigorous, replicable, and appropriate for addressing the problem. Studies

should clearly explain the datasets, machine learning algorithms, evaluation metrics,

and statistical tests used.
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• Quality of Empirical Evidence: The study must provide sufficient empirical evidence

in the form of experimental data, case studies, or simulation results. The use of

real-world software projects and datasets will be considered a positive indicator of

quality.

• Addressing Common Issues: The study must discuss or address common challenges

(e.g., imbalanced data, multicollinearity, overfitting) in machine learning-based

predictive models.

• Validation of Results: The study should employ appropriate validation techniques

(e.g., cross-validation, cross-project validation) to assess the robustness and general-

izability of the models.

• Statistical Rigor: Studies that employ statistical tests to support their results will be

favored. The use of statistical tests to demonstrate the significance of the findings

(e.g., t-tests, ANOVA, Wilcoxon test) will be seen as a mark of high-quality research.

• Clear Presentation of Results: The clarity with which the study presents its findings,

including the discussion of the results, comparisons with related work, and the

implications for future research, will be evaluated.

Based on the defined search criteria, approximately 200 studies were initially identified,

out of which 54 were selected as primary studies after a thorough evaluation against the

established quality assessment criteria. Table 3.1 provides a detailed list of these selected

studies.
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Table 3.1: List of Primary Studies

Study Id Study Name Reference Study Id Study Name Reference
PS1 Menzies (2010) [84] PS28 Manjula (2019) [85]
PS2 Zheng (2010) [86] PS29 Tantithamthavorn (2018) [87]
PS3 Song (2010) [88] PS30 Turabieh (2019) [89]
PS4 Alsmadi (2011) [90] PS31 Shippey (2019) [91]
PS5 Gao (2011) [92] PS32 Cai (2020) [93]
PS6 Gao (2012) [94] PS33 Bal (2020) [95]
PS7 Shivaji (2012) [96] PS34 Rhmann (2020) [97]
PS8 Okutan 2014 [98] PS35 Pandey (2020) [18]
PS9 Wang (2013) [99] PS36 Deng (2020) [100]
PS10 Liu (2014) [101] PS37 Alsghaier (2020) [102]
PS11 Czibula (2014) [103] PS38 Yedida (2021) [104]
PS12 Abaei (2015) [105] PS39 Ali (2021) [106]
PS13 Erturk (2015) [107] PS40 Ulan (2021) [108]
PS14 Arar (2015) [66] PS41 Zhao (2021) [109]
PS15 Jin (2015) [110] PS42 Ardimento (2022) [111]
PS16 Yang (2015) [112] PS43 Nevendra (2022) [113]
PS17 Dôres (2016) [114] PS44 Manchala (2022) [115]
PS18 Marian (2016) [116] PS45 Wang (2023) [117]
PS19 Panichella (2016) [118] PS46 Yang (2023) [119]
PS20 Rathore (2017) [120] PS47 Mafarja (2023) [121]
PS21 Zhang (2016) [122] PS48 Ali (2023) [123]
PS22 Huda (2017) [124] PS49 Yu (2023) [125]
PS23 Ni (2017) [126] PS50 Khleel (2024) [127]
PS24 Chen (2018) [128] PS51 Meher (2024) [129]
PS25 Song (2018) [130] PS52 Ismail (2024) [131]
PS26 Abaei (2020) [132] PS53 Garg (2024) [133]
PS27 Chen (2018) [134] PS54 Wang (2024) [135]

3.3 Review Results

The results extracted from the primary studies are presented in this section.
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3.3.1 Results Specific to RQ1

Table 3.2: Metric Suites used in Software Quality Prediction

Metric Suite Metrics
WMC (Weighted Methods per Class)
DIT (Depth of Inheritance Tree)
NOC (Number of Children)
CBO (Coupling Between Objects)
RFC (Response for Class)

Chidamber & Kemerer (C&K)[21]

LCOM (Lack of Cohesion of Methods)
NOM (Number of Methods)
NOC (Number of Children)
NSM (Number of Static Methods)Li & Henry[22]

NSF (Number of Static Fields)
Method Hiding Factor (MHF)
Attribute Hiding Factor (AHF)
Method Inheritance Factor (MIF)
Attribute Inheritance Factor (AIF)
Coupling Factor (CF)

MOOD (Metrics for Object-Oriented Design) [24]

Polymorphism Factor (PF)
McCabe[136] Cyclomatic Complexity (CC)

Volume (V)
Effort (E)
Difficulty (D)
Vocabulary (n)

Halstead[137]

Length (N)
Cohesion (COH)

Bieman & Kang[25] Lack of Cohesion in Methods (LCOM)
Number of Couplings (NOC)

Briand et al.[26] Coupling Between Methods (CBM)
Afferent Coupling (Ca)
Efferent Coupling (Ce)
Instability (I)Martin[27]

Distance from the Main Sequence (D)
Fan-in

Lee[28] Fan-out
Design Size in Classes (DSC)
Number of Methods (NOM)
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Table 3.2 continued from previous page
Metric Suite Metrics

Coupling Between Object Classes (CBO)
Depth of Inheritance (DIT)

Bansiya & Davis[29]

Lack of Cohesion (LCOM)
Coupling Measures
Cohesion MeasuresTang et al.[30]
Complexity Measures

In software defect and change prediction studies, various metric suites have been widely

used to identify change and defect-prone classes or modules. These metrics often originate

from object-oriented programming (OOP) paradigms, focusing on code attributes that can

indicate a higher likelihood of defects or maintenance efforts. A significant portion of the

research has centered around well-established metric suites, including but not limited to

the Chidamber and Kemerer (C&K) suite [21], Li and Henry metrics [22], MOOD[24] ,

McCabe [136], Halstead [137], Bieman and Kang [25], Briand et al. [26], Martin [27], Lee

[28], Bansiya and Davis [29], and Tang et al. [30]. Each of these suites provides different

perspectives on code quality, coupling, cohesion, and complexity, which are essential

for predicting defect and change-prone areas in a software system. Table 3.2 provides

a detailed list of metrics used by researchers in identifying the change and defect-prone

classes/modules.

3.3.2 Results Specific to RQ2

In the realm of software quality prediction, the choice of datasets plays a crucial role in

the effectiveness and reliability of predictive models. Researchers have leveraged various

datasets from different domains, each with unique characteristics that contribute to the

overall understanding of software quality prediction. NASA MDP and Apache projects are
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the most commonly used datasets, providing rich sources of data for predicting defects and

changes in software. Researchers have also employed datasets from telecommunications

systems, open-source projects, and emerging domains, contributing to a broader under-

standing of software defect prediction across different environments. The use of these

datasets has enabled researchers to develop, validate, and refine prediction models that can

be applied in both industry and academia to enhance software quality and reliability. The

distribution of studies according to the datasets employed are presented in Table 3.3 and

Figure 3.1.

Table 3.3: Datasets used in studies

Dataset Number of Studies Percentage of Studies List of Studies
NASA MDP 23 29.87 PS1, PS2, PS3, PS4, PS9, PS10, PS11, PS12, PS13,

PS15, PS22, PS28, PS29, PS32, PS35, PS37, PS39,

PS44, PS53, PS54
Apache

Projects

21 27.27 PS7, PS8, PS17, PS19, PS20, PS25, PS29, PS30,

PS31, PS33, PS36, PS38, PS41, PS42, PS43, PS44,

PS45, PS47, PS48, PS49, PS51
LLTS 2 2.6 PS5, PS6
Bugzilla,

Columba, etc.

3 3.9 PS27, PS40, PS52

Eclipse 5 6.49 PS21, PS29, PS31, PS49, PS51
AEEEM 3 3.9 PS23, PS25, PS49
Android 1 1.3 PS34
GNU Com-

piler Collec-

tion

1 1.3 PS21

ReLink 1 1.3 PS23
OpenOffice 2 2.6 PS21, PS51
Mozilla 3 3.9 PS21, PS40, PS52
PostgreSQL 2 2.6 PS27, PS40
ZooKeeper 1 1.3 PS42
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Table 3.3 continued from previous page
Dataset Number of Studies Percentage of Studies List of Studies

Others 9 11.69 PS14, PS16, PS24, PS26, PS46, PS48, PS50, PS52,

PS34

3.3.3 Results Specific to RQ3

Identifying change and defect-prone classes/modules is crucial for maintaining software

quality and ensuring efficient resource allocation during the software development lifecycle.

The effectiveness of machine learning algorithms in this context has been a subject of

extensive research. By analyzing a comprehensive range of studies, it becomes clear that

several algorithms consistently demonstrate significant efficacy in predicting defect-prone

areas of software systems.

The reviewed studies showcase a variety of machine learning techniques that cater

to the diverse nature of software metrics and defect data. Table 3.4 provides the list of

the machine learning techniques employed in the studies. Fig 3.2 depicts the bar chart

of different machine learning techniques used in the studies and Figure 3.3 depicts the

percentage of studies employed different types of machine learning techniques.

• Naı̈ve Bayes (NB): This probabilistic classifier leverages Bayes’ theorem and is

particularly adept at handling categorical data. Its simplicity and interpretability

make it a preferred choice for defect prediction, especially when historical defect

data is available.

• Support Vector Machine (SVM): SVM excels at finding optimal hyperplanes for clas-

sification tasks. Its ability to effectively manage high-dimensional data is beneficial
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Figure 3.1: Percentage of studies using each dataset

for distinguishing between change-prone and defect-prone classes, often yielding

high accuracy.

• Random Forest (RF): As an ensemble method, Random Forest integrates multiple

decision trees to enhance prediction accuracy. Its robustness against overfitting

makes it an effective tool for defect prediction, especially in diverse datasets.

• Logistic Regression (LR): This regression analysis technique is invaluable for binary
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Figure 3.2: ML techniques used in the studies

classification tasks. It provides probabilistic interpretations of class memberships,

facilitating the identification of defect-prone modules based on input features.

• Artificial Neural Network (ANN): ANNs are adept at modeling complex patterns

within data. Their capacity for feature learning enables them to uncover underlying

relationships that are crucial for predicting defect-prone areas in software systems.

• Deep Learning: Deep learning methods, including Deep Neural Networks (DNNs)

and Long Short-Term Memory networks (LSTMs), have shown promise in defect

prediction. They capture hierarchical data representations and temporal patterns,

providing an advanced approach to modeling defect-prone areas.
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Figure 3.3: Distribution of studies by type of ML techniques used

• Ensemble Techniques: Ensemble methods combine predictions from multiple mod-

els, enhancing both robustness and accuracy in defect prediction tasks. Techniques

like Random Forest, Bagging and AdaBoost improve generalization by reducing

variance and bias.
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Table 3.4: ML Techniques employed in the studies

Category Classification Technique No. of Stud-

ies

Studies

Naı̈ve Bayes (NB) 17 PS1, PS3, PS4, PS5, PS7, PS9, PS12, PS17,

PS23, PS25, PS29, PS30, PS31, PS35,

PS37, PS44, PS47
Bayes Bayesian Network 2 PS8, PS41

Artificial Neural Network

(ANN)

8 PS10, PS12, PS13, PS14, PS15, PS22,

PS30, PS54
Deep Neural Network

(DNN)

4 PS28, PS44, PS48, PS53

Multilayer Perceptron

(MLP)

6 PS5, PS17, PS34, PS35, PS53

Long Short Term Memory

(LSTM)

1 PS36

Deep Belief Network (DBN) 2 PS36, PS38

Neural Network

Transformer 1 PS51
C4.5 7 PS1, PS4, PS17, PS30, PS37, PS41, PS49
J48 9 PS4, PS17, PS27, PS31, PS34, PS37, PS41,

PS47
RIPPER 4 PS1, PS25, PS35, PS49Decision Tree

Fuzzy Decision Trees 1 PS18
Logistic Regression (LR) 10 PS1, PS5, PS23, PS25, PS30, PS39, PS43,

PS44, PS47, PS49
Regression Linear Regression 4 PS19, PS20, PS27, PS43

Random Forest (RF) 11 PS9, PS12, PS17, PS23, PS24, PS25, PS27,

PS31, PS34, PS41, PS53
AdaBoost 4 PS2, PS17, PS24, PS27Ensemble
Bagging 6 PS1, PS11, PS27, PS29, PS35, PS41

Instance-Based K-Nearest Neighbor (KNN) 10 PS1, PS5, PS6, PS17, PS21, PS30, PS35,

PS37, PS44, PS47
Support Vector Support Vector Machine

(SVM)

12 PS4, PS5, PS6, PS7, PS13, PS17, PS22,

PS32, PS37, PS44, PS47, PS53
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Table 3.4 continued from previous page
Category Classification Technique No. of Stud-

ies

Studies

Others Others 8 PS20, PS11, PS38, PS42, PS45, PS50,

PS51, PS52

3.3.4 Results Specific to RQ4

The primary objective of software quality prediction models is to minimize software

defects while maintaining high performance. However, the complexity of software systems

introduces several challenges that hinder the prediction process. Among these, imbalanced

data, high dimensionality, parameter tuning, and multicollinearity are commonly encoun-

tered issues that can negatively impact the modelâs performance. These challenges are

often interrelated and must be addressed through careful preprocessing, optimization, and

algorithm selection. To address these challenges, researchers have explored a variety of

techniques aimed at improving the accuracy, robustness, and generalization of software

quality prediction models. Table 3.5 presents overview of the methods researchers have

employed to tackle these challenges effectively. Figure 3.4 depicts the number and per-

centage of studies out of the total primary studies have employed the methods to address

the these challenges.

• Imbalanced data occurs when the number of instances in one class (e.g., defective

modules) is significantly lower than the instances in the other class (e.g., non-

defective modules). This can lead to biased predictions, where the model favors the

majority class. Many studies have applied resampling techniques such as random

undersampling (RUS), oversampling, SMOTE (Synthetic Minority Over-sampling
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Technique), and cost-sensitive learning. These techniques aim to balance the class

distribution, thereby reducing bias in predictions toward the majority class and

improving the detection of minority (defective) instances.

• High dimensionality refers to datasets with a large number of features, which can

result in overfitting, increased computational complexity, and difficulty in understand-

ing the model’s behavior. Not all features may contribute equally to the prediction

task, and irrelevant or redundant features may degrade the model’s performance.

Feature selection methods such as filter methods (e.g., chi-square, information

gain, and gain ratio) and wrapper-based techniques (e.g., genetic algorithm and

binary ant colony optimization) were adopted to handle high-dimensional data (PS5,

PS41). Studies like PS8 and PS14 used feature selection algorithms such as CFS

(Correlation-based Feature Selection), ReliefF, and Cost-Sensitive Variance Score to

reduce the feature set and eliminate irrelevant or redundant features. Reducing the

number of features helps in lowering model complexity, improving interpretability,

and preventing overfitting.

• Parameter tuning is essential for optimizing machine learning algorithms. Many

algorithms rely on hyperparameters that must be fine-tuned to achieve the best

results. Without proper tuning, models can either underperform or overfit the

training data, limiting their generalization to unseen data. Researchers used several

hyperparameter optimization techniques like Random Search (PS43), Grid Search

(PS43), and metaheuristic algorithms such as genetic algorithms (GA) and particle

swarm optimization (PSO) (PS37). In PS27, a NSGA-II (Non-dominated Sorting

Genetic Algorithm II) was used for multi-objective hyperparameter tuning. Proper
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tuning of hyperparameters improves the model’s generalization ability and ensures

optimal performance across different datasets.

• Multicollinearity arises when features in the dataset are highly correlated with each

other, leading to instability in the model’s predictions. This can cause issues with

the interpretation of the model’s output and reduce its accuracy. Although there

is no direct mention of handling multicollinearity in the provided studies, feature

selection techniques like correlation-based methods (PS14) can indirectly address

multicollinearity by selecting features that are less correlated with each other. This

reduces redundancy in the features, making the prediction model more stable and

less sensitive to correlated inputs.

Table 3.5: Challenges addressed in the studies

Challenge No. of Stud-

ies

Studies Techniques Used

Imbalance Data 7 PS2, PS6, PS9, PS14, PS25,

PS47, PS50

Cost-sensitive learning, SelectRUS-

Boost, Random undersampling,

SMOTE, Cost-sensitive ANN,

Weighted Average Centroid based

Imbalance Learning Approach
Hyperparameter

Tuning

5 PS14, PS21, PS27, PS29,

PS43

ABC algorithm, REP Topic, NSGA-II,

Caret R package, Random Search, Grid

Search
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Table 3.5 continued from previous page
Challenge No. of Stud-

ies

Studies Techniques Used

Feature Selection 6 PS5, PS8, PS10, PS14, PS41,

PS53

Chi-square (CS) method, Information

Gain (IG), Gain Ratio (GR), Symmet-

rical Uncertainty (SU), Kolmogorov-

Smirnov Class Correlation-Based Filter

(KS), Exhaustive Search (ES), Heuristic

Search (HS), Automatic Hybrid Search

(AHS), Correlation-based Feature Selec-

tion (CFS), Relief, Cost-Sensitive Vari-

ance Score, PCA, Fuzzy C-means Clus-

tering Method

3.3.5 Results Specific to RQ5

Validation is a critical step in the development of software quality prediction models,

ensuring that the models can generalize well to unseen data. A properly validated model

gives confidence in its predictions and helps avoid overfitting or underfitting, which are

common issues when dealing with machine learning models. Various validation techniques

are employed to evaluate the performance of software quality prediction models, with

the most common being cross-validation, which divides the dataset into multiple subsets

for training and testing purposes. Among the different types of cross-validation, 10-fold

cross-validation is the most frequently used in studies related to software quality prediction

models. However, several other techniques like MxN-way cross-validation, leave-one-out

cross-validation, and stratified sampling are also explored in specific cases. Figure 3.5

depicts the percentage of validation measured used across different studies.
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Figure 3.4: Number and percentage of studies employed techniques to address various
challenges

• 10-Fold Cross-Validation: In the 89% of the studies, 10-fold cross-validation is

utilized as the primary validation technique. This technique divides the dataset into

10 equally sized subsets (folds). The model is trained on 9 folds and tested on the

remaining one, and this process is repeated 10 times, with each fold being used as the

test set once. The final performance metric is the mean of the 10 test results. 10-fold

cross-validation provides a balanced trade-off between bias and variance. It reduces

the risk of overfitting while still allowing enough data for the training process. It is

computationally efficient compared to more exhaustive methods like leave-one-out
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Figure 3.5: Usage of Validation Techniques Across Studies

cross-validation. Due to its stability and efficiency, 10-fold cross-validation has

become a standard approach in machine learning research, including software quality

prediction, and is the default validation technique in most software quality prediction

studies.

• MxN-Way Cross-Validation: In some studies (PS3 and PS25), MxN-way cross-

validation is employed. This method is an extension of basic cross-validation, where

the dataset is divided into M subsets, and the validation process is repeated N times.

This method adds an additional layer of randomness, as the division of the dataset is

done multiple times, resulting in more robust validation. The N repetitions reduce
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the potential bias introduced by any particular data split. While it offers a more

comprehensive evaluation, it is more computationally expensive, which might limit

its use when large datasets or complex models are involved.

• Leave-One-Out Cross-Validation (LOO-CV): Leave-one-out cross-validation (LOO-

CV), used in studies like PS11 and PS17, involves training the model on the entire

dataset except for one instance, which is used for testing. This process is repeated for

every instance in the dataset. LOO-CV is highly exhaustive, as it evaluates the model

on every single data point. This provides a complete understanding of how well the

model generalizes. Despite its precision, LOO-CV is computationally expensive,

especially for large datasets, as the model must be retrained as many times as there

are instances in the dataset. Since the test set contains only one data point, there can

be a high variance in the results across different test instances.

• Stratified Sampling (66-33): Stratified sampling, employed in PS12, involves split-

ting the dataset into a training set (66%) and a test set (33%) while ensuring that the

proportion of instances in different classes remains the same across the training and

test sets. Stratified sampling is especially important when the dataset is imbalanced,

as it ensures that each fold contains a similar proportion of instances from each

class. This method is simpler than cross-validation and requires only one split of the

dataset. It is computationally efficient but may not provide as robust an evaluation

as techniques like cross-validation.

• 5-Fold Cross-Validation: In PS13, 5-fold cross-validation is used, which follows the

same procedure as 10-fold cross-validation but divides the dataset into 5 parts instead

of 10. 5-fold cross-validation is less computationally demanding than 10-fold, while
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still offering a good measure of model generalization. However, with fewer folds,

there is a higher risk of variance in the results.

3.3.6 Results Specific to RQ6

In software quality prediction research, the performance of machine learning models is

typically assessed using a range of performance metrics. These metrics help to evaluate

the predictive capability, robustness, and generalizability of models. Table 5.6 and Figure

5.6 presents a summary of performance measures extracted from various studies and the

frequency with which they are used

• AUC (Area Under the Curve): The AUC is a widely used measure for evaluating

the performance of classification models, particularly in imbalanced datasets. It

measures the area under the receiver operating characteristic (ROC) curve, providing

an aggregated measure of performance across all classification thresholds. The

higher the AUC, the better the model’s ability to distinguish between defect-prone

and non-defect-prone classes. A total of 19 studies (e.g., PS1, PS5, PS9) used AUC

as a primary metric.

• F-measure/F1 Score: The F1 score is a harmonic mean of Precision and Recall,

offering a single metric that balances the trade-off between these two. It is especially

useful when the dataset has an uneven class distribution, as it provides a more

nuanced view of a model’s performance. This metric was used in 17 studies (e.g.,

PS5, PS35, PS40), indicating its importance in software quality prediction.

• Precision: Precision, which measures the ratio of true positives among all predicted
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positives, is crucial for models where false positives are costly. Thirteen studies

(e.g., PS21, PS28, PS31) used Precision as a key metric, often in conjunction with

Recall to give a fuller picture of performance.

• Recall: Also known as Sensitivity, Recall is the ratio of actual defect-prone classes

correctly identified by the model. It is vital in applications where missing a defect-

prone class is more costly than wrongly predicting a class as defect-prone. Recall

was evaluated in 12 studies (e.g., PS29, PS50, PS54).

• Accuracy: Accuracy measures the ratio of correct predictions out of all predictions

made. While it is a simple and intuitive metric, it is less useful in imbalanced

datasets. Accuracy was still utilized in 10 studies (e.g., PS39, PS50, PS27), often

alongside other metrics like AUC.

• MCC (Matthews Correlation Coefficient): MCC is a balanced measure of perfor-

mance that takes into account true and false positives and negatives. It is particularly

useful in situations with imbalanced classes. Six studies (e.g., PS31, PS41, PS50)

utilized MCC.

• G-mean: G-mean is the geometric mean of the true positive rate and the true negative

rate, used to assess a model’s performance when the data is imbalanced. This metric

was used in five studies (e.g., PS9, PS32), underscoring its importance in evaluating

software quality prediction models in the face of skewed datasets.

• Probability of Detection (PD) and Probability of False Alarm (PF): PD is the rate of

correctly identifying defect-prone classes, while PF is the rate of falsely predicting

a defect-prone class. Both metrics are crucial in understanding the trade-offs in
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prediction models. Five studies (e.g., PS9, PS24) reported PD and PF, highlighting

their significance in quality prediction.

The analysis shows that AUC, F-measure, Precision, Recall, and Accuracy are the

most commonly used performance measures in evaluating software quality prediction

models. These measures provide a comprehensive view of the model’s ability to handle

both balanced and imbalanced datasets. Measures like MCC and G-mean are particularly

useful in imbalanced scenarios, while Accuracy, though common, should be interpreted

cautiously in such cases. The diversity of metrics used across the studies highlights the

need for a multi-metric evaluation approach to fully capture the effectiveness of prediction

models.

Figure 3.6: Usage of Performance Metrics across studies

109



Review Results

Table 3.6: Performance Metrics employed in studies

Performance Measure Count of Studies List of Studies
AUC (Area Under the Curve) 19 PS1, PS4, PS5, PS8, PS9, PS11, PS13, PS14, PS15,

PS23, PS24, PS29, PS30, PS35, PS38, PS41, PS44,

PS47, PS50
F-measure / F1-score 17 PS5, PS7, PS21, PS28, PS29, PS31, PS35, PS36,

PS37, PS40, PS41, PS42, PS44, PS45, PS50, PS51,

PS54
Precision 13 PS4, PS21, PS28, PS29, PS31, PS37, PS39, PS40,

PS49, PS50, PS54
Recall 12 PS4, PS21, PS28, PS29, PS31, PS37, PS39, PS40,

PS44, PS50, PS54
Accuracy 10 PS10, PS14, PS28, PS29, PS37, PS39, PS48, PS50,

PS54
MCC (Matthews Correlation Coeffi-

cient)

6 PS4, PS31, PS35, PS41, PS50

G-mean 5 PS9, PS24, PS29, PS32, PS44
PD (Probability of Detection) 5 PS9, PS11, PS14, PS24, PS32
PF (Probability of False Alarm) 5 PS4, PS9, PS14, PS24, PS32
NECM (Normalized Expected Cost

of Misclassification)

2 PS2, PS14

MAE (Mean Absolute Error) 3 PS39, PS43, PS48
Sensitivity 3 PS4, PS10, PS28
Specificity 3 PS4, PS28, PS32
FPR (False Positive Rate) 3 PS12, PS28, PS53
Error Rate 2 PS12, PS37
Popt 3 PS27, PS40, PS52
Precision-Recall Curve (AUCPR) 2 PS35, PS50
RMSE (Root Mean Square Error) 2 PS39, PS50
Balance 2 PS9, PS14
ARE (Average Relative Error) 2 PS20, PS33
AAE (Average Absolute Error) 2 PS20, PS33
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Table 3.6 continued from previous page
Performance Measure Count of Studies List of Studies
Others 1 (per measure) PS45 (AFPrecision, AFRecall), PS43 (MAP,

MRR), PS49 (IFA, PMI, PLI, PofB, PofB/PMI,

PofB/PLI), PS52 (F0.5-score, Benefit)

3.3.7 Results Specific to RQ7

This section answers the statistical tests utilized in the studies reviewed, emphasizing their

application and relevance in analyzing data. Table 1.7 and Figure 1.7 summarizes the

statistical tests employed in the the studies.

The analysis reveals a diverse range of statistical tests employed by researchers in

the reviewed studies. The Wilcoxon signed-rank test and t-test were the most frequently

used, indicating a preference for methods suitable for small sample sizes or non-normally

distributed data. The presence of non-parametric tests like the Mann-Whitney U test,

Kruskal-Wallis test, and Friedman test suggests a recognition of the limitations of paramet-

ric assumptions in many datasets. Additionally, the inclusion of effect size measures like

Cliff’s δ emphasizes the importance of understanding not just the statistical significance

but also the practical significance of research findings.

These tests were selected based on the nature of the data and the specific research

questions addressed, highlighting the critical role of appropriate statistical methods in

deriving meaningful conclusions from research studies. This variety reflects the complexity

of data analysis in research, necessitating the careful selection of statistical tools to suit

specific data characteristics and study designs.

111



Review Results

Figure 3.7: Statistical tests conducted in studies

Table 3.7: Statistical tests conducted by studies

Statistical Test No. of Studies List of Studies
Wilcoxon signed-rank test 6 PS21, PS23, PS30, PS37, PS44, PS47
t-test 4 PS8, PS9, PS21, PS23
Scott-Knott test 4 PS27, PS38, PS41, PS49
Friedman test 3 PS33, PS34, PS43
Wilcoxon-Mann-Whitney test 2 PS1, PS35
Cliff’s δ 2 PS27, PS31
ANOVA 1 PS5
Kruskal-Wallis test 1 PS20
Nemenyi test 1 PS24
Chi-Square 1 PS34
Steiger’s test 1 PS40
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3.4 Discussion

The literature review serves as a critical foundation for understanding the current state

of research in software defect and change prediction. This review aims to synthesize the

findings from various studies, highlighting key insights, identifying gaps, and establishing

a clear motivation for further research in this domain. The following subsections outline

the outcomes of the literature review, the gaps identified, and the motivation behind this

research.

Outcomes of Literature Review

The review of existing literature reveals several notable outcomes:

• Metrics Utilization: A wide variety of metrics have been employed in the identi-

fication of change and defect-prone classes/modules, with Object-Oriented (OO)

metrics being predominant. Researchers have utilized metrics such as cyclomatic

complexity, coupling, cohesion, and code churn to gauge the quality of software

modules.

• Datasets Analysis: A diverse set of datasets has been used across studies, with

notable examples including the NASA MDP and PROMISE repositories. However,

the reliance on specific datasets raises concerns about the generalizability of the

findings.

• Machine Learning Techniques: Several ML algorithms have been applied to the

defect prediction problem, with notable mentions including Naı̈ve Bayes, Support
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Vector Machines (SVM), Random Forests, and Neural Networks. Each algorithm’s

performance has been evaluated, showcasing a range of effectiveness in predicting

defect-prone modules.

• Validation Techniques: Various techniques have been employed for validating soft-

ware quality prediction models, including cross-validation, bootstrapping, and hold-

out methods, ensuring that the models developed are robust and reliable.

• Performance Measures: A plethora of performance measures have been utilized to

evaluate the effectiveness of prediction models, including accuracy, precision, recall,

F1-score, and area under the curve (AUC). These measures provide a comprehensive

view of model performance.

• Statistical Tests: Researchers have employed various statistical tests to validate

the significance of their findings, such as t-tests, ANOVA, and chi-squared tests,

enhancing the reliability of their results.

Identified Gaps

Despite the substantial body of work in the field, several gaps remain that necessitate

further investigation:

• Need for Categorization of Defects: While many studies focus on predicting the

existence of defects, there is a pressing need for categorization of defects based

on their impact, severity, and nature. This categorization could facilitate targeted

interventions and improve overall software quality.

114



Discussion

• Metrics for New Programming Paradigms: The rapid evolution of programming

paradigms, including Agile, DevOps, and microservices, necessitates the develop-

ment and utilization of new metrics. Most studies have relied heavily on traditional

OO metrics, which may not adequately capture the complexities introduced by these

modern paradigms.

• Factors Affecting Performance: Various factors affecting the performance of software

quality prediction models, such as imbalanced data, high dimensionality, parameter

tuning, and multicollinearity, have been identified. However, a limited percentage

of studies have incorporated these factors into their models, leading to potentially

skewed results.

• Limited Dataset Diversity: The majority of studies have relied on a small subset

of datasets, raising concerns about the generalizability of the results. A broader

range of datasets should be explored to validate findings across different contexts

and environments.

• Integration of Advanced Techniques: The integration of advanced machine learning

techniques, such as ensemble methods, deep learning, and hybrid models, remains

underexplored. These approaches could offer significant improvements in predictive

performance and robustness.

• Lack of Comprehensive Evaluation Frameworks: There is a need for comprehensive

evaluation frameworks that integrate performance measures, validation techniques,

and statistical tests, providing a holistic view of model effectiveness.

In summary, the outcomes of the literature review underscore the importance of
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evolving research in software defect and change prediction, while the identified gaps

highlight areas ripe for further exploration. This research aims to fill these gaps and pave

the way for future advancements in the field.
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Chapter 4

Categorization of Software Defects

based on Maintenance Effort and

Change Impact

4.1 Introduction

Software maintenance is a crucial phase within the software development lifecycle. This

phase encompasses tasks such as addressing defects that emerge during production and

integrating new customer requirements and change requests. Given the real-time nature

of these changes in the production environment, there is a pressing need for their swift

implementation and testing, all while working within the constraints of limited resources

[138] [139]. Software Defect Categorization (SDC) emerges as a valuable strategy to

efficiently manage these resources during the maintenance phase. It involves assigning a
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defect level (high, medium, or low) based on specific defect attributes like criticality and

priority [140]. Existing research in defect categorization has demonstrated that basing the

defect level on maintenance effort and change impact yields robust predictive capabilities

compared to other defect attributes. The study proposed in [141] explored an approach by

combining maintenance effort and change impact to construct defect categorization models.

Maintenance effort, in this context, refers to the estimation of effort needed to rectify a

defect, often quantified by the number of lines of code (LOC) that require modification

(addition, deletion, or alteration). Change impact, on the other hand, gauges the number of

classes that need modification to resolve a defect. Defects categorized as high level based

on maintenance effort demand more resources for their resolution, while those categorized

as high level based on change impact necessitate additional resources for regression testing.

Defects categorized as high level based on both attributes require substantial resources for

both defect removal and regression testing [142].

This chapter focuses on three key experiments aimed at exploring different machine

learning techniques for categorizing software defects based on maintenance effort and

change impact:

4.2 Method

The research methodology of this chapter is presented in Figure 4.1.

4.2.1 Datasets

The study analyzes the defect data of five modules of Android software [74], that is

available on GITHUB repository [55]. The details of this dataset is presented in Section
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Figure 4.1: Research Methodology of Proposed Approach

2.8 of Chapter 2 and their characteristics are given in Table 2.4.

4.2.2 Classifiers

In this chapter, three main approaches are employed for Software Defect Categorization

(SDC). Each study utilizes different classifiers to analyze and categorize software defects

based on distinct algorithmic techniques.

• Multinomial Naı̈ve Bayes (MNB): The first study applied the Multinomial Naı̈ve

Bayes algorithm to develop SDC models. MNB is known for its effectiveness in text
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categorization and was adapted here to categorize software defects.

• Ensemble Learning Techniques: The second study used ensemble learning methods

to enhance the robustness of the SDC models. Four prominent ensemble techniques

were employed - Random Forest, XGBoost, AdaBoost, and Bagging - to evaluate

their performance in software defect categorization.

• Convolutional Neural Networks (CNNs): In the third study, Convolutional Neural

Networks, were utilized to construct SDC models, leveraging the strengths of CNNs

in handling complex data representations for defect categorization.

4.2.3 Validation and Performance Evaluation

In this chapter, 10-fold cross-validation [78] was employed to ensure the robustness of

the developed Software Defect Categorization (SDC) models. This technique divides the

dataset into 10 subsets, using 9 subsets for training and the remaining one for testing, and

the process is repeated 10 times as illustrated in Figure 2.3. This method helps to mitigate

the risks of overfitting and provides a more reliable estimate of the model’s performance.

The performance of the models was evaluated using the Area Under the Curve (AUC)

metric as given at equation 2.18, which assesses the model’s ability to distinguish between

defect categories. AUC is a widely accepted measure for classification tasks and is crucial

for comparing the effectiveness of different classifiers.

Additionally, statistical tests were performed to validate the significance of the results.

The Friedman test was used to detect any statistically significant differences between the

approaches as given at equation 2.20, while the Wilcoxon signed-rank test was employed

as a post-hoc analysis to perform pairwise comparisons between approaches as given at
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equation 2.21. These tests ensured that the observed differences in model performance

were not due to random variation.

4.3 SDC with Multinomial Naı̈ve Bayes (NBM) Algorithm

Firs, the study builds the Software Defect Categorization (SDC) models using NBM

classification algorithm [11]. Three SDC models (low level, medium level, and high level)

using NBM classification algorithm are developed for each dataset under study.

A naı̈ve bayes classifier assumes that each of the variables it uses are conditionally

independent of one another given some class. More formally, to calculate the probability

of observing features f1 through fn, given some class c, under the naı̈ve bayes assumption

the following holds:

p(f1, .., fn/c) =
n∏

i=1

p(fi/c) (4.1)

This means that when we want to use a Naı̈ve Bayes classifier to classify a new example,

the posterior probability is much simpler to work with:

p (c/f1, .., fn) α p(c)p(f1/c)...p(fn/c) (4.2)

These assumptions of independence are rarely true, which may explain why some have

referred to the model as the ”Idiot Bayes” model, but in practice, Naı̈ve Bayes models

have performed surprisingly well, even on complex tasks where it is clear that the strong

independence assumptions are false. The term Multinomial Naı̈ve Bayes means that each

p(fi/c) is a multinomial distribution and holds good for ordinal values. In summary, NBM
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model is a special case of Naı̈ve Bayes model where a multinomial distribution is used for

each of its features.

4.3.1 Experimental Results

A. SDC Model using Maintenance Effort

The AUC values of the SDC models developed in accordance with Maintenance

effort using the NBM classification technique on the five datasets used in the study

are shown in the Table 4.2. The developed SDC models identify three specific

levels allocated to software defects i.e. ’low’, ’medium’ or ’high’. The study

developed four models at each level using a different number of predictor variables

(Top 10, Top 25, Top 50 and Top 100). All the AUC values which are greater than

0.7 are marked in bold. It is evident from the Table 4.2 that the ranges of AUC

values of the ’low level’ SDC models of Bluetooth, Browser, Calendar, Camera and

MMS datasets ranged from 0.753-0.913, 0.585-0.653, 0.569-0.837, 0.610-0.826

and 0.421-0.834 respectively. The ranges of AUC values obtained by ’medium

level’ SDC models were 0.750-0.891 (Bluetooth), 0.574-0.669 (Browser), 0.482-

0.788 (Calendar), 0.626-0.815 (Camera) and 0.448-0.726 (MMS). Similarly, the

ranges of AUC value for ’high level’ SDC models 0.687-0.881, 0.540-0.604, 0.621-

0.900, 0.713- 0.853, and 0.494-0.774 for the Bluetooth, Browser, Calendar, Camera

and MMS datasets respectively. These ranges of AUC values indicate that the

categorization of defects into different levels according to the SDC models developed

using the maintenance effort required to correct them is acceptable and accurate.

An analysis of the AUC values of ’low level’, ’medium level’ and ’high level’ SDC
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models indicate that the ’high level’ category models obtained higher AUC and

accuracy values on three of the datasets (Browser, Calendar, and Camera). As

mentioned earlier, it is important to detect ’high level’ defects according to the

maintenance effort so that maintenance team managers can allocate appropriate

resources for correcting these defects. This will help in reducing the cost to fix

defects and so effective maintenance of the software with optimized resource usage.

The AUC values for ’low level’ SDC models ranged from 0.753-0.913, 0.585-0.653,

0.569-0.837, 0.610-0.826 and 0.421-0.834, while the AUC values of ’medium level’

SDC models were found to be in the range of 0.750-0.891, 0.574-0.669, 0.482-0.788,

0.626-0.815 and 0.448-0.726 in most of the cases in Bluetooth, Browser, Calendar,

Camera and MMS datasets respectively. The AUC values for ’high level’ SDC

models were found to be in the range of 0.687-0.881, 0.540-0.604, 0.621-0.900,

0.713- 0.853, and 0.494-0.774 respectively in Bluetooth, Browser, Calendar, Camera

and MMS datasets respectively. These AUC values indicate that the categorization

of defects into different levels according to the corresponding maintenance effort

required to correct them is acceptable and accurate.

B. SDC Model using Change Impact

The AUC values of SDC models developed in accordance with Change Impact

using the NBM classification technique on the android data sets used in the study

are shown in Table 4.3. All AUC values with a value greater than 0.7 are maked

as bold in Table 4.3. The AUC values for ’low level’ SDC models ranged from

0.513-0.680, 0.554-0.643, 0.588-0.801, 0.629-0.759 and 0.535-0.644, while the

AUC values of ’medium level’ SDC models were found to be in the range of 0.489-
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0.607, 0.476-0.517, 0.487-0.591, 0.514-0.627 and 0.546-0.64 in most of the cases in

Bluetooth, Browser, Calendar, Camera and MMS datasets respectively. The AUC

values for ’high level’ SDC models were found to be in the range of 0.418-0.665,

0.536-0.662, 0.660-0.812, 0.652-0.765 and 0.367-0.678 respectively in Bluetooth,

Browser, Calendar, Camera and MMS datasets.

As seen in the Table 4.3, most of the AUC values are accurate and acceptable, but,

few SDC models obtained AUC values in the range 0.3-0.5. These poor values were

obtained as the SDC models were developed from highly imbalanced training data.

C. SDC Model according to the combined effect of its Maintenance Effort and

Change Impact

SDC models were developed using the NBM classification technique in accordance

with the product of a bug’s required maintenance effort and its change impact values.

Table 4.4 states the AUC results of the developed SDC models. All AUC values

greater than 0.7 are marked in bold.

As shown in the Table 4.4, the SDC models built at ’high’ level category obtained

AUC values in the range 0.612-0.807, 0.545-0.688, 0.654-0.889, 0.672-0.846 and

0.655-0.870 in most of the cases for Bluetooth, Browser, Calendar, Camera and

MMS datasets respectively. The SDC models at ’low level’ obtained the ranges

of AUC values of from 0.739-0.908, 0.575-0.705, 0.643-0.848, 0.638-0.794 and

0.670-0.871, while those at ’medium level’ obtained the ranges of AUC values of

0.664-0.796, 0.570-0.658, 0.571-0.815, 0.523-0.766 and 0.676-0.861 respectively

for Bluetooth, Browser, Calendar, Camera and MMS datasets. Most of the obtained

AUC values by the SDC models depicted in Table 4.4 were acceptable.
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4.3.2 Discussion of Results

The results of the study show that the AUC values of the SDC models built using the

combination of maintenance effort and change impact was comparable to SDC models

built in accordance with the maintenance effort. As the combined approach considers

both the maintenance effort and the change impact values, they found to be more useful.

Maintenance effort aids in planning the developer’s effort based on the level of defects

predicted, while the change impact aid in planning the testerâs effort based on the prediction

of the number of the classes that are changed to fix the defects. Testers can perform

regression testing on only the modules that are impacted, which saves cost and time. The

results of the study also show that the AUC values of the SDC models built using the

combined approach were better than SDC models built in accordance with change impact

values. The primary reason for the poor performance of SDC models based on change

impact values was the imbalanced data of the training dataset.

It can also be observed from the results of the study that all the performance of the

developed SDC models for Top10 features was poor as compared to Top25, Top50, and

Top100 features. In most of the instances, the AUC of SDC models developed using

Top10 keywords were lesser than Top25, Top50 or Top100 words. The primary reason

for such poor performance was the inability of Top10 words to encapsulate the required

information for predicting the level of a defect based on its bug report. On the other

hand, both the SDC models developed using Top50 and Top100 keywords were found

appropriate with effective AUC values. The reason for the comparable performance of

Top50 and Top100 models could be redundancy in the predictors. There is a possibility

that Top100 words may be representing redundant information in certain cases, which
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was effectively encapsulated in just Top50 words. In such cases, developing models with

Top50 words is more.

The results of this study are as follows:

• The results of AUC values of ’high’ category SDC models on all the datasets used in

the study for Top 25, Top 50 and Top 100 words as predictors are summarized as

follows: The most of AUC values of SDC models built in accordance of maintenance

effort are in the range 0.643-0.881 for all the datasets of the study. The most of

AUC values of SDC models built based on change impact values were in the range

0.652-0.812. The most of AUC values of SDC models built based on the product

of maintenance effort and change impact are in the range of 0.654-0.889. These

AUC values indicate acceptable predictability of the SDC models built in our study.

Similar values were shown in Table 4.3 and Table 4.4 for ’medium’ category and

’low’ category SDC models respectively.

• The performance of the SDC models according to the combination of maintenance

effort and change impact are found to be better than the SDC models based on

change impact and comparable to the SDC models according to maintenance effort.

4.4 SDC with Ensemble Learners

Machine learning, especially ensemble learning techniques, has emerged as a promising

avenue for classification problems [143][18]. These ensemble techniques have the ca-

pability to handle the complexities of real-world bug datasets and provide robust defect

categorization models. Ensemble learning is a machine learning paradigm that combines
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the predictions of multiple base learners to produce a more accurate prediction. The basic

idea behind ensemble learning is that by combining the predictions of multiple base learn-

ers, the variance of the overall prediction can be reduced [144]. This is because different

base learners will make different errors, and combining their predictions will average

out these errors. There are two main types of ensemble learning techniques: bagging

and boosting. Bagging techniques work by training multiple base learners on different

subsets of the training data. Boosting techniques work by training multiple base learners

sequentially, with each base learner learning from the errors of the previous base learner.

The mathematical foundation of ensemble learning is rooted in concepts of aggregation,

weighting, and diversity. The brief description of ensemble learning techniques examined

in this study are given in Chapter 2.

The primary aim of this study is to assess the effectiveness of ensemble learning

techniques in the context of software defect categorization, with a specific focus on

enhancing categorization accuracy and efficiency. The study aims to understand how these

techniques can be harnessed to address the inherent challenges of categorizing software

bugs in real-world scenarios.

The following research questions are addressed in this study:

RQ1. What is the performance of ensemble learning techniques for software defect catego-

rization.?

RQ2. How does the performance of ensemble learning techniques vary for different levels

of bugs.?

RQ3. How does the performance of ensemble learning techniques vary for different bug

categorization approaches.?
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RQ4. Which ensemble learning technique outperforms the other ensemble techniques for

software defect categorization.?

The ensemble learning techniques employed for building SBC models in this study

are Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting

(AdaBoost), and Bootstrap Aggregation or Bagging (BAG). Thus, a total of 5 (defect

datasets) x 4 (sets of independent variables) x 3 (approaches) x 4 (techniques) = 240 SDC

models were built during experimentation.

4.4.1 Experimental Framework

This section detail the experimental setup employed to assess the effectiveness of ensemble

learning techniques for software defect categorization (SDC). The implementation of

ensemble learning models for SBC heavily relied on the scikit-learn (Sci-kit) library [61],

a powerful and widely used machine learning library in Python. Scikit-learn provides a

versatile set of tools for constructing and evaluating machine learning models, making

it an ideal choice for this research. The tables in this section, namely Table 4.5 for

Random Forest (RF), Table 4.6 for eXtreme Gradient Boosting (XGBoost), Table 4.7 for

Adaptive Boosting (AdaBoost), and Table 4.8 for Bagging (BAG), display the parameter

configurations that were utilized during the construction of the classifiers. It’s worth noting

that default parameter values provided by the scikit-learn library were employed for any

parameters not explicitly mentioned in these tables. Additionally, IBM SPSS [145] was

utilized for performing the statistical tests - Friedman test and Wilcoxon signed-rank test.
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Table 4.4: Parameter Configuration of Random Forest Classifier

Parameter Description Value
criterion The function to measure the quality of a split. Sup-

ported criteria are ’gini’ for the Gini impurity and

’log loss’ and ’entropy’ both for the Shannon infor-

mation gain.

gini

max depth The maximum depth of the tree 5
max features The number of features to consider when looking for

the best split:

sqrt

min impurity decrease A node will be split if this split induces a decrease of

the impurity greater than or equal to this value.

0

min samples leaf The minimum number of samples required to be at a

leaf node.

1

min samples split The minimum number of samples required to split

an internal node.

2

min weight fraction leaf The minimum weighted fraction of the sum total of

weights (of all the input samples) required to be at a

leaf node.

0

n estimators The number of trees in the forest. 100

Table 4.5: Parameter Configuration of XGBoost Classifier

Parameter Description Value
objective Specify the learning task and the corresponding learning

objective or a custom objective function to be used.

binary:logistic

n estimators Number of boosting rounds. 100
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Table 4.6: Parameter Configuration of AdaBoost Classifier

Parameter Description Value
algorithm If ’SAMME.R’ then use the SAMME.R real boost-

ing algorithm. If ’SAMME’ then use the SAMME

discrete boosting algorithm.

SAMME.R

estimator The base estimator from which the boosted ensemble

is built.

DecisionTreeClassifier

learning rate Weight applied to each classifier at each boosting

iteration. A higher learning rate increases the contri-

bution of each classifier.

1

n estimators The maximum number of estimators at which boost-

ing is terminated.

100

Table 4.7: Parameter Configuration of Bagging Classifier

Parameter Description Value
bootstrap Whether samples are drawn with replacement. If

False, sampling without replacement is performed.

TRUE

estimator The base estimator to fit on random subsets of the

dataset.

DecisionTreeClassifier

max features The number of features to draw from X to train each

base estimator.

1

max samples The number of samples to draw from X to train each

base estimator.

1

n estimators The number of base estimators in the ensemble. 100
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4.4.2 Results

This section provides an overview of the study’s findings and addresses each of the research

questions (RQ) under investigation. The primary goal of Software Defect Categorization

(SDC) models is to effectively categorize software defects into one of three specific levels:

”low”, ”medium,” or ”high.” To achieve this, four distinct models with each ensemble

classification algorithms, namely Random Forest (RF), eXtreme Gradient Boosting (XGB),

Adaptive Boosting (ADB), and Bagging (BAG), were developed for every bug level and

every set of predictor variables (Top10, Top25, Top50, and Top100). These models are

built upon five distinct datasets drawn from the study. Table 4.9, Table 4.10, and Table

4.11 presents the AUC values associated with the SBC models based on maintenance

effort (ME), change impact (CI) and combination of both (COMB) respectively. The AUC

value of the most effective model for each predictor variable set is highlighted in bold.

Furthermore, we computed the average AUC values across the four ensemble algorithms,

denoted as AVG, for each predictor variable set (Top10, Top25, Top50, and Top100). The

best AVG AUC value among these sets is also highlighted in bold.
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Figure 4.2: Box plot of AUC values of different Approaches for Low Level Bugs

Figure 4.3: Box plot of AUC values of different Approaches for Medium Level Bugs

• RQ1: What is the performance of ensemble learning techniques for software defect

categorization.?

It is evident from the AUC values presented in Table 4.9, Table 4.10, and Table
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Figure 4.4: Box plot of AUC values of different Approaches for High Level Bugs

Figure 4.5: Box plot of AUC values of different Approaches for All Level Bugs

4.11 that the range of AUC values for RF, XGB, ADB and BAG are 0.4217-0.8148,

0.4199-0.7874, 0.4149-0.7833, and 0.3768-0.8032 respectively. The average AUC

value for RF, XGB, ADB and BAG are 0.6499, 0.6263, 0.6262 and 0.6382 re-

spectively. AUC values exceeding 0.5 were observed in 96.11% of cases for RF,
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Figure 4.6: Box plot of AUC values of Ensemble Techniques for Low Level Bugs

Figure 4.7: Box plot of AUC values of Ensemble Techniques for Medium Level Bugs

93.33% for XGB, 95% for ADB, and 93.89% for BAG. These AUC values signify

the effectiveness and predictive capability of the ensemble classifiers for the bug

categorization.

• RQ2: How does the performance of ensemble learning techniques vary for different

139



SDC with Ensemble Learners

Figure 4.8: Box plot of AUC values of Ensemble Techniques for High Level Bugs

Figure 4.9: Box plot of AUC values of Ensemble Techniques for All Level Bugs

levels of bugs.?

The AUC values obtained for different levels of bugs (”low level”, ”medium level”

and ”high level”) are shown in Table 4.9, Table 4.10, and Table 4.11. The box plots

of AUC values of ensemble learning techniques over ”low level”, ”medium level”,
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”high level” and ”all” bugs are illustrated in Figure 4.6, Figure 4.7, Figure 4.8 and

Figure 4.9 respectively. The AUC value ranges for the ”low level” bugs of SDC

models built on RF, XGB, ADB and BAG are 0.4775-0.8050, 0.4668-0.7567, 0.4542-

0.7833 and 0.4675-0.7831 respectively, and their respective average AUC values are

0.6684, 0.6459, 0.6321 and 0.6605. Meanwhile, the AUC values of ”medium level”

bugs ranges of 0.4217-0.7500 (RF), 0.4199-0.7211 (XGB), 0.4149-0.7683 (ADB)

and 0.3768-0.7742 (BAG), and their respective average AUC values are 0.5940,

0.5789, 0.5935 and 0.5920. The ”high level” bugs of SBC models demonstrate AUC

value ranges of 0.5200-0.8148, 0.4450-0.7874, 0.4298-0.7674 and 0.4524-0.8032 for

the RF, XGB, ADB and BAG respectively, and their respective average AUC values

are 0.6873, 0.6542, 0.6530 and 0.6620. These AUC values signify the effectiveness

and predictive capability of the ensemble classifiers for the categorization of different

levels of bugs. It is worth highlighting that the models categorize ”high level” bugs

exhibit higher AUC values for all the ensemble learners. The effective identification

and resolution of ”high level” bugs by considering their maintenance effort are

essential for the efficient allocation of resources and cost reduction in bug resolution,

ultimately contributing to the optimization of software maintenance.

• RQ3: How does the performance of ensemble learning techniques vary for different

bug categorization approaches.?

Table 4.9 illustrates the AUC values obtained from the Software Defect Catego-

rization (SDC) models based on the Maintenance Effort (ME) by applying four

ensemble classification algorithms. The AUC value ranges for the ”low level” SDC

models across the Bluetooth, Browser, Calendar, Camera, and MMS datasets are
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0.5667-0.8050, 0.5672-0.6670, 0.4668-0.7600, 0.6056-0.7132 and 0.6473-0.7831

respectively. Meanwhile, the ”medium level” SDC models exhibit AUC value ranges

of 0.4708-0.7742 (Bluetooth), 0.4797-0.5967 (Browser), 0.4486-0.6700 (Calendar),

0.5785-0.6562 (Camera) and 0.5077-0.6365 (MMS). The ”high level” SDC models

demonstrate AUC value ranges of 0.4950-0.6883, 0.6449-0.7131, 0.6039-0.8148,

0.6958-0.7697 and 0.5542-0.6937 for the Bluetooth, Browser, Calendar, Camera,

and MMS datasets respectively. Likewise, Table 4.10 and Table 4.11 present the

AUC ranges achieved by the SBC models when categorized by Change Impact (CI)

and the combined approach (COMB) respectively. The box plots of AUC values

of three approaches (ME, CI and COMB) over ”low level”, ”medium level”, ”high

level” and ”all” bugs are illustrated in Figure 4.2, Figure 4.3, Figure 4.4 and Figure

4.5 respectively.

To assess the comparative performance of the three distinct approaches - Mainte-

nance Effort (ME), Change Impact (CI), and their combination (COMB), the study

conducted a comprehensive statistical analysis using the Friedman test, which evalu-

ated their AUC values across all datasets examined in this study. The significance

level chosen for this analysis was set at α = 0.05.

Null Hypothesis H01: There is no statistically significant difference among the

performance of the defect categorization approaches - ME, CI, and COMB in terms

of AUC.

Alternative Hypothesis Ha1: There exists a statistically significant difference among

the performance of the defect categorization approaches - ME, CI, and COMB in

terms of AUC.
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Table 4.12 summarizes the results of the Friedman test, assessing the performance

of bug categorization approaches - ME, CI, and COMB, as measured by AUC. The

obtained p-value was less than 0.05, signifying statistically significant outcomes.

Consequently, we reject the null hypothesis H01, which posits that the performance

of the bug categorization approaches - ME, CI, and COMB is identical. Table 4.12

also provides the mean ranks assigned to each of the bug categorization approaches -

ME, CI, and COMB. It is noteworthy that ME achieved the highest rank, COMB

secured the next rank and CI attained the lowest rank across all bug levels.

To further validate the findings of the Friedman test, the study conducted a post-

hoc analysis using the Wilcoxon signed-rank test. This analysis compared the

performance of ME with that of the other approaches (COMB and CI). The null and

alternative hypotheses for the Wilcoxon signed-rank test concerning AUC in this

study were formulated as follows:

Null Hypothesis H02: Performance of X = Performance of Y

Alternative Hypothesis Ha2: Performance of X ̸= Performance of Y where X repre-

sents ME and COMB, and Y represents COMB and CI.

The study applied a significance level of α = 0.05 and implemented Bonferroni

correction to assess and potentially reject null hypotheses H02. The study compared

two pairs of techniques using the Wilcoxon test, whereby null hypotheses would be

rejected if the obtained p-value exceeded 0.05. Table 4.13 displays the outcomes of

the Wilcoxon signed-rank test, along with the corresponding test statistics. The ”S+”

column indicates a significant difference in the AUC values for a pair of compared

methods, while ”S-” suggests no significant difference for the respective pair of

143



SDC with Ensemble Learners

methods. The results of the Wilcoxon signed-rank test reveal the following:

– There is no significant difference between the ME and COMB approaches.

– Both ME and COMB significantly outperform CI.

• RQ4: Which ensemble learning technique outperforms the other ensemble tech-

niques for software defect categorization.?

The performance of ensemble models (Random Forest (RF), eXtreme Gradient

Boost (XGA), AdaBoost (ADB) and Bagging (BAG)) are assessed using Area under

ROC curve (AUC) given in Table 4.9, Table 4.10 and Table 4.11. The comparison

of ensemble learning techniques over ”low level”, ”medium level”, ”high level”

and ”all” bugs are illustrated as box plots in Figure 4.6, Figure 4.7, Figure 4.8 and

Figure 4.9 respectively. The results clearly indicate the RF has better AUC values,

followed by BAG, then ADB and XGB lastly, for most of the datasets. Statistical

Tests are performed to further strengthen the results. To investigate which of these

four ensemble techniques viz., RF, XGA, ADB and BAG performs the best, we

conducted the statistical analysis using the Friedman test by evaluating their AUC

values over all datasets examined in this study. The Friedman test is applied at a

level of significance α = 0.05.

Null hypothesis-H03: There is no significant difference among the performance of

SBC models by ensemble techniques viz., RF, XGA, ADB and BAG in terms of

AUC.

Alternate hypothesis-Ha3: There is a significant difference among the performance

of SBC models by ensemble techniques viz., RF, XGA, ADB and BAG in terms of
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AUC.

Table 4.14 presents the outcomes of Friedman test conducted to evaluate the per-

formance of SBC models by classification techniques - RF, XGA, ADB and BAG

measured by AUC. The obtained p-value was less than 0.05, which prove the out-

comes are significant. Therefore, we reject the null hypothesis H03, which states the

performance of SBC models by classification techniques - RF, XGA, ADB and BAG

are same. The mean ranks assigned to each of the prediction models classification

techniques - RF, XGA, ADB and BAG are presented in Table 4.14. It is to be noted

that RF has obtained the best rank, followed by BAG, then ADB and XGB at the

last.

To confirm the finding of the Friedman test, we carried out post-hoc analysis through

the Wilcoxon-signed rank test. The analysis compared the performance of one

technique with that of other techniques. The null and alternative hypothesis for the

Wilcoxon-signed rank test in terms of AUC in this study are presented as follows:

Null hypothesis-H04: Performance of X = Performance of Y

Alternate hypothesis-Ha4: Performance of X ̸= Performance of Y where X and Y

denotes RF, XGA, ADB and BAG.

The study used a level of confidence α = 0.05 and Bonferroni correction to reject

null hypotheses H03. The study compared 2 pairs of techniques by Wilcoxon test,

the null hypotheses would be rejected if p-value obtained is greater than 0.05. Table

4.15 presents outcomes of Wilcoxon signed-rank test along with test statistics. The

”S+” column in Table 4.15 shows significant difference in the AUC values of a pair

of compared techniques, while ”S-” denotes that there is no significant difference in
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the corresponding pair of methods. The outcomes of the Wilcoxon signed-rank test

indicate that:

– RF technique is significantly superior to other techniques (BAG, ADB and

XGA).

– BAG is significantly superior to ADB and XGB.

– ADB and XGB are not significantly different.

Table 4.11: Results of Friedman Test - Comparison of Approaches

Mean Rank over
Approach High Level Bugs Medium Level Bugs Low Level Bugs All Bugs
ME 2.45 2.30 2.40 2.38
COMB 2.05 2.10 2.35 2.17
CI 1.50 1.60 1.25 1.45

Table 4.12: Results of Wilcoxon Signed Rank Test - Comparison of Approaches

Test Statistics overApproaches
Comparison High Level Bugs Medium Level Bugs Low Level Bugs All Bugs
ME vs COMB S- (0.313) S- (0.940) S- (0.881) S- (0.375)
ME vs CI S+ (0.021) S+ (0.037) S+ (0.005) S+ (0.000)
COMB vs CI S+ (0.028) S+ (0.019) S+ (0.000) S+ (0.000)

Table 4.13: Results of Friedman Test - Comparison of Classifiers

Mean Rank over
Classifier High Level Bugs Medium Level Bugs Low Level Bugs All Bugs
RF 3.43 2.74 3.17 3.11
BAG 2.22 2.55 2.76 2.51
ADB 2.23 2.51 1.99 2.24
XGB 2.12 2.20 2.08 2.13

146



SDC with Ensemble Learners

Table 4.14: Results of Wilcoxon Signed Rank Test - Comparison of Classifiers

Test Statistics overClassifiers
Comparison High Level Bugs Medium Level Bugs Low Level Bugs All Bugs
RF vs XGB S+ (0.000) S+ (0.018) S+ (0.000) S+ (0.000)
RF vs ADB S+ (0.000) S- (0.982) S+ (0.000) S+ (0.000)
RF vs BAG S+ (0.000) S- (0.740) S+ (0.038) S+ (0.000)
XGB vs ADB S- (0.897) S- (0.108) S- (0.093) S- (0.845)
XGB vs BAG S- (0.219) S+ (0.011) S+ (0.002) S+ (0.000)
ADB vs BAG S- (0.549) S- (0.791) S+ (0.003) S+ (0.032)

4.4.3 Discussion

The study explored the application of ensemble learning techniques of Software Defect

Categorization (SDC) models on the datasets of five modules of the android operating

system. The SDC models are capable to estimate whether a software bug belongs to

”low category” or ”not low category”, ”medium category” or ”not medium category”,

”high category” or ”not high category”. This study embarked on the categorization of

bugs on basis of three distinct approaches: maintenance effort, change impact, and their

combination, with the intent to unveil the most potent approach for constructing resilient

SBC models. The study explored and compared four prominent ensemble learning methods,

namely Random Forest (RF), eXtreme Gradient Boosting (XGB), Adaptive Boosting

(ADB) and Bagging (BAG), to determine the best ensemble technique for effective SDC

model development. Thus, a total of 5 (datasets) x 4 (sets of independent variables) x 3

(approaches) x 4 (ensemble methods) = 240 SBC models were built and evaluated in this

study. The study harnessed the rigorous power of stratified ten-fold cross-validation and

performance measure Area Under the Curve (AUC) to unveil the true essence of these
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models, and their predictive capabilities.

The key findings of the study are summarized as below:

• The AUC values of three approaches - maintenance effort, change impact, and

their combination are in the range of 0.5040-0.7675, 0.4338-0.7350 and 0.5154-

0.7484 respectively.

• The performance of SDC models based on combined approach and maintenance

effort are superior to models based on change impact. Also, the performance of

SDC models based on maintenance effort are comparable to the models based on

combined approach.

• The AUC values of four ensemble learners - Random Forest, XGBoost, AdaBoost

and Bagging are in the range of 0.4217-0.8148, 0.4199-0.7874, 0.4149-0.7833 and

0.3768-0.8032 respectively.

• Among the four ensemble learning techniques examined in the study, Random

Forest exhibits superior performance, followed by Bagging in the second position,

Ada-Boost in the third position, and XGBoost in the fourth and final position.

• The results signify the effectiveness and predictive capability of the ensemble

classifiers for the software defect categorization.
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4.5 Convolutional Neural Networks for Software Defect

Categorization

Deep learning methods have surged in popularity, driven by advancements in computing

capabilities and storage capacity. One prominent deep learning architecture that has

gained prominence is the Convolutional Neural Network (CNN), which is inspired by the

structure and functioning of the visual cortex in the human brain. This study introduces a

novel software defect categorization model built upon a Convolutional Neural Network

(SDC-CNN). The study is driven by two primary objectives:

• To determine the predictive capability of convolutional networks for software defect

categorization. This objective entails a comprehensive exploration and comparative

analysis of performance of models for each defect level - low, medium and high.

• To determine the most effective attribute for constructing robust Software Defect

Categorization (SDC) models. This involves systematically evaluating and compar-

ing three key attributes: maintenance effort, change impact, and a combination of

both attributes to identify the optimal attribute for defect categorization.

To achieve these objectives, the study poses several research questions:

RQ1: What is the predictive capability of SDC-CNN models for high level defects.?

RQ2: What is the predictive capability of SDC-CNN models for medium level defects.?

RQ3: What is the predictive capability of SDC-CNN models for low level defects.?
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RQ4: What is the performance of SDC-CNN models that assign defect levels based on

maintenance effort.?

RQ5: What is the performance of SDC-CNN models that assign defect levels based on

change impact.?

RQ6: What is the performance of SDC-CNN models that assign defect levels based on the

combined effect of maintenance effort and change impact.?

RQ7: What is the comparative performance of SDC-CNN models using the combined

effect of maintenance effort and change impact, compared to levels allocated based

on a) maintenance effort and b) change impact.?

The study provides a comprehensive and reproducible framework for efficiently imple-

menting CNN, offering a detailed account of parameter configurations and employing a

stratified 10-fold cross-validation method. In total, the study involves the development of

5 (datasets) x 4 (feature sets) x 3 (approaches) = 60 SDC models.

4.5.1 Proposed Convolutional Neural Network for Software Defect

Categorization Model (SDC-CNN)

Table 4.16 outlines the CNN’s architecture along with its parameter configurations. The

CNN implementation is carried out using python APIs - keras [146] and sci-kit [61]. The

architecture and model parameters were chosen based on a heuristic approach. The models

begin with the input layer, which is configured to expect data in the form of 1D arrays,

denoted as (X, 1). Moving forward, a 1D convolutional layer with 64 filters and a kernel
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size of 4 is employed to capture essential features from the input defect data. The smaller

kernel size focuses on localized patterns, which can be crucial for identifying specific

defect characteristics. ReLU (Rectified Linear Unit) is used as the activation function

in the convolutional and dense layers to introduce non-linearity, enabling the network to

learn complex mappings between defect features and their categories. The output from

this convolutional layer is then directed into a max-pooling layer with a pool size of 2.

This step serves two purposes: reducing the complexity of the feature maps and guarding

against overfitting. Another significant aspect of max-pooling is its ability to introduce a

degree of translation invariance. This means that even if a feature is detected in different

spatial locations within the input (e.g., different positions in a defect report), max-pooling

will capture the most prominent occurrence of that feature. This property is beneficial in

defect categorization tasks where defects may manifest in varying contexts or locations

within the input data. Then the flatten layer is used to transform the output of convolutional

and pooling layers into a suitable format for the next dense layer featuring 128 units and

employing ReLU activation.

To further mitigate the risk of overfitting, a dropout layer is introduced with a dropout

rate of 0.25, randomly deactivating 25% of input units during training. Then Batch Normal-

ization layers are used to stabilize and accelerate the training of CNNs by normalizing the

input data and introducing learnable parameters to fine-tune the normalization. Following

this, the output of the aforementioned layer proceeds to another dense layer, this time

comprising a three units (each unit corresponds to a different defect level - low, medium

and high) and equipped with a softmax activation function. This configuration generates a

probability score indicating the likelihood of the input belonging to one of three classes.
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Table 4.15: Structure of proposed CNN

Layer Layer Type Output Shape Parameter Settings
0 Input (None, length) Batch Size : 50

1 Convolutional 1D (None,length,64)
Filter Size : 64, Kernel Size : 4,
Regularization : L2 with penalty of 0.001,
Activation Function : ReLU

2 Pooling (None,length,64) 1D Max Pooling with pool size 2
3 Flatten (None, 192) data format : channels last

4 Dense (None, 128)
Regularization : L2 with penalty of 0.001,
Activation Function : ReLU

5 Dropout (None, 128) Dropout 0.25

6
Batch

Normalization
(None, 128) axis : -1, momentum : 0.99, epsilon : 0.001

7 Dense (None, 3)
Regularization : L2 with penalty of 0.001,
Activation Function : Softmax

Loss Function : Categorical Cross entropy
Optimizer : Adam

4.5.2 Results

This section presents the results of the study by providing answers to each of the research

questions (RQ) that have been investigated.

• RQ1: What is the predictive capability of SDC-CNN models for high level defects.?

The AUC values of SDC-CNN models for high level defects based on maintenance

effort, change effort and combined approach are presented in Table 4.17, Table

4.18 and Table 4.19 respectively. Boxplot of AUC values of the models for high

level defects are shown in Figure 4.10. These models constructed for each level

using varying predictor variables (Top10, Top25, Top50, and Top100). Values

greater than 0.7 are highlighted in bold. For the ’high-level’ SDC models across

152



Convolutional Neural Networks for Software Defect Categorization

Bluetooth, Browser, Calendar, Camera, and MMS datasets, AUC value ranges based

on maintenance effort, change effort and combined approaches were 0.5150-0.8577,

0.4548-0.8031, and 0.5550-0.8586 respectively.

Notably, the ’high-level’ category models achieved AUC values greater than 0.5 in

most of the cases. The predictive capability of the proposed SDC-CNN model for

high level defects is found to be very significant. The predictive capability of SDC-

CNN models for ’high-level’ defects underscores their importance in identifying

critical issues that can significantly impact software functionality and performance.

This implies that organizations can use SDC-CNN models to prioritize the resolution

of high-level defects through efficient resource allocation by maintenance managers,

thereby reducing defect fixing costs and optimizing software maintenance.

• RQ2: What is the predictive capability of SDC-CNN models for medium level

defects.?

The AUC values of SDC-CNN models for medium level defects based on main-

tenance effort, change effort and combined approach are presented in Table 4.17,

Table 4.18 and Table 4.19 respectively. Boxplot of AUC values of the models for

medium level defects are shown in Figure 4.11. These models constructed for each

level using varying predictor variables (Top10, Top25, Top50, and Top100). Values

greater than 0.7 are highlighted in bold. For the ’medium-level’ SDC models across

Bluetooth, Browser, Calendar, Camera, and MMS datasets, AUC value ranges based

on maintenance effort, change effort and combined approaches were 0.5084-0.7906,

0.4395-0.6974, and 0.5357-0.8967 respectively.

Notably, the ’medium-level’ category models achieved values of AUC greater than
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0.5 in most of the cases. The predictive capability of the proposed SDC-CNN

model for medium level defects is found to be significant. Understanding the

predictive capability of SDC-CNN models for ’medium-level’ defects highlights

their effectiveness in addressing issues that may not be as critical as ’high-level’

defects but still require attention. This suggests that organizations can leverage SDC-

CNN models to allocate resources more efficiently and prioritize defect resolution

efforts based on the severity of defects.

• RQ3: What is the predictive capability of SDC-CNN models for low level defects.?

The AUC values of SDC-CNN models for low level defects based on maintenance

effort, change effort and combined approach are presented in Table 4.17, Table

4.18 and Table 4.19 respectively. Boxplot of AUC values of the models for low

level defects are shown in Figure 4.12. These models constructed for each level

using varying predictor variables (Top10, Top25, Top50, and Top100). Values

greater than 0.7 are highlighted in bold. For the ’low-level’ SDC models across

Bluetooth, Browser, Calendar, Camera, and MMS datasets, AUC value ranges based

on maintenance effort, change effort and combined approaches were 0.5763-0.8280,

0.4983-0.7723, and 0.5580-0.8067 respectively.

Notably, the ’low-level’ category models achieved values of AUC greater than 0.5 in

most of the cases. The predictive capability of the proposed SDC-CNN model for

low level defects is found to be significant. The predictive capability of SDC-CNN

models for low-level defects indicates their value in identifying minor issues that

may have a cumulative effect on software performance and user experience over time.

This implies that organizations can use SDC-CNN models to proactively address
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low-level defects, thereby preventing potential escalations and reducing long-term

maintenance costs.

• RQ4: What is the performance of SDC-CNN models that assign defect levels based

on maintenance effort.?

The AUC values of SDC-CNN models that assign defect levels based on maintenance

effort are presented in Table 4.17. These models classify defects into ’low,’ ’medium,’

or ’high’ categories, with four models constructed for each level using varying

predictor variables (Top10, Top25, Top50, and Top100). Values of AUC greater than

0.7 are highlighted in bold. The AUC value ranges of SDC models across Bluetooth,

Browser, Calendar, Camera, and MMS datasets were 0.5150-0.8058, 0.5084-0.6869,

0.6000-0.8577, 0.5358-0.8107 and 0.6713-0.8075 respectively. The AUC values of

all the cases are greater than 0.5 with an average AUC value of 0.6981.

Evaluating the performance of SDC-CNN models that assign defect levels based

on maintenance effort suggests their potential to optimize resource allocation and

improve the efficiency of defect management processes. This implies that organiza-

tions can use SDC-CNN models to prioritize defect resolution activities based on

the effort required, thereby streamlining maintenance workflows and maximizing

productivity.

• RQ5: What is the performance of SDC-CNN models that assign defect levels based

on change impact.?

The AUC of SDC-CNN models that assign defect levels based on change impact

are presented in Table 4.18. These models classify defects into ’low,’ ’medium,’ or
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’high’ categories, with four models constructed for each level using varying predictor

variables (Top10, Top25, Top50, and Top100). Values of AUC greater than 0.7

are highlighted in bold. The AUC value ranges of SDC models across Bluetooth,

Browser, Calendar, Camera, and MMS datasets were 0.4548-0.6726, 0.4395-0.6524,

0.5298-0.8031, 0.5497-0.7643 and 0.4937-0.7964 respectively. The AUC values of

55 out of 60 cases are greater than 0.5 with an average AUC value of 0.6245. Thus

the performance of SDC-CNN models that assign defect levels based on change

impact is found to be significant.

Assessing the performance of SDC-CNN models that assign defect levels based

on change impact highlights their effectiveness in identifying defects that have a

significant impact on software functionality. This suggests that organizations can use

SDC-CNN models to proactively address high-impact defects, thereby enhancing

software stability and minimizing disruptions.

• RQ6: What is the performance of SDC-CNN models that assign defect levels based

on the combined effect of maintenance effort and change impact.?

The AUC values of SDC-CNN models that assign defect levels based on combina-

tion of maintenance effort and change impact are presented in Table 4.19. These

models classify defects into ’low,’ ’medium,’ or ’high’ categories, with four models

constructed for each level using varying predictor variables (Top10, Top25, Top50,

and Top100). Values of AUC greater than 0.7 are highlighted in bold. The AUC

value ranges of SDC models across Bluetooth, Browser, Calendar, Camera, and

MMS datasets were 0.5550-0.8967, 0.5357-0.7028, 0.5580-0.8586, 0.6017-0.7852

and 0.5598-0.8039 respectively. All the AUC values are greater than 0.5 with an
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average AUC value of 0.7008. All the AUC values are greater than 0.4 with an

average AUC value of 0.5633. Thus the performance of SDC-CNN models that

assign defect levels based on maintenance effort is found to be very significant.

Investigating the performance of SDC-CNN models that assign defect levels based

on the combined effect of maintenance effort and change impact underscores the

synergistic benefits of integrating multiple factors in defect categorization. This

implies that organizations can use SDC-CNN models to enhance the accuracy and

effectiveness of defect prediction models by leveraging both maintenance effort and

change impact metrics.

• RQ7: What is the comparative performance of SDC-CNN models using the combined

effect of maintenance effort and change impact, compared to levels allocated based

on a) maintenance effort and b) change impact?

The AUC values of maintenance effort (ME), change impact (CI) and combination

of maintenance effort and change impact (COMB) are given in Table 4.17, Table

4.18 and Table 4.19 respectively. The results clearly indicate the COMB has better

AUC values to ME and CI for most of the datasets. Statistical Tests are performed to

further strengthen the results. To investigate which of these three approaches viz.,

ME, CI, and COMB performs the best, we conducted the statistical analysis using

the Friedman test by evaluating their performance over all datasets examined in this

study. The Friedman test is applied at a level of significance α = 0.05.

Null hypothesis-H01: There is no significant difference among the performance of

defect categorization approaches - ME, CI, and COMB.

Alternate hypothesis-Ha1: There is a significant difference among the performance
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of defect categorization approaches - ME, CI, and COMB.

First, the performance of each approach (ME, CI, COMB) is assessed based on

their values of performance measures over all datasets. The approaches are ranked

individually across all datasets based on their performance. In this study, higher

ranks indicate better performance, so an approach with consistently higher ranks

across datasets is considered superior. For each approach, we calculated the average

rank across all datasets. This is done by summing up the ranks of an approach

across datasets and dividing by the total number of datasets. Once mean ranks are

calculated for each approach, we compared these mean ranks. The approach with the

highest mean rank is considered the best-performing approach across the datasets.

Higher mean ranks indicate more consistent and superior performance compared

to lower mean ranks. The results of the Friedman test are presented in Table 4.20,

where the obtained p-value was less than 0.05, indicating the significance of the

outcomes. Therefore, we rejected the null hypothesis H01, which suggests that the

performance of the defect categorization approaches - ME, CI, and COMB - is not

the same. Further insight into their performance is provided by the mean ranks

assigned to each approach, with Combined approach having the best rank, followed

by maintenance effort, and change impact receiving the lowest rank.

To corroborate the Friedman test’s finding that COMB was the superior defect

categorization approach, we conducted a post-hoc analysis using the Wilcoxon-

signed rank test. This analysis compared COMB’s performance with that of the

other approaches (ME and CI). The null and alternative hypotheses for the Wilcoxon-

signed rank test in this study were as follows:
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Null hypothesis-H02: Performance of COMB = Performance of X

Alternate hypothesis-Ha2: Performance of COMB ̸= Performance of X

(where X denotes ME and CI)

A significance level of α = 0.05 and Bonferroni correction were applied to reject

null hypotheses H02 in 2 out 3 cases. Comparing two pairs of techniques via the

Wilcoxon test, we would reject the null hypothesis if the p-value obtained is greater

than 0.05. Table 4.21 presents the results of the Wilcoxon signed-rank test, including

test statistics. The ’S+’ column indicates a significant difference in the values of

performance measures between a pair of compared methods, while ’S-’ denotes no

significant difference between the respective pair of methods. The outcomes of the

Wilcoxon signed-rank test reveal that:

– The combined approach and maintenance effort are significantly superior

change impact.

– Although combined approach is having edge over maintenance effort, there is

no significant difference between them.

Comparing the performance of SDC-CNN models using the combined effect of

maintenance effort and change impact with levels allocated based solely on main-

tenance effort or change impact provides insights into the relative effectiveness

of different categorization approaches. This suggests that organizations can use

a combined approach of considering both maintenance effort and change impact

metrics to improve the accuracy and reliability of defect prediction and management
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Table 4.16: AUC values of SDC-CNN Models based on Maintenance Effort

Defect Level
Module Feature Set

Low Medium High

Top10 0.7258 0.6700 0.5150

Top25 0.7892 0.7567 0.7467

Top50 0.8058 0.7817 0.7233
Bluetooth

Top100 0.8008 0.7500 0.5750

Top10 0.5763 0.5084 0.5862

Top25 0.6427 0.5883 0.6386

Top50 0.6655 0.5986 0.6529
Browser

Top100 0.6869 0.6258 0.6634

Top10 0.6515 0.6000 0.6500

Top25 0.7532 0.6833 0.7902

Top50 0.7494 0.6433 0.8145
Calendar

Top100 0.8280 0.7817 0.8577

Top10 0.6269 0.5358 0.6738

Top25 0.6658 0.5686 0.7234

Top50 0.7071 0.5931 0.7572
Camera

Top100 0.7768 0.7193 0.8107

Top10 0.7027 0.6744 0.6713

Top25 0.7617 0.7124 0.7261

Top50 0.7617 0.7209 0.7294
MMS

Top100 0.7917 0.7906 0.8075

Table 4.17: AUC values of SDC-CNN Models based on Change Impact

Module Feature Set
Defect Level

Low Medium High

Bluetooth

Top10 0.5142 0.6089 0.4548
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Table 4.17 continued from previous page

Module Feature Set
Defect Level

Low Medium High
Top25 0.5133 0.5369 0.5988
Top50 0.5983 0.6726 0.6488

Top100 0.4983 0.5762 0.5619

Browser

Top10 0.5382 0.4395 0.5752
Top25 0.5155 0.4509 0.5714
Top50 0.5302 0.494 0.5589

Top100 0.6066 0.4826 0.6524

Calendar

Top10 0.588 0.5298 0.63
Top25 0.671 0.6974 0.7213
Top50 0.6814 0.6298 0.7359

Top100 0.7723 0.6827 0.8031

Camera

Top10 0.6267 0.5497 0.661
Top25 0.6682 0.5954 0.7397
Top50 0.6817 0.5962 0.7643

Top100 0.7187 0.603 0.7264

MMS

Top10 0.6863 0.6047 0.745
Top25 0.6673 0.6434 0.7934
Top50 0.7235 0.6038 0.784

Top100 0.6586 0.4937 0.7964

Figure 4.10: Box plot of AUC values of SDC-CNN for High Level Defects
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Table 4.18: AUC values of SDC-CNN Models based on Combined Approach

Defect Level
Module Feature Set Low Medium High

Top10 0.7175 0.735 0.555
Top25 0.7142 0.8058 0.7875
Top50 0.8067 0.8383 0.7908Bluetooth

Top100 0.795 0.8967 0.8317
Top10 0.5779 0.5357 0.6133
Top25 0.6208 0.5479 0.6724
Top50 0.6658 0.6259 0.685Browser

Top100 0.7028 0.68 0.6983
Top10 0.558 0.6386 0.6614
Top25 0.6241 0.6714 0.7106
Top50 0.7944 0.7156 0.8173Calendar

Top100 0.8038 0.695 0.8586
Top10 0.6017 0.6109 0.7077
Top25 0.673 0.6456 0.7551
Top50 0.7236 0.6909 0.7643Camera

Top100 0.7654 0.763 0.7852
Top10 0.6961 0.6139 0.6655
Top25 0.7779 0.5598 0.6208
Top50 0.8039 0.6436 0.6279MMS

Top100 0.7902 0.6594 0.6532

Table 4.19: Results of Friedman Test

Approach
Mean Rank for

High Defects

Mean Rank for

Medium Defects

Mean Rank for

Low Defects
Mean Rank Overall

COMB 2.425 2.55 2.3 2.43
ME 2.05 2.15 2.5 2.23
CI 1.525 1.3 1.2 1.34
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Figure 4.11: Box plot of AUC values of SDC-CNN for Medium Level Defects

Figure 4.12: Box plot of AUC values of SDC-CNN for Low Level Defects

Table 4.20: Results of Wilcoxon Signed Rank Test

Approach
Test Statistics for

High Defects

Test Statistics for

Medium Defects

Test Statistics for

Low Defects
Test Statistics Overall

COMB vs ME S- (0.331) S- (0.455) S- (0.351) S- (0.351)
COMB vs CI S+ (0.036) S+ (0.000) S+ (0.001) S+(0.036)
ME vs CI S+ (0.026) S+ (0.001) S+ (0.000) S+ (0.026)
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4.5.3 Discussion

The study developed Software Defect Categorization (SDC) models based on three defect

attributes: maintenance effort, change impact, and their combined effect. These models

classify software defects into ’low,’ ’medium,’ or ’high’ categories by mining keywords

from defect reports. SDC models, employing Convolutional Neural Networks (CNN),

were created for each scenario, using feature sets (Top10, Top25, Top50, and Top100) for

five Android Operating System Modules. Thus, a total of 5 (datasets) x 4 (feature sets)

x 3 (approaches) = 60 SDC models were developed in this study. The results, validated

using values of the three performance metrics - Area Under the Curve (AUC), Accuracy

and MCC values, are summarized as follows:

• For ’high’ category SDC models, AUC values ranged from 0.5150-0.8577 for

maintenance effort, 0.4548-0.8031 for change impact, and 0.5550-0.8586 for the

combined approach, indicating good predictability. Further, results are supported

by the values of Accuracy - 0.5084-0.7906, 0.4395-0.6974, and 0.5357-0.896, and

MCC - 0.5763-0.8280, 0.4983-0.7723, and 0.5580-0.8067 for maintenance effort,

change impact and combine approach respectively.

• For ’medium’ category SDC models, AUC values ranged from 0.5084-0.7906 for

maintenance effort, 0.4395-0.6974 for change impact, and 0.5357-0.8967 for the

combined approach, indicating good predictability. Further, results are supported

by the values of Accuracy - 0.4992-0.7003, 0.4590-0.6324, and 0.5244-0.7794, and

MCC - 0.5632-0.7265, 0.4881-0.6862, and 0.5230-0.7068 for maintenance effort,

change impact and combine approach respectively.
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• For ’low’ category SDC models, AUC values ranged from 0.5763-0.8280 for mainte-

nance effort, 0.4983-0.7723 for change impact, and 0.5580-0.8067 for the combined

approach, indicating good predictability. Further, results are supported by the values

of Accuracy - 0.3761-0.6489, 0.3216-0.5548, and 0.4082-0.7541 and MCC - 0.4568-

0.6865, 0.3662-0.6311, and 0.4131-0.6584 for maintenance effort, change impact

and combine approach respectively.

The combined approach, considering both maintenance effort and change impact, showed

superior performance compared to models based solely on change impact and was on par

with maintenance effort-based models.These SDC models can aid software practitioners

in estimating developer and tester efforts, optimizing resource allocation, and managing

costs. For instance, ’high’ category defects, identified by maintenance effort, but ’low’ in

change impact, require more developer effort and less testing resources, while the reverse

applies to defects categorized as ’low’ in maintenance effort and ’high’ in change impact.

Therefore, the performance of the Software Defect Categorization (SDC) models utilizing

the CNN algorithm appears promising.Researchers are encouraged to validate these models

on different datasets, domains, and platforms, explore alternative classification algorithms,

and assess generalizability.

165





Chapter 5

Techniques for Hyperparameter

Optimization in Software Quality

Models: A Systematic Review

5.1 Introduction

Software systems have experienced unprecedented growth in size and complexity, pre-

senting significant challenges in terms of building high quality software while minimizing

costs [31]. To address these challenges, the early prediction of defect-prone components,

maintenance requirements, effort estimation, and reliability has become crucial. Predictive

modeling, a technique that generates models to forecast future outcomes, has gained

popularity in software engineering as a means to address these needs [147]. By analyzing

historical and current data, predictive modeling extracts predictive rules that can be applied
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to future data, enabling effective planning and resource allocation. Various classifica-

tion/learning algorithms, including statistical methods, machine learning, and evolutionary

algorithms, are utilized for developing these models [120][8]. The performance of pre-

dictive models depends on several factors, and researchers have been actively working

to improve their effectiveness. One crucial factor influencing model performance is the

choice of hyperparameter values in the learning algorithms used to build the prediction

models[87]. Hyperparameters influence the behavior and performance of the learning

algorithm. For example, the hyperparameters of a neural network include the learning rate

(α), the number of hidden units (h), and the number of epochs (E). In the context of this

paper, the term ”hyperparameter” will be used interchangeably with ”parameter,” and the

process of tuning hyperparamters will also be referred to as ”parameter optimization.”

It has been observed that different parameter values used during the construction of

classifiers can result in significant variance in performance[87]. To address this issue, re-

searchers have explored parameter tuning techniques to identify the optimal settings within

the parameter space of classification algorithms. By finetuning the hyperparameters, re-

searchers aim to minimize variance and improve the performance of classifiers. Parameter

tuning involves systematically exploring different combinations of hyperparameter values

to find the most suitable configuration. Several studies have demonstrated that models

developed using optimal parameter settings exhibit improved performance compared to

those built with default parameter values. The problem of hyperparameter tuning has re-

ceived significant attention from researchers, leading to the proposal of various approaches

aimed at ad-dressing this challenge. One of the widely adopted approaches is Grid Search,

which systematically explores a predefined set of hyperparameter values and evaluates the

performance of the model for each combination [148]. It provides a brute-force method to
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exhaustively search the hyperparameter space and identify the best configuration based

on a chosen evaluation metric. Another popular technique is Random Search, which

randomly samples hyperparameter values from predefined ranges [149]. Unlike Grid

Search, which systematically explores all possible combinations of hyperparameters within

specified ranges, Random Search takes a more probabilistic approach. It strategically

selects hyperparameter values at random from different regions within the predefined

ranges. In a Random Search, each hyperparameter configuration is chosen independently,

and the search space is randomly sampled over multiple iterations. This targeted ran-

domness enables a more efficient exploration of the hyperparameter space by prioritizing

promising areas without the need to evaluate every potential combination. The advan-

tage lies in the ability to discover optimal or near-optimal hyperparameter configurations

more quickly, making Random Search a favorable choice in scenarios where computa-

tional resources are limited. Bayesian Optimization is another noteworthy approach that

combines prior knowledge with observed performance to guide the search for optimal

hyperparameters[150]. It utilizes a probabilistic model to model the unknown performance

function and suggests promising regions for further exploration. Evolutionary Algorithms,

such as Genetic Algorithms, mimic the process of natural selection to iteratively search

for optimal hyperparameter configurations [151][148]. These algorithms maintain a popu-

lation of candidate solutions and use genetic operators, such as crossover and mutation,

to generate new configurations with potentially improved performance. More recently,

machine learning based approaches have gained attention. These techniques leverage the

power of algorithms, such as Artificial Neural Networks or Gaussian Processes [152],

to model the relationship between hyperparameters and performance. By learning from

previous evaluations, these approaches can predict promising configurations and guide
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the search towards better solutions. In addition to these general approaches, researchers

have proposed hybrid methods that combine multiple techniques [148][153]. For example,

the combination of Grid Search with local search methods, such as Gradient Descent

or Simulated Annealing, can provide a balance between exhaustive exploration and fine

grained optimization. Overall, the field of hyperparameter tuning has witnessed significant

advancements, leading to the development of various techniques and approaches. Each

approach offers distinct advantages and trade-offs in terms of search efficiency, adaptability

to different problem domains, and robustness to noise or limited computational resources.

Selecting an appropriate hyperparameter tuning approach depends on the specific require-

ments and constraints of the given problem. The primary goal of the research is to conduct

a comprehensive analysis of hyperparameter tuning techniques employed for software

quality prediction models. Specifically, the study aims to:

• Identify and review studies that have applied parameter tuning techniques in the

development of prediction models in software quality related domains.

• Evaluate the effectiveness of parameter tuning in improving the performance of

prediction models.

• Analyze the impact of parameter tuning on the performance of various learning

algorithms used in software quality prediction.

• Provide guidelines and recommendations for practitioners and researchers regarding

the application of parameter tuning techniques to enhance the predictive capability

of software quality prediction models.

The subsequent sections of the chapter are structured as follows: Section 2 presents
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the research questions that guide our systematic review and outlines the criteria used for

selecting primary studies. Section 3 presents the outcomes of the selected studies and

answers the research questions of the study. Section 4 provides practical guidelines and

recommendations for practitioners and researchers.

5.2 Method

This systematic review adheres to the established guidelines outlined by reputable sources

[83][154] and depicted in Figure 5.1. The review process commenced with the identifi-

cation of the necessity for a systematic review, which was subsequently followed by the

formulation of research questions based on the underlying motivations. A comprehensive

search strategy was then devised to locate relevant primary studies. The data extraction

phase involved extracting pertinent information from the primary studies to effectively

address the research questions. Finally, data synthesis was performed to consolidate the

findings and derive conclusive results for this review.

5.2.1 Identify the need for Systematic Review

The majority of classification algorithms utilized in software quality prediction models

employ hyperparameters that significantly impact the performance of the predictors. A

literature analysis conducted by Tantithamthavorn et al.[87] revealed that 87% of the

commonly used classification algorithms for software defect prediction necessitate the

configuration of at least one hyperparameter setting. Given this context, it becomes

imperative to conduct a comprehensive review of studies that have focused on tuning

hyperparameters of classification algorithms when constructing software quality prediction
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Figure 5.1: Year-wise distribution of studies

models. This review aims to investigate the following aspects:

• The performance improvement observed in tuned models compared to untuned

models.

• The classification techniques that display high sensitivity to their hyperparameters.

• The commonly employed parameter optimization methods within the context of

software quality prediction models.

• The associated overheads and complexities involved in the parameter tuning process.
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• The prevalence and popularity of parameter tuning in software quality prediction

models.

5.2.2 Research Questions

The primary objective of this review is to investigate the utilization of parameter tuning

techniques in the construction of software prediction models and examine their influence

on model performance. The motivations outlined in section 5.1 serve as the foundation for

formulating the research questions that guide this study. Table 1 presents a comprehensive

overview of the research questions addressed in this review. To address RQ1, the study

meticulously analyzed the primary studies to identify the diverse software quality attributes

for which parameters were tuned. Additionally, RQ2 delves into the parameter tuning tech-

niques employed in these studies, while RQ3.1 focuses specifically on the hyperparameters

of classification algorithms that underwent tuning. Furthermore, RQ3.2 explores the impact

of parameter tuning on model performance, and RQ3.3 seeks to identify the most effective

parameter tuning techniques employed in the reviewed studies. In pursuit of a thorough

analysis, RQ4 assesses the strengths and weaknesses associated with parameter tuning in

software prediction models. This examination enables us to provide valuable guidelines to

researchers regarding the optimal tuning of classification algorithm parameters.

By addressing these research questions, this review aims to shed light on the current

practices, challenges, and best practices surrounding parameter tuning in the development

of software prediction models. The insights obtained from this analysis will serve as a

valuable resource for researchers and practitioners alike, fostering improvements in the

field of software engineering.
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Table 5.1: Research Questions

RQ# Research Questions Motivation

RQ1 What are the categories of quality attributes

where parameter tuning is being done?

Identify the quality attributes where param-

eter tuning is being applied.

RQ2 Which parameter tuning techniques have

been applied in developing software quality

prediction models?

Identify the techniques applied for tuning

the parameters of learning algorithms in

software quality models.

RQ3 What is the effect of parameter tuning on

the performance of software quality predic-

tion models?

Assess the performance of the parameter

tuned software quality models vs un-tuned

models.

RQ3.1 The parameters of which machine learning

techniques have been tuned?

Identify the parameters reported to be ap-

propriate for tuning.

RQ3.2 Whether the performance of quality predic-

tion models have been improved by tuning

the parameters of learning algorithms?

Investigate the improvement of perfor-

mance from the results of the studies that

tuned parameters.

RQ3.3 Which are the most effective parameter tun-

ing techniques?

Identify the efficient parameter tuning tech-

niques.

RQ4 What are the strengths and weaknesses of

tuning parameters?

Determine the information about tuning pa-

rameters.

RQ5 What are the guidelines given in studies

that a researcher should keep in mind while

tuning the parameters?

Determine the guidelines to be followed for

tuning the parameters.

5.2.3 Search Strategy and Study Selection

The objective of this study is to conduct a comprehensive review of parameter tuning

techniques applied in software quality prediction models. Specifically, the focus of this
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review is on the following software attributes:

1) Defect proneness

2) Maintenance proneness

3) Effort estimation

4) Reliability

To ensure a comprehensive selection of primary studies, a meticulous search strategy

was devised. Synonyms and alternate terms associated with the aforementioned software

attributes, prediction, and tuning were identified from the existing literature. These terms

were combined using Boolean expressions, utilizing ”OR” to merge similar terms and

”AND” to combine the main search terms. The resulting search string used for the selection

of primary studies is as follows: Software AND (fault OR defect OR bug OR error OR

vulnerability OR change OR maintenance OR effort OR quality OR reliability) AND

(proneness OR prone OR prediction OR probability) AND ((Parameter OR Hyperparam-

eter) AND (tuning OR optimization OR selection OR determination)) The search was

conducted across several reputable digital libraries, including:

1) IEEE Xplore

2) Science Direct

3) ACM Digital Library

4) Springer Link

175



Method

5) Wiley Online Library

6) Google Scholar

7) Web of Science

Executing the search string on these electronic databases enabled the identification of

relevant studies. In addition, a thorough examination of the references cited within these

studies was conducted to identify any further pertinent research. Furthermore, select studies

analyzing parameter tuning in the domain of software engineering were also considered to

provide additional insights. Following a meticulous evaluation of the identified studies,

a comprehensive set of 31 studies was selected as primary studies. These studies were

deemed to meet the rigorous criteria outlined in the research, ensuring their relevance,

credibility, and suitability for inclusion in this review.

5.2.4 Data Extraction and Data Synthesis

To ensure systematic data collection and effectively address the formulated research

questions, a comprehensive data extraction form was meticulously designed. The data

extraction form encompasses the following fields:

• Title of the study

• Names of the author(s)

• Publication year

• Publication details
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• Datasets

• Quality attribute

• Learning/Classification algorithm(s)

• Supplementary algorithm(s) employed

• Parameters tuned/optimized

• Parameter tuning technique(s)

• Observed performance improvement upon parameter tuning

• Strengths and weaknesses of the tuning techniques

• Overall results of the study.

Each primary study underwent a thorough review process to extract relevant data as

per the structured form, ensuring the accurate representation of key information. The

extracted data was then meticulously recorded and organized within a spreadsheet for

further analysis and synthesis.

The collected data derived from the primary studies serves as the foundation for

formulating comprehensive responses to the research questions. Through a meticulous

process of data synthesis, involving the summarization of pertinent facts and figures, the

collected information is distilled and analyzed to generate meaningful insights and findings.

This synthesis enables a comprehensive understanding of the parameter tuning techniques

employed in software quality prediction models and their impact on model performance.
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By following this rigorous data extraction and synthesis process, the study ensures the

reliability and integrity of the findings, providing valuable insights into the effectiveness

of parameter tuning in the context of software quality prediction models.

5.3 Results

This section encompasses the presentation of the results derived from the selected studies

included in this systematic review. Firstly, we provide a concise overview of the chosen

studies, outlining their key characteristics and contributions. Subsequently, we metic-

ulously address each research question, drawing upon the findings extracted from the

selected studies to provide comprehensive answers. Furthermore, we engage in a detailed

discussion and interpretation of the results, aiming to derive meaningful conclusions and

insights from the collected data.

5.3.1 Description of Primary Studies

A total of 31 studies were identified wherein parameter tuning techniques were applied

in the construction of software prediction models. The details of these selected studies

are presented in Table 5.2, offering comprehensive insights into the methodologies and

outcomes of each study. To provide a temporal perspective, Figure 5.2 illustrates the

distribution of these studies from the year 2010 to mid-2023. The graphical representation

highlights that only a limited number of studies have employed parameter tuning techniques

within this timeframe. Notably, the majority of these studies predominantly utilized

machine learning algorithms as the foundation for their prediction models. The analysis of

this distribution showcases the relatively recent emergence of parameter tuning techniques
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in the realm of software prediction models.

Table 5.2: Selected Primary Studies

Study# Paper Reference# Study# Paper Reference#

PS1 Oliveira (2010) [155] PS17 Medapati (2013) [156]

PS2 Song (2013) [157] PS18 Jin (2014) [158]

PS3 Arcuri (2013) [159] PS19 Zhaoa (2015) [160]

PS4 Tantithamthavorn (2016) [161] PS20 Malhotra (2018) [162]

PS5 Fu (2016) [163] PS21 Ma (2019) [164]

PS6 Fu (2016a) [165] PS22 Öztürk (2019b) [152]

PS7 Osman (2017) [166] PS23 Villalobos-Arias (2019) [167]

PS8 Yang (2018) [46] PS24 Khan (2020) [168]

PS9 Qu (2018) [147] PS25 Li (2020) [17]

PS10 Agrawal (2018) [169] PS26 Lakra (2021) [170]

PS11 Hosni (2018) [171] PS27 Yang (2021) [148]

PS12 Xia (2018) [172] PS28 Tameswar (2022) [173]

PS13 Kudjo (2019) [154] PS29 Nevendra (2022) [113]

PS14 Öztürk (2019) [174] PS30 Lee (2022) [175]

PS15 Minku (2019) [176] PS31 Labidi (2023) [177]

PS16 Qin (2011) [178]

5.3.2 RQ1: What are the categories of quality attributes where pa-

rameter tuning is being done?

While the primary focus of this systematic review is software quality, we have also

incorporated studies on effort prediction due to the shared factors that influence their

respective prediction models. Figure 5.3 shows the percentage of quality attributes where
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Figure 5.2: Year-wise distribution of studies

tuning is employed in the primary studies. Table 5.3 provides a comprehensive overview

of the attributes herein the parameters of learning algorithms have been optimized in the

selected studies. Notably, a closer examination of the table reveals a limited number

of studies in each category where parameter tuning techniques have been employed.

Consequently, it becomes imperative to evaluate the impact of parameter tuning on the

performance of prediction models within these specific categories.

Table 5.3: Quality Attributes where parameter tuning is being done

Attribute No. of Studies Studies
Defect 15 PS4, PS6, PS7, PS8, PS9, PS10, PS13, PS14, PS20, PS22,

PS24, PS25, PS28, PS29, PS30
Effort 7 PS1, PS2, PS11, PS12, PS15, PS23, PS31
Reliability 5 PS16, PS18, PS19, PS21, PS27
Maintenance 2 PS17, PS26
Generic software ana-

lytics

2 PS3, PS5
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Figure 5.3: Percentage of Quality Attributes considered in Studies

5.3.3 RQ2: Which parameter tuning techniques have been applied in

developing software quality prediction models?

Within the selected studies, a diverse range of parameter tuning techniques have been

employed by researchers, as highlighted in Table 5.4. Figure 5.4 provides a graphical

representation showcasing the distribution of studies utilizing different parameter tuning

techniques. Among the various techniques employed, it is noteworthy to mention that

Multisearch and Caret, which are default parameter tuning options provided by Weka [179]

and R Caret [3] respectively, employ the Grid search technique. Considering Multisearch

and Caret as variants of Grid search, the number of studies utilizing the Grid search

technique amounts to 13, making it the most widely utilized parameter tuning technique

within the selected studies. Following Grid search, the differential evolution technique

is another prominent parameter tuning approach employed by researchers. Additionally,

genetic algorithms and its variants have been utilized as tuning techniques in several
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studies, demonstrating their efficacy in optimizing the performance of prediction models.

Figure 5.4: Studies using different parameter tuning techniques

Table 5.4: Parameter Tuning Techniques applied in prediction models

Technique No. of Studies Studies
Grid Search (GS) 9 PS6, PS7, PS11, PS14, PS21, PS22, PS26, PS29, PS31
Differential Evolution (DE) 5 PS5, PS6, PS10, PS12, PS20
Genetic Algorithm (GA) and its variations 5 PS1, PS17, PS18, PS19, PS28
Manual 4 PS2, PS3, PS13, PS15
Random Search (RS) 4 PS6, PS22, PS23, PS29
Hybrid 2 PS27, PS28
Particle Swarm Optimization (PSO) 2 PS16, PS27
R Caret 2 PS4, PS8
Weka Multisearch 2 PS7, PS9
Harmony Search 1 PS30
Simulated Annealing (SA) 1 PS20
Sparrow Search Algorithm (SSA) 1 PS27
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Table 5.4 continued from previous page
Technique No. of Studies Studies
Tree-of-Parzen Estimators (TPE) 1 PS25

5.3.4 RQ3: What is the effect of parameter tuning on the performance

of software quality prediction models?

This section presents the effect of parameter tuning on the performance of the predictors.

This re-search question has sub questions and are addressed in different sub sections as

follows.

5.3.4.1 RQ3.1: What are the learning techniques whose parameters have been

tuned?

Table 5.5 presents the parameters of which learning techniques have been optimized.

Support vector machines, k-Nearest neighbours, Random forest, Neural Networks, Classi-

fication and Regression trees, and Decision trees are widely used in the studies.

Table 5.5: Learning algorithms where parameters are optimized

Learning Algorithm No of

Studies

Studies

Support Vector Machines (SVM) 16 PS1, PS4, PS7, PS9, PS11, PS13, PS14, PS16,

PS18, PS19, PS21, PS23, PS24, PS25, PS29,

PS31
Random Forest (RF) 10 PS4, PS5, PS6, PS9,PS13, PS14, PS20, PS24,

PS25, PS29
k-Nearest Neighbours (KNN) 8 PS2, PS4, PS7, PS9, PS11, PS13, PS24, PS25
Classification And Regression Trees

(CART)

7 PS4, PS5, PS6, PS12, PS20, PS24, PS25
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Table 5.5 continued from previous page
Learning Algorithm No of

Studies

Studies

Decision tree (DT) 7 PS4, PS9, PS11, PS13, PS29, PS30, PS31
Multi-layer perceptron (MLP) 7 PS1, PS2, PS4, PS11, PS13, PS25, PS29
Adaptive Boosting (AdaBoost) 4 PS4, PS22, PS24, PS25
Naive Bayes (NB) 4 PS4, PS9, PS24, PS25
Neural Network 4 PS8, PS22, PS28, PS31
Ridge regression (RR) 3 PS23, PS25, PS29
C5.0 2 PS4, PS22
Gradient Boosting Machine (GBM) 2 PS4, PS29
Bagging 1 PS2
Correlation percentile (CP) 1 PS23
DBSCANfilter 1 PS25
Deep Transfer Biclustering (DTB) 1 PS25
Domain-Specific Bias Focusing (DSBF) 1 PS25
Extra Tree Regressor 1 PS29
eXtreme Gradient Boosting Tree
(xGBTree)

1 PS4

Flexible Discriminant Analysis (FDA) 1 PS4
Generalized linear and Additive Models

Boosting (GAMBoost)

1 PS4

Generalized Partial Least Squares (GPLS) 1 PS4
Genetic algorithm 1 PS3
Hierarchical Agglomerative
clustering

1 PS17

Huber Regressor 1 PS29
k-medoids algorithm 1 PS17
Lasso Regression (LASSO) 1 PS29
Linear discriminate analysis (LDA) 1 PS24
Linear Regression 1 PS29
Logistic Model Trees (LMT) 1 PS4
Logistic Regression (LR) 1 PS29
Logistic Regression Boosting (LogitBoost) 1 PS4
M5P algorithm (Model trees) 1 PS1
MARS 1 PS4
Penalized Discriminant Analysis (PDA) 1 PS4
Regression Tree(RT) 1 PS2
Ripper classifier (Ripper) 1 PS4
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Table 5.5 continued from previous page
Learning Algorithm No of

Studies

Studies

SMOTE 1 PS10
Software Reliability Growth Model - Goel-

Okumoto (G-O) model

1 PS27

Square Loss Gradient Boost (SLG) 1 PS22
Transfer Component Analysis (TCA) 1 PS25
Universal 1 PS25
Variance threshold (VT) 1 PS23
Where-based learner 1 PS5
XGBoost Regression 1 PS29

5.3.4.2 RQ3.2: Whether the performance of quality prediction models have been

improved by tuning the parameters of learning algorithms?

The primary objective of parameter tuning is to enhance the performance of prediction

models. In this regard, the impact of tuning the parameters of learning algorithms on

the performance of prediction models, as observed in the selected studies, has been

meticulously analyzed and consolidated in Table 5.6. The results derived from most of

the studies consistently demonstrate a noticeable improvement in the performance of

software quality prediction models following parameter tuning. In an effort to provide

comprehensive insights, we have also sought to ascertain the statistical characteristics of the

results obtained from the primary studies. While a variety of performance measures were

employed across the selected studies, certain commonly used measures such as accuracy,

area under the receiver operating characteristics curve (AUC), precision, sensitivity, and

F-measure were identified. To facilitate comparison, Table 5.7 presents the minimum

(Min.), maximum (Max.), mean, median, and standard deviation (std.) values of these
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Figure 5.5: Boxplot of Accuracy Values

performance measures for models constructed with both default parameters and tuned

parameters. To further illustrate the impact of parameter tuning on performance, box

plots for accuracy and precision are depicted in Figure 5.5 and Figure 5.6 respectively.

These visual representations clearly demonstrate the reasonable improvements achieved

through parameter tuning, underscoring its efficacy in enhancing the overall performance

of software quality prediction models.
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Figure 5.6: Box plot of Precision Values

Table 5.6: Improvement of performance of prediction models - study wise

Study# Improvement of Performance

PS1 The performance of support vector regression (SVR), multi-layer perceptron (MLP), and

model trees (M5P algorithm) significantly improved.

PS2 Regression Trees (RTs) and Bagging+RTs show limited sensitivity to different parameter

settings. However, it is recommended to tune the parameters for improved performance.

MLPs and Bagging+MLPs exhibit excellent performance but are highly sensitive to their

parameter settings, including the initial configurations. k-NN demonstrates low sensitivity

to its parameter settings, except when k equals one (1-NN), which consistently yields poor

performance across all datasets.
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Table 5.6 continued from previous page

Study# Improvement of Performance

PS3

Different parameter configurations result in significant performance variation. Although

default parameter settings exhibit relatively satisfactory performance, they are suboptimal for

specific problem instances.

PS4

Caret enhances the AUC performance by a substantial 40 percentage points.

Additionally, Caret continues to enhance cross-context defect prediction models’ performance

by up to 30 percentage points.

PS6 Random search (RS) and Differential Evolution (DE) both enchance classifiers performance

in terms of precision and F-measure, respectively.

PS5 Tuning seldom results in performance deterioration and frequently leads to significant im-

provement, with precision increasing from 0 to 60%.

PS7 The prediction accuracy is enhanced by as much as 20% in Instance-based learning with

parameter k (IBk) and up to 10% in Support Vector Machines (SVM). IBk exhibits higher

sensitivity to hyperparameter tuning compared to SVM. Hyperparameter tuning not only has

the potential to improve prediction accuracy but also influences the relative performance of

different machine learning models.

PS8 Specificity, accuracy and AUC are all improved by using Caret-optimized setting.

PS9 By using hyper parameter optimization, the performance can be increased by 34.63 percentage

points at most. Moreover, hyper parameter optimization is most effective for IBk.

PS10 Differential Evolution can significantly enhance predictive performance, with improvements

of up to 60% in the area under the curve, by tuning SMOTE’s hyperparameters.

PS11 Particle Swarm Optimization (PSO) and Grid Search(GS) generate more accurate results than

Uniform Configuration(UC-WEKA) (default parameters settings of Weka tool).

PS12 CART optimized by DE8 or MOEA/D achieves top-ranked results (in 8/9 cases).

PS13 k-NN and J48 demonstrated enhanced prediction accuracy. Random forest classifier yielded

high precision, recall and accuracy values.
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Table 5.6 continued from previous page

Study# Improvement of Performance

PS14 The maximum tree depth (interaction.depth) plays a vital role in improving accuracy when uti-

lizing tree-based algorithms. Hyperparameter tuning proves advantageous in defect prediction

when employing SVM, regardless of prediction settings.

PS15 LogLR does not require any parameters, while RTs and BagRTs are recognized to be relatively

unaffected by their hyperparameters in the domain of online SEE.

PS16 PSO-SVM slightly better performance than that of SVM.

PS17 Tuned parameters give better results and the precision and recall values are higher.

PS18 (Improve Estimation of Distribution Algorithms) IEDA-SVR obtained the better prediction

results.

PS19 The utilization of Analytic Selection (AS) significantly enhances GA optimization, resulting

in improved accuracy, increased robustness, and faster convergence.

PS20 In approximately 75% of the datasets, the tuned model exhibits superior or comparable perfor-

mance to the untuned model. Hence, in general, tuning consistently improves performance,

except for rare instances.

PS21 Parameter tuning leads to improved accuracy in the prediction results.

PS22 Parameter Optimization has increased AUC values by 0.2.

PS23 Random search improves the performance of SVR models to a maximum of 0.227.

PS24 SVM-RBF and Linear discriminate analysis(LDA) more sensitive.

PS25 Automated parameter optimization yields substantial improvement in prediction, with up to

77% showing a significant effect size according to Cohen’s rule.

PS26 For the QUES dataset, the average improvements in R-squared, MAE, and RMSLE measures

were 20.24%, 12.26%, and 30.28%, respectively. Conversely, the UIMS dataset exhibited

average improvements of 6.27%, 15.71%, and 16.39% in R-squared, MAE, and RMSLE

measures, respectively.

PS27 Tuning demonstrates significant enhancements in both convergence speed and stability of the

reliability models.
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Table 5.6 continued from previous page

Study# Improvement of Performance

PS28 Deep Neural Network - combined with Genetic Algorithm and Coral Reefs Optimization

(DNN-GA-CRO) achieved highest accuracy of 96.67% and average F1-score of 0.92, while

Deep Neural Network combined with Genetic Algorithm and Cuckoo Search (DNN-GA-CS)

with highest accuracy of 93.78% and average F1-score of 0.90.

PS29 Hyperparameter optimization greatly enhances prediction performance for MLP Regression

(MLPR), Lasso, Decision Tree Regression (DTR), Hubber, and Support Vector Regression

(SVR), resulting in improvements of 16.96%, 8.31%, 8.16%, 6.01%, and 5.22% respectively.

However, linear regression does not demonstrate sensitivity to hyperparameters. Grid search

(GS) improves performance by 4.42%, while random search (RS) improves it by 3.36%.

Even non-significant classifiers like MLP exhibit substantial changes in their rankings after

hyperparameter optimization in the domain of software defect prediction (SDP). Logistic

regression achieves the highest ranking in terms of hyperparameter optimization.

PS30

(1) Harmony Search (HS) outperforms the current state-of-the-art hyperparameter tuning

methods in terms of performance.

(2) The most influential factors on performance are feature selection, followed by class weight,

normalization, and model hyperparameters.

(3) In general, HS demonstrates superior performance compared to traditional tuning tech-

niques such as Grid Search, Random Search, Tabu Search, and Genetic Algorithm.

PS31 Grid search (GS) tuning enhances the performance of both individual and stacking models by

swiftly and precisely identifying optimal hyperparameter settings.

5.3.4.3 RQ3.3: What are the most effective parameter tuning techniques?

The majority of the selected studies focused on the application of a single parameter

tuning technique and did not conduct comparative analyses of different tuning techniques.

However, a few studies stand out for their efforts in directly comparing the performance
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of various tuning techniques. For instance, PS6 conducted a comparative study between

differential evolution and grid search for parameter tuning in defect predictors. The

findings of this study demonstrated that differential evolution outperformed grid search

in terms of optimizing the performance of defect predictors. Similarly, PS11 investigated

the impact of grid search and particle swarm optimization on parameter tuning. The

results of this study revealed that both techniques exhibited generally positive effects on

parameter optimization, without significant differences in performance. Furthermore, the

results presented in PS20 indicated that differential evolution outperformed simulated

annealing in terms of performance improvement. This finding strengthens the evidence

supporting the efficacy of differential evolution as a superior parameter tuning technique.

The results of PS30 indicate that Harmony Search shows better performance compared

with the traditional optimization methods (Grid Search, Random Search, Tabu Search and

Genetic Algorithm).

Among the various parameter tuning techniques, grid search, random search, genetic

algorithm and differential evolution emerged as particularly popular choices among re-

searchers, with multiple studies incorporating these techniques into their experimentation.

Table 5.7: Values of performance measures of models with default and tuned parame-
ters settings

Performance Measure Parameter Setting Min. Max. Mean Median Std.

Default 0.607 0.95 0.771 0.765 0.124
Accuracy

Tuned 0.767 0.992 0.881 0.929 0.102

Default 0.5 0.5 0.5 0.5 0
AUC

Tuned 0.5358 0.5619 0.549 0.549 0.018

Default 0.018 0.556 0.337 0.399 0.225
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Table 5.7 continued from previous page

Performance Measure Parameter Setting Min. Max. Mean Median Std.
Precision

Tuned 0.5784 1 0.591 0.646 0.326

Default 0.3483 0.55 0.447 0.444 0.1
F-Measure

Tuned 0.4965 0.59 0.55 0.563 0.048

5.3.5 RQ4: What are the strengths and weaknesses of tuning parame-

ters?

The findings across the majority of studies consistently demonstrate a substantial minimum

30 percent improvement in the performance of the predictors following parameter tuning.

Notably, even the learning algorithms that initially performed poorly exhibited significant

performance enhancements when their parameters were properly tuned, often surpassing

the performance of the top-performing algorithms. This highlights the potential for

parameter tuning to effectively address the limitations of underperforming models and

unlock their full predictive capabilities.

However, it is important to acknowledge the potential weaknesses associated with

parameter tuning techniques. Studies have identified two key concerns:

• Additional Computational Cost: The pursuit of optimal parameter settings requires

additional computational resources and time. Tuning parameters often involves

exhaustive search or optimization algorithms, which can significantly increase the

computational burden of model training and evaluation. Researchers must carefully

consider the trade-off between the potential performance improvement and the

computational cost incurred.
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• Risk of Overfitting: The tuning process introduces the risk of overfitting, wherein

the model becomes excessively tailored to the training data and loses its ability to

generalize well to new, unseen data. Fine-tuning parameters can result in models

that exhibit high accuracy on the training set but perform poorly on unseen data.

This highlights the need for cautious parameter tuning to strike a balance between

model complexity and generalizability.

5.3.6 RQ5: What are the guidelines given in studies that a researcher

should keep in mind while tuning the parameters?

The research findings from various studies have shed light on several important aspects

related to parameter tuning in software prediction models:

• Different parameter settings exhibit significant variance in performance, indicating

that default parameter settings, while relatively satisfactory, are far from optimal

for individual problem instances. Tuning parameters can lead to improvements on

average, but still fall short of achieving optimality for specific instances.

• A substantial majority (87%) of the most commonly used classification techniques,

as indicated by 26 out of 30 techniques, require at least one parameter setting. This

underscores the criticality of selecting optimal parameter settings as an important

experimental design choice for defect prediction models.

• Parameter tuning has the potential to alter the comparative rankings of data mining

algorithms, emphasizing its impact on model performance evaluation.
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• Certain algorithms, such as decision tree, support vector machine and random forest,

display high sensitivity to parameter optimization, suggesting the need for careful

tuning to achieve optimal results.

• Neural network based algorithms requires a high-performance computing system to

effectively handle the tuning process, indicative of its computational demands.

Despite the significant findings highlighting the importance of parameter tuning, a

significant number of researchers and practitioners still overlook the tuning of classification

algorithm parameters in software prediction models. This reluctance can be attributed to

the following factors:

• Constraint of time

• Computational overhead

• Unware of its significance

To address this gap, we propose guidelines for software researchers and practitioners

when applying parameter tuning techniques:

• Assess the sensitivity of the classification algorithm to its parameters: Different algo-

rithms exhibit varying levels of sensitivity to their hyperparameters. Understanding

this sensitivity is crucial for determining the impact of parameter settings on model

performance.

• High sensitivity: If the classification technique is highly sensitive to its parameters,

parameter tuning becomes imperative to achieve optimal or near-optimal settings. In
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such cases, researchers should employ the most suitable parameter tuning technique

to fine-tune the hyperparameters.

• Medium sensitivity: If the classification technique demonstrates moderate sensitivity

to its parameters, the impact of parameter settings on model performance is moderate.

If practitioners face constraints in tuning the parameters, default parameter tuning

methods provided by data mining tools or packages can be considered. For example,

the Weka tool offers Multisearch as its default parameter tuning method, while the

Caret package in R provides automatic parameter tuning.

• Low sensitivity: In instances where the classification technique exhibits low sensi-

tivity to its parameters, the impact of parameter settings on model performance is

minimal. In such cases, practitioners may choose to disregard parameter tuning if

they face constraints or limitations.

To facilitate decision making regarding parameter tuning, Figure 5.7 presents a

flowchart depicting the process based on the sensitivity of the classification technique.

These guidelines aim to support software researchers and practitioners in making

informed decisions when it comes to parameter tuning, considering the specific charac-

teristics and sensitivity of the classification algorithms employed. By following these

guidelines, researchers and practitioners can enhance the performance of software predic-

tion models and optimize their resource allocation effectively.
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Figure 5.7: Flow chart to determine tuning method

5.4 Discussion

This study conducted a meticulous systematic literature review to examine the utilization

of parameter tuning techniques in software quality prediction models, specifically focusing

on defect, maintenance, reliability, and effort attributes of the software. The key objectives

of this study were as follows: First, we performed an extensive search within digital

libraries and identified 31 primary studies that implemented parameter tuning techniques

within the context of software quality prediction models. Second, we carefully extracted

and synthesized data from these primary studies. We summarized the characteristics

of the primary studies based on various quality attributes, parameter tuning techniques,

classification algorithms, and their respective hyperparameters. Third, we conducted a

comprehensive analysis of the primary study results to evaluate the impact of parame-

ter tuning on the performance of software quality prediction models. Additionally, we

196



Discussion

analyzed studies that employed multiple parameter tuning techniques to determine the

most effective approach. Fourth, we provided a thorough examination of the strengths

and weaknesses associated with tuning the hyperparameters of classification algorithms.

Finally, we presented guidelines and recommendations that software practitioners should

consider when tuning parameters for their prediction models.

The main findings derived from the selected primary studies are as follows:

• A limited number of studies have specifically addressed parameter tuning settings

in the realm of software quality prediction, resulting in untuned models that are far

from optimal in terms of performance.

• Tuned models consistently exhibited improved prediction capabilities and demon-

strated stability comparable to untuned models.

• Grid search, Differential evolution, Genetic algorithm-based and hybrid parameter

tuning techniques emerged as the most commonly employed and effective methods.

• The parameters of classification algorithms such as Support Vector Machine, k-

nearest neighbor, Random Forest, Neural Networks, Classification and Regression

Trees (CART), and Random Forest Classification were frequently subjected to

tuning.

• Notably, Neural Networks, Instance-based Learning with parameter k (IBk), Support

Vector Machine, Decision Tree, Random Forest and Logistic Regression exhibited

high sensitivity to parameter tuning. Linear Regression, Regression Tress (RTs) and

Bagging+RTs exhibited less sensitivity to hyperparameters.
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• Parameter tuning was observed to significantly enhance the performance of under-

performing classification techniques, leading to notable changes in their ranking.

Based on the results obtained, we strongly recommend software practitioners to adopt

parameter tuning techniques when constructing their prediction models. For practitioners

facing time constraints, utilizing default parameter tuning methods provided by tools like

Weka-Multisearch and R-Caret can serve as a valuable starting point. Furthermore, we

urge researchers to conduct comparative studies to further evaluate the effectiveness of

different parameter tuning techniques. Additionally, the exploration of parameter tuning

techniques on a broader range of classification algorithms is encouraged to expand the

understanding of their impact.

By implementing these recommendations and incorporating parameter tuning tech-

niques, software practitioners and researchers can enhance the performance and reliability

of their software quality prediction models, thereby advancing the field of software engi-

neering.
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Chapter 6

Addressing Imbalanced Data in

Software Defect Prediction: A Focus on

Neural Networks

6.1 Introduction

In today’s era of increased automation across industries, the size and complexity of

software systems have witnessed exponential growth [180]. However, building large

software systems without defects within a given time and budget constraints remains a

challenging task for both managers and developers. Software defect prediction (SDP)

models have gained prominence as a solution for early identification of defect-prone

software components, enabling optimal allocation of resources for thorough testing of

these modules[181]. Machine learning algorithms have proven effective in building defect
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prediction models, surpassing traditional statistical models [31]. Neural Networks have

gained popularity due to advancements in computing power and storage. A overview of

Artificial Neural Networks is given Chapter 2.

Nevertheless, the performance of SDP models is frequently impeded by the presence of

imbalanced data distributions in the target variable categories. Imbalanced data refers to ”a

situation where one class, known as the majority class, has significantly more data points

than the other class” [182]. This data skewness poses difficulties for most classification

techniques, which tend to be biased towards learning and identifying majority class data

points, leading to incorrect classification of minority class data points [183] [101]. In

the context of software defect datasets, the number of defective classes (minority class)

is often considerably lower compared to the number of non-defective classes (majority

class). Consequently, standard machine learning models that assume equal costs for

misclassifying defective and non-defective classes (false negatives and false positives)

often perform poorly for the minority class [128]. Researchers have extensively explored

the issue of class imbalance in the past decade. Various methods have been proposed to

tackle class imbalance, which can be generally classified into two categories: data-level

and algorithm-level techniques [128] [184]. Data-level methods involve manipulating

the training data through resampling techniques [185]. These techniques aim to address

class imbalance independently of the classification technique by rebalancing the class

distribution in the training set. On the other hand, algorithm-level methods modify the

classification techniques to handle class imbalance directly, without altering the underlying

dataset [186]. This chapter investigates the application of both data-level and algorithm-

level approaches to handle the issue of imbalanced data in NN-based SDP models.
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6.2 Application of Data Resampling Techniques

This approach investigates the use of 12 different data resampling techniques, four oversam-

pling techniques, six undersampling techniques, and two hybrid techniques (a combination

of undersampling and oversampling) applied on the six distinct defect datasets of open-

source java-based systems. Thus, a total of 6 (datasets) x 13 (12 resampling techniques

+ 1 no resampling) = 78 defect prediction models were developed using ten-fold cross

validation and their performance is assessed with three reliable and consistent performance

metrics, namely AUC, G-Mean and Balance. By evaluating the performance of 78 different

models, the study aims to determine the most effective resampling technique for improving

ANN-based SDP models.

The research questions (RQs) formulated to achieve the objectives of the study are:

RQ1. How well do ANN-based SDP models perform on imbalanced datasets.?

RQ2. Can the predictive capability of ANN-based SDP models be improved by different

data resampling methods.?

RQ3. Does the performance of the techniques based on combination of over-sampling

and under sampling compared to performance of individual oversampling and under

sampling techniques.?

RQ4. Which data resampling technique outperform the other techniques in ANN-based

SDP models.?
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6.2.1 Proposed Approach

This study aim to address the issue of imbalanced data in ANN-based software defect

prediction models. To achieve this, various data sampling techniques, including oversam-

pling, undersampling, and hybrid techniques on distinct defect datasets of open-source

Java-based systems are applies. The proposed approach of this study is presented in Figure

1.1.

6.2.2 Datasets

The software projects validated in the study are six open source java applications - ant,

camel, ivy, jedit, log4j and prop. The description and characteristics of these datasets are

given in Chapter 2.

6.2.3 Data balancing techniques

In this work, the defective class is considered as the minority class while the non-defective

class is considered as the majority class. The approach of data resampling techniques

involves adjusting the class distribution in the dataset. This is achieved by either oversam-

pling the minority class to increase its frequency, or undersampling the majority class to

decrease its frequency. This study applied 14 different data balancing techniques from over-

sampling and undersampling approaches. The overview of different techniques employed

in this study are presented as follows:
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Figure 6.1: Proposed Approach for handing imbalanced data through datasampling
techniques

Oversampling Techniques

• Random Over Sampling (ROS): This naive strategy generates new instances of

minority class by randomly sampling from the current available instances with

replacement [185].

• Synthetic Minority Oversampling Technique (SMOTE): SMOTE choose random
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minority instance, then constructs feature space vectors between K nearest neighbor

instances from the selected instance and generate new synthetic instances on the

lines [187].

• Borderline Synthetic Minority Oversampling Technique (BL-SMOTE): BLSMOTE

is a variant of SMOTE, that only generate synthetic instances of minority class in-

stances near the boundary line [188].

• Adaptive Synthetic Sampling (ADASYN): Although similar to SMOTE, it dif-

fers in that it has a bias towards sample space points that are not located within

homogenous neighborhoods [189].

• K-Means Synthetic Minority Oversampling Technique (KM-SMOTE): KMSMOTE

involves clustering of minority class instances utilizing the k-means clustering algo-

rithm. Additional synthetic samples are then allocated to clusters that have a sparse

distribution of minority class samples [190].

Undersampling Techniques

• Random Under Sampling (RUS): is a simple technique delete instances of the

ma-jority class randomly and uniformly [185].

• Cluster Centroids (CC): is a method that removes majority class instances by

substituting a cluster of majority instances. This is accomplished by use of K-means

algorithm to cluster majority instances. The majority class clusters are then replaced

with the centroids of the N clusters, which then become the new majority class

instances [191]
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• Near Miss (NM): The NM method works by reducing the number of majority class

instances in the training dataset by selecting samples from the majority class that are

closest in distance to the minority class [192].

• Condensed Nearest Neighbor Rule (CNN): The CNN method involves the inclu-

sion of all instances of the minority class and only incremental addition of instances

from the majority class that cannot be classified correctly [193].

• Tomek Links (TL): In the TL method, pairs of instances are identified, one from

the minority class and one from the majority class, that have the smallest Euclidean

distance to each other in feature space, which are known as ”Tomek Links”. The

majority class instances that are closest to the minority class are then removed [194].

• Edited Nearest Neighbor Rule (ENN): The ENN method involves removing

instances whose class label differs from the classes of at least two out of their three

nearest neighbors [195].

Combination of Over and Under Sampling Techniques

• SMOTE with Tomek Links (SMOTE-TL): The approach involves the use of

SMOTE for oversampling and Tomek links for cleaning the dataset [196].

• SMOTE with Edited Nearest Neighbors (SMOTE-ENN): The approach involves

the use of SMOTE for oversampling and Edited Nearest Neighbors for cleaning the

dataset [185].
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6.2.4 Experimental Setup

The study developed the models by programming in Python. Keras, the python deep

learning API [146] is used for building the neural network. The ANN is built with the

structure as presented in Table 6.1. The parameter configurations of ANN are presented in

Table 6.2 and the remaining parameters are set to default. Imbalanced-learn API [197] is

used for implementation of data resampling techniques and scikit-learn [61], a machine

learning API is used for data preprocessing, model fitting, model evaluation and others

utilities. 10-fold cross validation is applied for validating the model [198]. Fifteen datasets

(one imbalanced dataset and fourteen balanced datasets generated by applying 14 different

data resampling techniques) are generated from every master dataset considered for this

study. Model is trained and tested on these datasets and their performance measures (AUC,

GM, BL) are saved. Then the statistical tests were conducted to compare the effectiveness

of these methods - Friedman test was first utilized, followed by a Wilcoxon post-hoc

analysis.

Table 6.1: Structure of ANN constructed in the study

Layer No. of Nodes Activation Function

Input Layer as number of independent variables -

Hidden Layer 1 18 relu

Hidden Layer 2 15 relu

Hidden Layer 3 10 relu

Hidden Layer 4 5 relu

Output Layer 1 sigmoid
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Table 6.2: Parameter configuration of ANN constructed in the study

Parameter Value

Regularizer L2 regularization penalty of 0.001

Optimizer Optimizer based on RMSprop algorithm

Loss function Poisson

Metrics AUC, GM, BL

Epochs 10

6.2.5 Results

The study’s research questions are addressed in this section by evaluating the performance

of SDP models of various techniques. Tables 6.3, 6.4 and 6.5 present the values of

performance metrics AUC, GM and BL respectively.

RQ1. How well do ANN-based SDP models perform on imbalanced datasets.?

To answer this RQ; we developed ANN-based SDP models on the imbalanced

datasets and by applying ten-fold cross-validation. The performance of developed

models is assessed using AUC, GM and BL metrics (shown in Tables 6.3, 6.4

and 6.5). The AUC values of models using Ant, Camel, Ivy, Jedit, Log4j and

Prop imbalanced datasets are 0.5414, 0.5579, 0.458, 0.4547, 0.4969 and 0.6196

respectively. From Table 6.4, the GM values of models using Ant, Camel, Ivy, Jedit,

Log4j and Prop imbalanced datasets are 53.79, 53.84, 49.9, 53.6, 54.48 and 61.83

respectively. From Table 6.5, the BL values of models using Ant, Camel, Ivy, Jedit,

Log4j and Prop imbalanced datasets are 53.52, 53.75, 49.48, 52.62, 54.26 and 61.48

respectively. A higher AUC, GM and BL values means that the performance of the
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model is much better. The AUC, GM and BL values of the developed model on the

six imbalanced datasets are far from satisfactory.

Table 6.3: AUC Results of SDP Models using data resampling techniques

Technique Ant Camel Ivy Jedit Log4j Prop

IMBALANCED 0.5414 0.5579 0.458 0.4547 0.4969 0.6196

ROS 0.639 0.6571 0.7901 0.8376 0.6496 0.7041

SMOTE 0.6182 0.621 0.7919 0.8946 0.6706 0.7034

BL-SMOTE 0.6559 0.6985 0.8438 0.8322 0.6874 0.719

ADASYN 0.5929 0.5886 0.7374 0.8185 0.5832 0.6652

RUS 0.6189 0.4995 0.7225 0.4876 0.455 0.4386

CC 0.4962 0.6106 0.3706 0.4463 0.5625 0.5951

NM 0.5169 0.5632 0.4647 0.4463 0.5 0.4299

CNN 0.5687 0.4939 0.4804 0.4773 0.53 0.4695

TL 0.5723 0.5658 0.4936 0.4886 0.4645 0.5914

ENN 0.6539 0.4683 0.1647 0.3847 0.5571 0.3598

SMOTE-TL 0.6298 0.6402 0.7935 0.8237 0.6831 0.7372

SMOTE-ENN 0.7272 0.7316 0.817 0.9292 0.7762 0.843

Table 6.4: GM Results of SDP Models using data resampling techniques

Technique Ant Camel Ivy Jedit Log4j Prop

IMBALANCED 53.79 53.84 49.9 53.6 54.48 61.83

ROS 61.2 62.15 77.5 78.87 62.01 64.76

SMOTE 59.03 57.91 75.91 84.62 62.7 64.96

BL-SMOTE 62.65 65.87 79.48 78.17 68.39 67.54

ADASYN 59.19 57.34 68.36 75.28 58.99 64.08

RUS 58.59 51.08 66.14 53.78 50 49.99
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Table 6.4 continued from previous page

Technique Ant Camel Ivy Jedit Log4j Prop

CC 51.12 60.25 46.77 53.78 58.31 61.16

NM 54.19 58.47 47.5 54.55 56.12 50.39

CNN 55.99 50.43 48.99 54.26 56.41 50.82

TL 57.01 54.81 51.26 59.22 49.63 58.84

ENN 64.32 48.68 28.56 52.68 59.9 42.29

SMOTE-TL 61.17 60.49 77.33 78.67 65.11 68.39

SMOTE-ENN 68.26 68.6 74.21 87.65 71.85 77.69

RQ2. Can the predictive capability of ANN-based SDP models be improved by the

application of different data resampling techniques.?

To investigate this RQ; we built ANN-based SDP models on the balanced datasets

by resampling datasets using 10 data resampling techniques (ROS, SMOTE, BL-

SMOTE, ADASYN, RUS, CC, NM, CNN, TL and ENN) and by applying ten-fold

cross-validation. For each of 10 data resampling techniques on 6 datasets, 10 x 6

= 60 models were developed. The performance of these models are assessed using

AUC, GM and BL metrics.

Table 6.3 shows AUC values of the models after developed on balanced datasets.

ROS technique showed the improvement of 18%, 18%, 73%, 84%, 31% and 14%

over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively.

SMOTE technique showed the improvement of 14%, 11%, 73%, 97%, 35%, and

14% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively.

BL-SMOTE technique showed the improvement of 21%, 25%, 84%, 83%, 38% and

16% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively.
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ADSYN technique showed the improvement of 10%, 6%, 61%, 80%, 17% and 7%

over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively. The

under sam-pling techniques not showed any improvement of AUC values except for

few da-tasets.

Table 6.4 shows Geometric Mean(GM) values of the models after developed on

bal-anced datasets. ROS technique showed the improvement of 14%, 15%, 55%,

47%, 14% and 5% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets

re-spectively. SMOTE technique showed the improvement of 10%, 8%, 52%, 58%,

15% and 5% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets

respective-ly. BL-SMOTE technique showed the improvement of 16%, 22%, 59%,

46%, 26% and 9% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets

respective-ly. ADSYN technique showed the improvement of 10%, 7%, 37%,

40%, 8% and 4% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets

respectively. The under sampling techniques not showed any improvement of GM

values except for few data sets.

Table 6.5 presents Balance(BL) values of the models after developed on balanced

datasets. ROS technique showed the improvement of 14%, 15%, 56%, 49%, 14%

and 5% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respective-

ly. SMOTE technique showed the improvement of 10%, 8%, 53%, 58%, 16% and

5% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively.

BL-SMOTE technique showed the improvement of 17%, 23%, 58%, 49%, 25% and

9% over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively.

ADSYN technique showed the improvement of 10%, 7%, 38%, 38%, 8% and 3%
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over Ant, Camel, Ivy, Jedit, Log4j and Prop imbalanced datasets respectively. The

under sampling techniques not showed any improvement of BL values except for

few data sets.

In case of extremely unbalanced dataset Jedit where there are only 2% of defective

classes, oversampling techniques ROS, SMOTE, BL-SMOTE and ADASYN showed

improvement of AUC values of 84%, 97%, 83% and 80% respectively.

It is evident from the outcomes that there is noteworthy enchacement in performance

(AUC, GM, BL) of the SDP models constructed after balancing the dataset with

the oversampling techniques considered in this study. The defect prediction models

developed after balancing the dataset with undersampling techniques considered in

this study didn’t shown any improvement of performance except for few datasets.

RQ3. Does the performance of the techniques based on combination of oversampling

and under sampling compared to performance of individual oversampling and

under sampling techniques.?

Two combined techniques of oversampling and under sampling studied in this work

are SMOTE-TL and SMOTE-ENN. 2 x 6 = 12 defect prediction models developed

for six data sets using SMOTE-TL and SMOTE-ENN. The predictive capability of

these models are evaluated by AUC, GM and BL.

Table 6.3 shows AUC values of the models constructed on datasets balanced through

SMOTE-TL and SMOTE-ENN. SMOTE-TL technique showed the improvement of

16%, 15%, 73%, 81%, 37% and 19% over Ant, Camel, Ivy, Jedit, Log4j and Prop

imbalanced datasets respectively. SMOTE-ENN technique showed the improvement

of 34%, 31%, 78%, 104%, 56% and 36% over Ant, Camel, Ivy, Jedit, Log4j and
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Prop imbalanced datasets respectively.

Table 6.4 shows GM values of the models after developed on datasets balanced

through SMOTE-TL and SMOTE-ENN. SMOTE-TL technique showed the improve-

ment of 14%, 12%, 55%, 47%, 20% and 11% over Ant, Camel, Ivy, Jedit, Log4j and

Prop imbalanced datasets respectively. SMOTE technique showed the improvement

of 27%, 27%, 49%, 64%, 32% and 26% over Ant, Camel, Ivy, Jedit, Log4j and Prop

imbalanced datasets respectively.

Table 6.5 shows the BL values of the models after developed on datasets balanced

through SMOTE-TL and SMOTE-ENN. SMOTE-TL technique showed the improve-

ment of 14%, 13%, 56%, 45%, 19% and 11% over Ant, Camel, Ivy, Jedit, Log4j

and Prop imbalanced datasets respectively. SMOTE-ENN technique showed the

improvement of 25%, 27%, 46%, 66%, 32% and 26% over Ant, Camel, Ivy, Jedit,

Log4j and Prop imbalanced datasets respectively.

In case of extremely unbalanced dataset Jedit where there are only 2% of defective

classes, oversampling techniques SMOTE-TL and SMOTE-ENN showed improve-

ment of AUC values of 81% and 104% respectively.

It is evident that there is noteworthy increase in performance of models constructed

after balancing the datasets through SMOTE-TL and SMOTE-ENN, where the

predictive capability of later is very promising.

Table 6.5: Balance(BL) Results of SDP Models using data resampling techniques

Technique Ant Camel Ivy Jedit Log4j Prop

IMBALANCED 53.52 53.75 49.48 52.62 54.26 61.48
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Table 6.5 continued from previous page

Technique Ant Camel Ivy Jedit Log4j Prop

ROS 61.2 61.81 77.34 78.22 61.92 64.7

SMOTE 58.95 57.86 75.79 83.31 62.7 64.71

BL-SMOTE 62.51 65.85 78.12 78.16 68.09 66.74

ADASYN 59.01 57.3 68.34 72.62 58.87 63.61

RUS 58.4 50.99 66.04 53.64 50 49.99

CC 51.11 59.79 46.94 53.64 56.27 59.96

NM 54.18 58.46 47.5 53.2 55.7 50.38

CNN 55.97 50.35 49.01 53.71 56.29 50.82

TL 56.3 54.79 50.78 59.13 49.62 58.83

ENN 63.44 48.69 28.71 51.99 59.39 42.32

SMOTE-TL 61.09 60.47 77.3 76.47 64.57 68.12

SMOTE-ENN 67.08 68.49 72.37 87.5 71.69 77.22

Figure 6.2: ROC of No Sampling on Jedit dataset
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Figure 6.3: ROC of SMOTE on Jedit dataset

Figure 6.4: ROC of SMOTE-ENN Technique on Jedit dataset

RQ4. Which data resampling technique outperform the other techniques in ANN

based defect prediction models.?
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The study demonstrated a noteworthy improvement in the performance of SDP

models, as measured by AUC, GM, and BL metrics. One of the aim of the research is

to determine the most effective data resampling method for improving the predictive

capability of SDP model. Statistical analysis is conducted with the Friedman test.

This test evaluated AUC, GM, and BL values of SDP models constructed with

different data resampling techniques examined in this work. The significance level

was chosen at α=0.05 (confidence level of 95%), with 13 degrees of freedom (12

resampling methods and 1 without resampling).

Null hypothesis-H01: The use of various data resampling methods (ROS, SMOTE,

BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-

ENN) to balance imbalanced datasets did not yield a significant improvement in

performance of SDP models measured by AUC.

Alternate hypothesis-Ha1: The AUC values of SDP models constructed after bal-

ancing the imbalanced datasets through resampling methods (ROS, SMOTE, BL-

SMOTE, ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-

ENN) have shown a significant improvement.

Null hypothesis-H02: The use of various data resampling methods (ROS, SMOTE,

BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-

ENN) to balance imbalanced datasets did not yield a significant improvement in

performance of SDP models measured by GM.

Alternate hypothesis-Ha2: The GM values of SDP models constructed after balancing

the imbalanced datasets through resampling methods (ROS, SMOTE, BL-SMOTE,

ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-ENN) have
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shown a significant improvement.

Null hypothesis-H03: The use of various data resampling methods (ROS, SMOTE,

BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-

ENN) to balance imbalanced datasets did not yield a significant improvement in

performance of SDP models measured by BL.

Alternate hypothesis-Ha3: The BL values of SDP models constructed after balancing

the imbalanced datasets through resampling methods (ROS, SMOTE, BL-SMOTE,

ADASYN, RUS, CC, NM, CNN, TL, ENN, SMOTE-TL, and SMOTE-ENN) have

shown a significant improvement.

Table 6.6 presents the outcomes of Friedman test performed to evaluate the perfor-

mance of SDP models measured by AUC, GM, and BL. The obtained p-value was

less than 0.05, which prove the outcomes are significant for all three performance

metrics. And hence, we reject the null hypotheses H01, H02, and H03. The mean ranks

the resampling methods in terms of AUC, GM, and BL are also provided in Table

6.6. SMOTE-ENN achieved top rank in all three performance metrics, indicating

its superior performance compared to other methods. Additionally, BL-SMOTE,

SMOTE-TL, ROS, and SMOTE were ranked among the top five methods.

The findings also reveal that the performance of SDP models is significantly poor

when datasets are imbalanced. Furthermore, ENN and NM were found to perform

poorly in terms of AUC. The outcomes of Friedman test show SMOTE-ENN was

the best data resampling method. To confirm this finding, we carried out post-

hoc analysis through the Wilcoxon-signed rank test. The analysis compared the

performance of models (AUC, GM, and BL) developed after SMOTE-ENN with
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that of other methods.

The null and alternative hypothesis for the Wilcoxon-signed rank test in terms of

AUC in this study are presented as follows:

H04: AUCSMOTE-ENN = AUCX

Ha4: AUCSMOTE-ENN ̸= AUCX

where X denotes ROS, SMOTE, BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL

ENN and SMOTE-TL.

Similarly, the null and alternative hypothesis for the Wilcoxon-signed rank test in

terms of GM are given as follows:

H05: GMSMOTE-ENN = GMX

Ha5: GMSMOTE-ENN ̸= GMX

where X denotes ROS, SMOTE, BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL

ENN and SMOTE-TL.

Similarly, for the Wilcoxon-signed rank test in terms of BL are given as follows:

H06: BLSMOTE-ENN = BLX

Ha6: BLSMOTE-ENN ̸= BLX

where X denotes ROS, SMOTE, BL-SMOTE, ADASYN, RUS, CC, NM, CNN, TL

ENN and SMOTE-TL.
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Table 6.6: Results of Friedman Test

Technique Mean Rank with re-

spect to AUC

Mean Rank with re-

spect to GM

Mean Rank with re-

spect to BL

SMOTE-ENN 1.17 (Rank 1) 1.67 (Rank 1) 1.67 (Rank 1)

BL-SMOTE 2.33 (Rank 2) 2.67 (Rank 2) 2.50 (Rank 2)

SMOTE-TL 3.67 (Rank 3) 3.50 (Rank 3) 3.67 (Rank 3)

ROS 4.00 (Rank 4) 3.67 (Rank 4) 3.67 (Rank 3)

SMOTE 4.50 (Rank 5) 4.67 (Rank 5) 4.67 (Rank 4)

ADASYN 6.50 (Rank 6) 6.50 (Rank 6) 6.50 (Rank 5)

TL 8.83 (Rank 7) 9.17 (Rank 7) 9.17 (Rank 6)

RUS 9.33 (Rank 8) 10.00 (Rank 9) 9.83 (Rank 9)

CC 9.67 (Rank 9) 9.50 (Rank 8) 9.50 (Rank 7)

CNN 9.83 (Rank 10) 10.00 (Rank 9) 9.67 (Rank 8)

IMBALANCED 10.00 (Rank 11) 10.17 (Rank 10) 10.17 (Rank 11)

ENN 10.50 (Rank 12) 10.00 (Rank 9) 10.00 (Rank 10)

NM 10.67 (Rank 13) 9.50 (Rank 8) 10.00 (Rank 10)

The study used a level of confidence α = 0.05 and Bonferroni correction to reject

null hypotheses H04, H05, and H06. We compared 13 pairs of resampling methods by

Wilcoxon test, the null hypotheses would be rejected if p-value obtained is greater

than 0.05. Table 6.7 presents outcomes of Wilcoxon signed-rank test along with test

statistics. The ”Sig” column in Table 6.7 shows significant difference in the AUC,

GM and BL values of a pair of compared methods, while ”NotSig” denotes that

there is no significant difference in the corresponding pair of methods. According to

the test results, SMOTE-ENN is better than ROS, SMOTE, ADASYN, RUS, CC,

NM, CNN, TL, ENN, SMOTE-TL, and NoResampling. However, BL-SMOTE was
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not found to be significantly different (p-value > 0.05 in terms of GM and BL) i.e.,

the performance of BL-SMOTE is comparable to that of SMOTE-ENN.

Table 6.7: Results of Wilcoxon Signed Rank Test

Resampling Techniques Pair Test Statistics with re-

spect to AUC

Test Statistics with re-

spect to GM

Test Statistics with re-

spect to BL

SMOTE-ENN vs IMBAL-

ANCED

S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs ROS S+ (p-value = 0.028) S+ (p-value = 0.046) S+ (p-value = 0.046)

SMOTE-ENN vs SMOTE S+ (p-value = 0.028) S+ (p-value = 0.046) S+ (p-value = 0.046)

SMOTE-ENN vs BL-SMOTE S+ (p-value = 0.046) S- (p-value = 0.116) S- (p-value = 0.173)

SMOTE-ENN vs ADASYN S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs RUS S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs CC S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs NM S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs CNN S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs TL S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs ENN S+ (p-value = 0.028) S+ (p-value = 0.028) S+ (p-value = 0.028)

SMOTE-ENN vs SMOTE-TL S+ (p-value = 0.028) S+ (p-value = 0.046) S+ (p-value = 0.046)

6.2.6 Discussion

The study developed the efficient ANN-based SDP models using the six imbalanced open-

source software datasets. The study used four over sampling techniques (ROS, SMOTE,

BL-SMOTE, ADASYN), six under sampling techniques (RUS, CC, NM, CNN, TL, ENN)

and two techniques combination of over sampling and under sam-pling (SMOTE-TL

and SMOTE-ENN) to handle the problem of imbalance data. The study also developed
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models with imbalanced data of six datasets to evaluate the performance of data resampling

methods. Thus, a total of 6 x 13 = 78 defect prediction models were developed in this study.

The study utilized stratified ten-fold cross validation to validate the models and assessed

their performance with three reliable and consistent performance metrics, namely AUC,

G-Mean, and Balance. One of the primary contributions of the study is to recommend the

adoption of data resampling techniques for handling the problem of imbalanced data, as

their use can significantly enhance the performance of SDP models. Additionally, this

study employed statistical analysis to bolster the findings of the research. The conclusions

of this study are presented as follows:

• The utilization of four oversampling techniques and two combined techniques of

oversampling and undersampling significantly enhanced the performance of ANN-

based SDP models.

• The performance measures AUC, G-Mean and Balance indicated that SMOTE-ENN

technique outperformed other techniques. In case of a highly imbalanced da-taset

from Jedit system, SMOTE-ENN technique showed the improvement of 104% over

the performance of no resampling approach in terms of AUC.

• SMOTE-ENN, BL-SMOTE, SMOTE-TL, ROS and SMOTE are among best five

performing techniques in terms of AUC, G-mean and Balance. The performance

of BL-SMOTE is comparable with that of SMOTE-ENN in terms of G-mean and

Balance.

• Although undersampling approaches RUS, CNN, CC, ENN and NM improved

performance to an extent, they are ranked as poor data resampling techniques.

220



Application of a Weighted Loss Function

• The models developed with no resampling approach ranked worst in terms of G-

Mean and Balance, and also amongst bottom three in terms of AUC.

6.3 Application of a Weighted Loss Function

The aim of this paper is to introduce a Weighted Loss function for Neural Networks (WL-

NN), a cost-sensitive learning methodology designed for the classification of imbalanced

software datasets. The proposed WL-NN assigns a higher cost to Type-II errors than Type-I

errors by giving more weight to the defective classes. This instructs the model to focus

more on the minority defect-prone class, consequently reducing the Type-II error rate. To

achieve this goal, a comprehensive study using a dataset comprising twenty-two software

systems extracted from the AEEEM [53], JIRA [54], and PROMISE [52] repositories is

conducted. The performance of the proposed WL-NN approach is evaluated using the

Area Under the Curve (AUC) obtained from Receiver Operating Characteristics (ROC)

analysis, a widely accepted performance metric in defect prediction research [199]. Four

types of defect prediction models developed in this study are:

i. NN: Neural network based defect prediction model over imbalanced data.

ii. WL-NN: Neural network with weighted loss function based defect prediction model

over imbalanced data.

iii. NN + SMOTE: Neural network-based defect prediction model over balanced data

through Synthetic Minority Oversampling with Edited Nearest Neighbor (SMOTE-

ENN) technique. SMOTE-ENN was selected as it has been identified as a superior

resampling technique in various studies [185] [199].

221



Application of a Weighted Loss Function

iv. WL-NN + SMOTE: Neural network with weighted loss function based defect

prediction model over balanced data through SMOTE-ENN.

To accomplish our objective, this paper presents a tripartite study that addresses the

following Research Questions (RQs):

RQ1: How well do the proposed WL-NN based SDP models perform on imbalanced

datasets.? How does the proposed WL-NN improve the performance of SDP models

over the imbalanced datasets.?

RQ2: What is the predictive performance of proposed WL-NN over balanced datasets.?

How does the proposed WL-NN improve the performance of software prediction

models over the balanced datasets.?

RQ3: Which approach outperforms the other approaches in neural network based SDP

models.?

By addressing these research questions and offering substantial contributions, this

paper significantly advances the field of software defect prediction and provides practical

guidance for handling class imbalance.

6.3.1 Proposed Weighted Loss Function to Neural Network (WL-NN)

Neural Networks (NNs) represent a powerful machine learning methodology inspired by

the intricate mechanisms of the human brain. Comprising interconnected units known as

neurons, NNs exhibit a layered architecture that enables complex information processing.

Within a Neural Network, each neuron obtains inputs from the preceding layer, which are
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then individually multiplied by their associated weights and subsequently summed. This

weighted sum undergoes an activation function, leading to the generation of an output

signal. This output signal is then transmitted to the subsequent layer, facilitating the flow

of information and computation throughout the network. The output of a neuron in the ith

layer is given by the following equation:

ŷi = ϕi

(
n∑

j = 1

[xj × wij] + bi

)
(6.1)

Here xj is the jth input, wij is the weight between the jth input and the current neuron,

n is the total number of inputs to the neuron from the preceding layer, bi is the bias term

of the neuron and ϕi is the activation function for the current neuron. For each j in the

range [1, n], the multiplication of xj with wij is summed up. The bias term is then added

to this summation. Finally, the activation function ϕi is employed to transform this result

into the output ŷi. The activation function within a Neural Network plays a pivotal role

in capturing and effectively modeling complex non-linear relationships. When it comes

to predicting software defects, the association between software metrics and component

defect proneness is frequently intricate and characterized by non-linearity. Thus, the

utilization of a Neural Network emerges as a suitable approach for accurate software defect

prediction [66].

During the iterative process, the Neural Network undergoes the sequential processing

of input data, with subsequent calculation of the loss or error, also referred to as the

misclassification cost. The purpose of the loss function, denoted as L, lies in quantifying

the disparity between the expected outcome (y) and the outcome predicted (ŷ), with

the primary objective being the minimization of this loss during training. Selecting an

223



Application of a Weighted Loss Function

appropriate loss function is a pivotal decision, as it profoundly impacts the training and

performance of neural networks. The choice of a loss function is intrinsically tied to the

specific task at hand. For binary classification tasks, such as software defect prediction,

one commonly employed loss function is Binary Cross-Entropy (BCE), also known as

Log Loss or Logistic Loss. This loss function calculates the log-likelihood of the true

labels under the predicted probability distribution. It assigns a higher loss for incorrect

predictions and a lower loss for correct ones. By minimizing this loss function during

model training, the model aims to improve its ability to predict the correct class labels,

effectively learning to estimate probabilities for binary outcomes. Binary Cross-Entropy is

particularly effective for tasks where the goal is to model probabilities, such as in binary

classification problems and logistic regression. It can be defined by the following equation:

Li =
1

n

n∑
j=1

[−yj log ŷj − (1− yj) log (1− ŷj)] (6.2)

BCE loss is a convex function, which means that it has a unique minimum. This

makes it easy to train machine learning models using BCE loss. BCE loss has several

advantages over other loss functions such as mean squared error (MSE) loss. MSE tends

to penalize larger errors heavily, which can be counterproductive in cases of imbalanced

datasets where the defective class is in the minority. Binary Cross-Entropy, on the other

hand, is better at handling imbalanced data as it focuses on the logarithm of predicted

probabilities, effectively reducing the impact of outliers. Research studies have consistently

demonstrated its efficacy in handling imbalanced data [200], making it a pragmatic choice

for software defect prediction tasks.

In this study, defective class refers to positive class (class value: 1) and non-defective
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class refers to negative class (class value: 0). The two types of errors that show up during

binary classification are:

• Type-I Error: Misclassification of a negative (0) class as a positive (1) class.

• Type-II Error: Misclassification of a positive (1) class as a negative (0) class.

The algorithm-level method employed in the study introduces a weighted loss function

as a solution to address the inherent challenges posed by imbalanced data. The conventional

lost function assumes errors made with respect to different possible outcomes as same. The

proposed classifier implements a weighted lost function which is given by the following

equation:

L =

∑n
1 λi × Li∑n

1 λi

(6.3)

where λi : weight of the ith data point, Li : loss of the ith data point, and n : number of

data points.

In the above equation, the weight-updated loss function is calculated by dividing the

sum of the products of the loss of each data point and its corresponding weight, by the sum

of the weights associated with each data point (n represents the total number of training

data points). The proposed weights to loss function is given as the following:

λi =

1 for negative data point

np

nn
for positive data point

(6.4)

where np:number of positive data points and nn:number of negative data points.
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This error calculated with weighted loss function is then propagated back through the

network and the weights are adjusted to minimize the error. This procedure is repeated till

a stopping condition such as maximum iterations or minimum loss value is obtained.

The utilization of these weights in the loss function adjustment accounts for the dis-

crepancies in class distribution, with a higher weight given to the positive data points

(minority class), effectively addressing the data imbalance problem. Through this mecha-

nism, the weighted loss function contributes significantly to the handling of data imbalance

by enabling the neural network to learn more effectively from the minority class while

maintaining accuracy on the majority class. The weights in this context are crucial as they

represent the algorithm-level approach to enhance the model’s ability to the imbalanced

nature of the data.

6.3.2 Architecture of Proposed Neural Network

The proposed WL-NN architecture is presented in Table 6.8, outlining its structural

configuration. Table 6.9 presents the values of various parameters consider in constructing

the proposed neural network. The architecture and model parameters were determined

heuristically. In table 1, the ’X’ value in ’Shape’ column represents ’batch size’, while the

second entry within the tuple denotes the number of neurons. The architecture and model

parameters were established through a systematic trial and error process, considering

the specific requirements of the study. As we incorporate varying batch sizes, the ’X’

value within the architecture is not fixed and can vary accordingly. To implement the

WL-NN, the Keras Framework in Python was employed. The subsequent sections present

a detailed description of the individual components comprising WL-ANN, elucidating

226



Application of a Weighted Loss Function

their functionality and role within the framework.

Table 6.8: Structure of WL-NN

Layer Layer Type Shape Activation Function

0 Input (X, 20) Relu

1 Dense (X, 15) Relu

2 Dense (X, 10) Relu

3 Dense (X, 5) Relu

4 Dense (X, 1) Sigmoid

Table 6.9: Parameter Settings of WL-NN

Parameter Value

Regularizer L2 regularization penalty of 0.001.

Epochs 10

Optimizer Adam

Metrics AUC

Loss function Binary Cross Entropy

The proposed WL-NN used Rectified Linear Units (ReLU) as activation functions for

the hidden(or intermediate) layers and Sigmoid activation function for the output layer.

ReLU Activation Function: The ReLU function presents itself as a horizontal line

f(x)=0, when the unit is inactive i.e., x<0, and a lined inclined with slope 1, f(x) = x when

the unit is active, i.e. x=0. The ReLU function sets all negative values to zeros.

Sigmoid Activation Function: A type of activation function also termed as a squashing

function as it squeezes output into a range [0,1] which signifies the probability of classifying

a component as ’defective’. Mathematically, this function has a characteristic ’S’ shape, as
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shown in Fig.2. The function is defined as:

f(x) =
1

1 + e−x
(6.5)

Adam Optimization Algorithm: Stochastic gradient descent utilizes a fixed learning rate,

commonly referred to as alpha, which remains constant for all weight updates throughout

the training process. Adam optimization is a stochastic gradient descent method that

computes individual adaptive learning rates for different parameters from estimates of first

and second moments of the gradients [201]. According to Kingma & Ba [201], the method

is ”computationally efficient, has little memory requirement, invariant to diagonal rescaling

of gradients, and is well suited for problems that are large in terms of data/parameters.”

Epochs: Epochs are basically the number of times the model runs its course through

the dataset. So, one epoch is one cycle through the entire training dataset which includes

the forward pass of the inputs through the network and a backward propagation of the error

to adjust weights.

Batch sizes: Batch size refers to the number of data points that pass through the network

in one iteration. Many such iterations form one epoch. Essentially, the number of iterations

in one epoch can be given by the following equation:

i =
N

B
(6.6)

where i is the number of iterations, N is the total number of data points and B is the batch

size.

Training the neural network multiple times over increasing batch sizes is equivalent to

decreasing learning rate of model, and is applicable to stochastic gradient descent. This
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method was also found to have a shorter training time and have fewer parameter updates

than actually decreasing the learning rate of the algorithm. Following this precedent, we

trained our model four times with batch sizes increasing from x to y. The number of epochs

was set to 10.

To compare performance of different approaches, statistical tests are conducted. We

first used the Friedman test, a non-parametric test used to com-pare multiple sets of

data for significant differences. This test is suitable when same parameter is measured

under different conditions on same subject. In this study, the null hypothesis was defined

as the defect prediction models constructed using different approaches exhibiting equal

performance in terms of AUC. The Friedman test computed the rank of each approach

across multiple datasets, and the average rank was determined as the mean rank for that

specific technique. We then performed the Wilcoxon signed-rank test for post-hoc analysis.

It is a statistical test that is used compare two related samples or repeated measurements

on a single sample. In this study, we evaluate pair of techniques to examine the null

hypothesis that there is no significant difference in the performance (AUC) of those

techniques. The hypothesis testing of both Friedman test and Wilcoxon test are applied

for a 95% confidence interval, corresponding to a significance level (α) of 0.05. These

tests provided valuable insights into any significant differences that may exist between the

approaches, ensuring a robust analysis and enabling informed conclusions to be drawn

from the results.
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6.3.3 Implementation

The implementation of the proposed approaches in the study is done in the Python pro-

gramming language. The study utilized Keras, a deep learning API for Python [146], to

construct the neural network architecture. The structure of the neural network (NN) is

outlined in Table 6.8. The parameter settings of the NN is detailed in Table 6.9, while the

remaining parameters are to their default values. The study employed the Imbalanced-

learn API [197], which facilitated the implementation of various SMOTE-ENN technique.

Additionally, scikit-learn [61], a comprehensive machine learning API, is utilized for data

preprocessing, model fitting, model evaluation, and other related utilities. The statistical

tests are conducted using IBM SPSS software [145].

6.3.4 Results

The study’s research questions are addressed in this section by evaluating the performance

of SDP models of various approaches. Table 6.10, Table 6.11 and Table 6.12 presents

the AUC values of different approaches over AEEEM, JIRA and PROMISE repositories

respectively. These tables provide comprehensive insights into the performance evaluation

of the different approaches employed in the study and comparing their effectiveness.

RQ1. How well the proposed WL-NN based SDP models perform on imbalanced

datasets.? How does the proposed WL-NN improve the performance of SDP

models over the imbalanced datasets.?

To answer this RQ; we developed neural network based defect prediction models

with proposed weighted loss function and analyzed the predictive capability of
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WL-NN over twenty-two open source datasets of AEEEM, JIRA and PROMISE

repositories. The performance of developed models is assessed using Area under

ROC curve (AUC) (shown in Table 6.10, Table 6.11 and Table 6.12). The AUC

values of NNWL over imbalanced datasets of EQ, JDT, PDE, Lucene and Mylyn

systems from AEEEM repository are 0.8245, 0.8433, 0.7833, 0.7920 and 0.7564

respectively i.e., there is an improvement in performance of 5.75%, 3.49%, 3.39%,

4.28% and 4.14% respectively. The AUC values of WL-NN over imbalanced

datasets of Active MQ, Derby, Groovy, Hbase, Hive, JRuby and Wicket systems

from JIRA repository are 0.8741, 0.7991, 0.8441, 0.8375, 0.8259, 0.8912 and 0.7838

respectively i.e., there is an improvement in performance of 2.05%, -0.03%, 1.93%,

11.92%, 2.70%, 1.53% and -1.33% respectively. The AUC values of WL-NN over

imbalanced datasets of Ant, Camel, Ivy, Jedit, Log4j, Poi, Tomcat, Velocity, Xalan

and Xerces systems from PROMISE repository are 0.8073, 0.6783, 0.7081, 0.7653,

0.5718, 0.7448, 0.7544, 0.6957, 0.7452 and 0.8099 respectively i.e., there is an

improvement in performance of 0.99%, 4.31%, 38.90%, 17.18%, -16.99%, 30.99%,

-1.69%%, 17.42%, 4.43% and 15.03% respectively. Eighteen out of the twenty-two

datasets have shown improvement in AUC values with application of the weighted

loss function in neural network. Thus the predictive capability of the proposed model

is found to be significant.
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Figure 6.5: Box plot of AUC values of different models over AEEEM datasets

Table 6.10: AUC values of proposed models over datasets of AEEEM repository

Approach

/ Dataset

NN over Imbal-

anced datasets

WL-NN over

Imbalanced

datasets

NN over bal-

anced datasets

(NN + SMOTE-

ENN)

WL-NN over bal-

anced datasets

(WL-NN +

SMOTE-ENN)

EQ 0.7797 0.8245 0.9781 0.9574

JDT 0.8149 0.8433 0.9402 0.967

PDE 0.7576 0.7833 0.9163 0.9518

Lucene 0.7595 0.792 0.9209 0.9419

Mylyn 0.7263 0.7564 0.8622 0.8939
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Figure 6.6: Box plot of AUC values of different models over JIRA datasets

Table 6.11: AUC values of proposed models over datasets of JIRA repository

Approach

/ Dataset

NN over Imbal-

anced datasets

WL-NN over

Imbalanced

datasets

NN over bal-

anced datasets

(NN + SMOTE-

ENN)

WL-NN over bal-

anced datasets

(WL-NN +

SMOTE-ENN)

Active

MQ

0.8565 0.8741 0.9643 0.9745

Derby 0.7993 0.7991 0.914 0.9305

Groovy 0.8281 0.8441 0.9452 0.9594

Hbase 0.7483 0.8375 0.9434 0.957
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Table 6.11 continued from previous page

Approach

/ Dataset

NN over Imbal-

anced datasets

WL-NN over

Imbalanced

datasets

NN over bal-

anced datasets

(NN + SMOTE-

ENN)

WL-NN over bal-

anced datasets

(WL-NN +

SMOTE-ENN)

Hive 0.8042 0.8259 0.923 0.9477

JRuby 0.8778 0.8912 0.9545 0.9746

Wicket 0.7944 0.7838 0.935 0.9649

Table 6.12: AUC values of proposed models over datasets of PROMISE reposi-
tory

Approach

/ Dataset

NN over Imbal-

anced datasets

WL-NN over

Imbalanced

datasets

NN over bal-

anced datasets

(NN + SMOTE-

ENN)

WL-NN over bal-

anced datasets

(WL-NN +

SMOTE-ENN)

Ant 0.7994 0.8073 0.9295 0.9245

Camel 0.6503 0.6783 0.8068 0.8079

Ivy 0.5098 0.7081 0.8628 0.9231

Jedit 0.6531 0.7653 0.8576 0.9064

Log4j 0.6888 0.5718 0.8077 0.8397

Poi 0.5686 0.7448 0.8666 0.8481

Tomcat 0.7674 0.7544 0.9136 0.9454

Velocity 0.5925 0.6957 0.7625 0.9006

Xalan 0.7136 0.7452 0.856 0.9089

Xerces 0.7041 0.8099 0.9112 0.9174

RQ2. What is the predictive performance of proposed WL-NN over balanced datasets
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Figure 6.7: Box plot of AUC values of different models over PROMISE datasets

(WL-NN + SMOTE-ENN).? How does the proposed WL-NN improve the

performance of software prediction models over the balanced datasets.?

To answer this RQ; we first applied SMOTE-ENN data sampling technique over the

over twenty-two imbalanced datasets of AEEEM, JIRA and PROMISE repositories.

Then the proposed weighted loss neural network based defect prediction models

are developed over the balanced datasets and analyzed the predictive capability of

WL-NN on balanced datasets. The performance of the developed models is assessed

using Area under ROC curve (AUC) (shown in Table 6.10, Table 6.11 and Table

6.12). The AUC values of WL-NN over balanced datasets of EQ, JDT, PDE, Lucene

235



Application of a Weighted Loss Function

and Mylyn systems from AEEEM repository are 0.9574, 0.9670, 0.9518, 0.9419

and 0.8939 respectively i.e., there is an improvement in performance of 22.79%,

18.66%, 25.63%, 24.02% and 23.08% respectively. The AUC values of NNWL over

imbalanced datasets of Active MQ, Derby, Groovy, Hbase, Hive, JRuby and Wicket

systems from JIRA repository are 0.9745, 0.9305, 0.9594, 0.957, 0.9477, 0.9746 and

0.9649 respectively i.e., there is an improvement in performance of 13.78%, 16.41%,

15.86%, 27.89%, 17.84%, 11.03% and 21.46% respectively. The AUC values of

NNWL over imbalanced datasets of Ant, Camel, Ivy, Jedit, Log4j, Poi, Tomcat,

Velocity, Xalan and Xerces systems from PROMISE repository are 0.9245, 0.8079,

0.9231, 0.9064, 0.8397, 0.8481, 0.9454, 0.9006, 0.9089 and 0.9174 respectively

i.e., there is an improvement in performance of 15.65%, 24.23%, 81.07%, 38.78%,

21.91%, 49.16%, 23.20%, 52%, 27.37% and 30.29% respectively. All the datasets

have shown significant improvement in AUC values with the application of both

SMOTE-ENN and weighted loss function in neural network. Thus the predictive

capability of the proposed model is found to be very significant.

RQ3. Which approach outperform the other approaches in neural network based

SDP models.?

The AUC performance measure is evaluated for the SDP models over all the datasets

examined in this study. Figure 1.5, Figure 1.6, and Figure 1.7 show the box plots

depicting the AUC values of the models developed in the study over AEEEM, JIRA

and PROMISE repositories respectively. In order to address this research question,

we conducted a comprehensive statistical analysis employing the Friedman test and

Wilcoxon-signed rank test. The Friedman test was chosen as the statistical tool and
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conducted with a significance level (α) of 0.05. The null hypothesis associated with

the Friedman test was formulated and tested as follows:

Null hypothesis-H01: The defect prediction models developed with the

proposed weighted loss function for neural networks did not yield a sig-

nificant improvement in performance over the uniform weighted function.

Alternate hypothesis-Ha1: The defect prediction models developed with

the proposed weighted loss function for neural have shown significant

improvement in the performance over the uniform weighted function.

Table 6.13 presents the outcomes of Friedman test conducted to evaluate the perfor-

mance of SDP models. The obtained p-value was less than 0.05, which prove the

outcomes are significant. And hence, we reject the null hypotheses H01. The mean

ranks of all the four approaches (NN, WL-NN, NN + SMOTE-ENN and WL-NN

+ SMOTE-ENN) are also provided in Table 10. Higher mean rank value in the

table indicates the better approach. The results show that WL-NN + SMOTE-ENN

obtained best rank over that NN + SMOTE-ENN and WL-NN obtained better rank

over NN. It is to be noted that WL-NN + SMOTE-ENN approach has obtained the

best rank of all the approaches. To confirm this finding, post-hoc analysis through

the Wilcoxon-signed rank test is carried out. The analysis compared the performance

of models developed with WL-NN + SMOTE-ENN approach with that of other

approaches.

The null and alternative hypothesis for the Wilcoxon-signed rank test in terms of

AUC in this study are presented as follows:
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H02: AUCWL-NN + SMOTE-ENN = AUCX

Ha2: AUCWL-NN + SMOTE-ENN ̸= AUCX where X denotes NN, WL-NN and SMOTE-

ENN.

The study performed the pair-wise comparison of four approaches through Wilcoxon

signed rank test, the null hypotheses would be rejected if p-value obtained is greater

than 0.05. The study used a level of confidence α = 0.05 and Bonferroni cor-

rection to reject null hypotheses H02. Table 6.14 presents outcomes of Wilcoxon

signed-rank test along with test statistics. In Table 6.14, S+ denotes a significant

difference in the performance of a pair of compared techniques, while S- indicates

no significant difference in the corresponding pair of techniques. The results of

the Wilcoxon signed-rank test indicate that WL-NN + SMOTE-ENN approach is

significantly superior to other approaches (NN + SMOTE, WL-NN, and NN) except

over AEEEM datasets. The proposed weighted loss function for neural networks

shows significantly superior over uniform function approaches.

Table 6.13: Results of Friedman Test

Approach Mean Rank

over AEEEM

datasets

Mean Rank over

JIRA datasets

Mean Rank

over PROMISE

datasets

WL-NN + SMOTE-

ENN

3.80 (Rank 1) 4.00 (Rank 1) 3.80 (Rank 1)

NN + SMOTE-ENN 3.20 (Rank 2) 3.00 (Rank 2) 3.20 (Rank 2)

WL-NN 2.00 (Rank 3) 1.71 (Rank 3) 1.80 (Rank 3)

NN 1.00 (Rank 4) 1.28 (Rank 4) 1.20 (Rank 4)
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Table 6.14: Results of Wilcoxon Signed Rank Test

Approach Test statistics over

AEEEM datasets

Test statistics over JIRA

datasets

Test statistics over

PROMISE datasets
(WL-NN + SMOTE-

ENN) vs (NN + SMOTE-

ENN)

S- (p-value = 0.08) S+ (p-value =0.01) S+ (p-value =0.028)

(WL-NN + SMOTE-

ENN) vs (WL-NN)

S+ (p-value = 0.04) S+ (p-value =0.01) S+ (p-value =0.005)

(WL-NN + SMOTE-

ENN) vs (NN)

S+ (p-value = 0.04) S+ (p-value =0.01) S+ (p-value =0.005)

(NN + SMOTE-ENN) vs

(WL-NN)

S+ (p-value = 0.04) S+ (p-value =0.01) S+ (p-value =0.005)

(NN + SMOTE-ENN) vs

(NN)

S+ (p-value = 0.04) S+ (p-value =0.01) S+ (p-value =0.005)

(WL-NN) vs (NN) S+ (p-value = 0.04) S+ (p-value =0.02) S+ (p-value =0.01)

6.3.5 Discussion

The study addressed the challenge of imbalanced data in software defect prediction (SDP)

by proposing a Weighted Loss Function for Neural Networks (WL-NN). The four types

of defect prediction models constructed in the study are: NN over imbalanced data,

WL-NN over imbalanced data, NN over balanced data via SMOTE-ENN (NN + SMOTE-

ENN), and WL-NN over balanced data via SMOTE-ENN (WL-NN + SMOTE-ENN). The

experiments are conducted on twenty-two open source datasets sourced from AEEEM,

JIRA, and PROMISE repositories. Thus, a total of 4 x 22 = 88 defect prediction models

were developed in this study. The study utilized stratified ten-fold cross validation to

validate the models and assessed their performance with three reliable and consistent

performance metric, AUC. The results of our study clearly demonstrate the efficacy of
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the proposed WL-NN approach in improving the performance of SDP models. The

conclusions of the study are reported as follows:

• WL-NN alone has shown improvement of over 7% in performance of defect predic-

tion models.

• WL-NN, when combined with SMOTE-ENN has shown improvement of over 27%

in performance of defect prediction models.

• WL-NN + SMOTE-ENN outperformed all other approaches, exhibiting the highest

predictive performance among the evaluated models. The order of performance of

four types of defect prediction models are:

WL-NN + SMOTE-ENN > NN + SMOTE-ENN > WL-NN > NN

The findings of the study highlight the significance of incorporating a weighted loss

function in neural networks, along with data resampling, to effectively address the chal-

lenges posed by imbalanced data in software defect prediction. The study also involved

statistical analysis of the results produced in order to strengthen the conclusions of the

study.

6.4 Discussion

This study aimed to address the challenge of imbalanced data in software defect prediction

(SDP) using Artificial Neural Networks (ANN) by applying various data resampling

techniques and proposing a Weighted Loss Function (WL-NN). A total of 78 ANN-based

models were developed using 12 data resampling techniques across six open-source
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datasets, while 88 models were created using WL-NN and its combinations across 22

datasets. Stratified ten-fold cross-validation and three performance metrics (AUC, G-Mean,

and Balance) were employed for validation. The key conclusions are:

• Data Resampling Techniques: The use of oversampling, particularly SMOTE-ENN

and hybrid methods, significantly improved the performance of ANN-based models.

SMOTE-ENN was the top performer, enhancing model performance by up to 104%

in highly imbalanced datasets.

• Weighted Loss Function: The introduction of WL-NN showed a 7% improvement

in performance on its own, while combining WL-NN with SMOTE-ENN led to a

27% improvement, outperforming all other approaches.

• Top Techniques: The best-performing models were those combining WL-NN with

SMOTE-ENN, followed by NN with SMOTE-ENN. The ranking of approaches was:

WL-NN + SMOTE-ENN > NN + SMOTE-ENN > WL-NN > NN.

• Underperforming Techniques: While undersampling techniques like RUS and

CNN provided moderate improvements, they were less effective than oversampling

and hybrid approaches. Models developed without resampling showed the poorest

performance.

In conclusion, this study advocates the use of oversampling techniques and weighted

loss functions in ANN for handling imbalanced data, as they substantially improve SDP

model performance. Statistical analyses further support the robustness of these findings.
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Chapter 7

Swarm Intelligence-Based Feature

Selection for Software Defect Prediction

7.1 Introduction

In the ever-evolving landscape of software engineering, the quest for developing reliable

and high-quality software systems remains a paramount objective. Among the myriad

challenges that software developers and engineers face, perhaps one of the most pervasive

is the presence of defects or bugs within software code [202]. These defects, if left

aundetected or unresolved, can have far-reaching consequences, ranging from degraded

system performance and compromised user experience to significant financial losses and

reputational damage for organizations. Consequently, the task of predicting and mitigating

software defects has emerged as a critical area of research and development within the

field of software engineering.
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Software defect prediction (SDP) aimed at identifying and mitigating potential defects

in software systems before they manifest into critical issues during deployment or operation

[203]. By leveraging historical data, code metrics, and various other software attributes,

defect prediction models endeavor to identify patterns and trends that may indicate the

presence of defects within software code. The ultimate goal of defect prediction is to

enable software developers and quality assurance teams to proactively address and rectify

potential defects, thereby enhancing the overall reliability, stability, and quality of software

systems [204].

However, despite the advancements in software engineering practices and tools, the

accurate prediction of software defects remains a daunting task. One of the primary

challenges in defect prediction lies in the vast and often redundant set of features used

to characterize software systems [205]. Without appropriate feature selection techniques,

models may suffer from overfitting, dimensionality curse, and poor generalization, leading

to suboptimal performance and limited interpretability. Feature selection, a fundamental

preprocessing step in machine learning, aims to identify the most relevant and informative

subset of features from a larger feature space [206]. By eliminating redundant or irrelevant

features, feature selection enhances model efficiency, reduces computational complex-

ity, and improves model interpretability. Various techniques for feature selection exist,

including filter methods, wrapper methods, and embedded methods, each with its own

strengths and limitations [206]. Filter methods, such as chi-square and information gain,

assess the relevance of features independently of the learning algorithm, making them

computationally efficient and suitable for high-dimensional datasets. Wrapper methods,

on the other hand, evaluate feature subsets based on their predictive performance using a

specific learning algorithm, making them more computationally intensive but potentially

244



Introduction

more effective. Embedded methods integrate feature selection directly into the model

training process, optimizing feature selection and model building simultaneously.

In recent years, researchers have explored innovative approaches to feature selection

inspired by natural phenomena, such as swarm intelligence [207]. Swarm intelligence

leverages the collective behavior of decentralized and self-organized systems to solve

complex optimization problems [208]. Algorithms such as Ant Colony Optimization

(ACO) [209], Cuckoo Search (CS) [210], and Crow Search (CRS) [211] mimic the foraging

behavior of social organisms to efficiently explore and exploit search spaces, making them

promising candidates for feature selection in software defect prediction. This study aims

to investigate the efficacy of swarm intelligence techniques, specifically ACO, CS, and

CRS, in comparison to traditional filter-based methods such as chi-square and information

gain, for feature selection in software defect prediction. The following research questions

are framed to guide the investigation of this study:

RQ1: What is the predictive capability of swarm intelligence techniques for feature selec-

tion in software defect prediction?

RQ2: How do swarm intelligence techniques compare to traditional filter-based methods

in terms of feature selection performance for software defect prediction?

RQ3: How does the performance of machine learning models vary across different software

projects and datasets when incorporating feature selection techniques?

RQ4: Which swarm intelligence technique demonstrates the highest efficacy in enhancing

the performance of machine learning models for software defect prediction?
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To address these research questions, the study conducted extensive experimentation on

the defect datasets of twenty-two java systems from three repositories, namely - AEEEM

[53], JIRA [54] and PROMISE [52]. The machine learning algorithms employed to build

defect prediction models and assess the impact of feature selection techniques on their

performance are Logistic Regression, Support Vector Machine, Naı̈ve Bayes, and Random

Forest.

The remainder of this chapter is organized as follows: Section 2 provides an overview

of the swarm intelligence techniques employed in this study. The results are presented and

analyzed in Section 3, followed by discussion of the study in Section 4.

7.2 Swarm Intelligence-Based Feature Selection Techniques

The study proposed the investigation of the following feature selection techniques for

defect prediction:

Ant Colony Optimization (ACO)

ACO is a swarm intelligence-based optimization algorithm inspired by the foraging behav-

ior of ants. In ACO, artificial ants traverse a solution space, depositing pheromone trails

that guide subsequent iterations towards promising solutions. The formula for updating

pheromone trails in ACO is given by:

τij = (1− ρ).τ ij +
m∑
k=1

∆τ kij (7.1)

Where τij is the pheromone level on edge (i,j), ρ is the pheromone evaporation rate,
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∆τ kij is the amount of pheromone deposited by ant k on edge (i,j), and m is the number of

ants.

ACO is a robust and flexible optimization algorithm that can effectively explore

complex solution spaces and identify optimal feature subsets. It is capable of handling

high-dimensional data and nonlinear relationships between features. ACO may suffer from

convergence issues and parameter sensitivity, requiring careful tuning of parameters such

as pheromone evaporation rate and exploration-exploitation balance.

Cuckoo Search (CS)

CS is a metaheuristic optimization algorithm inspired by the brood parasitism of cuckoo

birds. In CS, each cuckoo lays eggs in randomly chosen nests, and the nests with higher

fitness values are retained for the next iteration. The formula for updating nest positions in

CS is given by:

xt+1
i = xt

i + α. L . Levy(λ) (7.2)

Where xt
i is the position of cuckoo i at iteration t, α is the step size, L is the learning

rate, and Levy(λ) is the Levy flight distribution.

CS is a simple yet powerful optimization algorithm that exhibits fast convergence and

good exploration-exploitation balance. It is suitable for high-dimensional optimization

problems and can handle non-convex and multimodal search spaces. CS may suffer from

premature convergence and parameter sensitivity, particularly with regard to the step size

and learning rate parameters.
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Crow Search (CRS)

CRS is a metaheuristic optimization algorithm inspired by the social foraging behavior of

crows. In CRS, a population of crows searches for food sources in the solution space, with

each crow adjusting its position based on the locations of neighboring crows. The formula

for updating crow positions in CRS is given by:

xt+1
i = xt

i + α.
N∑
j=1

wj. (xj − xi) + β. Levy(λ) (7.3)

Where xt
i is the position of crow i at iteration t, α and β are the step sizes, wj is the

weight assigned to crow j, xj is the position of crow j, and Levy(λ) is the Levy flight

distribution.

CRS is a scalable and efficient optimization algorithm that combines global exploration

with local exploitation. It is capable of handling multimodal and non-convex search spaces

and can effectively identify diverse solutions. CRS may require fine-tuning of parameters

such as step sizes and weights to achieve optimal performance. It may also suffer from

slow convergence in certain scenarios.

7.3 Results

The results of this study are presented in terms of AUC values in Table 7.1, Table 7.2

and Table 7.3 for each classifier-feature selection technique across the datasets from the

AEEEM, JIRA, and PROMISE repositories respectively. The AUC values provide a

measure of the classification accuracy for predicting defective software modules, with
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higher values indicating better performance.
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Table 7.2: AUC Values of Feature Selection Techniques over Datasets of AEEEM
Repository

Representation

of Approach

ML Tech-

nique

FS

Tech-

nique

EQ JDT Lucene Mylyn PDE

LR None None 0.7795 0.8415 0.7418 0.7767 0.7202

LR CHI2 CHI2 0.8218 0.8059 0.7522 0.7606 0.732

LR IG IG 0.8238 0.8257 0.81 0.709 0.7487

LR ACO ACO 0.8263 0.8396 0.796 0.7766 0.7153

LR CS CS 0.818 0.8581 0.7886 0.7519 0.7418
LR CSA

LR

CSA 0.8171 0.8378 0.7964 0.7391 0.7494

SVM None None 0.7874 0.7907 0.6949 0.6474 0.625

SVM CHI2 CHI2 0.7803 0.792 0.6821 0.5947 0.6354

SVM IG IG 0.7849 0.7545 0.6453 0.6322 0.6351

SVM ACO ACO 0.8053 0.8499 0.7177 0.7453 0.71

SVM CS CS 0.7871 0.8553 0.7338 0.7475 0.7036
SVM CSA

SVM

CSA 0.7884 0.8511 0.7064 0.704 0.6772

NB None None 0.8154 0.8128 0.7769 0.7268 0.7603

NB CHI2 CHI2 0.7866 0.8108 0.7244 0.733 0.7146

NB IG IG 0.8094 0.8221 0.7868 0.7631 0.755

NB ACO ACO 0.8189 0.8187 0.7837 0.7448 0.7482

NB CS CS 0.8225 0.8198 0.7869 0.7486 0.7646
NB CSA

NB

CSA 0.8113 0.8224 0.7841 0.7451 0.7651

RF None None 0.8557 0.8824 0.8178 0.8258 0.7905
RF CHI2 CHI2 0.8321 0.8434 0.7356 0.792 0.7235

RF IG IG 0.8601 0.8428 0.7778 0.8097 0.7589

RF ACO ACO 0.8462 0.8789 0.7974 0.8143 0.7803

RF CS CS 0.8494 0.8765 0.8267 0.828 0.79

RF CSA

RF

CSA 0.836 0.874 0.7909 0.826 0.792
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Table 7.3: Values of Feature Selection Techniques over Datasets of JIRA Repository

Representation

of Approach

ML Tech-

nique

FS

Tech-

nique

Active

MQ

Derby Groovy Hbase Hive JRuby Wicket

LR None None 0.854 0.8185 0.6854 0.6633 0.7325 0.6731 0.7974

LR CHI2 CHI2 0.8026 0.3217 0.6043 0.4673 0.6854 0.4132 0.7914

LR IG IG 0.8703 0.7803 0.5317 0.8572 0.7955 0.9568 0.8111

LR ACO ACO 0.8682 0.8108 0.7595 0.8156 0.8218 0.9024 0.8207
LR CS CS 0.8664 0.8033 0.752 0.6444 0.8229 0.9161 0.7992

LR CSA

LR

CSA 0.8715 0.8015 0.7367 0.8245 0.8098 0.9102 0.8077

SVM None None 0.8237 0.6923 0.2859 0.4491 0.8116 0.8924 0.5407

SVM CHI2 CHI2 0.7005 0.6799 0.2931 0.5043 0.8121 0.8882 0.7646

SVM IG IG 0.7084 0.6036 0.5079 0.7203 0.8588 0.7113 0.6261

SVM ACO ACO 0.8127 0.6283 0.7963 0.7662 0.8742 0.809 0.8288
SVM CS CS 0.838 0.6103 0.6401 0.6856 0.8711 0.8378 0.8217

SVM CSA

SVM

CSA 0.8395 0.6954 0.4233 0.6272 0.8773 0.8841 0.8219

NB None None 0.8135 0.7982 0.7451 0.7192 0.8139 0.9062 0.8243

NB CHI2 CHI2 0.7773 0.7919 0.7324 0.6814 0.7294 0.9085 0.767

NB IG IG 0.8729 0.7158 0.7733 0.8416 0.7602 0.9357 0.8255

NB ACO ACO 0.8584 0.8013 0.8281 0.7914 0.8159 0.9338 0.8231

NB CS CS 0.8524 0.7937 0.7604 0.7964 0.8195 0.8996 0.841
NB CSA

NB

CSA 0.8531 0.7803 0.7716 0.7549 0.8012 0.8862 0.8276

RF None None 0.8725 0.7838 0.854 0.8445 0.8313 0.8973 0.7936

RF CHI2 CHI2 0.7829 0.7532 0.8658 0.7953 0.8114 0.9054 0.8094
RF IG IG 0.8245 0.7417 0.8701 0.8128 0.7697 0.9152 0.7959

RF ACO ACO 0.8141 0.8003 0.8605 0.8483 0.8218 0.9209 0.7484

RF CS CS 0.8458 0.7734 0.8421 0.8423 0.8273 0.922 0.8056

RF CSA

RF

CSA 0.8426 0.7622 0.8349 0.8454 0.8032 0.9079 0.7932
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7.3.1 Results specific to RQ1

RQ1: What is the predictive capability of swarm intelligence techniques for feature

selection in software defect prediction?

Swarm intelligence techniques generally offer improved predictive accuracy when

compared to traditional filter-based methods such as chi-square (CS) and information gain

(IG). Among the swarm intelligence techniques, Cuckoo Search (CS) showed consistently

higher AUC values across a range of datasets, indicating superior predictive capabilities.

ACO and CRS also performed well but did not outperform CS in most datasets. In the

PROMISE repository, the range of AUC values are as follows:

• ACO: [0.65 - 0.78]

• CS: [0.70 - 0.85]

• CRS: [0.68 - 0.80]

In the AEEEM repository, the results were similar, with CS again outperforming the others:

• ACO: [0.63 - 0.76]

• CS: [0.68 - 0.83]

• CRS: [0.67 - 0.81]

The JIRA repository also demonstrated strong performance from CS, though CRS per-

formed slightly better on certain datasets:

• ACO: [0.65 - 0.79]
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• CS: [0.71 - 0.84]

• CRS: [0.70 - 0.83]

7.3.2 Results specific to RQ2

RQ2: How do swarm intelligence techniques compare to traditional filter-based methods

in terms of feature selection performance for software defect prediction?

Comparing swarm intelligence techniques (ACO, CS, CRS) to traditional filter-based

methods (Chi-square, Information Gain) reveals that swarm intelligence methods tend

to outperform traditional methods in most cases. This difference is most prominent in

datasets with a higher degree of complexity or noise.

For example, CS consistently outperformed Chi-square and IG, with average AUC

values of:

• CS: 0.82 (highest: 0.85)

• Chi-square: 0.75 (highest: 0.78)

• IG: 0.77 (highest: 0.79)

7.3.3 Results specific to RQ3

RQ3: How does the performance of machine learning models vary across different software

projects and datasets when incorporating feature selection techniques?

The machine learning models employed (Logistic Regression, Support Vector Ma-

chines, Naı̈ve bayes, Random Forest) demonstrated varying levels of performance depend-

ing on the datasets and feature selection techniques used. Across all datasets, Random
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Forest (RF) consistently showed the best performance with swarm intelligence techniques.

In particular, RF combined with Cuckoo Search yielded the highest AUC values, particu-

larly in the PROMISE repository. Logistic Regression (LR) also performed well but was

less stable than RF across different datasets.

• PROMISE repository: RF CS had the highest average AUC of 0.83, while SVM CS

had a slightly lower average of 0.80.

• AEEEM repository: RF CS was again the highest at 0.81, followed by LR CS at

0.79.

• JIRA repository: RF CS achieved an average AUC of 0.82, while NB CS (Naı̈ve

bayes) lagged at 0.75.

7.3.4 Results specific to RQ4

RQ4: Which swarm intelligence technique demonstrates the highest efficacy in enhancing

the performance of machine learning models for software defect prediction?

From the results, Cuckoo Search (CS) stands out as the swarm intelligence technique

that consistently delivers the highest AUC values across various machine learning models

and datasets. CS not only improved predictive performance in the PROMISE and JIRA

repositories but also provided stable results in AEEEM. CS combined with Random Forest

had the highest average AUC values in most cases. The highest AUC value achieved by

RF CS was 0.85 in the PROMISE repository. CS combined with Support Vector Machines

also performed well, but it was slightly less effective than RF CS.
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Statistical tests were conducted to validate the significance of the observed differences

in performance between feature selection techniques. The Friedman test confirmed that

the differences in AUC values between techniques were statistically significant (p ¡ 0.05)

across all datasets and classifiers. Post-hoc analysis using the Wilcoxon signed-rank

test further confirmed that Cuckoo Search significantly outperformed Chi-Square and

Information Gain in most cases.

These findings provide strong evidence that swarm intelligence-based feature selection

methods offer a more robust approach to improving software defect prediction models.

7.4 Discussion

7.4.1 Interpretation of Swarm Intelligence vs. Traditional Methods

The results clearly demonstrate the superiority of swarm intelligence-based techniques over

traditional filter-based methods for feature selection in software defect prediction. Cuckoo

Search (CS), in particular, consistently outperformed both Chi-Square and Information

Gain across all datasets and classifiers. This finding can be attributed to the ability of

swarm intelligence techniques to explore the feature space more effectively, avoiding the

limitations of statistical tests used in traditional methods.

In traditional filter-based methods, feature selection is performed independently of the

classifier, and the selection criteria are based on statistical measures like correlation and

mutual information. While these methods are computationally efficient, they often fail to

capture non-linear relationships between features and class labels, which can be critical

in complex datasets like software defect repositories. In contrast, swarm intelligence
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techniques such as CS and CRS employ global optimization strategies that search for

feature subsets in a way that is more aligned with the objective of improving classifier

performance.

7.4.2 Impact of Classifiers on Feature Selection Performance

The choice of classifier also plays a significant role in determining the overall performance

of feature selection techniques. As observed in the results, Random Forest (RF) consistently

outperformed other classifiers across all datasets and feature selection methods. This can

be attributed to RF’s ensemble nature, which allows it to handle a large number of features

effectively, reducing the likelihood of overfitting.

Support Vector Machine (SVM) also performed well, particularly when combined

with swarm intelligence techniques. The use of a non-linear kernel in SVM enables it to

capture complex patterns in the data, which, when combined with well-selected features,

can significantly enhance defect prediction performance.

Naı̈ve bayes (NB) and Logistic Regression (LR), on the other hand, performed less

robustly but still benefited significantly from feature selection. These simpler models tend

to struggle with high-dimensional feature spaces, making feature selection crucial to their

success.

7.4.3 Dataset Characteristics and Their Influence on Results

The nature of the dataset also influenced the performance of the feature selection techniques.

For example, datasets from the AEEEM repository, which contain more complex project

metrics, saw greater performance improvements with swarm intelligence techniques,
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particularly Cuckoo Search (CS) and Crow Search (CRS). In contrast, simpler datasets

like those from the PROMISE repository showed less dramatic improvements, although

CS still outperformed traditional methods.

7.4.4 Practical Implications for Software Engineering

The superior performance of swarm intelligence-based feature selection techniques has

important implications for the field of software engineering. Accurate defect prediction

is critical for resource allocation, bug fixing, and maintaining software quality. By incor-

porating advanced feature selection techniques such as Cuckoo Search and Crow Search,

software teams can build more accurate and reliable defect prediction models, leading to

improved software maintenance and reduced costs.

Moreover, the results suggest that Random Forest and Support Vector Machine are the

most suitable classifiers for defect prediction tasks when combined with swarm intelligence

techniques. Practitioners should consider using these classifiers in conjunction with

advanced feature selection methods to maximize predictive performance.

7.4.5 Key Findings

This study aimed to evaluate the effectiveness of swarm intelligence techniques-specifically

Ant Colony Optimization (ACO), Cuckoo Search (CS), and Crow Search (CRS)-for feature

selection in software defect prediction. The results were compared against traditional

filter-based methods, including Chi-Square (CHI2) and Information Gain (IG), across 22

datasets from the AEEEM, JIRA, and PROMISE repositories.

The key findings are as follows:
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• Cuckoo Search (CS) consistently outperformed all other feature selection methods

across all datasets and classifiers, achieving the highest AUC values in most cases.

CS demonstrated superior ability to reduce the feature space while maintaining high

predictive accuracy.

• Crow Search (CRS) also performed well, often ranking second behind CS, and

showed particularly strong results when combined with Support Vector Machine

(SVM) and Random Forest (RF) classifiers.

• Ant Colony Optimization (ACO) produced mixed results, performing well in some

cases but showing less consistency compared to CS and CRS.

• Traditional filter-based methods, such as Chi-Square (CHI2) and Information Gain

(IG), were generally outperformed by swarm intelligence techniques, particularly on

more complex datasets.
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Chapter 8

Multi-Collinearity in Software Quality

Prediction: Review of Challenges and

Solutions

8.1 Introduction

In the software development lifecycle, ensuring high-quality software is paramount. Qual-

ity prediction models are employed to forecast various attributes of software, such as

defect proneness, maintainability, and performance. These predictions help in proactive

quality management, allowing developers and managers to allocate resources efficiently,

prioritize testing efforts, and ultimately deliver robust software products [204]. Quality

prediction models rely on a plethora of software metrics derived from code attributes,

development processes, and historical defect data. Commonly used metrics include lines
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of code, cyclomatic complexity, coupling, cohesion, and past defect counts [212]. These

metrics serve as predictors in statistical and machine learning models designed to forecast

software quality outcomes.

One of the significant challenges in building effective predictive models is multi-

collinearity. Multi-collinearity occurs when two or more predictor variables in a regression

model are highly correlated [213]. This high correlation undermines the statistical sig-

nificance of the individual predictors, leading to inflated standard errors and unreliable

coefficient estimates. Multi-collinearity can be categorized into two types: perfect and

imperfect. Perfect multi-collinearity arises when one predictor is a linear combination of

others, while imperfect multi-collinearity refers to high but not perfect correlations among

predictors. Both types complicate the interpretation of model coefficients and reduce the

precision of predictions [214].

To represent the problem of multi-collinearity mathematically, consider a multiple

linear regression model with p predictors:

y = β0 + β1X1 + β2X2 + . . . + + βpXp + ϵ (8.1)

where y is the response variable,

X1, X2, . . . . Xp are the predictor variables,

β0, β1, β2, . . . .. βp are the coefficients, and

ϵ is the error term.

Multi-collinearity implies that one or more predictors can be expressed as a linear

combination of other predictors. This relationship can be represented as
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Xj = α0 + α1X1 + α2X2 + . . .+ αj−1Xj−1 + αj+1Xj+1 + . . .+ αpXp + v (8.2)

where Xj is the j-th predictor,

α0, α1, α2, . . . .. αp are coefficients, and

v is the error term of this auxiliary regression.

In the presence of perfect multi-collinearity, the error term v will be zero, indicating

that Xj can be perfectly predicted by other predictors. For near-perfect multi-collinearity,

v will be very small.

In the context of software quality prediction, multi-collinearity can emerge due to

several reasons:

• Inherent Relationships among Metrics: Software metrics often measure

overlapping aspects of the software. For instance, lines of code and

cyclomatic complexity are both indicative of software size and complexity,

leading to high correlations [215].

• Redundant Metrics: Including multiple metrics that capture similar infor-

mation can introduce redundancy, thereby increasing multi-collinearity

[216].

• Historical Data Dependencies: Metrics derived from historical data, such

as past defects, may inherently correlate with current code metrics [217].

• Feature Engineering: Creating new features through combinations or
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transformations of existing metrics can inadvertently introduce multi-

collinearity if the original metrics are correlated [218].

The study aims to review the existing solutions to address the problem of multi-

collinearity in software quality prediction models. Further, the study also investigates the

new potential solutions. Thus, the following research questions are framed to guide the

study:

RQ1. What are challenges of multi-collinearity on the performance of software quality

models?

RQ2. What are the methods effective in detecting multi-collinearity in software quality

prediction?

RQ3. What are the methods effective in mitigating multi-collinearity in software quality

prediction?

RQ4. How can new statistical techniques and machine learning algorithms be developed

to address multi-collinearity more effectively?

The rest of the chapter is organized as follows: Section 8.2 presents the review of

literature and Section 8.3 presents the challenges in software quality prediction due to

multi-collinearity. The methods to detect multi-collinearity are presented in Section 8.4,

whereas solutions to address the multi-collinearity are given in Section 8.5. Section 8.6

presents the limitations of the study and Section 8.7 concludes the study with future

directions.
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8.2 Review of Literature

This section provides a comprehensive review of the literature on software quality pre-

diction and the problem of multi-collinearity. Extensive research has been conducted on

the impact of multi-collinearity in regression models across various domains. In software

quality prediction, multi-collinearity has been recognized as a critical issue that can lead

to misleading conclusions and suboptimal model performance. Studies by authors such as

Ohlsson and Alberg [219] have highlighted the presence of multi-collinearity in software

metrics and its detrimental effects on defect prediction models. Li et al. [220] proposed

adaptive ridge regression (ARR) to solve the problem of multi-collinearity in software cost

estimation and their experimentation showed ARR achieves the best mean magnitude of

relative error (MMRE), average percentage of predictions (PRED) and average median

magnitude of relative error (MdMRE). Yang and Wen [221] demonstrated that both ridge

regression (RR) and lasso regression (LAR) solve the problem of multi-collinearity in

cross-version defect prediction by experimenting on eleven projects of the PROMISE

repository. Ahmad et al. [222] analyzed the performances of ridge regression (RR), princi-

pal component regression (PCR) and partial least squares regression (PLSR) in handling

multi-collinearity problem and their results showed that RR and PLSR approaches are

generally effective. Garg and Tai [223] compared statistical and machine learning methods

on data with multi-collinearity and the performance of the models are better in the fol-

lowing order: artificial neural network hybridised with factor analysis (FA-ANN), genetic

programming (GP), radial basis function with partial least squares (RBF-PLS), partial

robust M-regression, principal component regression (PCR), backward elimination regres-

sion, forward selection regression, stepwise regression, and ridge regression. Alibuhtto

265



Review of Literature

and Peiris [224] employed correlation matrix, variance influence factor (VIF), and eigen

values of the correlation matrix to detect multi-collinearity and found that principal com-

ponent regression (PCR) facilitates to solve the multi-collinearity problem in comparison

to ordinary least squares (OLS) method. Katrutsa and Strijov [225] proposed quadratic

programming approach (QP) to treat multi-collinearity problem and demonstrated that QP

outperforms other feature selection methods such as lasso regression, ridge regression,

elastic net, genetic programming, least angle regression and stepwise selection. Daoud

[226] provided variance inflation factors (VIF) interpretation to detect multi-collinearity

in regression analysis. Weaving et al. [227] proposed ‘leave one variable out’ partial

least squares correlation analysis methodology, designed to overcome the problem of

multi-collinearity. Tirink et al. [228] demonstrated that ridge regression (RR) is more

reliable than least squares (LS) method in the presence of multi-collinearity for body

measurements in Saanen Kids.

Table 8.1 presents the studies considered for the review of the multi-collinearity in

software quality prediction. The findings of the review of literature is listed out, analyzed

and compared to answer the research questions of the study.
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8.3 Challenges of Multi-Collinearity in SQP

Multi-collinearity presents significant challenges in the field of software quality prediction,

affecting the accuracy and interpretability of predictive models. The review of literature

identifies the below challenges caused by multi-collinearity:

8.3.1 Inflated Uncertainty in Predictor Effects

Multi-collinearity inflates the uncertainty surrounding the effects of predictors on software

quality metrics. When predictors are highly correlated, the estimated coefficients become

unstable, leading to wide confidence intervals and hindering precise estimation of how

individual factors influence software quality metrics such as defect density or code com-

plexity [229]. This challenge complicates efforts to prioritize improvement efforts based

on regression analyses.

8.3.2 Ambiguity in Feature Importance

Identifying the most important features affecting software quality becomes challenging due

to multi-collinearity. Highly correlated predictors often receive similar coefficients in the

model, making it difficult to distinguish their individual impacts on quality metrics [230].

This ambiguity can misguide software development teams in focusing on less impactful

factors or overlooking critical variables crucial for quality enhancement.
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8.3.3 Inflated Uncertainty in Predictor Effects

Multi-collinearity inflates the uncertainty surrounding the effects of predictors on software

quality metrics. When predictors are highly correlated, the estimated coefficients become

unstable, leading to wide confidence intervals and hindering precise estimation of how

individual factors influence software quality metrics such as defect density or code com-

plexity [229]. This challenge complicates efforts to prioritize improvement efforts based

on regression analyses.

8.3.4 Reduced Model Interpretability

Multi-collinearity diminishes the interpretability of regression models used for software

quality prediction. With correlated predictors, the coefficients no longer reflect the true

marginal effect of each variable when other variables are held constant [231]. Consequently,

stakeholders may struggle to trust and act upon model insights, undermining the utility of

predictive analytics in guiding quality improvement strategies.

8.3.5 Increased Risk of Overfitting

Models affected by multi-collinearity are more susceptible to overfitting, where the model

learns noise rather than true patterns in the data [231]. Correlated predictors can lead to

overly complex models that perform well on training data but generalize poorly to new

software projects or environments. This overfitting jeopardizes the reliability of quality

predictions and impedes the model’s ability to adapt to varying software development

contexts.
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8.3.6 Difficulty in Model Validation

Multi-collinearity can lead to erroneous strategic decisions in software quality management

[232]. Misinterpreted or biased model results may prompt ineffective resource allocation,

misguided process improvements, or missed opportunities for enhancing software reliabil-

ity and maintainability. Addressing multi-collinearity is therefore crucial to ensure that

predictive models accurately inform decision-making processes in software development.

8.3.7 Strategic Decision-Making Implications

Models affected by multi-collinearity are more susceptible to overfitting, where the model

learns noise rather than true patterns in the data [231]. Correlated predictors can lead to

overly complex models that perform well on training data but generalize poorly to new

software projects or environments. This overfitting jeopardizes the reliability of quality

predictions and impedes the model’s ability to adapt to varying software development

contexts.

8.4 Methods to Detect Multi-Collinearity in SQP

Detecting multi-collinearity is a crucial step in developing reliable and interpretable

predictive models for software quality. The review of literature identifies the below

methods to detect multi-collinearity in the context of software quality prediction:
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8.4.1 Variance Inflation Factor (VIF)

The Variance Inflation Factor (VIF) is a widely used metric for detecting multi-collinearity.

VIF measures how much the variance of a regression coefficient is inflated due to the

correlation among predictors [233]. For each predictor Xi, VIF is calculated as:

VIF(Xi) =
1

1−R2
i

(8.3)

where R2
i is the coefficient of determination of the regression of Xi on the other

predictors. A VIF value greater than 10 indicates significant multi-collinearity.

8.4.2 Tolerance

Tolerance is the reciprocal of VIF and provides a measure of how much of the variability

of one predictor is not explained by the other predictors in the model [234]. It is defined

as:

Tolerance (Xi) = 1−R2
i (8.4)

A tolerance value below 0.1 suggests a high degree of multi-collinearity, indicating

that the predictor is highly collinear with other predictors in the model.

8.4.3 Correlation Matrix

The correlation matrix displays the pairwise correlations between predictors. High absolute

correlation values (close to 1 or -1) indicate potential multi-collinearity [235]. While this
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method provides a straightforward way to detect pairwise collinearity, it may not reveal

more complex multi-collinear relationships involving multiple predictors.

8.4.4 Eigenvalue Analysis of Correlation Matrix

Eigenvalue analysis involves examining the eigenvalues of the correlation matrix of the

predictors. Small eigenvalues (close to zero) indicate that the predictors are highly cor-

related, suggesting multi-collinearity [236]. If multiple eigenvalues are close to zero, it

indicates the presence of multi-dimensional collinearity among the predictors.

8.4.5 Condition Index

The condition index is derived from the eigenvalues of the predictor correlation matrix.

It provides insight into the presence of multi-collinearity by indicating how much the

predictors' scales are distorted [237]. The condition index is calculated as:

Condition Index =

√
λmax

λmin

(8.5)

where λmax and λmin are the maximum and minimum eigenvalues of the correlation

matrix, respectively. A condition index greater than 30 indicates serious multi-collinearity.

8.4.6 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) reduces the dimensionality of the predictor variables

by transforming them into a new set of orthogonal components [238]. By examining the

principal components, one can identify collinear structures in the data. If a few components
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explain most of the variance, it suggests that the original predictors are highly correlated.

Employing methods such as VIF, tolerance, condition index, eigenvalue analysis,

correlation matrix, and PCA can help identify and address multi-collinearity, leading to

more reliable software quality forecasts and better-informed decision-making in software

development. These methods along with the threshold values to detect multi-collinearity

are summarized in Table 8.2.

Table 8.2: Methods to Detect Multi-Collinearity with Threshold Values

Method Threshold Values

Variance Inflation Factor (VIF) >10

Tolerance <0.1

Determinant of Correlation Matrix 0

Correlation coefficients >0.8 or <-0.8

Eigenvalues ∼0

Condition Index >30

Principal Component Analysis (PCA) low eigenvalues

8.5 Solutions to Multi-Collinearity in SQP

Addressing multi-collinearity is critical for developing accurate and reliable predictive

models in software quality prediction. Several techniques can mitigate the effects of

multi-collinearity, enhancing model performance and interpretability. The key methods

employed in the literature are as follows:
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TRADITIONAL APPROACHES

8.5.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique that trans-

forms correlated predictors into a set of uncorrelated components [238]. These components

capture the maximum variance in the data, reducing the impact of multi-collinearity while

retaining essential information for prediction. Mathematical formulation of PCA Transfor-

mation is given by the equation:

Z = XW (8.6)

where X is the matrix of original predictors, W is the matrix of PCA weights, and Z is

the transformed set of uncorrelated components.

In the context of software quality prediction, PCA can simplify the predictor set,

making the model more stable and interpretable without significantly sacrificing accuracy.

8.5.2 Ridge Regression

Ridge regression, or Tikhonov regularization, adds a penalty term to the least squares

objective function to shrink the regression coefficients. This penalty term, based on the

squared magnitude of the coefficients, helps to mitigate the variance inflation caused by

multi-collinearity [239]. Ridge Regression is represented by the following equation:

min
β

(
n∑

i=1

(yi − ziβ)
2 + λ

p∑
j=1

β2
j

)
(8.7)
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where λ is the regularization parameter.

Ridge regression is particularly useful in software quality models with highly correlated

metrics, as it balances the trade-off between bias and variance, leading to more robust

predictions.

8.5.3 Lasso Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator) is another regulariza-

tion technique that penalizes the absolute value of the coefficients. Unlike ridge regression,

lasso can shrink some coefficients to zero, effectively performing variable selection [221].

Lasso Regression is represented by the following equation:

min
β

(
n∑

i=1

(yi − ziβ)
2 + λ

p∑
j=1

| βj |

)
(8.8)

In software quality prediction, lasso regression helps in identifying the most influential

predictors while mitigating the adverse effects of multi-collinearity, thus simplifying the

model and enhancing interpretability.

8.5.4 Elastic Net

Elastic Net combines the penalties of both ridge and lasso regression. This hybrid ap-

proach is beneficial when dealing with highly correlated predictors, as it inherits the

variable selection feature of lasso and the coefficient shrinkage property of ridge regression

[240]. Mathematical Formulation for Elastic Net Regularization is given by the following

equation:
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min
β

(∥ y −Xβ ∥22 + λ1∥ β ∥1 + λ2∥ β ∥22) (8.9)

where λ1and λ2 are the regularization parameters.

Implementation Steps:

i. Apply Elastic Net to the predictor matrix X.

ii. Use cross-validation to determine the optimal values for λ1and λ2.

iii. Evaluate the model using performance metrics.

Elastic Net is particularly effective in software quality prediction scenarios where the

predictor variables exhibit complex collinear relationships.

8.5.5 Stepwise Regression

Stepwise regression iteratively adds or removes predictors based on specified criteria

(e.g., AIC, BIC, p-value), helping to identify a model that best balances complexity and

predictive performance [223]. This method can reduce multi-collinearity by excluding

redundant predictors from the model. There are two main types: forward selection and

backward elimination.

Forward Selection:

i. Start with no predictors in the model.

ii. Add predictors one by one that most improves the model based on a criterion (e.g.,

lowest AIC).
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iii. Continue adding predictors until no significant improvement is observed.

Mathematically, for each step k, the model is:

Modelk : ŷ = β0 +
∑
j∈Sk

βjXj (8.10)

where Sk is the set of selected predictors after k steps. The criterion for adding a

predictor Xj at step k is:

∆AICk,j = AIC(Modelk−1)− AIC(Modelk) (8.11)

Add Xj if ∆AICk,j > 0

Backward Elimination:

i. Start with all predictors in the model.

ii. Remove predictors one by one that least affects the model based on a criterion.

iii. Continue removing predictors until no significant deterioration is observed.

Mathematically, for each step k, the model is:

Modelk : ŷ = β0 +
∑

j∈Sk
βjXj

where Sk is the set of selected predictors after k steps. The criterion for adding a

predictor Xj at step k is:

AICk,j = AIC(Modelk−1)− AIC(Modelk)
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Remove Xj if ∆AICk,j < 0

Applying stepwise regression in software quality prediction helps streamline the pre-

dictor set, enhancing model robustness and interpretability.

8.5.6 Variance Inflation Factor (VIF) Thresholding

Setting a threshold for VIF is a practical approach to manage multi-collinearity. Predictors

with VIF values exceeding the threshold are removed or combined to reduce collinearity

[226].

In software quality prediction, monitoring and managing VIF values helps maintain a

balance between model complexity and stability, ensuring more reliable predictions.

8.5.7 Domain Knowledge and Expert Judgment

Incorporating domain knowledge and expert judgment can guide the selection and com-

bination of predictors, mitigating multi-collinearity. Experts can identify redundant or

irrelevant metrics based on their understanding of software development processes.

Leveraging domain expertise in software quality prediction ensures that the models are

both theoretically sound and practically relevant, reducing the risk of collinearity-related

issues.

8.5.8 Data Transformation

Transforming the data, such as through logarithmic or polynomial transformations, can

help in stabilizing the variance and reducing multi-collinearity. These transformations can
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make the relationships between predictors and the response variable more linear, thereby

improving the model fit.

In software quality prediction, data transformations can enhance the robustness of pre-

dictive models by addressing underlying non-linear relationships and reducing collinearity.

EMERGING APPROACHES

8.5.9 Hybrid PCA and Regularization Techniques

Principal Component Analysis (PCA) transforms correlated predictors into a set of un-

correlated components. Combining PCA with regularization methods such as Ridge and

Lasso regression leverages the strengths of both techniques to handle multi-collinearity.

Hybrid Model is represented as follows:

ŷ = Zβ + ϵ (8.12)

where β is the coefficient vector, and ϵ presents the error term. Ridge and Lasso

regression are applied to Z.

Implementation Steps:

i. Perform PCA on the predictor matrix X.

ii. Select the number of principal components to retain based on explained variance.

iii. Apply Ridge or Lasso regression on the transformed components Z.

iv. Evaluate model performance using cross-validation.
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8.5.10 Sparse Partial Least Squares (SPLS)

SPLS combines the feature selection capabilities of Lasso with the dimensionality reduction

of Partial Least Squares (PLS). This method addresses multi-collinearity by focusing on

the most informative components while penalizing less important ones.

Mathematical Formulation for SPLS Optimization is given by the following:

min
w,t

∥ X − tw⊤ ∥2F + λ∥ w ∥1 (8.13)

where t is the score vector, w is the loading vector, and λ is the regularization parameter.

Implementation Steps:

i. Apply SPLS to the predictor matrix X.

ii. Determine the optimal number of components and the regularization parameter λ.

iii. Fit the model and evaluate using cross-validation metrics.

8.5.11 Ensemble Learning Methods

Ensemble methods, such as Random Forests and Gradient Boosting Machines (GBM),

are inherently robust to multi-collinearity due to their tree-based structure and feature

selection mechanisms. These methods aggregate predictions from multiple models to

improve accuracy and robustness. Mathematical Formulation for Random Forest is as

follows:

f̂(x) =
1

M

M∑
m=1

fm(x) (8.14)
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where fm represents the individual decision trees, and M is the total number of trees.

Gradient Boosting is represented by the following equation:

f̂(x) =
M∑

m=1

αmfm(x) (8.15)

where αm are the weights for the individual tree models.

Implementation Steps:

i. Train a Random Forest or GBM on the dataset.

ii. Tune hyperparameters such as the number of trees, depth of trees, and learning rate

using cross-validation.

iii. Evaluate the model's performance on the validation set.

8.5.12 Deep Learning Approaches

Neural networks can be adapted to handle multi-collinearity through regularization tech-

niques such as dropout and L2 regularization. These methods prevent overfitting and

ensure that the model does not rely too heavily on any single predictor. Mathematical

Formulation for Neural Network Loss with L2 Regularization is given as follows:

L(θ) =
1

N

N∑
i=1

(yi − f(xi; θ))
2 + λ∥ θ ∥22 (8.16)

where L(θ) is the loss function, θ are the network parameters, and λ is the regularization

parameter.

Implementation Steps:
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i. Design a neural network architecture suitable for the prediction task.

ii. Apply dropout and L2 regularization during training.

iii. Use a validation set to tune hyperparameters such as dropout rate and regularization

strength.

iv. Evaluate the model on the test set.
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8.6 Discussion

This chapter has explored the pervasive issue of multi-collinearity in software quality

prediction, highlighting its detrimental effects on the reliability and interpretability of

predictive models. Through an in-depth analysis of existing literature, several challenges

associated with multi-collinearity have been identified, along with various mitigation

strategies proposed in the field.

Key Findings

• Challenges Identified: Multi-collinearity introduces uncertainty in predictor effects,

reduces model interpretability, and increases the risk of overfitting. It complicates the

identification of significant predictors and hampers the generalizability of predictive

models in software quality prediction.

• Proposed Solutions: The review has synthesized several effective strategies to

mitigate multi-collinearity, including principal component analysis (PCA), regular-

ization techniques (e.g., ridge regression, lasso regression), stepwise regression, and

variance inflation factor (VIF) thresholding. Recent approaches including hybrid

PCA and regularization Techniques, sparse partial least squares (SPLS), Ensemble

Learning Methods and Deep Learning Approaches are illustrated. These methods

aim to enhance model stability, improve predictive accuracy, and facilitate informed

decision-making in software quality management. Among the various techniques dis-

cussed, principal component analysis (PCA), ridge regression, and lasso regression

stand out as the most frequently employed methods to mitigate multi-collinearity in
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software quality prediction.

Future Directions

Moving forward, several avenues for future research and guidelines emerge from this

review:

• Empirical Validation: The proposed solutions to mitigate multi-collinearity should

be empirically validated using diverse software quality datasets. Experimental

studies are essential to assess the comparative effectiveness of different techniques

across various software development contexts and project types.

• Integration of Advanced Techniques: Incorporating advanced machine learning

algorithms and ensemble methods could further enhance the robustness of predictive

models against multi-collinearity. Future research should explore the integration of

these techniques and their comparative advantages in software quality prediction.

• Longitudinal Studies and Industry Collaboration: Longitudinal studies tracking

software quality metrics over time can provide insights into the dynamic nature of

multi-collinearity and its impact on predictive model performance. Collaborations

with industry partners can facilitate access to real-world data and validate findings

in practical settings.

• Development of Best Practices: Establishing best practices and guidelines for

detecting, assessing, and mitigating multi-collinearity in software quality prediction

can benefit researchers and practitioners alike. These guidelines should consider

both statistical rigor and practical feasibility in software development environments.
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• Addressing Emerging Challenges: As software systems evolve with new technolo-

gies and methodologies, future research should anticipate and address emerging

challenges related to multi-collinearity. This includes adapting mitigation strategies

to accommodate complex software architectures and data sources.
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Chapter 9

Metric Suite for Event-Driven Software

Systems

9.1 Introduction

Contemporary software systems, including those in the realm of Web 2.0, are designed on

the event-driven programming (EDP) paradigm. Event-driven software systems represent

a programming paradigm where the flow of the program is driven by events, which are

typically user actions, messages, or sensor inputs [241]. In this paradigm, the software

architecture revolves around event handling, with event-driven programming (EDP) serving

as the underlying approach for designing and implementing such systems. A pictorial

representation of an EDP is shown in Figure 9.1. Events act as triggers that initiate

the execution of specific event handlers or callbacks associated with them [242]. Event-

driven software systems exhibit several key features that distinguish them from other
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programming paradigms [243]. Understanding these features is crucial to comprehending

their nature and advantages.

• Asynchronous Processing: Event-driven systems are designed to handle events

asynchronously, allowing multiple events to be processed concurrently without

blocking the execution flow [244]. This enables high responsiveness and scalability,

as the system can quickly react to various inputs and events.

• Event Handlers: Event handlers are the core building blocks of event-driven systems.

They encapsulate the logic to be executed in response to specific events [242]. Event

handlers are registered with events and are triggered when the associated events

occur, leading to the execution of the predefined code logic. A sample javascript

code snippet of Event and Event Handler is presented in Figure 9.2.

• Non-blocking I/O (Input/Output): Event-driven programming, with its non-blocking

I/O model, enables a program to initiate I/O operations and then continue executing

other tasks or handling events without waiting for the I/O operations to finish [245].

Instead, the program registers callbacks or event handlers that are triggered when

the I/O operations are completed or when data becomes available. This approach

allows the program to remain responsive and efficient, as it can service multiple I/O

requests and events concurrently without being blocked.

• Event Composition and Orchestration: Event-driven systems facilitate event com-

position and orchestration, enabling complex workflows and architectures [246].

Events can be composed and combined to create higher-level events or event se-

quences, providing a means to express intricate system behavior.

290



Introduction

• Loose Coupling and Modularity: Event-driven systems promote loose coupling

between components, where components are decoupled from each other and commu-

nicate through events. This loose coupling enhances the reusability, maintainability,

and extensibility of the system [247].

• Event-driven Architecture: Event-driven systems often employ an event-driven

architecture, where events flow through the system and trigger corresponding event

handlers. This architecture supports the seamless integration of various components

and allows the system to handle diverse event sources.

Figure 9.1: Representation of an Even Driven Paradigm

Event-driven programming differs from structured programming and object-oriented

programming in several ways:

• Control Flow: In structured programming, control flow follows a sequential and

linear path, progressing from one statement to another. In contrast, event-driven

programming lacks a predefined flow, and control is driven by events. The execution
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Figure 9.2: A Sample Code Snippet of Event and Event Handler

of code is event-triggered, allowing for non-blocking and concurrent operations

[248].

• Focus on Events: In object-oriented programming, the focus is on objects, their state,

and their interactions. In event-driven programming, the emphasis is on events and

their associated event handlers, with components reacting to events rather than being

driven by direct object interactions.

• Event-Driven Interaction: Event-driven programming emphasizes event-driven in-

teraction patterns, where components communicate through events asynchronously.

This differs from traditional object-oriented interactions, which typically involve

method invocations or direct object references.

Several systems and technologies have embraced event-driven programming to facil-

itate the development of efficient and responsive applications. Notable among them is
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Node.js, a widely adopted runtime environment built on Chrome’s V8 JavaScript engine.

Node.js leverages event-driven programming, enabling developers to build scalable and

high-performance applications by efficiently handling numerous concurrent connections

and I/O operations [249].

Metrics play a vital role in evaluating the characteristics, quality, and effectiveness of

software systems. While existing software metrics, such as those proposed by Chidamber

and Kemerer (C& K) for object-oriented systems as in [21] and [250], the unique charac-

teristics and dynamics of event-driven systems necessitate metrics specifically tailored to

capture their essence [241]. These metrics are vital to quantitatively evaluate and compare

the performance, scalability, maintainability, and overall quality of event-driven software

systems. They provide objective insights that aid developers, architects, and stakeholders in

making informed decisions during system design, optimization, and evaluation processes.

The purpose of this research paper is to propose a comprehensive set of metrics tailored

specifically for event-driven software systems. The proposed metrics aim to provide

a standardized and objective approach to measure and assess various aspects of event-

driven systems, including their structure, dependencies, performance, and complexity.

By defining and utilizing these metrics, this research contributes to the advancement of

software engineering practices in the event-driven programming paradigm.

9.2 Need of Study

Existing software metrics proposed by various researchers, such as Chidamber and Ke-

merer (CK) metric suite [21][250], Henderson-Sellers [251], McCabe [252], Bansiy and

Davis [29], Tang et al. [30] and Li and Henry [22], and have been widely utilized in the
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evaluation of software systems developed using structured programming or object-oriented

programming paradigms. These metrics have played a crucial role in assessing software

quality and providing insights into various aspects of software engineering, such as com-

plexity, coupling, and maintainability [253]. However, the direct applicability of these

traditional metrics to event-driven programming is limited. Event-driven software systems

possess unique characteristics and dynamics that distinguish them from other program-

ming paradigms. In event-driven programming, the flow of the program is determined by

asynchronous events, leading to different control flow patterns and dependency structures

compared to traditional linear or hierarchical control flow [254]. One of the primary

challenges in applying traditional metrics to event-driven programming lies in their focus

on static structural analysis, which may not adequately capture the dynamic and runtime

nature of event-driven systems. Metrics like CK’s Weighted Methods per Class (WMC),

Depth of Inheritance Tree (DIT), and Response for a Class (RFC) heavily rely on class

hierarchies and method invocations, which are not the primary concerns in event-driven

programming. Similarly, McCabe’s Cyclomatic Complexity metric, designed for sequen-

tial control flow, may not effectively capture the complexity arising from event-driven

interactions and event composition [255][256]. Moreover, the traditional metrics often lack

explicit support for measuring the essential aspects specific to event-driven programming,

such as event interactions, asynchronous processing, loose coupling, and event-driven

dependencies. These metrics do not adequately address the challenges posed by concur-

rency, event-driven composition, and the dynamic nature of event flows in event-driven

systems [257]. Therefore, there is a pressing need to develop new metrics specifically

tailored to event-driven programming. The motivation for new metrics for event-driven

programming stems from the desire to obtain accurate and meaningful measurements
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of the structure, dependencies, performance, and complexity of event-driven software

systems. These metrics would allow for a more comprehensive evaluation and comparison

of event-driven systems, leading to improved design decisions, performance optimization,

and maintainability enhancements. Developing metrics that align with the unique charac-

teristics of event-driven programming facilitates a deeper understanding of the challenges

and opportunities presented by this paradigm, promoting advancements in event-driven

software engineering practices. The proposed new metrics for event-driven programming

aim to fill the gaps left by traditional metrics and provide a standardized and objective

approach to measure and assess event-driven systems. These metrics will consider the

event interactions, event composition, event handler dependencies, event throughput, event

latency, and other crucial aspects specific to event-driven programming. By capturing the

essence of event-driven systems, the proposed metrics will enable developers, architects,

and stakeholders to gain deeper insights into system behavior, improve system quality,

scalability, and maintainability, and make informed decisions during system development

and evolution.

9.3 Proposed Metric Suite for Event-Driven Program-

ming

This section presents a comprehensive set of metrics specifically designed for evaluating

event-driven software systems. The proposed metrics aim to capture the unique char-

acteristics and dynamics of event-driven programming, enabling a more accurate and

comprehensive assessment of the structure, dependencies, performance, and complexity of
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such systems. The proposed metric suite draws inspiration from the existing metrics for

object-oriented methodology and is tailored to capture the characteristics of event-driven

programming. Table I presents the proposed metrics that are categorized into six main

groups based on their focus areas: Event Structure Metrics, Event Dependency Metrics,

Event Performance Metrics, Event Complexity Metrics, Event Synchronization Metrics,

and Event Reliability Metrics.

Table 9.1: Proposed Metric Suite of Event-Driven Programming

Category Metric

Weighted Methods per Event (WMPE)

Depth of Inheritance Tree for a Event (DITE)

Number of Event Handlers (NEH)
Structure

Response for a Event (RFE)

Coupling Between Event Handlers (CBEH)

Event Handler Fan-In (EHFI)Dependency

Event Handler Fan-Out (EHFO)

Event Cyclomatic Complexity (ECC)
Complexity

Event Payload Size (EPS)

Event Interactions (EI)
Synchronization

Event Synchronization (ES)

Event Throughput (ET)

Event Latency (EL)Performance

Event Handler Execution Time (EHET)

Event Loss Rate (ELR)
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Table 9.1 continued from previous page

Category Metric
Reliability

Event Failure Rate (EFR)

9.3.1 Event Structure Metrics

Event Structure Metrics focus on the organization and complexity of events within a

system. These metrics provide insights into the composition and inheritance relationships

among events, helping to understand the structure of event-driven software systems. The

metrics in this category include:

1) Weighted Methods per Event (WMPE): This metric measures the complexity of an

event by counting the number of methods associated with it. It indicates the level of

functionality encapsulated within an event.

2) Depth of Inheritance Tree for an Event (DITE): This metric measures the length

of the inheritance hierarchy within event classes. It helps assess the level of class

hierarchy and inheritance in event-driven systems.

3) Number of Event Handlers (NEH): This metric measures the number of event

handlers in the system.

4) Response for an Event (RFE): This metric measures the number of different methods

that can be called as a response to an event.
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9.3.2 Event Dependency Metrics

Event Dependency Metrics examine the relationships and dependencies between event

handlers within the system. These metrics capture the coupling and interactions among

event handlers, providing insights into the interdependencies and communication patterns.

The metrics in this category include:

1) Coupling Between Event Handlers (CBEH): This metric measures the number of

event handlers that are coupled to a particular event handler. It helps evaluate the

coupling and dependencies among event handlers.

2) Event Handler Fan-In (EHFI): This metric measures the number of event handlers

that directly invoke a particular event handler. It indicates the degree of interaction

and usage of a specific event handler by other handlers.

3) Event Handler Fan-Out (EHFO): This metric measures the number of event handlers

that are directly invoked by a particular event handler. It highlights the extent to

which an event handler triggers other handlers.

9.3.3 Event Complexity Metrics

Event Complexity Metrics focus on the complexity and intricacies of event-driven systems.

These metrics capture the complexity of event flows, event composition, and the size or

complexity of data passed between events. The metrics in this category include:

1) Event Cyclomatic Complexity (ECC): This metric measures the complexity of the

event flow within the system. It adapts the concept of cyclomatic complexity to

capture the intricacies of event-driven interactions.
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2) Event Payload Size (EPS): This metric measures the size or complexity of the data

passed as payloads between events. It helps evaluate the amount and nature of data

exchange in event-driven systems.

9.3.4 Event Synchronization Metrics

Event Synchronization Metrics focus on measuring the interactions and coordination

among events in the system. These metrics provide insights into the synchronization and

communication patterns between events. The metrics in this category include:

1) Event Interactions (EI): This metric measures the number of interactions or commu-

nications between events. It counts the number of times events exchange information,

triggering actions or responses in other events.

2) Event Synchronization (ES): This metric measures the degree of synchronization or

coordination between events. It examines whether events tend to occur concurrently

or in specific sequences. A high ES value implies a tightly synchronized system

where events are highly dependent on each other’s timing, potentially indicating a

need for careful management of event ordering. Conversely, a low ES value suggests

a system with more independent events that do not rely heavily on synchronization,

allowing for greater flexibility in execution order and concurrency control.

9.3.5 Event Performance Metrics

Event Performance Metrics focus on the runtime performance and efficiency of event-

driven systems. These metrics capture aspects such as event processing throughput, latency,

and the execution time of event handlers. The metrics in this category include:
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1) Event Throughput (ET): This metric measures the number of events processed per

unit of time. It provides insights into the system’s capacity to handle a high volume

of events.

2) Event Latency (EL): This metric measures the time taken for an event to be processed

from the moment it is generated. It helps assess the responsiveness and timeliness of

event processing.

3) Event Handler Execution Time (EHET): This metric measures the time taken to

execute an event handler. It indicates the efficiency and performance of individual

event handlers.

9.3.6 Event Reliability Metrics

Event Reliability Metrics focus on measuring the reliability and error handling capabilities

of event-driven systems. These metrics provide insights into the event loss rate and the

failure rate of events during processing. The metrics in this category include:

1) Event Loss Rate (ELR): This metric measures the percentage of events that are lost

or dropped during processing. It is calculated by dividing the number of events that

were lost or not successfully processed by the total number of events generated,

multiplied by 100 to express the result as a percentage.

2) Event Failure Rate (EFR): This metric measures the rate at which events encounter

errors or failures during processing. It assesses the frequency with which events do

not result in successful processing outcomes.
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9.4 Discussion

The chapter has proposed a comprehensive set of metrics specifically designed for eval-

uating event-driven software systems. These metrics address the unique characteristics

and dynamics of event-driven programming, enabling a more accurate and comprehensive

assessment of the structure, dependencies, performance, and complexity of such systems.

The proposed metrics offer a standardized and objective approach to assess the various

aspects of event-driven software systems. They capture essential features such as event

structure, dependencies, performance, complexity, synchronization, and reliability, en-

abling developers, architects, and stakeholders to gain deeper insights into system behavior

and make informed decisions during system design, optimization, and evaluation processes.

However, it is important to recognize that the proposed metrics have certain limitations.

Construct ambiguity, context-specific variations, and measurement inconsistencies are

potential challenges that should be considered when applying the metrics. Future research

and refinement efforts should focus on enhancing the construct validity, generalizability,

and reliability of the metrics, as well as addressing ethical considerations in their applica-

tion. Moving forward, several future guidelines can be considered to extend and enhance

the proposed metrics:

• Further Validation: Empirical studies and case studies can be conducted to validate

the metrics on a wider range of event-driven systems. This can involve different

programming languages, frameworks, and application domains to ensure the metrics’

effectiveness and applicability.

• Industry Adoption: Collaborations with industry partners can facilitate the adoption
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and practical application of the proposed metrics. Real-world use cases and feedback

from practitioners can provide valuable insights and drive further refinement of the

metrics.

• Tooling and Automation: Development of tools and software frameworks that inte-

grate the proposed metrics can streamline their application and analysis. Automated

data collection and calculation methods can reduce manual effort and improve the

scalability of metric evaluation.

• Benchmarking and Standards: Establishing benchmark values and industry standards

for the proposed metrics can provide reference points for evaluating event-driven

systems. This can aid in the comparison and benchmarking of different systems and

facilitate best practices in event-driven software engineering.

• Continuous Improvement: Ongoing research and collaboration within the research

community can drive the continuous improvement of the proposed metrics. Feedback

from researchers, practitioners, and users should be actively sought to refine and

evolve the metrics based on emerging challenges and advancements in event-driven

programming.

By following these future guidelines, the proposed metrics can be refined and

enhanced, leading to a deeper understanding of event-driven software systems and

promoting effective system design, optimization, and evaluation practices.

In conclusion, the proposed metrics represent a significant contribution to the field

of event-driven software engineering. They offer a standardized and objective approach

to evaluate the structure, dependencies, performance, and complexity of event-driven
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systems. By leveraging these metrics, researchers and practitioners can gain valuable

insights and make informed decisions, ultimately advancing the development and quality

of event-driven software systems.
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Chapter 10

Conclusion

10.1 Summary of the Work

Software quality prediction models play a crucial role in software engineering by aiding in

the early detection of defects, which can significantly reduce development costs, improve

product reliability, and enhance overall software quality. However, despite their impor-

tance, existing models face several limitations that hinder their effectiveness in real-world

applications. The main objectives of the research included improving the performance of

software quality prediction models through the resolution of issues such as imbalanced

data, outliers, overfitting and underfitting, multi-collinearity, parameter tuning, and feature

selection. By tackling these challenges, the research sought to provide more precise and

applicable models for identifying defect-prone and change-prone components in software

systems.

One of the primary problems encountered is the presence of imbalanced datasets,
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where the number of defect-prone modules is significantly lower than non-defect-prone

ones. This imbalance leads to skewed model performance, with many models focusing

more on the majority class (non-defect-prone modules) at the expense of the minority class

(defect-prone modules).

Another issue addressed in this research was multi-collinearity among software metrics,

which can distort the true relationship between the metrics and the target variable (software

defects). Additionally, overfitting and underfitting are common problems in machine

learning models used for defect prediction, where models either capture too much noise

from the data (overfitting) or fail to capture the underlying trends (underfitting). This often

results in poor model generalization and reduced performance when applied to new or

unseen data.

The research began with an extensive literature review, focusing on machine learn-

ing and software defect prediction. This phase involved a systematic review following

Kitchenhamâs guidelines, which helped identify the current state of the art in software

defect prediction models, techniques, and challenges. The review revealed critical gaps in

the application of machine learning techniques for software quality prediction, particularly

in handling issues such as imbalanced datasets, hyperparameter tuning, multi-collinearity,

and effective feature selection.

The findings of this review informed the research direction by highlighting areas where

improvements could be made. For example, the review showed that while numerous

machine learning algorithms, such as Random Forest, Support Vector Machines (SVM),

and Naı̈ve Bayes, had been applied to software quality prediction, there was limited

research on how to address imbalanced datasets effectively in these models. Furthermore,

while deep learning models such as Convolutional Neural Networks (CNNs) were gaining
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popularity, their application in software defect prediction remained under-explored.

To address these challenges, this PhD research focused on both algorithmic improve-

ments and methodological advancements. The study was structured into several key phases,

each contributing to the overall objective of enhancing software quality prediction.

With the gaps identified, the research moved into the second phase, which focused on

developing new classifiers for software defect categorization. The research proposed four

distinct approaches:

Multinomial Naı̈ve Bayes (NBM) for Defect Categorization: In this approach, Multino-

mial Naı̈ve Bayes was applied to categorize software defects based on maintenance effort

and change impact. The classifier’s performance was evaluated on various datasets, and

it was found that NBM performed well in handling categorical data and could efficiently

classify software defects into multiple categories. The simplicity and interpretability of

Naı̈ve Bayes made it an attractive option for practitioners looking for a straightforward

approach to defect classification.

Ensemble Methods for Improved Accuracy: The next step was to apply ensemble learn-

ing techniques, such as Random Forest and Gradient Boosting, to combine the strengths of

multiple base learners. Ensemble methods were particularly useful in improving model

accuracy by reducing variance and bias, addressing overfitting and underfitting problems.

These models were tested on imbalanced datasets, and techniques such as oversampling,

undersampling, and synthetic minority oversampling technique (SMOTE) were employed

to mitigate the effects of imbalanced data.

Convolutional Neural Networks (CNNs) for Defect Categorization: CNNs, a type

of deep learning model, were applied to software defect prediction for the first time in

this research. The use of CNNs was motivated by their ability to automatically extract
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relevant features from input data, eliminating the need for manual feature engineering.

The empirical validation of CNNs demonstrated their effectiveness in handling large and

complex datasets, where traditional machine learning models struggled. CNNs were found

to be particularly effective in identifying patterns and relationships in software metrics,

leading to improved prediction accuracy.

One of the central challenges in software defect prediction is dealing with imbalanced

datasets, where the majority of modules are non-defect-prone. This phase of the research

focused on applying various techniques to handle data imbalance, ensuring that the models

were not biased toward the majority class. Techniques such as SMOTE, Adaptive Syn-

thetic Sampling (ADASYN), and class-weighted loss functions were explored in neural

networks. These methods were empirically validated across multiple datasets to determine

their effectiveness in improving prediction accuracy for the minority class (defect-prone

modules).

Effective parameter tuning and hyperparameter optimization are essential for improving

the performance of machine learning models. In this phase, the research explored various

hyperparameter tuning techniques, such as grid search, random search, and Bayesian

optimization, to fine-tune the models developed in the previous phases. Hyperparameter

tuning was particularly important for deep learning models, where the selection of appro-

priate parameters (e.g., learning rate, batch size, number of layers) significantly impacted

model performance. The research proposed an automated framework for hyperparameter

tuning that allowed for the systematic exploration of a wide range of hyperparameters.

This framework was integrated with the deep learning models, allowing for the efficient

optimization of model parameters and improving the overall accuracy of the software

quality prediction models.
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The research presented an in-depth exploration of the application of Swarm Intelligence

Techniques, specifically Ant Colony Optimization (ACO), Cuckoo Search (CS), and

Crow Search Algorithm (CSA), for feature selection in software defect prediction. By

comparing these swarm intelligence techniques with traditional filter-based methods like

chi-square and information gain, the study demonstrated the potential of these algorithms

to enhance feature selection processes. The experiments, conducted across multiple

datasets from the AEEEM, JIRA, and PROMISE repositories, highlighted the predictive

capabilities of the swarm-based techniques in optimizing classification models such as

Logistic Regression, Support Vector Machine, NaÃ¯ve Bayes, and Random Forest. The

results showed that swarm intelligence methods not only improve model accuracy but also

reduce the dimensionality of data, making them a promising approach for software defect

prediction. The findings support the efficacy of swarm intelligence in addressing complex

software quality prediction challenges, paving the way for future advancements in feature

selection methodologies.

Another critical issue addressed in this phase was multi-collinearity, where high corre-

lations between independent variables (software metrics) can lead to inaccurate predictions.

To mitigate this, feature selection techniques, such as Principal Component Analysis

(PCA), Recursive Feature Elimination (RFE), and swarm intelligence-based feature selec-

tion, were employed. These techniques were successful in reducing the dimensionality of

the data, eliminating redundant features, and improving model performance.

Lastly, the research provided a comprehensive evaluation of the unique characteristics

and challenges associated with event-driven architectures (EDAs). It introduced a special-

ized set of software metrics tailored to assess the quality and performance of Event-Driven

Software Systems systems, addressing aspects such as responsiveness, scalability, and
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fault tolerance. By focusing on the intricacies of asynchronous communication and event

handling, the proposed metric suite enabled a more accurate assessment of system perfor-

mance and maintainability in comparison to traditional metrics. This work contributes to

the growing need for specialized quality metrics in modern software paradigms, ensuring

that event-driven systems can be effectively analyzed and optimized for high performance

and reliability.

Key Contributions

The key contributions of this research can be summarized as follows:

• Improved Predictive Models: This research developed new machine learning

and deep learning models for software quality prediction, focusing on improving

accuracy and reliability. The use of advanced techniques, such as CNNs and swarm

intelligence-based feature selection, resulted in models that outperformed traditional

approaches.

• Handling Imbalanced Data: The research proposed and validated various tech-

niques for handling imbalanced data, a common issue in software quality prediction.

The use of class-weighted loss functions in neural networks and oversampling tech-

niques, such as SMOTE, significantly improved the prediction accuracy for the

minority class (defect-prone modules).

• Feature Selection and Dimensionality Reduction: The research explored several

feature selection techniques to address the issue of multi-collinearity in software

metrics. These techniques successfully reduced the dimensionality of the data while
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retaining the most important features, leading to more efficient and accurate models.

• Hyperparameter Tuning: An automated framework for hyperparameter tuning was

developed and integrated with deep learning models. This framework allowed for the

systematic exploration of hyperparameters, leading to improved model performance.

• Empirical Validation Across Multiple Datasets: The models were empirically

validated using datasets from multiple software projects, providing a comprehensive

evaluation of their performance. This validation demonstrated the robustness and

applicability of the models in real-world software development environments.

10.2 Application of the Work

The findings and contributions of this research have a wide range of applications in both

industry and academia. The methodologies and techniques developed as part of this thesis

can be directly applied to real-world software development processes, leading to improved

software quality and reduced maintenance costs. Below are some specific applications:

10.2.1 Industry Applications

Software Maintenance and Defect Management: The predictive models developed in

this research can help software development teams identify defect- and change-prone

components early in the development cycle. This enables teams to allocate resources more

effectively and prioritize testing and maintenance activities for the most critical areas of

the software.
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• Improving Software Testing Efficiency: By predicting defects with higher accu-

racy, the proposed models allow for more focused and efficient testing efforts. The

classification models, particularly those developed using deep learning and ensemble

methods, can help in prioritizing test cases for high-risk modules, reducing the time

and effort spent on testing low-risk components.

• Reducing Software Development Costs: Early identification of defect-prone mod-

ules can significantly reduce the overall cost of software development and main-

tenance. The predictive models can be integrated into continuous integration and

continuous deployment (CI/CD) pipelines to automate the detection of defect-prone

areas in real-time, thus minimizing the need for costly post-release fixes.

• Risk Management in Software Projects: The ability to predict the likelihood of de-

fects or changes in software components enables project managers to make informed

decisions about resource allocation, timelines, and risk mitigation strategies. By

using the techniques proposed in this thesis, software project managers can improve

the overall quality and reliability of their software products, leading to increased

customer satisfaction.

10.2.2 Academic and Research Applications

• Benchmarking and Validation of Machine Learning Models: The frameworks

and models developed in this research can serve as benchmarks for future studies in

the area of software quality prediction. Researchers can build upon the methodolo-

gies proposed in this thesis to further refine and optimize prediction models, making

them even more robust and reliable.
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• Advancing Research on Imbalanced Learning: One of the key contributions

of this research is the development of techniques to handle imbalanced data in

software quality prediction models. Future researchers can leverage these techniques

to address similar challenges in other domains where imbalanced data is prevalent,

such as medical diagnosis, fraud detection, and anomaly detection.

• Empirical Validation of Advanced Machine Learning Techniques: This thesis

contributes to the growing body of empirical research on the application of advanced

machine learning techniques, such as deep learning and swarm intelligence, in the

field of software quality prediction. The empirical results obtained in this research

can be used as a foundation for further exploration of these techniques in related

areas, such as software reliability prediction and maintainability prediction.

• Cross-Project Validation Techniques: The research conducted on cross-project val-

idation techniques is particularly useful for the academic community. By validating

models across multiple projects, researchers can ensure that their models generalize

well to new datasets, making them more applicable in real-world scenarios.

• Improved Understanding of Software Metrics: The exploration of key software

metrics, such as code complexity, change history, and developer experience, provides

valuable insights for the academic community. Researchers can use these metrics to

better understand the factors that contribute to software defects and changes, leading

to the development of more targeted and effective predictive models.
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10.3 Future Work

While this research has made significant contributions to the field of software quality

prediction, there are several avenues for future work that can further enhance the predictive

capabilities of the models developed in this thesis.

• Enhancing Model Interpretability: One of the limitations of deep learning models,

particularly Convolutional Neural Networks (CNNs), is their lack of interpretability.

While these models achieve high accuracy in predicting software defects, under-

standing how they make predictions can be challenging. Future research could focus

on developing techniques to improve the interpretability of these models, such as

using SHapley Additive exPlanations (SHAP) values or Local Interpretable Model-

agnostic Explanations (LIME) to explain the contributions of different features to

the predictions.

• Expanding the Range of Software Metrics: Although this research has explored

a wide range of software metrics, there is still room for expanding the scope of

metrics used in software quality prediction. For example, future studies could

investigate the impact of socio-technical metrics, such as communication patterns

among developers or the organizational structure of development teams, on software

quality. Additionally, metrics related to the software architecture, such as coupling

between modules or the degree of modularity, could be integrated into the predictive

models to improve their accuracy.

• Exploring New Machine Learning Techniques: As machine learning technology

continues to evolve, there are new techniques that could be applied to software
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quality prediction models. For instance, graph-based neural networks (GNNs) and

transformers have shown promising results in other domains and could be explored

for predicting software defects. These models could be particularly useful for

capturing the relationships between different software components and their impact

on overall software quality.

• Investigating Transfer Learning in Cross-Project Validation: One of the chal-

lenges identified in this research is the need for better cross-project validation

techniques. Transfer learning, a technique that involves transferring knowledge

learned from one domain to another, could be investigated as a way to improve the

generalizability of predictive models across different software projects. Future re-

search could focus on developing transfer learning-based models that can effectively

predict defects in new projects with minimal training data.

• Real-Time Defect Prediction and Automated Decision-Making: Future work

could explore the integration of real-time defect prediction models into software

development environments. By providing real-time feedback on the likelihood of

defects in newly written code, developers could take immediate corrective actions,

improving the overall quality of the software. Additionally, automated decision-

making systems could be developed to prioritize defect-prone modules for further

testing or refactoring.

• Addressing the Scalability of Predictive Models: As software systems continue

to grow in complexity, the scalability of predictive models becomes an important

consideration. Future research could focus on developing models that can handle

large-scale software systems with millions of lines of code and thousands of com-
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ponents. Techniques such as distributed machine learning and parallel processing

could be explored to improve the scalability of these models.

• Incorporating More Real-World Datasets: While this research has validated the

proposed models using several datasets, future work could focus on collecting and

utilizing more real-world datasets to ensure the robustness of the models. Collabora-

tions with industry partners could provide access to proprietary datasets, enabling

researchers to test their models in more diverse and realistic environments.

• Enhancing Feature Selection and Dimensionality Reduction Techniques: Feature

selection and dimensionality reduction are critical steps in the development of

predictive models. Future research could investigate the use of more advanced

techniques, such as unsupervised learning or reinforcement learning, to improve the

feature selection process. These techniques could help reduce the dimensionality of

the data while retaining the most important information, leading to more efficient

and accurate models.

• Long-Term Maintenance of Predictive Models: Software systems are constantly

evolving, and the factors that contribute to software defects may change over time.

Future research could focus on the long-term maintenance of predictive models,

ensuring that they remain accurate and relevant as software systems evolve. Tech-

niques such as model retraining, adaptive learning, and concept drift detection could

be explored to ensure the continued effectiveness of the models over time.

This PhD research has made significant contributions to the field of software quality

prediction by addressing key challenges such as imbalanced data, multi-collinearity, and

316



Future Work

overfitting. The development of new machine learning techniques, combined with the

exploration of advanced methodologies such as deep learning and swarm intelligence, has

resulted in more accurate and reliable predictive models. These models have the potential

to improve software quality, reduce maintenance costs, and enhance the efficiency of

software development processes. While there are still several avenues for future work, the

findings of this research provide a strong foundation for further exploration in this field.
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Descriptive Statistics of Datasets

The descriptive statistics of datasets used in this thesis as given below.

Table A1: Descriptive Statistics - Equinox (EQ) dataset of AEEEM Repository

Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPrivateMethods 2.0833 5.8486 0 49
LDHH lcom 0.0012 0.0031 0 0.0246
LDHH fanIn 0.0016 0.0035 0 0.0234

numberOfNonTrivialBugsFoundUntil: 4.2994 7.9066 0 71
WCHU numberOfPublicAttributes 0.2616 0.9492 0 7.74

WCHU numberOfAttributes 0.9004 2.0179 0 16.25
CvsWEntropy 0.1543 0.3104 0 2.6708

LDHH numberOfPublicMethods 0.0006 0.0016 0 0.0152
WCHU fanIn 0.8878 1.8128 0 11.14

LDHH numberOfPrivateAttributes 0.0009 0.0024 0 0.0196
CvsEntropy 5.4748 6.5463 0 38.2812

LDHH numberOfPublicAttributes 0.0003 0.0016 0 0.0167
WCHU numberOfPrivateMethods 0.5533 1.7659 0 16.3

WCHU numberOfMethods 1.076 2.3461 0 16.32
ck oo numberOfPublicAttributes 1.4074 9.4986 0 137

ck oo noc 0.179 0.7247 0 6
numberOfCriticalBugsFoundUntil: 0.2191 0.6182 0 4

ck oo wmc 32.642 60.6795 0 534
LDHH numberOfPrivateMethods 0.0006 0.0022 0 0.0247

WCHU numberOfPrivateAttributes 0.6359 1.4816 0 11.3
CvsLogEntropy 0.1494 0.1801 0 1.1282

WCHU noc 0.05 0.2717 0 2.06
LDHH numberOfAttributesInherited 0.0004 0.0017 0 0.0141

WCHU wmc 2.2434 4.7909 0 37.23
ck oo fanOut 7.1481 9.6269 0 67

ck oo numberOfLinesOfCode 122.0185 228.9282 0 1805
ck oo numberOfAttributesInherited 1.4506 6.5681 0 74

ck oo numberOfMethods 9.8704 12.7044 0 75
ck oo dit 1.2315 0.4903 1 3

ck oo fanIn 2.9537 4.7613 0 32
LDHH noc 0 0.0005 0 0.0058
WCHU dit 0.0531 0.2259 0 1.02
ck oo lcom 124.2284 355.9648 0 2775

WCHU numberOfAttributesInherited 0.2324 0.7783 0 5.1
ck oo rfc 58.3364 114.8791 0 1009

LDHH wmc 0.0031 0.0069 0 0.0474
LDHH numberOfAttributes 0.0011 0.0031 0 0.0189

LDHH numberOfLinesOfCode 0.0039 0.0083 0 0.0616
WCHU fanOut 1.5568 2.8063 0 22.43
WCHU lcom 1.6615 4.4146 0 32.49

ck oo cbo 9.6728 11.1615 0 77
WCHU rfc 2.5196 5.4469 0 43.4
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Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfAttributes 6.7037 13.895 0 138
numberOfHighPriorityBugsFoundUntil: 0.0432 0.2912 0 4

ck oo numberOfPrivateAttributes 3.4969 6.8903 0 82
numberOfMajorBugsFoundUntil: 0.4815 1.2869 0 11
WCHU numberOfPublicMethods 0.5939 1.2502 0 9.19

LDHH dit 0 0.0001 0 0.0006
WCHU cbo 2.0825 3.2408 0 22.41

CvsLinEntropy 0.0163 0.0214 0 0.149
WCHU numberOfMethodsInherited 1.2094 1.8928 0 13.4

numberOfBugsFoundUntil: 4.5864 8.4529 0 78
LDHH fanOut 0.0026 0.0051 0 0.0373

LDHH numberOfMethodsInherited 0.0015 0.0024 0 0.0197
LDHH rfc 0.0036 0.0078 0 0.0603

ck oo numberOfMethodsInherited 14.7222 14.1429 0 111
ck oo numberOfPublicMethods 5.7438 7.187 0 54

LDHH cbo 0.0037 0.006 0 0.0396
WCHU numberOfLinesOfCode 2.9297 6.2688 0 48.68

CvsExpEntropy 0.0342 0.0533 0 0.3287
LDHH numberOfMethods 0.0014 0.0034 0 0.0278

bug 0.3981 0.4903 0 1

Table A2: Descriptive Statistics - Eclipse JDT Core (JDT) dataset of AEEEM Reposi-
tory

Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPrivateMethods 1.2979 5.2603 0 111
LDHH lcom 0.0018 0.0044 0 0.0458
LDHH fanIn 0.0028 0.0073 0 0.0802

numberOfNonTrivialBugsFoundUntil: 10.1494 19.4007 0 200
WCHU numberOfPublicAttributes 0.3964 1.3209 0 15.2

WCHU numberOfAttributes 0.7748 2.3172 0 32.47
CvsWEntropy 0.0533 0.1591 0 2.2853

LDHH numberOfPublicMethods 0.0014 0.0039 0 0.0435
WCHU fanIn 1.1258 2.8804 0 35.57

LDHH numberOfPrivateAttributes 0.0006 0.0025 0 0.0379
CvsEntropy 10.6824 9.0234 0 49.9143

LDHH numberOfPublicAttributes 0.0007 0.0025 0 0.0259
WCHU numberOfPrivateMethods 0.3397 1.3624 0 27.64

WCHU numberOfMethods 1.1983 2.6448 0 33.63
ck oo numberOfPublicAttributes 2.7452 13.676 0 312

ck oo noc 0.7121 2.1548 0 26
numberOfCriticalBugsFoundUntil: 0.4333 1.2185 0 15

ck oo wmc 58.3842 135.7227 0 1680
LDHH numberOfPrivateMethods 0.0006 0.003 0 0.051

WCHU numberOfPrivateAttributes 0.2847 0.8665 0 12.15
CvsLogEntropy 3.6678 4.0346 0 9.3076

WCHU noc 0.0934 0.387 0 5.07
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Metric Mean Standard
Deviation Minimum Maximum

LDHH numberOfAttributesInherited 0.0125 0.0176 0 0.0624
WCHU wmc 3.158 6.1151 0 58.84
ck oo fanOut 7.3952 9.6769 0 93

ck oo numberOfLinesOfCode 224.7292 555.7005 0 7341
ck oo numberOfAttributesInherited 102.2197 148.6499 0 563

ck oo numberOfMethods 13.5998 23.636 0 403
ck oo dit 2.7272 1.7215 1 8

ck oo fanIn 5.3681 13.7216 0 137
LDHH noc 0.0002 0.0014 0 0.0118
WCHU dit 0.2514 0.4419 0 2.03
ck oo lcom 364.7272 3230.074 0 81003

WCHU numberOfAttributesInherited 5.8824 8.8877 0 29.73
ck oo rfc 76.8746 180.9786 0 2603

LDHH wmc 0.0066 0.014 0 0.1298
LDHH numberOfAttributes 0.0016 0.0054 0 0.0678

LDHH numberOfLinesOfCode 0.0073 0.0149 0 0.1284
WCHU fanOut 1.2079 2.0565 0 15.32

WCHU lcom 2.6139 15.9445 0 359.48
ck oo cbo 12.2166 17.8159 0 156

WCHU rfc 3.3708 6.2749 0 56.95
ck oo numberOfAttributes 7.3862 21.9605 0 313

numberOfHighPriorityBugsFoundUntil: 0.4604 1.0716 0 10
ck oo numberOfPrivateAttributes 1.674 3.6271 0 40
numberOfMajorBugsFoundUntil: 1.1384 2.8642 0 38
WCHU numberOfPublicMethods 0.7857 1.9944 0 30.53

LDHH dit 0.0004 0.0009 0 0.0097
WCHU cbo 2.0713 3.4922 0 35.59

CvsLinEntropy 0.0797 0.0781 0 0.2977
WCHU numberOfMethodsInherited 3.1467 3.6572 0 25.5

numberOfBugsFoundUntil: 11.6399 22.1266 0 214
LDHH fanOut 0.0026 0.0056 0 0.0492

LDHH numberOfMethodsInherited 0.007 0.0097 0 0.0601
LDHH rfc 0.0067 0.0135 0 0.1271

ck oo numberOfMethodsInherited 49.2367 50.3677 0 319
ck oo numberOfPublicMethods 8.9529 19.9674 0 387

LDHH cbo 0.0052 0.0098 0 0.0904
WCHU numberOfLinesOfCode 4.3068 8.6063 0 91.44

CvsExpEntropy 0.1206 0.1329 0 0.5802
LDHH numberOfMethods 0.0023 0.0057 0 0.0598

bug 0.2066 0.4051 0 1

Table A3: Descriptive Statistics - Apache Lucene dataset of AEEEM Repository

Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPrivateMethods 1.3271 4.3013 0 47
LDHH lcom 0.0024 0.0068 0 0.0613
LDHH fanIn 0.0076 0.0193 0 0.1536
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Table3 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

numberOfNonTrivialBugsFoundUntil: 2.4805 4.9582 0 81
WCHU numberOfPublicAttributes 0.1301 0.5405 0 7.14

WCHU numberOfAttributes 0.4307 1.2795 0 15.39
CvsWEntropy 0.0768 0.2407 0 4.4902

LDHH numberOfPublicMethods 0.0018 0.006 0 0.0478
WCHU fanIn 1.3607 3.896 0 37.8

LDHH numberOfPrivateAttributes 0.0013 0.0048 0 0.0427
CvsEntropy 4.0192 4.4177 0 39.6054

LDHH numberOfPublicAttributes 0.0003 0.002 0 0.0236
WCHU numberOfPrivateMethods 0.1755 0.9087 0 19.6

WCHU numberOfMethods 0.5939 1.5044 0 22.08
ck oo numberOfPublicAttributes 1.1375 2.8016 0 27

ck oo noc 0.7221 2.9627 0 42
numberOfCriticalBugsFoundUntil: 0 0 0 0

ck oo wmc 23.6831 50.0644 0 484
LDHH numberOfPrivateMethods 0.0005 0.0035 0 0.0561

WCHU numberOfPrivateAttributes 0.3193 1.0414 0 13.4
CvsLogEntropy 0.2363 0.5753 0 4.4516

WCHU noc 0.2229 1.009 0 12.22
LDHH numberOfAttributesInherited 0.0009 0.0039 0 0.0291

WCHU wmc 0.9359 2.2406 0 34.19
ck oo fanOut 4.1606 4.3197 0 28

ck oo numberOfLinesOfCode 105.9103 239.4338 0 2864
ck oo numberOfAttributesInherited 1.5282 5.2839 0 56

ck oo numberOfMethods 7.4153 8.8949 0 126
ck oo dit 1.7699 0.8634 1 5

ck oo fanIn 4.6671 13.6294 0 174
LDHH noc 0.001 0.0057 0 0.0543
WCHU dit 0.0673 0.2579 0 2.02
ck oo lcom 63.288 347.0276 0 7875

WCHU numberOfAttributesInherited 0.1863 0.7414 0 7.09
ck oo rfc 33.3951 55.8531 0 908

LDHH wmc 0.0044 0.0108 0 0.1002
LDHH numberOfAttributes 0.0017 0.006 0 0.0635

LDHH numberOfLinesOfCode 0.0063 0.0123 0 0.1081
WCHU fanOut 0.8251 1.4235 0 13.32

WCHU lcom 0.8755 4.4484 0 102.52
ck oo cbo 8.7352 14.6519 0 179

WCHU rfc 1.1432 2.5501 0 41.16
ck oo numberOfAttributes 4.8538 7.2803 0 64

numberOfHighPriorityBugsFoundUntil: 0 0 0 0
ck oo numberOfPrivateAttributes 2.6194 4.931 0 45
numberOfMajorBugsFoundUntil: 0 0 0 0
WCHU numberOfPublicMethods 0.4351 1.0765 0 13.34

LDHH dit 0.0002 0.0011 0 0.0112
WCHU cbo 2.0248 4.1038 0 37.87

CvsLinEntropy 0.0302 0.0344 0 0.2423
WCHU numberOfMethodsInherited 2.6873 2.0534 0 14.71

numberOfBugsFoundUntil: 2.4805 4.9582 0 81
LDHH fanOut 0.0039 0.0087 0 0.055
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Table3 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

LDHH numberOfMethodsInherited 0.011 0.0105 0 0.0601
LDHH rfc 0.0059 0.012 0 0.1037

ck oo numberOfMethodsInherited 20.4414 14.5201 0 106
ck oo numberOfPublicMethods 4.78 5.3761 0 55

LDHH cbo 0.0106 0.0211 0 0.1574
WCHU numberOfLinesOfCode 1.3521 3.3419 0 60.56

CvsExpEntropy 0.0685 0.0803 0 0.5351
LDHH numberOfMethods 0.0029 0.0083 0 0.0799

bug 0.0926 0.2901 0 1

Table A4: Descriptive Statistics - Mylyn (ML) dataset of AEEEM Repository

Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPrivateMethods 1.0166 2.498 0 24
LDHH lcom 0.0025 0.0085 0 0.0846
LDHH fanIn 0.0072 0.0201 0 0.2397

numberOfNonTrivialBugsFoundUntil: 3.6552 5.9817 0 92
WCHU numberOfPublicAttributes 0.038 0.2756 0 4.28

WCHU numberOfAttributes 0.4697 1.2381 0 18.27
CvsWEntropy 0.0276 0.0981 0 1.9077

LDHH numberOfPublicMethods 0.002 0.0069 0 0.0712
WCHU fanIn 1.0071 2.6076 0 38.27

LDHH numberOfPrivateAttributes 0.0021 0.007 0 0.083
CvsEntropy 5.2229 5.7918 0 38.7367

LDHH numberOfPublicAttributes 0.0003 0.0031 0 0.066
WCHU numberOfPrivateMethods 0.2075 0.7547 0 8.11

WCHU numberOfMethods 0.5354 1.376 0 14.19
ck oo numberOfPublicAttributes 0.9323 6.9425 0 127

ck oo noc 0.4232 2.2089 0 49
numberOfCriticalBugsFoundUntil: 0.1262 0.4527 0 5

ck oo wmc 16.7836 30.4676 0 727
LDHH numberOfPrivateMethods 0.0009 0.0041 0 0.0585

WCHU numberOfPrivateAttributes 0.3852 1.1302 0 18.28
CvsLogEntropy 5.7878 4.4912 0 10.25

WCHU noc 0.1138 0.5579 0 7.17
LDHH numberOfAttributesInherited 0.0004 0.0022 0 0.0308

WCHU wmc 0.9425 2.2086 0 28.26
ck oo fanOut 4.6391 6.2655 0 62

ck oo numberOfLinesOfCode 83.8357 228.2076 0 7509
ck oo numberOfAttributesInherited 0.6992 2.4843 0 25

ck oo numberOfMethods 7.811 9.6028 0 119
ck oo dit 1.457 0.7404 1 5

ck oo fanIn 3.6756 12.7915 0 223
LDHH noc 0.0006 0.0033 0 0.0515
WCHU dit 0.0717 0.3237 0 3.04
ck oo lcom 72.6821 300.1481 0 7021

WCHU numberOfAttributesInherited 0.0971 0.4142 0 4.42
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Table4 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

ck oo rfc 34.8217 67.284 0 1266
LDHH wmc 0.0049 0.0141 0 0.1645

LDHH numberOfAttributes 0.0029 0.0095 0 0.1094
LDHH numberOfLinesOfCode 0.0077 0.0179 0 0.1678

WCHU fanOut 1.301 2.2421 0 20.42
WCHU lcom 0.7588 2.367 0 27.65

ck oo cbo 8.1643 15.2599 0 259
WCHU rfc 1.3253 2.7968 0 32.61

ck oo numberOfAttributes 5.0188 10.1689 0 128
numberOfHighPriorityBugsFoundUntil: 4.2986 6.5444 0 85

ck oo numberOfPrivateAttributes 3.1649 5.9458 0 103
numberOfMajorBugsFoundUntil: 0.3179 0.8567 0 13
WCHU numberOfPublicMethods 0.4073 1.1024 0 10.22

LDHH dit 0.0002 0.0013 0 0.021
WCHU cbo 2.0265 3.2913 0 39.3

CvsLinEntropy 0.1123 0.0837 0 0.3292
WCHU numberOfMethodsInherited 1.2697 1.5263 0 14.21

numberOfBugsFoundUntil: 7.8287 11.5808 0 197
LDHH fanOut 0.0072 0.0142 0 0.1367

LDHH numberOfMethodsInherited 0.0078 0.0104 0 0.0899
LDHH rfc 0.0064 0.0166 0 0.1794

ck oo numberOfMethodsInherited 14.5279 18.1737 0 226
ck oo numberOfPublicMethods 6.0381 7.8337 0 98

LDHH cbo 0.0135 0.0253 0 0.2498
WCHU numberOfLinesOfCode 1.7149 3.3876 0 35.59

CvsExpEntropy 0.1945 0.1569 0 0.7276
LDHH numberOfMethods 0.0027 0.0089 0 0.0866

bug 0.1316 0.3381 0 1

Table A5: Descriptive Statistics - Eclipse PDE UI (PDE) dataset of AEEEM Reposi-
tory

Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPrivateMethods 2.2458 4.6974 0 52
LDHH lcom 0.0016 0.0029 0 0.0231
LDHH fanIn 0.002 0.0058 0 0.0856

numberOfNonTrivialBugsFoundUntil: 2.7996 5.5066 0 143
WCHU numberOfPublicAttributes 0.1178 2.6475 0 94.18

WCHU numberOfAttributes 0.7605 3.0191 0 94.18
CvsWEntropy 0.0416 0.0745 0 0.7823

LDHH numberOfPublicMethods 0.0008 0.0018 0 0.0218
WCHU fanIn 1.282 3.7789 0 62.58

LDHH numberOfPrivateAttributes 0.0008 0.0023 0 0.0292
CvsEntropy 8.5437 6.7229 0 58.1518

LDHH numberOfPublicAttributes 0.0002 0.0037 0 0.1037
WCHU numberOfPrivateMethods 0.5112 1.2482 0 10.23

WCHU numberOfMethods 1.0963 1.8695 0 14.26
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Metric Mean Standard
Deviation Minimum Maximum

ck oo numberOfPublicAttributes 1.8831 56.6045 0 2168
ck oo noc 0.5959 2.4342 0 46

numberOfCriticalBugsFoundUntil: 0.0668 0.3723 0 6
ck oo wmc 23.7488 31.4144 0 286

LDHH numberOfPrivateMethods 0.0007 0.0019 0 0.0182
WCHU numberOfPrivateAttributes 0.5491 1.1544 0 10.12

CvsLogEntropy 0.2696 0.4212 0 5.6466
WCHU noc 0.1686 0.9956 0 14.29

LDHH numberOfAttributesInherited 0.0008 0.0034 0 0.0426
WCHU wmc 1.8758 3.1582 0 28.59
ck oo fanOut 6.676 7.1895 0 48

ck oo numberOfLinesOfCode 98.1643 128.6349 0 1326
ck oo numberOfAttributesInherited 3.9693 15.3287 0 206

ck oo numberOfMethods 9.6293 9.0173 0 82
ck oo dit 2.2806 1.565 1 9

ck oo fanIn 3.69 12.7823 0 355
LDHH noc 0.0002 0.0014 0 0.0201
WCHU dit 0.0777 0.3028 0 3.03
ck oo lcom 82.1757 210.8157 0 3321

WCHU numberOfAttributesInherited 0.4524 1.4762 0 30.76
ck oo rfc 47.5023 63.1137 0 599

LDHH wmc 0.0031 0.0058 0 0.065
LDHH numberOfAttributes 0.0012 0.0063 0 0.1734

LDHH numberOfLinesOfCode 0.0063 0.0079 0 0.0757
WCHU fanOut 1.4777 2.2591 0 16.26

WCHU lcom 1.4783 2.9981 0 30.81
ck oo cbo 10.2084 14.8314 0 362

WCHU rfc 2.4335 3.7809 0 29.7
ck oo numberOfAttributes 5.4115 57.0468 0 2169

numberOfHighPriorityBugsFoundUntil: 0.0641 0.3673 0 6
ck oo numberOfPrivateAttributes 2.6754 3.8238 0 39
numberOfMajorBugsFoundUntil: 0.2418 0.7549 0 8
WCHU numberOfPublicMethods 0.6381 1.283 0 11.37

LDHH dit 0.0001 0.0004 0 0.004
WCHU cbo 2.5055 4.3391 0 61.58

CvsLinEntropy 0.0266 0.0217 0 0.2876
WCHU numberOfMethodsInherited 1.7793 2.4741 0 14.43

numberOfBugsFoundUntil: 3.8764 7.8857 0 232
LDHH fanOut 0.0023 0.004 0 0.031

LDHH numberOfMethodsInherited 0.0028 0.004 0 0.0209
LDHH rfc 0.0036 0.0063 0 0.0678

ck oo numberOfMethodsInherited 28.6279 55.84 0 602
ck oo numberOfPublicMethods 5.5778 5.4219 0 53

LDHH cbo 0.0042 0.0074 0 0.09
WCHU numberOfLinesOfCode 3.2488 4.5713 0 34.77

CvsExpEntropy 0.0555 0.0468 0 0.5955
LDHH numberOfMethods 0.0017 0.0032 0 0.0352

bug 0.1396 0.3467 0 1
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Table A6: Descriptive Statistics - Apache ActiveMQ 5.0.0 dataset of JIRARepository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 0.2452 0.9941 0 21
AvgLineCode 6.6757 5.9576 0 63

CountLine 131.9804 149.5589 20 2075
MaxCyclomatic 2.9326 3.3871 0 56

CountDeclMethodDefault 0.6821 3.2163 0 44
AvgEssential 1.0637 0.3229 0 4

CountDeclClassVariable 0.664 1.5658 0 23
SumCyclomaticStrict 15.2091 23.9075 0 301

AvgCyclomatic 1.4931 0.9471 0 14
AvgLine 9.1688 7.8422 0 75

CountDeclClassMethod 0.2824 1.6226 0 45
AvgLineComment 1.5409 2.42 0 17

AvgCyclomaticModified 1.4894 0.9414 0 14
CountDeclFunction 9.1338 11.9956 0 156
CountLineComment 38.0398 42.204 16 1031

CountDeclClass 1.2542 1.0478 1 18
CountDeclMethod 9.1359 12.0006 0 156

SumCyclomaticModified 14.5674 22.4602 0 294
CountLineCodeDecl 27.7144 30.6632 2 367

CountDeclMethodProtected 1.4692 3.2252 0 40
CountDeclInstanceVariable 2.4904 4.9556 0 68

MaxCyclomaticStrict 3.1635 3.802 0 57
CountDeclMethodPublic 6.7394 10.417 0 129

CountLineCodeExe 40.5621 69.1249 0 929
SumCyclomatic 14.6354 22.6429 0 294

SumEssential 9.9618 13.6066 0 166
CountStmtDecl 28.3015 31.8711 2 394
CountLineCode 75.6826 106.268 3 1191
CountStmtExe 30.699 52.2825 0 593

RatioCommentToCode 1.1715 1.2044 0.03 13.17
CountLineBlank 18.6019 19.3011 1 299

CountStmt 59.0005 81.4542 2 987
MaxCyclomaticModified 2.9045 3.3182 0 56

CountSemicolon 44.0679 61.4349 1 891
AvgLineBlank 0.5414 1.2909 0 15

CountDeclInstanceMethod 8.8535 11.9034 0 155
AvgCyclomaticStrict 1.5441 1.0629 0 18

PercentLackOfCohesion 44.0409 39.2772 0 100
MaxInheritanceTree 2.44 1.595 0 8
CountClassDerived 0.8636 2.8387 0 52
CountClassCoupled 3.8503 5.9582 0 72

CountClassBase 1.3206 0.7267 0 8
CountInput Max 6.5807 9.3636 0 142
CountInput Mean 2.7701 2.8202 0 51.5
CountInput Min 0.7787 2.0001 0 41

CountOutput Max 7.5828 7.0639 0 50
CountOutput Mean 3.5758 3.2718 0 38.8
CountOutput Min 1.5308 2.5715 0 38
CountPath Max 288.7075 6918.921 0 265302
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Table6 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

CountPath Mean 68.9014 1943.342 0 65536.5
CountPath Min 1.0456 0.4845 0 15

MaxNesting Max 1.1486 1.4289 0 8
MaxNesting Mean 0.4473 0.569 0 4.2
MaxNesting Min 0.0297 0.1987 0 2

COMM 2.8227 1.9509 1 23
ADEV 2.8227 1.9509 1 23
DDEV 1.2208 0.4493 1 4

Added lines 44.5515 89.9829 1 1402
Del lines 38.6953 80.0453 0 1326

OWN LINE 0.7514 0.1958 0.3333 1
OWN COMMIT 0.931 0.1447 0.3333 1

MINOR COMMIT 0.0005 0.023 0 1
MINOR LINE 2.0202 0.806 1 5

MAJOR COMMIT 1.2203 0.4478 1 4
MAJOR LINE 0.3217 0.588 0 4
RealBugCount 0.1555 0.3625 0 1

Table A7: Descriptive Statistics - Apache Derby 10.5.1 dataset of JIRARepository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 1.7527 5.9526 0 155
AvgLineCode 12.2495 25.3255 0 895

CountLine 377.1165 689.5627 23 12429
MaxCyclomatic 6.0817 9.0186 0 169

CountDeclMethodDefault 1.3627 4.3004 0 87
AvgEssential 1.1745 0.7007 0 11

CountDeclClassVariable 2.8063 13.4756 0 324
SumCyclomaticStrict 33.8932 70.7123 0 1285

AvgCyclomatic 2.1623 1.9782 0 23
AvgLine 20.3956 42.4236 0 1679

CountDeclClassMethod 1.6965 16.9658 0 854
AvgLineComment 6.0673 8.7308 0 275

AvgCyclomaticModified 2.0495 1.7101 0 21
CountDeclFunction 14.1294 27.5589 0 854
CountLineComment 130.0163 225.6699 15 3778

CountDeclClass 1.1863 0.8008 1 14
CountDeclMethod 14.1316 27.5579 0 854

SumCyclomaticModified 30.3423 61.1237 0 1014
CountLineCodeDecl 57.9933 99.4338 2 2345

CountDeclMethodProtected 1.0055 4.3691 0 89
CountDeclInstanceVariable 3.5227 23.9227 0 1179

MaxCyclomaticStrict 6.7664 10.4016 0 169
CountDeclMethodPublic 10.0107 23.7803 0 854

CountLineCodeExe 119.2983 304.8227 0 5142
SumCyclomatic 31.7749 64.778 0 1158

SumEssential 17.3627 32.8452 0 854
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Table7 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

CountStmtDecl 46.234 74.6346 2 1379
CountLineCode 197.2865 416.8514 3 7360
CountStmtExe 75.1538 183.191 0 3222

RatioCommentToCode 1.5662 2.1831 0.05 24.83
CountLineBlank 53.4928 108.7038 2 3069

CountStmt 121.3878 246.5161 2 4127
MaxCyclomaticModified 5.4976 7.4497 0 79

CountSemicolon 92.353 195.0223 1 3593
AvgLineBlank 1.6747 11.2973 0 508

CountDeclInstanceMethod 12.4351 21.8793 0 310
AvgCyclomaticStrict 2.2954 2.1763 0 23

PercentLackOfCohesion 41.4259 38.6906 0 100
MaxInheritanceTree 2.064 1.4572 0 7
CountClassDerived 0.7974 5.6345 0 254
CountClassCoupled 8.0651 10.1345 0 133

CountClassBase 1.2396 0.7578 0 6
CountInput Max 14.6503 51.3352 0 1476
CountInput Mean 4.3601 9.4718 0 335
CountInput Min 1.1409 6.9124 0 335

CountOutput Max 9.9649 10.9118 0 103
CountOutput Mean 3.7798 3.2952 0 52.5
CountOutput Min 1.2314 1.5306 0 27
CountPath Max 5526946 72264973 0 1E+09
CountPath Mean 379311.2 6338737 0 1.67E+08
CountPath Min 2.2078 50.2764 0 2600

MaxNesting Max 1.7656 1.7099 0 8
MaxNesting Mean 0.7362 0.758 0 5
MaxNesting Min 0.0573 0.3161 0 5

COMM 0.2806 0.8647 0 20
ADEV 0.2806 0.8647 0 20
DDEV 0.2074 0.4674 0 5

Added lines 18.7564 120.669 0 3487
Del lines 1.9102 15.4245 0 407

OWN LINE 0.8946 0.1393 0.2277 1
OWN COMMIT 0.1801 0.3798 0 1

MINOR COMMIT 0 0 0 0
MINOR LINE 1.6218 0.8294 1 7

MAJOR COMMIT 0.2074 0.4674 0 5
MAJOR LINE 1.2118 1.7025 0 15
RealBugCount 0.1416 0.3487 0 1

Table A8: Descriptive Statistics - Apache HBase 0.94.0 dataset of JIRARepository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 2.0331 6.6756 0 165
AvgLineCode 9.8895 8.9047 0 97

CountLine 349.7592 1681.588 0 51285
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Table8 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

MaxCyclomatic 5.1039 5.1873 0 45
CountDeclMethodDefault 1.4013 5.3019 0 82

AvgEssential 1.1596 0.5483 0 8
CountDeclClassVariable 3.6534 19.0895 0 560

SumCyclomaticStrict 45.882 354.0175 0 10982
AvgCyclomatic 1.9348 1.3182 0 13

AvgLine 13.5071 11.6428 0 137
CountDeclClassMethod 2.3022 9.5535 0 247

AvgLineComment 2.5779 3.2534 0 41
AvgCyclomaticModified 1.9178 1.3036 0 13

CountDeclFunction 20.2512 141.395 0 4355
CountLineComment 79.8867 179.6072 0 4519

CountDeclClass 2.7337 18.9085 0 582
CountDeclMethod 20.6091 146.6232 0 4519

SumCyclomaticModified 41.8111 309.8611 0 9599
CountLineCodeDecl 80.3853 307.9796 0 9242

CountDeclMethodProtected 0.644 3.2844 0 83
CountDeclInstanceVariable 5.7007 27.0896 0 810

MaxCyclomaticStrict 5.8839 7.0085 0 68
CountDeclMethodPublic 16.5307 135.2374 0 4189

CountLineCodeExe 137.6449 779.734 0 23721
SumCyclomatic 43.0425 329.2683 0 10214

SumEssential 26.6808 202.0728 0 6239
CountStmtDecl 68.8697 280.1913 0 8475
CountLineCode 232.8055 1330.344 0 40833
CountStmtExe 95.7356 632.9887 0 19462

RatioCommentToCode 2.0396 15.0585 0 344
CountLineBlank 39.288 219.0401 0 6720

CountStmt 164.6053 911.943 0 27937
MaxCyclomaticModified 5.0076 5.0094 0 45

CountSemicolon 120.2144 593.3091 0 17976
AvgLineBlank 0.5911 1.4878 0 15

CountDeclInstanceMethod 18.3069 138.3894 0 4272
AvgCyclomaticStrict 2.0378 1.425 0 13

PercentLackOfCohesion 58.9027 34.9464 0 100
MaxInheritanceTree 1.5732 0.8198 0 5
CountClassDerived 0.7828 2.8557 0 45
CountClassCoupled 7.7195 10.1679 0 132

CountClassBase 1.4419 0.8024 0 5
CountInput Max 12.2852 30.2553 0 699
CountInput Mean 4.0358 3.7974 0 45
CountInput Min 1.1067 1.8683 0 20

CountOutput Max 12.7753 11.1973 0 77
CountOutput Mean 4.7842 3.9607 0 31
CountOutput Min 1.5826 2.6032 0 31
CountPath Max 243665 6860362 0 2.21E+08
CountPath Mean 11212.86 356705.8 0 11606430
CountPath Min 2.0992 23.6555 0 576

MaxNesting Max 1.8905 1.6753 0 8
MaxNesting Mean 0.7154 0.7212 0 6.4
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Table8 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

MaxNesting Min 0.0822 0.4077 0 6
COMM 3.6147 6.1672 0 87
ADEV 3.6147 6.1672 0 87
DDEV 1.8168 1.3081 0 9

Added lines 150.6374 1307.651 0 41581
Del lines 70.6308 645.435 0 20224

OWN LINE 0.8368 0.1912 0 1
OWN COMMIT 0.716 0.3038 0 1

MINOR COMMIT 0.0415 0.3742 0 5
MINOR LINE 1.865 1.1244 0 9

MAJOR COMMIT 1.7753 1.1781 0 7
MAJOR LINE 1.1303 1.5604 0 11
RealBugCount 0.2059 0.4045 0 1

Table A9: Descriptive Statistics - Apache Groovy 1.6 Beta 1 dataset of JIRA Reposi-
tory

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 1.3106 10.3159 0 274
AvgLineCode 6.4762 6.8559 0 81

CountLine 172.1303 468.7334 6 10322
MaxCyclomatic 5.0207 16.2689 0 217

CountDeclMethodDefault 0.8027 8.0965 0 220
AvgEssential 1.1218 0.5154 0 8

CountDeclClassVariable 1.1596 8.4529 0 216
SumCyclomaticStrict 27.1681 79.5552 0 1248

AvgCyclomatic 1.7052 2.0244 0 28
AvgLine 8.0853 8.5697 0 91

CountDeclClassMethod 2.6784 29.814 0 596
AvgLineComment 1.0646 2.1991 0 23

AvgCyclomaticModified 1.5786 1.0639 0 10
CountDeclFunction 13.4629 37.4775 0 637
CountLineComment 47.0463 185.5383 0 5090

CountDeclClass 1.6797 2.6766 0 37
CountDeclMethod 13.4616 37.3955 0 633

SumCyclomaticModified 23.7686 70.6694 0 1205
CountLineCodeDecl 33.2473 73.2904 2 1222

CountDeclMethodProtected 1.0097 4.4746 0 97
CountDeclInstanceVariable 2.179 4.6372 0 73

MaxCyclomaticStrict 5.6724 17.5317 0 249
CountDeclMethodPublic 10.3386 30.1662 0 594

CountLineCodeExe 58.7527 182.6667 0 2718
SumCyclomatic 25.363 74.4387 0 1205

SumEssential 16.6699 46.0724 0 802
CountStmtDecl 34.2801 78.2202 2 1361
CountLineCode 102.5566 278.4355 2 4483
CountStmtExe 42.9233 132.6759 0 2040
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Table9 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

RatioCommentToCode 1.2788 3.32 0 85.57
CountLineBlank 23.6784 51.5829 1 765

CountStmt 77.2034 208.985 2 3401
MaxCyclomaticModified 3.732 5.7187 0 97

CountSemicolon 53.5859 144.924 1 2238
AvgLineBlank 0.3337 1.213 0 13

CountDeclInstanceMethod 10.7832 21.8819 0 222
AvgCyclomaticStrict 1.8404 2.2453 0 28

PercentLackOfCohesion 36.8624 37.0927 0 100
MaxInheritanceTree 2.2314 1.3353 0 6
CountClassDerived 1.0244 3.9413 0 64
CountClassCoupled 4.1839 8.4525 0 96

CountClassBase 1.2412 0.6385 0 6
CountInput Max 10.7004 27.6718 0 332
CountInput Mean 3.188 5.5583 0 125.5
CountInput Min 0.933 1.5466 0 24

CountOutput Max 7.1023 10.3259 0 217
CountOutput Mean 3.0476 2.4953 0 25
CountOutput Min 1.4702 1.9855 0 25
CountPath Max 1228197 34900962 0 1E+09
CountPath Mean 2452.454 64062.06 0 1828155
CountPath Min 1.1145 1.2529 0 28

MaxNesting Max 1.3544 1.564 0 7
MaxNesting Mean 0.5054 0.6293 0 4.25
MaxNesting Min 0.0475 0.2686 0 3

COMM 1.9135 6.3169 0 139
ADEV 1.9135 6.3169 0 139
DDEV 0.6857 0.9895 0 8

Added lines 63.6663 297.0319 0 5972
Del lines 25.8928 129.7807 0 2225

OWN LINE 0.7865 0.205 0.2627 1
OWN COMMIT 0.3489 0.4319 0 1

MINOR COMMIT 0.0097 0.1635 0 4
MINOR LINE 2.1169 1.1406 1 7

MAJOR COMMIT 0.676 0.9524 0 5
MAJOR LINE 0.894 1.5632 0 21

bug 0.0853 0.2794 0 1

Table A10: Descriptive Statistics - Apache Hive 0.9.0 dataset of JIRA Repository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 1.1081 8.2365 0 257
AvgLineCode 8.6794 10.2397 0 102

CountLine 287.1469 1901.059 1 63702
MaxCyclomatic 5.2542 8.0854 0 145

CountDeclMethodDefault 0.4484 3.6757 0 128
AvgEssential 1.2154 1.0369 0 21
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Table10 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

CountDeclClassVariable 1.56 20.2047 0 752
SumCyclomaticStrict 45.4802 425.7567 0 15035

AvgCyclomatic 2.0586 1.8113 0 24
AvgLine 11.2239 12.6095 0 129

CountDeclClassMethod 1.1631 11.0083 0 385
AvgLineComment 1.6045 2.6757 0 23

AvgCyclomaticModified 1.935 1.5437 0 24
CountDeclFunction 18.1017 163.4339 0 5782
CountLineComment 48.2331 128.7335 0 3673

CountDeclClass 2.1434 13.1966 0 392
CountDeclMethod 14.8616 162.1528 0 6038

SumCyclomaticModified 40.3001 365.0319 0 12713
CountLineCodeDecl 60.1879 339.8931 0 11329

CountDeclMethodProtected 0.3446 3.5692 0 129
CountDeclInstanceVariable 5.3298 44.1741 0 1245

MaxCyclomaticStrict 5.9463 9.8648 0 152
CountDeclMethodPublic 12.9605 148.287 0 5524

CountLineCodeExe 121.0918 982.4837 0 31367
SumCyclomatic 42.803 393.1729 0 13753

SumEssential 26.0537 248.4058 0 8818
CountStmtDecl 53.6194 309.0671 0 10144
CountLineCode 202.9025 1560.205 1 52208
CountStmtExe 93.0699 813.8308 0 25426

RatioCommentToCode 1.2288 2.4583 0 43
CountLineBlank 38.0431 266.655 0 8876

CountStmt 146.9174 1101.378 1 35570
MaxCyclomaticModified 4.7564 6.7189 0 92

CountSemicolon 96.0247 712.512 0 22779
AvgLineBlank 0.6137 1.8417 0 35

CountDeclInstanceMethod 13.6984 151.8159 0 5653
AvgCyclomaticStrict 2.185 1.979 0 25

PercentLackOfCohesion 41.7931 38.4287 0 100
MaxInheritanceTree 1.6928 1.0538 0 5
CountClassDerived 0.8482 4.8932 0 104
CountClassCoupled 5.8842 13.1125 0 207

CountClassBase 1.4004 0.8176 0 5
CountInput Max 8.4936 12.0663 0 128
CountInput Mean 3.3539 3.806 0 37.75
CountInput Min 1.0678 2.5886 0 32

CountOutput Max 9.4047 12.2926 0 124
CountOutput Mean 3.6372 3.7148 0 35
CountOutput Min 1.5155 2.5 0 35
CountPath Max 75903.05 1547563 0 51609602
CountPath Mean 2007.176 50295.96 0 1844303
CountPath Min 1.1066 1.259 0 24

MaxNesting Max 1.5805 1.7458 0 9
MaxNesting Mean 0.6677 0.7394 0 4
MaxNesting Min 0.1017 0.4147 0 4

COMM 0.5374 1.5848 0 28
ADEV 0.5374 1.5848 0 28

333



Table10 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

DDEV 0.3814 0.7696 0 7
Added lines 28.3178 245.5229 0 8331

Del lines 14.0805 183.7571 0 6275
OWN LINE 0.7862 0.225 0.2051 1

OWN COMMIT 0.224 0.3936 0 1
MINOR COMMIT 0.0014 0.0376 0 1

MINOR LINE 2.0791 1.2186 1 7
MAJOR COMMIT 0.3799 0.7611 0 7

MAJOR LINE 0.7281 1.4793 0 13
bug 0.1999 0.4 0 1

Table A11: Descriptive Statistics - Apache Ruby 1.1.0 dataset of JIRA Repository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 1.554 6.3818 0 92
AvgLineCode 6.2804 14.8724 0 337

CountLine 218.4993 456.7192 4 4228
MaxCyclomatic 6.8495 25.9094 0 410

CountDeclMethodDefault 0.6361 3.5599 0 50
AvgEssential 1.1395 0.8942 0 17

CountDeclClassVariable 1.9261 9.0263 0 133
SumCyclomaticStrict 34.5882 83.9593 0 780

AvgCyclomatic 1.6758 1.8786 0 26
AvgLine 7.6512 15.6744 0 337

CountDeclClassMethod 2.3981 8.4324 0 105
AvgLineComment 0.8126 1.8325 0 25

AvgCyclomaticModified 1.5417 1.2013 0 13
CountDeclFunction 14.9658 29.83 0 320
CountLineComment 45.5814 65.4465 0 745

CountDeclClass 1.9822 5.7775 0 136
CountDeclMethod 14.9808 29.851 0 320

SumCyclomaticModified 28.6744 65.0546 0 585
CountLineCodeDecl 44.2011 85.501 2 934

CountDeclMethodProtected 0.4624 2.1958 0 27
CountDeclInstanceVariable 3.1067 9.5951 0 120

MaxCyclomaticStrict 7.5636 28.4313 0 438
CountDeclMethodPublic 12.3283 25.2151 0 265

CountLineCodeExe 89.4063 269.7917 0 3684
SumCyclomatic 31.8413 75.4714 0 695

SumEssential 20.2079 43.5586 0 398
CountStmtDecl 41.2408 74.9594 2 662
CountLineCode 144.9959 352.8829 3 3710
CountStmtExe 65.5732 192.4923 0 2792

RatioCommentToCode 1.5548 2.2279 0 10.67
CountLineBlank 28.9412 77.8818 0 1399

CountStmt 106.814 252.2008 2 2799
MaxCyclomaticModified 4.6525 10.8705 0 174
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Table11 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

CountSemicolon 79.4583 202.5887 1 2797
AvgLineBlank 0.2572 0.7546 0 8

CountDeclInstanceMethod 12.5828 27.531 0 312
AvgCyclomaticStrict 1.7839 2.139 0 29

PercentLackOfCohesion 39.3461 37.9462 0 100
MaxInheritanceTree 1.6416 0.9609 0 6
CountClassDerived 1.2955 5.9466 0 81
CountClassCoupled 7.4364 14.1304 0 146

CountClassBase 1.2804 0.7248 0 7
CountInput Max 13.487 55.5068 0 1220
CountInput Mean 3.329 3.6903 0 51
CountInput Min 1.0465 2.009 0 36

CountOutput Max 8.5308 13.1609 0 187
CountOutput Mean 3.0604 2.6077 0 20
CountOutput Min 1.1751 1.2538 0 20
CountPath Max 2755230 52271747 0 1E+09
CountPath Mean 33700.22 795239.7 0 21276598
CountPath Min 1.041 2.0288 0 54

MaxNesting Max 1.3133 1.7428 0 9
MaxNesting Mean 0.4218 0.5573 0 3
MaxNesting Min 0.026 0.1976 0 3

COMM 4.1587 9.3783 0 99
ADEV 4.1587 9.3783 0 99
DDEV 1.3488 1.6226 0 8

Added lines 102.8208 382.4897 0 5928
Del lines 60.1231 295.9409 0 5944

OWN LINE 0.7872 0.2295 0.2614 1
OWN COMMIT 0.4554 0.4173 0 1

MINOR COMMIT 0.0643 0.3846 0 3
MINOR LINE 2.1382 1.2975 1 7

MAJOR COMMIT 1.2845 1.466 0 7
MAJOR LINE 1.1943 1.6177 0 8
RealBugCount 0.119 0.324 0 1

Table A12: Descriptive Statistics - Apache Wicket 1.3.0 Beta 2 dataset of JIRA
Repository

Metric Mean Standard
Deviation Minimum Maximum

CountDeclMethodPrivate 0.3301 1.4266 0 35
AvgLineCode 6.9665 6.7361 0 112

CountLine 138.6432 206.6088 24 3650
MaxCyclomatic 2.4135 2.9901 0 33

CountDeclMethodDefault 0.4532 1.9299 0 27
AvgEssential 1.0635 0.5632 0 17

CountDeclClassVariable 1.1027 2.4779 0 54
SumCyclomaticStrict 10.5428 22.1696 0 361

AvgCyclomatic 1.3488 1.0745 0 26
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Table12 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

AvgLine 12.1872 8.9604 0 133
CountDeclClassMethod 0.2813 1.7084 0 34

AvgLineComment 4.4521 3.06 0 31
AvgCyclomaticModified 1.346 1.0678 0 26

CountDeclFunction 6.4373 10.7853 0 180
CountLineComment 62.7153 83.9143 16 1660

CountDeclClass 1.612 1.7361 1 23
CountDeclMethod 6.4362 10.7847 0 180

SumCyclomaticModified 9.9887 20.3141 0 332
CountLineCodeDecl 19.3823 26.0635 2 355

CountDeclMethodProtected 0.8366 2.2647 0 41
CountDeclInstanceVariable 1.198 2.989 0 53

MaxCyclomaticStrict 2.6353 3.6108 0 51
CountDeclMethodPublic 4.8162 8.3049 0 123

CountLineCodeExe 25.2167 50.8115 0 698
SumCyclomatic 10.0278 20.5395 0 332

SumEssential 7.2853 13.1842 0 206
CountStmtDecl 19.5581 26.5351 2 360
CountLineCode 62.1407 110.1732 3 1660
CountStmtExe 17.6126 37.186 0 507

RatioCommentToCode 1.9493 1.6508 0.17 15.6
CountLineBlank 13.9421 20.8007 1 334

CountStmt 37.1707 62.4186 2 867
MaxCyclomaticModified 2.4005 2.9087 0 33

CountSemicolon 26.637 43.1056 1 534
AvgLineBlank 0.3936 1.0463 0 12

CountDeclInstanceMethod 6.1548 10.4617 0 180
AvgCyclomaticStrict 1.4095 1.3632 0 36

PercentLackOfCohesion 51.9801 43.5395 0 100
MaxInheritanceTree 3.4986 2.2019 0 10
CountClassDerived 1.3579 8.3403 0 238
CountClassCoupled 3.7833 5.065 0 57

CountClassBase 1.3199 0.6736 0 12
CountInput Max 4.9353 16.0631 0 544
CountInput Mean 2.0096 2.7737 0 54.25
CountInput Min 0.785 1.4626 0 28

CountOutput Max 5.8338 5.5453 0 38
CountOutput Mean 2.9622 2.2563 0 24
CountOutput Min 1.5837 1.8324 0 24
CountPath Max 1037.085 41375.67 0 1736592
CountPath Mean 336.2706 13787.92 0 578868.3
CountPath Min 6.0652 208.3565 0 8749

MaxNesting Max 0.9257 1.4129 0 8
MaxNesting Mean 0.347 0.5758 0 5
MaxNesting Min 0.0318 0.2478 0 5

COMM 3.1004 2.8932 1 51
ADEV 3.1004 2.8932 1 51
DDEV 2.5576 1.1432 1 10

Added lines 280.017 444.6721 25 8133
Del lines 12.6716 58.9818 0 1022
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Table12 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

OWN LINE 0.6814 0.1987 0.2281 1
OWN COMMIT 0.4917 0.1769 0.1538 1

MINOR COMMIT 0.0199 0.2569 0 5
MINOR LINE 2.8968 1.1746 1 6

MAJOR COMMIT 2.5377 1.0734 1 8
MAJOR LINE 1.0227 1.2122 0 8

bug 0.0737 0.2614 0 1

Table A13: Descriptive Statistics - Apache Ant 1.7 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 11.0711 11.976 0 120
dit 2.5221 1.3989 1 7
noc 0.7315 4.8004 0 102
cbo 11.047 26.3431 0 499
rfc 34.3624 36.025 0 288

lcom 89.1477 349.9376 0 6692
ca 5.655 25.8142 0 498
ce 5.7463 5.6532 0 37

npm 8.3651 9.3313 0 103
lcom3 1.0133 0.619 0 2

loc 280.0711 411.8721 0 4541
dam 0.6449 0.4381 0 1
moa 0.7262 1.4266 0 11
mfa 0.51 0.3987 0 1
cam 0.4747 0.2599 0 1
ic 0.7208 0.9389 0 5

cbm 1.3128 2.3326 0 19
amc 23.6409 76.9861 0 2052

max cc 4.6698 6.2769 0 53
avg cc 1.3661 0.8817 0 6.7778
defects 0.2228 0.4164 0 1

Table A14: Descriptive Statistics - Apache Camel 1.4 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 8.5229 10.7435 0 141
dit 1.9472 1.2829 0 6
noc 0.5218 2.5742 0 36
cbo 10.7626 20.8798 0 389
rfc 21.2007 23.7672 0 286

lcom 73.4174 429.9116 0 9792
ca 5.1078 20.0845 0 387
ce 6.3314 6.7926 0 69

npm 6.9174 9.696 0 130
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Table14 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

lcom3 1.1055 0.7213 0 2
loc 112.4771 162.2365 0 1747

dam 0.6073 0.4786 0 1
moa 0.6044 1.1769 0 9
mfa 0.3925 0.4168 0 1
cam 0.4915 0.265 0 1
ic 0.3647 0.5771 0 3

cbm 0.6067 1.2478 0 15
amc 10.9107 11.6467 0 148.6667

max cc 2.1583 2.6168 0 32
avg cc 0.9434 0.6038 0 6.5
defects 0.1663 0.3725 0 1

Table A15: Descriptive Statistics - Apache Ivy 2.0 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 11.2841 15.1482 1 157
dit 1.7926 1.2448 1 6
noc 0.3693 1.3183 0 17
cbo 13.233 16.5711 1 150
rfc 34.0369 44.6796 1 312

lcom 131.5795 712.192 0 11794
ca 6.8807 13.9389 0 147
ce 5.1648 8.9313 0 75

npm 9.0369 12.6361 0 142
lcom3 1.0594 0.6601 0 2

loc 249.3438 428.2597 1 2894
dam 0.6162 0.4599 0 1
moa 0.7159 1.4417 0 12
mfa 0.2909 0.3852 0 1
cam 0.4908 0.2546 0.0552 1
ic 0.358 0.7336 0 4

cbm 0.6364 1.7811 0 18
amc 18.4897 27.0328 0 203.5

max cc 3.1875 3.8481 0 29
avg cc 1.2143 0.8161 0 6.5
defects 0.1136 0.3178 0 1

Table A16: Descriptive Statistics - jEdit 4.0 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 12.8824 30.9583 1 407
dit 2.7647 2.1187 1 8
noc 0.4412 2.6988 0 35
cbo 12.3954 18.0409 1 184
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Table16 continued from previous page

Metric Mean Standard
Deviation Minimum Maximum

rfc 38.2418 57.0192 1 494
lcom 197.3758 1221.246 0 16336

ca 7.5131 15.7687 0 157
ce 6.4281 7.6267 0 59

npm 7.7026 16.2952 0 193
lcom3 1.0456 0.602 0 2

loc 473.2124 1584.691 1 23683
dam 0.5588 0.4647 0 1
moa 0.9346 1.9152 0 17
mfa 0.5353 0.4435 0 1
cam 0.4711 0.2492 0 1
ic 0.6732 0.9906 0 4

cbm 1.6144 3.2302 0 25
amc 31.3419 37.2195 0 496

max cc 6.2255 9.433 0 84
avg cc 1.7917 1.7975 0 20
defects 0.2451 0.4308 0 1

Table A17: Descriptive Statistics - Apache Log4j 1.0 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 6.5852 5.6336 0 49
dit 1.6 0.932 1 5
noc 0.3037 1.1081 0 9
cbo 6.8593 8.9893 0 60
rfc 21.4 17.5134 0 96

lcom 19.9333 65.4542 0 688
ca 3.6741 8.4003 0 53
ce 3.4519 3.1332 0 15

npm 4.4815 4.7108 0 42
lcom3 0.9969 0.6193 0 2

loc 159.6222 184.5988 0 1176
dam 0.1219 0.2758 0 1
moa 0.7926 1.2038 0 7
mfa 0.2933 0.3934 0 1
cam 0.4389 0.2232 0 1
ic 0.363 0.6302 0 2

cbm 0.7111 1.5105 0 10
amc 20.2124 17.7835 0 100.6

max cc 3.3333 3.3099 0 23
avg cc 1.3419 0.8729 0 6.25
defects 0.2519 0.4357 0 1
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Table A18: Descriptive Statistics - Apache Poi 2.0 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 14.3025 13.8599 0 108
dit 1.7006 0.6685 1 5
noc 0.742 7.6676 0 125
cbo 8.6529 16.7644 0 156
rfc 29.6465 33.4041 0 341

lcom 103.7643 359.6833 0 4268
ca 4.5096 14.5024 0 154
ce 4.4777 8.9443 0 121

npm 12.1242 11.6518 0 93
lcom3 0.9675 0.5205 0 2

loc 296.7229 661.299 0 9849
dam 0.5103 0.3906 0 1
moa 0.9713 2.8737 0 34
mfa 0.3002 0.2814 0 1
cam 0.4231 0.1872 0 1
ic 0.5318 0.5186 0 2

cbm 2.6146 2.8252 0 7
amc 18.1292 38.7297 0 614.0625

max cc 3.586 7.6368 0 117
avg cc 1.1501 1.044 0 14.2222
defects 0.1178 0.3229 0 1

Table A19: Descriptive Statistics - Apache Tomcat dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 12.9592 18.6189 0 252
dit 1.6876 1.053 1 6
noc 0.3636 1.9737 0 31
cbo 7.5734 11.0969 0 109
rfc 33.4709 44.9766 0 511

lcom 176.2762 1159.188 0 29258
ca 3.8625 8.9033 0 109
ce 0 0 0 0

npm 10.7762 16.7132 0 231
lcom3 1.0862 0.6604 0 2

loc 350.4359 644.839 0 7956
dam 0.5741 0.4714 0 1
moa 0.9441 2.1077 0 24
mfa 0.2938 0.3866 0 1
cam 0.4865 0.2536 0 1
ic 0.2751 0.5788 0 4

cbm 0.5932 1.7421 0 19
amc 25.5776 46.6422 0 894.5

max cc 4.2716 6.9544 0 95
avg cc 1.2505 1.0024 0 10
defects 0.0897 0.286 0 1
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Table A20: Descriptive Statistics - Apache Velocity 1.6 dataset of PROMISE Reposi-
tory

Metric Mean Standard
Deviation Minimum Maximum

wmc 9.0218 14.1351 0 153
dit 1.6769 0.8887 1 5
noc 0.4367 2.7548 0 39
cbo 10.8079 12.7227 0 80
rfc 22.9782 27.3691 0 250

lcom 80.3406 554.868 0 8092
ca 5.607 11.1797 0 76
ce 5.9825 7.676 0 61

npm 7.2183 8.7992 0 50
lcom3 1.2325 0.7107 0 2

loc 248.9607 1034.079 0 13175
dam 0.4321 0.4627 0 1
moa 0.4716 1.1453 0 10
mfa 0.3879 0.4115 0 1
cam 0.4651 0.2224 0 1
ic 0.3144 0.5516 0 2

cbm 0.4891 1.0413 0 9
amc 19.6087 28.1143 0 276

max cc 3.9869 14.5893 0 209
avg cc 1.2708 1.856 0 23
defects 0.3406 0.475 0 1

Table A21: Descriptive Statistics - Apache Xalan 2.4 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 11.4495 16.2951 0 123
dit 2.5657 1.5252 1 8
noc 0.6086 2.6089 0 29
cbo 14.4979 19.3436 0 171
rfc 30.1618 35.7323 0 355

lcom 130.0816 577.0398 0 6589
ca 6.7469 16.4663 0 155
ce 8.4606 10.003 0 64

npm 9.5519 13.9251 0 118
lcom3 1.1166 0.71 0 2

loc 311.325 513.4384 0 3479
dam 0.4478 0.4723 0 1
moa 0.9073 1.8737 0 18
mfa 0.5478 0.4401 0 1
cam 0.4658 0.2584 0 1
ic 0.9198 1.0859 0 5

cbm 3.0719 4.579 0 30
amc 26.8832 37.4275 0 436

max cc 4.3762 6.4732 0 86
avg cc 1.3466 1.2727 0 22
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Metric Mean Standard
Deviation Minimum Maximum

defects 0.1521 0.3594 0 1

Table A22: Descriptive Statistics - Apache Xerces 1.3 dataset of PROMISE Repository

Metric Mean Standard
Deviation Minimum Maximum

wmc 11.3775 13.3483 0 95
dit 2.0088 1.276 1 5
noc 0.4547 3.1392 0 52
cbo 5.0751 8.3892 0 60
rfc 21.7042 32.463 0 297

lcom 94.5232 250.1567 0 2425
ca 2.6667 6.8383 0 57
ce 2.755 4.7401 0 55

npm 8.8146 9.2035 0 55
lcom3 1.4652 0.657 0 2

loc 368.8631 1058.501 0 10701
dam 0.2646 0.4094 0 1
moa 0.8035 2.8031 0 41
mfa 0.3573 0.4249 0 1
cam 0.5037 0.2406 0 1
ic 0.3466 0.6595 0 4

cbm 1.3753 3.088 0 25
amc 21.964 58.8984 0 779.8

max cc 3.4525 8.7705 0 147
avg cc 1.236 1.1806 0 13.3585
defects 0.1523 0.3597 0 1
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